prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Author: <NAME> @Date: Arg 8, 2020 """ # import necessary packages import requests import time import numpy as np import sys import re from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.common.desired_capabilities import DesiredCapabilities import xml import pandas as pd def read_url(url: str, driver_path: str): """ Read the website and return the contents of the website :param url: The url of the website :param driver_path: The path of the Google Chrome Driver :return soup.text: The contents of the website """ start_time = time.time() option = webdriver.ChromeOptions() option.add_argument( 'user-agent="MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) ' 'AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"') option.add_argument( 'user-agent="Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) ' 'Version/9.0 Mobile/13B143 Safari/601.1"') option.add_argument('--disable-infobars') option.add_argument('--incognito') option.add_argument('headless') option.add_argument("--start-maximized") option.add_argument('blink-settings=imagesEnabled=false') desired_capabilities = DesiredCapabilities.CHROME desired_capabilities["pageLoadStrategy"] = "none" prefs = { "profile.managed_default_content_settings.images": 2, 'profile.default_content_settings.popups': 0 } option.add_experimental_option("prefs", prefs) # option.add_experimental_option("excludeSwitches", ["ignore-certificate-errors"]) # PROXY = "proxy_host:proxy:port" # desired_capabilities = option.to_capabilities() # desired_capabilities['proxy'] = { # "httpProxy": PROXY, # "ftpProxy": PROXY, # "sslProxy": PROXY, # "noProxy": None, # "proxyType": "MANUAL", # "class": "org.openqa.selenium.Proxy", # "autodetect": False # } # If you don't have Google Chrome Driver installed, uncomment this line # driver_path = ChromeDriverManager().install() driver = webdriver.Chrome(driver_path, chrome_options=option, desired_capabilities=desired_capabilities) # driver.implicitly_wait(0.1) driver.get(url) contents = driver.page_source START = contents.find('serverContent') END = contents.find('QRcodebox') contents_cut = contents[START:END] end_time = time.time() print('Time used for get the website was %7f' % (end_time - start_time)) return contents, contents_cut, driver def find_English_term(content: str): """ Find the English Term from the contents :param content: The contents of the website :return Eng_term: The found English term :return content: The contents that cut the English term part """ mark = content.find('detail_content') temp_cont = content[mark-100:mark] START = temp_cont.find('">') END = temp_cont.find('</a></h3>') Eng_term = temp_cont[START+2:END] content = content[mark+len('detail_content'):] return Eng_term, content def find_Chinese_term(content: str): """ Find the Chinese Term from the contents :param content: The contents of the website :return Chi_term: The found Chinese Term :return content: The contents that cut the Chinese term part """ if '中文名称' not in content: Chi_term = '' else: mark = content.find('target') temp_cont = content[mark:mark+100] START = temp_cont.find('target') END = temp_cont.find('</a>') Chi_term = temp_cont[START+len('target="_blank">'):END] chi_loc = content.find(Chi_term) content = content[chi_loc+len(Chi_term):] return Chi_term, content def find_English_definition(content: str): """ Find the English Definition from the content :param content: The contents of the website :return Eng_def: The found English definition :return content: The contents that cut the English definition part """ if '释义' not in content: Eng_def = '' else: START = content.find('释义') END = content.find('</i>') Eng_def = content[START+len('释义:<span><i>'):END] content = content[END+len('</i></span></div>'):] return Eng_def, content def synonym(content: str): """ Find all the Synonym words w.r.t. the English term :param content: The contents of the website :return synonym_words: The found synonym words """ if '同义词' not in content: synonym_words = '' else: START = content.find('同义词') END = content.find('范畴') main_content = content[START:END] key_word = 'target' synonym_words = [] cur_content = main_content while key_word in cur_content: start = cur_content.find('target') + len('target') ite_content = cur_content[start:start+100] new_start = ite_content.find(">") end = ite_content.find('</a></span>') synonym_word = ite_content[new_start+1:end] synonym_words.append(synonym_word) cur_content = cur_content[start+1:] synonym_words = np.array(synonym_words) synonym_words = np.squeeze(synonym_words) synonym_words = str(synonym_words).replace('[', '') synonym_words = [str(synonym_words).replace(']', '')] content = content[END:] return synonym_words, content def field(content: str): """ Find and save all the Fields of this particular term :param content: The contents of the website :return content: The Fields contents """ if '范畴' not in content: field = '' else: content.replace("title=""", '') START = content.find('target') + len('target') content = content[START:] field = [] new_content = content while 'title' in new_content: start = new_content.find('title=') + len('title=') end = new_content.find('><span') temp_field = new_content[start+1:end-1] if temp_field != '': field.append(temp_field) new_content = new_content[start:] field = np.array(field) field = np.squeeze(field) field = str(field).replace('[', '') field = [str(field).replace(']', '')] return field # The main function if __name__ == "__main__": index = 1 English_terms = [] Chinese_terms = [] English_definition = [] Synonym_words = [] Fileds_summary = [] start = '0' end = '100w' save_file = start + '-' + end start_index = int(0) end_index = int(1000000) for i in range(start_index, end_index): if i < 10: i = '00000' + str(i) elif 10 <= i < 100: i = '0000' + str(i) elif 100 <= i < 1000: i = '000' + str(i) elif 1000 <= i < 10000: i = '00' + str(i) elif 10000 <= i < 100000: i = '0' + str(i) else: i = str(i) url = 'https://www.nstl.gov.cn/stkos_detail.html?id=C019' + i driver_path = '/Users/shuyuej/.wdm/drivers/chromedriver/mac64/84.0.4147.30/chromedriver' save_path = 'NSTD_data/' contents, contents_cut, driver = read_url(url=url, driver_path=driver_path) if '暂无相关资源' in contents: print('There is no data in this webpage! Skip and continue......') continue else: Eng_term, con_cut_eng = find_English_term(content=contents_cut) English_terms.append([Eng_term]) Chi_term, con_cut_chi = find_Chinese_term(content=con_cut_eng) Chinese_terms.append([Chi_term]) Eng_def, con_cut_def = find_English_definition(content=con_cut_chi) English_definition.append([Eng_def]) synonym_word, synonym_cut_con = synonym(content=con_cut_def) Synonym_words.append([synonym_word]) fields = field(content=synonym_cut_con) Fileds_summary.append([fields]) index += 1 print('It\'s ' + str(i) + ' Website, saved its data, and continue......') rows = np.shape(English_terms)[0] English_terms =
np.reshape(English_terms, [rows, 1])
numpy.reshape
############################## # # IMPORTS # ############################## # Misc import os from matplotlib import pyplot as plt from IPython.display import clear_output import sys import h5py import numpy as np import pickle # NN import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation from keras import backend as K from sklearn.model_selection import train_test_split # Tensorboard import time from tensorflow.python.keras.callbacks import TensorBoard # Weight Checkpoints from keras.callbacks import ModelCheckpoint # Move directories import shutil # debuging import ipdb # ipdb.set_trace() # Print progress from decimal import Decimal ############################## # # Plot Losses Callback # ############################## class PlotLosses(keras.callbacks.Callback): def on_train_begin(self, logs={}): # Reshape input vector to fit on graph def reshapeVector(vec): l = len(vec) L = epochs - l if L>=0: tail = np.ones((L), dtype = int) * vec[-1] vec = np.hstack((vec,tail)) return vec # Load data to compare with if compareResultsDuringTraining: self.compareData = load_obj('Results/' + compareWith, 'fitHistory') self.compAcc = reshapeVector(self.compareData['acc']) self.compValAcc = reshapeVector(self.compareData['val_acc']) self.compLoss = reshapeVector(self.compareData['loss']) self.compValLoss = reshapeVector(self.compareData['val_loss']) self.i = 0 self.x = [] self.loss = [] self.val_loss = [] self.acc = [] self.val_acc = [] self.fig = plt.figure() self.logs = {'acc':[], 'val_acc':[], 'loss':[], 'val_loss':[]} self.saveDir = 'Results/' + str(resID) + '/fitTemp/' def on_epoch_end(self, epoch, logs={}): self.x.append(self.i) self.loss.append(logs['loss']) self.val_loss.append(logs['val_loss']) self.acc.append(logs['acc']) self.val_acc.append(logs['val_acc']) self.logs = {'acc':self.acc, 'val_acc':self.val_acc, 'loss':self.loss, 'val_loss':self.val_loss} self.i += 1 clear_output(wait=True) # Create plots f = plt.figure(figsize=(15,7)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) # Plot Loss ax.plot(self.x, self.loss, color='blue', label="Train", linewidth = 1) ax.plot(self.x, self.val_loss, color='deepskyblue', label="Validation", linewidth = 1) if compareResultsDuringTraining: ax.plot(self.x, self.compLoss[:len(self.loss)], color='black', label=compareWith + " Training", linewidth = 1) ax.plot(self.x, self.compValLoss[:len(self.loss)], color='gray', label=compareWith + " Validation", linewidth = 1) ax.set_xlabel('Epochs') ax.set_ylabel('Loss') ax.legend() ax.set_ylim(bottom=0) ax.grid(True) # Plot Accuracy ax2.plot(self.x, self.acc, 'b-', label="Train", linewidth = 1) ax2.plot(self.x, self.val_acc, color = 'deepskyblue', label="Validation", linewidth = 1) if compareResultsDuringTraining: ax2.plot(self.x, self.compAcc[:len(self.acc)], color='black', label=compareWith + " Training", linewidth = 1) ax2.plot(self.x, self.compValAcc[:len(self.acc)], color='silver', label=compareWith + " Validation", linewidth = 1) ax.set ax2.set_xlabel('Epochs') ax2.set_ylabel('Accuracty') ax2.legend() ax2.set_ylim(top=1) ax2.grid(True) # Show and save plot # plt.tight_layout() plt.savefig(self.saveDir + 'currentAccAndLoss') plt.show(); # print results print("Train Accuracy of last epoch: ", logs['acc']) print("Validation Accuracy of last epoch: ", logs['val_acc']) print("Train Loss of last epoch: ", logs['loss']) print("Validation Loss of last epoch: ", logs['val_loss']) # # Plot Loss # plt.subplot(1,2,1) # plt.figure(figsize=(8,8)) # plt.plot(self.x, self.loss, 'b-', label="Train", linewidth = 1) # plt.plot(self.x, self.val_loss, 'r-', label="Validation", linewidth = 1) # plt.plot(self.x, self.compLoss[:len(self.loss)], 'b--', label=compareWith + " Training") # plt.plot(self.x, self.compValLoss[:len(self.loss)], 'r--', label=compareWith + " Validation") # plt.xlabel('Epochs') # plt.ylabel('Loss') # plt.legend() # plt.ylim(bottom=0) # plt.grid(True) # # plt.savefig('fitTemp/currentLoss') # # plt.show(); # # Plot Accuracy # plt.subplot(1,2,2) # plt.figure(figsize=(8,8)) # plt.plot(self.x, self.acc, 'b-', label="Train", linewidth = 1) # plt.plot(self.x, self.val_acc, 'r-', label="Validation", linewidth = 1) # plt.plot(self.x, self.compAcc[:len(self.acc)], 'b--', label=compareWith + " Training") # plt.plot(self.x, self.compValAcc[:len(self.acc)], 'r--', label=compareWith + " Validation") # plt.xlabel('Epochs') # plt.ylabel('Accuracty') # plt.legend() # plt.ylim(top=1) # plt.grid(True) # # Show and save plot # # plt.tight_layout() # # plt.savefig('fitTemp/currentAccAndLoss') # plt.show(); with open(self.saveDir + 'logs.txt','w') as file: file.write(str(self.logs)) with open(self.saveDir + 'atEpochNr.txt','w') as file: file.write(str(epoch)) plot_losses = PlotLosses() ############################## # # Misc Functions # ############################## def calcScore(model): print("Calculating score") score = model.evaluate(X_test, y_test, verbose=1) print(X_train.shape) print('Evaluated test loss:', score[0]) print('Evaluated test accuracy:', score[1]) return score def calcScoreBigData(model): print("Calculating score") score = np.array([.0,.0]) t0 = time.time() # start time t1 = t0 # last print i1 = i2 = 0 for X_train, X_test, y_train, y_test, percDone, loadLength in genData(test_size = 0, yieldSize = yieldSize): score += np.array(model.evaluate(X_train, y_train, verbose=0)) t2 = time.time() tSinceLastPrint = t2 - t1 i2 += 1 if tSinceLastPrint > tPrintInterval: printProgress(t0, t1, t2, i1, i2, loadLength//yieldSize) t1 = time.time() i1 = i2 score = score/(i2 + 1) print() print('Evaluated loss:', score[0]) print('Evaluated accuracy:', score[1]) return score def copyDirectory(src, dest): try: shutil.copytree(src, dest) # Directories are the same except shutil.Error as e: print('Directory not copied. Error: %s' % e) # Any error saying that the directory doesn't exist except OSError as e: print('Directory not copied. Error: %s' % e) def askAbortIfPathExists(fileName): if askForConfirmation: if os.path.exists(fileName): a = input("Error, file/directory {} exists, continue? [y/n]".format(fileName)) if a[0] != "y" and a[0] != "Y": sys.exit() def createDir(dir, confirm = True): if os.path.exists(dir): askAbortIfPathExists(dir) else: os.makedirs(dir) def save_obj(saveDir, saveName, obj ): if not os.path.exists(saveDir): os.makedirs(saveDir) fileName = saveDir + '/'+ saveName + '.pkl' askAbortIfPathExists(fileName) with open(fileName, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(dir, fileName ): with open(dir + '/' + fileName + '.pkl', 'rb') as f: return pickle.load(f) def sq2hnit(sq): col = sq%8 row = (sq - col)//8 return col,row # 0: pawns # 1: kings def vecSt2fullSt(vecSt, nPi, nPa, nWPa): fullSt = np.zeros((4,8,8), dtype = 'bool') for i in range(nPi - 2): sq = vecSt[i] col,row = sq2hnit(sq) if i < nWPa: fullSt[0][row][col] = True else: fullSt[1][row][col] = True col,row = sq2hnit(vecSt[-2]) fullSt[2][row][col] = True col,row = sq2hnit(vecSt[-1]) fullSt[3][row][col] = True return fullSt def vecSt2fullSt_8x8x2(vecSt, nPi, nPa, nWPa): fullSt = np.zeros((8,8,2), dtype = 'int8') for i in range(nPi - 2): sq = vecSt[i] col,row = sq2hnit(sq) if i < nWPa: fullSt[row][col][0] = 1 else: fullSt[row][col][0] = -1 col,row = sq2hnit(vecSt[-2]) fullSt[row][col][1] = 1 col,row = sq2hnit(vecSt[-1]) fullSt[row][col][1] = -1 return fullSt # count nr of each score instance # wdlCounter placeholders: [-2, -1, 0, 1 ,2] def wdlCountingMachine(ds): wdlCounter = [0,0,0,0,0] l = len(ds) i = 0 intv = l//100 for wdl in ds: i += 1 if i%intv == 0: sys.stdout.write(str((i*100)//l) + " percentage") sys.stdout.write('\r') sys.stdout.flush() wdlCounter[wdl[0] + 2] += 1 print(wdlCounter) return wdlCounter # wdlCountingMachine(d3t) ############################## # # Gen DATA # ############################## def genData(randomState = 42, test_size = 0.33, yieldSize = 1000): with h5py.File(fileName, 'r') as f: d = f[dataSetName] dt = f[dataSetWdlName] l = len(d) loadLength = int(l * fractionOfDataToUse) if convertStates: sys.exit("loadDataGenerator can't convert states, aborting.") for i in range(0,loadLength, yieldSize): if i + yieldSize > loadLength: ys = loadLength - i else: ys = yieldSize X = d[i: i+ys] y = dt[i: i+ys] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=randomState) del X, y # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # Percentage done percDone = round(100*i/loadLength, 3) yield X_train, X_test, y_train, y_test, percDone, loadLength ############################## # # LOAD DATA # ############################## # load datasets def loadData(randomState = 42, test_size = 0.33): with h5py.File(fileName, 'r') as f: d = f[dataSetName] dt = f[dataSetWdlName] l = len(d) loadLength = int(l * fractionOfDataToUse) if convertStates: X = np.array([vecSt2fullSt(vecSt,nPi, nPa, nWPa) for vecSt in d[:loadLength]]) else: X = d[:loadLength] y = dt[:loadLength] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=randomState) del X del y print('X_train shape:', X_train.shape) print('y_train shape:', y_train.shape) print('X_test shape:', X_test.shape) print('y_test shape:', y_test.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) print("Done loading dataset") return X_train, X_test, y_train, y_test ############################## # # CREATE MODEL # ############################## def createModel(): # import keras.backend as K # K.set_floatx('float16') # K.set_epsilon(1e-4) #default is 1e-7 # K.set_floatx('float32') # K.set_epsilon(1e-7) #default is 1e-7 model = Sequential() nnStr = '' for i in range(len(filters)): s = str(filterShape[i]) filter = str(filters[i]) nnStr += s + 'x' + filter + '-' nnStr = nnStr[:-1] assert (len(filters) == len(filterShape)),"Error, len(filters) != len(filterShape)" if useBatchNorm: for i in range(len(filters)): if i == 0: model.add(Conv2D(filters[i], kernel_size=(filterShape[i], filterShape[i]), padding='valid', data_format = "channels_first", use_bias = False, # kernel_initializer = input_shape=input_shape)) else: model.add(Conv2D(filters[i], kernel_size=(filterShape[i], filterShape[i]), use_bias = False, padding='valid')) model.add(BatchNormalization()) model.add(Activation("relu")) else: for i in range(len(filters)): if i == 0: model.add(Conv2D(filters[i], kernel_size=(filterShape[i], filterShape[i]), padding='valid', activation='relu', data_format = "channels_first", # kernel_initializer = keras.initializers.RandomNormal(mean=0.0, stddev=1.0, seed=None), input_shape=input_shape)) else: model.add(Conv2D(filters[i], kernel_size=(filterShape[i], filterShape[i]), padding='valid', # kernel_initializer = keras.initializers.RandomNormal(mean=0.0, stddev=1.0, seed=None), activation='relu')) model.add(Flatten()) model.add(Dense(num_classes, activation='softmax')) if multiGPU: model = keras.utils.multi_gpu_model(model, gpus=2) model.summary() if loadWeights: if loadCheckpointWeights: if weightsCheckpoint[:-5] == '.hdf5': weightsPath = 'Results/' + weightsSource + '/weightsCheckpoints/' + weightsCheckpoint else: weightsPath = 'Results/' + weightsSource + '/weightsCheckpoints/' + weightsCheckpoint + '.hdf5' else: weightsPath = 'Results/' + weightsSource + '/weights.hdf5' print("Loading weights from {}".format(weightsPath)) model.load_weights(weightsPath) else: print("Starting with random weights") if optimizer == "Adadelta": model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) elif optimizer == 'Adam': model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False), metrics=['accuracy']) else: sys.exit("Error, invalid optimizer.") print("Done creating model") return model, nnStr ############################## # # TRAIN MODEL # ############################## def trainModel(resID, model, saveWeightsCheckpoints = True, saveTensorBoardLogs = True): # prepp callbacks arr callbacksArr = [] if plotDuringTraining: callbacksArr.append(plot_losses) if saveTensorboardLogs: logDir = './logs/{}-{}pc-{}-{}KPM-{}'.format(resID,nPi, initWeightsId, kpm, expDescr, dateTime ) callbacksArr.append(keras.callbacks.TensorBoard(log_dir=logDir)) # save weight checkpoint if saveWeightsCheckpoints: saveWeigthsPath = "Results/" + resID + '/weightsCheckpoints/' print("Saving weights to {}".format(saveWeigthsPath)) createDir(saveWeigthsPath) filepath = saveWeigthsPath + "weights-checkp-{epoch:03d}-{val_acc:.3f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacksArr.append(checkpoint) kpm = model.count_params()//1000 dateTime = time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime()) # Load weights if loadWeights: initWeightsId = weightsSource else: initWeightsId = 'RND' fitHistory = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, callbacks = callbacksArr, # .format(resID,nPi, initWeightsId, kpm, int(time() - 1500000000)))], validation_data=(X_test, y_test)) print("Training done") if saveTensorBoardLogs: return fitHistory, logDir else: return fitHistory, None ############################## # # SAVE RESULTS # ############################## def genNextResultsDir(model, resID = None): if resID == None: #Get next resID with open('Results/lastResId.txt','r') as file: lastId = file.read() resID = str(int(lastId) + 1).zfill(3) #Iterate resID with open('Results/lastResId.txt','w') as file: file.write(resID) # Generate save dir saveDir = 'Results/' + str(resID) + '/' print('Save dir: ' + saveDir) print("Creating save dir") createDir(saveDir, confirm = True) # Save info directories if loadWeights: initWeightsId = weightsSource else: initWeightsId = 'RND' kpm = str(model.count_params()//1000) + 'kpm' createDir(saveDir + '_' + '_0.experimentDesc-------' + str(expDescr)) createDir(saveDir + '_' + '_1.numberOfPieces-------' + str(nPi)) createDir(saveDir + '_' + '_2.neuralNetStructure---' + str(nnStr)) createDir(saveDir + '_' + '_3.loadedWeightsFrom----' + str(initWeightsId)) createDir(saveDir + '_' + '_5.batchSize------------' + str(batch_size)) createDir(saveDir + '_' + '_6.optimizer------------' + str(optimizer)) createDir(saveDir + '_' + '_7.nrOfparameters-------' + str(kpm)) createDir(saveDir + '_' + '_9.multiGPU-------------' + str(multiGPU)) createDir(saveDir + 'fitTemp') with open(saveDir + 'fitTemp/startTime.txt', 'w') as file: file.write(str(time.time())) print("Done generating results dir {}".format(saveDir)) return resID def saveTrainResults(resID, model, logDir, score, copyFirstNLayers = None): print("Saving results to dir {}".format(resID)) saveDir = 'Results/' + str(resID) + '/' ep = len(model.history.history['acc']) createDir(saveDir + '_' + '_4.epochs---------------' + str(ep) + '_of_' + str(epochs) ) createDir(saveDir + '_' + '_8.finalAccuracy--------' + str(round(score[1],3))) if copyFirstNLayers != None: createDir(saveDir + '_' + '_11.copyFirstNLayers----' + str(copyFirstNLayers)) #save history print("Saving history...") hist = model.history.history saveName = 'fitHistory' save_obj(saveDir, saveName, hist) #save weights print("Saving weights...") fileName = saveDir + 'weights.hdf5' askAbortIfPathExists(fileName) model.save_weights(fileName) #save figures print("Saving figures...") acc = hist['acc'] loss = hist['loss'] val_acc = hist['val_acc'] val_loss = hist['val_loss'] x = [i for i in range(len(acc))] # Create plots f = plt.figure(figsize=(15,7)) ax = f.add_subplot(121) ax2 = f.add_subplot(122) # Plot Loss ax.plot(x, loss, color='blue', label="Train", linewidth = 1) ax.plot(x, val_loss, color='deepskyblue', label="Validation", linewidth = 1) ax.set_xlabel('Epochs') ax.set_ylabel('Loss') ax.legend() ax.set_ylim(bottom=0) ax.grid(True) # Plot Accuracy ax2.plot(x, acc, 'b-', label="Train", linewidth = 1) ax2.plot(x, val_acc, color = 'deepskyblue', label="Validation", linewidth = 1) ax.set ax2.set_xlabel('Epochs') ax2.set_ylabel('Accuracty') ax2.legend() ax2.set_ylim(top=1) ax2.grid(True) # Save plots plt.savefig(saveDir + 'performance') plt.show(); #save summary print("Saving summary...") from contextlib import redirect_stdout fileName = saveDir + 'modelsummary.txt' askAbortIfPathExists(fileName) with open(fileName, 'w') as f: with redirect_stdout(f): model.summary() # Save tensorboard logs print("Saving tensorboard logs...") saveDir = 'Results/' + str(resID) + '/' + logDir[7:] logDir = logDir copyDirectory(logDir, saveDir) # Calc and save total time saveDir = 'Results/' + str(resID) + '/' with open(saveDir + 'fitTemp/startTime.txt', 'r') as file: startTime = float(file.read()) endTime = time.time() totalTime = endTime - startTime if totalTime >3600*24: totalTime = str(round(totalTime/(3600*24), 3)) + ' days' elif totalTime >3600: totalTime = str(round(totalTime/(3600), 3)) + ' hours' elif totalTime >60: totalTime = str(round(totalTime/(60), 3)) + ' minutes' else: totalTime = str(round(totalTime, 3)) + ' seconds' createDir(saveDir + '_' + '_10.totalTime-----------' + str(totalTime)) print("All done saving stuff!") ############################## # # COMPARE RESULTS # ############################## def compareResults(res1, res2, label1 = '', label2 = '', metric1 = 'acc', metric2 = 'acc', saveFigName = '', makeEqual = False): # Reshape input vector to fit on graph def makeEqualLength(vec1, vec2): l1 = len(vec1) l2 = len(vec2) if l1 == l2: pass elif l1 > l2: l = l1 - l2 tail = np.ones((l), dtype = int) * vec2[-1] vec2 =
np.hstack((vec2,tail))
numpy.hstack
import cv2 import numpy as np import os import time import os.path as osp import numpy as np from PIL import Image import random import cv2 from torch.utils import data import pickle import random Image.MAX_IMAGE_PIXELS = 2300000000 class SeedDataSet(data.Dataset): def __init__(self, root='', list_path='', max_iters=None, transform=None): self.root = root self.list_path = list_path self.img_ids = [i_id.strip() for i_id in open(list_path)] if not max_iters == None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) self.files = [] self.transform = transform # img_name, str(y0), str(y1), str(x0), str(x1))) for name in self.img_ids: img_name, msk_name, y0, y1, x0, x1 = name.split() img_file = osp.join(self.root, img_name) msk_file = osp.join(self.root, msk_name) self.files.append({ "img": img_file, "mask": msk_file, "name": name, "y0": int(y0), "y1": int(y1), "x0": int(x0), "x1": int(x1) }) print("length of train set: ", len(self.files)) def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = Image.open(datafiles["img"]).convert('RGB') image = image.crop((datafiles["x0"], datafiles["y0"], datafiles["x1"], datafiles["y1"])) mask = cv2.imread(datafiles["mask"], cv2.IMREAD_GRAYSCALE)[datafiles["y0"]: datafiles["y1"], datafiles["x0"]: datafiles["x1"]] size = image.size name = datafiles["name"] if self.transform is not None: image = self.transform(image) mask[mask < 128] = 0 mask[mask > 128] = 1 return image, mask.copy(),
np.array(size)
numpy.array
# Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 __all__ = ['Channelizer'] import os import platform from copy import deepcopy import numpy as np import scipy.signal from .filter import Filter from auspex.parameter import Parameter, IntParameter, FloatParameter from auspex.stream import DataStreamDescriptor, InputConnector, OutputConnector from auspex.log import logger try: # load libchannelizer to access Intel IPP filtering functions import numpy.ctypeslib as npct from ctypes import c_int, c_size_t np_float = npct.ndpointer(dtype=np.float32, flags='C_CONTIGUOUS') libchannelizer_path = os.path.abspath(os.path.join( os.path.dirname(__file__), "libchannelizer")) if "Windows" in platform.platform(): os.environ["PATH"] += ";" + libchannelizer_path libipp = npct.load_library("libchannelizer", libchannelizer_path) libipp.filter_records_fir.argtypes = [np_float, c_size_t, c_int, np_float, c_size_t, c_size_t, np_float] libipp.filter_records_iir.argtypes = [np_float, c_size_t, np_float, c_size_t, c_size_t, np_float] libipp.init() load_fallback = False except: logger.warning("Could not load channelizer library; falling back to python methods.") load_fallback = True class Channelizer(Filter): """Digital demodulation and filtering to select a particular frequency multiplexed channel. If an axis name is supplied to `follow_axis` then the filter will demodulate at the freqency `axis_frequency_value - follow_freq_offset` otherwise it will demodulate at `frequency`. Note that the filter coefficients are still calculated with respect to the `frequency` paramter, so it should be chosen accordingly when `follow_axis` is defined.""" sink = InputConnector() source = OutputConnector() follow_axis = Parameter(default="") # Name of the axis to follow follow_freq_offset = FloatParameter(default=0.0) # Offset decimation_factor = IntParameter(value_range=(1,100), default=4, snap=1) frequency = FloatParameter(value_range=(-10e9,10e9), increment=1.0e6, default=10e6) bandwidth = FloatParameter(value_range=(0.00, 100e6), increment=0.1e6, default=5e6) def __init__(self, frequency=None, bandwidth=None, decimation_factor=None, follow_axis=None, follow_freq_offset=None, **kwargs): super(Channelizer, self).__init__(**kwargs) if frequency: self.frequency.value = frequency if bandwidth: self.bandwidth.value = bandwidth if decimation_factor: self.decimation_factor.value = decimation_factor if follow_axis: self.follow_axis.value = follow_axis if follow_freq_offset: self.follow_freq_offset.value = follow_freq_offset self.quince_parameters = [self.decimation_factor, self.frequency, self.bandwidth] self._phase = 0.0 def final_init(self): self.init_filters(self.frequency.value, self.bandwidth.value) if self.follow_axis.value is not "": desc = self.sink.descriptor axis_num = desc.axis_num(self.follow_axis.value) self.pts_before_freq_update = desc.num_points_through_axis(axis_num + 1) self.pts_before_freq_reset = desc.num_points_through_axis(axis_num) self.demod_freqs = desc.axes[axis_num].points - self.follow_freq_offset.value self.current_freq = 0 self.update_references(self.current_freq) self.idx = 0 # For storing carryover if getting uneven buffers self.carry = np.zeros(0, dtype=self.source.descriptor.dtype) def update_references(self, frequency): # store decimated reference for mix down # phase_drift = 2j*np.pi*0.5e-6 * (abs(frequency) - 100e6) ref = np.exp(2j*np.pi * -frequency * self.time_pts[::self.d1] + 1j*self._phase, dtype=np.complex64) self.reference = ref self.reference_r = np.real(ref) self.reference_i = np.imag(ref) def init_filters(self, frequency, bandwidth): # convert bandwidth normalized to Nyquist interval n_bandwidth = bandwidth * self.time_step * 2 n_frequency = abs(frequency) * self.time_step * 2 # arbitrarily decide on three stage filter pipeline # 1. first stage decimating filter on real data # 2. second stage decimating filter on mixed product to boost n_bandwidth # 3. final channel selecting filter at n_bandwidth/2 # anecdotally don't decimate more than a factor of eight for stability self.decim_factors = [1]*3 self.filters = [None]*3 # first stage decimating filter # maximize first stage decimation: # * minimize subsequent stages time taken # * filter and decimate while signal is still real # * first stage decimation cannot be too large or then 2omega signal from mixing will alias self.d1 = 1 while (self.d1 < 8) and (2*n_frequency <= 0.8/self.d1) and (self.d1 < self.decimation_factor.value): self.d1 *= 2 n_bandwidth *= 2 n_frequency *= 2 if self.d1 > 1: # create an anti-aliasing filter # pass-band to 0.8 * decimation factor; anecdotally single precision needs order <= 4 for stability b,a = scipy.signal.cheby1(4, 3, 0.8/self.d1) b = np.float32(b) a = np.float32(a) self.decim_factors[0] = self.d1 self.filters[0] = (b,a) # store decimated reference for mix down self.update_references(frequency) # second stage filter to bring n_bandwidth/2 up # decimation cannot be too large or will impinge on channel bandwidth (keep n_bandwidth/2 <= 0.8) self.d2 = 1 while (self.d2 < 8) and ((self.d1*self.d2) < self.decimation_factor.value) and (n_bandwidth/2 <= 0.8): self.d2 *= 2 n_bandwidth *= 2 n_frequency *= 2 if self.d2 > 1: # create an anti-aliasing filter # pass-band to 0.8 * decimation factor; anecdotally single precision needs order <= 4 for stability b,a = scipy.signal.cheby1(4, 3, 0.8/self.d2) b = np.float32(b) a = np.float32(a) self.decim_factors[1] = self.d2 self.filters[1] = (b,a) # final channel selection filter if n_bandwidth < 0.1: raise ValueError("Insufficient decimation to achieve stable filter: {}.".format(n_bandwidth)) b,a = scipy.signal.cheby1(4, 3, n_bandwidth/2) b = np.float32(b) a = np.float32(a) self.decim_factors[2] = self.decimation_factor.value // (self.d1*self.d2) self.filters[2] = (b,a) def update_descriptors(self): logger.debug('Updating Channelizer "%s" descriptors based on input descriptor: %s.', self.filter_name, self.sink.descriptor) # extract record time sampling self.time_pts = self.sink.descriptor.axes[-1].points self.record_length = len(self.time_pts) self.time_step = self.time_pts[1] - self.time_pts[0] logger.debug("Channelizer time_step = {}".format(self.time_step)) # We will be decimating along a time axis, which is always # going to be the last axis given the way we usually take data. # TODO: perform this function along a named axis rather than a numbered axis # in case something about this changes. # update output descriptors decimated_descriptor = DataStreamDescriptor() decimated_descriptor.axes = self.sink.descriptor.axes[:] decimated_descriptor.axes[-1] = deepcopy(self.sink.descriptor.axes[-1]) decimated_descriptor.axes[-1].points = self.sink.descriptor.axes[-1].points[self.decimation_factor.value-1::self.decimation_factor.value] decimated_descriptor.axes[-1].original_points = decimated_descriptor.axes[-1].points decimated_descriptor._exp_src = self.sink.descriptor._exp_src decimated_descriptor.dtype = np.complex64 self.source.descriptor = decimated_descriptor self.source.update_descriptors() def process_data(self, data): # Append any data carried from the last run if self.carry.size > 0: data = np.concatenate((self.carry, data)) # This is the largest number of records we can handle num_records = data.size // self.record_length # This is the carryover that we'll store until next round. # If nothing is left then reset the carryover. remaining_points = data.size % self.record_length if remaining_points > 0: if num_records > 0: self.carry = data[-remaining_points:] data = data[:-remaining_points] else: self.carry = data else: self.carry = np.zeros(0, dtype=self.source.descriptor.dtype) if num_records > 0: # The records are processed in parallel after being reshaped here reshaped_data = np.reshape(data, (num_records, self.record_length), order="C") # Update demodulation frequency if necessary if self.follow_axis.value is not "": freq = self.demod_freqs[(self.idx % self.pts_before_freq_reset) // self.pts_before_freq_update] if freq != self.current_freq: self.update_references(freq) self.current_freq = freq self.idx += data.size # first stage decimating filter if self.filters[0] is None: filtered = reshaped_data else: stacked_coeffs = np.concatenate(self.filters[0]) # filter if np.iscomplexobj(reshaped_data): # TODO: compile complex versions of the IPP functions filtered_r = np.empty_like(reshaped_data, dtype=np.float32) filtered_i = np.empty_like(reshaped_data, dtype=np.float32) libipp.filter_records_iir(stacked_coeffs, self.filters[0][0].size-1, np.ascontiguousarray(reshaped_data.real.astype(np.float32)), self.record_length, num_records, filtered_r) libipp.filter_records_iir(stacked_coeffs, self.filters[0][0].size-1, np.ascontiguousarray(reshaped_data.imag.astype(np.float32)), self.record_length, num_records, filtered_i) filtered = filtered_r + 1j*filtered_i # decimate if self.decim_factors[0] > 1: filtered = filtered[:, ::self.decim_factors[0]] else: filtered = np.empty_like(reshaped_data, dtype=np.float32) libipp.filter_records_iir(stacked_coeffs, self.filters[0][0].size-1, np.ascontiguousarray(reshaped_data.real.astype(np.float32)), self.record_length, num_records, filtered) # decimate if self.decim_factors[0] > 1: filtered = filtered[:, ::self.decim_factors[0]] # mix with reference # keep real and imaginary separate for filtering below if
np.iscomplexobj(reshaped_data)
numpy.iscomplexobj
import csvreader import numpy as np import matplotlib.pyplot as plt header, player_data = csvreader.csv_reader_with_headers('../data/Player_full_data.csv') for player in player_data: plt.style.use('ggplot') values = [float(player[5]), float(player[10]), float(player[14]), float(player[18])] feature = ['Body', 'Defense', 'Pass', 'Shot'] N = len(values) angles =
np.linspace(0, 2*np.pi, N, endpoint=False)
numpy.linspace
# Author: <NAME> # Contact: <EMAIL> # Version: 1.0.9 # Last modified: 09-03-2021 by <NAME> """Base class to be inherited for classification and regression tasks.""" import time import warnings import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.validation import check_random_state from itea._manipulators.generator import uniform from itea._manipulators.mutation import mutate_individual from itea._manipulators.sanitizer import sanitize from itea.inspection import ITExpr_explainer import itea._manipulators.simplifier as simplifiers class BaseITEA(BaseEstimator): """Base class to be inherited for classification and regression tasks. This class implements argument checks and generic evolutionary methods (population initialization, selection, mutation, and evolution), along with three virtual methods to be implemented. Ideally, this class should never be instantiated, only its derivations. Its derivations will be scikit estimators and can be used in many scikit methods such as grid-search or pipelines. Every argument is a named argument. The list of arguments includes everything that an ``ITExpr`` class needs to be instantiated. All arguments have a default value. In this configuration, the evolutionary process will search only for polynomials. """ def __init__(self, *, gens = 100, popsize = 100, expolim = (-2, 2), max_terms = 5, simplify_method = None, random_state = None, verbose = None, labels = [], tfuncs = {'id': lambda x: x}, tfuncs_dx = None, predictor_kw = None ): """Constructor method. Parameters ---------- gens : int, default=100 number of generations of the evolutionary process. The algorithm does not implement an early stop mechanism, so it is guaranteed that the algorithm will perform the exact number of generations. popsize : int, default=100 population size, consistent through each generation. expolim : tuple (int, int), default = (-2, 2) tuple containing two integers, specifying the bounds of exponents that can be explored through the evolution. max_terms : int, default=5 the max number of IT terms allowed. simplify_method : string or None, default=None String with the name of the simplification method to be used before fitting expressions through the evolutionary process. When set to None, the simplification step is disabled. Simplification can impact performance. To be simplified, the expression must be previously fitted. After the simplification, if the expression was changed, it should be fitted again to better adjust the coefficients and intercept to the new IT expressions' structure. random_state : int, None or numpy.random_state, default=None int or numpy random state. Use this argument to have reproducible results across different executions. When None, a random state instance will be created and used and can be accessed by ``itea.random_state``. verbose : int, None or False, default=None specify if the algorithm should perform the evolution silently or if it should print information through the process. When verbose is None, False, or 0, the algorithm will not print any information. If verbose is an integer ``n``, then every ``n`` generations the algorithm will print the status of the generation. If verbose is set to -1, every generation information will be printed. labels : list of strings, default=[] (``ITExpr`` parameter) list containing the labels of the data that will be used in the evolutionary process, and will be used in ``ITExpr`` constructors. tfuncs : dict, default={'id': lambda x: x} (``ITExpr`` parameter) transformations functions to be used when creating ``ITExpr`` 's during the evolutionary process. Should always be a dict where the keys are the names of the transformation functions and the values are unary vectorized functions (for example, numpy functions). For user-defined functions, see numpy.vectorize for more information on how to vectorize your transformation functions. Defaults to a dict with only the identity function. tfuncs_dx : dict, default=None (ITExpr_explainer parameter) derivatives of the given transformations functions, following the same scheme: a dictionary where the key is the name of the function (should have the derivatives of every function in tfuncs) and the value is a vectorized function representing its derivative. When set to None, the itea package will use automatic differentiation through jax to create the derivatives. predictor_kw : dict or None, default = None dictionary with parameters to pass as named arguments to the constructor method in the ``BaseITExpr`` subclass. If none is given, then a empty dict will be used. """ self.gens = gens self.popsize = popsize self.max_terms = max_terms self.expolim = expolim self.tfuncs = tfuncs self.tfuncs_dx = tfuncs_dx self.random_state = random_state self.labels = labels self.verbose = verbose self.simplify_method = simplify_method self.predictor_kw = predictor_kw # This should always be none for the base class, so the default # fitness function for each task (regression/classification) is # correctly used. self.fitness_f = None def _check_args(self, X, y): """This method provides a simple verification of the arguments to be used as a baseline. The sub-classes of the BaseITEA should implement the check_args as well. It is important to notice that the check must be made when fitting and should raise errors to stop the program flow if any problem is found. The scikit recomendation is to never do checks on __init__. Raises ------ ValueError If one or more arguments would result in a invalid execution of itea. Notes ----- As the scikit documentation suggests, no check for valid arguments is made on the constructor. Instead, when those arguments will be used, we then perform the checkings. **All 'private' methods (beginning with an underscore) are designed to work after the ``check_args`` is called, since they rely on valid parameters. Also, all of them are intended to internal usage. When modifying, calling them directly, or testing the private methods, you should manually call the check args. """ if self.expolim[1] < self.expolim[0]: raise ValueError( "Lower expolim bound is greater than upper bound.") if self.max_terms < 1: raise ValueError("max_terms should be greater or equal to 1.") for bound in self.expolim: if not np.issubdtype(type(bound), int): raise ValueError( f"the expolim bounds {bound} must be integers.") if not np.issubdtype(type(self.max_terms), int): raise ValueError(f"max_terms should be a int.") if self.simplify_method is not None: if not self.simplify_method in simplifiers.__all__: raise ValueError( f"simplify_method {self.simplify_method} does not exist. " f"Available methods: {simplifiers.__all__}") if 'id' not in list(self.tfuncs.keys()): warnings.warn("It is necessary to provide an identity function " "with name 'id' on the tfuncs dict, and I didn't found it. I will " "insert ``'id' : lambda x: x`` on the dict.") self.tfuncs['id'] = lambda x: x self.labels = np.array([self.labels]).flatten() if len(self.labels) != len(X[0]): warnings.warn("The labels vector does not have the same length as " "the number of variables in X (or was not provided). labels " f"has length {len(self.labels)}, and X has {len(X[0])} variables. " "labels will be generated as [x_0, x_1, ...].") self.labels = [f'x_{i}' for i in range(len(X[0]))] if self.predictor_kw == None: self.predictor_kw = {} def _create_population( self, *, simplify_f, nvars, itexpr_class, X, y, random_state): """Method to create an initial population for the evolutionary process. It will use an random expression generator that does not create trivial expressions (where all exponents are zero). Although, if the user has chosen an simplification method, exists the possibility that the initial population will have fewer individuals than the given popsize. The while loop tries to guarantee that we will start with a clean population where all fitnessess are finite values. """ generator = uniform( self.max_terms, self.expolim, self.tfuncs, nvars, random_state) # The loop below ensures that the first population is always # composed of valud expressions with finite fitness. pop = [] while(len(pop) < self.popsize): expr = sanitize(next(generator)) itexpr = itexpr_class( expr=sanitize(expr), tfuncs=self.tfuncs, labels=self.labels, fitness_f = self.fitness_f, **self.predictor_kw ) with
np.errstate(all='ignore')
numpy.errstate
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (1, 10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(not is_macos() or macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration(self, rank=4): default_shape = tuple(np.random.randint(1, 15, size=rank)) input_features = [('data', datatypes.Array(*default_shape))] builder = neural_network.NeuralNetworkBuilder( input_features=input_features, output_features=[('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [tuple(np.random.randint(1, 15, size=rank)), tuple(np.random.randint(1, 15, size=rank))] flexible_shape_utils.add_multiarray_ndshape_enumeration( spec, feature_name='data', enumerated_shapes=shapes) shapes.append(default_shape) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration_rank3(self): self.test_shape_flexibility_enumeration(rank=3) def test_shape_flexibility_enumeration_rank2(self): self.test_shape_flexibility_enumeration(rank=2) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_dynamic_weight_conv(self): input_dim = (1, 3, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (4, 3, 3, 3) output_dim = (1, 4, 14, 14) kernel_channels = input_dim[0] output_channels, kernel_channels, height, width = weight_dim input_features = [ ('input', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='two_input_conv_layer', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, input_name=['input', 'weight'], output_name='output') # Assigning everything to ones should cover the execution path # and engine failures, but is not a complete check on numerics. input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'input': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected, useCPUOnly=True) self._test_model(builder.spec, feed_dict, expected, useCPUOnly=False) @pytest.mark.xfail def test_dynamic_weight_deconv(self): # Expect to fail in Core ML 3 input_dim = (1, 1, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (1, 1, 3, 3) output_dim = (1, 1, 18, 18) output_channels, kernel_channels, height, width = weight_dim input_features = [ ('data', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='deconv', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, is_deconv=True, input_name=['data', 'weight'], output_name='output') input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'data': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected) def test_batched_mat_mul_cpu(self, cpu_only=True): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input_ = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input_, expected, useCPUOnly=cpu_only, output_name_shape_dict=shape_dict) self.assertEqual(len(outShape), builder._get_rank('output')) def test_batched_mat_mul_gpu(self): self.test_batched_mat_mul_cpu(cpu_only=False) def test_batched_mat_mul_with_transposes_cpu(self, cpu_only=True): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_batched_mat_mul_with_transposes_gpu(self): self.test_batched_mat_mul_with_transposes_cpu(cpu_only=False) def test_batched_mat_mul_single_input_cpu(self, model_precision=_MLMODEL_FULL_PRECISION, cpu_only=True): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=cpu_only) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION, cpu_only=True) def test_batched_mat_mul_single_input_gpu(self): self.test_batched_mat_mul_single_input_cpu(model_precision=_MLMODEL_FULL_PRECISION, cpu_only=False) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nan_bug_cpu(self): input_shape = [2,2] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] for axis in [0,1]: builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.array([[0.5, 0.5],[1e8, 1e8]]) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_softmax_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_softmax_nd_gpu(self): self.test_softmax_nd_cpu(cpu_only=False) def test_concat_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_concat_nd_gpu(self): self.test_concat_nd_cpu(cpu_only=False) def test_fill_like_cpu(self, cpu_only=True): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_fill_like_gpu(self): self.test_fill_like_cpu(cpu_only=False) def test_fill_static_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(shape), builder._get_rank('output')) def test_fill_static_gpu(self): self.test_fill_static_cpu(cpu_only=False) def test_fill_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) value = float(np.random.rand()) input_features = [('shape', datatypes.Array(len(input_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic', input_name='shape', output_name='output', value=value) input = {'shape': np.array(input_shape, dtype='float')} expected = {'output': np.zeros(input_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_fill_dynamic_gpu(self): self.test_fill_dynamic_cpu(cpu_only=False) def test_broadcast_to_like_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_like(name='broadcast_to_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_broadcast_to_like_gpu(self): self.test_broadcast_to_like_cpu(cpu_only=False) def test_broadcast_to_static_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_static(name='broadcast_to_static', input_name='data', output_name='output', output_shape=list(target_shape)) data = np.random.rand(*input_shape) input = {'data': data} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_broadcast_to_static_gpu(self): self.test_broadcast_to_static_cpu(cpu_only=False) def test_broadcast_to_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_broadcast_to_dynamic_gpu(self): self.test_broadcast_to_dynamic_cpu(cpu_only=False) # Test Rank being set to unknown when one of the input rank is unknown # For max rank case def test_unknown_rank(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('x', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['x', 'shape'], output_name='y') condition = np.random.randint(0, 2, input_shape).astype(np.float32) builder.add_load_constant_nd(name='load_constant_condition', output_name='condition', constant_value=condition, shape=input_shape) builder.add_where_broadcastable(name='where', input_names=['condition', 'x', 'y'], output_name='output') self.assertEqual(builder._get_rank('output'), -1) def test_trigonometry_cpu(self, cpu_only=True): ops = ['sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh'] for op in ops: for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) x = np.random.rand(*shape) if op == 'sin': builder.add_sin(name=op, input_name='data', output_name='output') expected = {'output': np.sin(x)} elif op == 'cos': builder.add_cos(name=op, input_name='data', output_name='output') expected = {'output': np.cos(x)} elif op == 'tan': builder.add_tan(name=op, input_name='data', output_name='output') expected = {'output': np.tan(x)} elif op == 'asin': builder.add_asin(name=op, input_name='data', output_name='output') expected = {'output': np.arcsin(x)} elif op == 'acos': builder.add_acos(name=op, input_name='data', output_name='output') expected = {'output': np.arccos(x)} elif op == 'atan': builder.add_atan(name=op, input_name='data', output_name='output') expected = {'output': np.arctan(x)} elif op == 'sinh': builder.add_sinh(name=op, input_name='data', output_name='output') expected = {'output': np.sinh(x)} elif op == 'cosh': builder.add_cosh(name=op, input_name='data', output_name='output') expected = {'output': np.cosh(x)} elif op == 'tanh': builder.add_tanh(name=op, input_name='data', output_name='output') expected = {'output': np.tanh(x)} elif op == 'asinh': builder.add_asinh(name=op, input_name='data', output_name='output') expected = {'output': np.arcsinh(x)} elif op == 'acosh': x = np.random.choice([10, np.e, 1], tuple(shape)).astype(np.float32) builder.add_acosh(name=op, input_name='data', output_name='output') expected = {'output': np.arccosh(x)} elif op == 'atanh': builder.add_atanh(name=op, input_name='data', output_name='output') expected = {'output': np.arctanh(x)} self._test_model(builder.spec, {'data': x}, expected, useCPUOnly=cpu_only) def test_trigonometry_gpu(self): self.test_trigonometry_cpu(cpu_only=False) def test_exp2_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_exp2(name='exp2', input_name='data', output_name='output') x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.exp2(x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_exp2_gpu(self): self.test_exp2_cpu(cpu_only=False) def test_elementwise_binary_cpu(self, cpu_only=True): input_names = ['A', 'B'] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal', 'logical_and', 'logical_or', 'logical_xor', 'add', 'subtract', 'multiply', 'divide', 'power', 'maximum', 'minimum', 'floor_divide', 'mod'] for test_case in test_cases: for _ in range(10): rank_a = np.random.randint(low=1, high=6) rank_b = np.random.randint(low=1, high=6) rank_out = max(rank_a, rank_b) shape_a = np.random.randint(low=2, high=8, size=rank_a) shape_b = np.random.randint(low=2, high=8, size=rank_b) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_a: dims.append(shape_a[i]) if -i <= rank_b: dims.append(shape_b[i]) dim = np.random.choice(dims) if -i <= rank_a: shape_a[i] = np.random.choice([1, dim]) if -i <= rank_b: shape_b[i] = np.random.choice([1, dim]) input_shapes = [shape_a, shape_b] input_features = [('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1]))] builder = neural_network.NeuralNetworkBuilder(input_features, [ ('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output') elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output') elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True) elif test_case == 'logical_and': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='AND') elif test_case == 'logical_or': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='OR') elif test_case == 'logical_xor': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='XOR') elif test_case == 'add': builder.add_add_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'subtract': builder.add_subtract_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'multiply': builder.add_multiply_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'divide': builder.add_divide_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'power': builder.add_pow_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'maximum': builder.add_max_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'minimum': builder.add_min_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'floor_divide': builder.add_floor_div_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'mod': builder.add_mod_broadcastable(test_case, input_names=input_names, output_name='output') a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input = {'A': a, 'B': b} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_binary_gpu(self): self.test_elementwise_binary_cpu(cpu_only=False) def test_elementwise_boolean_unary_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal'] for test_case in test_cases: for shape in shapes: input_features = [('input', datatypes.Array(*shape))] b = np.random.rand() builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True, alpha=b) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True, alpha=b) a = np.random.rand(*shape) input = {'input': a} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_boolean_unary_gpu(self): self.test_elementwise_boolean_unary_cpu(cpu_only=False) def test_logical_not_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] for shape in shapes: input_features = [('input', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_logical('logical_not', input_names=input_names, output_name='output', mode='NOT') a = np.random.rand(*shape) input = {'input': a} expected = {'output': np.logical_not(a)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_logical_not_gpu(self): self.test_logical_not_cpu(cpu_only=False) def test_stack_cpu(self, cpu_only=True): for input_rank in range(1, 5): for axis in range(-input_rank - 1, input_rank + 1): n_inputs = np.random.choice(range(2, 5)) input_shape = np.random.randint(low=2, high=5, size=input_rank) input_features = [] input_names = [] for i in range(n_inputs): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append( (input_name, datatypes.Array(*input_shape))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_stack(name='stack', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for _ in range(n_inputs): input_tensors.append(np.random.rand(*input_shape)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.stack(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(input_rank + 1, builder._get_rank('output')) def test_stack_gpu(self): self.test_stack_cpu(cpu_only=False) def test_ceil_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_ceil(name='ceil', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.ceil(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_ceil_gpu(self): self.test_ceil_cpu(cpu_only=False) def test_floor_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_floor(name='floor', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.floor(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_floor_gpu(self): self.test_floor_cpu(cpu_only=False) def test_round_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_round(name='round', input_name='data', output_name='output') x = np.float32(np.random.rand(*shape) * np.random.randint(low=-100, high=101)) inputs = {'data': x} expected = {'output': np.around(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_round_gpu(self): self.test_round_cpu(cpu_only=False) def test_sign_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sign(name='sign', input_name='data', output_name='output') x = np.random.choice([-np.random.rand(1), 0.0, np.random.rand(1)], tuple(shape)).astype(np.float32) inputs = {'data': x} expected = {'output': np.sign(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_sign_gpu(self): self.test_sign_cpu(cpu_only=False) def test_clip_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] x = np.random.rand(*shape) min_value = np.percentile(x, 25) max_value = np.percentile(x, 75) input = {'data': x} builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_clip(name='clip', input_name='data', output_name='output', min_value=min_value, max_value=max_value) expected = {'output': np.clip(x, min_value, max_value)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_clip_gpu(self): self.test_clip_cpu(cpu_only=False) def test_split_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes = [] output_features = [] output_names = [] almost_equal = random.choice([True, False]) remainder = np.random.choice( range(1, n_outputs)) if almost_equal else 0 value = np.random.choice(range(2, 5)) for k in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][ axis] = value + 1 if k < remainder else value input_shape[axis] += output_shapes[-1][axis] for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, num_splits=n_outputs) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip( output_names, np.array_split(x, n_outputs, axis=axis) if almost_equal else np.split(x, n_outputs, axis=axis) ) ) # Explicitly trying to compare against both versions of numpy split self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_gpu(self): self.test_split_nd_cpu(cpu_only=False) def test_split_nd_with_split_sizes_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes, output_features, output_names = [], [], [] sections, split_sizes = [], [] for _ in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][axis] = np.random.choice(range(2, 5)) input_shape[axis] += output_shapes[-1][axis] sections.append(input_shape[axis]) split_sizes.append(output_shapes[-1][axis]) sections.pop() for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, split_sizes=split_sizes) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip(output_names, np.split(x, sections, axis=axis))) self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_with_split_sizes_gpu(self): self.test_split_nd_with_split_sizes_cpu(cpu_only=False) def test_slice_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(200): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_slice_static('slice_static', 'data', 'output', begin_ids=begin_ids, end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) x = np.random.rand(*input_shape) inputs = {'data': x} expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_static_gpu(self): self.test_slice_static_cpu(cpu_only=False) def test_slice_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) # test different number of inputs, from 2 inputs up to 6 inputs # when num_inputs == 2, begin_ids are inputs, rest are read from parameters # when num_inputs == 6, all read from inputs, none are read from parameters for num_inputs in [2, 3, 4, 5, 6]: x =
np.random.rand(*input_shape)
numpy.random.rand
# coding: utf-8 """ Classes for accessing simulation data for Sgr-like streams with different mass progenitors. """ from __future__ import division, print_function __author__ = "adrn <<EMAIL>>" # Standard library import os, sys from random import sample # Third-party import numpy as np import numexpr import astropy.io.ascii as ascii from astropy.table import Column import astropy.units as u from astropy.constants import G from gary.io import SCFReader from gary.units import usys as _usys # Project from .. import usys from ..dynamics import Particle, Orbit from ..util import streamspath from ..coordinates.frame import galactocentric from ..potential.lm10 import LM10Potential from ..inference.util import guess_tail_bit, particles_x1x2x3 __all__ = ["SgrSimulation"] class SgrSimulation(object): def __init__(self, path, snapfile): """ """ # potential used for the simulation self.potential = LawMajewski2010() # some smart pathness if not os.path.exists(path): _path = os.path.join(streamspath, "data", "simulation", path) if os.path.exists(_path): path = _path else: raise IOError("Path '{}' doesn't exist".format(path)) self.path = path self.reader = SCFReader(self.path) self.particle_table = self.reader.read_snap(snapfile, units=usys) self.units = _usys # get mass column from table m = np.array(self.particle_table['m'])*self.particle_table['m'].unit self.mass =
np.sum(m)
numpy.sum
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestSparseToDenseMask(TestCase): def test_sparse_to_dense_mask_float(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values', np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([[-1, 1, 3], [6, 7, -1]], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_invalid_inputs(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2]) workspace.FeedBlob( 'indices', np.array([2000000000000, 999999999, 2, 3, 4, 5], dtype=np.int32)) workspace.FeedBlob( 'values', np.array([1, 2, 3, 4, 5, 6], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([6], dtype=np.int32)) try: workspace.RunOperatorOnce(op) except RuntimeError: self.fail("Exception raised with only one negative index") workspace.FeedBlob( 'indices', np.array([2000000000000, 999999999, -2, -3, -4, -5], dtype=np.int32)) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) def test_sparse_to_dense_mask_subtensor(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 888, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 999999999, 2], dtype=np.int64)) workspace.FeedBlob( 'values', np.array([[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]], dtype=np.float)) workspace.FeedBlob('default', np.array([[-1, 0]], dtype=np.float)) workspace.FeedBlob('lengths', np.array([2, 3], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([ [[[-1, 0]], [[1, -1]], [[-1, 0]], [[-1, 0]]], [[[4, -4]], [[5, -5]], [[-1, 0]], [[3, -3]]]], dtype=np.float) self.assertEqual(output.shape, expected.shape) np.testing.assert_array_equal(output, expected) def test_sparse_to_dense_mask_string(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values',
np.array(['1', '2', '3', '4', '5', '6', '7'], dtype='S')
numpy.array
""" This a Random Multitone Signal Generator module. |br| It is able to generate *N* multitone random signals according to settings given by a user. |br| *Examples*: Please go to the *examples/signals* directory for examples on how to use the generator. |br| *Settings*: Parameters of the generator described below. Take a look on '__parametersDefine' function for more info on the parameters. Parameters of the generator are attributes of the class which must/can be set before the generator run. Required parameters: - a. **tS** (*float*): time of a signals - b. **fR** (*float*): signals' representation sampling frequency - c. **fRes** (*float*): tones frequency resolution Optional parameters: - d. **fMax** (*float*): maximum frequency present in signals [default = 0.4 * fR] - e. **fMin** (*float*): minimum allowed frequency present in the spectrum [default = fRes] - f. **nSigs** (*int*): the number of signals to be generated [default = 1] - g. **iSNR** (*float*): level of noise in signals [dB] (SNR) [default = +int] - h. **iP** (*float*): requested power of signals [default = do not regulate the power] - i. **vFrqs** (*Numpy array 1D*): vector with requested frequencies of tones [default = empty] - j. **vAmps** (*Numpy array 1D*): vector with requested amplitudes of tones [default = empty] - k. **vPhs** (*Numpy array 1D*): vector with requested phases of tones [default = empty] - l. **nTones** (*int*): the number of additional tones [default = 0] - m. **iMinAmp** (*float*): min amplitude of a tone present in a signal [default = 0.1] - n. **iGraAmp** (*float*): gradation of a random amplitude of a tone [default = 0.1] - o. **iMaxAmp** (*float*): max amplitude of a tone present in a signal [default = 1.0] - p. **iMinPhs** (*float*): min allowed phase of a tone present in a signal [default = -179 deg] - q. **iGraPhs** (*float*): gradation of a random phase of a tone [default = 1 deg] - r. **iMaxPhs** (*float*): max allowed phase of a tone present in a signal [default = +180 deg] - s. **bMute** (*int*): mute the console output from the generator [default = 0] *Output*: Description of the generator output is below. This is the list of attributes of the generator class which are available after calling the 'run' method: - a. **mSig** (*Numpy array 2D*): Matrix with output signals - b. **mSigNN** (*Numpy array 2D*): Matrix with nonnoisy output signals - c. **nSmp** (*int*): The number of samples in the signals - d. **vTSig** (*Numpy array 1D*): The time vector for the generated signals (name alias vT is available) - e. **vP** (*Numpy array 1D*): Power of the signals - f. **vPNN** (*Numpy array 1D*): Power of the non noisy signals - g. **vPCoef** (*Numpy array 1D*): Power adjustment coefficients - h. **mFrqs** (*Numpy array 2D*): Frequencies of tones in the signals - i. **mAmps** (*Numpy array 2D*): Amplitudes of tones in the signals - j. **mPhs** (*Numpy array 2D*): Phases of tones in the signals - k. **mAmPh** (*Numpy array 2D*): Complex matrix with amplitudes/phases of tones - l. **fFFTR** (*float*): Signal FFT frequency resolution *Author*: <NAME>, Aalborg University, Denmark. <<EMAIL>> *Version*: 0.1 | 15-MAY-2014 : * Initial version. |br| 0.2 | 16-MAY-2014 : * Docstrings added. |br| 0.3 | 19-MAY-2014 : * The main func. divided into smaller functions. |br| 0.4 | 20-MAY-2014 : * Errors are served by 'raise'. |br| 0.5 | 20-MAY-2014 : * Docstrings are added to the internal functions. |br| 0.5r1 | 20-MAY-2014 : * Order of the internal functions was changed. |br| 1.0 | 20-MAY-2014 : * Version 1.0 released. |br| 1.0r1 | 21-MAY-2014 : * Error in progress printing is fixed. |br| 1.0r2 | 21-MAY-2014 : * Error in default random amplitude is fixed. |br| 1.0r3 | 21-MAY-2014 : * Error in progress printing (if muted) is fixed. |br| 1.0r4 | 27-MAY-2014 : * Error in the number of given frqs is fixed. |br| 1.0r5 | 27-MAY-2014 : * Error in the vector with signal time is fixed. |br| 2.0 | 21-JUL-2015 : * Objectified version (2.0) |br| 2.0r1 | 18-AUG-2015 : * Adjusted to RxCSobject v1.0 |br| 2.1 | 02-SEP-2015 : * Max frequency in the spectrum is an optional parameter printing improvements. |br| *License*: BSD 2-Clause """ from __future__ import division import numpy as np import rxcs class randMult(rxcs._RxCSobject): def __init__(self, *args): rxcs._RxCSobject.__init__(self) # Make it a RxCS object self.strRxCSgroup = 'Signal generator' # Name of group of RxCS modules self.strModuleName = 'Random multitone' # Module name self.__parametersDefine() # Define the parameters # Define parameters def __parametersDefine(self): # Time of the signal [s] self.paramAddMan('tS', 'Time of the signal', unit='s') self.paramType('tS', (int, float)) self.paramH('tS', 0) self.paramL('tS', np.inf) # The signal representation sampling frequency [Hz] self.paramAddMan('fR', 'The signal representation sampling frequency', unit='Hz') self.paramType('fR', (int, float)) self.paramH('fR', 0) self.paramL('fR', np.inf) # The highest possible frequency in the signal [Hz] self.paramAddOpt('fMax', 'The highest possible frequency in the signal', unit='Hz', default='$$fR', mul=0.4) self.paramType('fMax', (int, float)) self.paramH('fMax', 0) self.paramL('fMax', 'fR', mul=0.5) # Nyquist principle # Signal spectrum resolution [Hz] self.paramAddMan('fRes', 'Signal spectrum resolution', unit='Hz') self.paramType('fRes', (int, float)) self.paramH('fRes', 0) self.paramL('fRes', np.inf) # The minimum frequency of additional tones self.paramAddOpt('fMin', 'Minimum frequency of additional tones', default='$$fRes', unit='Hz') self.paramType('fMin', (int, float)) self.paramH('fMin', 0) self.paramLE('fMin', 'fMax') # The number of signals to be generated self.paramAddOpt('nSigs', 'The number of signals to be generated', default=1) self.paramType('nSigs', (int)) self.paramH('nSigs', 0) # The number of signals must be higher than zero self.paramL('nSigs', np.inf) # ...and lower than infinity # Signal noise [dB] self.paramAddOpt('iSNR', 'Signal to noise ratio', default=np.inf, unit='dB') self.paramType('iSNR', (int, float)) # Power of signals [W] self.paramAddOpt('iP', 'Power of signals', default=np.nan, unit='W') self.paramType('iP', (int, float)) self.paramH('iP', 0) self.paramL('iP', np.inf) # Vector with given frequencies of signal cosine tones self.paramAddOpt('vFrqs', 'Vector with given frequencies of signal cosine tones', default=np.zeros(0), noprint=1) self.paramType('vFrqs', np.ndarray) strError = 'Frequencies in \'vFrqs\' vector must not be higher than the highest possible in the signal spectrum!' self.paramLE('vFrqs', 'fMax', errnote=strError) strError = 'Frequencies in the \'vFrqs\' must be higher than 0!' self.paramH('vFrqs', 0, errnote=strError) strError = 'Frequencies in \'vFrqs\' vector must not be lower than the lowest possible in the signal spectrum!' self.paramHE('vFrqs', 'fMin', errnote=strError) strError = 'Size of the vector with given frequencies \'vFrqs\' must be equal to size of the vectors \'vAmps\' and \'vPhs\'' self.paramSizEq('vFrqs', 'vAmps', errnote=strError) self.paramSizEq('vFrqs', 'vPhs', errnote=strError) self.paramNDimEq('vFrqs', 1) strError = 'There are frequencies repeated in the \'vFrqs\' vector!' self.paramUnique('vFrqs', errnote=strError) self.NaNAllowedEl('vFrqs') # Vector with given amplitudes of signal cosine tones self.paramAddOpt('vAmps', 'Vector with given amplitudes of signal cosine tones', default=np.zeros(0), noprint=1) self.paramType('vAmps', np.ndarray) self.paramH('vAmps', 0, errnote='Amplituides of tones must be higher than 0') self.paramNDimEq('vAmps', 1) self.NaNAllowedEl('vAmps') # Vector with given phases of signal cosine tones content self.paramAddOpt('vPhs', 'Vector with given phases of signal cosine tones', default=np.zeros(0), noprint=1) self.paramType('vPhs', np.ndarray) self.paramH('vPhs', -180, errnote='Phases of tones must be higher than -180 [deg]') self.paramLE('vPhs', 180, errnote='Phases of tones must be lower or equal to 180 [deg]') self.paramNDimEq('vPhs', 1) self.NaNAllowedEl('vPhs') # The number of additional tones self.paramAddOpt('nTones', 'The number of additional tones', default=0) self.paramType('nTones', (int)) self.paramHE('nTones', 0) # The boundaries for amplitudes: amplitude min value self.paramAddOpt('iMinAmp', 'Minimum value of random amplitudes', default=0.1, unitprefix=' ') self.paramType('iMinAmp', (int, float)) self.paramH('iMinAmp', 0) self.paramLE('iMinAmp','iMaxAmp') # The boundaries for amplitudes: amplitude gradation self.paramAddOpt('iGraAmp', 'Gradation of value of random amplitudes', default=0.1, unitprefix=' ') self.paramType('iGraAmp', (int, float)) self.paramH('iGraAmp', 0) # The boundaries for amplitudes: amplitude max value self.paramAddOpt('iMaxAmp', 'Maximum value of random amplitudes', default=1.0, unitprefix=' ') self.paramType('iMaxAmp', (int, float)) self.paramH('iMaxAmp', 0) # The boundaries for amplitudes: phase min value self.paramAddOpt('iMinPhs', 'Minimum value of random phase', default=-179, unitprefix=' ') self.paramType('iMinPhs', (int, float)) self.paramH('iMinPhs',-180) self.paramLE('iMinPhs',180) self.paramLE('iMinPhs','iMaxPhs') # The boundaries for amplitudes: phase gradation self.paramAddOpt('iGraPhs', 'Gradation of value of random phase', default=1, unitprefix=' ') self.paramType('iGraPhs', (int, float)) self.paramH('iGraPhs', 0) # The boundaries for amplitudes: phase max value self.paramAddOpt('iMaxPhs', 'Maximum value of random phase', default=180, unitprefix=' ') self.paramType('iMaxPhs', (int, float)) self.paramH('iMaxPhs',-180) self.paramLE('iMaxPhs',180) # 'Mute the output' flag self.paramAddOpt('bMute', 'Mute the output', noprint=1, default=0) self.paramType('bMute', int) # Must be of int type self.paramAllowed('bMute',[0, 1]) # It can be either 1 or 0 # Run def run(self): self.parametersCheck() # Check if all the needed partameters are in place and are correct self.parametersPrint() # Print the values of parameters self.engineStartsInfo() # Info that the engine starts self.__engine() # Run the engine self.engineStopsInfo() # Info that the engine ends return self.__dict__ # Return dictionary with the parameters # Engine of the function def __engine(self): self._checkConf() # - - - - - - - - - - - - - - - - - - - # Signal generation starts here: self.mFrqsInx = self._drawFreq(self.vFrqs, self.nTones, self.fMin, self.fMax, self.nSigs, self.fRes) # Draw frequencies of the signals self.mAmps = self._drawAmps(self.vAmps, self.nTones, self.nSigs, self.iMinAmp, self.iGraAmp, self.iMaxAmp) # Draw amplitudes of the signals self.mPhs = self._drawPhases(self.vPhs, self.nTones, self.nSigs, self.iMinPhs, self.iGraPhs, self.iMaxPhs) # Draw phases of the signals # Generate the signals by IFFT (mSig, self.mAmPh, self.mFrqs, self.fFFTR) = \ self._genSigs(self.mFrqsInx, self.mAmps, self.mPhs, self.nSigs, self.tS, self.fR, self.fRes) # - - - - - - - - - - - - - - - - - - - # Adjust the signal power (mSig, vP, self.vPCoef, self.mAmps, self.mAmPh) = self._adjPower(mSig, self.iP, self.mAmps, self.mAmPh) # Add the AWGN noise to the signals (self.mSigNN, self.vPNN, self.mSig, self.vP) = self._addNoise(mSig, vP, self.iSNR) # Generate the time vector for the signal self.vTSig = np.arange(self.nSmp) / self.fR self.vT = self.vTSig # Name alias for vTSig is vT return def _checkConf(self): """ This function checks the configuration of the generator. """ #---------------------------------------------------------------------- # If the minimum frequency was not given, it is equal to the frequency resolution if np.isnan(self.fMin): self.fMin = self.fRes #---------------------------------------------------------------------- # Check the lowest possible frequency in the signal vs spectrum # resolution strErr = 'The lowest possible frequency in the signal is not a multiple ' strErr = strErr + 'of the signal spectrum resolution' if (round(self.fMin/self.fRes) - self.fMin/self.fRes) > 1e-15: raise ValueError(strErr) #---------------------------------------------------------------------- # Check the highest possible frequency in the signal vs spectrum # resolution strErr = 'The highest possible frequency in the signal is not a multiple ' strErr = strErr + 'of the signal spectrum resolution' if (round(self.fMax/self.fRes) - self.fMax/self.fRes) > 1e-15: raise ValueError(strErr) #---------------------------------------------------------------------- # Check if there is a space for all the frequencies requested in # the signal, both given in the vFrqs vector and requested to be # chosen randomly # Compute the total number of tones in the max possible spectrum nSpectTones = int(self.fMax/self.fRes) - int(self.fMin/self.fRes) + 1 nFG = self.vFrqs.size # The number of frequencies given in the vector with frequencies nSigTones = nFG + self.nTones # The total number of tones which will be present in the signal strErr = 'The signal spectrum consists of %d tones. ' % (nSpectTones) strErr = strErr + 'I can not put there %d [vFrqs] + %d [nTones] tones' \ % (nFG, self.nTones) if nSpectTones < nSigTones: raise ValueError(strErr) #---------------------------------------------------------------------- # Check if there is a frequency leackage self.nSmp = int(round(self.tS*self.fR)) # Calculate the number of samples in the signals fFFTR = self.fR/self.nSmp # Calculate the FFT frequency resolution if abs(round(self.fRes/fFFTR) - self.fRes/fFFTR) > 0: strErr = ('Frequency leackage! Signal spectrum resolution can not be ') strErr = strErr + ('represented with the current signal parameters!') raise ValueError(strErr) #---------------------------------------------------------------------- # Check the vector with given frequencies # Check the vector with given frequencies, if it is longer then 0 if nFG > 0: # Create the vector with given and specified frequencies (not np.nan) vFrqs_ = self.vFrqs[np.isnan(self.vFrqs) == 0] # 1. check resolution of given frequencies: if np.abs(np.sum(np.round(vFrqs_/self.fRes) - (vFrqs_/self.fRes))) > 1e-15: strErr = ('A frequency given in the vFrqs vector is ') strErr = strErr + ('incoherent with the resolution of signal ') strErr = strErr + ('spectrum!\n') raise ValueError(strErr) # Do correction of possible representation errors in the vector with frequencies self.vFrqs = np.round(self.vFrqs/self.fRes)*self.fRes #---------------------------------------------------------------------- return # ================================================================= # Draw frequencies of the signals # ================================================================= def _drawFreq(self, vFrqs, nTones, fMin, fMax, nSigs, fRes): """ This function draws frequencies of tones for all the signals according to the rules specified by users, Args: vFrqs (vector): vector with specified frequencies nTones (int): the number of additional tones fMin (int): the min allowed frequency in the signal spectrum fMax (int): the max allowed frequency in the signal spectrum nSigs (int): the number of signals to be generated fRes (int): signal spectrum resolution (distance between the tones in the spectrum) Returns: mFrqsInx (matrix): matrix with frequencies of tones for all the signals (one row - one signal) The frequencies are represented as indices of frequencies from the allowed signal spectrum. """ #---------------------------------------------------------------------- # Recalculate frequencies to indices of tones in the spectrum # Recalculate the vector with frequencies from frequency to index # of a frequency in the spectrum vFrqsInx = (vFrqs / fRes) # Create a vector with GIVEN (not nan) indices of frequencies in the # vFrqs vector vFrqsInx_ = (vFrqsInx[np.isnan(vFrqsInx) == 0]).astype(int) #---------------------------------------------------------------------- # Create the vector with indices of avaialble frequencies in the spectrum # Create a vector with indices of all the available tones in the spectrum vSpecInx = np.arange(1, int(fMax/fRes) + 1) # Boolean vector which indicates if the frequency is free vFreqIsFree = np.ones(int(fMax/fRes)).astype(bool) # Mark all the frequencies below min frequency as unavailable for inxF in np.arange(int(fMin/fRes)-1): vFreqIsFree[inxF] = 0 # Mark the frequencies taken by vFreq vector as unavailable vFreqIsFree[vFrqsInx_ - 1] = 0 # Create the vector with indices of available frequencies vAvailFreqsInx = vSpecInx[vFreqIsFree] #---------------------------------------------------------------------- # Construct a vector with indices of frequencies for all the needed signals # Add unknown frequencies of the additional tones to the vFrqsInx vector vFrqsInx = np.concatenate((vFrqsInx, np.nan*np.zeros(nTones))) # Calculate the number of missing frequencies in the vector with # frequencies iMissF = len(vFrqsInx) - len(vFrqsInx_) # Construct a matrix with indices of frequencies for all the needed signals mFrqsInx = np.tile(vFrqsInx, (nSigs, 1)) #---------------------------------------------------------------------- # Draw the frequencies for inxSig in np.arange(nSigs): # Permute all the indices of frequencies in the spectrum vPermutedFreqsInx = ((np.random.permutation(vAvailFreqsInx)).T) # From the permuted indices of frequencices take as many # as it is missing vTakenFreqsInx = vPermutedFreqsInx[np.arange(iMissF)] # Put the taken indices of frequencies to the matrix with frequency # indices for all the signals mFrqsInx[inxSig, np.isnan(mFrqsInx[inxSig, :])] = vTakenFreqsInx return mFrqsInx # ================================================================= # Draw amplitudes of the signals # ================================================================= def _drawAmps(self, vAmps, nTones, nSigs, iMinAmp, iGraAmp, iMaxAmp): """ This function draws amplitudes of tones for all the signals according to the rules specified by users, Args: vAmps (vector): vector with specified amplitudes of tones in signals nTones (int): the number of additional tones nSigs (int): the number of signals to be generated iMinAmp (int): min amplitude of a random tone present in a signal iGraAmp (int): gradation of a amplitude of a random tone iMaxAmp (int): max amplitude of a random tone present in a signal Returns: mAmps (matrix): matrix with amplitudes of tones for all the signals (one row - one signal) """ # Add unknown amplitudes of the additional tones to the vAmps vector vAmps = np.concatenate((vAmps, np.nan*np.zeros(nTones))) # Compute the number of missing amplitudes for every signal iMissA = (vAmps[np.isnan(vAmps)]).size #---------------------------------------------------------------------- # Compute the number of possible amplitude values nAmpVal = np.floor((iMaxAmp - iMinAmp) / iGraAmp) + 1 #---------------------------------------------------------------------- # Draw the missing amplitudes for all the signals vDrawAmps = \ iMinAmp + iGraAmp*(np.random.randint(0, nAmpVal, (nSigs*iMissA))) # Construct a matrix with amplitudes of tones for all the needed signals mAmps = np.tile(vAmps, (nSigs, 1)) # Put the draw amplitudes to the matrix with amplitudes of tones for # all the needed signals mAmps[np.isnan(mAmps)] = vDrawAmps return mAmps # ================================================================= # Draw phases of the signals # ================================================================= def _drawPhases(self, vPhs, nTones, nSigs, iMinPhs, iGraPhs, iMaxPhs): """ This function draws phases of tones for all the signals according to the rules specified by users, Args: vPhs (vector): vector with specified phases of tones in signals nTones (int): the number of additional tones nSigs (int): the number of signals to be generated iMinPhs (int): min phase of a random tone present in a signal iGraPhs (int): gradation of a phase of a random tone iMaxPhs (int): max phase of a random tone present in a signal Returns: mPhs (matrix): matrix with phases of tones for all the signals (one row - one signal) """ # Add unknown phases of the additional tones to the vAmps vector vPhs = np.concatenate((vPhs, np.nan*np.zeros(nTones))) # Compute the number of missing phases for every signal iMissP = (vPhs[np.isnan(vPhs)]).size #---------------------------------------------------------------------- # Compute the number of possible phase values nPhsVal = np.floor((iMaxPhs - iMinPhs)/iGraPhs) + 1 #---------------------------------------------------------------------- # Draw the missing phases for all the signals vDrawPhs = \ iMinPhs + iGraPhs*(np.random.randint(0, nPhsVal, (nSigs*iMissP))) # Construct a matrix with phases of tones for all the needed signals mPhs = np.tile(vPhs, (nSigs, 1)) # Put the draw phases to the matrix with phases of tones for # all the needed signals mPhs[np.isnan(mPhs)] = vDrawPhs return mPhs # ================================================================= # Generate the signals by IFFT # ================================================================= def _genSigs(self, mFrqsInx, mAmps, mPhs, nSigs, tS, fR, fRes): """ This function generate the multitone signals using the IFFT algorithm. Args: mFrqsInx (matrix): matrix with freqs of tones for all the signals (as indices of tones in the allowed spectrum) mAmps (matrix): matrix with amplitudes of tones for all the signals mPhs (matrix): matrix with phases of tones for all the signals nSigs (float): the number of signals tS (float): time of the signals fR (float): signal representation sampling frequency fRes (float): signal spectrum resolution (distance between the tones in the spectrum) Returns: mSig (matrix): matrix with signals (one row - one signal) mAmPh (float): complex matrix with amplitudes/phases of tones mFrqs (matrix): matrix with freqs of tones for all the signals fFFTR (float): signal FFT frequency resolution """ # Calculate the number of samples in the signals nSmp = int(round(tS*fR)) # Calculate the FFT frequency resolution fFFTR = fR/nSmp #---------------------------------------------------------------------- # Adjust the amplitudes value to the number of points mAmpsAdj = mAmps * nSmp/2 # Change phases into radians mPhsRad = mPhs*np.pi/180 # Generate a one complex matrix for all the signals and its conjugated copy mAmPh = mAmpsAdj*np.cos(mPhsRad) + 1j*mAmpsAdj*np.sin(mPhsRad) mAmPh_conj = np.conjugate(mAmPh) #---------------------------------------------------------------------- # Put the complex matrix with amplitudes and phases of tones into # one matrix dedicated for IFFT # Recalculate the matrix with indices of frequencies in the spectrum # to real frequencies mFrqs = mFrqsInx*fRes # Recalculate the matrix with indices of frequencies in the spectrum # to indices of frequencies in the IFFT transform mIFFTFrqsInx = np.around(mFrqs/fFFTR).astype(int) # Allocate the vector for the ifft coefficients for all the signals # (one signal in one row) mIFFT = np.zeros((nSigs, nSmp)) + 1j*np.zeros((nSigs, nSmp)) # Put the complex vector with tones values into the IFFT matrix for inxSig in np.arange(nSigs): # IFFT indices of tones for the current signal vInx = mIFFTFrqsInx[inxSig, :] # Put the tones for the current signal mIFFT[inxSig, vInx] = mAmPh[inxSig, :] # IFFT indices of conjugate tones for the current signal vInxConj = (nSmp - mIFFTFrqsInx[inxSig, :]).astype(int) # Put the conjugate tones for the current signal mIFFT[inxSig, vInxConj] = mAmPh_conj[inxSig, :] #---------------------------------------------------------------------- # Generate the signals (perform the IFFT) mSig = np.fft.ifftn(mIFFT, axes=[1]).real return (mSig, mAmPh, mFrqs, fFFTR) # ================================================================= # Adjust the signal power # ================================================================= def _adjPower(self, mSig, iP, mAmps, mAmPh): """ This function adjustes powers of the generated signals. If the requested power of the signals is equal to NaN or inf, then the signals are not adjusted. Args: mSig (matrix): matrix with signals (one row - one signal) iP (float): requested power of the signals mAmps (matrix): matrix with amplitudes of tones in the signals mAmPh (matrix): complex matrix with amplitudes/phases of tones Returns: mSig (matrix): matrix with noisy signals vP (vector): vector with powers of noisy signals vPCoef (vector): vector with coefficients which adjsuted the signals mAmps (matrix): matrix with adjusted amplitudes of tones mAmPh (matrix): complex matrix with adjusted amplitudes/phases """ # Get the number of signals and the size of signals (the number of samples) (nSigs, nSmp) = mSig.shape # Measure the power of the signals vP = (np.sum(mSig * mSig, axis=1) / nSmp).reshape(nSigs, 1) # Adjust the signal power, if needed if not np.isnan(iP) or np.isinf(iP): # Compute power adjustments coefficients for the noise signals vPCoef = np.sqrt(iP / vP) # Adjust the signal power mPCoef = np.tile(vPCoef, (1, nSmp)) mSig = mSig * mPCoef # Adjust the reported amplitudes of tones (_, nAmps) = mAmps.shape mPCoef = np.tile(vPCoef, (1, nAmps)) mAmps = mAmps * mPCoef mAmPh = mAmPh * mPCoef # Measure the power of the adjusted signals vP = np.sum(mSig*mSig, axis=1) / nSmp else: # Power adjustment coefficients are equal to 1 (no adjustment) vPCoef = np.ones((nSigs, 1)) return (mSig, vP, vPCoef, mAmps, mAmPh) # ================================================================= # Add the AWGN noise to the signals # ================================================================= def _addNoise(self, mSig, vP, iSNR): """ This function adds noise to the generated signals. If the requested level of noise is equal to NaN or inf, then no noise is added. Args: mSig (matrix): matrix with signals (one row - one signal) vP (vector): vector with powers of signals iSNR (float): wanted level of noise in the signals Returns: mSigNN (matrix): matrix with non noisy signals vPNN (vector): vector with powers of non noisy signals mSig (matrix): matrix with noisy signals vP (vector): vector with powers of noisy signals """ # Backup the non noisy signals mSigNN = mSig.copy() # Matrix with signals vPNN = vP.copy() # Power of non noisy signals # Add the noise, if needed if not (np.isnan(iSNR) or np.isinf(iSNR)): # Get the number of signals and the size of signals # (the number of samples) (nSigs, nSmp) = mSig.shape # Generate the noise mNoise = np.random.randn(nSigs, nSmp) # Measure the current powers of the noise signals vNoisePReal = (np.sum(mNoise*mNoise, axis=1) / nSmp).reshape(nSigs, 1) # Compute the requested noise power for every signal vNoiseP = (vP / (10**(iSNR/10))).reshape(nSigs, 1) # Compute power adjustments coefficients for the noise signals vPNoiseCoef =
np.sqrt(vNoiseP / vNoisePReal)
numpy.sqrt
import math import warnings from copy import copy, deepcopy from datetime import datetime from typing import Mapping, MutableMapping, MutableSequence, Optional import numpy as np # type: ignore import pytest # type: ignore from rads.rpn import ( ABS, ACOS, ACOSD, ACOSH, ADD, AND, ASIN, ASIND, ASINH, ATAN, ATAN2, ATAND, ATANH, AVG, BOXCAR, BTEST, CEIL, CEILING, COS, COSD, COSH, D2R, DIF, DIV, DUP, DXDY, EQ, EXCH, EXP, FLOOR, FMOD, GAUSS, GE, GT, HYPOT, IAND, INRANGE, INV, IOR, ISAN, ISNAN, LE, LOG, LOG10, LT, MAX, MIN, MUL, NAN, NE, NEG, NINT, OR, PI, POP, POW, R2, R2D, RINT, SIN, SIND, SINH, SQR, SQRT, SUB, SUM, TAN, TAND, TANH, YMDHMS, CompleteExpression, E, Expression, Literal, StackUnderflowError, Token, Variable, token, ) from rads.typing import FloatOrArray GOLDEN_RATIO = math.log((1 + math.sqrt(5)) / 2) class TestLiteral: def test_init(self): Literal(3) Literal(3.14) with pytest.raises(TypeError): Literal("not a number") # type: ignore def test_pops(self): assert Literal(3).pops == 0 def test_puts(self): assert Literal(3).puts == 1 def test_value(self): assert Literal(3).value == 3 assert Literal(3.14).value == 3.14 def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment: MutableMapping[str, FloatOrArray] = {} assert Literal(3.14)(stack, environment) is None assert Literal(2.71)(stack, environment) is None assert stack == [3.14, 2.71] assert environment == {} def test_eq(self): assert Literal(3.14) == Literal(3.14) assert not Literal(3.14) == Literal(2.71) assert not Literal(3.14) == 3.14 def test_ne(self): assert Literal(3.14) != Literal(2.71) assert not Literal(3.14) != Literal(3.14) assert Literal(3.14) != 3.14 def test_lt(self): assert Literal(2.71) < Literal(3.14) assert not Literal(3.14) < Literal(2.71) with pytest.raises(TypeError): Literal(2.71) < 3.14 with pytest.raises(TypeError): 2.71 < Literal(3.14) def test_le(self): assert Literal(2.71) <= Literal(3.14) assert Literal(3.14) <= Literal(3.14) assert not Literal(3.14) <= Literal(2.71) with pytest.raises(TypeError): Literal(2.71) <= 3.14 with pytest.raises(TypeError): 2.71 <= Literal(3.14) def test_gt(self): assert Literal(3.14) > Literal(2.71) assert not Literal(2.71) > Literal(3.14) with pytest.raises(TypeError): Literal(3.14) > 2.71 with pytest.raises(TypeError): 3.14 > Literal(2.71) def test_ge(self): assert Literal(3.14) >= Literal(2.71) assert Literal(3.14) >= Literal(3.14) assert not Literal(2.71) >= Literal(3.14) with pytest.raises(TypeError): Literal(3.14) >= 2.71 with pytest.raises(TypeError): 3.14 >= Literal(2.71) def test_repr(self): assert repr(Literal(3)) == "Literal(3)" assert repr(Literal(3.14)) == "Literal(3.14)" def test_str(self): assert str(Literal(3)) == "3" assert str(Literal(3.14)) == "3.14" def test_pi(self): assert PI.value == pytest.approx(np.pi) def test_e(self): assert E.value == pytest.approx(np.e) class TestVariable: def test_init(self): Variable("alt") with pytest.raises(ValueError): Variable("3") with pytest.raises(ValueError): Variable("3name") with pytest.raises(TypeError): Variable(3) # type: ignore with pytest.raises(TypeError): Variable(3.14) # type: ignore def test_pops(self): assert Variable("alt").pops == 0 def test_puts(self): assert Variable("alt").puts == 1 def test_name(self): assert Variable("alt").name == "alt" def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment = {"alt": np.array([1, 2, 3]), "dry_tropo": 4, "wet_tropo": 5} assert Variable("wet_tropo")(stack, environment) is None assert Variable("alt")(stack, environment) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) assert len(environment) == 3 assert "alt" in environment assert "dry_tropo" in environment assert "wet_tropo" in environment assert np.all(environment["alt"] == np.array([1, 2, 3])) assert environment["dry_tropo"] == 4 assert environment["wet_tropo"] == 5 with pytest.raises(KeyError): assert Variable("alt")(stack, {}) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) def test_eq(self): assert Variable("alt") == Variable("alt") assert not Variable("alt") == Variable("dry_tropo") assert not Variable("alt") == "alt" def test_ne(self): assert Variable("alt") != Variable("dry_tropo") assert not Variable("alt") != Variable("alt") assert Variable("alt") != "alt" def test_repr(self): assert repr(Variable("alt")) == "Variable('alt')" def test_str(self): assert str(Variable("alt")) == "alt" def contains_array(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: if isinstance(item, np.ndarray): return True return False def contains_nan(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: try: if math.isnan(item): return True except TypeError: pass return False def assert_token( operator: Token, pre_stack: MutableSequence[FloatOrArray], post_stack: MutableSequence[FloatOrArray], environment: Optional[Mapping[str, FloatOrArray]] = None, *, approx: bool = False, rtol: float = 1e-15, atol: float = 1e-16, ) -> None: """Assert that a token modifies the stack properly. Parameters ---------- operator Operator to test. pre_stack Stack state before calling the operator. post_stack Desired stack state after calling the operator. environment Optional dictionary like object providing the environment for variable lookup. approx Set to true to use approximate equality instead of exact. rtol Relative tolerance. Only used if :paramref:`approx` is True. atol Absolute tolerance. Only used if :paramref:`approx` is True. Raises ------ AssertionError If the operator does not produce the proper post stack state or the environment parameter is changed. """ if not environment: environment = {"dont_touch": 5} original_environment = deepcopy(environment) stack = pre_stack operator(stack, environment) # environment should be unchanged assert environment == original_environment # check stack if approx or contains_nan(post_stack) or contains_array(post_stack): assert len(stack) == len(post_stack) for a, b in zip(stack, post_stack): if isinstance(a, np.ndarray) or isinstance(b, np.ndarray): if approx: np.testing.assert_allclose( a, b, rtol=rtol, atol=atol, equal_nan=True ) else: np.testing.assert_equal(a, b) else: if math.isnan(b): assert math.isnan(a) elif approx: assert a == pytest.approx(b, rel=rtol, abs=atol) else: assert a == b else: assert stack == post_stack class TestSUBOperator: def test_repr(self): assert repr(SUB) == "SUB" def test_pops(self): assert SUB.pops == 2 def test_puts(self): assert SUB.puts == 1 def test_no_copy(self): assert copy(SUB) is SUB assert deepcopy(SUB) is SUB def test_call(self): assert_token(SUB, [2, 4], [-2]) assert_token(SUB, [2, np.array([4, 1])], [np.array([-2, 1])]) assert_token(SUB, [np.array([4, 1]), 2], [np.array([2, -1])]) assert_token(SUB, [np.array([4, 1]), np.array([1, 4])], [np.array([3, -3])]) # extra stack elements assert_token(SUB, [0, 2, 4], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): SUB([], {}) with pytest.raises(StackUnderflowError): SUB([1], {}) class TestADDOperator: def test_repr(self): assert repr(ADD) == "ADD" def test_pops(self): assert ADD.pops == 2 def test_puts(self): assert ADD.puts == 1 def test_no_copy(self): assert copy(ADD) is ADD assert deepcopy(ADD) is ADD def test_call(self): assert_token(ADD, [2, 4], [6]) assert_token(ADD, [2, np.array([4, 1])], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), 2], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), np.array([1, 4])], [np.array([5, 5])]) # extra stack elements assert_token(ADD, [0, 2, 4], [0, 6]) # not enough stack elements with pytest.raises(StackUnderflowError): ADD([], {}) with pytest.raises(StackUnderflowError): ADD([1], {}) class TestMULOperator: def test_repr(self): assert repr(MUL) == "MUL" def test_pops(self): assert MUL.pops == 2 def test_puts(self): assert MUL.puts == 1 def test_no_copy(self): assert copy(MUL) is MUL assert deepcopy(MUL) is MUL def test_call(self): assert_token(MUL, [2, 4], [8]) assert_token(MUL, [2, np.array([4, 1])], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), 2], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), np.array([1, 4])], [np.array([4, 4])]) # extra stack elements assert_token(MUL, [0, 2, 4], [0, 8]) # not enough stack elements with pytest.raises(StackUnderflowError): MUL([], {}) with pytest.raises(StackUnderflowError): MUL([1], {}) class TestPOPOperator: def test_repr(self): assert repr(POP) == "POP" def test_pops(self): assert POP.pops == 1 def test_puts(self): assert POP.puts == 0 def test_no_copy(self): assert copy(POP) is POP assert deepcopy(POP) is POP def test_call(self): assert_token(POP, [1], []) assert_token(POP, [1, 2], [1]) # not enough stack elements with pytest.raises(StackUnderflowError): POP([], {}) class TestNEGOperator: def test_repr(self): assert repr(NEG) == "NEG" def test_pops(self): assert NEG.pops == 1 def test_puts(self): assert NEG.puts == 1 def test_no_copy(self): assert copy(NEG) is NEG assert deepcopy(NEG) is NEG def test_call(self): assert_token(NEG, [2], [-2]) assert_token(NEG, [-2], [2]) assert_token(NEG, [np.array([4, -1])], [np.array([-4, 1])]) assert_token(NEG, [np.array([-4, 1])], [np.array([4, -1])]) # extra stack elements assert_token(NEG, [0, 2], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): NEG([], {}) class TestABSOperator: def test_repr(self): assert repr(ABS) == "ABS" def test_pops(self): assert ABS.pops == 1 def test_puts(self): assert ABS.puts == 1 def test_no_copy(self): assert copy(ABS) is ABS assert deepcopy(ABS) is ABS def test_call(self): assert_token(ABS, [2], [2]) assert_token(ABS, [-2], [2]) assert_token(ABS, [np.array([4, -1])], [np.array([4, 1])]) assert_token(ABS, [np.array([-4, 1])], [np.array([4, 1])]) # extra stack elements assert_token(ABS, [0, -2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): ABS([], {}) class TestINVOperator: def test_repr(self): assert repr(INV) == "INV" def test_pops(self): assert INV.pops == 1 def test_puts(self): assert INV.puts == 1 def test_no_copy(self): assert copy(INV) is INV assert deepcopy(INV) is INV def test_call(self): assert_token(INV, [2], [0.5]) assert_token(INV, [-2], [-0.5]) assert_token(INV, [np.array([4, -1])], [np.array([0.25, -1])]) assert_token(INV, [np.array([-4, 1])], [np.array([-0.25, 1])]) # extra stack elements assert_token(INV, [0, 2], [0, 0.5]) # not enough stack elements with pytest.raises(StackUnderflowError): INV([], {}) class TestSQRTOperator: def test_repr(self): assert repr(SQRT) == "SQRT" def test_pops(self): assert SQRT.pops == 1 def test_puts(self): assert SQRT.puts == 1 def test_no_copy(self): assert copy(SQRT) is SQRT assert deepcopy(SQRT) is SQRT def test_call(self): assert_token(SQRT, [4], [2]) assert_token(SQRT, [np.array([4, 16])], [np.array([2, 4])]) # extra stack elements assert_token(SQRT, [0, 4], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): SQRT([], {}) class TestSQROperator: def test_repr(self): assert repr(SQR) == "SQR" def test_pops(self): assert SQR.pops == 1 def test_puts(self): assert SQR.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(SQR, [2], [4]) assert_token(SQR, [-2], [4]) assert_token(SQR, [np.array([4, -1])], [np.array([16, 1])]) assert_token(SQR, [np.array([-4, 1])], [np.array([16, 1])]) # extra stack elements assert_token(SQR, [0, -2], [0, 4]) # not enough stack elements with pytest.raises(StackUnderflowError): SQR([], {}) class TestEXPOperator: def test_repr(self): assert repr(EXP) == "EXP" def test_pops(self): assert EXP.pops == 1 def test_puts(self): assert EXP.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(EXP, [math.log(1)], [1.0], approx=True) assert_token(EXP, [math.log(2)], [2.0], approx=True) assert_token( EXP, [np.array([np.log(4), np.log(1)])], [np.array([4.0, 1.0])], approx=True ) # extra stack elements assert_token(EXP, [0, np.log(1)], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): EXP([], {}) class TestLOGOperator: def test_repr(self): assert repr(LOG) == "LOG" def test_pops(self): assert LOG.pops == 1 def test_puts(self): assert LOG.puts == 1 def test_no_copy(self): assert copy(LOG) is LOG assert deepcopy(LOG) is LOG def test_call(self): assert_token(LOG, [math.e], [1.0], approx=True) assert_token(LOG, [math.e ** 2], [2.0], approx=True) assert_token(LOG, [math.e ** -2], [-2.0], approx=True) assert_token( LOG, [np.array([np.e ** 4, np.e ** -1])], [np.array([4.0, -1.0])], approx=True, ) assert_token( LOG, [np.array([np.e ** -4, np.e ** 1])], [np.array([-4.0, 1.0])], approx=True, ) # extra stack elements assert_token(LOG, [0, np.e], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG([], {}) class TestLOG10Operator: def test_repr(self): assert repr(LOG10) == "LOG10" def test_pops(self): assert LOG10.pops == 1 def test_puts(self): assert LOG10.puts == 1 def test_no_copy(self): assert copy(LOG10) is LOG10 assert deepcopy(LOG10) is LOG10 def test_call(self): assert_token(LOG10, [10], [1.0], approx=True) assert_token(LOG10, [10 ** 2], [2.0], approx=True) assert_token(LOG10, [10 ** -2], [-2.0], approx=True) assert_token( LOG10, [np.array([10 ** 4, 10 ** -1])], [np.array([4.0, -1.0])], approx=True ) assert_token( LOG10, [np.array([10 ** -4, 10 ** 1])], [np.array([-4.0, 1.0])], approx=True ) # extra stack elements assert_token(LOG10, [0, 10], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG10([], {}) class TestSINOperator: def test_repr(self): assert repr(SIN) == "SIN" def test_pops(self): assert SIN.pops == 1 def test_puts(self): assert SIN.puts == 1 def test_no_copy(self): assert copy(SIN) is SIN assert deepcopy(SIN) is SIN def test_call(self): assert_token(SIN, [0.0], [0.0], approx=True) assert_token(SIN, [math.pi / 6], [1 / 2], approx=True) assert_token(SIN, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(SIN, [math.pi / 3], [math.sqrt(3) / 2], approx=True) assert_token(SIN, [math.pi / 2], [1.0], approx=True) assert_token( SIN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIN, [0, math.pi / 2], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIN([], {}) class TestCOSOperator: def test_repr(self): assert repr(COS) == "COS" def test_pops(self): assert COS.pops == 1 def test_puts(self): assert COS.puts == 1 def test_no_copy(self): assert copy(COS) is COS assert deepcopy(COS) is COS def test_call(self): assert_token(COS, [0.0], [1.0], approx=True) assert_token(COS, [math.pi / 6], [math.sqrt(3) / 2], approx=True) assert_token(COS, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(COS, [math.pi / 3], [1 / 2], approx=True) assert_token(COS, [math.pi / 2], [0.0], approx=True) assert_token( COS, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COS, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COS, [0, math.pi / 2], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COS([], {}) class TestTANOperator: def test_repr(self): assert repr(TAN) == "TAN" def test_pops(self): assert TAN.pops == 1 def test_puts(self): assert TAN.puts == 1 def test_no_copy(self): assert copy(TAN) is TAN assert deepcopy(TAN) is TAN def test_call(self): assert_token(TAN, [0.0], [0.0], approx=True) assert_token(TAN, [math.pi / 6], [1 / math.sqrt(3)], approx=True) assert_token(TAN, [math.pi / 4], [1.0], approx=True) assert_token(TAN, [math.pi / 3], [math.sqrt(3)], approx=True) assert_token( TAN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAN, [0, math.pi / 4], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAN([], {}) class TestSINDOperator: def test_repr(self): assert repr(SIND) == "SIND" def test_pops(self): assert SIND.pops == 1 def test_puts(self): assert SIND.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(SIND, [0], [0.0], approx=True) assert_token(SIND, [30], [1 / 2], approx=True) assert_token(SIND, [45], [1 / math.sqrt(2)], approx=True) assert_token(SIND, [60], [math.sqrt(3) / 2], approx=True) assert_token(SIND, [90], [1.0], approx=True) assert_token( SIND, [np.array([0, 30, 45, 60, 90])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIND, [-np.array([0, 30, 45, 60, 90])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIND, [0, 90], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIND([], {}) class TestCOSDOperator: def test_repr(self): assert repr(COSD) == "COSD" def test_pops(self): assert COSD.pops == 1 def test_puts(self): assert COSD.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(COSD, [0], [1.0], approx=True) assert_token(COSD, [30], [math.sqrt(3) / 2], approx=True) assert_token(COSD, [45], [1 / math.sqrt(2)], approx=True) assert_token(COSD, [60], [1 / 2], approx=True) assert_token(COSD, [90], [0.0], approx=True) assert_token( COSD, [np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COSD, [-np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COSD, [0, 90], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COSD([], {}) class TestTANDOperator: def test_repr(self): assert repr(TAND) == "TAND" def test_pops(self): assert TAND.pops == 1 def test_puts(self): assert TAND.puts == 1 def test_no_copy(self): assert copy(TAND) is TAND assert deepcopy(TAND) is TAND def test_call(self): assert_token(TAND, [0], [0], approx=True) assert_token(TAND, [30], [1 / math.sqrt(3)], approx=True) assert_token(TAND, [45], [1.0], approx=True) assert_token(TAND, [60], [math.sqrt(3)], approx=True) assert_token( TAND, [np.array([0, 30, 45, 60])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAND, [-np.array([0, 30, 45, 60])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAND, [0, 45], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAND([], {}) class TestSINHOperator: def test_repr(self): assert repr(SINH) == "SINH" def test_pops(self): assert SINH.pops == 1 def test_puts(self): assert SINH.puts == 1 def test_no_copy(self): assert copy(SINH) is SINH assert deepcopy(SINH) is SINH def test_call(self): assert_token(SINH, [0.0], [0.0], approx=True) assert_token(SINH, [GOLDEN_RATIO], [0.5], approx=True) assert_token( SINH, [np.array([0.0, GOLDEN_RATIO])], [np.array([0.0, 0.5])], approx=True ) # extra stack elements assert_token(SINH, [0, GOLDEN_RATIO], [0, 0.5], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SINH([], {}) class TestCOSHOperator: def test_repr(self): assert repr(COSH) == "COSH" def test_pops(self): assert COSH.pops == 1 def test_puts(self): assert COSH.puts == 1 def test_no_copy(self): assert copy(COSH) is COSH assert deepcopy(COSH) is COSH def test_call(self): assert_token(COSH, [0.0], [1.0], approx=True) assert_token(COSH, [GOLDEN_RATIO], [math.sqrt(5) / 2], approx=True) assert_token( COSH, [np.array([0.0, GOLDEN_RATIO])], [np.array([1.0, np.sqrt(5) / 2])], approx=True, ) # extra stack elements assert_token(COSH, [0, GOLDEN_RATIO], [0, math.sqrt(5) / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COSH([], {}) class TestTANHOperator: def test_repr(self): assert repr(TANH) == "TANH" def test_pops(self): assert TANH.pops == 1 def test_puts(self): assert TANH.puts == 1 def test_no_copy(self): assert copy(TANH) is TANH assert deepcopy(TANH) is TANH def test_call(self): assert_token(TANH, [0.0], [0.0], approx=True) assert_token(TANH, [GOLDEN_RATIO], [math.sqrt(5) / 5], approx=True) assert_token( TANH, [np.array([0.0, GOLDEN_RATIO])], [np.array([0.0, np.sqrt(5) / 5])], approx=True, ) # extra stack elements assert_token(TANH, [0, GOLDEN_RATIO], [0, math.sqrt(5) / 5], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TANH([], {}) class TestASINOperator: def test_repr(self): assert repr(ASIN) == "ASIN" def test_pops(self): assert ASIN.pops == 1 def test_puts(self): assert ASIN.puts == 1 def test_no_copy(self): assert copy(ASIN) is ASIN assert deepcopy(ASIN) is ASIN def test_call(self): assert_token(ASIN, [0.0], [0.0], approx=True) assert_token(ASIN, [1 / 2], [math.pi / 6], approx=True) assert_token(ASIN, [1 / math.sqrt(2)], [math.pi / 4], approx=True) assert_token(ASIN, [math.sqrt(3) / 2], [math.pi / 3], approx=True) assert_token(ASIN, [1.0], [math.pi / 2], approx=True) assert_token( ASIN, [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) assert_token( ASIN, [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) # extra stack elements assert_token(ASIN, [0, 1.0], [0, math.pi / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASIN([], {}) class TestACOSOperator: def test_repr(self): assert repr(ACOS) == "ACOS" def test_pops(self): assert ACOS.pops == 1 def test_puts(self): assert ACOS.puts == 1 def test_no_copy(self): assert copy(ACOS) is ACOS assert deepcopy(ACOS) is ACOS def test_call(self): assert_token(ACOS, [1.0], [0.0], approx=True) assert_token(ACOS, [math.sqrt(3) / 2], [math.pi / 6], approx=True) assert_token(ACOS, [1 / math.sqrt(2)], [math.pi / 4], approx=True) assert_token(ACOS, [1 / 2], [math.pi / 3], approx=True) assert_token(ACOS, [0.0], [math.pi / 2], approx=True) assert_token( ACOS, [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) # extra stack elements assert_token(ACOS, [0, 0.0], [0, math.pi / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOS([], {}) class TestATANOperator: def test_repr(self): assert repr(ATAN) == "ATAN" def test_pops(self): assert ATAN.pops == 1 def test_puts(self): assert ATAN.puts == 1 def test_no_copy(self): assert copy(ATAN) is ATAN assert deepcopy(ATAN) is ATAN def test_call(self): assert_token(ATAN, [0.0], [0.0], approx=True) assert_token(ATAN, [1 / math.sqrt(3)], [math.pi / 6], approx=True) assert_token(ATAN, [1.0], [math.pi / 4], approx=True) assert_token(ATAN, [math.sqrt(3)], [math.pi / 3], approx=True) assert_token( ATAN, [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], approx=True, ) assert_token( ATAN, [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], approx=True, ) # extra stack elements assert_token(ATAN, [0, 1.0], [0, math.pi / 4], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATAN([], {}) class TestASINDOperator: def test_repr(self): assert repr(ASIND) == "ASIND" def test_pops(self): assert ASIND.pops == 1 def test_puts(self): assert ASIND.puts == 1 def test_no_copy(self): assert copy(ASIND) is ASIND assert deepcopy(ASIND) is ASIND def test_call(self): assert_token(ASIND, [0.0], [0], approx=True) assert_token(ASIND, [1 / 2], [30], approx=True) assert_token(ASIND, [1 / math.sqrt(2)], [45], approx=True) assert_token(ASIND, [math.sqrt(3) / 2], [60], approx=True) assert_token(ASIND, [1.0], [90], approx=True) assert_token( ASIND, [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [np.array([0, 30, 45, 60, 90])], approx=True, ) assert_token( ASIND, [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [-np.array([0, 30, 45, 60, 90])], approx=True, ) # extra stack elements assert_token(ASIND, [0, 1.0], [0, 90], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASIND([], {}) class TestACOSDOperator: def test_repr(self): assert repr(ACOSD) == "ACOSD" def test_pops(self): assert ACOSD.pops == 1 def test_puts(self): assert ACOSD.puts == 1 def test_no_copy(self): assert copy(ACOSD) is ACOSD assert deepcopy(ACOSD) is ACOSD def test_call(self): assert_token(ACOSD, [1.0], [0], approx=True) assert_token(ACOSD, [math.sqrt(3) / 2], [30], approx=True) assert_token(ACOSD, [1 / math.sqrt(2)], [45], approx=True) assert_token(ACOSD, [1 / 2], [60], approx=True) assert_token(ACOSD, [0.0], [90], approx=True) assert_token( ACOSD, [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], [np.array([0, 30, 45, 60, 90])], approx=True, ) # extra stack elements assert_token(ACOSD, [0, 0.0], [0, 90], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOSD([], {}) class TestATANDOperator: def test_repr(self): assert repr(ATAND) == "ATAND" def test_pops(self): assert ATAND.pops == 1 def test_puts(self): assert ATAND.puts == 1 def test_no_copy(self): assert copy(ATAND) is ATAND assert deepcopy(ATAND) is ATAND def test_call(self): assert_token(ATAND, [0.0], [0], approx=True) assert_token(ATAND, [1 / math.sqrt(3)], [30], approx=True) assert_token(ATAND, [1.0], [45], approx=True) assert_token(ATAND, [math.sqrt(3)], [60], approx=True) assert_token( ATAND, [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [np.array([0, 30, 45, 60])], approx=True, ) assert_token( ATAND, [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [-np.array([0, 30, 45, 60])], approx=True, ) # extra stack elements assert_token(ATAND, [0, 1.0], [0, 45], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATAND([], {}) class TestASINHOperator: def test_repr(self): assert repr(ASINH) == "ASINH" def test_pops(self): assert ASINH.pops == 1 def test_puts(self): assert ASINH.puts == 1 def test_no_copy(self): assert copy(ASINH) is ASINH assert deepcopy(ASINH) is ASINH def test_call(self): assert_token(ASINH, [0.0], [0.0], approx=True) assert_token(ASINH, [0.5], [GOLDEN_RATIO], approx=True) assert_token( ASINH, [np.array([0.0, 0.5])], [np.array([0.0, GOLDEN_RATIO])], approx=True ) # extra stack elements assert_token(ASINH, [0, 0.5], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASINH([], {}) class TestACOSHOperator: def test_repr(self): assert repr(ACOSH) == "ACOSH" def test_pops(self): assert ACOSH.pops == 1 def test_puts(self): assert ACOSH.puts == 1 def test_no_copy(self): assert copy(ACOSH) is ACOSH assert deepcopy(ACOSH) is ACOSH def test_call(self): assert_token(ACOSH, [1.0], [0.0], approx=True) assert_token(ACOSH, [math.sqrt(5) / 2], [GOLDEN_RATIO], approx=True) assert_token( ACOSH, [np.array([1.0, np.sqrt(5) / 2])], [np.array([0.0, GOLDEN_RATIO])], approx=True, ) # extra stack elements assert_token(ACOSH, [0, math.sqrt(5) / 2], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOSH([], {}) class TestATANHOperator: def test_repr(self): assert repr(ATANH) == "ATANH" def test_pops(self): assert ATANH.pops == 1 def test_puts(self): assert ATANH.puts == 1 def test_no_copy(self): assert copy(ATANH) is ATANH assert deepcopy(ATANH) is ATANH def test_call(self): assert_token(ATANH, [0.0], [0.0], approx=True) assert_token(ATANH, [math.sqrt(5) / 5], [GOLDEN_RATIO], approx=True) assert_token( ATANH, [np.array([0.0, np.sqrt(5) / 5])], [np.array([0.0, GOLDEN_RATIO])], approx=True, ) # extra stack elements assert_token(ATANH, [0, math.sqrt(5) / 5], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATANH([], {}) class TestISNANOperator: def test_repr(self): assert repr(ISNAN) == "ISNAN" def test_pops(self): assert ISNAN.pops == 1 def test_puts(self): assert ISNAN.puts == 1 def test_no_copy(self): assert copy(ISNAN) is ISNAN assert deepcopy(ISNAN) is ISNAN def test_call(self): assert_token(ISNAN, [2], [False]) assert_token(ISNAN, [float("nan")], [True]) assert_token(ISNAN, [np.array([4, np.nan])], [np.array([False, True])]) assert_token(ISNAN, [np.array([np.nan, 1])], [np.array([True, False])]) # extra stack elements assert_token(ISNAN, [0, float("nan")], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): ISNAN([], {}) class TestISANOperator: def test_repr(self): assert repr(ISAN) == "ISAN" def test_pops(self): assert ISAN.pops == 1 def test_puts(self): assert ISAN.puts == 1 def test_no_copy(self): assert copy(ISAN) is ISAN assert deepcopy(ISAN) is ISAN def test_call(self): assert_token(ISAN, [2], [True]) assert_token(ISAN, [float("nan")], [False]) assert_token(ISAN, [np.array([4, np.nan])], [np.array([True, False])]) assert_token(ISAN, [np.array([np.nan, 1])], [np.array([False, True])]) # extra stack elements assert_token(ISAN, [0, 2], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): ISAN([], {}) class TestRINTOperator: def test_repr(self): assert repr(RINT) == "RINT" def test_pops(self): assert RINT.pops == 1 def test_puts(self): assert RINT.puts == 1 def test_no_copy(self): assert copy(RINT) is RINT assert deepcopy(RINT) is RINT def test_call(self): assert_token(RINT, [1.6], [2]) assert_token(RINT, [2.4], [2]) assert_token(RINT, [-1.6], [-2]) assert_token(RINT, [-2.4], [-2]) assert_token(RINT, [np.array([1.6, 2.4])], [np.array([2, 2])]) assert_token(RINT, [np.array([-1.6, -2.4])], [np.array([-2, -2])]) # extra stack elements assert_token(RINT, [0, 1.6], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): RINT([], {}) class TestNINTOperator: def test_repr(self): assert repr(NINT) == "NINT" def test_pops(self): assert NINT.pops == 1 def test_puts(self): assert NINT.puts == 1 def test_no_copy(self): assert copy(NINT) is NINT assert deepcopy(NINT) is NINT def test_call(self): assert_token(NINT, [1.6], [2]) assert_token(NINT, [2.4], [2]) assert_token(NINT, [-1.6], [-2]) assert_token(NINT, [-2.4], [-2]) assert_token(NINT, [np.array([1.6, 2.4])], [np.array([2, 2])]) assert_token(NINT, [np.array([-1.6, -2.4])], [np.array([-2, -2])]) # extra stack elements assert_token(NINT, [0, 1.6], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): NINT([], {}) class TestCEILOperator: def test_repr(self): assert repr(CEIL) == "CEIL" def test_pops(self): assert CEIL.pops == 1 def test_puts(self): assert CEIL.puts == 1 def test_no_copy(self): assert copy(CEIL) is CEIL assert deepcopy(CEIL) is CEIL def test_call(self): assert_token(CEIL, [1.6], [2]) assert_token(CEIL, [2.4], [3]) assert_token(CEIL, [-1.6], [-1]) assert_token(CEIL, [-2.4], [-2]) assert_token(CEIL, [np.array([1.6, 2.4])], [np.array([2, 3])]) assert_token(CEIL, [np.array([-1.6, -2.4])], [np.array([-1, -2])]) # extra stack elements assert_token(CEIL, [0, 1.2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): CEIL([], {}) class TestCEILINGOperator: def test_repr(self): assert repr(CEILING) == "CEILING" def test_pops(self): assert CEILING.pops == 1 def test_puts(self): assert CEILING.puts == 1 def test_no_copy(self): assert copy(CEILING) is CEILING assert deepcopy(CEILING) is CEILING def test_call(self): assert_token(CEILING, [1.6], [2]) assert_token(CEILING, [2.4], [3]) assert_token(CEILING, [-1.6], [-1]) assert_token(CEILING, [-2.4], [-2]) assert_token(CEILING, [np.array([1.6, 2.4])], [np.array([2, 3])]) assert_token(CEILING, [np.array([-1.6, -2.4])], [np.array([-1, -2])]) # extra stack elements assert_token(CEILING, [0, 1.2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): CEILING([], {}) class TestFLOOROperator: def test_repr(self): assert repr(FLOOR) == "FLOOR" def test_pops(self): assert FLOOR.pops == 1 def test_puts(self): assert FLOOR.puts == 1 def test_no_copy(self): assert copy(FLOOR) is FLOOR assert deepcopy(FLOOR) is FLOOR def test_call(self): assert_token(FLOOR, [1.6], [1]) assert_token(FLOOR, [2.4], [2]) assert_token(FLOOR, [-1.6], [-2]) assert_token(FLOOR, [-2.4], [-3]) assert_token(FLOOR, [np.array([1.6, 2.4])], [np.array([1, 2])]) assert_token(FLOOR, [np.array([-1.6, -2.4])], [np.array([-2, -3])]) # extra stack elements assert_token(FLOOR, [0, 1.8], [0, 1]) # not enough stack elements with pytest.raises(StackUnderflowError): FLOOR([], {}) class TestD2ROperator: def test_repr(self): assert repr(D2R) == "D2R" def test_pops(self): assert D2R.pops == 1 def test_puts(self): assert D2R.puts == 1 def test_no_copy(self): assert copy(D2R) is D2R assert deepcopy(D2R) is D2R def test_call(self): assert_token(D2R, [0], [0.0], approx=True) assert_token(D2R, [30], [math.pi / 6], approx=True) assert_token(D2R, [45], [math.pi / 4], approx=True) assert_token(D2R, [60], [math.pi / 3], approx=True) assert_token(D2R, [90], [math.pi / 2], approx=True) assert_token( D2R, [np.array([0, 30, 45, 60, 90])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) assert_token( D2R, [-np.array([0, 30, 45, 60, 90])], [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) # extra stack elements assert_token(D2R, [0, 90], [0, math.pi / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): D2R([], {}) class TestR2DOperator: def test_repr(self): assert repr(R2D) == "R2D" def test_pops(self): assert R2D.pops == 1 def test_puts(self): assert R2D.puts == 1 def test_no_copy(self): assert copy(R2D) is R2D assert deepcopy(R2D) is R2D def test_call(self): assert_token(R2D, [0.0], [0], approx=True) assert_token(R2D, [math.pi / 6], [30], approx=True) assert_token(R2D, [math.pi / 4], [45], approx=True) assert_token(R2D, [math.pi / 3], [60], approx=True) assert_token(R2D, [math.pi / 2], [90], approx=True) assert_token( R2D, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([0, 30, 45, 60, 90])], approx=True, ) assert_token( R2D, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [-np.array([0, 30, 45, 60, 90])], approx=True, ) # extra stack elements assert_token(R2D, [0, math.pi / 2], [0, 90], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): R2D([], {}) class TestYMDHMSOperator: def test_repr(self): assert repr(YMDHMS) == "YMDHMS" def test_pops(self): assert YMDHMS.pops == 1 def test_puts(self): assert YMDHMS.puts == 1 def test_no_copy(self): assert copy(YMDHMS) is YMDHMS assert deepcopy(YMDHMS) is YMDHMS def test_call(self): epoch = datetime(1985, 1, 1, 0, 0, 0, 0) date1 = datetime(2008, 7, 4, 12, 19, 19, 570865) date2 = datetime(2019, 6, 26, 12, 31, 6, 930575) seconds1 = (date1 - epoch).total_seconds() seconds2 = (date2 - epoch).total_seconds() assert_token(YMDHMS, [seconds1], [80704121919.570865], approx=True) assert_token(YMDHMS, [seconds2], [190626123106.930575], approx=True) assert_token( YMDHMS, [np.array([seconds1, seconds2])], [np.array([80704121919.570865, 190626123106.930575])], approx=True, ) # extra stack elements assert_token(YMDHMS, [0, seconds1], [0, 80704121919.570865], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): YMDHMS([], {}) class TestSUMOperator: def test_repr(self): assert repr(SUM) == "SUM" def test_pops(self): assert SUM.pops == 1 def test_puts(self): assert SUM.puts == 1 def test_no_copy(self): assert copy(SUM) is SUM assert deepcopy(SUM) is SUM def test_call(self): assert_token(SUM, [2], [2]) assert_token(SUM, [-2], [-2]) assert_token(SUM, [float("nan")], [0]) assert_token(SUM, [np.array([4, -1])], [3]) assert_token(SUM, [np.array([-4, 1])], [-3]) assert_token(SUM, [np.array([1, np.nan, 3])], [4]) assert_token(SUM, [np.array([np.nan])], [0]) # extra stack elements assert_token(SUM, [0, 2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): SUM([], {}) class TestDIFFOperator: def test_repr(self): assert repr(DIF) == "DIF" def test_pops(self): assert DIF.pops == 1 def test_puts(self): assert DIF.puts == 1 def test_no_copy(self): assert copy(DIF) is DIF assert deepcopy(DIF) is DIF def test_call(self): assert_token(DIF, [2], [np.array([np.nan])]) assert_token(DIF, [np.array([1, 2])], [np.array([np.nan, 1])]) assert_token(DIF, [np.array([1, 2, 5])], [np.array([np.nan, 1, 3])]) assert_token( DIF, [np.array([1, np.nan, 5])], [np.array([np.nan, np.nan, np.nan])] ) # extra stack elements assert_token(DIF, [0, 2], [0, np.array([np.nan])]) with pytest.raises(StackUnderflowError): DIF([], {}) class TestDUPOperator: def test_repr(self): assert repr(DUP) == "DUP" def test_pops(self): assert DUP.pops == 1 def test_puts(self): assert DUP.puts == 2 def test_no_copy(self): assert copy(DUP) is DUP assert deepcopy(DUP) is DUP def test_call(self): assert_token(DUP, [2], [2, 2]) assert_token(DUP, [np.array([4, -1])], [np.array([4, -1]), np.array([4, -1])]) # extra stack elements assert_token(DUP, [0, 2], [0, 2, 2]) with pytest.raises(StackUnderflowError): DUP([], {}) class TestDIVOperator: def test_repr(self): assert repr(DIV) == "DIV" def test_pops(self): assert DIV.pops == 2 def test_puts(self): assert DIV.puts == 1 def test_no_copy(self): assert copy(DIV) is DIV assert deepcopy(DIV) is DIV def test_call(self): assert_token(DIV, [10, 2], [5]) assert_token(DIV, [10, np.array([2, 5])], [np.array([5, 2])]) assert_token(DIV, [np.array([10, 4]), 2], [np.array([5, 2])]) assert_token(DIV, [np.array([8, 16]), np.array([2, 4])], [np.array([4, 4])]) # extra stack elements assert_token(DIV, [0, 10, 2], [0, 5]) # not enough stack elements with pytest.raises(StackUnderflowError): DIV([], {}) with pytest.raises(StackUnderflowError): DIV([1], {}) class TestPOWOperator: def test_repr(self): assert repr(POW) == "POW" def test_pops(self): assert POW.pops == 2 def test_puts(self): assert POW.puts == 1 def test_no_copy(self): assert copy(POW) is POW assert deepcopy(POW) is POW def test_call(self): assert_token(POW, [1, 2], [1]) assert_token(POW, [2, 2], [4]) assert_token(POW, [2, 4], [16]) assert_token(POW, [2, np.array([1, 2, 3])], [np.array([2, 4, 8])]) assert_token(POW, [np.array([1, 2, 3]), 2], [np.array([1, 4, 9])]) assert_token(POW, [np.array([2, 3]), np.array([5, 6])], [np.array([32, 729])]) # extra stack elements assert_token(POW, [0, 2, 4], [0, 16]) # not enough stack elements with pytest.raises(StackUnderflowError): POW([], {}) with pytest.raises(StackUnderflowError): POW([1], {}) class TestFMODOperator: def test_repr(self): assert repr(FMOD) == "FMOD" assert FMOD.pops == 2 assert FMOD.puts == 1 def test_pops(self): assert repr(FMOD) == "FMOD" assert FMOD.pops == 2 assert FMOD.puts == 1 def test_puts(self): assert repr(FMOD) == "FMOD" assert FMOD.pops == 2 assert FMOD.puts == 1 def test_no_copy(self): assert copy(FMOD) is FMOD assert deepcopy(FMOD) is FMOD def test_call(self): assert_token(FMOD, [1, 2], [1]) assert_token(FMOD, [2, 10], [2]) assert_token(FMOD, [12, 10], [2]) assert_token(FMOD, [13, np.array([10, 100])], [np.array([3, 13])]) assert_token(FMOD, [np.array([7, 15]), 10], [np.array([7, 5])]) assert_token(FMOD, [np.array([7, 15]), np.array([10, 5])], [np.array([7, 0])]) # extra stack elements assert_token(FMOD, [0, 12, 10], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): FMOD([], {}) with pytest.raises(StackUnderflowError): FMOD([1], {}) class TestMINOperator: def test_repr(self): assert repr(MIN) == "MIN" def test_pops(self): assert MIN.pops == 2 def test_puts(self): assert MIN.puts == 1 def test_no_copy(self): assert copy(MIN) is MIN assert deepcopy(MIN) is MIN def test_call(self): assert_token(MIN, [2, 3], [2]) assert_token(MIN, [3, 2], [2]) assert_token(MIN, [2, np.array([1, 3])], [np.array([1, 2])]) assert_token(MIN, [np.array([1, 3]), 2], [np.array([1, 2])]) assert_token(MIN, [np.array([2, 3]), np.array([3, 2])], [np.array([2, 2])]) # # extra stack elements assert_token(MIN, [0, 2, 3], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): MIN([], {}) with pytest.raises(StackUnderflowError): MIN([1], {}) class TestMAXOperator: def test_repr(self): assert repr(MAX) == "MAX" def test_pops(self): assert MAX.pops == 2 def test_puts(self): assert MAX.puts == 1 def test_no_copy(self): assert copy(MAX) is MAX assert deepcopy(MAX) is MAX def test_call(self): assert_token(MAX, [2, 3], [3]) assert_token(MAX, [3, 2], [3]) assert_token(MAX, [2, np.array([1, 3])], [np.array([2, 3])]) assert_token(MAX, [np.array([1, 3]), 2], [np.array([2, 3])]) assert_token(MAX, [np.array([2, 3]), np.array([3, 2])], [np.array([3, 3])]) # # extra stack elements assert_token(MAX, [0, 2, 3], [0, 3]) # not enough stack elements with pytest.raises(StackUnderflowError): MAX([], {}) with pytest.raises(StackUnderflowError): MAX([1], {}) class TestATAN2Operator: def test_repr(self): assert repr(ATAN2) == "ATAN2" def test_pops(self): assert ATAN2.pops == 2 def test_puts(self): assert ATAN2.puts == 1 def test_no_copy(self): assert copy(ATAN2) is ATAN2 assert deepcopy(ATAN2) is ATAN2 def test_call(self): # NOTE: second parameter is x, first is y assert_token(ATAN2, [0, 1], [0], approx=True) assert_token(ATAN2, [1, math.sqrt(3)], [math.pi / 6], approx=True) assert_token(ATAN2, [1, 1], [math.pi / 4], approx=True) assert_token(ATAN2, [math.sqrt(3), 1], [math.pi / 3], approx=True) assert_token(ATAN2, [1, 0], [math.pi / 2], approx=True) assert_token( ATAN2, [math.sqrt(3), -1], [math.pi / 2 + math.pi / 6], approx=True ) assert_token(ATAN2, [1, -1], [math.pi / 2 + math.pi / 4], approx=True) assert_token( ATAN2, [1, -math.sqrt(3)], [math.pi / 2 + math.pi / 3], approx=True ) assert_token(ATAN2, [0, -1], [math.pi / 2 + math.pi / 2], approx=True) assert_token( ATAN2, [ np.array([0, 1, 1, np.sqrt(3), 1, np.sqrt(3), 1, 1, 0]), np.array([1, np.sqrt(3), 1, 1, 0, -1, -1, -np.sqrt(3), -1]), ], [ np.array( [ 0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2, np.pi / 2 + np.pi / 6, np.pi / 2 + np.pi / 4, np.pi / 2 + np.pi / 3, np.pi / 2 + np.pi / 2, ] ) ], approx=True, ) # extra stack elements assert_token(ATAN2, [0, 1, 1], [0, math.pi / 4], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATAN2([], {}) class TestHYPOTOperator: def test_repr(self): assert repr(HYPOT) == "HYPOT" def test_pops(self): assert HYPOT.pops == 2 def test_puts(self): assert HYPOT.puts == 1 def test_no_copy(self): assert copy(HYPOT) is HYPOT assert deepcopy(HYPOT) is HYPOT def test_call(self): assert_token(HYPOT, [1, 1], [math.sqrt(2)], approx=True) assert_token(HYPOT, [math.sqrt(3), 1], [2], approx=True) assert_token( HYPOT, [1, np.array([np.sqrt(3), 1])], [np.array([2, np.sqrt(2)])], approx=True, ) assert_token( HYPOT, [np.array([np.sqrt(3), 1]), 1], [np.array([2, np.sqrt(2)])], approx=True, ) assert_token( HYPOT, [np.array([np.sqrt(3), 1]), np.array([1, 1])], [np.array([2, np.sqrt(2)])], approx=True, ) # extra stack elements assert_token(HYPOT, [0, math.sqrt(3), 1], [0, 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): HYPOT([], {}) with pytest.raises(StackUnderflowError): HYPOT([1], {}) class TestR2Operator: def test_repr(self): assert repr(R2) == "R2" def test_pops(self): assert R2.pops == 2 def test_puts(self): assert R2.puts == 1 def test_no_copy(self): assert copy(R2) is R2 assert deepcopy(R2) is R2 def test_call(self): assert_token(R2, [2, 3], [13]) assert_token(R2, [2, np.array([3, 4])], [np.array([13, 20])]) assert_token(R2, [np.array([3, 4]), 2], [np.array([13, 20])]) assert_token(R2, [np.array([1, 2]), np.array([3, 4])], [np.array([10, 20])]) # extra stack elements assert_token(R2, [0, 2, 3], [0, 13], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): R2([], {}) with pytest.raises(StackUnderflowError): R2([1], {}) class TestEQOperator: def test_repr(self): assert repr(EQ) == "EQ" def test_pops(self): assert EQ.pops == 2 def test_puts(self): assert EQ.puts == 1 def test_no_copy(self): assert copy(EQ) is EQ assert deepcopy(EQ) is EQ def test_call(self): assert_token(EQ, [2, 2], [True]) assert_token(EQ, [2, 3], [False]) assert_token( EQ, [2, np.array([1, np.nan, 2])], [np.array([False, False, True])] ) assert_token( EQ, [np.array([1, np.nan, 2]), 2], [np.array([False, False, True])] ) assert_token( EQ, [np.array([1, np.nan, 3, 3]), np.array([1, np.nan, 2, 3])], [np.array([True, False, False, True])], ) # extra stack elements assert_token(EQ, [0, 2, 2], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): EQ([], {}) with pytest.raises(StackUnderflowError): EQ([1], {}) class TestNEOperator: def test_repr(self): assert repr(NE) == "NE" def test_pops(self): assert NE.pops == 2 def test_puts(self): assert NE.puts == 1 def test_no_copy(self): assert copy(NE) is NE assert deepcopy(NE) is NE def test_call(self): assert_token(NE, [2, 2], [False]) assert_token(NE, [2, 3], [True]) assert_token(NE, [2, np.array([1, np.nan, 2])], [np.array([True, True, False])]) assert_token(NE, [np.array([1, np.nan, 2]), 2], [np.array([True, True, False])]) assert_token( NE, [np.array([1, np.nan, 3, 3]), np.array([1, np.nan, 2, 3])], [np.array([False, True, True, False])], ) # extra stack elements assert_token(NE, [0, 2, 2], [0, False]) # not enough stack elements with pytest.raises(StackUnderflowError): NE([], {}) with pytest.raises(StackUnderflowError): NE([1], {}) class TestLTOperator: def test_repr(self): assert repr(LT) == "LT" def test_pops(self): assert LT.pops == 2 def test_puts(self): assert LT.puts == 1 def test_no_copy(self): assert copy(LT) is LT assert deepcopy(LT) is LT def test_call(self): assert_token(LT, [2, 3], [True]) assert_token(LT, [2, 2], [False]) assert_token(LT, [3, 2], [False]) assert_token(LT, [2, np.array([1, 2, 3])], [np.array([False, False, True])]) assert_token(LT, [np.array([1, 2, 3]), 2], [np.array([True, False, False])]) assert_token( LT, [np.array([1, 2, 3]), np.array([3, 2, 1])], [np.array([True, False, False])], ) # extra stack elements assert_token(LT, [0, 2, 3], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): LT([], {}) with pytest.raises(StackUnderflowError): LT([1], {}) class TestLEOperator: def test_repr(self): assert repr(LE) == "LE" def test_pops(self): assert LE.pops == 2 def test_puts(self): assert LE.puts == 1 def test_no_copy(self): assert copy(LE) is LE assert deepcopy(LE) is LE def test_le(self): assert_token(LE, [2, 3], [True]) assert_token(LE, [2, 2], [True]) assert_token(LE, [3, 2], [False]) assert_token(LE, [2, np.array([1, 2, 3])], [np.array([False, True, True])]) assert_token(LE, [np.array([1, 2, 3]), 2], [np.array([True, True, False])]) assert_token( LE, [np.array([1, 2, 3]), np.array([3, 2, 1])], [np.array([True, True, False])], ) # # extra stack elements assert_token(LE, [0, 2, 3], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): LE([], {}) with pytest.raises(StackUnderflowError): LE([1], {}) class TestGTOperator: def test_repr(self): assert repr(GT) == "GT" def test_pops(self): assert GT.pops == 2 def test_puts(self): assert GT.puts == 1 def test_no_copy(self): assert copy(GT) is GT assert deepcopy(GT) is GT def test_call(self): assert_token(GT, [2, 3], [False]) assert_token(GT, [2, 2], [False]) assert_token(GT, [3, 2], [True]) assert_token(GT, [2, np.array([1, 2, 3])], [np.array([True, False, False])]) assert_token(GT, [np.array([1, 2, 3]), 2], [np.array([False, False, True])]) assert_token( GT, [np.array([1, 2, 3]), np.array([3, 2, 1])], [np.array([False, False, True])], ) # extra stack elements assert_token(GT, [0, 2, 3], [0, False]) # not enough stack elements with pytest.raises(StackUnderflowError): GT([], {}) with pytest.raises(StackUnderflowError): GT([1], {}) class TestGEOperator: def test_repr(self): assert repr(GE) == "GE" def test_pops(self): assert GE.pops == 2 def test_puts(self): assert GE.puts == 1 def test_no_copy(self): assert copy(GE) is GE assert deepcopy(GE) is GE def test_call(self): assert_token(GE, [2, 3], [False]) assert_token(GE, [2, 2], [True]) assert_token(GE, [3, 2], [True]) assert_token(GE, [2, np.array([1, 2, 3])], [np.array([True, True, False])]) assert_token(GE, [np.array([1, 2, 3]), 2], [np.array([False, True, True])]) assert_token( GE, [np.array([1, 2, 3]), np.array([3, 2, 1])], [np.array([False, True, True])], ) # extra stack elements assert_token(GE, [0, 2, 3], [0, False]) # not enough stack elements with pytest.raises(StackUnderflowError): GE([], {}) with pytest.raises(StackUnderflowError): GE([1], {}) class TestNANOperator: def test_repr(self): assert repr(NAN) == "NAN" def test_pops(self): assert NAN.pops == 2 def test_puts(self): assert NAN.puts == 1 def test_no_copy(self): assert copy(NAN) is NAN assert deepcopy(NAN) is NAN def test_call(self): assert_token(NAN, [2, 2], [float("nan")]) assert_token(NAN, [2, 3], [2]) assert_token(NAN, [2, np.array([2, 3])], [np.array([np.nan, 2])]) assert_token(NAN, [np.array([2, 3]), 2], [np.array([np.nan, 3])]) assert_token( NAN, [np.array([1, 2, 3]), np.array([3, 2, 1])], [np.array([1, np.nan, 3])] ) # as float assert_token( NAN, [np.array([1.0, 2.0, 3.0]), np.array([3, 2, 1])], [np.array([1, np.nan, 3])], approx=True, ) # extra stack elements assert_token(NAN, [0, 2, 2], [0, float("nan")]) # not enough stack elements with pytest.raises(StackUnderflowError): NAN([], {}) with pytest.raises(StackUnderflowError): NAN([1], {}) class TestANDOperator: def test_repr(self): assert repr(AND) == "AND" def test_pops(self): assert AND.pops == 2 def test_puts(self): assert AND.puts == 1 def test_no_copy(self): assert copy(AND) is AND assert deepcopy(AND) is AND def test_call(self): assert_token(AND, [2, 3], [2]) assert_token(AND, [float("nan"), 3], [3]) assert_token(AND, [float("nan"), np.array([2, 3])], [np.array([2, 3])]) assert_token(AND, [np.array([np.nan, 3]), 2], [np.array([2, 3])]) assert_token( AND, [np.array([10, np.nan, 30]), np.array([1, 2, 3])], [np.array([10, 2, 30])], ) # extra stack elements assert_token(AND, [0, float("nan"), 3], [0, 3]) # not enough stack elements with pytest.raises(StackUnderflowError): AND([], {}) with pytest.raises(StackUnderflowError): AND([1], {}) class TestOROperator: def test_repr(self): assert repr(OR) == "OR" def test_pops(self): assert OR.pops == 2 def test_puts(self): assert OR.puts == 1 def test_no_copy(self): assert copy(OR) is OR assert deepcopy(OR) is OR def test_call(self): assert_token(OR, [2, 3], [2]) assert_token(OR, [2, float("nan")], [float("nan")]) assert_token(OR, [2, np.array([3, np.nan])], [np.array([2, np.nan])]) assert_token(OR, [np.array([2, 3]), np.nan], [np.array([np.nan, np.nan])]) assert_token( OR, [np.array([1, 2, 3]), np.array([10, np.nan, 30])], [np.array([1, np.nan, 3])], ) # as float assert_token( OR, [np.array([1.0, 2.0, 3.0]), np.array([10, np.nan, 30])], [np.array([1, np.nan, 3])], ) # extra stack elements assert_token(OR, [0, 2, float("nan")], [0, float("nan")]) # not enough stack elements with pytest.raises(StackUnderflowError): OR([], {}) with pytest.raises(StackUnderflowError): OR([1], {}) class TestIANDOperator: def test_repr(self): assert repr(IAND) == "IAND" def test_pops(self): assert IAND.pops == 2 def test_puts(self): assert IAND.puts == 1 def test_no_copy(self): assert copy(IAND) is IAND assert deepcopy(IAND) is IAND def test_call(self): assert_token(IAND, [5, 3], [1]) assert_token(IAND, [15, 21], [5]) assert_token(IAND, [21, 15], [5]) assert_token(IAND, [15, np.array([9, 21, 35])], [np.array([9, 5, 3])]) assert_token(IAND, [np.array([9, 21, 35]), 15], [np.array([9, 5, 3])]) assert_token( IAND, [np.array([9, 21, 35]), np.array([3, 15, 127])], [np.array([1, 5, 35])], ) # extra stack elements assert_token(IAND, [0, 15, 21], [0, 5]) # floats are not supported with pytest.raises(TypeError): IAND([1.0, 2], {}) with pytest.raises(TypeError): IAND([1, 2.0], {}) with pytest.raises(TypeError): IAND([1, np.array([2.0, 3.0])], {}) with pytest.raises(TypeError): IAND([np.array([2.0, 3.0]), 1], {}) # not enough stack elements with pytest.raises(StackUnderflowError): IAND([], {}) with pytest.raises(StackUnderflowError): IAND([1], {}) class TestIOROperator: def test_repr(self): assert repr(IOR) == "IOR" def test_pops(self): assert IOR.pops == 2 def test_puts(self): assert IOR.puts == 1 def test_no_copy(self): assert copy(IOR) is IOR assert deepcopy(IOR) is IOR def test_call(self): assert_token(IOR, [5, 3], [7]) assert_token(IOR, [15, 21], [31]) assert_token(IOR, [21, 15], [31]) assert_token(IOR, [15, np.array([9, 21, 35])], [
np.array([15, 31, 47])
numpy.array
#! /usr/bin/env python from __future__ import division from builtins import range from LLC_Membranes.llclib import file_rw, transform, topology import mdtraj as md import numpy as np import matplotlib.path as mplPath import mdtraj as md from random import randint import tqdm class region: """ Define a region as an extrusion of a polygon in the z direction """ def __init__(self, sides): """ :param sides: number of sides making up the region in the xy plane :return: region """ self.sides = sides def xyregion(self, corners): """ :param corners: points defining the corners of the polygon making up the xy region :return: a region defined by corners """ path = mplPath.Path(corners) def thickness(filename, ref_atoms, grid, *traj, **kwargs): """ :param filename: name of .gro file :param ref_atoms: atoms which thickness will be based on :param traj: trajectory of positions :return: trajectory of thicknesses or single thickness based on max/min z coordinate of reference atoms """ if traj: traj = np.asarray(traj)[0] # optional arguments of the form *args need to be convert back to numpy arrays nT = traj.shape[0] # number of trajectory points thick = np.zeros([nT]) z_max = np.zeros([nT]) z_min = np.zeros([nT]) thick_std = np.zeros([nT]) for t in range(nT): z_max_t = max(traj[t, :, 2]) z_min_t = min(traj[t, :, 2]) thick[t] = z_max_t - z_min_t z_max[t] = z_max_t z_min[t] = z_min_t else: f = open(filename, "r") # .gro file whose positions of Na ions will be read a = [] # list to hold lines of file for line in f: a.append(line) line = 0 while a[line].count('HII') == 0: line += 1 if grid: t = md.load(filename) pos = t.xyz[0, :, :] # positions of all atoms if kwargs['exclude']: keep = [a.index for a in t.topology.atoms if a.residue.name != kwargs['exclude']] pos = t.atom_slice(keep).xyz[0, :, :] # define boundaries of each grid area grid_res = kwargs['grid_res'] nregions = (grid_res - 1) ** 2 g = np.zeros([2, grid_res, grid_res]) dims = a[-1].split() xbox = np.linalg.norm([dims[0], dims[3], dims[4]]) ybox = np.linalg.norm([dims[1], dims[5], dims[6]]) yangle = np.arctan(float(dims[1])/abs(float(dims[5]))) for i in range(grid_res): g[0, i, :] = np.linspace(0, xbox, grid_res) + (float(i) / grid_res)*float(dims[5]) g[1, :, i] = np.linspace(0, ybox, grid_res)*np.sin(yangle) corners = np.zeros([nregions, 4, 2]) zmaxes = np.zeros([nregions]) zmins = np.zeros([nregions]) thicks = np.zeros([nregions]) for i in range(grid_res - 1): for j in range(grid_res - 1): # define corners of grid region r = i*(grid_res - 1) + j corners[r, 0, :] = g[:, i, j] corners[r, 1, :] = g[:, i + 1, j] corners[r, 2, :] = g[:, i + 1, j + 1] corners[r, 3, :] = g[:, i, j + 1] # create a region using the corners (corners need to be traced in order) path = mplPath.Path(corners[r, :, :]) contained = path.contains_points(pos[:, :2]) # check whether each point is in the region z = pos[np.where(contained), 2] # get the z position of all atoms contained in the region zmaxes[r] = np.max(z) zmins[r] = np.min(z) thicks[r] = zmaxes[r] - zmins[r] # bootstrap to get statistics nboot = 2000 vmax = np.zeros([nboot]) vmin = np.zeros([nboot]) for i in range(nboot): imax = randint(0, nregions - 1) imin = randint(0, nregions - 1) vmax[i] = zmaxes[imax] vmin[i] = zmins[imin] z_max = np.mean(vmax) z_min = np.mean(vmin) thick = np.mean(vmax - vmin) thick_std = np.std(vmax - vmin) else: z = [] # list to hold z positions of all atoms while a[line].count('HII') != 0: if str.strip(a[line][11:15]) in ref_atoms: z.append(float(a[line][36:44])) line += 1 z_max = max(z) z_min = min(z) thick = z_max - z_min thick_std = 0 return thick, z_max, z_min, thick_std def conc(t, comp, b): """ Calculate the concentration of the specified component :param t: mdtraj trajectory object for system being studied :param comp: component which you want the concentration of :param b: buffer. distance into membrane to go before starting calculation :return: concentration """ from pymbar import timeseries box = t.unitcell_vectors equil = timeseries.detectEquilibration(box[:, 2, 2])[0] thick = np.mean(box[equil:, 2, 2]) z_max = thick z_min = 0 buffer = thick*b z_max -= buffer z_min += buffer thick = z_max - z_min # Calculate concentration (an average of all frames) keep = [a.index for a in t.topology.atoms if a.name == comp] t_comp = t.atom_slice(keep) pos = t_comp.xyz ncomp = pos.shape[1] # number of components in the simulation which you want the concentration of nT = pos.shape[0] if b > 0: count = np.zeros([nT]) box_vol = np.zeros([nT]) cross = np.zeros([nT]) for t in range(nT): x_dim = np.linalg.norm(box[t, 0, :]) y_dim = np.linalg.norm(box[t, 1, :]) cross[t] = x_dim*y_dim box_vol[t] = x_dim*y_dim*thick for c in range(ncomp): if z_max >= pos[t, c, 2] >= z_min: count[t] += 1 else: count = ncomp*np.ones([nT]) box_vol = np.zeros([nT]) cross = np.zeros([nT]) for t in range(nT): x_dim = np.linalg.norm(box[t, 0, :]) y_dim = np.linalg.norm(box[t, 1, :]) cross[t] = x_dim*y_dim box_vol[t] = x_dim*y_dim*thick factor = 1 / (1*10**-27) # convert from ions/nm^3 to ions/m^3 conc = np.zeros([nT]) for c in range(nT): conc[c] = (count[c] / box_vol[c]) * factor avg_conc = np.mean(conc) std = np.std(conc) avg_cross = np.mean(cross) return avg_conc, std, avg_cross, thick, z_max, z_min def avg_pore_loc(npores, pos, box, buffer=0, spline=False, npts=20, progress=False, bins=False, spline_name='spline.pl'): """ Calculate average pore location for each pore at each frame :param no_pores: the number of pores in the unit cell :param pos: the coordinates of the component(s) which you are using to locate the pore centers :param box: box vectors (t.unitcell_vectors when trajectory is load with mdtraj) :param buffer: fraction (of membrane thickness) of top and bottom of membrane to exclude from p2p calculations :param spline: trace pore centers with a spline :param npts: number of points making up the spline in each pore :param progress: show progress bar while constructing splines :param bins: return the bin centers of each spline for plotting purposes :param spline_name: name of spline. Include absolute path if not in same directory where script was run :type no_pores: int :type pos: numpy.ndarray, shape(ncomponents, 3) or numpy.ndarray, shape(nframes, ncomponents, 3) :type buffer: float :type spline: bool :type box: numpy.ndarray, shape(nframes, 3, 3) :type npts: int :type progress: bool :type bins: bool :type spline_name: str :return: numpy array containing the x, y coordinates of the center of each pore at each frame """ # Find the average location of the pores w.r.t. x and y if spline: if box is None: print('You must supply box vectors if you are to trace the pores with a spline') exit() else: print('Calculating pore spline...') centers, bin_centers = trace_pores(pos, box, npts, npores=4, progress=progress, savename=spline_name) if bins: return centers, bin_centers else: return centers else: if len(pos.shape) == 3: # multiple frames nT = np.shape(pos)[0] comp_ppore = np.shape(pos)[1] // npores p_center = np.zeros([nT, npores, 2]) for i in range(nT): positions = wrap_box(pos[i, ...], box[i, ...]) if buffer > 0: include = np.full(pos.shape[1], True) include[np.where(pos[i, :, 2] > box[i, 2, 2] + buffer)] = False include[np.where(pos[i, :, 2] < buffer)] = False for j in range(npores): p_center[i, j, :] = positions[comp_ppore * j:comp_ppore * (j + 1), :2].mean(axis=0) count = 0 for k in range(comp_ppore * j, comp_ppore * (j + 1)): if include[k]: p_center[i, j, :] += positions[k, :2] count += 1 p_center[i, j, :] /= count # take the average else: for j in range(npores): p_center[i, j, :] = positions[comp_ppore*j:comp_ppore*(j + 1), :2].mean(axis=0) elif len(pos.shape) == 2: # single frame comp_ppore = pos.shape[0] // npores p_center = np.zeros([npores, 2]) for j in range(npores): for k in range(comp_ppore*j, comp_ppore*(j + 1)): p_center[j, :] += pos[k, :2] p_center[j, :] /= comp_ppore else: return 'Please use a position array with valid dimensions' exit() return p_center def p2p(p_centers, distances): """ :param p_centers: the x, y locations of the pore centers in the format return from avg_pore_loc() :param distances: the number of distinct distances between pores :return: all of the pore to pore distances """ nT = np.shape(p_centers)[2] p2ps = np.zeros([distances, nT]) # distances in the order 1-2, 1-3, 1-4, 2-3, 2-4, 3-4 for i in range(nT): # So ugly ... sadness :( p2ps[0, i] = np.linalg.norm(p_centers[:, 0, i] - p_centers[:, 1, i]) p2ps[1, i] = np.linalg.norm(p_centers[:, 0, i] - p_centers[:, 2, i]) p2ps[2, i] = np.linalg.norm(p_centers[:, 0, i] - p_centers[:, 3, i]) p2ps[3, i] = np.linalg.norm(p_centers[:, 1, i] - p_centers[:, 2, i]) p2ps[4, i] = np.linalg.norm(p_centers[:, 1, i] - p_centers[:, 3, i]) p2ps[5, i] = np.linalg.norm(p_centers[:, 2, i] - p_centers[:, 3, i]) return p2ps def limits(pos, pcenters): """ Estimate the pore 'radius' based on the position of some component and it's maximum deviation from the pore center :param: pos: the positions of all atoms included in making the estimate :param: pcenters: the x,y positions of the pore centers for each frame :return: an approximate pore radius. Beyond which, we have entered the alkane region """ nT = pcenters.shape[0] npores = pcenters.shape[1] natoms = pos.shape[1] atom_ppore = natoms // npores deviation = np.zeros([nT, npores, atom_ppore]) for f in tqdm.tqdm(range(nT)): for i in range(atom_ppore): for j in range(npores): deviation[f, j, i] = np.linalg.norm(pos[f, j*atom_ppore + i, :2] - pcenters[f, j, :]) #deviation = np.reshape(deviation, (nT, natoms)) fr = np.zeros([nT]) frstd = np.zeros([nT]) # # for i in range(nT): # fr[i] = np.mean(deviation[i, :]) # + np.std(deviation[i, :]) # maybe? # frstd[i] = np.std(deviation[i, :]) radii = np.zeros([nT, npores]) for t in range(nT): for p in range(npores): radii[t, p] = np.mean(deviation[t, p, :]) return radii def put_in_box(pt, x_box, y_box, m, angle): """ :param pt: The point to place back in the box :param x_box: length of box in x dimension :param y_box: length of box in y dimension :param m: slope of box vector :param angle: angle between x axis and y box vector :return: coordinate shifted into box """ b = - m * x_box # y intercept of box vector that does not pass through origin (right side of box) if pt[1] < 0: pt[:2] += [np.cos(angle)*x_box, np.sin(angle)*x_box] # if the point is under the box if pt[1] > y_box: pt[:2] -= [np.cos(angle)*x_box, np.sin(angle)*x_box] if pt[1] > m*pt[0]: # if the point is on the left side of the box pt[0] += x_box if pt[1] < (m*pt[0] + b): # if the point is on the right side of the box pt[0] -= x_box return pt def trace_pores(pos, box, npoints, npores=4, progress=True, save=True, savename='spline.pl'): """ Find the line which traces through the center of the pores :param pos: positions of atoms used to define pore location (args.ref) [natoms, 3] :param box: xy box vectors, [2, 2], mdtraj format (t.unitcell_vectors) :param npoints: number of points for spline in each pore :param npores: number of pores in unit cell (assumed that atoms are number sequentially by pore. i.e. pore 1 atom numbers all precede those in pore 2) :param progress: set to True if you want a progress bar to be shown :param save: save spline as pickled object :param savename: path to spline. If absolute path is not provided, will look in current directory :type pos: np.ndarray :type box: np.ndarray :type npoints: int :type npores: int :type progress: bool :type save: bool :type savename: str :return: points which trace the pore center """ try: print('Attempting to load spline ... ', end='', flush=True) spline = file_rw.load_object(savename) print('Success!') return spline[0], spline[1] except FileNotFoundError: print('%s not found ... Calculating spline' % savename) single_frame = False if np.shape(pos.shape)[0] == 2: pos = pos[np.newaxis, ...] # add a new axis if we are looking at a single frame box = box[np.newaxis, ...] single_frame = True nframes = pos.shape[0] atoms_p_pore = int(pos.shape[1] / npores) # atoms in each pore v = np.zeros([nframes, 4, 2]) # vertices of unitcell box bounds = [] v[:, 0, :] = [0, 0] v[:, 1, 0] = box[:, 0, 0] v[:, 3, :] = np.vstack((box[:, 1, 0], box[:, 1, 1])).T v[:, 2, :] = v[:, 3, :] + np.vstack((box[:, 0, 0], np.zeros([nframes]))).T center = np.vstack((np.mean(v[..., 0], axis=1), np.mean(v[..., 1], axis=1), np.zeros(nframes))).T for t in range(nframes): bounds.append(mplPath.Path(v[t, ...])) # create a path tracing the vertices, v angle = np.arcsin(box[:, 1, 1]/box[:, 0, 0]) # specific to case where magnitude of x and y box lengths are equal angle = np.where(box[:, 1, 0] < 0, angle + np.pi / 2, angle) # haven't tested this well yet m = (v[:, 3, 1] - v[:, 0, 1]) / (v[:, 3, 0] - v[:, 0, 0]) # slope from points connecting first and third vertices centers = np.zeros([nframes, npores, npoints, 3]) bin_centers = np.zeros([nframes, npores, npoints]) for t in tqdm.tqdm(range(nframes), disable=(not progress)): for p in range(npores): pore = pos[t, p*atoms_p_pore:(p+1)*atoms_p_pore, :] # coordinates for atoms belonging to a single pore while np.min(pore[:, 2]) < 0 or np.max(pore[:, 2]) > box[t, 2, 2]: # because cross-linked configurations can extend very far up and down pore[:, 2] = np.where(pore[:, 2] < 0, pore[:, 2] + box[t, 2, 2], pore[:, 2]) pore[:, 2] = np.where(pore[:, 2] > box[t, 2, 2], pore[:, 2] - box[t, 2, 2], pore[:, 2]) _, bins = np.histogram(pore[:, 2], bins=npoints) # bin z-positions section_indices = np.digitize(pore[:, 2], bins) # list that tells which bin each atom belongs to bin_centers[t, p, :] = [(bins[i] + bins[i + 1])/2 for i in range(npoints)] for l in range(1, npoints + 1): atom_indices = np.where(section_indices == l)[0] before = pore[atom_indices[0], :] # choose the first atom as a reference shift = transform.translate(pore[atom_indices, :], before, center[t, :]) # shift everything to towards the center for i in range(shift.shape[0]): # check if the points are within the bounds of the unitcell while not bounds[t].contains_point(shift[i, :2]): shift[i, :] = put_in_box(shift[i, :], box[t, 0, 0], box[t, 1, 1], m[t], angle[t]) # if its not in the unitcell, shift it so it is c = [np.mean(shift, axis=0)] centers[t, p, l - 1, :] = transform.translate(c, center[t, :], before) # move everything back to where it was while not bounds[t].contains_point(centers[t, p, l - 1, :]): # make sure everything is in the box again centers[t, p, l - 1, :] = put_in_box(centers[t, p, l - 1, :], box[t, 0, 0], box[t, 1, 1], m[t], angle[t]) if single_frame: return centers[0, ...] # doesn't return bin center yet else: if save: file_rw.save_object((centers, bin_centers), savename) return centers, bin_centers def center_of_mass(pos, mass_atoms): """ Calculate center of mass of residues over a trajectory :param pos: xyz coordinates of atoms :param mass_atoms : mass of atoms in order they appear in pos :type pos: np.array (nframes, natoms, 3) :type mass_atoms: list :return: center of mass of each residue at each frame """ nframes = pos.shape[0] natoms = len(mass_atoms) com = np.zeros([nframes, pos.shape[1] // natoms, 3]) # track the center of mass of each residue for f in range(nframes): for i in range(com.shape[1]): w = (pos[f, i * natoms:(i + 1) * natoms, :].T * mass_atoms).T # weight each atom in the residue by its mass com[f, i, :] = np.sum(w, axis=0) / sum(mass_atoms) # sum the coordinates and divide by the mass of the residue return com def residue_center_of_mass(t, res): """ Calculate the center of mass versus time of a residue in an MD trajectory :param t: mdtraj trajectory object :param res: name of residue to track :type t: object :type res: str :return: center of mass of residue versus time """ residue = topology.Residue(res) # get resiude attributes ndx = [a.index for a in t.topology.atoms if a.residue.name == res] # index of all residue atoms names = [a.name for a in t.topology.atoms if a.residue.name == res][:residue.natoms] # names of atoms in one residue mass = [residue.mass[x] for x in names] # mass of atoms in order that they appear in file print('Calculating center of mass trajectories of residue %s' % residue.name) return center_of_mass(t.xyz[:, ndx, :], mass) # determine center of mass trajectories def compdensity(coord, pore_centers, box, cut=1.5, nbins=50, spline=False): """ Measure the density of a component as a function of the distance from the pore centers. :param coord: the coordinates of the component(s) which you want a radial distribution of at each frame :param pore_centers: a numpy array of the locations of each pore center at each trajectory frame :param cut: cutoff distance for distance calculations. Will not count anything further than cut from the pore center :param nbins: number of bins in r direction :param spline: calculate RDF with respect to spline :type coord: numpy.ndarray :type pore_centers: numpy.ndarray :type cut: float :type nbins: int :type spline: bool :return: Radial distance from pore center r, and the density of a species, whose positions are defined by `coordinates`, as a function the distance from the pore center. """ nT = coord.shape[0] pores = pore_centers.shape[1] density = np.zeros([nT, nbins]) # number / nm^3 for t in tqdm.tqdm(range(nT), unit=' Frames'): for p in range(pores): if spline: distances = radial_distance_spline(pore_centers[t, p, ...], coord[t, ...], box[t, ...]) else: distances = np.linalg.norm(coord[t, :, :2] - pore_centers[t, p, :], axis=1) hist, bin_edges = np.histogram(distances, bins=nbins, range=(0, cut)) density[t, :] += hist density[t, :] /= (pores * box[t, 2, 2]) # normalize by z-dimension # normalize based on volume of anulus where bin is located (just need to divide by area since height done above) r = np.zeros([nbins]) for i in range(nbins): density[:, i] /= (np.pi * (bin_edges[i + 1] ** 2 - bin_edges[i] ** 2)) r[i] = (bin_edges[i + 1] + bin_edges[i]) / 2 # center of bins return r, density def distance_from_pore_center(coord, pore_centers, box, spline=False): """ Measure the density of a component as a function of the distance from the pore centers. :param coord: the coordinates of the component(s) which you want a radial distribution of at each frame :param pore_centers: a numpy array of the locations of each pore center at each trajectory frame :param cut: cutoff distance for distance calculations. Will not count anything further than cut from the pore center :param :type coord: numpy.ndarray :type pore_centers: numpy.ndarray :type cut: float :return: Radial distance of each individual solute/component, defined by coords, as a function of time """ nT = coord.shape[0] pores = pore_centers.shape[1] nsolute = coord.shape[1] r_distances = np.zeros([nT, nsolute]) for t in tqdm.tqdm(range(nT), unit=' Frames'): rd = np.zeros([nsolute, pores]) for p in range(pores): if spline: rd[:, p] = radial_distance_spline(pore_centers[t, p, ...], coord[t, ...], box[t, ...]) else: rd[:, p] = np.linalg.norm(coord[t, :, :2] - pore_centers[t, p, :], axis=1) # Move the minimum solute--pore-center distance for each solute to the first index of rd # This removes any assumption that there is a constant number of solutes per pore and that the solute # stays in the same pore. for i, r in enumerate(rd): # there is probably a vectorized way to do this with argsort rd[i, :] = r[np.argsort(r)] r_distances[t, :] = rd[:, 0] return r_distances def radial_distance_spline(spline, com, box): """ Calculate radial distance from pore center based on distance from center of mass to closest z point in spline :param spline: coordinates of spline for a single pore and frame :param com: atomic center of mass z-coordinates :param zbox: z box dimension (nm) :type spline: np.ndarray [npts_spline, 3] :type com: np.ndarray [n_com, 3] :type zbox: float :return: array of distances from pore center """ edges = np.zeros([spline.shape[0] + 1]) edges[1:-1] = ((spline[1:, 2] - spline[:-1, 2]) / 2) + spline[:-1, 2] edges[-1] = box[2, 2] com = wrap_box(com, box) # while np.min(com[:, 2]) < 0 or np.max(com[:, 2]) > zbox: # because cross-linked configurations can extend very far up and down # com[:, 2] = np.where(com[:, 2] < 0, com[:, 2] + zbox, com[:, 2]) # com[:, 2] = np.where(com[:, 2] > zbox, com[:, 2] - zbox, com[:, 2]) zbins = np.digitize(com[:, 2], edges) # handle niche case where coordinate lies exactly on the upper or lower bound zbins = np.where(zbins == 0, zbins + 1, zbins) zbins = np.where(zbins == edges.size, zbins - 1, zbins) return np.linalg.norm(com[:, :2] - spline[zbins - 1, :2], axis=1) def minimum_image_distance(dist, box): """ Calculate minimum image distances from a vector of distances. This assumes a monoclinic unit cell where the x box vector is fixed along the x-axis, the z-box vector is perpendicular to the xy plane, and the y-box vector makes an angle, theta, with the x-axis. :param d: a vector of distances (n, 3) where n is number of points :param box: box vectors meant to enclose d, mdtraj format: (3, 3) :return: """ x_box = box[0, 0] # length of x-box vector y_box = box[1, 1] # perpendicular distance from x-axis to top of box in y-direction z_box = box[2, 2] # length of z-box vector d = np.copy(dist) angle = np.arcsin(y_box / x_box) # angle between y-box vector and x-box vector in radians # check x coordinates while np.max(np.abs(d[:, 0])) > 0.5*x_box: # iterate in case subtracting/adding box vector length once isn't enough d[:, 0] = np.where(d[:, 0] > 0.5*x_box, d[:, 0] - x_box, d[:, 0]) d[:, 0] = np.where(d[:, 0] < -0.5*x_box, d[:, 0] + x_box, d[:, 0]) # check y coordinates while np.amax(
np.abs(d[:, 1])
numpy.abs
from os.path import expanduser, join from os import makedirs import pkg_resources import pandas as pd import numpy as np # import cobra as cb #import cplex as cp import matplotlib.pyplot as plt import seaborn as sb from cycler import cycler import time def dfba_oldschool(x0,y0,T,dt,model_li,alphas_li,V,infl,ddict): '''imliments dynamic fba for a community using the algorithm from <NAME> Palsson give x0 and model_li as lists, ddict as dictionary of dilutions,infl as inflow dict ''' t1 = time.time() mess = "Complete" num_sp = len(x0) if len(model_li) != num_sp: print('missing a model or two...') return None t = np.array([0]) x = np.array([x0]) x_dict = dict(zip([mod.name for mod in model_li],x0)) xkys = list(x_dict.keys()) ykys = list(y0.keys()) y_out = np.array([[y0[yk] for yk in ykys]]) y = y0.copy() media_keys = dict() rev_med_keys = dict() for mod in model_li: media_keys[mod.name] = dict([(ky,mod.reactions.get_by_id(ky).name) for ky in list(mod.medium.keys())]) rev_med_keys[mod.name] = dict([(mod.reactions.get_by_id(ky).name,ky) for ky in list(mod.medium.keys())]) initime = time.time() - t1 reoptime = 0 optcount = 0 #Reconcile the medium files with the exchanged metabolites - for each model we need a dict of #metabolites:reaction. Maybe pass that in with the initial conditions? while t[-1]<T: #update the media and optimize optimal_growths = dict() optimal_fluxes = dict() if any(np.array(list(y.values())) < 0): print('dfba_oldschool: overdepleated resource') mess = "Failed" break t3 = time.time() for mod in model_li: #set the media based on available metabolites tmp_med = mod.medium kydict = media_keys[mod.name] al_dict = alphas_li[mod.name]#need alphas_li to be a dict of dicts with keys model name and rxn_id for ky in tmp_med: tmp_med[ky] = al_dict[ky]*y[kydict[ky]]/V mod.medium = tmp_med #optimize modsol = mod.optimize() optimal_growths[mod.name] = modsol.objective_value optimal_fluxes[mod.name] = modsol.fluxes reoptime += time.time() - t3 optcount += 1 tmp_xd = {} for sp in x_dict: tmp_xd[sp] = x_dict[sp]*np.exp(dt*(optimal_growths[sp] - ddict[sp])) y_new = y for yi in y_new: yn = y_new[yi] for j in model_li: jnm = j.name if yi in rev_med_keys[jnm].keys(): if optimal_growths[jnm]-ddict[jnm] != 0: yn += (-optimal_fluxes[jnm].loc[rev_med_keys[jnm][yi]]/(optimal_growths[jnm]-ddict[jnm]))*x_dict[jnm]*(1-np.exp(dt*(optimal_growths[sp]-ddict[sp]))) else: yn += -dt*optimal_fluxes[jnm].loc[rev_med_keys[jnm][yi]]*x_dict[jnm] y_new[yi] = yn + infl[yi]*dt x_dict = tmp_xd t = np.append(t,[t[-1]+dt]) x = np.append(x,[[x_dict[xk] for xk in xkys]],axis=0) y_out = np.append(y_out,[[y_new[yk] for yk in ykys]],axis=0) y = y_new t2 = time.time() - t1 minuts,sec = divmod(t2,60) print("End t = ",t[-1]) print("-----") print("-----") print("dfba_oldschool: ", mess, " in ",int(minuts)," minutes, ",sec," seconds.") print("dfba_oldschool: Initialization was ", 100*initime/t2, "% of computational time.") print("dfba_oldschool: Reinitialization was ", 100*reoptime/t2, "% of computational time.") print("dfba_oldschool: Required ",optcount," reinitializations.") x_asdict = dict([(xkys[i],x[:,i]) for i in range(len(xkys))]) y_asdict = dict([(ykys[i],y_out[:,i]) for i in range(len(ykys))]) return x_asdict,y_asdict,t def optimize_noncobra(toy,available): G1,G2,obj,inner_bounds,als,lwex = toy intk = als*available for i in range(len(lwex)): if lwex[i] > intk[i]: lwex[i] = intk[i] # print(lwex,intk) MatrixA = np.concatenate([G1,G1,G2],axis = 0) growth = cp.Cplex() growth.set_results_stream(None) growth.set_warning_stream(None) sparms = ['w'+str(j) for j in range(MatrixA.shape[1])] s_lbs = np.array(inner_bounds[0]).astype(float) s_ubs = np.array(inner_bounds[1]).astype(float) growth.variables.add(obj = obj, lb = s_lbs, ub = s_ubs, names = sparms) growth.objective.set_sense(growth.objective.sense.maximize) g1p2 = [list(g.astype(float)) for g in MatrixA] g1p2_wi = [[sparms, g] for g in g1p2] bds_vec = np.concatenate([lwex,intk,np.zeros(len(G2))]) bdtypes = 'G'*len(G1)+'L'*len(G1)+'E'*len(G2) growth.linear_constraints.add(lin_expr = g1p2_wi, senses = bdtypes, rhs = bds_vec) growth.solve() grate = growth.solution.get_objective_value() wi = growth.solution.get_values() ydots = np.dot(G1,wi) return [grate,ydots] def dfba_oldschool_notcobra(x0,y0,T,dt,model_li,infl,dlist,V = 1): '''impliments dynamic fba for a community using the algorithm from Varma and Palsson give x0 and model_li as lists model_li should be lists of lists [G1,G2,obj,inner_bounds,als,exchng_lower_bounds] ''' num_sp = len(x0) if len(model_li) != num_sp: print('missing a model or two...') return None t = np.array([0]) x = np.array([x0]) y = np.array([y0]) while t[-1]<T: optimal_growths = np.empty(len(x[-1])) optimal_fluxes = np.empty((len(x[-1]),len(y[-1]))) if any(y[-1] < 0): print('overdepleated resource') break j = 0 for mod in model_li: # print(mod[5]) gr,fl = optimize_noncobra(mod,y[-1]) optimal_growths[j] = gr optimal_fluxes[j] = fl j+=1 x_new = x[-1]*np.exp(dt*(optimal_growths-np.array(dlist))) mult_vect = dt*x[-1] for i in range(len(x[-1])): if optimal_growths[i]-dlist[i] != 0: mult_vect[i] = x[-1][i]/(optimal_growths[i]-dlist[i])*(1-np.exp(dt*(optimal_growths[i]-dlist[i]))) y_new = y[-1] + np.dot(optimal_fluxes.T,mult_vect) + infl*dt t = np.append(t,[t[-1]+dt]) x =
np.append(x,[x_new],axis=0)
numpy.append
# -*- coding:Utf-8 -*- import pylayers.util.geomutil as geu import pylayers.util.plotutil as plu import shapely.geometry as shg import numpy as np from numpy.testing import (TestCase, assert_almost_equal, assert_raises, assert_equal, assert_, run_module_suite) class Tesgeu(TestCase): def test_onb(self): print("testing geomutil.onb") A = np.array([[0,0,0,0],[1,2,3,4],[0,0,0,0]]) B = np.array([[0,0,0,0],[1,2,3,4],[10,10,10,10]]) v = np.array([[1,1,1,1],[0,0,0,0],[0,0,0,0]]) T = geu.onb(A, B,v) print( np.shape(T)) print( T[:,0,:]) print( T[:,1,:]) print( T[:,2,:]) assert_equal(np.shape(T),(4,3,3)) def test_ispoint(self): print("testing geomutil.ispoint") tpts= (np.array([[1,2,3],[5,6,7]]),np.array([-1,-2,-3])) pt = np.array([[1],[5]]) k = geu.ispoint(tpts,pt) assert_equal(k,-1) pt = np.array([[2],[6]]) k = geu.ispoint(tpts,pt) assert_equal(k,-2) pt = np.array([[3],[7]]) k = geu.ispoint(tpts,pt) assert_equal(k,-3) pt = np.array([[13],[7]]) k = geu.ispoint(tpts,pt) assert_equal(k,0) def test_ptconvex2(self): print("testing geomutil.ptconvex2") points = shg.MultiPoint([(0, 0), (0, 1), (3.2, 1), (3.2, 0.7), (0.4, 0.7), (0.4, 0)]) polyg = geu.Polygon(points) cvex, ccave = polyg.ptconvex2() assert_equal(cvex,[-5] ) assert_equal(ccave,[-1, -2, -3, -4, -6] ) points = shg.MultiPoint([(0, 0), (0, 1), (-3.2, 1), (-3.2, 0.7), (-0.4, 0.7), (-0.4, 0)]) polyg = geu.Polygon(points) cvex, ccave = polyg.ptconvex2() assert_equal(cvex,[-5] ) assert_equal(ccave,[-1, -2, -3, -4, -6] ) def test_is_aligned(self): print("testing is_aligned") p1 = np.array([0,0]) p2 = np.array([1,0]) p3 = np.array([3,0]) p4 = np.array([4,0]) p5 = np.array([3,0.1]) p6 = np.array([4,0.1]) p7 = np.array([4,0.001]) b1 = geu.is_aligned4(p1,p2,p3,p4,tol=1e-7) b2 = geu.is_aligned4(p1,p2,p5,p6,tol=1e-7) b3 = geu.is_aligned4(p1,p2,p3,p7,tol=1e-1) b4 = geu.is_aligned4(p1,p2,p3,p7,tol=1e-4) assert b1 assert not b2 assert b3 assert not b4 def test_MATP(self): print("test_MATP") vl = np.array([0,0,1]) # beam in z direction pl = np.array([1,0,0]) # polar along x phi = np.pi/2 # beam in y direction tilt = 0 # no tilt M = geu.MATP(vl, pl, phi, tilt,'V') vg = np.dot(M, vl) pg = np.dot(M, pl) np.testing.assert_almost_equal(vg,[0,1,0]) # pointing in y np.testing.assert_almost_equal(pg,[0,0,1]) # polar along z M = geu.MATP(vl, pl, phi, tilt,'H') vg = np.dot(M, vl) pg = np.dot(M, pl) np.testing.assert_almost_equal(vg,[0,1,0]) # pointing in y np.testing.assert_almost_equal(pg,[-1,0,0]) # polar along x def test_Bthph(self): th = np.array([np.pi/2.]) ph = np.array([np.pi/4.]) M = np.array([[0,-1,0],[1,0,0],[0,0,1]]) # rotation -np.pi/2 along z thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg, np.pi/2.) np.testing.assert_almost_equal(phg,-np.pi/4.) th = np.array([np.pi/2.]) ph = np.array([np.pi/4.]) M= np.array([[1,0,0],[0,0,-1],[0,1,0]])# rotation -np.pi/2 along x thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg,3*np.pi/4.) np.testing.assert_almost_equal(phg,0.) th = np.array([np.pi/2.]) ph = np.array([np.pi/4.]) M=np.array([[1,0,0],[0,0,1],[0,-1,0]])# rotation np.pi/2 along x thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg, np.pi/4.) np.testing.assert_almost_equal(phg,0.) th = np.array([np.pi/4]) ph = np.array([0.]) M=np.array([[1,0,0],[0,0,1],[0,-1,0]]) # rotation np.pi/2 along x thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg, np.pi/2.) np.testing.assert_almost_equal(phg,-np.pi/4.) M=np.array([[1,0,0],[0,0,-1],[0,1,0]]) # rotation -np.pi/2 along x thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg, np.pi/2.) np.testing.assert_almost_equal(phg, np.pi/4.) M=np.eye(3) thg, phg = geu.Bthph(th, ph, M) np.testing.assert_almost_equal(thg, th)
np.testing.assert_almost_equal(phg, ph)
numpy.testing.assert_almost_equal
import pandas as pd import seaborn as sns import json import matplotlib.pyplot as plt import sys from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import model_selection from sklearn.exceptions import UndefinedMetricWarning import warnings import numpy as np import scipy as sp class CPUGPUComparison(): def __init__( self ): print('CPU GPU SpTRSV performance comparison\n') def DrawComparisonTable(self, filename): perf_dataset = pd.read_csv(filename) winner_df = perf_dataset.idxmin(axis=1) winner_counts = winner_df.value_counts() norm_winner_counts = winner_df.value_counts(normalize=True)*100 print(" ----------------------------------------------------------------------------------------------------") print(" |%15s%35s%32s%15s |" % ("Architecture |","SpTRSV implementation |","Winner for # of matrices |",\ "Percentage")) print(" ----------------------------------------------------------------------------------------------------") print(" |%15s%35s%30d%s%13.2f %% |" % ("CPU |","MKL(seq) |", winner_counts['mkl_seq']," |",norm_winner_counts['mkl_seq'])) print(" |%15s%35s%30d%s%13.2f %% |" % ("|","MKL(par) |", winner_counts['mkl_par']," |",norm_winner_counts['mkl_par'])) print(" ----------------------------------------------------------------------------------------------------") print(" |%15s%35s%30d%s%13.2f %% |" % ("GPU |","cuSPARSE(v1) |", winner_counts['cusparse_v1']," |",norm_winner_counts['cusparse_v1'])) print(" |%15s%35s%30d%s%13.2f %% |" % ("|","cuSPARSE(v2)(level-sch.) |", winner_counts['cusparse_v2_lvl']," |",norm_winner_counts['cusparse_v2_lvl'])) print(" |%15s%35s%30d%s%13.2f %% |" % ("|","cuSPARSE(v2)(no level sch.) |", winner_counts['cusparse_v2_nolvl']," |",norm_winner_counts['cusparse_v2_nolvl'])) print(" |%15s%35s%30d%s%13.2f %% |" % ("|","Sync-Free |", winner_counts['syncfree']," |",norm_winner_counts['syncfree'])) print(" ----------------------------------------------------------------------------------------------------") def DrawStatsTable(self, filename): stats_dataset = pd.read_csv(filename) ds_median = stats_dataset.median() ds_min = stats_dataset.min() ds_max = stats_dataset.max() min_rows = ds_min['rows']/1000 median_rows = ds_median['rows']/1000 max_rows = ds_max['rows']/1000000 min_nnzs = ds_min['nnzs']/1000 median_nnzs = ds_median['nnzs']/1000 max_nnzs = ds_max['nnzs']/1000000 print(' ---------------------------------------------------------------------') print(" |%20s%16s%16s%16s"%(" |","Minimum |", "Median |","Maximum |")) print(' ---------------------------------------------------------------------') print(" |%20s%13.2fK%s%13.2fK%s%13.2fM%s"%("Number of rows |",min_rows," |", median_rows," |",max_rows, " |")) print(' ---------------------------------------------------------------------') print(" |%20s%13.3fK%s%13.3fK%s%13.3fM%s"%("Number of nonzeros |",min_nnzs, " |",median_nnzs, " |", max_nnzs," |")) print(' ---------------------------------------------------------------------') def DrawFigure(self, filename): perf_data = pd.read_csv(filename) perf_data.to_json("temp.json", orient='records') with open("temp.json", "r") as filename: V100_Gold_dataset_json = json.load(filename) V100_Gold_json_formatted = [] for i in range(0, 37): V100_Gold_json_formatted.append({ "Platform 1": V100_Gold_dataset_json[i]["Platform"], "Matrix 1": V100_Gold_dataset_json[i]["Matrix ID"], "Execution Time 1": V100_Gold_dataset_json[i]["Execution Time"], "Degree of Parallelism 1":V100_Gold_dataset_json[i]["Degree of Parallelism"], "Winner 1":V100_Gold_dataset_json[i]["Winner"], "Platform 2": V100_Gold_dataset_json[i+37]["Platform"], "Matrix 2": V100_Gold_dataset_json[i+37]["Matrix ID"], "Execution Time 2": V100_Gold_dataset_json[i+37]["Execution Time"], "Degree of Parallelism 2":V100_Gold_dataset_json[i]["Degree of Parallelism"], "Winner 2": V100_Gold_dataset_json[i+37]["Winner"]}) V100_Gold_json_formatted = sorted(V100_Gold_json_formatted, key = lambda i: (i['Winner 1'], i['Degree of Parallelism 1'])) V100_Gold_json_sorted = [] V100_Gold_Matrix = [] for i in range(0, 37): V100_Gold_json_sorted.append({ "Platform": V100_Gold_json_formatted[i]["Platform 1"], "Matrix ID": V100_Gold_json_formatted[i]["Matrix 1"], "Degree of Parallelism": V100_Gold_json_formatted[i]["Degree of Parallelism 1"], "Execution Time": V100_Gold_json_formatted[i]["Execution Time 1"], }) V100_Gold_Matrix.append(V100_Gold_json_formatted[i]["Matrix 1"]) for i in range(0, 37): V100_Gold_json_sorted.append({ "Platform": V100_Gold_json_formatted[i]["Platform 2"], "Matrix ID": V100_Gold_json_formatted[i]["Matrix 2"], "Degree of Parallelism": V100_Gold_json_formatted[i]["Degree of Parallelism 2"], "Execution Time": V100_Gold_json_formatted[i]["Execution Time 2"], }) with open("temp2.json", "w") as file2: json.dump(V100_Gold_json_sorted, file2) V100_Gold = pd.read_json('temp2.json', orient='records') plt.figure(figsize=(15,5)) p1 = sns.barplot(x="Matrix ID",y="Execution Time",hue="Platform", data=V100_Gold,palette = "magma", edgecolor = 'w', order=V100_Gold_Matrix) sns.set(font_scale = 1.3) sns.set_style("white") p1.set_yscale("log") p1.set_xticklabels(p1.get_xticklabels(), rotation=90) ax1 = p1.axes ax1.set(xticklabels=V100_Gold["Degree of Parallelism"]) ax1.axvline(12.5, ls='--', lw=1.8) ax1.text(1.0, 200, "GPU winners: 24") ax1.text(1.0, 120, "CPU winners: 13") p1.set_xlabel("Matrix degree of parallelism (DoP)") p1.set_ylabel("Lower triangular solve time (msec)") legend = p1.legend() legend.texts[0].set_text("NVIDIA V100") legend.texts[1].set_text("Intel Gold") plt.legend(loc='upper right') plt.setp(ax1.xaxis.get_majorticklabels(), ha='center') fig1 = p1.get_figure() fig1.set_rasterized(True) fig1.savefig('./datasets/figure2.eps', bbox_inches='tight',rasterized=True) print("Figure 2 saved in datasets directory as figure2.eps") plt.show() class FeatureSelection(): def __init__( self ): print('Feature Selection\n') def PrintAllFeatures(self, filename): features = pd.read_csv(filename) for col in features.columns: print(col) def FeatureRanking(self, filename): features_data = pd.read_csv(filename) features = features_data.drop(['winner'], axis = 1) target = features_data['winner'] features=features[:-2] target=target[:-2] KBestFeatures = SelectKBest(score_func=chi2, k=30) fit = KBestFeatures.fit(features, target) rank = [i+1 for i in range(30)] rank_dict = {'Rank':rank} rank_df = pd.DataFrame(data=rank_dict) feature_dict = {'Feature':features.columns, 'Score':fit.scores_} feature_df = pd.DataFrame(data=feature_dict) desc = ['Number of rows', 'Number of non-zeros','Number of levels', \ 'Maximum row length count', 'Maximum column length count', "Minimum column length count", \ 'Minimum row length count', 'Maximum non-zeros per level row-wise', \ 'Maximum non-zeros per level column-wise', 'Maximum row length', \ 'Maximum column length', 'Mean row-length',\ 'Maximum rows per level','Median rows per level', \ 'Median row length', 'Median column length', \ 'Mean non-zeros per level row-wise', 'Standard deviation rows per level', \ 'Standard deviation non-zeros per level row-wise', 'Standard deviation rows length', \ 'Standard deviation column length','Mean rows per level', 'Mean max column length per level', \ 'Mean mean column length per level', 'Mean std. deviation column length per level', \ 'Mean maximum row length per level','Mean standard deviation row length per level',\ 'Mean mean row length per level','Mean minimum row length per level',\ 'Mean median row length per level'] feature_df['Description'] = desc feature_df_sorted = feature_df.nlargest(30, 'Score') feature_df_sorted.reset_index(drop=True,inplace=True) feature_df_sorted.index += 1 print(feature_df_sorted.to_string(index=True)) class Prediction(): def __init__( self ): print('Prediction\n') def CrossValidation(self, filename, mode): training_data = pd.read_csv(filename) if mode == 1: # Traning set for 10 features X = training_data.drop(['min_rl_cnt','mean_rpl','median_rpl','max_cl','lvls','std_rpl', \ 'mean_max_cl_pl','mean_mean_cl_pl','max_rl','mean_std_cl_pl','mean_max_rl_pl',\ 'std_cl','mean_std_rl_pl','mean_mean_rl_pl','mean_median_rl_pl','mean_min_rl_pl',\ 'mean_rl','median_rl','median_cl','std_rl','mkl_seq','mkl_par','cusparse_v1',\ 'cusparse_v2_lvl','cusparse_v2_nolvl','syncfree','winner','CPU winner','GPU winner',\ '2nd','3rd','4th','5th','6th'], axis=1) else: # Traning set for 30 features X = training_data.drop(['mkl_seq','mkl_par','cusparse_v1','cusparse_v2_lvl', \ 'cusparse_v2_nolvl','syncfree','winner','CPU winner','GPU winner','2nd',\ '3rd','4th','5th','6th'], axis=1) y = training_data['winner'] sc = StandardScaler() X_scaled = sc.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.25, random_state=44) rfc_algo_selection = RandomForestClassifier(n_estimators=300) rfc_algo_selection.fit(X_train, y_train) pred_rfc_algo_selection = rfc_algo_selection.predict(X_test) seed = 10 cv_results = [] accuracy = 'accuracy' precision = 'precision_weighted' recall = 'recall_weighted' f1_score = 'f1_weighted' test_precision = 'test_precision_weighted' test_recall = 'test_recall_weighted' test_f1 = 'test_f1_weighted' test_accuracy = 'test_accuracy' warnings.filterwarnings("ignore", category=UndefinedMetricWarning) scoring = [accuracy, precision, recall,f1_score] kfold = model_selection.KFold(n_splits=10, random_state=seed) with warnings.catch_warnings(): scores = model_selection.cross_validate(rfc_algo_selection, X_scaled, y, cv=kfold,scoring=scoring) cv_results.append(scores[test_accuracy]) cv_results.append(scores[test_precision]) cv_results.append(scores[test_recall]) cv_results.append(scores[test_f1]) print('Mean accuracy: %0.1f %%' % (cv_results[0].mean()*100.0)) print('Mean precision: %0.1f %%' % (cv_results[1].mean()*100.0)) print('Mean recall: %0.1f %%' % (cv_results[2].mean()*100.0)) print('Mean f1-score: %0.1f %%' % (cv_results[3].mean()*100.0)) print('Median accuracy: %0.1f %%' % (np.median(cv_results[0])*100.0)) print('Median precision: %0.1f %%' % (np.median(cv_results[1])*100.0)) print('Median recall: %0.1f %%' % (np.median(cv_results[2])*100.0)) print('Median f1-score: %0.1f %%\n' % (np.median(cv_results[3])*100.0)) labels = ['Accuracy', 'Precision', 'Recall', 'F1-score'] ax1 = sns.boxplot(y=cv_results,x=labels, showmeans=True, fliersize=1,meanprops={"marker":"D","markerfacecolor":"yellow", "markeredgecolor":"none"}) sns.set(font_scale=1.3) sns.set_style("white") vals = ax1.get_yticks() ax1.set_yticklabels(['{:,.0%}'.format(x) for x in vals]) myfigure = ax1.get_figure() if mode == 1: myfigure.savefig('./datasets/figure6.png',bbox_inches='tight') print("Figure 8 saved in datasets as figure8.eps") print("Note: Statistics can slightly vary from Figure 8 and from run-to-run") else: myfigure.savefig('./datasets/figure7.eps',bbox_inches='tight') myfigure.show() print("Figure 7 saved in datasets as figure7.eps") print("Note: Statistics can slightly vary from Figure 7 and from run-to-run") plt.show() class Performance(): def __init__( self ): print('Performance Results\n') def Speedup(self, filename): training_data = pd.read_csv(filename) X = training_data.drop(['mkl_seq','mkl_par','cusparse_v1','cusparse_v2_lvl', \ 'cusparse_v2_nolvl','syncfree','winner','CPU winner','GPU winner','2nd',\ '3rd','4th','5th','6th'], axis=1) y = training_data['winner'] sc = StandardScaler() X_scaled = sc.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.25, random_state=44) rfc_algo_selection = RandomForestClassifier(n_estimators=300) rfc_algo_selection.fit(X_train, y_train) pred_rfc_algo_selection = rfc_algo_selection.predict(X_test) seed = 10 precision = 'precision_weighted' recall = 'recall_weighted' f1_score = 'f1_weighted' scoring = [precision, recall,f1_score] kfold = model_selection.KFold(n_splits=10) cross_validate_pred = model_selection.cross_val_predict(rfc_algo_selection, X_scaled, y, cv=kfold) MKL_seq = training_data['mkl_seq'] MKL_par = training_data['mkl_par'] cus1 = training_data['cusparse_v1'] cus2_lvl = training_data['cusparse_v2_lvl'] cus2_nolvl = training_data['cusparse_v2_nolvl'] syncfree = training_data['syncfree'] algo_labels = {0:'MKL(seq)', 1:'MKL(par)', 2:'cuSPARSE(v1)', \ 3:'cuSPARSE(v2)(level-sch.)',4:'cuSPARSE(v2)(no level-sch.)',5:'Sync-Free'} Gain_vs_MKL_seq = [] Gain_vs_MKL_par = [] Gain_vs_cus1 = [] Gain_vs_cus2_lvl = [] Gain_vs_cus2_nolvl = [] Gain_vs_syncfree = [] i = 0 for val in cross_validate_pred: if val == 1: predicted_time = MKL_seq[i] if val == 2: predicted_time = MKL_par[i] if val == 3: predicted_time = cus1[i] if val == 4: predicted_time = cus2_lvl[i] if val == 5: predicted_time = cus2_nolvl[i] if val == 6: predicted_time = syncfree[i] Gain_vs_MKL_seq.append(MKL_seq[i]/predicted_time) Gain_vs_MKL_par.append(MKL_par[i]/predicted_time) Gain_vs_cus1.append(cus1[i]/predicted_time) Gain_vs_cus2_lvl.append(cus2_lvl[i]/predicted_time) Gain_vs_cus2_nolvl.append(cus2_nolvl[i]/predicted_time) Gain_vs_syncfree.append(syncfree[i]/predicted_time) i = i + 1 predicted_speedup=[] predicted_speedup.append(Gain_vs_MKL_seq) predicted_speedup.append(Gain_vs_MKL_par) predicted_speedup.append(Gain_vs_cus1) predicted_speedup.append(Gain_vs_cus2_lvl) predicted_speedup.append(Gain_vs_cus2_nolvl) predicted_speedup.append(Gain_vs_syncfree) speedup_g2 = [] speedup_l1 = [] counter = 0 counter_l = 0 counter_l95 = 0 for i in range(6): for x in predicted_speedup[i]: if x >= 1: counter = counter + 1 if x < 1: counter_l = counter_l + 1 if x < 0.95: counter_l95 = counter_l95 + 1 speedup_g2.append(counter/998*100) speedup_l1.append(counter_l/998*100) counter = 0 counter_l = 0 counter_l95 = 0 sns.set(font_scale=1.0) sns.set_style("white") fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(10, 4.5)) fig.set_rasterized(True) k = 0 for i in range(2): for j in range(3): #my_bins = [0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,int(np.max(predicted_speedup[k]))] max_ps = np.max(predicted_speedup[k]) my_bins = np.arange(0, 75) clrs=['#CB4335' if (x < 1) else '#2874A6' for x in my_bins] plot = sns.distplot(predicted_speedup[k], \ bins=my_bins, ax=ax[i][j],kde=False) sns.color_palette("husl", 8) ax1 = plot.axes for rec, clr in zip(ax1.patches, clrs): rec.set_color(clr) props = dict(boxstyle='round', facecolor='none', alpha=0.5) ax1.text(0.55, 0.70, ">=1: %.1f%%"%(speedup_g2[k]), transform=ax1.transAxes, fontsize=12, verticalalignment='top', bbox=props) ax1.text(0.55, 0.85, "Mean: %.1f"%(sp.stats.hmean(predicted_speedup[k])), transform=ax1.transAxes, fontsize=12, verticalalignment='top', bbox=props) z_critical = sp.stats.norm.ppf(q = 0.95) # Get the z-critical value* pop_stdev = np.std(predicted_speedup[k]) hmean = sp.stats.hmean(predicted_speedup[k]) mean_m_x = [(hmean-x) for x in predicted_speedup] mean_m_x = [np.sqrt(x*x) for x in mean_m_x] sample_size = len(predicted_speedup[k]) h_std = np.sum(mean_m_x)/sample_size margin_of_error = z_critical * (pop_stdev/np.sqrt(sample_size)) plot.set_yscale("log") #if k >= 3: plot.set_xlabel("Speedup") plot.set_title(algo_labels[k],loc="left") if k == 0 or k == 3: plot.set_ylabel('Number of matrices') k = k + 1 plt.tight_layout() warnings.filterwarnings("ignore") with warnings.catch_warnings(): fig.savefig('./datasets/figure9.pdf',bbox_inches='tight',rasterized=True) print("Figure 9 saved in datasets as figure9.eps") print("Note: Statistics can slightly vary from Figure 9 and from run-to-run") #plt.show() def Overheads(self, filename_training, filename_overhead): training_data=pd.read_csv(filename_training) overhead_data=pd.read_csv(filename_overhead) FE_wo_ilu = overhead_data['FE_oh_wo'] # Feature extraction (FE) overhead without ILU factorization time included FE_w_ilu = overhead_data['FE_oh_w'] # Feature extraction (FE) ovheread with ILU factorization time included m=overhead_data['m'] # Number of rows MKL_seq = training_data['mkl_seq'] MKL_par = training_data['mkl_par'] cus1 = training_data['cusparse_v1'] cus2_lvl = training_data['cusparse_v2_lvl'] cus2_nolvl = training_data['cusparse_v2_nolvl'] syncfree = training_data['syncfree'] seed = 250 precision = 'precision_weighted' recall = 'recall_weighted' f1_score = 'f1_weighted' scoring = [precision, recall,f1_score] X = training_data.drop(['mkl_seq','mkl_par','cusparse_v1','cusparse_v2_lvl','cusparse_v2_nolvl','syncfree','winner','CPU winner','GPU winner','2nd','3rd','4th','5th','6th'], axis=1) y = training_data['winner'] sc = StandardScaler() X_scaled = sc.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.25, random_state=44) rfc_algo_selection = RandomForestClassifier(n_estimators=300) rfc_algo_selection.fit(X_train, y_train) kfold = model_selection.KFold(n_splits=10) cross_validate_pred = model_selection.cross_val_predict(rfc_algo_selection, X_scaled, y, cv=kfold) L_calls_vs_FE_wo_100K = [] # FE overhead in terms of lower triangular solve iterations without ILU factorization time included for matrices upto 100K rows L_calls_vs_FE_w_100K = [] # FE overhead in terms of lower triangular solve iterations with ILU factorization time included for matrices upto 100K rows L_calls_vs_FE_wo_1000K = [] # FE overhead in terms of lower triangular solve iterations without ILU factorization time included for matrices from 100K-1000K rows L_calls_vs_FE_w_1000K = [] # FE overhead in terms of lower triangular solve iterations with ILU factorization time included for matrices from 100K-1000K rows L_calls_vs_FE_wo_g1000K = [] # FE overhead in terms of lower triangular solve iterations without ILU factorization time included for matrices > 1000K rows L_calls_vs_FE_w_g1000K = [] # FE overhead in terms of lower triangular solve iterations with ILU factorization time included for matrices > 1000K rows oh_FE_wo_100K = [] # FE overhead without ILU factorization time included for matrices upto 100K oh_FE_w_100K = [] # FE overhead with ILU factorization time included for matrices upto 100K oh_FE_wo_1000K = [] # FE overhead without ILU factorization time included for matrices upto 100K-1000K oh_FE_w_1000K = [] # FE overhead with ILU factorization time included for matrices upto 100K-1000K oh_FE_wo_g1000K = [] # FE overhead without ILU factorization time included for matrices > 1000K oh_FE_w_g1000K = [] # FE overhead without ILU factorization time included for matrices > 1000K oh_MKLs_wo_100K = [] # MKL(ser) overhead without ILU factorization time included for matrices upto 100K oh_MKLs_w_100K = [] # MKL(ser) overhead with ILU factorization time included for matrices upto 100K oh_MKLp_wo_100K = [] # MKL(par) overhead without ILU factorization time included for matrices upto 100K oh_MKLp_w_100K = [] # MKL(par) overhead with ILU factorization time included for matrices upto 100K oh_CUS1_wo_100K = [] # cuSPARSE(v1) overhead without ILU factorization time included for matrices upto 100K oh_CUS1_w_100K = [] # cuSPARSE(v1) overhead with ILU factorization time include for matrices upto 100K oh_CUS2lvl_wo_100K = [] # cuSPARSE(v2)(level-sch.) overhead without ILU factorization time included for matrices upto 100K oh_CUS2lvl_w_100K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices upto 100K oh_CUS2nolvl_wo_100K = [] # cuSPARSE(v2)(no level-sch.) overhead without ILU factorization time included for matrices upto 100K oh_CUS2nolvl_w_100K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices upto 100K oh_SyncFree_wo_100K = [] # SyncFree overhead without ILU factorization time included for matrices upto 100K oh_SyncFree_w_100K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices upto 100K oh_MKLs_wo_1000K = [] # MKL(ser) overhead without ILU factorization time included for matrices from 100K-1000K oh_MKLs_w_1000K = [] # MKL(ser) overhead with ILU factorization time included for matrices from 100K-1000K oh_MKLp_wo_1000K = [] # MKL(par) overhead without ILU factorization time included for matrices from 100K-1000K oh_MKLp_w_1000K = [] # MKL(par) overhead with ILU factorization time included for matrices from 100K-1000K oh_CUS1_wo_1000K = [] # cuSPARSE(v1) overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS1_w_1000K = [] # cuSPARSE(v1) overhead with ILU factorization time include for matrices from 100K-1000K oh_CUS2lvl_wo_1000K = [] # cuSPARSE(v2)(level-sch.) overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS2lvl_w_1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices from 100K-1000K oh_CUS2nolvl_wo_1000K = [] # cuSPARSE(v2)(no level-sch.) overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS2nolvl_w_1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices from 100K-1000K oh_SyncFree_wo_1000K = [] # SyncFree overhead without ILU factorization time included for matrices from 100K-1000K oh_SyncFree_w_1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices from 100K-1000K oh_MKLs_wo_g1000K = [] # MKL(ser) overhead without ILU factorization time included for matrices > 1000K oh_MKLs_w_g1000K = [] # MKL(ser) overhead with ILU factorization time included for matrices > 1000K oh_MKLp_wo_g1000K = [] # MKL(par) overhead without ILU factorization time included for matrices > 1000K oh_MKLp_w_g1000K = [] # MKL(par) overhead with ILU factorization time included for matrices > 1000K oh_CUS1_wo_g1000K = [] # cuSPARSE(v1) overhead without ILU factorization time included for matrices > 1000K oh_CUS1_w_g1000K = [] # cuSPARSE(v1) overhead with ILU factorization time include for matrices > 1000K oh_CUS2lvl_wo_g1000K = [] # cuSPARSE(v2)(level-sch.) overhead without ILU factorization time included for matrices > 1000K oh_CUS2lvl_w_g1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices > 1000K oh_CUS2nolvl_wo_g1000K = [] # cuSPARSE(v2)(no level-sch.) overhead without ILU factorization time included for matrices > 1000K oh_CUS2nolvl_w_g1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices > 1000K oh_SyncFree_wo_g1000K = [] # SyncFree overhead without ILU factorization time included for matrices > 1000K oh_SyncFree_w_g1000K = [] # cuSPARSE(v2)(level-sch.) overhead with ILU factorization time included for matrices > 1000K oh_MKLs_wo_100K_ana = [] # MKL(ser) algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_MKLs_w_100K_ana = [] # MKL(ser) algorithm analysis overhead with ILU factorization time included for matrices upto 100K oh_MKLp_wo_100K_ana = [] # MKL(par) algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_MKLp_w_100K_ana = [] # MKL(par) algorithm analysis overhead with ILU factorization time included for matrices upto 100K oh_CUS1_wo_100K_ana = [] # cuSPARSE(v1) algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_CUS1_w_100K_ana = [] # cuSPARSE(v1) algorithm analysis overhead with ILU factorization time include for matrices upto 100K oh_CUS2lvl_wo_100K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_CUS2lvl_w_100K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices upto 100K oh_CUS2nolvl_wo_100K_ana = [] # cuSPARSE(v2)(no level-sch.) algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_CUS2nolvl_w_100K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices upto 100K oh_SyncFree_wo_100K_ana = [] # SyncFree algorithm analysis overhead without ILU factorization time included for matrices upto 100K oh_SyncFree_w_100K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices upto 100K oh_MKLs_wo_1000K_ana = [] # MKL(ser) algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_MKLs_w_1000K_ana = [] # MKL(ser) algorithm analysis overhead with ILU factorization time included for matrices from 100K-1000K oh_MKLp_wo_1000K_ana = [] # MKL(par) algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_MKLp_w_1000K_ana = [] # MKL(par) algorithm analysis overhead with ILU factorization time included for matrices from 100K-1000K oh_CUS1_wo_1000K_ana = [] # cuSPARSE(v1) algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS1_w_1000K_ana = [] # cuSPARSE(v1) algorithm analysis overhead with ILU factorization time include for matrices from 100K-1000K oh_CUS2lvl_wo_1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS2lvl_w_1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices from 100K-1000K oh_CUS2nolvl_wo_1000K_ana = [] # cuSPARSE(v2)(no level-sch.) algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_CUS2nolvl_w_1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices from 100K-1000K oh_SyncFree_wo_1000K_ana = [] # SyncFree algorithm analysis overhead without ILU factorization time included for matrices from 100K-1000K oh_SyncFree_w_1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices from 100K-1000K oh_MKLs_wo_g1000K_ana = [] # MKL(ser) algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_MKLs_w_g1000K_ana = [] # MKL(ser) algorithm analysis overhead with ILU factorization time included for matrices > 1000K oh_MKLp_wo_g1000K_ana = [] # MKL(par) algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_MKLp_w_g1000K_ana = [] # MKL(par) algorithm analysis overhead with ILU factorization time included for matrices > 1000K oh_CUS1_wo_g1000K_ana = [] # cuSPARSE(v1) algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_CUS1_w_g1000K_ana = [] # cuSPARSE(v1) algorithm analysis overhead with ILU factorization time include for matrices > 1000K oh_CUS2lvl_wo_g1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_CUS2lvl_w_g1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices > 1000K oh_CUS2nolvl_wo_g1000K_ana = [] # cuSPARSE(v2)(no level-sch.) algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_CUS2nolvl_w_g1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices > 1000K oh_SyncFree_wo_g1000K_ana = [] # SyncFree algorithm analysis overhead without ILU factorization time included for matrices > 1000K oh_SyncFree_w_g1000K_ana = [] # cuSPARSE(v2)(level-sch.) algorithm analysis overhead with ILU factorization time included for matrices > 1000K emp_oh_wo_100K = 0 # Empirical execution overhead without ILU factorization time included for matrices upto 100K emp_oh_wo_1000k = 0 # Empirical execution overhead without ILU factorization time included for matrices from 100K-1000K emp_oh_wo_g1000k = 0 # Empirical execution overhead without ILU factorization time included for matrices > 1000K emp_oh_w_100K = 0 # Empirical execution overhead with ILU factorization time included for matrices upto 100K emp_oh_w_1000k = 0 # Empirical execution overhead with ILU factorization time included for matrices from 100K-1000K emp_oh_w_g1000k = 0 # Empirical execution overhead with ILU factorization time included for matrices > 1000K i = 0 for val in cross_validate_pred: if val == 1: predicted_time = MKL_seq[i] if val == 2: predicted_time = MKL_par[i] if val == 3: predicted_time = cus1[i] if val == 4: predicted_time = cus2_lvl[i] if val == 5: predicted_time = cus2_nolvl[i] if val == 6: predicted_time = syncfree[i] if m[i] < 100000: L_calls_vs_FE_wo_100K.append(FE_wo_ilu[i]*1000/predicted_time) L_calls_vs_FE_w_100K.append(FE_w_ilu[i]*1000/predicted_time) oh_MKLs_wo_100K.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) 10 iter'][i])) oh_MKLs_w_100K.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) 10 iter'][i]+\ overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_100K.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) 10 iter'][i])) oh_MKLp_w_100K.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) 10 iter'][i]+\ overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_100K.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) 10 iter'][i])) oh_CUS1_w_100K.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) 10 iter'][i]+\ overhead_data['cuSPARSE(v1) ilu'][i])) oh_CUS2lvl_wo_100K.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v2)lvl'][i])) oh_CUS2lvl_w_100K.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v2)lvl'][i]+\ +overhead_data['cuSPARSE(v2)iluAna'][i]+overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_100K.append((overhead_data['cuSPARSE(v2)nolvl 10 iter'][i])) oh_CUS2nolvl_w_100K.append((overhead_data['cuSPARSE(v2)nolvl 10 iter'][i])) oh_SyncFree_wo_100K.append((overhead_data['Sync-Free ana'][i]+overhead_data['Sync-Free 10 iter'][i])) oh_SyncFree_w_100K.append((overhead_data['SycnFree_LU'][i]+overhead_data['Sync-Free ana'][i]+\ overhead_data['Sync-Free 10 iter'][i])) oh_FE_wo_100K.append(overhead_data['FE_oh_wo'][i]) oh_FE_w_100K.append(overhead_data['FE_oh_w'][i]) oh_MKLs_wo_100K_ana.append((overhead_data['MKL(seq) Ana'][i])) oh_MKLs_w_100K_ana.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_100K_ana.append((overhead_data['MKL(par) Ana'][i])) oh_MKLp_w_100K_ana.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_100K_ana.append((overhead_data['cuSPARSE(v1) ana'][i])) oh_CUS1_w_100K_ana.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) ilu'][i])) oh_CUS2lvl_wo_100K_ana.append((overhead_data['cusparse(v2)ana'][i])) oh_CUS2lvl_w_100K_ana.append((overhead_data['cusparse(v2)ana'][i]+\ overhead_data['cuSPARSE(v2)iluAna'][i]+overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_100K_ana.append(0) oh_CUS2nolvl_w_100K_ana.append(0) oh_SyncFree_wo_100K_ana.append((overhead_data['Sync-Free ana'][i])) oh_SyncFree_w_100K_ana.append((overhead_data['SycnFree_LU'][i]+overhead_data['Sync-Free ana'][i])) if m[i] >= 100000 and m[i] < 1000000: L_calls_vs_FE_wo_1000K.append(FE_wo_ilu[i]*1000/predicted_time) L_calls_vs_FE_w_1000K.append(FE_w_ilu[i]*1000/predicted_time) oh_MKLs_wo_1000K.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) 10 iter'][i])) oh_MKLs_w_1000K.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) 10 iter'][i]+\ overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_1000K.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) 10 iter'][i])) oh_MKLp_w_1000K.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) 10 iter'][i]+\ overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_1000K.append((overhead_data['cuSPARSE(v1) ana'][i]+\ overhead_data['cuSPARSE(v1) 10 iter'][i])) oh_CUS1_w_1000K.append((overhead_data['cuSPARSE(v1) ana'][i]+\ overhead_data['cuSPARSE(v1) 10 iter'][i]+overhead_data['cuSPARSE(v1) ilu'][i])) oh_CUS2lvl_wo_1000K.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v2)lvl'][i])) oh_CUS2lvl_w_1000K.append((overhead_data['cusparse(v2)ana'][i]+\ overhead_data['cuSPARSE(v2)lvl'][i]+\ overhead_data['cuSPARSE(v2)iluAna'][i]+overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_1000K.append((overhead_data['cuSPARSE(v2)nolvl 10 iter'][i])) oh_CUS2nolvl_w_1000K.append((overhead_data['cuSPARSE(v2)nolvl 10 iter'][i])) oh_SyncFree_wo_1000K.append((overhead_data['Sync-Free ana'][i]+overhead_data['Sync-Free 10 iter'][i])) oh_SyncFree_w_1000K.append((overhead_data['SycnFree_LU'][i]+\ overhead_data['Sync-Free ana'][i]+overhead_data['Sync-Free 10 iter'][i])) oh_FE_wo_1000K.append((overhead_data['FE_oh_wo'][i])) oh_FE_w_1000K.append((overhead_data['FE_oh_w'][i])) oh_MKLs_wo_1000K_ana.append((overhead_data['MKL(seq) Ana'][i])) oh_MKLs_w_1000K_ana.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_1000K_ana.append((overhead_data['MKL(par) Ana'][i])) oh_MKLp_w_1000K_ana.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_1000K_ana.append((overhead_data['cuSPARSE(v1) ana'][i])) oh_CUS1_w_1000K_ana.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) ilu'][i])) oh_CUS2lvl_wo_1000K_ana.append((overhead_data['cusparse(v2)ana'][i])) oh_CUS2lvl_w_1000K_ana.append((overhead_data['cusparse(v2)ana'][i]+\ overhead_data['cuSPARSE(v2)iluAna'][i]+\ overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_1000K_ana.append(0) oh_CUS2nolvl_w_1000K_ana.append(0) oh_SyncFree_wo_1000K_ana.append((overhead_data['Sync-Free ana'][i])) oh_SyncFree_w_1000K_ana.append((overhead_data['SycnFree_LU'][i]+overhead_data['Sync-Free ana'][i])) #emp_oh_wo_1000K.append(oh_MKLs_wo_1000K[i]+oh_MKLp_wo_1000K[i]+oh_CUS1_wo_1000K[i]+oh_CUS2lvl_wo_1000K[i]+oh_CUS2nolvl_wo_1000K[i]+oh_SyncFree_wo_1000K[i]) if m[i] >= 1000000: L_calls_vs_FE_wo_g1000K.append(FE_wo_ilu[i]*1000/predicted_time) L_calls_vs_FE_w_g1000K.append(FE_w_ilu[i]*1000/predicted_time) oh_MKLs_wo_g1000K.append((overhead_data['MKL(seq) Ana'][i])) oh_MKLs_w_g1000K.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_g1000K.append((overhead_data['MKL(par) Ana'][i])) oh_MKLp_w_g1000K.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_g1000K.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) 10 iter'][i])) oh_CUS1_w_g1000K.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) ilu'][i]+overhead_data['cuSPARSE(v1) 10 iter'][i])) oh_CUS2lvl_wo_g1000K.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v2)lvl'][i])) oh_CUS2lvl_w_g1000K.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v1) ilu'][i]+\ overhead_data['cuSPARSE(v2)iluAna'][i]+overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_g1000K.append((0)) oh_CUS2nolvl_w_g1000K.append((0)) oh_SyncFree_wo_g1000K.append((overhead_data['Sync-Free ana'][i])) oh_SyncFree_w_g1000K.append((overhead_data['SycnFree_LU'][i]+overhead_data['Sync-Free ana'][i])) oh_FE_wo_g1000K.append(overhead_data['FE_oh_wo'][i]) oh_FE_w_g1000K.append(overhead_data['FE_oh_w'][i]) oh_MKLs_wo_g1000K_ana.append((overhead_data['MKL(seq) Ana'][i])) oh_MKLs_w_g1000K_ana.append((overhead_data['MKL(seq) Ana'][i]+overhead_data['MKL(seq) ilu'][i])) oh_MKLp_wo_g1000K_ana.append((overhead_data['MKL(par) Ana'][i])) oh_MKLp_w_g1000K_ana.append((overhead_data['MKL(par) Ana'][i]+overhead_data['MKL(par) ilu'][i])) oh_CUS1_wo_g1000K_ana.append((overhead_data['cuSPARSE(v1) ana'][i])) oh_CUS1_w_g1000K_ana.append((overhead_data['cuSPARSE(v1) ana'][i]+overhead_data['cuSPARSE(v1) ilu'][i])) oh_CUS2lvl_wo_g1000K_ana.append((overhead_data['cusparse(v2)ana'][i])) oh_CUS2lvl_w_g1000K_ana.append((overhead_data['cusparse(v2)ana'][i]+overhead_data['cuSPARSE(v2)lvl'][i]+\ overhead_data['cuSPARSE(v1) ilu'][i]+overhead_data['cuSPARSE(v2)iluAna'][i]+\ overhead_data['cuSPARSE(v2)iu'][i])) oh_CUS2nolvl_wo_g1000K_ana.append(0) oh_CUS2nolvl_w_g1000K_ana.append(0) oh_SyncFree_wo_g1000K_ana.append((overhead_data['Sync-Free ana'][i])) oh_SyncFree_w_g1000K_ana.append((overhead_data['SycnFree_LU'][i]+overhead_data['Sync-Free ana'][i])) #emp_oh_wo_g1000K.append(oh_MKLs_wo_g1000K[i] + oh_MKLp_wo_g1000K[i] + oh_CUS1_wo_g1000K[i] + oh_CUS2lvl_wo_g1000K[i] + oh_CUS2nolvl_wo_g1000K[i] + oh_SyncFree_wo_g1000K[i]) i = i + 1 emp_oh_wo_100K = (np.sum(oh_MKLs_wo_100K)+np.sum(oh_MKLp_wo_100K)+np.sum(oh_CUS1_wo_100K) + \ np.sum(oh_CUS2lvl_wo_100K) + np.sum(oh_CUS2nolvl_wo_100K) + np.sum(oh_SyncFree_wo_100K))\ /(len(oh_MKLs_wo_100K)*1000) emp_oh_wo_1000K = (np.sum(oh_MKLs_wo_1000K)+np.sum(oh_MKLp_wo_1000K)+np.sum(oh_CUS1_wo_1000K) + \ np.sum(oh_CUS2lvl_wo_1000K) + np.sum(oh_CUS2nolvl_wo_1000K) + np.sum(oh_SyncFree_wo_1000K))\ /(len(oh_MKLs_wo_1000K)*1000) emp_oh_wo_g1000K = (np.sum(oh_MKLs_wo_g1000K)+np.sum(oh_MKLp_wo_g1000K)+np.sum(oh_CUS1_wo_g1000K) + \ np.sum(oh_CUS2lvl_wo_g1000K) + np.sum(oh_CUS2nolvl_wo_g1000K) + np.sum(oh_SyncFree_wo_g1000K))\ /(len(oh_MKLs_wo_g1000K)*1000) emp_oh_w_100K = (np.sum(oh_MKLs_w_100K)+np.sum(oh_MKLp_w_100K)+np.sum(oh_CUS1_w_100K) + \ np.sum(oh_CUS2lvl_w_100K) + np.sum(oh_CUS2nolvl_w_100K) + np.sum(oh_SyncFree_w_100K))/(len(oh_MKLs_w_100K)*1000) emp_oh_w_1000K = (np.sum(oh_MKLs_w_1000K)+np.sum(oh_MKLp_w_1000K)+np.sum(oh_CUS1_w_1000K) + \ np.sum(oh_CUS2lvl_w_1000K) + np.sum(oh_CUS2nolvl_w_1000K) + np.sum(oh_SyncFree_w_1000K))\ /(len(oh_MKLs_w_1000K)*1000) emp_oh_w_g1000K = (np.sum(oh_MKLs_w_g1000K)+np.sum(oh_MKLp_w_g1000K)+np.sum(oh_CUS1_w_g1000K) + \ np.sum(oh_CUS2lvl_w_g1000K) + np.sum(oh_CUS2nolvl_w_g1000K) + np.sum(oh_SyncFree_w_g1000K))\ /(len(oh_MKLs_w_g1000K)*1000) emp_oh_wo_g1000K_ana = (np.sum(oh_MKLs_wo_g1000K_ana)+np.sum(oh_MKLp_wo_g1000K_ana)+np.sum(oh_CUS1_wo_g1000K_ana) + \ np.sum(oh_CUS2lvl_wo_g1000K_ana) + np.sum(oh_CUS2nolvl_wo_g1000K_ana) + np.sum(oh_SyncFree_wo_g1000K_ana))\ /(len(oh_MKLs_wo_g1000K_ana)*1000) emp_oh_w_g1000K_ana = (np.sum(oh_MKLs_w_g1000K_ana)+np.sum(oh_MKLp_w_g1000K_ana)+np.sum(oh_CUS1_w_g1000K_ana) + \ np.sum(oh_CUS2lvl_w_g1000K_ana) + np.sum(oh_CUS2nolvl_w_g1000K_ana) + np.sum(oh_SyncFree_w_g1000K_ana))\ /(len(oh_MKLs_w_g1000K_ana)*1000) Overhead_wo_100K_bar = (np.sum(oh_FE_wo_100K)/len(oh_FE_wo_100K), emp_oh_wo_100K, \ np.sum(oh_MKLs_wo_100K_ana)/(len(oh_MKLs_wo_100K_ana)*1000),\ np.sum(oh_MKLp_wo_100K_ana)/(len(oh_MKLp_wo_100K_ana)*1000),\ np.sum(oh_CUS1_wo_100K_ana)/(len(oh_MKLs_wo_100K_ana)*1000),\ np.sum(oh_CUS2lvl_wo_100K_ana)/(len(oh_CUS2lvl_wo_100K_ana)*1000),\ np.sum(oh_CUS2lvl_wo_100K_ana)/(len(oh_CUS2lvl_wo_100K_ana)*1000),\ np.sum(oh_SyncFree_wo_100K_ana)/(len(oh_SyncFree_wo_100K_ana)*1000)) Overhead_w_100K_bar = (np.sum(oh_FE_w_100K)/len(oh_FE_w_100K), emp_oh_w_100K, \ np.sum(oh_MKLs_w_100K_ana)/(len(oh_MKLs_w_100K_ana)*1000),\ np.sum(oh_MKLp_w_100K_ana)/(len(oh_MKLp_w_100K_ana)*1000),\ np.sum(oh_CUS1_w_100K_ana)/(len(oh_CUS1_w_100K_ana)*1000),\ np.sum(oh_CUS2lvl_w_100K_ana)/(len(oh_CUS2lvl_w_100K_ana)*1000),\ np.sum(oh_CUS2lvl_w_100K_ana)/(len(oh_CUS2lvl_w_100K_ana)*1000),\ np.sum(oh_SyncFree_w_100K_ana)/(len(oh_SyncFree_w_100K_ana)*1000)) Overhead_wo_1000K_bar = (np.sum(oh_FE_wo_1000K)/len(oh_FE_wo_1000K), emp_oh_wo_1000K, \ np.sum(oh_MKLs_wo_1000K_ana)/(len(oh_MKLs_wo_1000K_ana)*1000),\ np.sum(oh_MKLp_wo_1000K_ana)/(len(oh_MKLp_wo_1000K_ana)*1000),\ np.sum(oh_CUS1_wo_1000K_ana)/(len(oh_MKLs_wo_1000K_ana)*1000),\ np.sum(oh_CUS2lvl_wo_1000K_ana)/(len(oh_CUS2lvl_wo_1000K_ana)*1000),\ np.sum(oh_CUS2lvl_wo_1000K_ana)/(len(oh_CUS2lvl_wo_1000K_ana)*1000),\ np.sum(oh_SyncFree_wo_1000K_ana)/(len(oh_SyncFree_wo_1000K_ana)*1000)) Overhead_w_1000K_bar = (np.sum(oh_FE_w_1000K)/len(oh_FE_w_1000K), emp_oh_w_1000K, \ np.sum(oh_MKLs_w_1000K_ana)/(len(oh_MKLs_w_1000K_ana)*1000),\ np.sum(oh_MKLp_w_1000K_ana)/(len(oh_MKLp_w_1000K_ana)*1000),\
np.sum(oh_CUS1_w_1000K_ana)
numpy.sum
# -*- coding: utf-8 -*- """ Authors ------- <NAME> <<EMAIL>> About ----- Functions to handle command-line input Known Issues ------------ None """ # General imports import os import sys import time from functools import partial import shutil if os.path.exists(os.path.join(os.getcwd(), 'config')): # You're 1 up from config? sys.path.insert(0, os.path.join(os.getcwd(), 'config')) else: # You're working from a directory parallel with config? sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), '../config'))) import pickle # Tractor imports from tractor import NCircularGaussianPSF, PixelizedPSF, Image, Tractor, FluxesPhotoCal, NullWCS, ConstantSky, EllipseESoft, Fluxes, PixPos from tractor.galaxy import ExpGalaxy, DevGalaxy, FixedCompositeGalaxy, SoftenedFracDev, GalaxyShape from tractor.sersic import SersicIndex, SersicGalaxy from tractor.sercore import SersicCoreGalaxy from tractor.pointsource import PointSource from tractor.psfex import PixelizedPsfEx, PsfExModel from tractor.psf import HybridPixelizedPSF # Miscellaneous science imports from astropy.io import fits, ascii from astropy.table import Table, Column, vstack, join from astropy.wcs import WCS import astropy.units as u import numpy as np from functools import partial import matplotlib.pyplot as plt import weakref from scipy import stats import pathos as pa from astropy.coordinates import SkyCoord # import sfdmap # Local imports from .brick import Brick from .mosaic import Mosaic from .utils import header_from_dict, SimpleGalaxy from .visualization import plot_background, plot_blob, plot_blobmap, plot_brick, plot_mask try: import config as conf except: raise RuntimeError('Cannot find configuration file!') # m = sfdmap.SFDMap(conf.SFDMAP_DIR) # Make sure no interactive plotting is going on. plt.ioff() import warnings warnings.filterwarnings("ignore") print( f""" ==================================================================== ________ _ _______ ____ ____ ________ _______ |_ __ | / \ |_ __ \ |_ \ / _||_ __ ||_ __ \ | |_ \_| / _ \ | |__) | | \/ | | |_ \_| | |__) | | _| / ___ \ | __ / | |\ /| | | _| _ | __ / _| |_ _/ / \ \_ _| | \ \_ _| |_\/_| |_ _| |__/ | _| | \ \_ |_____||____| |____||____| |___||_____||_____||________||____| |___| -------------------------------------------------------------------- M O D E L P H O T O M E T R Y W I T H T H E T R A C T O R -------------------------------------------------------------------- (C) 2020 -- <NAME> (DAWN, University of Copenhagen) ==================================================================== CONSOLE_LOGGING_LEVEL ..... {conf.CONSOLE_LOGGING_LEVEL} LOGFILE_LOGGING_LEVEL ..... {conf.LOGFILE_LOGGING_LEVEL} PLOT ...................... {conf.PLOT} NTHREADS .................. {conf.NTHREADS} OVERWRITE ................. {conf.OVERWRITE} """ ) print('Starting up logging system...') # Start the logging import logging.config logger = logging.getLogger('farmer') if not len(logger.handlers): if conf.LOGFILE_LOGGING_LEVEL is not None: logging_level = logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL) else: logging_level = logging.DEBUG logger.setLevel(logging_level) formatter = logging.Formatter('[%(asctime)s] %(name)s :: %(levelname)s - %(message)s', '%H:%M:%S') # Logging to the console at logging level ch = logging.StreamHandler() ch.setLevel(logging.getLevelName(conf.CONSOLE_LOGGING_LEVEL)) ch.setFormatter(formatter) logger.addHandler(ch) if (conf.LOGFILE_LOGGING_LEVEL is None) | (not os.path.exists(conf.LOGGING_DIR)): print('Logging information wills stream only to console.\n') else: # create file handler which logs even debug messages logging_path = os.path.join(conf.LOGGING_DIR, 'logfile.log') print(f'Logging information will stream to console and {logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(logging_path): print('WARNING -- Existing logfile will be overwritten.') os.remove(logging_path) fh = logging.FileHandler(logging_path) fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) fh.setFormatter(formatter) logger.addHandler(fh) # When a user invokes the interface, first check the translation file # Optionally, tell the user. # Try to import the translate file from it's usual spot first. try: from translate import translate logger.info(f'interface.translation :: Imported translate file with {len(translate.keys())} entries.') if len(conf.BANDS) != len(translate.keys()): logger.warning(f'Configuration file only includes {len(conf.BANDS)} entries!') # I have nicknames in the config, I need the raw names for file I/O mask = np.ones_like(conf.BANDS, dtype=bool) for i, band in enumerate(conf.BANDS): if band not in translate.keys(): logger.warning(f'Cound not find {band} in translate file!') mask[i] = False # Re-assign bands and rawbands in config object logger.debug(f'Assigning nicknames to raw image names:') conf.BANDS = list(np.array(conf.BANDS)[mask]) conf.RAWBANDS = conf.BANDS.copy() for i, band in enumerate(conf.RAWBANDS): conf.RAWBANDS[i] = translate[band] logger.debug(f' {i+1} :: {conf.RAWBANDS[i]} --> {conf.BANDS[i]}') # The translation file could not be found, so make a scene. except: logger.warning('interface.translation :: WARNING - Could not import translate file! Will use config instead.') logger.info('interface.translation :: Image names must be < 50 characters (FITS standard) - checking...') # I have raw names, I need shortened raw names (i.e. nicknames) conf.RAWBANDS = conf.BANDS.copy() count_short = 0 for i, band in enumerate(conf.RAWBANDS): if len(band) > 50: conf.BANDS[i] = band[:50] logger.debug(f' {i+1} :: {band} --> {conf.BANDS[i]}') count_short += 1 logger.info(f'interface.translation :: Done checking. Shortened {count_short} image names.') def make_directories(): """Uses the existing config file to set up the directories. Must call from config.py directory! """ import pathlib logger.info('Making directories!') dir_dict = {'IMAGE_DIR': conf.IMAGE_DIR, 'PSF_DIR': conf.PSF_DIR, 'BRICK_DIR': conf.BRICK_DIR, 'INTERIM_DIR': conf.INTERIM_DIR, 'PLOT_DIR': conf.PLOT_DIR, 'CATALOG_DIR': conf.CATALOG_DIR, 'LOGGING_DIR': conf.LOGGING_DIR } for key in dir_dict.keys(): path = dir_dict[key] if os.path.exists(path): # too important to allow overwrite... logger.warning(f'{key} already exists under {path}!') for i in dir_dict.keys(): if path == dir_dict[i]: logger.info(f'{key} was already created for {i}...OK') break else: logger.info(f'{key} --> {path}') pathlib.Path(path).mkdir(parents=True, exist_ok=True) def make_psf(image_type=conf.MULTIBAND_NICKNAME, band=None, sextractor_only=False, psfex_only=False, override=conf.OVERWRITE): """ This is where we automatically construct the PSFs for Farmer. Step 1. Run sextractor_only=True to obtain the PSF candidates Step 2. Using the output plot, determine the selection box for the stars Step 3. Run psfex_only=True to construct the PSF. See config file to set box dimensions, psf spatial sampling, etc. """ # If the user asked to make a PSF for the detection image, tell them we don't do that if image_type is conf.DETECTION_NICKNAME: raise ValueError('Farmer does not use a PSF to perform detection!') # Else if the user asks for a PSF to be made for the modeling band elif image_type is conf.MODELING_NICKNAME: # Make the Mosaic logger.info(f'Making PSF for {conf.MODELING_NICKNAME}') modmosaic = Mosaic(conf.MODELING_NICKNAME, modeling=True, mag_zeropoint=conf.MODELING_ZPT, skip_build=True) # Make the PSF logger.info(f'Mosaic loaded for {conf.MODELING_NICKNAME}') modmosaic._make_psf(xlims=conf.MOD_REFF_LIMITS, ylims=conf.MOD_VAL_LIMITS, override=override, sextractor_only=sextractor_only, psfex_only=psfex_only) logger.info(f'PSF made successfully for {conf.MODELING_NICKNAME}') # Else if the user asks for a PSF in one of the bands elif image_type is conf.MULTIBAND_NICKNAME: # Sanity check if band not in conf.BANDS: raise ValueError(f'{band} is not a valid band nickname!') # Use all bands or just one? if band is not None: sbands = [band,] else: sbands = conf.BANDS # Loop over bands for i, band in enumerate(sbands): # Figure out PS selection box position and zeropoint idx_band = np.array(conf.BANDS) == band multi_xlims = np.array(conf.MULTIBAND_REFF_LIMITS)[idx_band][0] multi_ylims = np.array(conf.MULTIBAND_VAL_LIMITS)[idx_band][0] mag_zpt = np.array(conf.MULTIBAND_ZPT)[idx_band][0] # Make the Mosaic logger.info(f'Making PSF for {band}') bandmosaic = Mosaic(band, mag_zeropoint = mag_zpt, skip_build=True) # Make the PSF logger.info(f'Mosaic loaded for {band}') bandmosaic._make_psf(xlims=multi_xlims, ylims=multi_ylims, override=override, sextractor_only=sextractor_only, psfex_only=psfex_only) if not sextractor_only: logger.info(f'PSF made successfully for {band}') else: logger.info(f'interface.make_psf :: SExtraction complete for {band}') return def make_bricks(image_type=conf.MULTIBAND_NICKNAME, band=None, brick_id=None, insert=False, skip_psf=True, max_bricks=None, make_new_bricks=False): """ Stage 1. Here we collect the detection, modelling, and multiband images for processing. We may also cut them up! NB: PSFs can be automatically made at this stage too, assuming you've determined your PSF selection a priori. """ # Make bricks for the detection image if (image_type==conf.DETECTION_NICKNAME) | (image_type is None): # Detection logger.info('Making mosaic for detection...') detmosaic = Mosaic(conf.DETECTION_NICKNAME, detection=True) if conf.NTHREADS > 1: logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # BUGGY DUE TO MEM ALLOC # logger.info('Making bricks for detection (in parallel)') # pool = mp.ProcessingPool(processes=conf.NTHREADS) # pool.map(partial(detmosaic._make_brick, detection=True, overwrite=True), np.arange(0, detmosaic.n_bricks())) logger.info('Making bricks for detection (in serial)') for bid in np.arange(1, detmosaic.n_bricks()+1): detmosaic._make_brick(bid, detection=True, overwrite=True) # Make bricks for the modeling image elif (image_type==conf.MODELING_NICKNAME) | (image_type is None): # Modeling logger.info('Making mosaic for modeling...') modmosaic = Mosaic(conf.MODELING_NICKNAME, modeling=True) # The user wants PSFs on the fly if not skip_psf: mod_xlims = np.array(conf.MOD_REFF_LIMITS) mod_ylims = np.array(conf.MOD_VAL_LIMITS) modmosaic._make_psf(xlims=mod_xlims, ylims=mod_ylims) # Make bricks in parallel if (conf.NTHREADS > 1) & (brick_id is None): logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # BUGGY DUE TO MEM ALLOC # if conf.VERBOSE: print('Making bricks for detection (in parallel)') # pool = mp.ProcessingPool(processes=conf.NTHREADS) # pool.map(partial(modmosaic._make_brick, detection=True, overwrite=True), np.arange(0, modmosaic.n_bricks())) # # Make bricks in serial # else: if brick_id is not None: logger.info(f'Making brick #{brick_id} for modeling (in serial)') modmosaic._make_brick(brick_id, modeling=True, overwrite=True) else: logger.info('Making bricks for modeling (in serial)') if max_bricks is None: max_bricks = modmosaic.n_bricks() for bid in np.arange(1, max_bricks+1): modmosaic._make_brick(bid, modeling=True, overwrite=True) # Make bricks for one or more multiband images elif (image_type==conf.MULTIBAND_NICKNAME) | (image_type is None): # One variable list if band is not None: try: if len(band) > 0: sbands = band else: sbands = conf.BANDS except: sbands = [band,] else: sbands = conf.BANDS # In serial, loop over images for i, sband in enumerate(sbands): # Assume we can overwrite files unless insertion is explicit # First image w/o insertion will make new file anyways if make_new_bricks: overwrite = True if insert | (i > 0): overwrite = False else: overwrite=False # Build the mosaic logger.info(f'Making mosaic for image {sband}...') bandmosaic = Mosaic(sband) # The user wants PSFs made on the fly if not skip_psf: idx_band = np.array(conf.BANDS) == sband multi_xlims = np.array(conf.MULTIBAND_REFF_LIMITS)[idx_band][0] multi_ylims = np.array(conf.MULTIBAND_VAL_LIMITS)[idx_band][0] bandmosaic._make_psf(xlims=multi_xlims, ylims=multi_ylims) # Make bricks in parallel if (conf.NTHREADS > 1) & (brick_id is None): logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # logger.info(f'Making bricks for band {sband} (in parallel)') # with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: # logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') # pool.uimap(partial(bandmosaic._make_brick, detection=False, overwrite=overwrite), np.arange(0, bandmosaic.n_bricks())) # logger.info('Parallel processing complete.') # Make bricks in serial # else: if brick_id is not None: logger.info(f'Making brick #{brick_id} for multiband (in serial)') bandmosaic._make_brick(brick_id, detection=False, overwrite=overwrite) else: logger.info(f'Making bricks for band {sband} (in serial)') if max_bricks is None: max_bricks = bandmosaic.n_bricks() for bid in np.arange(1, max_bricks+1): bandmosaic._make_brick(bid, detection=False, overwrite=overwrite) # image type is invalid else: raise RuntimeError(f'{image_type} is an unrecognized nickname (see {conf.DETECTION_NICKNAME}, {conf.MODELING_NICKNAME}, {conf.MULTIBAND_NICKNAME})') return def runblob(blob_id, blobs, modeling=None, catalog=None, plotting=0, source_id=None, source_only=False, blob_only=False): """ Essentially a private function. Runs each individual blob and handles the bulk of the work. """ # if conf.NTHREADS != 0: # fh = logging.FileHandler(f'B{blob_id}.log') # fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) # formatter = logging.Formatter('[%(asctime)s] %(name)s :: %(levelname)s - %(message)s', '%H:%M:%S') # fh.setFormatter(formatter) # logger = pathos.logger(level=logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL), handler=fh) logger = logging.getLogger(f'farmer.blob.{blob_id}') logger.info(f'Starting on Blob #{blob_id}') modblob = None fblob = None tstart = time.time() logger.debug('Making weakref proxies of blobs') if modeling is None: modblob, fblob = weakref.proxy(blobs[0]), weakref.proxy(blobs[1]) elif modeling: modblob = weakref.proxy(blobs) else: fblob = weakref.proxy(blobs) logger.debug(f'Weakref made ({time.time() - tstart:3.3f})s') # Make blob with modeling image if modblob is not None: logger.debug(f'Making blob with {conf.MODELING_NICKNAME}') modblob.logger = logger if modblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() del modblob return catout # If the user wants to just model a specific source... if source_only & (source_id is not None): logger.info(f'Preparing to model single source: {source_id}') sid = modblob.bcatalog['source_id'] modblob.bcatalog = modblob.bcatalog[sid == source_id] modblob.n_sources = len(modblob.bcatalog) modblob.mids = np.ones(modblob.n_sources, dtype=int) modblob.model_catalog = np.zeros(modblob.n_sources, dtype=object) modblob.solution_catalog = np.zeros(modblob.n_sources, dtype=object) modblob.solved_chisq = np.zeros(modblob.n_sources) modblob.solved_bic = np.zeros(modblob.n_sources) modblob.solution_chisq = np.zeros(modblob.n_sources) modblob.tr_catalogs = np.zeros((modblob.n_sources, 3, 2), dtype=object) modblob.chisq = np.zeros((modblob.n_sources, 3, 2)) modblob.rchisq = np.zeros((modblob.n_sources, 3, 2)) modblob.bic = np.zeros((modblob.n_sources, 3, 2)) assert(len(modblob.bcatalog) > 0) if not blob_only: if (conf.MODEL_PHOT_MAX_NBLOB > 0) & (modblob.n_sources > conf.MODEL_PHOT_MAX_NBLOB): logger.info('Number of sources exceeds set limit. Skipping!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() catout['x'] += modblob.subvector[1] catout['y'] += modblob.subvector[0] del modblob return catout # Run models if conf.ITERATIVE_SUBTRACTION_THRESH is None: iter_thresh = 1E31 else: iter_thresh = conf.ITERATIVE_SUBTRACTION_THRESH if (conf.ITERATIVE_SUBTRACTION_THRESH is not None) & (modblob.n_sources >= iter_thresh): logger.debug(f'Performing iterative subtraction for {conf.MODELING_NICKNAME}') astart = time.time() for i, band in enumerate(modblob.bands): band_name = band[len(conf.MODELING_NICKNAME)+1:] zpt = conf.MULTIBAND_ZPT[modblob._band2idx(band_name)] # sorting order avg_flux = np.zeros(modblob.n_sources) for i, item in enumerate(modblob.bcatalog): rawfluxes = np.array([np.sum(img[modblob.segmap == item['source_id']]) for img in modblob.images]) fluxes = rawfluxes * 10**(-0.4 * (zpt - 23.9)) avg_flux[i] = np.mean(fluxes, 0) index = np.argsort(avg_flux)[::-1] # sort by brightness copy_images = modblob.images.copy() import copy modblob.solution_model_images = np.zeros_like(modblob.images) for i, idx in enumerate(index): logger.debug(f" ({i+1}/{modblob.n_sources}) Attemping to model source #{item['source_id']}") itemblob = copy.deepcopy(modblob) itemblob.bcatalog = Table(modblob.bcatalog[idx]) itemblob.n_sources = 1 itemblob.mids = np.ones(itemblob.n_sources, dtype=int) itemblob.model_catalog = np.zeros(itemblob.n_sources, dtype=object) itemblob.solution_catalog = np.zeros(itemblob.n_sources, dtype=object) itemblob.solved_chisq = np.zeros(itemblob.n_sources) itemblob.solved_bic = np.zeros(itemblob.n_sources) itemblob.solution_chisq = np.zeros(itemblob.n_sources) itemblob.tr_catalogs = np.zeros((itemblob.n_sources, 3, 2), dtype=object) itemblob.chisq = np.zeros((itemblob.n_sources, 3, 2)) itemblob.rchisq = np.zeros((itemblob.n_sources, 3, 2)) itemblob.bic = np.zeros((itemblob.n_sources, 3, 2)) itemblob.images = copy_images itemblob._is_itemblob = True logger.debug(f'Staging images for {conf.MODELING_NICKNAME} -- blob #{modblob.blob_id}') itemblob.stage_images() logger.debug(f'Images staged. ({time.time() - astart:3.3f})s') astart = time.time() logger.debug(f'Modeling images for {conf.MODELING_NICKNAME} -- blob #{modblob.blob_id}') status = itemblob.tractor_phot() if status: logger.debug(f'Morphology determined. ({time.time() - astart:3.3f})s') logger.debug(f'Transferring results back to parent blob...') #transfer back modblob.bcatalog[idx] = itemblob.bcatalog[0] modblob.solution_model_images += itemblob.solution_model_images # subtract model from image copy_images -= itemblob.solution_model_images else: logger.warning(f'Morphology failed! ({time.time() - astart:3.3f})s') # # if conf.NTHREADS != 0: # # logger.removeHandler(fh) # catout = modblob.bcatalog.copy() # catout['x'] += modblob.subvector[1] # catout['y'] += modblob.subvector[0] # del modblob # return catout else: astart = time.time() logger.debug(f'Staging images for {conf.MODELING_NICKNAME}') modblob.stage_images() logger.debug(f'Images staged. ({time.time() - astart:3.3f})s') astart = time.time() logger.debug(f'Modeling images for {conf.MODELING_NICKNAME}') status = modblob.tractor_phot() if not status: logger.warning(f'Morphology failed! ({time.time() - astart:3.3f})s') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() catout['x'] += modblob.subvector[1] catout['y'] += modblob.subvector[0] del modblob return catout logger.debug(f'Morphology determined. ({time.time() - astart:3.3f})s') # Run follow-up phot if conf.DO_APPHOT: for img_type in ('image', 'model', 'isomodel', 'residual', 'weight', 'chisq',): for band in modblob.bands: if True: #try: modblob.aperture_phot(band, img_type, sub_background=conf.SUBTRACT_BACKGROUND) else: logger.warning(f'Aperture photmetry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEPHOT: for img_type in ('image', 'model', 'isomodel', 'residual'): for band in modblob.bands: try: modblob.sep_phot(band, img_type, centroid='MODEL', sub_background=conf.SUBTRACT_BACKGROUND) modblob.sep_phot(band, img_type, centroid='DETECTION', sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP photometry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEXPHOT: for band in modblob.bands: try: modblob.residual_phot(band, sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP residual photmetry FAILED. Likely a bad blob.)') duration = time.time() - tstart logger.info(f'Solution for Blob #{modblob.blob_id} (N={modblob.n_sources}) arrived at in {duration:3.3f}s ({duration/modblob.n_sources:2.2f}s per src)') catout = modblob.bcatalog.copy() del modblob #################### FORCED PHOTOMETRY ################################ if fblob is not None: # make new blob with band information logger.debug(f'Making blob with {conf.MULTIBAND_NICKNAME}') fblob.logger = logger if fblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout astart = time.time() status = fblob.stage_images() if not status: # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout logger.info(f'{len(fblob.bands)} images staged. ({time.time() - astart:3.3f})s') astart = time.time() if modblob is not None: fblob.model_catalog = modblob.solution_catalog.copy() fblob.position_variance = modblob.position_variance.copy() fblob.parameter_variance = modblob.parameter_variance.copy() logger.info(f'Solution parameters transferred. ({time.time() - astart:3.3f})s') else: if catalog is None: raise ValueError('Input catalog not supplied!') else: blobmask = np.ones(len(catalog)) if source_id is not None: # If the user wants to just model a specific source... logger.info(f'Preparing to force single source: {source_id}') sid = catalog['source_id'] bid = catalog['blob_id'] fblob.bcatalog = catalog[(sid == source_id) & (bid == blob_id)] fblob.n_sources = len(fblob.bcatalog) fblob.mids = np.ones(fblob.n_sources, dtype=int) fblob.model_catalog = np.zeros(fblob.n_sources, dtype=object) fblob.solution_catalog = np.zeros(fblob.n_sources, dtype=object) fblob.solved_chisq = np.zeros(fblob.n_sources) fblob.solved_bic = np.zeros(fblob.n_sources) fblob.solution_chisq = np.zeros(fblob.n_sources) fblob.tr_catalogs = np.zeros((fblob.n_sources, 3, 2), dtype=object) fblob.chisq = np.zeros((fblob.n_sources, 3, 2)) fblob.rchisq = np.zeros((fblob.n_sources, 3, 2)) fblob.bic = np.zeros((fblob.n_sources, 3, 2)) assert(len(fblob.bcatalog) > 0) else: if blob_id is not None: blobmask = catalog['blob_id'] == blob_id fblob.bcatalog = catalog[blobmask] fblob.n_sources = len(fblob.bcatalog) catalog = catalog[blobmask] catalog['X_MODEL'] -= fblob.subvector[1] + fblob.mosaic_origin[1] - conf.BRICK_BUFFER + 1 catalog['Y_MODEL'] -= fblob.subvector[0] + fblob.mosaic_origin[0] - conf.BRICK_BUFFER + 1 fblob.model_catalog, good_sources = models_from_catalog(catalog, fblob) if (good_sources == False).all(): logger.warning('All sources are invalid!') catalog['X_MODEL'] += fblob.subvector[1] + fblob.mosaic_origin[1] - conf.BRICK_BUFFER + 1 catalog['Y_MODEL'] += fblob.subvector[0] + fblob.mosaic_origin[0] - conf.BRICK_BUFFER + 1 return catalog fblob.position_variance = None fblob.parameter_variance = None fblob.bcatalog = catalog[good_sources] fblob.n_sources = len(catalog) if fblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout # Forced phot astart = time.time() logger.info(f'Starting forced photometry...') status = fblob.forced_phot() if not status: # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout logger.info(f'Force photometry complete. ({time.time() - astart:3.3f})s') # Run follow-up phot if conf.DO_APPHOT: for img_type in ('image', 'model', 'isomodel', 'residual', 'weight', 'chisq',): for band in fblob.bands: # try: fblob.aperture_phot(band, img_type, sub_background=conf.SUBTRACT_BACKGROUND) # except: # logger.warning(f'Aperture photmetry FAILED for {band} {img_type}. Likely a bad blob.') if conf.PLOT > 0: for i, sid in enumerate(fblob.bcatalog['source_id']): for band in fblob.bands: fig, ax = plt.subplots() ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_image'][i], c='k', ls='dashed') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_model'][i], c='b') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_isomodel'][i], c='g') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_residual'][i], c='r') fig.savefig(os.path.join(conf.PLOT_DIR, f'aper_{band}_{sid}.pdf')) if conf.DO_SEPHOT: for img_type in ('image', 'model', 'isomodel', 'residual',): for band in fblob.bands: try: fblob.sep_phot(band, img_type, centroid='MODEL', sub_background=conf.SUBTRACT_BACKGROUND) fblob.sep_phot(band, img_type, centroid='DETECTION', sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP photometry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEXPHOT: for band in fblob.bands: try: fblob.residual_phot(band, sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP residual photmetry FAILED. Likely a bad blob.)') duration = time.time() - tstart logger.info(f'Solution for blob {fblob.blob_id} (N={fblob.n_sources}) arrived at in {duration:3.3f}s ({duration/fblob.n_sources:2.2f}s per src)') catout = fblob.bcatalog.copy() del fblob # if conf.NTHREADS != 0: # logger.removeHandler(fh) return catout def detect_sources(brick_id, catalog=None, segmap=None, blobmap=None, use_mask=True): """Now we can detect stuff and be rid of it! Parameters ---------- brick_id : [type] [description] catalog : [type], optional [description], by default None segmap : [type], optional [description], by default None blobmap : [type], optional [description], by default None catalog : [type], optional [description], by default None use_mask : bool, optional [description], by default True Returns ------- [type] [description] Raises ------ RuntimeError [description] ValueError [description] ValueError [description] ValueError [description] """ if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_logfile.log") logging.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logging.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # Create detection brick tstart = time.time() detbrick = stage_brickfiles(brick_id, nickname=conf.DETECTION_NICKNAME, modeling=True, is_detection=True) if detbrick is None: return logger.info(f'Detection brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Sextract sources tstart = time.time() if (segmap is None) & (catalog is None): try: detbrick.sextract(conf.DETECTION_NICKNAME, sub_background=conf.DETECTION_SUBTRACT_BACKGROUND, use_mask=use_mask, incl_apphot=conf.DO_APPHOT) logger.info(f'Detection brick #{brick_id} sextracted {detbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') detbrick.is_borrowed = False except: raise RuntimeError(f'Detection brick #{brick_id} sextraction FAILED. ({time.time() - tstart:3.3f}s)') return # or find existing catalog/segmap info elif (catalog == 'auto') | ((segmap is not None) & (catalog is not None) & (segmap is not None)): if (catalog == 'auto'): search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') if os.path.exists(search_fn): catalog = Table(fits.open(search_fn)[1].data) else: raise ValueError(f'No valid catalog was found for {brick_id}') logger.info(f'Overriding SExtraction with external catalog. ({search_fn})') search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) segmap = hdul_seg['SEGMAP'].data blobmap = hdul_seg['BLOBMAP'].data else: raise ValueError(f'No valid segmentation map was found for {brick_id}') if conf.X_COLNAME is not 'x': if 'x' in catalog.colnames: if 'x_borrowed' in catalog.colnames: catalog.remove_column('x_borrowed') catalog['x'].name = 'x_borrowed' catalog[conf.X_COLNAME].name = 'x' if conf.Y_COLNAME is not 'y': if 'y' in catalog.colnames: if 'y_borrowed' in catalog.colnames: catalog.remove_column('y_borrowed') catalog['y'].name = 'y_borrowed' catalog[conf.Y_COLNAME].name = 'y' # catalog['x'] = catalog['x'] - detbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - detbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 detbrick.catalog = catalog detbrick.n_sources = len(catalog) detbrick.n_blobs = len(np.unique(catalog['blob_id'])) detbrick.is_borrowed = True detbrick.segmap = segmap detbrick.segmask = segmap.copy() detbrick.segmask[segmap!=0] = 1 detbrick.blobmap = blobmap else: raise ValueError('No valid segmap, blobmap, and catalog provided to override SExtraction!') return if (~detbrick.is_borrowed): detbrick.cleanup() if conf.PLOT > 2: plot_blobmap(detbrick, image=detbrick.images[0], band=conf.DETECTION_NICKNAME, mode='log') plot_blobmap(detbrick, image=detbrick.images[0], band=conf.DETECTION_NICKNAME, mode='rms') logger.info('Saving detection catalog...') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_{conf.DETECTION_NICKNAME}.fits') tstart = time.time() if os.path.exists(outpath) & (~conf.OVERWRITE): logger.warning('Catalog file exists and I will not overwrite it!') else: detbrick.catalog.write(outpath, overwrite=conf.OVERWRITE) logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') # Save segmap and blobmaps # if (~detbrick.is_borrowed): tstart = time.time() logger.info('Saving segmentation and blob maps...') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(outpath) & (~conf.OVERWRITE): logger.warning('Segmentation file exists and I will not overwrite it!') else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) hdul.append(fits.ImageHDU(data=detbrick.segmap, name='SEGMAP', header=detbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=detbrick.blobmap, name='BLOBMAP', header=detbrick.wcs.to_header())) outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') tstart = time.time() # else: # logger.info(f'You gave me a catalog and segmap, so I am not saving it again.') # filen = open(os.path.join(conf.INTERIM_DIR, f'detbrick_N{brick_id}.pkl'), 'wb') # dill.dump(detbrick, filen) return detbrick def make_models(brick_id, detbrick='auto', band=None, source_id=None, blob_id=None, multiband_model=len(conf.MODELING_BANDS)>1, source_only=False): """ Stage 2. Detect your sources and determine the best model parameters for them """ if (band is None) & (len(conf.MODELING_BANDS) > 0): modband = conf.MODELING_BANDS addName = conf.MULTIBAND_NICKNAME multiband_model = True if (type(modband) == str) | (type(modband) == np.str_): modband = [modband,] else: logger.warning(f'Disregarding MODELING_BANDS config parameter. Using {band} for modelling instead!') if (type(band) == list) | (type(band) == np.ndarray): multiband_model = True modband = band elif (type(band) == str) | (type(band) == np.str_): multiband_model = False modband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') addName = '_'.join(modband) # create new logging file if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_{addName}_logfile.log") logger.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logger.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # Warn user that you cannot plot while running multiprocessing... if (source_id is None) & (blob_id is None): if (conf.NBLOBS == 0) & (conf.NTHREADS > 1) & ((conf.PLOT > 0)): conf.PLOT = 0 logger.warning('Plotting not supported while modeling in parallel!') if detbrick=='auto': outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_{conf.DETECTION_NICKNAME}.fits') if os.path.exists(outpath): logger.info(f'Loading in catalog from {outpath}') catalog = Table.read(outpath) n_blobs = len(np.unique(catalog['blob_id'])) n_sources = len(catalog) else: raise RuntimeError(f'Catalog was not found at {outpath}') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(outpath): logger.info(f'Loading in segmaps from {outpath}') hdul = fits.open(outpath) segmap = hdul['SEGMAP'].data segmask = segmap.copy() segmask[segmap>1] = 1 blobmap = hdul['BLOBMAP'].data else: raise RuntimeError(f'Segmaps were not found at {outpath}') # filen = open(os.path.join(conf.INTERIM_DIR, f'detbrick_N{brick_id}.pkl'), 'rb') # detbrick = dill.load(filen) # Create modbrick if band is None: if not multiband_model: img_names = [conf.MODELING_NICKNAME,] mod_nickname = conf.MODELING_NICKNAME elif multiband_model: img_names = conf.MODELING_BANDS for iname in img_names: if iname not in conf.BANDS: raise ValueError(f'{iname} is listed as a band to model, but is not found in conf.BANDS!') mod_nickname = conf.MULTIBAND_NICKNAME else: if type(band) == list: img_names = band else: img_names = [band,] mod_nickname = conf.MULTIBAND_NICKNAME # Loop over bands to do the modelling on -- if model in series! eff_area = None if not multiband_model: for band_num, mod_band in enumerate(img_names): tstart = time.time() modbrick = stage_brickfiles(brick_id, band=mod_band, nickname=mod_nickname, modeling=~(modband[band_num] in conf.BANDS)) # catalog['x'] = catalog['x'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 if modbrick is None: return if (band is not None) & (band != conf.MODELING_NICKNAME): modbrick.bands = [f'{conf.MODELING_NICKNAME}_{mod_band}',] modbrick.n_bands = len(modbrick.bands) else: mod_band = conf.MODELING_NICKNAME logger.info(f'Modeling brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Inform the user about the blob occupation distribution logger.info('Blob Occupation Distribution') for i in np.arange(5)+1: n_blob = np.sum(catalog['N_BLOB'] == i) logger.info(f' {i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') n_blob = np.sum(catalog['N_BLOB'] > i) logger.info(f' >{i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') if conf.PLOT > 3: plot_brick(modbrick, 0, band=mod_band) plot_background(modbrick, 0, band=mod_band) plot_mask(modbrick, 0, band=mod_band) if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(modbrick.bands): hdul.append(fits.ImageHDU(data=modbrick.background_images[m], name=f'BACKGROUND_{mband}', header=modbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = modbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = modbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = modbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = modbrick.masked_std[m] hdul.append(fits.ImageHDU(data=modbrick.background_rms_images[m], name=f'RMS_{mband}', header=modbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(modbrick.weights[m]), name=f'UNC_{mband}', header=modbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') logger.debug(f'Brick #{brick_id} -- Image statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.images[0], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.weights[0], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {mod_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(np.nonzero(modbrick.weights[0].flatten())), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {mod_band}') logger.debug(f' Global: {modbrick.backgrounds[0, 0]:6.6f}') logger.debug(f' RMS: {modbrick.backgrounds[0, 1]:6.6f}\n') modbrick.catalog = catalog.copy() modbrick.segmap = segmap modbrick.n_sources = n_sources modbrick.is_modeling = True modbrick.blobmap = blobmap modbrick.n_blobs = n_blobs modbrick.segmask = segmask # Transfer to MODBRICK tstart = time.time() if band_num > 0: modbrick.n_blobs, modbrick.n_sources, modbrick.segmap, modbrick.segmask, modbrick.blobmap, modbrick.catalog = n_blobs, n_sources, segmap, segmask, blobmap, catalog if modbrick.n_blobs <= 0: logger.critical(f'Modeling brick #{brick_id} gained {modbrick.n_blobs} blobs! Quiting.') return modbrick.run_weights() modbrick.run_background() modbrick.add_columns(modbrick_name=mod_band, multiband_model = False) # doing on detbrick gets column names wrong logger.info(f'Modeling brick #{brick_id} gained {modbrick.n_blobs} blobs with {modbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') # Run a specific source or blob if (source_id is not None) | (blob_id is not None): # conf.PLOT = True outcatalog = modbrick.catalog.copy() # print('AHHHHH ', outcatalog['x', 'y']) mosaic_origin = modbrick.mosaic_origin # print('MOSAIC ORIGIN ', mosaic_origin) brick_id = modbrick.brick_id if source_id is not None: blob_id = np.unique(modbrick.blobmap[modbrick.segmap == source_id]) if len(blob_id) == 1: blob_id = blob_id[0] else: raise ValueError('Requested source is not in brick!') if blob_id is not None: if blob_id not in outcatalog['blob_id']: raise ValueError(f'No blobs exist for requested blob id {blob_id}') logger.info(f'Running single blob {blob_id}') modblob = modbrick.make_blob(blob_id) modblob.is_modeling=True # if source_id is set, then look at only that source if modblob.rejected: raise ValueError('Requested blob is invalid') if source_only & (source_id not in modblob.bcatalog['source_id']): logger.warning('Requested source is not in blob!') for source in modblob.bcatalog: logger.warning(source['source_id'], source['cflux']) raise ValueError('Requested source is not in blob!') output_rows = runblob(blob_id, modblob, modeling=True, plotting=conf.PLOT, source_id=source_id, source_only=source_only) output_cat = vstack(output_rows) for colname in output_cat.colnames: if colname not in outcatalog.colnames: shape = np.shape(output_cat[colname][0]) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Else, production mode -- all objects in brick are to be run. else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS else: run_n_blobs = modbrick.n_blobs logger.info(f'Preparing to run {run_n_blobs} blobs.') outcatalog = modbrick.catalog.copy() mosaic_origin = modbrick.mosaic_origin brick_id = modbrick.brick_id logger.info('Generating blobs...') astart = time.time() modblobs = (modbrick.make_blob(i) for i in np.arange(1, run_n_blobs+1)) logger.info(f'{run_n_blobs} blobs generated ({time.time() - astart:3.3f}s)') #del modbrick tstart = time.time() if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') result = pool.uimap(partial(runblob, modeling=True, plotting=conf.PLOT, source_only=source_only), np.arange(1, run_n_blobs+1), modblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: logger.info('Serial processing initalized.') output_rows = [runblob(kblob_id+1, kblob, modeling=True, plotting=conf.PLOT, source_only=source_only) for kblob_id, kblob in enumerate(modblobs)] output_cat = vstack(output_rows) # Estimate covariance modbrick.bcatalog = output_cat astart = time.time() logger.info(f'Starting covariance estimation...') status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = np.zeros(len(img_names)) for b, bname in enumerate(img_names): eff_area[b] = modbrick.estimate_effective_area(output_cat, bname, modeling=True)[0] ttotal = time.time() - tstart logger.info(f'Completed {run_n_blobs} blobs with {len(output_cat)} sources in {ttotal:3.3f}s (avg. {ttotal/len(output_cat):2.2f}s per source)') for colname in output_cat.colnames: if colname not in outcatalog.colnames: shape = np.shape(output_cat[colname][0]) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # open again and add # If user wants model and/or residual images made: if conf.MAKE_RESIDUAL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{modbrick.bands[0]}']] modbrick.make_residual_image(catalog=cleancatalog, use_band_position=False, modeling=True) elif conf.MAKE_MODEL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{modbrick.bands[0]}']] modbrick.make_model_image(catalog=cleancatalog, use_band_position=False, modeling=True) # Reconstuct mosaic positions of invalid sources invalid = ~modbrick.catalog[f'VALID_SOURCE_{modbrick.bands[0]}'] # modbrick.catalog[invalid][f'X_MODEL_{modbrick.bands[0]}'] = modbrick.catalog[invalid]['x_orig'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER # modbrick.catalog[invalid][f'Y_MODEL_{modbrick.bands[0]}'] = modbrick.catalog[invalid]['y_orig'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER # print(np.sum(invalid), len(invalid)) # plt.pause(10) # idx = np.argwhere(invalid)[:20] # print(modbrick.catalog[idx][f'X_MODEL_{modbrick.bands[0]}'], np.array(modbrick.catalog[idx]['x_orig']) + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER) # if multiband model is enabled... elif multiband_model: tstart = time.time() modbrick = stage_brickfiles(brick_id, band=img_names, nickname=mod_nickname, modeling=True) if modbrick is None: return # if detbrick.is_borrowed: # catalog['x'] = catalog['x'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 modbrick.bands = [f'{conf.MODELING_NICKNAME}_{b}' for b in img_names] modbrick.n_bands = len(modbrick.bands) logger.info(f'Multi-band Modeling brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Inform the user about the blob occupation distribution logger.info('Blob Occupation Distribution') __, idx = np.unique(catalog['blob_id'], return_index=True) for i in np.arange(5)+1: n_blob = np.sum(catalog['N_BLOB'][idx] == i) logger.info(f' {i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') n_blob = np.sum(catalog['N_BLOB'][idx] > i) logger.info(f' >{i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') for i, mod_band in enumerate(modbrick.bands): if conf.PLOT > 3: plot_brick(modbrick, 0, band=mod_band) plot_background(modbrick, 0, band=mod_band) plot_mask(modbrick, 0, band=mod_band) logger.debug(f'Brick #{brick_id} -- Image statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.images[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.weights[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {mod_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(np.nonzero(modbrick.weights[i].flatten())), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {mod_band}') logger.debug(f' Global: {modbrick.backgrounds[i, 0]:6.6f}') logger.debug(f' RMS: {modbrick.backgrounds[i, 1]:6.6f}\n') modbrick.catalog = catalog.copy() modbrick.segmap = segmap modbrick.n_sources = n_sources modbrick.is_modeling = True modbrick.blobmap = blobmap modbrick.n_blobs = n_blobs modbrick.segmask = segmask # Cleanup on MODBRICK tstart = time.time() modbrick.shared_params = True ## CRITICAL THING TO DO HERE! modbrick.add_columns(multiband_model=True) # doing on detbrick gets column names wrong logger.info(f'Modeling brick #{brick_id} has {modbrick.n_blobs} blobs with {modbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') modbrick.run_weights() modbrick.run_background() if conf.PLOT > 3: plot_blobmap(modbrick) if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(modbrick.bands): hdul.append(fits.ImageHDU(data=modbrick.background_images[m], name=f'BACKGROUND_{mband}', header=modbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = modbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = modbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = modbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = modbrick.masked_std[m] hdul.append(fits.ImageHDU(data=modbrick.background_rms_images[m], name=f'RMS_{mband}', header=modbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(modbrick.weights[m]), name=f'UNC_{mband}', header=modbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') # Run a specific source or blob blob_only=False if (source_id is not None) | (blob_id is not None): # conf.PLOT = True outcatalog = modbrick.catalog.copy() # print('AHHHHH ', outcatalog['x', 'y']) mosaic_origin = modbrick.mosaic_origin # print('MOSAIC ORIGIN ', mosaic_origin) brick_id = modbrick.brick_id if source_id is not None: blob_id = np.unique(modbrick.blobmap[modbrick.segmap == source_id]) if len(blob_id) == 1: blob_id = blob_id[0] else: raise ValueError('Requested source is not in brick!') if blob_id is not None: if blob_id not in outcatalog['blob_id']: raise ValueError(f'No blobs exist for requested blob id {blob_id}') blob_only=True logger.info(f'Running single blob for blob {blob_id}') modblob = modbrick.make_blob(blob_id) if modblob.rejected: raise ValueError('Requested blob is invalid') output_rows = runblob(blob_id, modblob, modeling=True, plotting=conf.PLOT, source_id=source_id, blob_only=blob_only, source_only=source_only) output_cat = vstack(output_rows) # Estimate covariance modbrick.bcatalog = output_cat # astart = time.time() # logger.info(f'Starting covariance estimation...') # status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) # logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') for colname in output_cat.colnames: if colname not in outcatalog.colnames: colshape = output_cat[colname].shape outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Else, production mode -- all objects in brick are to be run. else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS bid_arr = np.arange(1, run_n_blobs+1) elif conf.MODEL_PHOT_MAX_NBLOB > 0: bid_arr = np.unique(modbrick.catalog['blob_id'][modbrick.catalog['N_BLOB'] <= conf.MODEL_PHOT_MAX_NBLOB]) run_n_blobs = len(bid_arr) if conf.NBLOBS > 0: bid_arr = bid_arr[:conf.NBLOBS] run_n_blobs = len(bid_arr) else: run_n_blobs = modbrick.n_blobs bid_arr = np.arange(1, run_n_blobs+1) logger.info(f'Preparing to run {run_n_blobs}/{modbrick.n_blobs} blobs.') outcatalog = modbrick.catalog.copy() mosaic_origin = modbrick.mosaic_origin brick_id = modbrick.brick_id logger.info('Generating blobs...') astart = time.time() modblobs = (modbrick.make_blob(i) for i in bid_arr) logger.info(f'{run_n_blobs} blobs generated ({time.time() - astart:3.3f}s)') #del modbrick tstart = time.time() if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') result = pool.uimap(partial(runblob, modeling=True, plotting=conf.PLOT), bid_arr, modblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: logger.info('Serial processing initalized.') output_rows = [runblob(kblob_id+1, kblob, modeling=True, plotting=conf.PLOT) for kblob_id, kblob in enumerate(modblobs)] output_cat = vstack(output_rows) ttotal = time.time() - tstart logger.info(f'Completed {run_n_blobs} blobs with {len(output_cat)} sources in {ttotal:3.3f}s (avg. {ttotal/len(output_cat):2.2f}s per source)') # Estimate covariance modbrick.bcatalog = output_cat # astart = time.time() # logger.info(f'Starting covariance estimation...') # status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) # logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = dict(zip(img_names, np.zeros(len(img_names)))) for b, bname in enumerate(img_names): eff_area[bname] = modbrick.estimate_effective_area(output_cat, bname, modeling=True)[0] else: eff_area = None for colname in output_cat.colnames: if colname not in outcatalog.colnames: colshape = np.shape(output_cat[colname]) if len(colshape) == 2: colshape = (colshape[1],) else: colshape = (1,) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Reconstuct mosaic positions of invalid sources invalid = ~modbrick.catalog[f'VALID_SOURCE'] modbrick.catalog['x'] = modbrick.catalog['x'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER modbrick.catalog['y'] = modbrick.catalog['y'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER modbrick.catalog['x_orig'] = modbrick.catalog['x_orig'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER modbrick.catalog['y_orig'] = modbrick.catalog['y_orig'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER # If model bands is more than one, choose best one # Choose based on min chisq if (len(img_names) > 1) & ~multiband_model: logger.info(f'Selecting best-fit models within {len(img_names)} bands') name_arr = np.ones(shape=(len(modbrick.catalog), len(img_names)), dtype='U11') score_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) valid_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) xmodel_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) ymodel_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) for i, mod_band in enumerate(img_names): name_arr[:, i] = mod_band score_arr[:, i] = modbrick.catalog[f'CHISQ_{conf.MODELING_NICKNAME}_{mod_band}'] xmodel_arr[:, i] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}_{mod_band}'] ymodel_arr[:, i] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}_{mod_band}'] valid_arr[:, i] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}_{mod_band}'] score_arr[np.logical_not(valid_arr[:,i]), i] = 1E31 argmin_score = np.argmin(score_arr, 1) argmin_zero = np.min(score_arr, 1) == 1E31 argmin_zero = np.zeros_like(argmin_zero) modbrick.catalog['BEST_MODEL_BAND'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(name_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['X_MODEL'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(xmodel_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['Y_MODEL'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(ymodel_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['VALID_SOURCE'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(valid_arr[~argmin_zero], argmin_score[~argmin_zero])] # if modbrick.wcs is not None: # skyc = self.brick_wcs.all_pix2world(modbrick.catalog[f'X_MODEL'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER, modbrick.catalog[f'Y_MODEL'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER, 0) # modbrick.bcatalog[row][f'RA'] = skyc[0] # modbrick.bcatalog[row][f'DEC'] = skyc[1] # logger.info(f" Sky Model RA, Dec: {skyc[0]:6.6f} deg, {skyc[1]:6.6f} deg") elif (len(img_names) > 1) & multiband_model: modbrick.catalog['BEST_MODEL_BAND'] = conf.MODELING_NICKNAME # modbrick.catalog['X_MODEL'] # modbrick.catalog['Y_MODEL'] # ???? WHAT # modbrick.catalog['VALID_SOURCE'] elif img_names[0] != conf.MODELING_NICKNAME: modbrick.catalog['BEST_MODEL_BAND'] = f'{conf.MODELING_NICKNAME}_{img_names[0]}' modbrick.catalog['X_MODEL'] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}_{img_names[0]}'] modbrick.catalog['Y_MODEL'] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}_{img_names[0]}'] modbrick.catalog['VALID_SOURCE'] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}_{img_names[0]}'] else: modbrick.catalog['BEST_MODEL_BAND'] = f'{conf.MODELING_NICKNAME}' modbrick.catalog['X_MODEL'] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}'] modbrick.catalog['Y_MODEL'] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}'] modbrick.catalog['VALID_SOURCE'] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}'] # write out cat if conf.OUTPUT: hdr = header_from_dict(conf.__dict__) if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in img_names: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b}', eff_area_deg, f'{conf.MODELING_NICKNAME} {band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(modbrick.catalog) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) outpath = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') hdul.writeto(outpath, output_verify='ignore', overwrite=conf.OVERWRITE) logger.info(f'Wrote out catalog to {outpath}') # If user wants model and/or residual images made: if conf.MAKE_RESIDUAL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}']] modbrick.make_residual_image(catalog=cleancatalog, use_band_position=False, modeling=True) elif conf.MAKE_MODEL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}']] modbrick.make_model_image(catalog=cleancatalog, use_band_position=False, modeling=True) # close the brick_id specific file handlers if conf.LOGFILE_LOGGING_LEVEL is not None: new_fh.close() logger.removeHandler(new_fh) def force_photometry(brick_id, band=None, source_id=None, blob_id=None, insert=False, source_only=False, unfix_bandwise_positions=(not conf.FREEZE_FORCED_POSITION), unfix_bandwise_shapes=(not conf.FREEZE_FORCED_SHAPE), rao_cramer_only=False): if band is None: fband = conf.BANDS addName = conf.MULTIBAND_NICKNAME else: if (type(band) == list) | (type(band) == np.ndarray): fband = band elif (type(band) == str) | (type(band) == np.str_): fband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') addName = '_'.join(fband) # create new logging file if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_{addName}_logfile.log") logger.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logger.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # TODO Check if the catalog will be too big... if ((not unfix_bandwise_positions) & (not unfix_bandwise_shapes)) | (len(fband) == 1): force_models(brick_id=brick_id, band=band, source_id=source_id, blob_id=blob_id, insert=insert, source_only=source_only, force_unfixed_pos=False, use_band_shape=unfix_bandwise_shapes, rao_cramer_only=rao_cramer_only) else: if conf.FREEZE_FORCED_POSITION: logger.warning('Setting FREEZE_FORCED_POSITION to False!') conf.FREEZE_FORCED_POSITION = False for b in fband: tstart = time.time() logger.critical(f'Running Forced Photometry on {b}') if rao_cramer_only: logger.critical('WARNING -- ONLY COMPUTING RAO-CRAMER FLUX ERRORS! THIS IS NOT A NORMAL MODE!') logger.critical('ENSURE PLOTTING IS TURNED OFF!!!') force_models(brick_id=brick_id, band=b, source_id=source_id, blob_id=blob_id, insert=insert, source_only=source_only, force_unfixed_pos=True, use_band_shape=unfix_bandwise_shapes, rao_cramer_only=rao_cramer_only) logger.critical(f'Forced Photometry for {b} finished in {time.time() - tstart:3.3f}s') # TODO -- compare valid source_band and add to catalog! if conf.PLOT > 0: # COLLECT SRCPROFILES logger.info('Collecting srcprofile diagnostic plots...') if (blob_id is None) & (source_id is None): import glob # find sids files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B*_S*_*_srcprofile.pdf')) sids= [] for f in files: tsid = int(f[len(conf.PLOT_DIR):].split('S')[1].split('_')[0]) if tsid not in sids: sids.append(tsid) for sid in sids: logger.debug(f' * source {sid}') fnames = [] files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B*_S{sid}_*_srcprofile.pdf')) if len(files) == 0: logger.error('Source {source_id} does not have any srcprofile plots to collect!') return bid = int(files[0][len(conf.PLOT_DIR):].split('B')[1].split('_')[0]) for b in fband: logger.debug(f' *** adding {b}') fname = os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_{b}_srcprofile.pdf') if os.path.exists(fname): fnames.append(fname) else: logger.warning(f' *** {b} does not exist at {fname}') # collect from PyPDF2 import PdfFileMerger merger = PdfFileMerger() for pdf in fnames: merger.append(pdf) logger.debug(f'Writing out combined srcprofile...') merger.write(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_srcprofile.pdf')) merger.close() # remove logger.debug(f'Removing individual srcprofiles...') [os.system(f'rm {fname}') for fname in fnames] else: import glob # find sids files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{blob_id}_S*_*_srcprofile.pdf')) sids= [] for f in files: tsid = int(f[len(conf.PLOT_DIR):].split('S')[1].split('_')[0]) if tsid not in sids: sids.append(tsid) for sid in sids: logger.debug(f' * source {sid}') fnames = [] files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{blob_id}_S{sid}_*_srcprofile.pdf')) if len(files) == 0: logger.error('Source {source_id} does not have any srcprofile plots to collect!') return bid = int(files[0][len(conf.PLOT_DIR):].split('B')[1].split('_')[0]) for b in fband: logger.debug(f' *** adding {b}') fname = os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_{b}_srcprofile.pdf') if os.path.exists(fname): fnames.append(fname) else: logger.warning(f' *** {b} does not exist at {fname}') # collect from PyPDF2 import PdfFileMerger merger = PdfFileMerger() for pdf in fnames: merger.append(pdf) logger.debug(f'Writing out combined srcprofile...') merger.write(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_srcprofile.pdf')) merger.close() # remove logger.debug(f'Removing individual srcprofiles...') [os.system(f'rm {fname}') for fname in fnames] def force_models(brick_id, band=None, source_id=None, blob_id=None, insert=True, source_only=False, force_unfixed_pos=(not conf.FREEZE_FORCED_POSITION), use_band_shape=(not conf.FREEZE_FORCED_SHAPE), rao_cramer_only=False): """ Stage 3. Force the models on the other images and solve only for flux. """ # Create and update multiband brick tstart = time.time() eff_area = None if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') if (source_id is None) & (blob_id is None): if (conf.NBLOBS == 0) & (conf.NTHREADS > 1) & (conf.PLOT > 0): conf.PLOT = 0 logger.warning('Plotting not supported while forcing models in parallel!') if band is None: fband = conf.BANDS else: if (type(band) == list) | (type(band) == np.ndarray): fband = band elif (type(band) == str) | (type(band) == np.str_): fband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') fbrick = stage_brickfiles(brick_id, nickname=conf.MULTIBAND_NICKNAME, band=fband, modeling=False) if fbrick is None: return search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') if os.path.exists(search_fn): fbrick.catalog = Table(fits.open(search_fn)[1].data) fbrick.n_sources = len(fbrick.catalog) fbrick.n_blobs = np.unique(fbrick.catalog['blob_id']) #.max() else: logger.critical(f'No valid catalog was found for {brick_id}') return search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) fbrick.segmap = hdul_seg['SEGMAP'].data fbrick.blobmap = hdul_seg['BLOBMAP'].data fbrick.segmask = fbrick.segmap.copy() fbrick.segmask[fbrick.segmap>0] = 1 else: logger.critical(f'No valid segmentation map was found for {brick_id}') return if (~fbrick.catalog['VALID_SOURCE_MODELING']).all(): logger.critical(f'All sources in brick #{brick_id} are invalid. Quitting!') return uniq_src, index_src = np.unique(fbrick.catalog['source_id'], return_index=True) if len(uniq_src) != len(fbrick.catalog): n_nonuniq = len(fbrick.catalog) - len(uniq_src) logger.warning(f'Removing {n_nonuniq} non-unique sources from catalog!') fbrick.catalog = fbrick.catalog[index_src] if not rao_cramer_only: fbrick.add_columns(modeling=False) else: filler = np.zeros(len(fbrick.catalog)) for colname in fbrick.bands: colname = colname.replace(' ', '_') fbrick.catalog.add_column(Column(filler, name=f'RAW_DIRECTFLUX_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'RAW_DIRECTFLUXERR_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'DIRECTFLUX_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'DIRECTFLUXERR_{colname}')) fbrick.run_background() fbrick.run_weights() logger.info(f'{conf.MULTIBAND_NICKNAME} brick #{brick_id} created ({time.time() - tstart:3.3f}s)') if conf.PLOT > 3: for plt_band in fband: if (len(fband) == 1) | force_unfixed_pos: idx = 0 else: idx = np.argwhere(np.array(fband)==plt_band)[0][0] plot_brick(fbrick, idx, band=plt_band) plot_background(fbrick, idx, band=plt_band) plot_mask(fbrick, idx, band=plt_band) fcat = fbrick.catalog.copy() fcat['x'] -= fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1 fcat['y'] -= fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1 plot_blobmap(fbrick, image=fbrick.images[idx], band=plt_band, catalog=fcat) for i, vb_band in enumerate(fband): logger.debug(f'Brick #{brick_id} -- Image statistics for {vb_band}') shape, minmax, mean, var = stats.describe(fbrick.images[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {vb_band}') ok = fbrick.weights[i] > 0 shape, minmax, mean, var = stats.describe(fbrick.weights[i][ok].flatten(), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {vb_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(fbrick.weights[i][ok].flatten()), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {vb_band}') logger.debug(f' Global: {fbrick.backgrounds[i, 0]:6.6f}') logger.debug(f' RMS: {fbrick.backgrounds[i, 1]:6.6f}') if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(fbrick.bands): hdul.append(fits.ImageHDU(data=fbrick.background_images[m], name=f'BACKGROUND_{mband}', header=fbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = fbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = fbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = fbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = fbrick.masked_std[m] hdul.append(fits.ImageHDU(data=fbrick.background_rms_images[m], name=f'RMS_{mband}', header=fbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(fbrick.weights[m]), name=f'UNC_{mband}', header=fbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') logger.info(f'Forcing models on {len(fband)} {conf.MULTIBAND_NICKNAME} bands') # if conf.FORCE_SHARE_PARAMS: # fbrick.shared_params = True tstart = time.time() if (source_id is not None) | (blob_id is not None): # conf.PLOT = True if source_id is not None: blob_id = np.unique(fbrick.blobmap[fbrick.segmap == source_id]) assert(len(blob_id) == 1) blob_id = blob_id[0] fblob = fbrick.make_blob(blob_id) if source_only & (source_id not in fbrick.catalog['source_id']): logger.warning('Requested source is not in blob!') for source in fbrick.catalog: logger.debug(source['source_id'], source['cflux']) raise ValueError('Requested source is not in blob!') if rao_cramer_only: output_rows = runblob_rc(blob_id, fblob, catalog=fbrick.catalog, source_id=source_id) else: output_rows = runblob(blob_id, fblob, modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT, source_id=source_id) output_cat = vstack(output_rows) fbrick.bcatalog = output_cat # Estimate covariance astart = time.time() logger.info(f'Starting covariance estimation...') status = fbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') if not conf.OUTPUT: logging.warning('OUTPUT is DISABLED! Quitting...') else: if insert & conf.OVERWRITE & (conf.NBLOBS==0): # open old cat path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) # make fillers for colname in np.array(output_cat.colnames)[newcols]: #mastercat.add_column(output_cat[colname]) if colname not in mastercat.colnames: if np.ndim(output_cat[colname]) > 1: shape = np.shape(output_cat[colname][1]) else: shape = 1 mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=shape, name=colname)) for row in output_cat: mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]] = row # coordinate correction # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. # save mastercat.write(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat'), format='fits', overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') else: for colname in output_cat.colnames: if colname not in fbrick.catalog.colnames: if np.ndim(output_cat[colname]) > 1: shape = np.shape(output_cat[colname][1]) else: shape = 1 fbrick.catalog.add_column(Column(length=len(fbrick.catalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #fbrick.catalog = join(fbrick.catalog, output_cat, join_type='left', ) for row in output_cat: fbrick.catalog[np.where(fbrick.catalog['source_id'] == row['source_id'])[0]] = row mode_ext = conf.MULTIBAND_NICKNAME if fband is not None: if len(fband) == 1: mode_ext = fband[0].replace(' ', '_') else: mode_ext = conf.MULTIBAND_NICKNAME # write out cat # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. if conf.OUTPUT: fbrick.catalog.write(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{mode_ext}.cat'), format='fits', overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new {mode_ext} catalog file.') else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS else: run_n_blobs = fbrick.n_blobs fblobs = (fbrick.make_blob(i) for i in np.unique(fbrick.catalog['blob_id'].data)) if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') if rao_cramer_only: result = pool.uimap(partial(runblob_rc, catalog=fbrick.catalog), np.arange(1, run_n_blobs+1), fblobs) else: result = pool.uimap(partial(runblob, modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT), np.arange(1, run_n_blobs+1), fblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: if rao_cramer_only: output_rows = [runblob_rc(kblob_id, fbrick.make_blob(kblob_id), catalog=fbrick.catalog) for kblob_id in np.arange(1, run_n_blobs+1)] else: output_rows = [runblob(kblob_id, fbrick.make_blob(kblob_id), modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT) for kblob_id in np.arange(1, run_n_blobs+1)] logger.info(f'Completed {run_n_blobs} blobs in {time.time() - tstart:3.3f}s') #output_rows = [x for x in output_rows if x is not None] output_cat = vstack(output_rows) # HACK -- at some point this should just UPDATE the bcatalog with the new photoms. IF the user sets NBLOBS > 0, the catalog is truncated! uniq_src, idx_src = np.unique(output_cat['source_id'], return_index=True) # if len(idx_src) != len(fbrick.catalog): # raise RuntimeError(f'Output catalog is truncated! {len(idx_src)} out of {len(fbrick.catalog)}') if len(uniq_src) < len(output_cat): logger.warning(f'Found {len(uniq_src)} unique sources, out of {len(output_cat)} -- CLEANING!') output_cat = output_cat[idx_src] else: logger.debug(f'Found {len(uniq_src)} unique sources, out of {len(output_cat)}') # Estimate covariance fbrick.bcatalog = output_cat astart = time.time() logger.info(f'Starting covariance estimation...') status = fbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = dict(zip(fband, np.zeros(len(fband)))) for b, bname in enumerate(fband): eff_area[bname] = fbrick.estimate_effective_area(output_cat, bname, modeling=False)[0] else: eff_area = None if not conf.OUTPUT: logging.warning('OUTPUT is DISABLED! Quitting...') else: if insert & conf.OVERWRITE & (conf.NBLOBS==0) & (not force_unfixed_pos): # open old cat path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) # make fillers for colname in np.array(output_cat.colnames)[newcols]: if colname not in mastercat.colnames: if np.ndim(output_cat[colname]) > 1: colshape = np.shape(output_cat[colname][1]) else: colshape = 1 mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) for row in output_cat: mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]] = row # coordinate correction # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. # save hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' not in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat'), overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') outcatalog = mastercat else: logger.critical(f'Catalog file for brick #{fbrick.brick_id} could not be found!') return elif (not insert) & force_unfixed_pos: # make a new MULITBAND catalog or add to it! path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{conf.MULTIBAND_NICKNAME}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) if np.sum(newcols) == 0: logger.warning('Columns exist in catalog -- defaulting to separate file output!') hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{conf.MULTIBAND_NICKNAME}.cat'), overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new catalog file.') else: join_cat = output_cat[list(np.array(output_cat.colnames)[newcols])] join_cat.add_column(output_cat['source_id']) mastercat = join(mastercat, join_cat, keys='source_id', join_type='left') # # add new columns, filled. # newcolnames = [] # for colname in np.array(output_cat.colnames)[newcols]: # if colname not in mastercat.colnames: # if colname.startswith('FLUX_APER') | colname.startswith('MAG_APER'): # mastercat.add_column(Column(length=len(mastercat), dtype=float, shape=(len(conf.APER_PHOT),), name=colname)) # else: # mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=(1,), name=colname)) # newcolnames.append(colname) # # if colname.startswith('FLUX_APER') | colname.startswith('MAG_APER'): # # mastercat.add_column(Column(length=len(mastercat), dtype=float, shape=(len(conf.APER_PHOT),), name=colname)) # # else: # # mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=(1,), name=colname)) # # [print(j) for j in mastercat.colnames] # # [print(j) for j in output_cat.colnames] # # count = 0 # # for row in output_cat: # # idx = np.where(mastercat['source_id'] == row['source_id'])[0] # for colname in newcolnames: # mastercat[colname][idx] = output_cat[colname] # # print(mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]][newcolnames]) # # print(newcolnames) # # print(row[newcolnames]) # # print(np.where(mastercat['source_id'] == row['source_id'])[0]) # mastercat[newcolnames][idx] = row[newcolnames] # count+=1 hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' not in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(path_mastercat, overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') else: mastercat = output_cat hdr = header_from_dict(conf.__dict__) # hdr = fits.open(path_mastercat)['CONFIG'].header # lastb = 0 # for b in np.arange(99): # if 'AREA{b}' not in hdr.keys(): lastb = 0 if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(path_mastercat, overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new catalog file.') outcatalog = mastercat else: for colname in output_cat.colnames: if colname not in fbrick.catalog.colnames: colshape =
np.shape(output_cat[colname])
numpy.shape
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt try: from os import scandir, path # scandir introduced in py3.x except: pass from os import system, chdir from copy import deepcopy from scipy.interpolate import splrep, splev from scipy.signal import savgol_filter, medfilt from scipy.optimize import minimize from astropy.io import fits from common_helper_functions import _order_exposures_by_key, _valid_orders_from_keys, correct_wvl_for_rv, _combine_orders, _spectra_resample from rv_helper_functions import get_RV_ref_spectrum, get_RV_custom_corr_perorder, get_RV_custom_corr_combined, add_rv_to_metadata norm_suffix = '_normalised.txt' sigma_norm_suffix = '_sigma_normalised.txt' def _go_to_dir(path): try: system('mkdir ' + path) except: pass chdir(path) def _get_reduced_exposures(in_dir): """ :param in_dir: :return: """ return [f.name for f in scandir(in_dir) if f.is_dir()] def _get_normalised_orders(spec_dir, spectrum): """ :param spec_dir: :param spectrum: :return: """ existing_orders = [] for i_o in range(35): spec_path = spec_dir + spectrum + '/' + spectrum + '_' + str(i_o) if path.isfile(spec_path + norm_suffix) and path.isfile(spec_path + norm_suffix): existing_orders.append(spectrum + '_' + str(i_o)) return existing_orders def get_orderdata_by_wavelength(spec_dir, orders, in_wvl): """ :param spec_dir: :param orders: :param in_wvl: :return: """ for order in orders: flux_data = np.loadtxt(spec_dir + order + norm_suffix) #sigma_data = np.loadtxt(spec_dir + order + sigma_norm_suffix) sigma_data = deepcopy(flux_data) sigma_data[:, 1] = 0. if np.nanmin(flux_data[:, 0]) <= in_wvl <= np.nanmax(flux_data[:, 0]): return flux_data[:, 0], flux_data[:, 1], sigma_data[:, 1] return None, None, None def get_spectral_data(star, wvl_orders, in_dir, new_only=False): """ :param star: :param wvl_orders: :param in_dir: :param new_only: :return: """ input_dir = in_dir + star + '/spec/' list_exposures = _get_reduced_exposures(input_dir) # create a dictionary of all exposures with their belonging data star_data_all = {} for exposure in list_exposures: if 'joined' in exposure: # skipp exposures/spectra that are created by joining multiple exposures continue if new_only: if 'ec.vh' not in exposure: # skipp older exposures that might be of worse quality continue # get all possible orders print('Exploring orders of exposure:', exposure) all_norm_orders = _get_normalised_orders(input_dir, exposure) if len(all_norm_orders) > 0: # create new dictionary that will hold the data of selected order for a given exposure star_data_all[exposure] = {} # if available read vhelio velocity from the original reduction fits file vh_key = 'VHELIO' vhelio = np.nan # open and read original reduced fits file orig_fits = fits.open(input_dir + exposure + '.fits') header_fits = orig_fits[0].header if vh_key in header_fits.keys(): vhelio = header_fits[vh_key] orig_fits.close() # add vhelio velocity to the data structure star_data_all[exposure][vh_key] = vhelio # read data of individual orders and save them into the structure for get_wvl_order in wvl_orders: order_data = get_orderdata_by_wavelength(input_dir + exposure + '/', all_norm_orders, get_wvl_order) if order_data[0] is not None: star_data_all[exposure][get_wvl_order] = { 'wvl': order_data[0], 'flx': order_data[1], 'sig': order_data[2], 'flx1': np.ones_like(order_data[1]), 'flx2': np.zeros_like(order_data[1]), } # add RV flags, which determines which of the orders can be used for RV estimation #star_data_all['RV_s1_use'] = #star_data_all['RV_s2_use'] = return star_data_all def create_new_reference(exposures_all, target_wvl, percentile=None, w_filt=None, use_flx_key='flx', use_rv_key='RV_s1', plot_combined=False, plot_path='plot_combined.png', plot_shifted=False): """ :param exposures_all: :param target_wvl: :param percentile: :param w_filt: :param use_flx_key: :param use_rv_key: :param plot_combined: :param plot_path: :param plot_shifted: :return: """ flx_new = list([]) all_exp_ids = _order_exposures_by_key(exposures_all, exposures_all.keys(), sort_key=use_rv_key) for exposure_id in all_exp_ids: exposure_data = exposures_all[exposure_id] # combine all resampled and RV moved spectra exposure_new_flx = _combine_orders(exposure_data, target_wvl, use_flx_key=use_flx_key, use_rv_key=use_rv_key) flx_new.append(exposure_new_flx) # compute median of all considered exposures flx_new = np.array(flx_new) flx_new_median = np.nanmedian(flx_new, axis=0) flx_new_std = np.nanstd(flx_new, axis=0) idx_median = np.isfinite(flx_new_median) wvl_range = (np.min(target_wvl[idx_median]) - 2., np.max(target_wvl[idx_median]) + 2.) n_spectra = flx_new.shape[0] x_ticks = range(4500, 7000, 20) x_ticks_str = [str(xt) for xt in x_ticks] # plot combined spectra - all around normalized level of 1 if plot_combined: fig, ax = plt.subplots(2, 1, figsize=(135, 6.), sharex=True) # plot individual spectra and final combined spectrum for i_ex in range(n_spectra): ax[0].plot(target_wvl, flx_new[i_ex, :], lw=0.5, alpha=0.33) ax[0].plot(target_wvl, flx_new_median, c='black', lw=0.8) if w_filt is not None: ax[0].plot(target_wvl, medfilt(flx_new_median, w_filt), c='green', lw=0.5) ax[0].set(xlim=wvl_range, ylim=np.nanpercentile(flx_new_median, [0.4, 99.6]), # xlabel='Wavelength [A]', # xticks=x_ticks, xticklabels=x_ticks_str, ylabel='Normalized flux') # plot deviations from the reference spectrum - could be used for RV bad wavelength masking flx_new_std = np.nanstd(flx_new - flx_new_median, axis=0) for i_ex in range(n_spectra): ax[1].plot(target_wvl, flx_new[i_ex, :] - flx_new_median, lw=0.5, alpha=0.33) ax[1].set(xlim=wvl_range, ylim=[-0.04, 0.04], # xticks=x_ticks, xticklabels=x_ticks_str, xlabel='Wavelength [A]', ylabel='Flux diff') ax[1].plot(target_wvl, flx_new_std, c='black', lw=0.8) ax[1].plot(target_wvl, -flx_new_std, c='black', lw=0.8) # final plot visual corrections ax[0].grid(ls='--', alpha=0.2, color='black') ax[1].grid(ls='--', alpha=0.2, color='black') fig.tight_layout() fig.subplots_adjust(hspace=0, wspace=0) fig.savefig(plot_path, dpi=150) plt.close(fig) # plot combined and shifted spectra - every spectrum shifted for a certain flux offset level if plot_shifted: # compute function to be plotted as deviations around median flux value fill_1 = np.nanpercentile(flx_new, 15, axis=0) fill_2 = np.nanpercentile(flx_new, 85, axis=0) idx_fill = np.logical_and(np.isfinite(fill_1), np.isfinite(fill_2)) # start plotting y_range = np.nanpercentile(flx_new_median, [0.4, 99.6]) flx_offset = 0.75 * (y_range[1] - y_range[0]) # half of expected y range fig, ax = plt.subplots(1, 1, figsize=(90, 3. + 0.8 * n_spectra)) for i_ex in range(n_spectra): ax.plot(target_wvl, flx_new[i_ex, :] + (flx_offset * (i_ex + 1)), lw=0.6, alpha=0.8) ax.text(wvl_range[0]+5, 1 + + (flx_offset * (i_ex + 1)), all_exp_ids[i_ex].split('.')[0], fontsize=10, va='center') # ax.fill_between(target_wvl, fill_1, fill_2, # color='lightgrey', where=idx_fill) ax.fill_between(target_wvl, flx_new_median-flx_new_std, flx_new_median+flx_new_std, color='lightgrey', where=idx_fill) ax.plot(target_wvl, flx_new_median, c='black', lw=0.8) ax.set(xlim=wvl_range, ylim=y_range + np.array([0, flx_offset * n_spectra]), # xticks=x_ticks, xticklabels=x_ticks_str, xlabel='Wavelength [A]', ylabel='Normalized and shifted flux') ax.grid(ls='--', alpha=0.2, color='black') fig.tight_layout() fig.savefig(plot_path[:-4] + '_shifted.png', dpi=150) plt.close(fig) # return rv corrected and computed median combination of individual exposures if percentile is None: flx_final = flx_new_median # / np.nanpercentile(flx_new_median, 80) else: flx_new_perc = np.nanpercentile(flx_new, percentile, axis=0) flx_final = flx_new_perc # / np.nanpercentile(flx_new_median, 80) # apply median filtering if requested if w_filt is not None: flx_final = medfilt(flx_final, w_filt) # return new median combined spectrum return flx_final, flx_new_std def _evaluate_norm_fit(orig, fit, idx, sigma_low, sigma_high): """ :param orig: :param fit: :param idx: :param sigma_low: :param sigma_high: :return: """ # diffence to the original data diff = orig - fit std_diff = np.nanstd(diff[idx]) # select data that will be fitted idx_outlier = np.logical_or(diff < (-1. * std_diff * sigma_low), diff > (std_diff * sigma_high)) return np.logical_and(idx, ~idx_outlier) def _spectra_normalize(wvl, spectra_orig, steps=5, sigma_low=2., sigma_high=2.5, window=15, order=5, n_min_perc=5., func='cheb', fit_on_idx=None, fit_mask=None, sg_filter=False, return_fit=False, return_idx=False, median_init=True): """ :param wvl: :param spectra_orig: :param steps: :param sigma_low: :param sigma_high: :param window: :param order: :param n_min_perc: :param func: :param fit_on_idx: :param fit_mask: :param sg_filter: :param return_fit: :param return_idx: :return: """ # perform sigma clipping before the next fitting cycle idx_fit = np.logical_and(np.isfinite(wvl), np.isfinite(spectra_orig)) spectra = np.array(spectra_orig) if fit_mask is not None: idx_fit = np.logical_and(idx_fit, fit_mask) if fit_on_idx is not None: idx_fit = np.logical_and(idx_fit, fit_on_idx) steps = 1 # no clipping performed, one iteration, forced fitting on selected pixels else: # filter noisy original spectra, so it is easier to determine continuum levels if sg_filter: spectra = savgol_filter(spectra_orig, window_length=15, polyorder=5) if median_init: init_fit = np.nanmedian(spectra) idx_fit = _evaluate_norm_fit(spectra, init_fit, idx_fit, sigma_low*2.5, sigma_high*2.5) data_len = np.sum(idx_fit) n_fit_points_prev = np.sum(idx_fit) for i_f in range(steps): # number of sigma clipping steps # print i_f if func == 'cheb': chb_coef = np.polynomial.chebyshev.chebfit(wvl[idx_fit], spectra[idx_fit], order) cont_fit = np.polynomial.chebyshev.chebval(wvl, chb_coef) if func == 'legen': leg_coef = np.polynomial.legendre.legfit(wvl[idx_fit], spectra[idx_fit], order) cont_fit = np.polynomial.legendre.legval(wvl, leg_coef) if func == 'poly': poly_coef = np.polyfit(wvl[idx_fit], spectra[idx_fit], order) cont_fit = np.poly1d(poly_coef)(wvl) if func == 'spline': # if i_f == 1: # chb_coef = np.polynomial.chebyshev.chebfit(wvl[idx_fit], spectra[idx_fit], 5) # cont_fit = np.polynomial.chebyshev.chebval(wvl, chb_coef) # idx_fit = _evaluate_norm_fit(spectra, cont_fit, idx_fit, sigma_low, sigma_high) spline_coef = splrep(wvl[idx_fit], spectra[idx_fit], k=order, s=window) cont_fit = splev(wvl, spline_coef) # print(i_f, 'points:', n_fit_points_prev, 'knots:', len(spline_coef[0])) idx_fit = _evaluate_norm_fit(spectra, cont_fit, idx_fit, sigma_low, sigma_high) n_fit_points = np.sum(idx_fit) if 100.*n_fit_points/data_len < n_min_perc: break if n_fit_points == n_fit_points_prev: break else: n_fit_points_prev = n_fit_points if return_fit: if return_idx: return cont_fit, idx_fit else: return cont_fit else: return spectra_orig / cont_fit def renorm_exposure_perorder(exposure_data, ref_flx, ref_wvl, use_rv_key='RV_s1', input_flx_key='flx', output_flx_key='flx_renorm', plot=False, plot_path=None): """ :param exposure_data: :param ref_flx: :param ref_wvl: :param use_rv_key: :param input_flx_key: :param output_flx_key: :param plot: :param plot_path: :return: """ print(' Input normalization flux key is', input_flx_key, 'and RV key is', use_rv_key) rv_val_star = exposure_data[use_rv_key] if not np.isfinite(rv_val_star): rv_val_star = 0 # shift reference spectrum from stars' rest to barycentric/observed reference frame - use reversed RV value ref_wvl_shifted = correct_wvl_for_rv(ref_wvl, -1.*rv_val_star) echelle_orders = _valid_orders_from_keys(exposure_data.keys()) # loop trough all available Echelle orders for echelle_order_key in echelle_orders: # determine observed data that will be used in the correlation procedure order_flx = exposure_data[echelle_order_key][input_flx_key] order_wvl = exposure_data[echelle_order_key]['wvl'] # resample reference spectrum to the observed wavelength pixels ref_flx_order = _spectra_resample(ref_flx, ref_wvl_shifted, order_wvl) # perform renormalization using the supplied reference spectrum # get renormalization curve by comparing reference and observed spectrum try: wvl_len = len(order_wvl) ref_flx_norm_curve = _spectra_normalize(np.arange(wvl_len), order_flx / ref_flx_order, steps=10, sigma_low=2.5, sigma_high=2.5, n_min_perc=8., order=4, func='cheb', return_fit=True) # renorm order exposure_data[echelle_order_key][output_flx_key] = order_flx / ref_flx_norm_curve if plot: fig, ax = plt.subplots(2, 1, sharex=True, figsize=(15, 5)) ax[0].plot(order_wvl, order_flx, lw=0.5, label='Original') ax[0].plot(order_wvl, ref_flx_order, lw=0.5, label='Reference') ax[0].plot(order_wvl, order_flx / ref_flx_norm_curve, lw=0.5, label='Renormed') ax[1].plot(order_wvl, order_flx / ref_flx_order, lw=0.5) ax[1].plot(order_wvl, ref_flx_norm_curve, lw=0.5) ax[1].set(xlim=[order_wvl[0]-0.2, order_wvl[-1]+0.2]) ax[0].legend() fig.tight_layout() fig.subplots_adjust(hspace=0, wspace=0) if plot_path is None: fig.show() else: fig.savefig(plot_path[:-4] + '_' + str(echelle_order_key) + '.png', dpi=150) plt.close(fig) except Exception as e: print(' Renormalization problem for:', echelle_order_key, e) exposure_data[echelle_order_key][output_flx_key] = order_flx # return original data with addition of a renormed spectrum return exposure_data def _flx_amp(flx, amp, cont=1.): """ :param flx: :param amp: :return: """ return cont - amp * (cont - flx) def remove_ref_from_exposure(exposure_data, ref_flx, ref_wvl, primary=True, use_rv_key='RV_s1', input_flx_key='flx', fit_before_removal=False, output_flx_key='flx_secon', ref_orig=None, w_filt=None, plot=False, plot_path='plot.png', verbose=True): """ :param exposure_data: :param ref_flx: :param ref_wvl: :param primary: :param use_rv_key: :param input_flx_key: :param fit_before_removal: :param output_flx_key: :param ref_orig: :param w_filt: :param plot: :param plot_path: :param verbose: :return: """ if use_rv_key not in exposure_data.keys(): if verbose: print(' WARNING: Given RV key (' + use_rv_key + ') not found -> RV = 0. will be used.') rv_val_star = 0. else: rv_val_star = exposure_data[use_rv_key] if not np.isfinite(rv_val_star): if verbose: print(' WARNING: Component removal not possible as RV was not estimated.') return exposure_data # shift reference spectrum from stars' rest to barycentric/observed reference frame - use reversed RV value ref_wvl_shifted = correct_wvl_for_rv(ref_wvl, -1. * rv_val_star) echelle_orders = _valid_orders_from_keys(exposure_data.keys()) # loop trough all available Echelle orders for echelle_order_key in echelle_orders: # determine observed data that will be used in the primary removal procedure order_flx = exposure_data[echelle_order_key][input_flx_key] order_wvl = exposure_data[echelle_order_key]['wvl'] # resample reference spectrum to the observed wavelength pixels ref_flx_order = _spectra_resample(ref_flx, ref_wvl_shifted, order_wvl) # adjust/force reference flux to have the same amplitude as observed spectrum # useful for stars with lower snr and/or reduction problems if fit_before_removal: # helper function used in the minimization process def min_flx_dif_prim(amp): # manhattan spectral distance between two spectra return np.sum(np.abs((order_flx - 1.) - _flx_amp(ref_flx_order, amp, cont=0.))) def min_flx_dif_sec(amp): # manhattan spectral distance between two spectra return np.sum(np.abs(order_flx - _flx_amp(ref_flx_order, amp, cont=1.))) # minimize difference between observed and reference spectrum if primary: min_res = minimize(min_flx_dif_prim, [1.], bounds=[(0., 2.)]) else: min_res = minimize(min_flx_dif_sec, [1.], bounds=[(0., 2.)]) # get the best amplitude correction factor amp_use = min_res['x'][0] if verbose: print(' Flx amp modification (order - ' + str(echelle_order_key) + '): {:.3f}'.format(amp_use)) # correct flux for determined amplitude if primary: ref_flx_order = _flx_amp(ref_flx_order, amp_use, cont=0.) else: ref_flx_order = _flx_amp(ref_flx_order, amp_use, cont=1.) # remove contribution of a reference spectrum by a simple spectral substraction order_flx_diff = order_flx - ref_flx_order # order_flx_diff = order_flx / ref_flx_order if w_filt is not None: exposure_data[echelle_order_key][output_flx_key] = medfilt(order_flx_diff, w_filt) else: exposure_data[echelle_order_key][output_flx_key] = order_flx_diff if plot: flx_orig_comb = _combine_orders(exposure_data, ref_wvl_shifted, use_flx_key=input_flx_key, use_rv_key=None) flx_seco_comb = _combine_orders(exposure_data, ref_wvl_shifted, use_flx_key=output_flx_key, use_rv_key=None) y_range = np.nanpercentile(flx_orig_comb, [0.4, 99.6]) flx_offset = 0.75 * (y_range[1] - y_range[0]) wvl_range = (np.min(ref_wvl_shifted[np.isfinite(flx_orig_comb)]) - 2., np.max(ref_wvl_shifted[np.isfinite(flx_orig_comb)]) + 2.) x_ticks = range(4500, 7000, 20) x_ticks_str = [str(xt) for xt in x_ticks] fig, ax = plt.subplots(1, 1, figsize=(120, 5.)) if primary: ax.plot(ref_wvl_shifted, flx_orig_comb, c='C3', lw=0.7, alpha=0.8) ax.plot(ref_wvl_shifted, 1. + ref_flx, c='black', lw=0.5, alpha=0.8) ax.plot(ref_wvl_shifted, 0.04 + flx_seco_comb, c='C2', lw=0.7, alpha=0.8) else: ax.plot(ref_wvl_shifted, flx_orig_comb, c='C3', lw=0.7, alpha=0.8) ax.plot(ref_wvl_shifted, ref_flx, c='black', lw=0.5, alpha=0.8) ax.plot(ref_wvl_shifted, 1.04 + flx_seco_comb, c='C2', lw=0.7, alpha=0.8) ax.axhline(1.04, c='black', ls='--', lw=0.5, alpha=0.9) if ref_orig is not None: ax.plot(ref_wvl_shifted, ref_orig - flx_offset, c='red', lw=0.8) y_range[0] -= flx_offset ax.set(xlim=wvl_range, ylim=[y_range[0], 1.05], xlabel='Wavelength [A]', ylabel='Normalized and median removed flux', xticks=x_ticks, xticklabels=x_ticks_str) ax.grid(ls='--', alpha=0.2, color='black') fig.tight_layout() fig.savefig(plot_path, dpi=150) plt.close(fig) # return original data with addition of a reference corrected per order spectrum return exposure_data # -------------------------------------------------------------------------------- # -------------------------------------------------------------------------------- # ------------ Function that runs the whole procedure at once -------------------- # -------------------------------------------------------------------------------- # -------------------------------------------------------------------------------- def _are_orders_renormed(exposures_data, input_key): """ :param exposures_data: :param input_key: :return: """ exposures_all = list(exposures_data.keys()) n_renorm = 0 for exp_id in exposures_all: orders_all = _valid_orders_from_keys(exposures_data[exp_id].keys()) n_orders = 0 for ord_id in orders_all: if input_key+'_renorm' in list(exposures_data[exp_id][ord_id].keys()): n_orders += 1 if n_orders == len(orders_all): n_renorm += 1 # return True if all orders in all exposures have renormed flux data return n_renorm == len(exposures_all) def run_complete_RV_and_template_discovery_procedure(star_data, obs_metadata, # datasets and tables ref_flx, ref_wvl, # spectral reference data star_id='', in_flx_key='flx', rv_key='RV_s1', # exact data that will be used primary=True, # are we processing the most obvoius spectral component combined_rv_spectrum=False, # processing settings save_plots=True, plot_prefix='', plot_suffix='', # plotting settings verbose=True, # screen verbocity setting ): """ :param star_data: :param obs_metadata: :param ref_flx: :param ref_wvl: :param star_id: :param in_flx_key: :param rv_key: :param primary: :param combined_rv_spectrum: :param save_plots: :param plot_prefix: :param plot_suffix: :param verbose: :return: """ # some component specific processing and output settings if primary: c_id = 1 cont_value = 1. else: c_id = 2 cont_value = 0. # set flux dataset that will be used in the processing use_flx_key = deepcopy(in_flx_key) if verbose: print(' Spectra used for RV determination:', use_flx_key) # get per order RV velocities for every exposure for exp_id in star_data.keys(): if verbose: print(' Exposure:', exp_id) if combined_rv_spectrum: # compute RV from a combined spectrum (stack of individual echelle orders) rv_png = plot_prefix + '_' + exp_id + '_rv' + str(c_id) + '-combined' + plot_suffix + '.png' rv_med, rv_std = get_RV_custom_corr_combined(deepcopy(star_data[exp_id]), ref_flx, ref_wvl, cont_value=cont_value, rv_ref_val=None, use_flx_key=use_flx_key, plot_rv=True, plot_path=rv_png) if verbose: print(' Combined RV value:', rv_med, rv_std) else: # compute mean RV from all considered orders rv_png = plot_prefix + '_' + exp_id + '_rv' + str(c_id) + '-orders' + plot_suffix + '.png' rv_all, rv_med, rv_std = get_RV_custom_corr_perorder(deepcopy(star_data[exp_id]), ref_flx, ref_wvl, cont_value=cont_value, rv_ref_val=None, use_flx_key=use_flx_key, plot_rv=False, plot_path=rv_png) if verbose: print(' Median RV value:', rv_med, rv_std) star_data[exp_id][rv_key + '_orders'] = rv_all # store values to the dictionary star_data[exp_id][rv_key] = rv_med star_data[exp_id]['e_' + rv_key] = rv_std # compute median spectrum of a secondary star and use it as a new and updated RV template use_flx_key_median = deepcopy(in_flx_key) if verbose: print(' Creating median reference spectrum') combined_png = plot_prefix + '_s' + str(c_id) + '_combined' + plot_suffix + '.png' # get new reference spectrum as median of all alligned spectra, per wvl pixel std is also computed and returned ref_flx_new, _ = create_new_reference(star_data, ref_wvl, # percentile=85., w_filt=3, use_flx_key=use_flx_key_median, use_rv_key=rv_key, plot_combined=True, plot_shifted=save_plots, plot_path=combined_png) # Add RV values of a binary star to the observations metadata table and plot phase RV diagram rv_phase_plot_png = plot_prefix + '_RV' + str(c_id) + plot_suffix + '.png' obs_metadata = add_rv_to_metadata(star_data, star_id, deepcopy(obs_metadata), rv_key, # always save this plot as it is the final result of the binary spectral processing plot=True, plot_path=rv_phase_plot_png) # finally return all important structures that hold gathered information and spectra return star_data, obs_metadata, ref_flx_new def show_spectra_heliocentric(star_data, order, tellurics_data=None, prefix=''): """ :param star_data: :param order: :param tellurics_data: :param prefix: :return: """ fig, ax = plt.subplots(1, 1, figsize=(85, 5)) w_min = 10000 w_max = 0 for exp_is in star_data.keys(): exposure_data = star_data[exp_is] if order not in exposure_data.keys(): continue y_flx = exposure_data[order]['flx'] x_wvl = exposure_data[order]['wvl'] x_wvl = correct_wvl_for_rv(x_wvl, exposure_data['VHELIO']) # + or - VHELIO?? w_min = min(w_min, np.nanmin(x_wvl)) w_max = max(w_max, np.nanmax(x_wvl)) ax.plot(x_wvl, y_flx, lw=0.5, alpha=0.6) # add telluric reference spectrum to the combined plot if tellurics_data is not None: ax.plot(tellurics_data[:, 0], tellurics_data[:, 1], lw=0.7, alpha=0.75, c='black') # additional plotting settings ax.set(ylim=(0.8, 1.05), xlim=(w_min, w_max)) ax.grid(ls='--', alpha=0.2, color='black') fig.tight_layout() fig.savefig(prefix + 'spec_helio_'+str(order)+'.png', dpi=150) plt.close(fig) return True def plot_combined_spectrum_using_RV(exposure_data, ref_flx_s1, ref_flx_s2, ref_wvl, prim_rv='RV_s1', sec_rv='RV_s2', input_flx_key='flx', plot=True, plot_path='plot.png'): """ :param exposure_data: :param ref_flx_s1: :param ref_flx_s2: :param ref_wvl: :param prim_rv: :param sec_rv: :param input_flx_key: :param plot: :param plot_path: :return: """ # loop trough all available orders flx_orig_comb = _combine_orders(exposure_data, ref_wvl, use_flx_key=input_flx_key, use_rv_key=None) # shift reference spectra into observed stars frame rv_s1 = exposure_data[prim_rv] rv_s2 = exposure_data[sec_rv] if not np.isfinite(rv_s1): rv_s1 = 0 if not
np.isfinite(rv_s2)
numpy.isfinite
import tensorflow as tf import numpy as np from copy import copy from .base import Model tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) class KerasTFModel(Model): def __init__(self, model, x_dim: int, u_dim: int, p_dim=0, tvp_dim=0, standardScaler=None): if not standardScaler is None: raise NotImplementedError("This feature isn't supported yet !") #if not isinstance(model, (tf.keras.Model)): # raise ValueError("The provided model isn't a Keras Model object !") if len(model.input_shape) != 2: raise NotImplementedError("Recurrent neural network are not supported atm.") if model.output_shape[-1] != x_dim: raise ValueError("Your Keras model do not provide a suitable output dim ! \n It must get the same dim as the state dim.") if model.input_shape[-1] != sum((x_dim, u_dim, p_dim, tvp_dim)): raise ValueError("Your Keras model do not provide a suitable input dim ! \n It must get the same dim as the sum of all input vars (x, u, p, tvp).") super(KerasTFModel, self).__init__(x_dim, u_dim, p_dim, tvp_dim) self.model = model self.test = None def __getstate__(self): result_dict = copy(self.__dict__) result_dict["model"] = None return result_dict def __setstate__(self, d): self.__dict__ = d def _gather_input(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): output_np = np.concatenate([x, u], axis=1) if not tvp is None: output_np = np.concatenate([output_np, tvp], axis=1) if not p is None: #TODO check this part output_np = np.concatenate([output_np, np.array([[p,]*x.shape[0]])], axis=1) return output_np def forward(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) return self.model.predict(input_net) def jacobian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_net) with tf.GradientTape(persistent=False) as tx: tx.watch(input_tf) output_tf = self.model(input_tf) jacobian_tf = tx.jacobian(output_tf, input_tf) jacobian_np = jacobian_tf.numpy()[:,:,:,:-self.p_dim- self.tvp_dim] jacobian_np = jacobian_np.reshape(x.shape[0]*self.x_dim, (self.x_dim+self.u_dim)*x.shape[0]) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) jacobian_np = np.take(jacobian_np, reshape_indexer, axis=1) return jacobian_np @tf.function def _hessian_compute(self, input_tf): hessian_mask = tf.reshape(tf.eye(tf.shape(input_tf)[0]*self.model.output_shape[-1],tf.shape(input_tf)[0]*self.model.output_shape[-1]), (tf.shape(input_tf)[0]*self.model.output_shape[-1],tf.shape(input_tf)[0],self.model.output_shape[-1])) hessian_mask = tf.cast(hessian_mask, tf.float64) output_tf = self.model(input_tf) output_tf = tf.cast(output_tf, tf.float64) result = tf.map_fn(lambda mask : tf.hessians(output_tf*mask, input_tf)[0] , hessian_mask, dtype=tf.float32) return result def hessian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_np = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_np, dtype=tf.float32) #if self.test is None: # self.test = self._hessian_compute.get_concrete_function(input_tf=tf.TensorSpec([input_tf.shape[0], input_tf.shape[1]], tf.float64), output_shape=int(self.model.output_shape[-1])) #hessian_np = self.test(input_tf, int(self.model.output_shape[-1])).numpy() hessian_np = self._hessian_compute(input_tf).numpy() hessian_np = hessian_np[:,:,:-self.p_dim - self.tvp_dim, :, :-self.p_dim - self.tvp_dim] # TODO a better implem could be by spliting input BEFORE performing the hessian computation ! hessian_np = hessian_np.reshape(x.shape[0], x.shape[1], (input_np.shape[1]-self.p_dim - self.tvp_dim)*input_np.shape[0],( input_np.shape[1]-self.p_dim - self.tvp_dim)*input_np.shape[0]) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) hessian_np = np.take(hessian_np, reshape_indexer, axis=2) hessian_np = np.take(hessian_np, reshape_indexer, axis=3) return hessian_np @tf.function def rolling_input(input_tf, x_dim, u_dim, rolling_window=2, H=2, forward=True): # TODO do not take into account p and tvp x = input_tf[:,0:x_dim] u = input_tf[:,x_dim:x_dim+u_dim] if forward: x_rolling = tf.stack([ tf.reshape(x[i:i+rolling_window, :],(-1,)) for i in range(H)], axis=0) u_rolling = tf.stack([ tf.reshape(u[i:i+rolling_window, :],(-1,)) for i in range(H)], axis=0) else: x_rolling = tf.stack([ tf.reshape( tf.reverse( x[i:i+rolling_window, :] , [0]),(-1,)) for i in range(H)], axis=0) u_rolling = tf.stack([ tf.reshape( tf.reverse( u[i:i+rolling_window, :] , [0]),(-1,)) for i in range(H)], axis=0) return tf.concat([x_rolling,u_rolling],axis=1) class KerasTFModelRollingInput(Model): def __init__(self, model, x_dim: int, u_dim: int, p_dim=0, tvp_dim=0, rolling_window=2, forward_rolling=True, standardScaler=None): if not standardScaler is None: raise NotImplementedError("This feature isn't supported yet !") # TODO make checking according to rolling_window #if not isinstance(model, (tf.keras.Model)): # raise ValueError("The provided model isn't a Keras Model object !") #if len(model.input_shape) != 2: # raise NotImplementedError("Recurrent neural network are not supported atm.") if model.output_shape[-1] != x_dim: raise ValueError("Your Keras model do not provide a suitable output dim ! \n It must get the same dim as the state dim.") #if model.input_shape[-1] != sum((x_dim, u_dim, p_dim, tvp_dim)): # raise ValueError("Your Keras model do not provide a suitable input dim ! \n It must get the same dim as the sum of all input vars (x, u, p, tvp).") if not isinstance(rolling_window, int) or rolling_window<1: raise ValueError("Your rolling windows need to be an integer gretter than 1.") super(KerasTFModelRollingInput, self).__init__(x_dim, u_dim, p_dim, tvp_dim) self.model = model self.rolling_window = rolling_window self.forward_rolling = forward_rolling self.prev_x, self.prev_u, self.prev_tvp = None, None, None self.jacobian_proj = None def __getstate__(self): result_dict = copy(self.__dict__) result_dict["prev_x"] = None result_dict["prev_u"] = None result_dict["model"] = None result_dict["prev_tvp"] = None return result_dict def __setstate__(self, d): self.__dict__ = d def set_prev_data(self, x_prev: np.ndarray, u_prev: np.ndarray, tvp_prev=None): assert x_prev.shape == (self.rolling_window-1, self.x_dim), f"Your x prev tensor must have the following shape {(self.rolling_window-1, self.x_dim)} (received : {x_prev.shape})" assert u_prev.shape == (self.rolling_window-1, self.u_dim), f"Your u prev tensor must have the following shape {(self.rolling_window-1, self.u_dim)} (received : {u_prev.shape})" self.prev_x = x_prev self.prev_u = u_prev if not tvp_prev is None: assert tvp_prev.shape == (self.rolling_window-1, self.tvp_dim), f"Your tvp prev tensor must have the following shape {(self.rolling_window-1, self.tvp_dim)} (received : {tvp_prev.shape})" self.prev_tvp = tvp_prev def _gather_input(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): assert (not self.prev_x is None) and (not self.prev_u is None), "You must give history window with set_prev_data before calling any inferance function." x_extended = np.concatenate([self.prev_x, x], axis=0) u_extended = np.concatenate([self.prev_u, u], axis=0) output_np = np.concatenate([x_extended, u_extended], axis=1) if not tvp is None: tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) output_np = np.concatenate([output_np, tvp_extended], axis=1) if not p is None: output_np = np.concatenate([output_np, np.array([[p,]*x.shape[0]])], axis=1) return output_np def _gather_input_V2(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): assert (not self.prev_x is None) and (not self.prev_u is None), "You must give history window with set_prev_data before calling any inferance function." x_extended = np.concatenate([self.prev_x, x], axis=0) u_extended = np.concatenate([self.prev_u, u], axis=0) if self.forward_rolling: x_rolling = np.stack([ x_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) u_rolling = np.stack([ u_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) if not tvp is None: assert (not self.prev_tvp is None), "You must give history window with set_prev_data before calling any inferance function." tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) tvp_rolling = np.stack([ tvp_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) else: x_rolling = np.stack([ (x_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) u_rolling = np.stack([ (u_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) if not tvp is None: assert (not self.prev_tvp is None), "You must give history window with set_prev_data before calling any inferance function." tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) tvp_rolling = np.stack([ (tvp_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) output_np = np.concatenate([x_rolling, u_rolling], axis=1) if not tvp is None: output_np = np.concatenate([output_np, tvp_rolling], axis=1) if not p is None: output_np = np.concatenate([output_np, np.array([[p,]*x.shape[0]])], axis=1) return output_np def forward(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) input_net_rolled = rolling_input(input_net, self.x_dim, self.u_dim, rolling_window=self.rolling_window, H=x.shape[0], forward=self.forward_rolling) res = self.model.predict(input_net_rolled) if not isinstance(res, np.ndarray): return res.numpy() return res def jacobian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_net) if self.jacobian_proj is None: with tf.GradientTape(persistent=False) as tx: tx.watch(input_tf) input_tf_rolled = rolling_input(input_tf, self.x_dim, self.u_dim, rolling_window=self.rolling_window, H=x.shape[0], forward=self.forward_rolling) self.jacobian_proj = tx.jacobian(input_tf_rolled, input_tf) else: input_tf_rolled = rolling_input(input_tf, self.x_dim, self.u_dim, rolling_window=self.rolling_window, H=x.shape[0], forward=self.forward_rolling) with tf.GradientTape(persistent=False) as tx: tx.watch(input_tf_rolled) output_tf = self.model(input_tf_rolled) pre_jac_tf = tx.jacobian(output_tf, input_tf_rolled) jacobian_tf = tf.einsum("abcd,cdef->abef", pre_jac_tf, self.jacobian_proj) jacobian_np = jacobian_tf.numpy().reshape(x.shape[0]*self.x_dim, (self.x_dim+self.u_dim)*(x.shape[0]+self.rolling_window-1)) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(self.rolling_window-1 ,x.shape[0]+self.rolling_window-1) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(self.rolling_window-1 ,x.shape[0]+self.rolling_window-1) ], list()) jacobian_np = np.take(jacobian_np, reshape_indexer, axis=1) return jacobian_np def jacobian_old(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_net) with tf.GradientTape(persistent=False) as tx: tx.watch(input_tf) input_tf_rolled = rolling_input(input_tf, self.x_dim, self.u_dim, rolling_window=self.rolling_window, H=x.shape[0], forward=self.forward_rolling) output_tf = self.model(input_tf_rolled) jacobian_tf = tx.jacobian(output_tf, input_tf) jacobian_np = jacobian_tf.numpy().reshape(x.shape[0]*self.x_dim, (self.x_dim+self.u_dim)*(x.shape[0]+self.rolling_window-1)) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(self.rolling_window-1 ,x.shape[0]+self.rolling_window-1) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(self.rolling_window-1 ,x.shape[0]+self.rolling_window-1) ], list()) jacobian_np = np.take(jacobian_np, reshape_indexer, axis=1) return jacobian_np @tf.function def _hessian_compute(self, input_tf): H = tf.shape(input_tf)[0] hessian_mask = tf.reshape(tf.eye(H*self.model.output_shape[-1],H*self.model.output_shape[-1]), (H*self.model.output_shape[-1],H,self.model.output_shape[-1])) hessian_mask = tf.cast(hessian_mask, tf.float32) output_tf = self.model(input_tf) result = tf.map_fn(lambda mask : tf.hessians(output_tf*mask, input_tf)[0] , hessian_mask, dtype=tf.float32) return result def hessian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_np = self._gather_input_V2(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_np, dtype=tf.float32) #if self.test is None: # self.test = self._hessian_compute.get_concrete_function(input_tf=tf.TensorSpec([input_tf.shape[0], input_tf.shape[1]], tf.float64), output_shape=int(self.model.output_shape[-1])) #hessian_np = self.test(input_tf, int(self.model.output_shape[-1])).numpy() hessian_np = self._hessian_compute(input_tf).numpy() # TODO a better implem could be by spliting input BEFORE performing the hessian computation ! hessian_np = hessian_np.reshape(x.shape[0], x.shape[1], input_np.shape[1]*input_np.shape[0], input_np.shape[1]*input_np.shape[0]) project_mat =
np.zeros(shape=(input_np.shape[1]*x.shape[0], (self.x_dim+self.u_dim)*(x.shape[0]+self.rolling_window-1)))
numpy.zeros
import scipy.spatial as ssp import numpy as np import swarms.commons.utils as U import shapely.geometry as sg from swarms.base import Agent class Evader(Agent): def __init__(self, experiment): super(Evader, self).__init__() self.obs_radius = experiment.obs_radius self.world_size = experiment.world_size self.torus = experiment.torus self.dynamics = 'direct' self.max_speed = 2 * 10 # cm/s if self.torus: self.bounding_box = np.array([0., 2 * self.world_size, 0., 2 * self.world_size]) else: self.bounding_box = np.array([0., self.world_size, 0., self.world_size]) self.action_callback = self.step def reset(self, state): self.state.p_pos = state self.state.p_vel = np.zeros(2) def step(self, agent, world): if self.torus: points_center = np.vstack([world.agent_states[:, 0:2], self.state.p_pos]) pursuers_down_right = np.hstack([world.agent_states[:, 0:1] + world.world_size, world.agent_states[:, 1:2]]) pursuers_up_left = np.hstack([world.agent_states[:, 0:1], world.agent_states[:, 1:2] + world.world_size]) pursuers_up_right = np.hstack( [world.agent_states[:, 0:1] + world.world_size, world.agent_states[:, 1:2] + world.world_size]) evader_down_right = np.hstack([self.state.p_pos[0:1] + world.world_size, self.state.p_pos[1:2]]) evader_up_left = np.hstack([self.state.p_pos[0:1], self.state.p_pos[1:2] + world.world_size]) evader_up_right = np.hstack([self.state.p_pos[0:1] + world.world_size, self.state.p_pos[1:2] + world.world_size]) points_down_right = np.hstack([points_center[:, 0:1] + world.world_size, points_center[:, 1:2]]) points_up_left = np.hstack([points_center[:, 0:1], points_center[:, 1:2] + world.world_size]) points_up_right = np.hstack( [points_center[:, 0:1] + world.world_size, points_center[:, 1:2] + world.world_size]) nodes = np.vstack([world.agent_states[:, 0:2], pursuers_down_right, pursuers_up_left, pursuers_up_right, self.state.p_pos, evader_down_right, evader_up_left, evader_up_right]) dist_matrix_full = U.get_euclid_distances(nodes) quadrant_check = np.sign(self.state.p_pos - world.world_size / 2) if np.all(quadrant_check == np.array([1, 1])): evader_quadrant = 0 elif np.all(quadrant_check == np.array([-1, 1])): evader_quadrant = 1 elif np.all(quadrant_check == np.array([1, -1])): evader_quadrant = 2 elif np.all(quadrant_check == np.array([-1, -1])): evader_quadrant = 3 evader_dist = dist_matrix_full[:-4, -4 + evader_quadrant] sub_list = list(np.where(evader_dist < self.obs_radius)[0]) if len(sub_list) > 10: sub_list = list(np.argsort(evader_dist)[0:10]) sub_list.append(4 * world.nr_agents + evader_quadrant) evader_sub = len(sub_list) - 1 closest_pursuer = np.where(evader_dist == evader_dist.min())[0] nodes_center_sub = nodes[sub_list, :] nodes_left = np.copy(nodes_center_sub) nodes_left[:, 0] = self.bounding_box[0] - (nodes_left[:, 0] - self.bounding_box[0]) nodes_right = np.copy(nodes_center_sub) nodes_right[:, 0] = self.bounding_box[1] + (self.bounding_box[1] - nodes_right[:, 0]) nodes_down = np.copy(nodes_center_sub) nodes_down[:, 1] = self.bounding_box[2] - (nodes_down[:, 1] - self.bounding_box[2]) nodes_up = np.copy(nodes_center_sub) nodes_up[:, 1] = self.bounding_box[3] + (self.bounding_box[3] - nodes_up[:, 1]) points = np.vstack([nodes_center_sub, nodes_down, nodes_left, nodes_right, nodes_up]) else: nodes = np.vstack([world.agent_states[:, 0:2], self.state.p_pos, ]) distances = U.get_euclid_distances(nodes) evader_dist = distances[-1, :-1] closest_pursuer = np.where(evader_dist == evader_dist.min())[0] sub_list = list(
np.where(evader_dist < self.obs_radius)
numpy.where
import subprocess lib_list = ['numpy','csv','seaborn','matplotlib'] for lib_name in lib_list: try: import lib_name except ImportError: if lib_name == 'csv': print(lib_name,' Module not installed') subprocess.run(['pip','install','python-csv']) else: print(lib_name,' Module not installed') subprocess.run(['pip','install','%s'%lib_name]) import numpy as np import csv import os import seaborn as sns import matplotlib.pyplot as plt ################################################################################ ###### Fetch the result data and plot out the PDF and mean+/-STD figures ####### ################################################################################ # Function of reading data def LumenRead(path,numfile): resultlist = np.empty((0,39), float) for i in range(numfile): filename = os.path.join(path,('lumen_area_000'+str("{0:0=3d}".format(i))+'.csv')) reader = csv.reader(open(filename, "r"), delimiter='\t') x = list(reader) result =
np.array(x[0][:-1])
numpy.array
""" Core functions to evaluate piecewise polynomial interpolants (or their derivatives) in one dimension. Additional functions are provided that do this for two such interpolants, to facilitate the interpolation of paired variables like salinity and temperature. This subpackage is ideally suited when interpolation to many different evaluation sites is needed, such as when solving a nonlinear equation involving the interpolants, because it pre-computes the piecewise polynomial coefficients once, and then interpolation to a given evaluation site is fast. However, if the interpolant needs to be evaluated just once or a few times, the subpackage `interp1d` may be preferred. """ """ Adapted from 'Piecewise Polynomial Calculus' available on the MATLAB File Exchange at https://mathworks.com/matlabcentral/fileexchange/73114-piecewise-polynomial-calculus """ import numpy as np import numba as nb @nb.njit def ppval_i(dx, Yppc, i, d=0): """ Evaluate a single interpolant, knowing where the evaluation site lies. Provides `i` such that `X[i] < x <= X[i+1]` """ # Evaluate polynomial, using nested multiplication. # E.g. the cubic case is: # y = dx^3 * Yppc[i,0] + dx^2 * Yppc[i,1] + dx * Yppc[i,2] + Yppc[i,3] # = dx * (dx * (dx * Yppc[i,0] + Yppc[i,1]) + Yppc[i,2]) + Yppc[i,3] y = 0.0 if d == 0: for j in range(0, Yppc.shape[1]): y = y * dx + Yppc[i, j] else: # Evaluate polynomial derivative, using nested multiplication. # E.g. the second derivative of the cubic case is: # y = 6 * dx * Yppc[i,0] + 2 * Yppc[i,1] y = 0.0 degree = Yppc.shape[1] - 1 for o in range(0, degree - d + 1): # o for order p = 1.0 # Build integer multiplying the coefficient for a in range(degree - o - d + 1, degree - o + 1): p *= a # p = np.prod(np.arange(degree - o - d + 1, degree - o + 1)) # slow! y = y * dx + Yppc[i, o] * p return y @nb.njit def ppval1(x, X, Yppc, d=0): """ Evaluate a single piecewise polynomial (PP). Parameters ---------- x : float Evaluation site X : ndarray, 1d Independent variable. Yppc : ndarray, 2d Piecewise Polynomial Coefficients. First dimension must match `len(X)`. d : int, Default 0 Number of derivatives to take. If 0, simply evaluate the PP. Returns ------- y : float The value of the PP (or its `d`'th derivative) at `X = x`. """ if np.isnan(x) or x < X[0] or X[-1] < x or
np.isnan(X[0])
numpy.isnan
import utils import utils1 import utils2 import utils3 import utils4 import config import os import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from sklearn.metrics import roc_curve, auc # os.environ['CUDA_VISIBLE_DEVICES']='0' # CUDA_VISIBLE_DEVICES=0 with open(os.path.join(config.datasetPath, "test.tsv"), "r", encoding='utf8') as f: lines = f.readlines() lines = [line.strip().split('\t') for line in lines] scores0 = [] label0 = [] text0 = [] length0 = [] # for line in tqdm(lines[1:8606]): for line in tqdm(lines[1:10000]): vec0 = utils.sent2vec(line[0]) vec1 = utils.sent2vec(line[1]) score = np.dot(vec0, vec1.T)[0, 0] scores0.append(score) label0.append(int(line[2])) text0.append((line[0], line[1])) length0.append((len(line[0]) + len(line[1])) / 2) scores0 = np.array(scores0) label0 = np.array(label0).astype(int) fpr, tpr, thresholds = roc_curve(label0, scores0) roc_auc=auc(fpr,tpr) print('distiluse-base-multilingual-cased-v1: ',roc_auc) plt.figure() lw = 2 plt.figure(figsize=(10,10)) plt.plot(fpr, tpr, color='darkorange', lw=lw, label='distiluse-base-multilingual-cased-v1 (area = %0.6f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC') # plt.legend(loc="lower right") # plt.show() # plt.hist(scores[label == 0]) # plt.show() # plt.hist(scores[label == 1]) # plt.show() scores2 = [] label2 = [] text2 = [] for line in tqdm(lines[1:10000]): vec0 = utils2.sent2vec(line[0]) vec1 = utils2.sent2vec(line[1]) score2 = np.dot(vec0, vec1.T)[0, 0] scores2.append(score2) label2.append(int(line[2])) text2.append((line[0], line[1])) scores2 = np.array(scores2) label2 = np.array(label2).astype(int) fpr, tpr, thresholds = roc_curve(label2, scores2) roc_auc=auc(fpr,tpr) print('distiluse-base-multilingual-cased-v2: ',roc_auc) # plt.figure(0).clf() lw = 2 # plt.figure(figsize=(10,10)) plt.plot(fpr, tpr, color='blue', lw=lw, label='distiluse-base-multilingual-cased-v2 (area = %0.2f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 scores3 = [] label3 = [] text3 = [] for line in tqdm(lines[1:10000]): vec0 = utils3.sent2vec(line[0]) vec1 = utils3.sent2vec(line[1]) score3 = np.dot(vec0, vec1.T)[0, 0] scores3.append(score3) label3.append(int(line[2])) text3.append((line[0], line[1])) scores3 = np.array(scores3) label3 = np.array(label3).astype(int) fpr, tpr, thresholds = roc_curve(label3, scores3) roc_auc=auc(fpr,tpr) print('all-distilroberta-v1: ',roc_auc) # plt.figure(0).clf() lw = 2 # plt.figure(figsize=(10,10)) plt.plot(fpr, tpr, color='green', lw=lw, label='all-distilroberta-v1 (area = %0.6f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 scores1 = [] label1 = [] text1 = [] length1 = [] # for line in tqdm(lines[1:8606]): for line in tqdm(lines[1:10000]): vec0 = utils1.sent2vec(line[0]) vec1 = utils1.sent2vec(line[1]) score1 = np.dot(vec0, vec1.T)[0, 0] scores1.append(score1) label1.append(int(line[2])) text1.append((line[0], line[1])) length1.append((len(line[0]) + len(line[1])) / 2) scores1 = np.array(scores1) label1 = np.array(label1).astype(int) fpr, tpr, thresholds = roc_curve(label1, scores1) roc_auc=auc(fpr,tpr) print('all-MiniLM-L6-v2: ',roc_auc) # plt.figure(0).clf() lw = 2 # plt.figure(figsize=(10,10)) plt.plot(fpr, tpr, color='red', lw=lw, label='all-MiniLM-L6-v2 (area = %0.6f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 # plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') # plt.xlim([0.0, 1.0]) # plt.ylim([0.0, 1.05]) # plt.xlabel('False Positive Rate') # plt.ylabel('True Positive Rate') # plt.title('ROC') # plt.legend(loc="lower right") # plt.show() # plt.hist(scores1[label1 == 0]) # plt.show() # plt.hist(scores1[label1 == 1]) # plt.show() # scores2 = [] # label2 = [] # text2 = [] # for line in tqdm(lines[1:2000]): # vec0 = utils2.sent2vec(line[0]) # vec1 = utils2.sent2vec(line[1]) # score2 = np.dot(vec0, vec1.T)[0, 0] # scores2.append(score2) # label2.append(int(line[2])) # text2.append((line[0], line[1])) # scores2 = np.array(scores2) # label2 = np.array(label2).astype(int) # fpr, tpr, thresholds = roc_curve(label2, scores2) # roc_auc=auc(fpr,tpr) # print('distiluse-base-multilingual-cased-v2: ',roc_auc) # # plt.figure(0).clf() # lw = 2 # # plt.figure(figsize=(10,10)) # plt.plot(fpr, tpr, color='blue', # lw=lw, label='distiluse-base-multilingual-cased-v2 (area = %0.2f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 # # # plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') # # # plt.xlim([0.0, 1.0]) # # # plt.ylim([0.0, 1.05]) # # # plt.xlabel('False Positive Rate') # # # plt.ylabel('True Positive Rate') # # # plt.title('ROC') # # # plt.legend(loc="lower right") # # # plt.show() # scores3 = [] # label3 = [] # text3 = [] # for line in tqdm(lines[1:2000]): # vec0 = utils3.sent2vec(line[0]) # vec1 = utils3.sent2vec(line[1]) # score3 = np.dot(vec0, vec1.T)[0, 0] # scores3.append(score3) # label3.append(int(line[2])) # text3.append((line[0], line[1])) # scores3 = np.array(scores3) # label3 = np.array(label3).astype(int) # fpr, tpr, thresholds = roc_curve(label3, scores3) # roc_auc=auc(fpr,tpr) # print('all-distilroberta-v1: ',roc_auc) # # plt.figure(0).clf() # lw = 2 # # plt.figure(figsize=(10,10)) # plt.plot(fpr, tpr, color='green', # lw=lw, label='all-distilroberta-v1 (area = %0.6f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线 # # plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') # # plt.xlim([0.0, 1.0]) # # plt.ylim([0.0, 1.05]) # # plt.xlabel('False Positive Rate') # # plt.ylabel('True Positive Rate') # # plt.title('ROC') # # plt.legend(loc="lower right") # # plt.show() scores4 = [] label4 = [] text4 = [] for line in tqdm(lines[1:10000]): vec0 = utils4.sent2vec(line[0]) vec1 = utils4.sent2vec(line[1]) score4 =
np.dot(vec0, vec1.T)
numpy.dot
import numpy as np import unittest from unittest.mock import patch from status import BallDirection, BallStatus, FieldStatus, LateralDirection, Possession from matrix import HOME_TEAM_MOVING_STATUS, HOME_TEAM_GOAL_STATUS from data import Skills, Team from field import FIELD_CENTER_X, FIELD_CENTER_Y, FIELD_MAX_X, FIELD_MIN_X, Position from game_matrix import GameMatrix class TestGameMatrix(unittest.TestCase): def setUp(self): self.home_team = Team( name = "AAA", forwards = Skills(0.5, 0.5, 0.5), mid_field = Skills(0.5, 0.5, 0.5), backs = Skills(0.5, 0.5, 0.5), ruck = Skills(0.5, 0.5, 0.5) ) self.away_team = Team( name = "BBB", forwards = Skills(0.5, 0.5, 0.5), mid_field = Skills(0.5, 0.5, 0.5), backs = Skills(0.5, 0.5, 0.5), ruck = Skills(0.5, 0.5, 0.5) ) def set_numpy_side_effect(self, field_status, ball_direction, lateral_direction): return [
np.array([field_status])
numpy.array
import numpy as np from numpy import exp from scipy.special import gammaln from ConfirmatoryLDA.utils import _dirichlet_expectation_2d, _dirichlet_expectation_1d EPS = np.finfo(np.float).eps class CLDA_VI: def __init__(self, alpha, eta, K, eta_seed=None, eta_not_seed=None, seed_words=None, confirmatory=None, evaluate_every=10): self.alpha = alpha # hyperparameter; dimension: T * 1 but assume symmetric prior if confirmatory: self.eta_ordinary = eta # hyperparameter; dimension: M * 1 but assume symmetric prior else: self.eta = eta self.eta_seed = eta_seed self.eta_not_seed = eta_not_seed self.seed_words = seed_words self.K = K self.evaluate_every = evaluate_every self.confirmatory = confirmatory self.perplexity = [] def _init_params(self, X, cv): ''' Initialize parameters for LDA This is variational free parameters each endowed to variational distribution q(Z_{di} = k) ~ Multi(phi_{dwk}) q(theta_d) ~ Dir(gamma_d) q(beta_k) ~ Dir(lambda_k) ''' self.w2idx = cv.vocabulary_ self.idx2w = {val: key for key, val in self.w2idx.items()} self.D, self.V = X.shape self.Nd = [len(np.nonzero(X[doc, :])[0]) for doc in range(self.D)] if self.confirmatory: self.seed_word_index = [] # change words in seed_words dictionary to index for key in self.seed_words.keys(): # filter seed words existing in corpus vocabulary self.seed_words[key] = [i for i in self.seed_words[key] if i in list(self.w2idx.keys())] self.seed_words[key] = [self.w2idx[i] for i in self.seed_words[key]] self.seed_word_index += self.seed_words[key] self.seed_word_index = list(set(self.seed_word_index)) # make asseymmetric prior for word-topic distribution # different by each topic self.eta = self.eta_ordinary *
np.ones((self.K, self.V))
numpy.ones
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# import sys, os from unittest.mock import patch sys.path.append(os.path.abspath("..")) # current folder is ~/tests from idaes.core.surrogate.pysmo.polynomial_regression import ( PolynomialRegression, FeatureScaling, ) import numpy as np import pandas as pd import pytest class TestFeatureScaling: test_data_1d = [[x] for x in range(10)] test_data_2d = [[x, (x + 1) ** 2] for x in range(10)] test_data_3d = [[x, x + 10, (x + 1) ** 2 + x + 10] for x in range(10)] test_data_3d_constant = [[x, 10, (x + 1) ** 2 + 10] for x in range(10)] @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_01(self, array_type): input_array = array_type(self.test_data_1d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9]]) expected_output_2 = np.array([[0]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal( output_1, np.array(expected_output_1).reshape(10, 1) ) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_02(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 100]]) expected_output_2 = np.array([[0, 1]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_03(self, array_type): input_array = array_type(self.test_data_3d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 19, 119]]) expected_output_2 = np.array([[0, 10, 11]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_04(self, array_type): input_array = array_type(self.test_data_3d_constant) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 10, 110]]) expected_output_2 = np.array([[0, 10, 11]]) scale = expected_output_3 - expected_output_2 scale[scale == 0.0] = 1.0 expected_output_1 = (input_array - expected_output_2) / scale np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [list]) def test_data_scaling_05(self, array_type): input_array = array_type(self.test_data_2d) with pytest.raises(TypeError): FeatureScaling.data_scaling(input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_01(self, array_type): input_array = array_type(self.test_data_1d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) output_1 = output_1.reshape( output_1.shape[0], ) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array.reshape(10, 1)) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_02(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_03(self, array_type): input_array = array_type(self.test_data_3d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_04(self, array_type): input_array = array_type(self.test_data_3d_constant) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_05(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) min_array = np.array([[1]]) max_array = np.array([[5]]) with pytest.raises(IndexError): FeatureScaling.data_unscaling(output_1, min_array, max_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_06(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) min_array = np.array([[1, 2, 3]]) max_array = np.array([[5, 6, 7]]) with pytest.raises(IndexError): FeatureScaling.data_unscaling(output_1, min_array, max_array) class TestPolynomialRegression: y = np.array( [ [i, j, ((i + 1) ** 2) + ((j + 1) ** 2)] for i in np.linspace(0, 10, 21) for j in np.linspace(0, 10, 21) ] ) full_data = {"x1": y[:, 0], "x2": y[:, 1], "y": y[:, 2]} training_data = [ [i, j, ((i + 1) ** 2) + ((j + 1) ** 2)] for i in np.linspace(0, 10, 5) for j in np.linspace(0, 10, 5) ] test_data = [[i, (i + 1) ** 2] for i in range(10)] test_data_large = [[i, (i + 1) ** 2] for i in range(200)] test_data_1d = [[(i + 1) ** 2] for i in range(10)] test_data_3d = [[i, (i + 1) ** 2, (i + 2) ** 2] for i in range(10)] sample_points = [[i, (i + 1) ** 2] for i in range(8)] sample_points_large = [[i, (i + 1) ** 2] for i in range(100)] sample_points_1d = [[(i + 1) ** 2] for i in range(8)] sample_points_3d = [[i, (i + 1) ** 2, (i + 2) ** 2] for i in range(8)] @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__01(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) assert PolyClass.max_polynomial_order == 5 assert ( PolyClass.number_of_crossvalidations == 3 ) # Default number of cross-validations assert PolyClass.no_adaptive_samples == 4 # Default number of adaptive samples assert PolyClass.fraction_training == 0.75 # Default training split assert ( PolyClass.max_fraction_training_samples == 0.5 ) # Default fraction for the maximum number of training samples assert PolyClass.max_iter == 10 # Default maximum number of iterations assert PolyClass.solution_method == "pyomo" # Default solution_method assert PolyClass.multinomials == 1 # Default multinomials @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) @pytest.mark.unit def test__init__02(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=5, no_adaptive_samples=6, training_split=0.5, max_fraction_training_samples=0.4, max_iter=20, solution_method="MLe", multinomials=0, ) assert PolyClass.max_polynomial_order == 3 assert ( PolyClass.number_of_crossvalidations == 5 ) # Default number of cross-validations assert PolyClass.no_adaptive_samples == 6 # Default number of adaptive samples assert PolyClass.fraction_training == 0.5 # Default training split assert ( PolyClass.max_fraction_training_samples == 0.4 ) # Default fraction for the maximum number of training samples assert PolyClass.max_iter == 20 # Default maximum number of iterations assert ( PolyClass.solution_method == "mle" ) # Default solution_method, doesn't matter lower / upper characters assert PolyClass.multinomials == 0 # Default multinomials @pytest.mark.unit @pytest.mark.parametrize("array_type1", [list]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__03(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(ValueError): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [list]) def test__init__04(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(ValueError): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__05(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points_large) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__06(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_3d) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__07(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points_3d) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__08(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_1d) regression_data_input = array_type2(self.sample_points_1d) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__09(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.warns(Warning): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, number_of_crossvalidations=11, ) assert ( PolyClass.number_of_crossvalidations == 11 ) # Default number of cross-validations @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__10(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=1.2 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__11(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_large) regression_data_input = array_type2(self.sample_points_large) with pytest.warns(Warning): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=11 ) assert PolyClass.max_polynomial_order == 10 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__12(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__13(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=-1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__14(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_fraction_training_samples=1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__15(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_fraction_training_samples=-1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__16(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( regression_data_input, regression_data_input, maximum_polynomial_order=5, max_iter=100, ) assert PolyClass.max_iter == 0 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__17(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, no_adaptive_samples=0, max_iter=100, ) assert PolyClass.max_iter == 0 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__18(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, number_of_crossvalidations=1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__19(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, no_adaptive_samples=4.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__20(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_iter=4.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__21(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=15 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__22(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__23(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method="idaes", ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__24(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, multinomials=3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__25(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=-2 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__26(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__27(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, no_adaptive_samples=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__28(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, max_iter=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__29(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, overwrite=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__30(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname="solution.pkl", ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__31(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=1, ) @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__32(self, array_type1, array_type2): file_name = "sol_check.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolyClass2 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name, overwrite=True, ) assert PolyClass1.filename == PolyClass2.filename @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__33(self, array_type1, array_type2): file_name1 = "sol_check1.pickle" file_name2 = "sol_check2.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name1, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolyClass2 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name2, overwrite=True, ) assert PolyClass1.filename == file_name1 assert PolyClass2.filename == file_name2 @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__34(self, array_type1, array_type2): file_name = "sol_check.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, fname=file_name, maximum_polynomial_order=3, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolygClass2 = PolynomialRegression( original_data_input, regression_data_input, fname=file_name, maximum_polynomial_order=3, overwrite=True, ) assert PolyClass1.filename == PolygClass2.filename @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test_training_test_data_creation_01(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=0.01, ) with pytest.raises(Exception): training_data, cross_val_data = PolyClass.training_test_data_creation() @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test_training_test_data_creation_02(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=0.99, ) with pytest.raises(Exception): training_data, cross_val_data = PolyClass.training_test_data_creation() @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_03(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) training_data, cross_val_data = PolyClass.training_test_data_creation() expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations assert len(cross_val_data) == PolyClass.number_of_crossvalidations for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_04(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=5, no_adaptive_samples=6, training_split=0.5, max_fraction_training_samples=0.4, max_iter=20, solution_method="MLe", multinomials=0, ) training_data, cross_val_data = PolyClass.training_test_data_creation() expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations assert len(cross_val_data) == PolyClass.number_of_crossvalidations for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_05(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) additional_data_input = np.array( [ [ i**2, ((i + 1) * 2) + ((j + 1) * 2), j**4, ((i + 1) * 2) + ((j + 1) ** 2), ] for i in range(5) for j in range(5) ] ) training_data, cross_val_data = PolyClass.training_test_data_creation( additional_features=additional_data_input ) expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations * 2 assert len(cross_val_data) == PolyClass.number_of_crossvalidations * 2 for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert ( training_data["training_extras_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size assert ( cross_val_data["test_extras_" + str(i)].shape[0] == expected_test_size ) concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) concat_02 = np.concatenate( ( training_data["training_extras_" + str(i)], cross_val_data["test_extras_" + str(i)], ), axis=0, ) additional_data_sorted = additional_data_input[ np.lexsort( ( additional_data_input[:, 3], additional_data_input[:, 2], additional_data_input[:, 1], additional_data_input[:, 0], ) ) ] concat_02_sorted = concat_02[ np.lexsort( (concat_02[:, 3], concat_02[:, 2], concat_02[:, 1], concat_02[:, 0]) ) ] np.testing.assert_equal(additional_data_sorted, concat_02_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_01(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=1 ) poly_degree = 1 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 4 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] * x_input_train_data[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_02(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=2 ) poly_degree = 2 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 6 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] ** 2 expected_output[:, 4] = x_input_train_data[:, 1] ** 2 expected_output[:, 5] = x_input_train_data[:, 0] * x_input_train_data[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_03(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=10 ) poly_degree = 10 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 22 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] ** 2 expected_output[:, 4] = x_input_train_data[:, 1] ** 2 expected_output[:, 5] = x_input_train_data[:, 0] ** 3 expected_output[:, 6] = x_input_train_data[:, 1] ** 3 expected_output[:, 7] = x_input_train_data[:, 0] ** 4 expected_output[:, 8] = x_input_train_data[:, 1] ** 4 expected_output[:, 9] = x_input_train_data[:, 0] ** 5 expected_output[:, 10] = x_input_train_data[:, 1] ** 5 expected_output[:, 11] = x_input_train_data[:, 0] ** 6 expected_output[:, 12] = x_input_train_data[:, 1] ** 6 expected_output[:, 13] = x_input_train_data[:, 0] ** 7 expected_output[:, 14] = x_input_train_data[:, 1] ** 7 expected_output[:, 15] = x_input_train_data[:, 0] ** 8 expected_output[:, 16] = x_input_train_data[:, 1] ** 8 expected_output[:, 17] = x_input_train_data[:, 0] ** 9 expected_output[:, 18] = x_input_train_data[:, 1] ** 9 expected_output[:, 19] = x_input_train_data[:, 0] ** 10 expected_output[:, 20] = x_input_train_data[:, 1] ** 10 expected_output[:, 21] = x_input_train_data[:, 0] * x_input_train_data[:, 1]
np.testing.assert_equal(output_1, expected_output)
numpy.testing.assert_equal
#!/usr/bin/python """ atom_energy_reporter.py MIT License Copyright (c) 2018 Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and Authors Authors: <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from openmmtools import testsystems import mdtraj as md import netCDF4 from netCDF4 import Dataset import warnings import time # NOTE: # - currently only the most common energy were implemented # TODO: # - implement AMOEBA forces class AtomEnergyReporter(object): """ AtomEnergyReporter outputs information about every atom in a simulation, including the energy breakdown, to a file. to use it, create an AtomEnergyReporter, then add it to the list of reporters of the list of the Simulation. by default the data is written in CSV format. this module is written in order to implement the algorithm developed by <NAME> and <NAME> in University of Cambridge. this calculates the Eq.11 in the paper: $$ u_{X_a} = \\ \frac12(u_{electrostaic} + u_{Lennard-Jones} + u_{bonded} + u_{Urey-Bradley}) \\ + \frac13 u_{angle} \\ + \frac14 u_{dihedral} + u_{improper} $$ further data analysis is needed ref: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00027 """ def __init__(self, file_path, reportInterval, idxs = None): """ create a AtomEnergyReporter parameters ---------- file : a string the file to write to reportInterval : int the interval at which to write """ self._reportInterval = reportInterval self.idxs = idxs self.force_map = { 'AmoebaAngleForce' : self.analyze_amoeba_angle_force, 'AmoebaBondForce' : self.analyze_amoeba_bond_force, 'AmoebaGeneralizedKirkwoodForce' : self.analyze_amoeba_generalized_kirkwood_force, 'AmoebaInPlaneAngleForce' : self.analyze_amoeba_in_plane_angle_force, 'AmoebaMultipoleForce' : self.analyze_amoeba_multipole_force, 'AmoebaOutOfPlaneBendForce' : self.analyze_amoeba_out_of_plane_bend_force, 'AmoebaPiTorsionForce' : self.analyze_amoeba_pi_torsion_force, 'AmoebaStretchBendForce' : self.analyze_amoeba_stretch_bend_force, 'AmoebaTorsionTorsionForce' : self.analyze_amoeba_torsion_torsion_force, 'AmoebaVdwForce' : self.analyze_amoeba_vdw_force, 'AmoebaWcaDispersionForce' : self.analyze_amoeba_wca_dispersion_force, 'AndersenThermostat' : self.analyze_andersen_thermostat, 'CMAPTorsionForce' : self.analyze_cmap_torsion_force, 'CMMotionRemover' : self.analyze_cmm_motion_remover, 'CustomAngleForce' : self.analyze_custom_angle_force, 'CustomBondForce' : self.analyze_custom_bond_force, 'CustomCVForce' : self.analyze_custom_cv_force, 'CustomCentroidBondForce' : self.analyze_centroid_bond_force, 'CustomCompoundBondForce' : self.analyze_custom_compound_bond_force, 'CustomExternalForce' : self.analyze_custom_external_force, 'CustomGBForce' : self.analyze_gb_force, 'CustomHbondForce' : self.analyze_hbond_force, 'CustomManyParticleForce' : self.analyze_custom_many_particle_force, 'CustomNonbondedForce' : self.analyze_custom_nonbonded_force, 'CustomTorsionForce' : self.analyze_custom_torsion_force, 'DrudeForce' : self.analyze_drude_force, 'GBSAOBCForce' : self.analyze_gbsaobc_force, 'GayBerneForce' : self.analyze_gay_berne_force, 'HarmonicAngleForce' : self.analyze_harmonic_angle_force, 'HarmonicBondForce' : self.analyze_harmonic_bond_force, 'MonteCarloAnisotropicBarostat' : self.analyze_monte_carlo_anisotropic_barostat, 'MonteCarloBarostat' : self.analyze_monte_carlo_barostat, 'MonteCarloMembraneBarostat' : self.analyze_monte_carlo_membrane_barostat, 'NonbondedForce' : self.analyze_nonbonded_force, 'PeriodicTorsionForce' : self.analyze_periodic_torsion_force, 'RBTorsionForce' : self.analyze_rb_torsion_force, 'RPMDMonteCarloBarostat' : self.analyze_rpmd_monte_carlo_barostat } # create a netCDF4 Dataset to record the energy self._out = Dataset(file_path ,'w') self._out.createDimension("time", None) times = self._out.createVariable("time", "i8", ("time",)) times.unit = str(self._reportInterval) self.time = 0 # let the analyzer register for once self.registered = False def describeNextReport(self, simulation): """ adopted from: openmm/wrappers/python/simtk/openmm/app/statedatareporter.py Get information about the next report this object will generate. Parameters ---------- simulation : Simulation The Simulation to generate a report for Returns ------- tuple A five element tuple. The first element is the number of steps until the next report. The remaining elements specify whether that report will require positions, velocities, forces, and energies respectively. """ steps = self._reportInterval - simulation.currentStep%self._reportInterval return (steps, True, False, True, True) def report(self, simulation, state): """ generate a report parameters ---------- simulation : an OpenMM simulation object state : an OpenMM state object """ # find the small molecule to analyze if self.registered == False: # if the system is not registered, register the system if self.idxs == None: self.find_small_mol(simulation, state) # set the attributes in Dataset self._out.description = 'record of an OpenMM run' self._out.history = 'created ' + time.ctime(time. time()) # initialize the Dataset self._out.createDimension("atom", len(self.idxs)) self._out.createVariable("atom", "i8", ("atom", )) atoms_name = ["idx = %s; mass = %s" % (idx, simulation.system.getParticleMass(idx)) for idx in self.idxs] self._out.setncattr('atoms_name', atoms_name) # get the forces self.forces = simulation.system.getForces() self.force_idx_mapping = [force for force in self.forces] forces_name = [force.__class__.__name__ for force in self.forces] self._out.setncattr('forces_name', forces_name) # create a force dimension, using idxs # and initialize the forces self._out.createDimension("force", len(self.forces)) self._out.createVariable("force", "i8", ("force", )) # initialize the energy variable # that stands on the dimensions of: time, atom, and force self.energy_var = self._out.createVariable("energy", "f4", ("time", "atom", "force")) self.energy_var.units = 'kJ/mol' # keep a copy of all the positions self._out.createDimension("xyz", 3) self.pos_var = self._out.createVariable("pos", "f4", ("time", "atom", "xyz")) # keep a copy of the parameters of atoms param_array = np.zeros((len(self.idxs), 3)) for force in self.forces: if force.__class__.__name__ == "NonbondedForce": for idx in self.idxs: charge, sigma, epsilon = force.getParticleParameters(idx) param_array[idx, 0], param_array[idx, 1], param_array[idx, 2] = charge._value, sigma._value, epsilon._value # note that the units here are: elementary charge, nanometer, kilojoule/mole self._out.setncattr('param_array', param_array) # set the registered flag to True, # since you only need to do this once self.registered = True # point these objects to the class, and update them self.simulation = simulation self.state = state # get the positions of the small molecules self.pos = tuple([state.getPositions()[idx] for idx in self.idxs]) pos_matrix = np.array([state.getPositions(asNumpy=True)[idx]._value for idx in self.idxs]) self.pos_var[self.time, :, :] = pos_matrix # analyze each force in the system for force_idx, force in enumerate(self.force_idx_mapping): energy_dict = self.get_energy(force) if energy_dict == None: warnings.warn("no force information could be extracted from %s" % force.__class__.__name__) continue for atom_idx, energy in energy_dict.items(): self.energy_var[self.time, atom_idx, force_idx] = energy._value # note that the unit here is kilojoule/mole # increase the time dimension by one self.time += 1 def find_small_mol(self, simulation, state): """ find the atoms of the smallest molecule, which is most likely to be the region of greates interest for a simulation parameters ---------- simulation : an OpenMM Simulation object state : an OpenMM State object returns ------- atoms : a tuple of indicies of atoms that belongs to the small molecule """ context = simulation.context mols = context.getMolecules() small_mol = sorted([mol for mol in mols if len(mol) > 4], key = lambda mol : len(mol), reverse = False)[0] # register the atoms and idxs in the class self.idxs = small_mol return small_mol def get_energy(self, force): """ anlyzes force and return the energy, to be more specific, match the force with a certain type of analysis function """ name = str(force.__class__.__name__) # get the name of the force energy_dict = self.force_map[name](force) # map the force to its specific analyze function and get the energy return energy_dict ################################################# # herlper functions to calculate distance, angles, # and dihedral angels from positions of atoms ################################################# def dist(self, atom0, atom1): """ calculate the distance between two atoms require that self.pos is defined parameters ---------- atom0 : the idx of the first atom atom1 : the idx of the second atom returns ------- dist : a float representing the distance between the two atoms """ pos0 = self.pos[atom0] pos1 = self.pos[atom1] dist = np.linalg.norm(pos0 - pos1) return dist def angle(self, center_atom, atom0, atom1): """ calculate the angle between bond: center_atom -- atom0 and center_atom -- atom1 $ cos(<v0, v1>) = (v0 \dot v1) / |v0||v1| $ parameters ---------- center_atom : the idx of the center atom atom0 : the idx of the first atom involved in the angle atom1 : the idx of the second atom involved in the angle returns ------- angle : the value of the angle in rads """ # get all the positions pos_center = self.pos[center_atom] pos0 = self.pos[atom0] pos1 = self.pos[atom1] # express the distance in vectors v0 = np.array(pos0) - np.array(pos_center) v1 = np.array(pos1) - np.array(pos_center) # to calculate: # $ cos(<v0, v1>) = (v0 \dot v1) / |v0||v1| $ v0_dot_v1 = np.dot(v0, v1) v0_norm = np.linalg.norm(v0) v1_norm =
np.linalg.norm(v1)
numpy.linalg.norm
import numpy from .geometry import ( spatial, area as _area, centroid as _centroid, contains as _contains, bbox as _bbox, prepare_hull as _prepare_hull, HULL_TYPES, ) # ------------------------------------------------------------ # # Utilities # # ------------------------------------------------------------ # def parse_size_and_intensity(hull, intensity=None, size=None): """ Given a hull, an intensity, and a size int/tuple, correctly compute the resulting missing quantities. Defaults to 100 points in one replication, meaning the intensity will be computed on the fly if nothing is provided. Parameters ---------- hull : A geometry-like object This encodes the "space" in which to simulate the normal pattern. All points will lie within this hull. Supported values are: - a bounding box encoded in a numpy array as numpy.array([xmin, ymin, xmax, ymax]) - an (N,2) array of points for which the bounding box will be computed & used - a shapely polygon/multipolygon - a pygeos geometry - a scipy convexh hull intensity : float the number of observations per unit area in the hull to use. If provided, then the number of observations is determined using the intensity * area(hull) and the size is assumed to represent n_replications (if provided). size : tuple or int a tuple of (n_observations, n_replications), where the first number is the number of points to simulate in each replication and the second number is the number of total replications. So, (10, 4) indicates 10 points, 4 times. If an integer is provided and intensity is None, n_replications is assumed to be 1. If size is an integer and intensity is also provided, then size indicates n_replications, and the number of observations is computed on the fly using intensity and area. """ if size is None: if intensity is not None: # if intensity is provided, assume # n_observations n_observations = int(_area(hull) * intensity) else: # default to 100 points n_observations = 100 intensity = n_observations / _area(hull) n_simulations = 1 size = (n_observations, n_simulations) elif isinstance(size, tuple): if len(size) == 2 and intensity is None: n_observations, n_simulations = size intensity = n_observations / _area(hull) elif len(size) == 2 and intensity is not None: raise ValueError( "Either intensity or size as (n observations, n simulations)" " can be provided. Providing both creates statistical conflicts." " between the requested intensity and implied intensity by" " the number of observations and the area of the hull. If" " you want to specify the intensity, use the intensity argument" " and set size equal to the number of simulations." ) else: raise ValueError( f"Intensity and size not understood. Provide size as a tuple" f" containing (number of observations, number of simulations)" f" with no specified intensity, or an intensity and size equal" f" to the number of simulations." f" Recieved: `intensity={intensity}, size={size}`" ) elif isinstance(size, int): # assume int size with specified intensity means n_simulations at x intensity if intensity is not None: n_observations = int(intensity * _area(hull)) n_simulations = size else: # assume we have one replication at the specified number of points n_simulations = 1 n_observations = size intensity = n_observations / _area(hull) else: raise ValueError( f"Intensity and size not understood. Provide size as a tuple" f" containing (number of observations, number of simulations)" f" with no specified intensity, or an intensity and size equal" f" to the number of simulations." f" Recieved: `intensity={intensity}, size={size}`" ) return (n_observations, n_simulations, intensity) # ------------------------------------------------------------ # # Distributions # # ------------------------------------------------------------ # def poisson(hull, intensity=None, size=None): """ Simulate a poisson random point process with a specified intensity. Parameters ---------- hull : A geometry-like object This encodes the "space" in which to simulate the normal pattern. All points will lie within this hull. Supported values are: - a bounding box encoded in a numpy array as numpy.array([xmin, ymin, xmax, ymax]) - an (N,2) array of points for which the bounding box will be computed & used - a shapely polygon/multipolygon - a pygeos geometry - a scipy convexh hull intensity : float the number of observations per unit area in the hull to use. If provided, then size must be an integer describing the number of replications to use. size : tuple or int a tuple of (n_observations, n_replications), where the first number is the number of points to simulate in each replication and the second number is the number of total replications. So, (10, 4) indicates 10 points, 4 times. If an integer is provided and intensity is None, n_replications is assumed to be 1. If size is an integer and intensity is also provided, then size indicates n_replications, and the number of observations is computed from the intensity. Returns -------- : numpy.ndarray either an (n_replications, n_observations, 2) or (n_observations,2) array containing the simulated realizations. """ if isinstance(hull, numpy.ndarray): if hull.shape == (4,): hull = hull else: hull = _prepare_hull(hull) n_observations, n_simulations, intensity = parse_size_and_intensity( hull, intensity=intensity, size=size ) result = numpy.empty((n_simulations, n_observations, 2)) bbox = _bbox(hull) for i_replication in range(n_simulations): generating = True i_observation = 0 while i_observation < n_observations: x, y = ( numpy.random.uniform(bbox[0], bbox[2]), numpy.random.uniform(bbox[1], bbox[3]), ) if _contains(hull, x, y): result[i_replication, i_observation] = (x, y) i_observation += 1 return result.squeeze() def normal(hull, center=None, cov=None, size=None): """ Simulate a multivariate random normal point cluster Parameters ---------- hull : A geometry-like object This encodes the "space" in which to simulate the normal pattern. All points will lie within this hull. Supported values are: - a bounding box encoded in a numpy array as numpy.array([xmin, ymin, xmax, ymax]) - an (N,2) array of points for which the bounding box will be computed & used - a shapely polygon/multipolygon - a pygeos geometry - a scipy convexh hull center : iterable of shape (2, ) A point where the simulations will be centered. cov : float or a numpy array of shape (2,2) either the standard deviation of an independent and identically distributed normal distribution, or a 2 by 2 covariance matrix expressing the covariance of the x and y for the distribution. Default is half of the width or height of the hull's bounding box, whichever is larger. size : tuple or int a tuple of (n_observations, n_replications), where the first number is the number of points to simulate in each replication and the second number is the number of total replications. So, (10, 4) indicates 10 points, 4 times. If an integer is provided, n_replications is assumed to be 1. Returns -------- : numpy.ndarray either an (n_replications, n_observations, 2) or (n_observations,2) array containing the simulated realizations. """ if isinstance(hull, numpy.ndarray): if hull.shape == (4,): hull = hull else: hull = _prepare_hull(hull) if center is None: center = _centroid(hull) n_observations, n_simulations, intensity = parse_size_and_intensity( hull, intensity=None, size=size ) if cov is None: bbox = _bbox(hull) width = bbox[2] - bbox[0] height = bbox[3] - bbox[1] cov = numpy.maximum(width / 2, height / 2) ** 2 if isinstance(cov, (int, float)): sd = cov cov = numpy.eye(2) * sd elif isnstance(cov, numpy.ndarray): if cov.ndim == 2: assert cov.shape == (2, 2), "Bivariate covariance matrices must be 2 by 2" elif cov.ndim == 3: assert cov.shape[1:] == ( 2, 2, ), "3-dimensional covariance matrices must have shape (n_simulations, 2,2)" assert ( cov.shape[0] == n_simulations ), "3-dimensional covariance matrices must have shape (n_simulations, 2,2)" else: raise ValueError( "`cov` argument must be a float (signifying a standard deviation)" " or a 2 by 2 array expressing the covariance matrix of the " " bivariate normal distribution." ) result = numpy.empty((n_simulations, n_observations, 2)) bbox = _bbox(hull) for i_replication in range(n_simulations): generating = True i_observation = 0 replication_cov = cov[i] if cov.ndim == 3 else cov replication_sd = numpy.diagonal(replication_cov) ** 0.5 replication_cor = (1 / replication_sd) * replication_cov * (1 / replication_sd) while i_observation < n_observations: candidate = numpy.random.multivariate_normal((0, 0), replication_cor) x, y = center + candidate * replication_sd if _contains(hull, x, y): result[i_replication, i_observation] = (x, y) i_observation += 1 return result.squeeze() def cluster_poisson( hull, intensity=None, size=None, n_seeds=2, cluster_radius=None, ): """ Simulate a cluster poisson random point process with a specified intensity & number of seeds. A cluster poisson process is a poisson process where the center of each "cluster" is itself distributed according to a spatial poisson process. Parameters ---------- hull : A geometry-like object This encodes the "space" in which to simulate the normal pattern. All points will lie within this hull. Supported values are: - a bounding box encoded in a numpy array as numpy.array([xmin, ymin, xmax, ymax]) - an (N,2) array of points for which the bounding box will be computed & used - a shapely polygon/multipolygon - a pygeos geometry - a scipy convexh hull intensity : float the number of observations per unit area in the hull to use. If provided, then size must be an integer describing the number of replications to use. size : tuple or int a tuple of (n_observations, n_replications), where the first number is the number of points to simulate in each replication and the second number is the number of total replications. So, (10, 4) indicates 10 points, 4 times. If an integer is provided and intensity is None, n_replications is assumed to be 1. If size is an integer and intensity is also provided, then size indicates n_replications, and the number of observations is computed from the intensity. n_seeds : int the number of sub-clusters to use. cluster_radius : float or iterable the radius of each cluster. If a float, the same radius is used for all clusters. If an array, then there must be the same number of radii as clusters. If None, 50% of the minimum inter-point distance is used, which may fluctuate across replications. Returns -------- : numpy.ndarray either an (n_replications, n_observations, 2) or (n_observations,2) array containing the simulated realizations. """ if isinstance(hull, numpy.ndarray): if hull.shape == (4,): hull = hull else: hull = _prepare_hull(hull) if isinstance(cluster_radius, numpy.ndarray): cluster_radii = cluster_radius.flatten() assert len(cluster_radii) == n_seeds, ( f"number of radii provided ({len(cluster_radii)})" f"does not match number of clusters requested" f" ({n_seeds})." ) elif isinstance(cluster_radius, (int, float)): cluster_radii = [cluster_radius] * n_seeds n_observations, n_simulations, intensity = parse_size_and_intensity( hull, intensity=intensity, size=size ) result =
numpy.empty((n_simulations, n_observations, 2))
numpy.empty
import numpy import os import sys sys.path.append(os.getcwd()) import numpy as np import pandas as pd import torch import configparser from all_parameters_sentiment import get_all_parameters import torch.nn.functional as F from torch.autograd import Variable import torch.nn as nn import torch.optim as optim from workspace_cls_kw import SENT_WORDID, SENT_LABELID, SENT_WORD_MASK, SENT_ORIGINAL_TXT, KWS_IDS, KWS_IDF from torch.utils.data import Dataset, DataLoader, RandomSampler, SubsetRandomSampler import argparse from utils_torch_cls_kw import compute_values, get_data, compute_values_eval from experiment_imax_kw_sentiment import RunExperiment from workspace_cls_kw import workspace from model_imax_kw_sentiment import * from vocabulary_cls import get_word_info import math import random from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import nltk nltk.data.path.append("/content/nltk_data/") import re import string from gensim.models.word2vec import Word2Vec, LineSentence from gensim.scripts.glove2word2vec import glove2word2vec from gensim.models.keyedvectors import KeyedVectors import fasttext import fasttext.util from gensim.models.fasttext import load_facebook_model from gensim.models.fasttext import FastText as FT_gensim from gensim.test.utils import datapath from gensim.models.doc2vec import Doc2Vec, TaggedDocument from random import shuffle from wikipedia2vec import Wikipedia2Vec from pprint import pprint from copy import deepcopy import time from datetime import datetime, timedelta from gensim import utils, matutils # NLTK Stop words from gensim.utils import simple_preprocess from nltk.corpus import stopwords stop_words = stopwords.words('english') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") import _pickle as cPickle def read_pickle(filepath, filename): f = open(os.path.join(filepath, filename), 'rb') read_file = cPickle.load(f) f.close() return read_file def save_pickle(filepath, filename, data): f = open(os.path.join(filepath, filename), 'wb') cPickle.dump(data, f) print(" file saved to: %s"%(os.path.join(filepath, filename))) f.close() def get_stop_words(stop_file_path): """load stop words """ with open(stop_file_path, 'r', encoding="utf-8") as f: stopwords = f.readlines() stop_set = set(m.strip() for m in stopwords) return frozenset(stop_set) def cleaning_text(txt): punct = ''.join([p for p in string.punctuation]) txt = txt.replace('i.e.', 'id est') txt = txt.replace('e.g.', 'exempli gratia') txt = txt.lower().replace('q&a', 'question and answer') txt = txt.replace('&', 'and') txt = re.sub(r'@\w+', '', txt) txt = re.sub(r'[-+]?[.\d]*[\d]+[:,.\d]*', '', txt) txt = re.sub(r'[^\x00-\x7f]', '', txt) txt = re.sub(r'\b\w{1}\b', '', txt) txt = re.sub(r'\b\w{20.1000}\b', '', txt) regex = re.compile('[%s]' % re.escape(punct)) txt = regex.sub(' ', txt) txt = ' '.join(txt.split()) return txt def sort_coo(coo_matrix): tuples = zip(coo_matrix.col, coo_matrix.data) return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True) def extract_topn_from_vector(feature_names, sorted_items, topn=10): """get the feature names and tf-idf score of top n items""" #use only topn items from vector sorted_items = sorted_items[:topn] score_vals = [] feature_vals = [] for idx, score in sorted_items: fname = feature_names[idx] #keep track of feature name and its corresponding score score_vals.append(round(score, 3)) feature_vals.append(feature_names[idx]) #create a tuples of feature,score #results = zip(feature_vals,score_vals) results= {} for idx in range(len(feature_vals)): results[feature_vals[idx]]=score_vals[idx] return results def get_amazondata(): xdat = [] PATH = '/content/protoinfomax/data/AmazonDat/' print("Processing Apps_for_Android ...") sys.stdout.flush() with open(PATH+'train/Apps_for_Android.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Beauty ...") sys.stdout.flush() with open(PATH+'train/Beauty.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Books ...") sys.stdout.flush() with open(PATH+'train/Books.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing CDs_and_Vinyl ...") sys.stdout.flush() with open(PATH+'train/CDs_and_Vinyl.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Cell_Phones_and_Accessories ...") sys.stdout.flush() with open(PATH+'train/Cell_Phones_and_Accessories.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Clothing_Shoes_and_Jewelry ...") sys.stdout.flush() with open(PATH+'train/Clothing_Shoes_and_Jewelry.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Electronics ...") sys.stdout.flush() with open(PATH+'train/Electronics.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Health_and_Personal_Care ...") sys.stdout.flush() with open(PATH+'train/Health_and_Personal_Care.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Home_and_Kitchen ...") sys.stdout.flush() with open(PATH+'train/Home_and_Kitchen.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Kindle_Store ...") sys.stdout.flush() with open(PATH+'train/Kindle_Store.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Movies_and_TV ...") sys.stdout.flush() with open(PATH+'train/Movies_and_TV.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Office_Products ...") sys.stdout.flush() with open(PATH+'train/Office_Products.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Sports_and_Outdoors ...") sys.stdout.flush() with open(PATH+'train/Sports_and_Outdoors.train') as f: for line in f: xdat.append(line.split('\t')[0]) clean_xdat = [] for txt in xdat: txt = cleaning_text(txt) clean_xdat.append(txt) return clean_xdat def get_intentdata(): xdat = [] PATH = '/content/protoinfomax/data/IntentDat/' print("Processing Assistant ...") sys.stdout.flush() with open(PATH+'train/Assistant.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Atis ...") sys.stdout.flush() with open(PATH+'train/Atis.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Finance ...") sys.stdout.flush() with open(PATH+'train/Finance.train') as f: for line in f: xdat.append(line.split('\t')[0]) print("Processing Stackoverflow ...") sys.stdout.flush() with open(PATH+'train/Stackoverflow.train') as f: for line in f: xdat.append(line.split('\t')[0]) clean_xdat = [] for txt in xdat: txt = cleaning_text(txt) clean_xdat.append(txt) return clean_xdat def finetuning_amazon(data): print("Training Word Embeddings on Amazon data set...") model = load_facebook_model('/content/protoinfomax/embeddings/cc.en.100.bin') oldmodel = deepcopy(model) data = [t.split() for t in data] n_sents = len(data) model.build_vocab(data, update=True) model.train(data, total_examples=n_sents, epochs=20) model.save('/content/protoinfomax/embeddings/w2v_fasttext_sentiment.model') for m in ['oldmodel', 'model']: print('The vocabulary size of the w2v_fasttext_cls', m, 'is', len(eval(m).wv.vocab)) sys.stdout.flush() def finetuning_intent(data): print("Training Word Embeddings on Intent data set...") model = load_facebook_model('/content/protoinfomax/embeddings/cc.en.100.bin') oldmodel = deepcopy(model) data = [t.split() for t in data] n_sents = len(data) model.build_vocab(data, update=True) model.train(data, total_examples=n_sents, epochs=20) model.save('/content/protoinfomax/embeddings/w2v_fasttext_intent.model') for m in ['oldmodel', 'model']: print('The vocabulary size of the w2v_fasttext_cls', m, 'is', len(eval(m).wv.vocab)) sys.stdout.flush() # scripts for loading pretrained word embedding model def load_w2v_sentiment(): vocab_new = [] word_vecs_new = [] zeros_init = [float(0.)] * 100 model = Word2Vec.load('/content/protoinfomax/embeddings/w2v_fasttext_sentiment.model') vocab = list(model.wv.vocab) word_vecs = model.wv.vectors w2v = model.wv if '</s>' in vocab: idx = vocab.index('</s>') vocab[idx] = '</s2>' if '<unk>' in vocab: idx = vocab.index('<unk>') vocab[idx] = '<unk2>' word_vecs = word_vecs.tolist() vocab_new.append('</s>') #0 word_vecs_new.append(zeros_init) vocab_new.append('<unk>') #1 word_vecs_new.append(zeros_init) vocab_new.extend(vocab) word_vecs_new.extend(word_vecs) word_vecs_new = np.array(word_vecs_new) return vocab_new, word_vecs_new def load_w2v_intent(): vocab_new = [] word_vecs_new = [] zeros_init = [float(0.)] * 100 model = Word2Vec.load('/content/protoinfomax/embeddings/w2v_fasttext_intent.model') vocab = list(model.wv.vocab) word_vecs = model.wv.vectors w2v = model.wv if '</s>' in vocab: idx = vocab.index('</s>') vocab[idx] = '</s2>' if '<unk>' in vocab: idx = vocab.index('<unk>') vocab[idx] = '<unk2>' word_vecs = word_vecs.tolist() vocab_new.append('</s>') #0 word_vecs_new.append(zeros_init) vocab_new.append('<unk>') #1 word_vecs_new.append(zeros_init) vocab_new.extend(vocab) word_vecs_new.extend(word_vecs) word_vecs_new = np.array(word_vecs_new) return vocab_new, word_vecs_new def get_per_domain(PATH, domain): #Apps_for_Android.train xdat = [] ydat = [] print("Processing domain ...", domain) sys.stdout.flush() with open(PATH+domain) as f: for line in f: xdat.append(line.split('\t')[0]) ydat.append(line.split('\t')[1][0]) clean_xdat = [] for txt in xdat: txt = cleaning_text(txt) clean_xdat.append(txt) return clean_xdat, ydat def extract_kws(PATH, domain, params): cv = params['cv'] tfidf_transformer = params['tfidf_transformer'] word2idx = params['vocabulary'] UNKNOWN_WORD_INDEX = word2idx['<unk>'] PAD = word2idx['</s>'] text, y = get_per_domain(PATH, domain) print("Extracting keywords ...") sys.stdout.flush() feature_names=cv.get_feature_names() tf_idf_vector=tfidf_transformer.transform(cv.transform(text)) results_keywords_id =[] results_vals =[] results_kws =[] for i in range(tf_idf_vector.shape[0]): # get vector for a single document curr_vector=tf_idf_vector[i] #sort the tf-idf vector by descending order of scores sorted_items=sort_coo(curr_vector.tocoo()) #extract only the top n; n here is 10 keywords=extract_topn_from_vector(feature_names,sorted_items,10) kws = list(keywords.keys()) vals = list(keywords.values()) keywords_id = [] for kw, val in keywords.items(): if kw in word2idx: keywords_id.append(word2idx[kw]) else: keywords_id.append(word2idx['<unk>']) if len(keywords_id) < 10: len_ = 10 - len(keywords_id) for _ in range(len_): keywords_id.append(word2idx['</s>']) vals.append(0.) results_keywords_id.append(keywords_id) results_vals.append(vals) results_kws.append(kws) df = pd.DataFrame(zip(text, y, results_keywords_id, results_vals, results_kws), columns=['doc','label', 'keywords_id', 'vals', 'kws']) path = PATH+domain base=os.path.basename(path) fn = os.path.splitext(base)[0] np.savetxt('/content/protoinfomax/data/AmazonDat/train/Kws_%s.train'%fn, df.values, fmt='%s', delimiter='\t') #Amazondat/ if __name__ == '__main__': parser = argparse.ArgumentParser(description="Extracting Keywords for ProtoInfoMax++ from sentiment dataset ...") parser.add_argument('-config', help="path to configuration file", default="./config") parser.add_argument('-section', help="the section name of the experiment") args = parser.parse_args() config_paths = [args.config] config_parser = configparser.SafeConfigParser() config_found = config_parser.read(config_paths) params = get_all_parameters(config_parser, args.section) params['model_string'] = args.section
numpy.random.seed(params['seed'])
numpy.random.seed
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,-1,0,1,0,0,0,0,1])
numpy.array
import os import time import logging import numpy as np from scipy.interpolate import interp1d from scipy.optimize import fsolve from scipy.integrate import solve_ivp, trapz, quad from .utils import InvalidJumpError from .utils import GRAV_ACC, EPS from .utils import compute_dist_from_flat, vel2speed if 'ONHEROKU' in os.environ: plt = None else: import matplotlib.pyplot as plt class Surface(object): """Base class for a 2D curve that represents the cross section of a surface expressed in a standard Cartesian coordinate system.""" # If a user provides x,y data to create the surface that has any x spacings # greater than this value, then the data will be interpolated before the # slope and curvature derivatives are calculated. max_x_spacing = 0.3 # meters def __init__(self, x, y): """Instantiates an arbitrary 2D surface. Parameters ========== x : array_like, shape(n,) The horizontal, x, coordinates of the slope. x[0] should be the left most horizontal position and corresponds to the start of the surface. This should be monotonically increasing and ideally have no adjacent spacings less than 0.3 meter. y : array_like, shape(n,) The vertical, y, coordinates of the slope. y[0] corresponds to the start of the surface. Warns ===== x and y values that have any x spacings larger than 0.3 meters will be resampled at x spacings of approximately 0.3 meters. """ self.x = np.asarray(x) self.y = np.asarray(y) self._initialize_surface() def _initialize_surface(self): self._check_monotonic() self._check_x_spacing() self._initialize_gradients() self._initialize_interpolators() def _check_x_spacing(self): """Resamples x and y at an approximately 0.3 linear spacing if any x spacings are too large.""" if any(np.diff(self.x) > self.max_x_spacing): msg = ('The x values have at least one spacing larger than ' '{:1.1f} meters and will be replace with a finer x spacing ' 'and the y values linearly interpolated at this new ' 'spacing.') logging.warning(msg.format(self.max_x_spacing)) # ensure spacing is less than max_x_spacing total_x = self.x[-1] - self.x[0] num = round(np.ceil(total_x / self.max_x_spacing)) + 1 x = np.linspace(self.x[0], self.x[-1], num=num) kwargs = {'fill_value': 'extrapolate'} interp_y = interp1d(self.x, self.y, **kwargs) y = interp_y(x) self.x = x self.y = y def _initialize_gradients(self): self.slope = np.gradient(self.y, self.x, edge_order=2) slope_deriv = np.gradient(self.slope, self.x, edge_order=2) self.curvature = slope_deriv / (1 + self.slope**2)**1.5 def _initialize_interpolators(self): kwargs = {'fill_value': 'extrapolate'} self.interp_y = interp1d(self.x, self.y, **kwargs) self.interp_slope = interp1d(self.x, self.slope, **kwargs) self.interp_curvature = interp1d(self.x, self.curvature, **kwargs) def _check_monotonic(self): # NOTE: eps solution only works when adding to 0. eps = np.finfo(float).eps count = 0 while any(np.diff(self.x) == 0): idx = np.array(np.where(np.diff(self.x) == 0), dtype=np.int32) self.x[idx+1] += 20*eps count += 1 if count > 10: msg = ('While loop ran for too long: epsilon error') raise InvalidJumpError(msg) if any(np.diff(self.x) < 0): msg = ('x-coordinates are not monotonically increasing.') raise InvalidJumpError(msg) @property def start(self): """Returns the x and y coordinates at the start point of the surface.""" return self.x[0], self.y[0] @property def end(self): """Returns the x and y coordinates at the end point of the surface.""" return self.x[-1], self.y[-1] def shift_coordinates(self, delx, dely): """Shifts the x and y coordinates by delx and dely respectively. This modifies the surface in place.""" self.x += delx self.y += dely # NOTE : Only the interpolators have to be reinitialized, the gradients # don't have to be computed again. For now, this method is here for # consistency among *Surface classes. self._initialize_surface() def distance_from(self, xp, yp): """Returns the shortest distance from point (xp, yp) to the surface. Parameters ========== xp : float The horizontal, x, coordinate of the point. yp : float The vertical, y, coordinate of the point. Returns ======= distance : float The shortest distance from the point to the surface. If the point is above the surface a positive distance is returned, else a negative distance. Note ==== This general implementation can be slow, so implement overloaded ``distance_from()`` methods in subclasses when you can. """ def distance_squared(x): return (xp - x)**2 + (yp - self.interp_y(x))**2 distances = np.sqrt((self.x - xp)**2 + (self.y - yp)**2) x = fsolve(distance_squared, self.x[np.argmin(distances)]) return np.sign(yp - self.interp_y(x)) * np.sqrt(distance_squared(x)) def length(self): """Returns the length of the surface in meters via a numerical line integral.""" def func(x): return np.sqrt(1.0 + self.interp_slope(x)**2) return quad(func, self.x[0], self.x[-1])[0] def area_under(self, x_start=None, x_end=None, interval=0.05): """Returns the area under the curve integrating wrt to the x axis at 0.05 m intervals using the trapezoidal rule.""" if x_start is not None: if x_start < self.start[0] or x_start > self.end[0]: raise ValueError('x_start has to be between start and end.') else: x_start = self.start[0] if x_end is not None: if x_end < self.start[0] or x_end > self.end[0]: raise ValueError('x_end has to be between start and end.') else: x_end = self.end[0] x = np.linspace(x_start, x_end, num=int((x_end - x_start) / interval)) y = self.interp_y(x) return trapz(y, x) def height_above(self, surface): """Returns an array of values giving the height each point in this surface is above the provided surface.""" return self.y - surface.interp_y(self.x) def calculate_efh(self, takeoff_angle, takeoff_point, skier, increment=0.2): """Returns the equivalent fall height for the surface at the specified constant intervals relative to the provided takeoff point or the start of the surface. Parameters ========== takeoff_angle : float Takeoff angle in radians. takeoff_point : 2-tuple of floats x and y coordinates of the point at which the skier leaves the takeoff ramp. skier : Skier A skier instance. increment : float, optional x increment in meters between each calculated landing location. Returns ======= distance_x : ndarray, shape(n,) Horizontal x locations of the equivalent fall height measures spaced at the specified meter intervals relative to leftmost point on the surface or the takeoff point, whichever is greater. efh : ndarray, shape(n,) The equivalent fall height corresponding to each value in ``distance_x``. takeoff_speeds : ndarray, shape(n,) The takeoff speed required to land the corresponding x coordinate. """ if abs(takeoff_angle) > np.pi/2: msg = ('Takeoff angle must be between -pi/2 and pi/2.') raise InvalidJumpError(msg) if self.x[0] < takeoff_point[0] < self.x[-1]: check_takeoff = self.interp_y(takeoff_point[0]) if takeoff_point[1] - check_takeoff < 0: msg = ('Takeoff point cannot be under the surface.') raise InvalidJumpError(msg) elif self.end[0] <= takeoff_point[0]: msg = ('Takeoff point cannot be downhill from surface.') raise InvalidJumpError(msg) # NOTE : If the takeoff point is before the start of the surface and below the # height of the first surface point, the slope between the takeoff point # and the left-most surface point must be less than the takeoff angle. elif (takeoff_point[0] < self.start[0]): slope = (self.start[1] - takeoff_point[1])/(self.start[0] - takeoff_point[0]) if takeoff_angle < np.arctan(slope): msg = ('Takeoff angle does not allow impact on the surface ' 'from above.') raise InvalidJumpError(msg) isGreaterTakeoff = self.x >= takeoff_point[0] x = self.x[isGreaterTakeoff] y = self.y[isGreaterTakeoff] # NOTE : intervals are desired but the x distance is not necessarily # divisible by the increment, so we drop the remainder so it is # divisible and make the range inclusive. remainder = (x[-1] - x[0]) % increment rnge = (x[0], x[-1] - remainder) num_points = int((x[-1] - x[0] - remainder) / increment) + 1 distance_x = np.linspace(*rnge, num=num_points) slope = self.interp_slope(distance_x) slope_angle = np.arctan(slope) kwargs = {'fill_value': 'extrapolate'} interp_y_efh = interp1d(x, y, **kwargs) height_y = interp_y_efh(distance_x) # NOTE : Create a surface under the surface that the skier will impact # if they pass over the primary surface (self). catch_surf = HorizontalSurface(np.min(height_y) - 0.1, abs(distance_x[0] - distance_x[-1] + 2.0), start=distance_x[-1] - 1.0) efh = np.empty(len(distance_x)) efh[:] = np.nan takeoff_speeds = np.full(len(distance_x), np.nan) for i, (x, y, m) in enumerate(zip(distance_x, height_y, slope_angle)): takeoff_speed, impact_vel = \ skier.speed_to_land_at((x, y), takeoff_point, takeoff_angle, catch_surf) # TODO: Use fly to check that it hits the x,y impact_speed, impact_angle = vel2speed(*impact_vel) # NOTE : A nan is inserted if skier surpasses 100 miles per hour if takeoff_speed > 44: msg = ('Impact of the surface from above is only possible until' ' {:.2f} meters. Calculation aborted.') logging.warning(msg.format(x)) break efh[i] = (impact_speed ** 2 * np.sin(m - impact_angle) ** 2 / (2 * GRAV_ACC)) takeoff_speeds[i] = takeoff_speed return distance_x, efh, takeoff_speeds def plot(self, ax=None, **plot_kwargs): """Returns a matplotlib axes containing a plot of the surface. Parameters ========== ax : Axes An existing matplotlib axes to plot to. plot_kwargs : dict Arguments to be passed to Axes.plot(). """ if ax is None: fig, ax = plt.subplots(1, 1) ax.set_ylabel('Vertical Position [m]') ax.set_xlabel('Horizontal Position [m]') ax.plot(self.x, self.y, **plot_kwargs) # TODO : These two lines probably only need to be set if ax is None. ax.set_aspect('equal') ax.grid() return ax class HorizontalSurface(Surface): def __init__(self, height, length, start=0.0, num_points=100): """Instantiates a class that represents a horizontal surface at a height above the x axis.abs Parameters ========== height : float The height of the surface above the horizontal x axis in meters. length : float The length of the surface in meters. start : float, optional The x location of the start of the left most point of the surface. num_points : integer, optional The number of (x,y) coordinates. """ x = np.linspace(start, start + length, num=num_points) y = height * np.ones_like(x) super(HorizontalSurface, self).__init__(x, y) def distance_from(self, xp, yp): """Returns the shortest distance from point (xp, yp) to the surface. Parameters ========== xp : float The horizontal, x, coordinate of the point. yp : float The vertical, y, coordinate of the point. Returns ======= distance : float The shortest distance from the point to the surface. If the point is above the surface a positive distance is returned, else a negative distance. """ return yp - self.y[0] class FlatSurface(Surface): """Class that represents a flat surface angled relative to the horizontal.""" def __init__(self, angle, length, init_pos=(0.0, 0.0), num_points=100): """Instantiates a flat surface that is oriented at a counterclockwise angle from the horizontal. Parameters ========== angle : float The angle of the surface in radians. Counterclockwise (about z) is positive, clockwise is negative. length : float The distance in meters along the surface from the initial position. init_pos : 2-tuple of floats, optional The x and y coordinates in meters that locate the start of the surface. num_points : integer, optional The number of points used to define the surface coordinates. """ if angle >= np.pi / 2.0 or angle <= -np.pi / 2.0: raise InvalidJumpError('Angle must be between -90 and 90 degrees') self._angle = angle x = np.linspace(init_pos[0], init_pos[0] + length * np.cos(angle), num=num_points) y = np.linspace(init_pos[1], init_pos[1] + length * np.sin(angle), num=num_points) super(FlatSurface, self).__init__(x, y) @property def angle(self): """Returns the angle wrt to horizontal in radians of the surface.""" return self._angle def distance_from(self, xp, yp): """Returns the shortest distance from point (xp, yp) to the surface. Parameters ========== xp : float The horizontal, x, coordinate of the point. yp : float The vertical, y, coordinate of the point. Returns ======= distance : float The shortest distance from the point to the surface. If the point is above the surface a positive distance is returned, else a negative distance. """ if compute_dist_from_flat is None: m = np.tan(self.angle) d = (yp - m * xp) * np.cos(self.angle) return d else: return compute_dist_from_flat(self.angle, xp, yp) class ClothoidCircleSurface(Surface): """Class that represents a surface made up of a circle bounded by two clothoids.""" def __init__(self, entry_angle, exit_angle, entry_speed, tolerable_acc, init_pos=(0.0, 0.0), gamma=0.99, num_points=200): """Instantiates a clothoid-circle-clothoid curve. Parameters ========== entry_angle : float The entry angle tangent to the start of the left clothoid in radians. exit_angle : float The exit angle tangent to the end of the right clothoid in radians. entry_speed : float The magnitude of the skier's velocity in meters per second as they enter the left clothiod. tolerable_acc : float The tolerable normal acceleration of the skier in G's. init_pos : 2-tuple of floats The x and y coordinates of the start of the left clothoid. gamma : float Fraction of circular section. num_points : integer, optional The number of points in each of the three sections of the curve. """ self.entry_angle = entry_angle self.exit_angle = exit_angle self.entry_speed = entry_speed self.tolerable_acc = tolerable_acc self.init_pos = init_pos self.gamma = gamma self.num_points = num_points X, Y = self._create_surface() super(ClothoidCircleSurface, self).__init__(X, Y) def _create_surface(self): # TODO : Break this function into smaller functions. lam = -self.entry_angle beta = self.exit_angle rotation_clothoid = (lam - beta) / 2 # used to rotate symmetric clothoid so that left side is at lam and # right sid is at beta # radius_min is the radius of the circular part of the transition. # Every other radius length (in the clothoid) will be longer than that, # as this will ensure the g - force felt by the skier is always less # than a desired value. This code ASSUMES that the velocity at the # minimum radius is equal to the velocity at the end of the approach. radius_min = self.entry_speed**2 / (self.tolerable_acc * GRAV_ACC) # x,y data for circle thetaCir = 0.5 * self.gamma * (lam + beta) xCirBound = radius_min * np.sin(thetaCir) xCirSt = -radius_min * np.sin(thetaCir) xCir = np.linspace(xCirSt, xCirBound, num=self.num_points) # x,y data for one clothoid A_squared = radius_min**2 * (1 - self.gamma) * (lam + beta) A = np.sqrt(A_squared) clothoid_length = A * np.sqrt((1 - self.gamma) * (lam + beta)) # generates arc length points for one clothoid s = np.linspace(clothoid_length, 0, num=self.num_points) X1 = s - (s**5) / (40*A**4) + (s**9) / (3456*A**8) Y1 = (s**3) / (6*A**2) - (s**7) / (336*A**6) + (s**11) / (42240*A**10) X2 = X1 - X1[0] Y2 = Y1 - Y1[0] theta = (lam + beta) / 2 X3 = np.cos(theta)*X2 + np.sin(theta)*Y2 Y3 = -np.sin(theta)*X2 + np.cos(theta)*Y2 X4 = X3 Y4 = Y3 X5 = -X4 + 2*X4[0] Y5 = Y4 X4 = X4 - radius_min*np.sin(thetaCir) Y4 = Y4 + radius_min*(1 - np.cos(thetaCir)) X4 = X4[::-1] Y4 = Y4[::-1] X5 = X5 + radius_min*np.sin(thetaCir) Y5 = Y5 + radius_min*(1 - np.cos(thetaCir)) # stitching together clothoid and circular data xLCir = xCir[xCir <= 0] yLCir = radius_min - np.sqrt(radius_min**2 - xLCir**2) xRCir = xCir[xCir >= 0] yRCir = radius_min - np.sqrt(radius_min**2 - xRCir**2) X4 = np.hstack((X4, xLCir[1:-1])) Y4 = np.hstack((Y4, yLCir[1:-1])) X5 = np.hstack((xRCir[0:-2], X5)) Y5 = np.hstack((yRCir[0:-2], Y5)) X6 = np.cos(rotation_clothoid)*X4 + np.sin(rotation_clothoid)*Y4 Y6 = -np.sin(rotation_clothoid)*X4 + np.cos(rotation_clothoid)*Y4 X7 = np.cos(rotation_clothoid)*X5 + np.sin(rotation_clothoid)*Y5 Y7 = -np.sin(rotation_clothoid)*X5 + np.cos(rotation_clothoid)*Y5 X = np.hstack((X6, X7)) Y = np.hstack((Y6, Y7)) # Shift the entry point of the curve to be at X=0, Y=0. X -= np.min(X) Y -= Y[np.argmin(X)] # Shift the entry point of the curve to be at the end of the flat # surface. X += self.init_pos[0] Y += self.init_pos[1] return X, Y class TakeoffSurface(Surface): """Class that represents a surface made up of a circle bounded by two clothoids with a flat exit surface.""" def __init__(self, skier, entry_angle, exit_angle, entry_speed, time_on_ramp=0.25, gamma=0.99, init_pos=(0.0, 0.0), num_points=200): """Instantiates the takeoff curve with the flat takeoff ramp added to the terminus of the clothoid-circle-clothoid curve. Parameters ========== skier : Skier A skier instance. entry_angle : float The entry angle tangent to the start of the left clothoid in radians. exit_angle : float The exit angle tangent to the end of the right clothoid in radians. entry_speed : float The magnitude of the skier's velocity in meters per second as they enter the left clothiod. time_on_ramp : float, optional The time in seconds that the skier should be on the takeoff ramp before launch. gamma : float, optional Fraction of circular section. init_pos : 2-tuple of floats, optional The x and y coordinates of the start of the left clothoid. num_points : integer, optional The number of points in each of the three sections of the curve. """ self.skier = skier self.entry_angle = entry_angle self.exit_angle = exit_angle self.entry_speed = entry_speed self.time_on_ramp = time_on_ramp self.gamma = gamma self.init_pos = init_pos self.num_points = num_points clt_cir_clt = ClothoidCircleSurface(entry_angle, exit_angle, entry_speed, skier.tolerable_sliding_acc, init_pos=init_pos, gamma=gamma, num_points=num_points) ramp_entry_speed = skier.end_speed_on(clt_cir_clt, init_speed=self.entry_speed) ramp_len = time_on_ramp * ramp_entry_speed # meters start_x = clt_cir_clt.x[-1] start_y = clt_cir_clt.y[-1] points_per_meter = len(clt_cir_clt.x) / (start_x - clt_cir_clt.x[0]) stop_x = start_x + ramp_len * np.cos(clt_cir_clt.exit_angle) ramp_x = np.linspace(start_x, stop_x, num=int(points_per_meter * stop_x - start_x)) stop_y = start_y + ramp_len * np.sin(clt_cir_clt.exit_angle) ramp_y = np.linspace(start_y, stop_y, num=len(ramp_x)) ext_takeoff_curve_x = np.hstack((clt_cir_clt.x[:-1], ramp_x)) ext_takeoff_curve_y = np.hstack((clt_cir_clt.y[:-1], ramp_y)) super(TakeoffSurface, self).__init__(ext_takeoff_curve_x, ext_takeoff_curve_y) class LandingTransitionSurface(Surface): """Class representing a acceleration limited exponential curve that transitions the skier from the landing surface to the parent slope.""" acc_error_tolerance = 0.001 max_iterations = 1000 delta = 0.01 # used for central difference approximation def __init__(self, parent_surface, flight_traj, fall_height, tolerable_acc, num_points=100): """Instantiates an exponentially decaying surface that connects the landing surface to the parent slope. Parameters ========== parent_surface : FlatSurface The parent slope in which the landing transition should be tangent to on exit. flight_traj : Trajectory The flight trajectory from the takeoff point to the parent slope. fall_height : float The desired equivalent fall height for the jump design in meters. tolerable_acc : float The maximum normal acceleration the skier should experience in the landing. num_points : integer The number of points in the surface. """ if fall_height <= 0.0: raise InvalidJumpError('Fall height must be greater than zero.') self.fall_height = fall_height self.parent_surface = parent_surface self.flight_traj = flight_traj self.tolerable_acc = tolerable_acc trans_x, char_dist = self.find_transition_point() x, y = self._create_trans_curve(trans_x, char_dist, num_points) super(LandingTransitionSurface, self).__init__(x, y) @property def allowable_impact_speed(self): """Returns the perpendicular speed one would reach if dropped from the provided fall height.""" return np.sqrt(2 * GRAV_ACC * self.fall_height) def calc_trans_acc(self, x): """Returns the acceleration in G's the skier feels at the exit transition occurring if the transition starts at the provided horizontal location, x.""" # TODO : This code seems to be repeated some in the LandingSurface # creation code. # NOTE : "slope" means dy/dx here flight_y, flight_speed, flight_angle = \ self.flight_traj.interp_wrt_x(x)[[2, 9, 8]] # NOTE : Not sure if setting this to pi/2 if the flight speed is # greater than the allowable impact speed is a correct thing to do but # it prevents some arcsin RunTimeWarnings for invalid values. ratio = self.allowable_impact_speed / flight_speed if ratio > 1.0: flight_rel_landing_angle = np.pi / 2 else: flight_rel_landing_angle = np.arcsin(ratio) landing_angle = flight_angle + flight_rel_landing_angle landing_slope = np.tan(landing_angle) # y'E(x0) parent_slope = self.parent_surface.interp_slope(x) parent_rel_landing_slope = landing_slope - parent_slope parent_y = self.parent_surface.interp_y(x) height_above_parent = flight_y - parent_y # C in Mont's paper # required exponential characteristic distance, using three # characteristic distances for transition char_dist = np.abs(height_above_parent / parent_rel_landing_slope) ydoubleprime = height_above_parent / char_dist**2 curvature = np.abs(ydoubleprime / (1 + landing_slope**2)**1.5) trans_acc = (curvature * flight_speed**2 + GRAV_ACC * np.cos(landing_angle)) return np.abs(trans_acc / GRAV_ACC), char_dist def _find_dgdx(self, x): x_plus = x + self.delta x_minus = x - self.delta acc_plus, _ = self.calc_trans_acc(x_plus) acc_minus, _ = self.calc_trans_acc(x_minus) return (acc_plus - acc_minus) / 2 / self.delta def find_transition_point(self): """Returns the horizontal position indicating the intersection of the flight path with the beginning of the landing transition. This is the last possible transition point, that by definition minimizes the transition snow budget, that satisfies the allowable transition acceleration. Notes ===== This uses Newton's method to find an adequate point but may fail to do so with some combinations of flight trajectories, parent slope geometry, and allowable acceleration. A warning will be emitted if the maximum number of iterations is reached in this search and the curve is likely invalid. """ i = 0 g_error = np.inf x, _ = self.find_parallel_traj_point() xpara = float(x) # copy while g_error > .001: # tolerance transition_Gs, char_dist = self.calc_trans_acc(x) g_error = abs(transition_Gs - self.tolerable_acc) dx = -g_error / self._find_dgdx(x) x += dx if x >= self.flight_traj.pos[-1, 0]: msg = ('No landing transition point was found, backing up to ' 'last possible point.') logging.info(msg) x = self.flight_traj.pos[-1, 0] - 2 * self.delta if i > self.max_iterations: msg = 'Landing transition while loop ran more than {} times.' logging.warning(msg.format(self.max_iterations)) break else: i += 1 logging.debug('{} iterations in the landing transition loop.'.format(i)) x -= dx # loop stops after dx is added, so take previous msg = ("The maximum landing transition acceleration is {} G's and the " "tolerable landing transition acceleration is {} G's.") logging.info(msg.format(transition_Gs, self.tolerable_acc)) if x < xpara: msg = 'Not able to find valid landing transition point.' raise InvalidJumpError(msg) return x, char_dist def find_parallel_traj_point(self): """Returns the position of a point on the flight trajectory where its tangent is parallel to the parent slope. This is used as a starting guess for the start of the landing transition point.""" slope_angle = self.parent_surface.angle flight_traj_slope = self.flight_traj.slope # TODO : Seems like these two interpolations can be combined into a # single interpolation call by adding the y coordinate to the following # line. xpara_interpolator = interp1d(flight_traj_slope, self.flight_traj.pos[:, 0]) xpara = xpara_interpolator(np.tan(slope_angle)) ypara = self.flight_traj.interp_wrt_x(xpara)[2] return xpara, ypara def _create_trans_curve(self, trans_x, char_dist, num_points): xTranOutEnd = trans_x + 3 * char_dist xParent = np.linspace(trans_x, xTranOutEnd, num_points) yParent0 = self.parent_surface.interp_y(trans_x) yParent = (yParent0 + (xParent - trans_x) * np.tan(self.parent_surface.angle)) xTranOut = np.linspace(trans_x, xTranOutEnd, num_points) dy = (self.flight_traj.interp_wrt_x(trans_x)[2] - self.parent_surface.interp_y(trans_x)) yTranOut = yParent + dy * np.exp(-1*(xTranOut - trans_x) / char_dist) return xTranOut, yTranOut class LandingSurface(Surface): """Class that defines an equivalent fall height landing surface.""" def __init__(self, skier, takeoff_point, takeoff_angle, max_landing_point, fall_height, surf): """Instantiates a surface that ensures impact velocity is equivalent to that from a vertical fall. Parameters ========== skier : Skier A skier instance. takeoff_point : 2-tuple of floats The point at which the skier leaves the takeoff ramp. takeoff_angle : float The takeoff angle in radians. max_landing_point : 2-tuple of floats The maximum x position that the landing surface will attain in meters. In the standard design, this is the start of the landing transition point. fall_height : float The desired equivalent fall height in meters. This should always be greater than zero. surf : Surface A surface below the full flight trajectory, the parent slope is a good choice. It is useful if the distance_from() method runs very fast, as it is called a lot internally. """ if fall_height <= 0.0: raise InvalidJumpError('Fall height must be greater than zero.') self.skier = skier self.takeoff_point = takeoff_point self.takeoff_angle = takeoff_angle self.max_landing_point = max_landing_point self.fall_height = fall_height self.surf = surf x, y = self._create_safe_surface() super(LandingSurface, self).__init__(x, y) @property def allowable_impact_speed(self): """Returns the perpendicular speed one would reach if dropped from the provided fall height.""" # NOTE : This is used in the LandingTransitionSurface class too and is # duplicate code. May need to be a simple function. return np.sqrt(2 * GRAV_ACC * self.fall_height) def _create_safe_surface(self): """Returns the x and y coordinates of the equivalent fall height landing surface.""" def rhs(x, y): """Returns the slope of the safe surface that ensures the impact speed is equivalent to the impact speed from the equivalent fall height. dy -- = ... dx x : integrating through x instead of time y : single state variable equivalent to safe_surface.m integrates from the impact location backwards If the direction of the velocity vector is known, and the mangitude at impact is known, and the angle between v and the slope is known, then we can find out how the slope should be oriented. """ # NOTE : y is an array of length 1 y = y[0] logging.debug('x = {}, y = {}'.format(x, y)) takeoff_speed, impact_vel = self.skier.speed_to_land_at( (x, y), self.takeoff_point, self.takeoff_angle, self.surf) if takeoff_speed > 0.0: impact_speed, impact_angle = vel2speed(*impact_vel) else: # else takeoff_speed == 0, what about < 0? impact_speed = self.allowable_impact_speed impact_angle = -np.pi / 2.0 speed_ratio = self.allowable_impact_speed / impact_speed logging.debug('speed ratio = {}'.format(speed_ratio)) # beta is the allowed angle between slope and path at speed vImpact if speed_ratio > 1.0: beta = np.pi / 2.0 + EPS else: beta = np.arcsin(speed_ratio) logging.debug('impact angle = {} deg'.format( np.rad2deg(impact_angle))) logging.debug('beta = {} deg'.format(np.rad2deg(beta))) safe_surface_angle = beta + impact_angle logging.debug('safe_surface_angle = {} deg'.format(
np.rad2deg(safe_surface_angle)
numpy.rad2deg
import numpy as np from libensemble.libE import libE from generator import gen_random_sample from simulator import sim_find_sine from libensemble.tools import add_unique_random_streams nworkers = 4 libE_specs = {'nworkers': nworkers, 'comms': 'local'} gen_specs = {'gen_f': gen_random_sample, # Our generator function 'out': [('x', float, (1,))], # gen_f output (name, type, size) 'user': { 'lower':
np.array([-3])
numpy.array
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import time import unittest import numpy as np from arch.api import eggroll eggroll.init("123") from federatedml.feature.binning import QuantileBinning from federatedml.feature.instance import Instance from federatedml.param.param import FeatureBinningParam class TestQuantileBinning(unittest.TestCase): def setUp(self): # eggroll.init("123") self.data_num = 1000 self.feature_num = 200 final_result = [] numpy_array = [] for i in range(self.data_num): tmp = np.random.randn(self.feature_num) inst = Instance(inst_id=i, features=tmp, label=0) tmp_pair = (str(i), inst) final_result.append(tmp_pair) numpy_array.append(tmp) table = eggroll.parallelize(final_result, include_key=True, partition=10) self.table = table self.numpy_table = np.array(numpy_array) self.cols = [1] def test_quantile_binning(self): compress_thres = 10000 head_size = 5000 error = 0.01 bin_num = 10 bin_param = FeatureBinningParam(method='quantile', compress_thres=compress_thres, head_size=head_size, error=error, bin_num=bin_num) quan_bin = QuantileBinning(bin_param) split_points = quan_bin.binning(self.table, cols=self.cols) for col_idx, col in enumerate(self.cols): bin_percent = [i * (1.0 / bin_num) for i in range(1, bin_num)] x = self.numpy_table[:, col] x = sorted(x) for bin_idx, percent in enumerate(bin_percent): min_rank = int(math.floor(percent * self.data_num - self.data_num * error)) max_rank = int(math.ceil(percent * self.data_num + self.data_num * error)) if min_rank < 0: min_rank = 0 if max_rank > len(x) - 1: max_rank = len(x) - 1 try: self.assertTrue(x[min_rank] <= split_points[col_idx][bin_idx] <= x[max_rank]) except: print(x[min_rank], x[max_rank], split_points[col_idx][bin_idx]) found_index = x.index(split_points[col_idx][bin_idx]) print("min_rank: {}, found_rank: {}, max_rank: {}".format( min_rank, found_index, max_rank )) self.assertTrue(x[min_rank] <= split_points[col_idx][bin_idx] <= x[max_rank]) def tearDown(self): self.table.destroy() class TestQuantileBinningSpeed(unittest.TestCase): def setUp(self): # eggroll.init("123") self.data_num = 100000 self.feature_num = 200 final_result = [] numpy_array = [] for i in range(self.data_num): tmp =
np.random.randn(self.feature_num)
numpy.random.randn
"""Tests for the atmos_flux_inversion package. Includes tests using random data, analytic solutions, and checks that different methods agree for simple problems. """ from __future__ import print_function, division import fractions import itertools import operator import os.path import atexit import pickle import math import sys try: from functools import reduce except ImportError: # reduce used to be a builtin pass import numpy as np import numpy.linalg as np_la import numpy.linalg as la import numpy.testing as np_tst import scipy.linalg import scipy.sparse import scipy.optimize # Import from scipy.linalg if not using dask from scipy.linalg import cholesky from scipy.sparse.linalg.interface import LinearOperator, MatrixLinearOperator import unittest2 import pyfftw import pandas as pd import xarray try: import sparse HAVE_SPARSE = True except ImportError: HAVE_SPARSE = False import atmos_flux_inversion.optimal_interpolation import atmos_flux_inversion.correlations import atmos_flux_inversion.covariances import atmos_flux_inversion.variational import atmos_flux_inversion.remapper import atmos_flux_inversion.wrapper import atmos_flux_inversion.linalg import atmos_flux_inversion.noise import atmos_flux_inversion.psas import atmos_flux_inversion.util from atmos_flux_inversion.linalg import tolinearoperator if os.path.exists(".pyfftw.pickle"): with open(".pyfftw.pickle", "rb") as wis_in: WISDOM = pickle.load(wis_in) if isinstance(WISDOM[0], str): WISDOM = [wis.encode("ascii") for wis in WISDOM] pyfftw.import_wisdom(WISDOM) del WISDOM, wis_in def save_wisdom(): """Save accumulated pyfftw wisdom. Saves in hidden file in current directory. Should help speed up subsequent test runs. """ with open(".pyfftw.pickle", "wb") as wis_out: pickle.dump(pyfftw.export_wisdom(), wis_out, 2) atexit.register(save_wisdom) del save_wisdom # If adding other inexact methods to the list tested, be sure to add # those to the `if "var" in name or "psas" in name` and # `if "psas" in name` tests as applicable. ALL_METHODS = ( atmos_flux_inversion.optimal_interpolation.simple, atmos_flux_inversion.optimal_interpolation.fold_common, atmos_flux_inversion.optimal_interpolation.save_sum, atmos_flux_inversion.optimal_interpolation.scipy_chol, atmos_flux_inversion.variational.simple, atmos_flux_inversion.variational.incremental, atmos_flux_inversion.variational.incr_chol, atmos_flux_inversion.psas.simple, atmos_flux_inversion.psas.fold_common, ) ITERATIVE_METHOD_START = 4 """Where the iterative methods start in the above list. Used to test failure modes for these solvers. """ PRECISE_DTYPE = np.float128 """The dtype used to represent analytic results. These are initialized as :class:`fractions.Fraction` then converted to this dtype for the comparison. """ ITERATIVE_STATE_TOLERANCE = 1e-3 ITERATIVE_COVARIANCE_TOLERANCE = 1e-1 EXACT_TOLERANCE = 1e-7 DTYPE = np.float64 """Default dtype for certain tests.""" def getname(method): """Descriptive name for the function. A name combining the function name and module. Parameters ---------- method: callable Returns ------- name: str """ module = method.__module__ group = module.split(".")[-1] variant = method.__name__ return "{group:s} ({variant:s})".format(group=group, variant=variant) def expectFailureIf(condition): """Mark a test as XFAIL based on condition. Wrapper to make :func:`unittest2.expectedFailure` conditional. Parameters ---------- condition: bool Returns ------- decorator: func """ if condition: return unittest2.expectedFailure return lambda fun: fun class TestInversionSimple(unittest2.TestCase): """Test inversions using simple cases.""" def test_scalar_equal_variance(self): """Test a direct measurement of a scalar state.""" bg = np.atleast_1d(2.) bg_cov = np.atleast_2d(1.) obs = np.atleast_1d(3.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, 2.5) np_tst.assert_allclose(post_cov, .5) def test_scalar_unequal_variance(self): """Test assimilation of a direct measurement fo a scalar state. Variances not equal. """ bg = np.atleast_1d(15.) bg_cov = np.atleast_2d(2.) obs = np.atleast_1d(14.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: with self.subTest(method=getname(method)): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post, PRECISE_DTYPE(14 + fractions.Fraction(1, 3))) np_tst.assert_allclose( post_cov, PRECISE_DTYPE(fractions.Fraction(2, 3))) def test_multiple_priors(self): """Test doing multiple assimilations at once. Simple test. """ bg = np.array([[2., 3.]]) bg_cov = np.atleast_2d(1.) obs = np.array([[3., 4.]]) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS[:ITERATIVE_METHOD_START]: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, [[2.5, 3.5]]) np_tst.assert_allclose(post_cov, .5) def test_homework_one(self): """Verify that this can reproduce the answers to HW1. Make sure the answers here are within roundoff of the analytic solutions. """ bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: # Setup for expected degradation of solutions name = getname(method) # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): # Also tested above in scalar_unequal_variance with self.subTest(problem=3): state_college_index = 1 post, post_cov = method( bg[state_college_index], bg_cov[state_college_index, state_college_index], obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, state_college_index]) np_tst.assert_allclose( post, np.asanyarray(14 + fractions.Fraction(1, 3), dtype=PRECISE_DTYPE), rtol=state_rtol) np_tst.assert_allclose( post_cov, np.asanyarray(fractions.Fraction(2, 3), dtype=PRECISE_DTYPE), rtol=cov_rtol) with self.subTest(problem=4): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(2, 3), 14 + fractions.Fraction(1, 3), 21 + fractions.Fraction(2, 3)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=5): pittsburgh_index = 0 post, post_cov = method( bg, bg_cov, obs[pittsburgh_index], obs_cov[pittsburgh_index, pittsburgh_index], obs_op[pittsburgh_index, :]) np_tst.assert_allclose( post, np.asanyarray((18 + fractions.Fraction(2, 3), 15 + fractions.Fraction(1, 3), 22 + fractions.Fraction(1, 6)), PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=7): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], 4 * obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(5, 6), 14 + fractions.Fraction(2, 3), 21 + fractions.Fraction(5, 6)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=8): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) # background correlations make this problem not # strictly linear, at least without doing # sequential inversions. Have not verified by hand np_tst.assert_allclose( post, np.asanyarray( (18 + fractions.Fraction(1, 2), 14 + fractions.Fraction(1, 2), 21 + fractions.Fraction(3, 4)), dtype=PRECISE_DTYPE), rtol=state_rtol) def test_sequential_assimilations(self): """Make sure this follows Bayes' rule.""" bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: name = getname(method) if "var" in name.lower() or "psas" in name.lower(): state_rtol = ITERATIVE_STATE_TOLERANCE cov_rtol = ITERATIVE_COVARIANCE_TOLERANCE else: # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): inter1, inter_cov1 = method( bg, bg_cov, obs[0], obs_cov[0, 0], obs_op[0, :]) post1, post_cov1 = method( inter1, inter_cov1, obs[1], obs_cov[1, 1], obs_op[1, :]) post2, post_cov2 = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post1, post2, rtol=state_rtol) if "psas" in name.lower(): # The second covariance isn't positive definite (one # positive entry) and no entry shares the order of # magnitude between the two. raise unittest2.SkipTest("Known Failure: PSAS Covariances") np_tst.assert_allclose( post_cov1, post_cov2, rtol=cov_rtol) def test_iterative_failures(self): """Test failure modes of iterative solvers.""" bg_stds = np.logspace(-8, 1, 10) bg_corr = scipy.linalg.toeplitz( np.arange(1, .9, -.01)) bg_cov = np.diag(bg_stds).dot(bg_corr).dot(np.diag(bg_stds)) bg_vals = np.arange(10) obs_op = np.eye(3, 10) obs_vals = 10 - np.arange(3) obs_cov = np.diag((10, 1e-3, 1e-6)) / 8 for method in ALL_METHODS[ITERATIVE_METHOD_START:]: name = getname(method) with self.subTest(method=name): with self.assertRaises( atmos_flux_inversion.ConvergenceError) as cxt_mgr: method(bg_vals, bg_cov, obs_vals, obs_cov, obs_op) conv_err = cxt_mgr.exception self.assertTrue(hasattr(conv_err, "guess")) self.assertTrue(hasattr(conv_err, "result")) self.assertIsInstance(conv_err.result, scipy.optimize.OptimizeResult) self.assertTrue(hasattr(conv_err, "hess_inv")) class TestGaussianNoise(unittest2.TestCase): """Test the properties of the gaussian noise.""" def test_ident_cov(self): """Test generation with identity as covariance.""" sample_shape = 3 cov = np.eye(sample_shape) noise = atmos_flux_inversion.noise.gaussian_noise(cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros((sample_shape,)), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), cov, rtol=1e-2, atol=1e-2) def test_shape(self): """Make sure the returned shapes are correct.""" sample_shape = (3,) sample_cov = np.eye(sample_shape[0]) for shape in ((), (6,), (2, 3)): with self.subTest(shape=shape): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, shape) self.assertEqual(res.shape, shape + sample_shape) with self.subTest(shape=5): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, 5) self.assertEqual(res.shape, (5,) + sample_shape) with self.subTest(shape=None): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, None) self.assertEqual(res.shape, sample_shape) def test_operator(self): """Test that the code works with operator covariances.""" diagonal = (1, .5, .3, .2, .1) sample_cov = atmos_flux_inversion.covariances.DiagonalOperator( diagonal) sample_shape = (len(diagonal),) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), np.diag(diagonal), rtol=1e-2, atol=1e-2) def test_kron_op(self): """Test that large kronecker operators don't break the handling.""" op1 = scipy.linalg.toeplitz(.6 ** np.arange(15)) diag = (1, .9, .8, .7, .6, .5, .4, .3, .2, .1) op2 = atmos_flux_inversion.covariances.DiagonalOperator(diag) combined = atmos_flux_inversion.util.kronecker_product(op1, op2) noise = atmos_flux_inversion.noise.gaussian_noise(combined, int(1e5)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(combined.shape[0]), rtol=1.1e-2, atol=1.1e-2) np_tst.assert_allclose(np.cov(noise.T), scipy.linalg.kron(op1, np.diag(diag)), rtol=3e-2, atol=3e-2) def test_off_diagonal(self): """Test that the code works with off-diagonal elements.""" sample_cov = scipy.linalg.toeplitz((1, .5, .25, .125)) sample_shape = (4,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_slow_decay(self): """Test that the code handles slowly-decaying covariances.""" sample_cov = scipy.linalg.toeplitz(.8 ** np.arange(10)) sample_shape = (10,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_fails(self): """Test that construction fails on invalid input.""" self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.ones(10)) self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.eye(3, 2)) class TestCorrelations(unittest2.TestCase): """Test the generation of correlation matrices.""" def test_far_correl(self): """Test the correlation between points far apart. Should be zero. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e-8) corr = corr_fun(1e8) self.assertAlmostEqual(corr, 0) def test_near_correl(self): """Test 2D correlation between near points. Should be one. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e8) corr = corr_fun(1e-8) self.assertAlmostEqual(corr, 1) def test_2d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (int(15), int(20)) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite try: chol_upper = cholesky(corr_mat) except la.LinAlgError: self.fail("corr_mat not positive definite") # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_2d_make_matrix(self): """Test make_matrix for 2D correlations. Checks against original value. This test is really slow. """ # 30x25 Gaussian 10 not close test_nx = 30 test_ny = 20 test_points = test_ny * test_nx # TODO: speed up for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 15): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, (test_ny, test_nx)) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_ny, test_nx, test_ny, test_nx) ).reshape((test_points, test_points)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=1e-5, atol=1e-6) # check if it actually is positive definite cholesky(corr_mat) def test_1d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (200,) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): # This fails with a correlation length of 5 corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_1d_make_matrix(self): """Test make_matrix for 1D correlations. Checks against original value. """ test_nt = 200 for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 30): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt ) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_nt, test_nt) ).reshape((test_nt, test_nt)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=2e-7, atol=5e-7 ) # check if it actually is positive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_fft_correlation_structure(self): """Ensure the FFT-based operators satisfy conditions of correlation matrices. Checks for symmetry and ones on the diagonal. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for test_shape in ((300,), (20, 30)): test_size = int(np.prod(test_shape, dtype=int)) for dist in (1, 3, 10, 30): for is_cyclic in (True, False): corr_fun = corr_class(dist) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, is_cyclic)) # This is the fastest way to get column-major # order from da.eye. corr_mat = corr_op.dot(np.eye(test_size).T) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="symmetry"): np_tst.assert_allclose(corr_mat, corr_mat.T, rtol=1e-14, atol=1e-15) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="self-correlation"): np_tst.assert_allclose(np.diag(corr_mat), 1) def test_1d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec)[noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1.5e-3) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) elif ((corr_class is atmos_flux_inversion.correlations. BalgovindCorrelation and dist == 10)): # This one distance is problematic # Roughly 3% of the points disagree # for the last half of the tests # I have no idea why raise unittest2.SkipTest( "Balgovind(10) correlations weird") np_tst.assert_allclose( corr_op.solve( test_vec)[noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=2e-3 ) def test_1d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec), corr_mat.dot(test_vec), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_2d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) np_tst.assert_allclose( corr_op.solve( test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) def test_2d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape), corr_mat.dot(test_vec).reshape(test_shape), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_homogeneous_from_array_cyclic(self): """Make sure cyclic from_array can be roundtripped. Also tests that odd state sizes work. """ test_size = 25 corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation for dist in (1, 3, 5): with self.subTest(dist=dist): corr_fun = corr_class(dist) corr_op1 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_size, True)) first_column = corr_op1.dot(np.eye(test_size, 1)[:, 0]) corr_op2 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(first_column)) np_tst.assert_allclose( corr_op1.dot(np.eye(test_size)), corr_op2.dot(np.eye(test_size))) def test_kron_composition(self): """Test that `kron` works similar to composition of the domains.""" HomogeneousIsotropicCorrelation = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation ) corr_class = atmos_flux_inversion.correlations.GaussianCorrelation corr_fun = corr_class(5) shape1 = (5,) shape2 = (7,) corr_op1 = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape1)) corr_op2 = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape2)) kron_corr = corr_op1.kron(corr_op2) direct_corr = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape1 + shape2)) self.assertEqual(kron_corr.shape, direct_corr.shape) self.assertEqual(kron_corr._underlying_shape, direct_corr._underlying_shape) np_tst.assert_allclose(kron_corr._corr_fourier, direct_corr._corr_fourier) np_tst.assert_allclose(kron_corr._fourier_near_zero, direct_corr._fourier_near_zero) def test_kron_results(self): """Test the Kronecker product implementation.""" HomogeneousIsotropicCorrelation = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation) corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation test_shapes = (20, 25, (5, 6)) distances = (3, 5,) for dist1, shape1, dist2, shape2 in itertools.product( distances, test_shapes, repeat=2): with self.subTest(dist1=dist1, dist2=dist2): corr_fun1 = corr_class(dist1) corr_fun2 = corr_class(dist2) corr_op1 = ( HomogeneousIsotropicCorrelation. from_function(corr_fun1, shape1)) corr_op2 = ( HomogeneousIsotropicCorrelation. from_function(corr_fun2, shape2)) size1 = np.prod(shape1) size2 = np.prod(shape2) corr_mat1 = corr_op1.dot(np.eye(size1)) corr_mat2 = corr_op2.dot(np.eye(size2)) full_corr1 = corr_op1.kron(corr_op2) full_corr2 = scipy.linalg.kron(np.asarray(corr_mat1), np.asarray(corr_mat2)) self.assertIsInstance( corr_op1, HomogeneousIsotropicCorrelation) test_vec = np.arange(size1 * size2) np_tst.assert_allclose( full_corr1.dot(test_vec), full_corr2.dot(test_vec)) test_mat = np.eye(size1 * size2) np_tst.assert_allclose( full_corr1.dot(test_mat), full_corr2.dot(test_mat)) def test_kron_delegate(self): """Test that kron delegates where appropriate.""" op1 = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array((1, .5, .25))) mat2 = np.eye(5) combined_op = op1.kron(mat2) self.assertIsInstance( combined_op, atmos_flux_inversion.linalg.SchmidtKroneckerProduct ) def test_sqrt_direct(self): """Test the square root in the most direct manner possible. Checks whether matrices corresponding to sqrt.T@sqrt and the original matrix are approximately equal. """ operator = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array((1, .5, .25, .125))) sqrt = operator.sqrt() sqrt_squared = sqrt.T.dot(sqrt) mat = np.eye(4) np_tst.assert_allclose(operator.dot(mat), sqrt_squared.dot(mat)) def test_from_function_direct(self): """Directly test the output of from_function.""" corr_func = (atmos_flux_inversion.correlations. ExponentialCorrelation(1 / np.log(2))) from_function = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation. from_function) toeplitz = scipy.linalg.toeplitz with self.subTest(is_cyclic=False, nd=1): corr_op = from_function(corr_func, [10], False) np_tst.assert_allclose( corr_op.dot(np.eye(10)), toeplitz(0.5 ** np.arange(10))) with self.subTest(is_cyclic=False, nd=2): corr_op = from_function(corr_func, [2, 3], False) same_row = toeplitz(0.5 ** np.array([0, 1, 2])) other_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5)])) np_tst.assert_allclose( corr_op.dot(np.eye(6)), np.block([[same_row, other_row], [other_row, same_row]])) corr_op = from_function(corr_func, [4, 6], False) same_row = toeplitz(0.5 ** np.arange(6)) next_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5), np.sqrt(10), np.sqrt(17), np.sqrt(26)])) row_after_next = toeplitz( 0.5 ** np.array([2, np.sqrt(5), np.sqrt(8), np.sqrt(13), np.sqrt(20), np.sqrt(29)])) two_rows_on = toeplitz( 0.5 ** np.array([3, np.sqrt(10), np.sqrt(13), np.sqrt(18), 5, np.sqrt(34)])) np_tst.assert_allclose( corr_op.dot(np.eye(24)), np.block([[same_row, next_row, row_after_next, two_rows_on], [next_row, same_row, next_row, row_after_next], [row_after_next, next_row, same_row, next_row], [two_rows_on, row_after_next, next_row, same_row]])) with self.subTest(is_cyclic=True, nd=1): corr_op = from_function(corr_func, [10], True) np_tst.assert_allclose( corr_op.dot(np.eye(10)), toeplitz( 0.5 ** np.array([0, 1, 2, 3, 4, 5, 4, 3, 2, 1]))) with self.subTest(is_cyclic=True, nd=2): corr_op = from_function(corr_func, [4, 6]) same_row = toeplitz( 0.5 ** np.array([0, 1, 2, 3, 2, 1])) next_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5), np.sqrt(10), np.sqrt(5), np.sqrt(2)])) row_after_next = toeplitz( 0.5 ** np.array([2, np.sqrt(5), np.sqrt(8), np.sqrt(13), np.sqrt(8), np.sqrt(5)])) np_tst.assert_allclose( corr_op.dot(np.eye(24)), np.block([[same_row, next_row, row_after_next, next_row], [next_row, same_row, next_row, row_after_next], [row_after_next, next_row, same_row, next_row], [next_row, row_after_next, next_row, same_row]])) def test_inv(self): """Test inverse matches linalg.""" corr_func = (atmos_flux_inversion.correlations. ExponentialCorrelation(1 / np.log(2))) from_function = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation. from_function) for test_shape in (10, 11, (3, 3), (4, 4)): with self.subTest(test_shape=test_shape): corr_op = from_function(corr_func, test_shape) test_size = np.prod(test_shape) ident = np.eye(test_size) np_tst.assert_allclose( corr_op.inv().dot(ident), la.inv(corr_op.dot(ident)), rtol=1e-5, atol=1e-5) def test_acyclic_inv_fails(self): """Test inverse fails for acyclic correlations.""" corr_func = (atmos_flux_inversion.correlations. ExponentialCorrelation(1 / np.log(2))) from_function = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation. from_function) for test_shape in (10, 11, (3, 3), (4, 4)): with self.subTest(test_shape=test_shape): corr_op = from_function(corr_func, test_shape, is_cyclic=False) self.assertRaises( NotImplementedError, corr_op.inv) def test_wrong_shape_fails(self): """Test that a vector of the wrong shape fails noisily.""" corr_func = (atmos_flux_inversion.correlations. ExponentialCorrelation(2)) corr_op = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation. from_function(corr_func, (3, 4))) self.assertRaises( ValueError, corr_op.solve, np.arange(5)) def test_cyclic_from_array(self): """Test from_array with assumed cyclic correlations.""" array = [1, .5, .25, .125, .0625, .125, .25, .5] op = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(array)) mat = scipy.linalg.toeplitz(array) np_tst.assert_allclose(op.dot(np.eye(*mat.shape)), mat) def test_acyclic_from_array(self): """Test from_array with correlations assumed acyclic.""" array = [1, .5, .25, .125, .0625, .03125] op = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(array, False)) mat = scipy.linalg.toeplitz(array) np_tst.assert_allclose(op.dot(np.eye(*mat.shape)), mat) @unittest2.skipUnless(HAVE_SPARSE, "sparse not installed") def test_sparse(self): """Test HomogeneousIsotropicCorrelations work on sparse.COO.""" array = 2. ** -np.arange(6) op = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(array, False)) mat = scipy.linalg.toeplitz(array) np_tst.assert_allclose(op.dot(sparse.eye(*mat.shape)), mat) class TestSchmidtKroneckerProduct(unittest2.TestCase): """Test the Schmidt Kronecker product implementation for LinearOperators. This class tests the implementation based on the Schmidt decomposition. """ def test_identity(self): """Test that the implementation works with identity matrices.""" test_sizes = (4, 5) SchmidtKroneckerProduct = ( atmos_flux_inversion.linalg.SchmidtKroneckerProduct) # I want to be sure either being smaller works. # Even versus odd also causes problems occasionally for size1, size2 in itertools.product(test_sizes, repeat=2): with self.subTest(size1=size1, size2=size2): mat1 = np.eye(size1) mat2 = np.eye(size2) full_mat = SchmidtKroneckerProduct( mat1, mat2) big_ident = np.eye(size1 * size2) np_tst.assert_allclose( full_mat.dot(big_ident), big_ident) def test_identical_submatrices(self): """Test whether the implementation will generate identical blocks.""" mat1 = np.ones((3, 3)) mat2 = ((1, .5, .25), (.5, 1, .5), (.25, .5, 1)) np_tst.assert_allclose( atmos_flux_inversion.linalg.SchmidtKroneckerProduct( mat1, mat2).dot(np.eye(9)), np.tile(mat2, (3, 3))) def test_constant_blocks(self): """Test whether the implementation will produce constant blocks.""" mat1 = ((1, .5, .25), (.5, 1, .5), (.25, .5, 1)) mat2 = np.ones((3, 3)) np_tst.assert_allclose( atmos_flux_inversion.linalg.SchmidtKroneckerProduct( mat1, mat2).dot(np.eye(9)), np.repeat(np.repeat(mat1, 3, 0), 3, 1)) def test_entangled_state(self): """Test whether the implementation works with entangled states.""" sigmax = np.array(((0, 1), (1, 0))) sigmaz = np.array(((1, 0), (0, -1))) operator = atmos_flux_inversion.linalg.SchmidtKroneckerProduct( sigmax, sigmaz) matrix = scipy.linalg.kron(sigmax, sigmaz) # (k01 - k10) / sqrt(2) epr_state = (0, .7071, -.7071, 0) np_tst.assert_allclose( operator.dot(epr_state), matrix.dot(epr_state)) def test_drop_small(self): """Test that the implementation properly drops small components.""" SchmidtKroneckerProduct = ( atmos_flux_inversion.linalg.SchmidtKroneckerProduct) # I want to be sure either being smaller works. # Even versus odd also causes problems occasionally mat1 = np.eye(2) mat2 = np.eye(3) full_mat = SchmidtKroneckerProduct( mat1, mat2) test_vec = np.array([1, 0, 0, 0, 1e-15, 0]) np_tst.assert_allclose( full_mat.dot(test_vec), np.eye(6, 1)[:, 0]) def test_transpose(self): """Test that SchmidtKroneckerProduct can be transposed.""" mat1 = np.eye(2) mat2 = np.eye(3) op = atmos_flux_inversion.linalg.SchmidtKroneckerProduct( mat1, mat2 ) op_transpose = op.T np_tst.assert_allclose( op_transpose.dot(np.eye(6)), np.eye(6)) class TestYMKroneckerProduct(unittest2.TestCase): """Test the YM13 Kronecker product implementation for LinearOperators. This tests the :class:`~atmos_flux_inversion.linalg.DaskKroneckerProductOperator` implementation based on the algorithm in Yadav and Michalak (2013) """ def test_identity(self): """Test that the implementation works with identity matrices.""" test_sizes = (4, 5) DaskKroneckerProductOperator = ( atmos_flux_inversion.linalg.DaskKroneckerProductOperator) # I want to be sure either being smaller works. # Even versus odd also causes problems occasionally for size1, size2 in itertools.product(test_sizes, repeat=2): with self.subTest(size1=size1, size2=size2): mat1 = np.eye(size1) mat2 = np.eye(size2) full_mat = DaskKroneckerProductOperator( mat1, mat2) big_ident = np.eye(size1 * size2) np_tst.assert_allclose( full_mat.dot(big_ident), big_ident) def test_identical_submatrices(self): """Test whether the implementation will generate identical blocks.""" mat1 = np.ones((3, 3)) mat2 = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) np_tst.assert_allclose( atmos_flux_inversion.linalg.DaskKroneckerProductOperator( mat1, mat2).dot(np.eye(9)), np.tile(mat2, (3, 3))) def test_constant_blocks(self): """Test whether the implementation will produce constant blocks.""" mat1 = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) mat2 = np.ones((3, 3)) np_tst.assert_allclose( atmos_flux_inversion.linalg.DaskKroneckerProductOperator( mat1, mat2).dot(np.eye(9)), np.repeat(np.repeat(mat1, 3, 0), 3, 1)) def test_entangled_state(self): """Test whether the implementation works with entangled states.""" sigmax = np.array(((0, 1), (1, 0))) sigmaz = np.array(((1, 0), (0, -1))) operator = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( sigmax, sigmaz) matrix = scipy.linalg.kron(sigmax, sigmaz) # (k01 - k10) / sqrt(2) epr_state = (0, .7071, -.7071, 0) np_tst.assert_allclose( operator.dot(epr_state), matrix.dot(epr_state)) @unittest2.skipUnless(HAVE_SPARSE, "sparse not installed") def test_sparse(self): """Test that DaskKroneckerProductOperator works on sparse.COO.""" sigmax = np.array(((0, 1), (1, 0))) sigmaz = np.array(((1, 0), (0, -1))) operator = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( sigmax, sigmaz) matrix = scipy.linalg.kron(sigmax, sigmaz) epr_state = np.array((0, .7071, -.7071, 0)) np_tst.assert_allclose( operator.dot(sparse.COO(epr_state)), matrix.dot(epr_state)) def test_transpose(self): """Test whether the transpose is properly implemented.""" mat1 = np.eye(3) mat2 = atmos_flux_inversion.covariances.DiagonalOperator((1, 1)) mat3 = np.eye(4) DaskKroneckerProductOperator = ( atmos_flux_inversion.linalg.DaskKroneckerProductOperator) with self.subTest(check="symmetric"): product = DaskKroneckerProductOperator( mat1, mat2) self.assertIs(product.T, product) with self.subTest(check="asymmetric1"): mat1[0, 1] = 1 product = DaskKroneckerProductOperator( mat1, mat2) transpose = product.T self.assertIsNot(transpose, product) np_tst.assert_allclose(transpose._operator1, mat1.T) with self.subTest(check="asymmetric2"): product = DaskKroneckerProductOperator( mat3, mat1) transpose = product.T self.assertIsNot(transpose, product) self.assertIs(transpose._operator1, mat3) np_tst.assert_allclose(transpose._operator2.A, mat1.T) with self.subTest(check="asymmetric3"): product = DaskKroneckerProductOperator( mat1, mat1) transpose = product.T np_tst.assert_allclose(transpose._operator1, mat1.T) np_tst.assert_allclose(transpose._operator2.A, mat1.T) with self.subTest(check="rectangular"): product = DaskKroneckerProductOperator( mat1[:2], mat3[:3]) transpose = product.T np_tst.assert_allclose(transpose._operator1, mat1[:2].T) np_tst.assert_allclose(transpose._operator2.A, mat3[:3].T) def test_sqrt(self): """Test whether the sqrt method works as intended.""" matrix1 = np.eye(2) matrix2 = atmos_flux_inversion.covariances.DiagonalOperator((1, 2, 3)) tester = np.eye(6) product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( matrix1, matrix2) sqrt = product.sqrt() proposed = sqrt.T.dot(sqrt) np_tst.assert_allclose(proposed.dot(tester), product.dot(tester)) # Should I check the submatrices or assume that's covered? def test_quadratic_form(self): """Test whether quadratic_form returns the intended result.""" matrix1 = scipy.linalg.toeplitz((1., 1/3., 1/9., 1/27., 1/81.)) # noqa matrix2 = scipy.linalg.toeplitz((1., .5, .25, .125, .0625, .03125)) product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( matrix1, matrix2) tester = np.eye(product.shape[0]) dense_product = scipy.linalg.kron(matrix1, matrix2) test_vec = np.arange(product.shape[0]) np_tst.assert_allclose(product.quadratic_form(tester), dense_product) np_tst.assert_allclose(product.quadratic_form(test_vec), test_vec.dot(dense_product.dot(test_vec))) test_op = atmos_flux_inversion.linalg.DiagonalOperator(test_vec) self.assertRaises( TypeError, product.quadratic_form, test_op) self.assertRaises( ValueError, product.quadratic_form, test_vec[:-1]) @unittest2.skipUnless(HAVE_SPARSE, "sparse not installed") def test_quadratic_form_sparse(self): """Test that quadratic_form works on sparse.COO.""" matrix1 = scipy.linalg.toeplitz(3. ** -np.arange(4)) matrix2 = scipy.linalg.toeplitz(5. ** -np.arange(5)) product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( matrix1, matrix2) tester = sparse.eye(product.shape[0]) dense_product = scipy.linalg.kron(matrix1, matrix2) np_tst.assert_allclose(product.quadratic_form(tester), dense_product) def test_matrix_linop(self): """Test that the implementation works with MatrixLinearOperator.""" test_sizes = (4, 5) DaskKroneckerProductOperator = ( atmos_flux_inversion.linalg.DaskKroneckerProductOperator) # I want to be sure either being smaller works. # Even versus odd also causes problems occasionally for size1, size2 in itertools.product(test_sizes, repeat=2): with self.subTest(size1=size1, size2=size2): mat1 = tolinearoperator(np.eye(size1)) mat2 = np.eye(size2) full_mat = DaskKroneckerProductOperator( mat1, mat2) big_ident = np.eye(size1 * size2) np_tst.assert_allclose( full_mat.dot(big_ident), big_ident) def test_fails_not_array(self): """Test for failure if the first operator is not an array. The implementation requires it. The implementation should fail quickly, not slowly. """ mat1 = atmos_flux_inversion.linalg.DiagonalOperator(np.arange(10)) mat2 = np.eye(3) self.assertRaises( ValueError, atmos_flux_inversion.linalg.DaskKroneckerProductOperator, mat1, mat2) def test_sqrt_fails(self): """Test that the square root fails for bad inputs. Specifically, non-square arrays and asymmetric arrays. """ kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator self.assertRaises( ValueError, kron_op(np.eye(3, 2), np.eye(3)).sqrt) self.assertRaises( ValueError, kron_op(np.eye(3), np.eye(2, 3)).sqrt) self.assertRaises( ValueError, kron_op(np.array([[1, 1], [0, 1]]), np.eye(3)).sqrt) @unittest2.skipUnless(HAVE_SPARSE, "sparse not installed") def test_sparse_first_argument(self): """Test sparse.COO in the first position.""" row = np.exp(-np.arange(20)) row[row < 0.005] = 0 matrix1 = scipy.linalg.toeplitz(row) operator1 = sparse.COO(matrix1) operator2 = sparse.eye(15) kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( operator1, operator2) kron_mat = scipy.linalg.kron(matrix1, operator2.todense()) np_tst.assert_allclose( kron_op.dot(np.eye(kron_op.shape[0])), kron_mat) np_tst.assert_allclose( kron_op.dot(sparse.eye(kron_op.shape[0])).todense(), kron_mat) @unittest2.skipUnless(HAVE_SPARSE, "sparse not installed") @unittest2.expectedFailure def test_sparse_kron_quadratic_form(self): """Test that quadratic form of all sparse works.""" row = np.exp(-np.arange(20)) row[row < 0.005] = 0 matrix1 = scipy.linalg.toeplitz(row) operator1 = sparse.COO(row) operator2 = sparse.eye(15) kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator( operator1, operator2) kron_mat = scipy.linalg.kron(matrix1, operator2.todense()) np_tst.assert_allclose( kron_op.quadratic_form(sparse.eye(kron_op.shape[0])).todense(), kron_mat) class TestUtilKroneckerProduct(unittest2.TestCase): """Test atmos_flux_inversion.util.kronecker_product.""" def test_delegation(self): """Test that it delegates to subclasses where appropriate.""" HomogeneousIsotropicCorrelation = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation) corr_class = atmos_flux_inversion.correlations.GaussianCorrelation corr_fun = corr_class(5) op1 = HomogeneousIsotropicCorrelation.from_function(corr_fun, 15) op2 = HomogeneousIsotropicCorrelation.from_function(corr_fun, 20) combined_op = atmos_flux_inversion.util.kronecker_product(op1, op2) proposed_result = HomogeneousIsotropicCorrelation.from_function( corr_fun, (15, 20)) self.assertIsInstance(combined_op, HomogeneousIsotropicCorrelation) self.assertSequenceEqual(combined_op.shape, tuple(np.multiply(op1.shape, op2.shape))) self.assertEqual(combined_op._underlying_shape, proposed_result._underlying_shape) np_tst.assert_allclose(combined_op._fourier_near_zero, proposed_result._fourier_near_zero) np_tst.assert_allclose(combined_op._corr_fourier, proposed_result._corr_fourier, rtol=1e-5, atol=1e-6) def test_array_array(self): """Test array-array Kronecker product.""" mat1 = np.eye(2) mat2 = np.eye(3) combined_op = atmos_flux_inversion.util.kronecker_product(mat1, mat2) self.assertIsInstance(combined_op, np.ndarray) self.assertSequenceEqual(combined_op.shape, tuple(np.multiply(mat1.shape, mat2.shape))) np_tst.assert_allclose(combined_op, scipy.linalg.kron(mat1, mat2)) def test_large_array_array(self): """Test large array-array Kronecker products. At some point it becomes faster to use Y&M kronecker representation than the dense one. """ mat1 = np.eye(1 << 5) mat2 = np.eye(1 << 6) combined = atmos_flux_inversion.util.kronecker_product(mat1, mat2) self.assertIsInstance( combined, atmos_flux_inversion.linalg.DaskKroneckerProductOperator) self.assertSequenceEqual(combined.shape, tuple(np.multiply(mat1.shape, mat2.shape))) def test_array_sparse(self): """Test array-sparse matrix Kronecker products.""" mat1 = np.eye(3) mat2 = scipy.sparse.eye(10) combined_op = atmos_flux_inversion.util.kronecker_product(mat1, mat2) big_ident = np.eye(30) self.assertIsInstance( combined_op, atmos_flux_inversion.linalg.DaskKroneckerProductOperator ) self.assertSequenceEqual(combined_op.shape, tuple(np.multiply(mat1.shape, mat2.shape))) np_tst.assert_allclose(combined_op.dot(big_ident), big_ident) def test_linop_array(self): """Test linop-sparse Kronecker products.""" op1 = atmos_flux_inversion.linalg.DiagonalOperator(np.arange(15)) mat2 = np.eye(10) combined_op = atmos_flux_inversion.util.kronecker_product(op1, mat2) self.assertIsInstance( combined_op, atmos_flux_inversion.linalg.SchmidtKroneckerProduct ) self.assertSequenceEqual(combined_op.shape, tuple(np.multiply(op1.shape, mat2.shape))) class TestUtilSchmidtDecomposition(unittest2.TestCase): """Test the Schimdt decomposition code in atmos_flux_inversion.linalg.""" def setUp(self): """Set up the test vectors.""" from scipy.linalg import kron # The notation here is borrowed from quantum computation. I # use the k prefix to indicate the vector has precisely one # nonzero entry, a one. The digits following are the binary # representation of the zero-based index of that one. self.k0 = np.array((1, 0)).reshape(-1, 1) self.k1 = np.array((0, 1)).reshape(-1, 1) self.k00 = kron(self.k0, self.k0) self.k01 = kron(self.k0, self.k1) self.k10 = kron(self.k1, self.k0) self.k11 = kron(self.k1, self.k1) self.k000 = kron(self.k0, self.k00) self.k001 = kron(self.k0, self.k01) self.k010 = kron(self.k0, self.k10) self.k011 = kron(self.k0, self.k11) self.k100 = kron(self.k1, self.k00) self.k101 = kron(self.k1, self.k01) self.k110 = kron(self.k1, self.k10) self.k111 = kron(self.k1, self.k11) def test_simple_combinations(self): """Test many combinations of vectors.""" possibilities = ( self.k0, self.k1, self.k00, self.k01, self.k10, self.k11) for vec1, vec2 in itertools.product(possibilities, possibilities): with self.subTest(vec1=vec1[:, 0], vec2=vec2[:, 0]): composite_state = scipy.linalg.kron(vec1, vec2) lambdas, vecs1, vecs2 = ( atmos_flux_inversion.linalg.schmidt_decomposition( composite_state, vec1.shape[0], vec2.shape[0])) np_tst.assert_allclose(np.nonzero(lambdas), [[0]]) np_tst.assert_allclose(np.abs(vecs1[0]), vec1[:, 0]) np_tst.assert_allclose(np.abs(vecs2[0]), vec2[:, 0]) np_tst.assert_allclose( lambdas[0] * scipy.linalg.kron( np.asarray(vecs1[:1].T), np.asarray(vecs2[:1].T)), composite_state) def test_composite_compination(self): """Test composite combinations.""" sqrt2 = math.sqrt(2) rsqrt2 = 1 / sqrt2 # b00 = (k00 + k11) / sqrt2 # b01 = (k00 - k11) / sqrt2 # b10 = (k01 + k10) / sqrt2 # b11 = (k01 - k10) / sqrt2 composite_state = ( scipy.linalg.kron(self.k0, self.k00) + scipy.linalg.kron(self.k1, self.k01)) / sqrt2 res_lambda, res_vec1, res_vec2 = ( atmos_flux_inversion.linalg.schmidt_decomposition( composite_state, 2, 4)) self.assertEqual(res_vec1.shape, (2, 2)) self.assertEqual(res_vec2.shape, (2, 4)) np_tst.assert_allclose(res_lambda, (rsqrt2, rsqrt2)) np_tst.assert_allclose( sum(lambd * scipy.linalg.kron( np.asarray(vec1).reshape(-1, 1), np.asarray(vec2).reshape(-1, 1)) for lambd, vec1, vec2 in zip(res_lambda, res_vec1, res_vec2)), composite_state) def test_epr_state(self): """Test that it correctly decomposes the EPR state.""" sqrt2o2 = math.sqrt(2) / 2 epr_state = (self.k01 - self.k10) * sqrt2o2 lambdas, vecs1, vecs2 = ( atmos_flux_inversion.linalg.schmidt_decomposition( epr_state, 2, 2 ) ) lambdas = np.asarray(lambdas) vecs1 = np.asarray(vecs1) vecs2 = np.asarray(vecs2) self.assertEqual(len(lambdas), 2) # This will not recover the original decomposition np_tst.assert_allclose(lambdas, (sqrt2o2, sqrt2o2)) self.assertAlmostEqual(np.prod(lambdas), .5) for vec1, vec2 in zip(vecs1, vecs2): if np.allclose(np.abs(vec1), self.k0[:, 0]): sign = 1 else: sign = -1
np_tst.assert_allclose(vec1, sign * vec2[-1::-1])
numpy.testing.assert_allclose
from copy import copy import mdtraj as md import subprocess import os from urllib.request import urlretrieve from tempfile import TemporaryDirectory import numpy as np from itertools import tee, count import mdtraj.core.element as elem from re import sub import contextlib import pathlib from pathlib import Path aa_tlc = [ 'ala', 'arg', 'asn', 'asp', 'cys', 'glu', 'gln', 'gly', 'his', 'ile', 'leu', 'lys', 'met', 'phe', 'pro', 'ser', 'thr', 'trp', 'tyr', 'val' ] aa_olc = [ 'a', 'r', 'n', 'd', 'c', 'e', 'q', 'g', 'h', 'i', 'l', 'k', 'm', 'f', 'p', 's', 't', 'w', 'y', 'v' ] aa_olc2tlc = {olc: tlc for olc, tlc in zip(aa_olc, aa_tlc)} aa_tlc2olc = {tlc: olc for olc, tlc in zip(aa_olc, aa_tlc)} def rand_rotation_matrices(num=1, deflection=1.0): """ Creates an array of random rotation matrices. num: number of rotation matrices to generate deflection: the magnitude of the rotation. For 0, no rotation; for 1, completely randomrotation. Small deflection => small perturbation. Adapted from http://blog.lostinmyterminal.com/python/2015/05/12/random-rotation-matrix.html """ randnums = np.random.uniform(size=(3, num)) theta, phi, z = randnums theta = theta * 2.0*deflection*np.pi # Rotation about the pole (Z). phi = phi * 2.0*np.pi # For direction of pole deflection. z = z * 2.0*deflection # For magnitude of pole deflection. # Compute a vector V used for distributing points over the sphere # via the reflection I - V Transpose(V). This formulation of V # will guarantee that if x[1] and x[2] are uniformly distributed, # the reflected points will be uniform on the sphere. Note that V # has length sqrt(2) to eliminate the 2 in the Householder matrix. r = np.sqrt(z) Vx, Vy, Vz = V = np.stack([
np.sin(phi)
numpy.sin
#! /usr/bin/env python import numpy as np from landlab.components.flexure import Flexure from landlab import RasterModelGrid def get_random_load_locations(shape, n_loads): return np.random.random_integers(0, shape[0] * shape[1] - 1, n_loads) def get_random_load_magnitudes(n_loads): return
np.random.normal(1e3, 10e7, n_loads)
numpy.random.normal
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data =
np.array([])
numpy.array
"""Common code for pose-from-action""" import numpy as np def one_hot_cat(array, num_choices): # converts integer class vector ot one-hot rng =
np.arange(num_choices)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Thu Jan 13 11:56:44 2022 @author: dleon """ import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from scipy.stats import norm,gamma,cauchy,invgauss,norminvgauss,\ geninvgauss,poisson from ambit_stochastics.trawl import trawl #from fit_distr_for_tests import fit_trawl_distribution_aux #from ambit_stochastics import trawl #trawl simulation tests def check_values(trawl_,simulations_to_use=[1,2,-2,-1]): if trawl_.nr_trawls > 5000: values = trawl_.values[:,:500] times = trawl_.tau * np.arange(1,500+1,1) else: values, times = trawl_.values, trawl_.tau * np.arange(1,trawl_.nr_trawls+1,1) f,ax = plt.subplots(2,2,figsize = (24,20),sharex= True) ax[0,0].plot(times, values[simulations_to_use[0]]) ax[0,1].plot(times, values[simulations_to_use[1]]) ax[1,0].plot(times, values[simulations_to_use[2]]) ax[1,1].plot(times, values[simulations_to_use[3]]) ax[1,0].set_xlabel('time') ax[1,1].set_xlabel('time') f.suptitle('Sample paths of the trawl process') def check_acf(trawl_, simulation_to_use=0, lags=20): """plot_acf produces a horizontal line at y-0, can t figure out how to eliminate it from the plot""" values = trawl_.values[simulation_to_use] times = trawl_.tau * np.arange(1,trawl_.nr_trawls+1,1) fig_acf, ax_acf = plt.subplots(1,1,figsize=(12,6)) plot_acf(values, lags = lags-1, ax=ax_acf, color = 'blue', label='empirical') ax_acf.set_xlabel('lag') x = np.arange(1,lags,1) y = trawl_.theoretical_acf(np.arange(1,lags,1)*trawl_.tau) ax_acf.scatter(x,y.values(),marker = "*", color = 'r',s = 300,alpha = 0.5,label='theoretical') ax_acf.legend() def check_trawl_slice(trawl_slice): check_values(trawl_slice) check_acf(trawl_slice,simulation_to_use = 1,lags=20) check_acf(trawl_slice,simulation_to_use = 7,lags=20) check_acf(trawl_slice,simulation_to_use = 12,lags=20) check_acf(trawl_slice,simulation_to_use = -5,lags=20) def check_trawl_gaussian_part(trawl_): a = [norm.fit(data = trawl_.gaussian_values[simulation,:]) for simulation in range(trawl_.nr_simulations)] total_area = quad(trawl_.trawl_function,a=-np.inf,b=0)[0] a = np.array(a) / np.array([total_area, total_area ** 0.5]) f,ax= plt.subplots(1,2,sharey=True, tight_layout=True) ax[0].hist(a[:,0],density=True) ax[0].set_title('infered means and true value') ax[1].hist(a[:,1],density=True) ax[1].set_title('infered sd and true value') ax[0].axvline(x=trawl_.gaussian_part_params[0],color='r') ax[1].axvline(x=trawl_.gaussian_part_params[1],color='r') def check_trawl_jump_part_distribution(trawl_): total_area = quad(trawl_.trawl_function,a=-np.inf,b=0)[0] if trawl_.jump_part_name == 'gamma': a = [gamma.fit(data = simulation,floc=0) for simulation in trawl_.jump_values] a = np.array([[i[0],i[2]] for i in a]) #a, scale a = a /
np.array([total_area,1])
numpy.array
import numpy as np import astropy.io.fits as fits from amglib.imageutils import * import tifffile as tiff from tqdm.notebook import tqdm def readImage(fname) : ext = fname.split('.')[-1] img = [] if ext == 'tif' : img = tiff.imread(fname).astype('float32') if ext == 'fits' : img = fits.getdata(fname,ext=0).astype('float32') return img def readImages(fname,first,last, average = 'none', averageStack=False, stride=1, count=1, size = 5) : tmp = readImage(fname.format(first)) img =
np.zeros([(last-first+1) // stride,tmp.shape[0],tmp.shape[1]],dtype='float32')
numpy.zeros
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME>, <NAME>, based on code from <NAME> # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from PIL import Image from torchvision import transforms import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import pickle from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes # from model.nms.nms_wrapper import nms from model.roi_layers import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import save_net, load_net, vis_detections import sys sys.path.insert(0, './lib/model/unit') from model.unit.utils import get_config, pytorch03_to_pytorch04 from model.unit.trainer import MUNIT_Trainer, UNIT_Trainer from model.unit.networks_test import VAEGenA, VAEGenB import torchvision.utils as vutils from PIL import Image from copy import deepcopy from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet_dual import resnet import pdb try: xrange # Python 2 except NameError: xrange = range # Python 3 def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/vgg16.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models", type=str) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=10021, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.add_argument('--use_tfb', dest='use_tfboard', help='whether use tensorboard', action='store_true') parser.add_argument('--config', default='./lib/model/unit/configs/unit_rgb2thermal_folder.yaml', type=str, help="net configuration") parser.add_argument('--input', default=None, type=str, help="input image path") parser.add_argument('--output_folder', default='.', type=str, help="output image path") parser.add_argument('--checkpoint_unit', default='./lib/model/unit/models/rgb2thermal.pt', type=str, help="checkpoint of autoencoders") parser.add_argument('--style', type=str, default='', help="style image path") parser.add_argument('--a2b', type=int, default=0, help="1 for a2b and others for b2a") parser.add_argument('--seed', type=int, default=10, help="random seed") parser.add_argument('--num_style',type=int, default=10, help="number of styles to sample") parser.add_argument('--synchronized', action='store_true', help="whether use synchronized style code or not") parser.add_argument('--output_only', action='store_true', help="whether use synchronized style code or not") parser.add_argument('--output_path', type=str, default='.', help="path for logs, checkpoints, and VGG model weight") parser.add_argument('--trainer', type=str, default='UNIT', help="MUNIT|UNIT") args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY # def get_unit_models(opts): # config = get_config(opts.config) # opts.num_style = 1 if opts.style != '' else opts.num_style # config['vgg_model_path'] = opts.output_path # trainer = UNIT_Trainer(config) # try: # state_dict = torch.load(opts.checkpoint_unit) # trainer.gen_a.load_state_dict(state_dict['a']) # trainer.gen_b.load_state_dict(state_dict['b']) # except: # state_dict = pytorch03_to_pytorch04(torch.load(opts.checkpoint_unit)) # trainer.gen_a.load_state_dict(state_dict['a']) # trainer.gen_b.load_state_dict(state_dict['b']) # trainer.cuda() # trainer.eval() # encode = trainer.gen_a.encode if opts.a2b else trainer.gen_b.encode # encode function # style_encode = trainer.gen_b.encode if opts.a2b else trainer.gen_a.encode # encode function # decode = trainer.gen_b.decode if opts.a2b else trainer.gen_a.decode # decode function # return encode, decode class Resize_GPU(nn.Module): def __init__(self, h, w): super(Resize_GPU, self).__init__() self.op = nn.AdaptiveAvgPool2d((h,w)) def forward(self, x): x = self.op(x) return x lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") np.random.seed(cfg.RNG_SEED) if args.dataset == "pascal_voc": args.imdb_name = "voc_2007_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "pascal_voc_0712": args.imdb_name = "voc_2007_trainval+voc_2012_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "coco": args.imdb_name = "coco_2014_train+coco_2014_valminusminival" args.imdbval_name = "coco_2014_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "imagenet": args.imdb_name = "imagenet_train" args.imdbval_name = "imagenet_val" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "vg": args.imdb_name = "vg_150-50-50_minitrain" args.imdbval_name = "vg_150-50-50_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) cfg.TRAIN.USE_FLIPPED = False imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdbval_name, False) imdb.competition_mode(on=True) print('{:d} roidb entries'.format(len(roidb))) input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception('There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) load_name_gen_a = os.path.join(input_dir, 'gen_a_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) load_name_gen_b = os.path.join(input_dir, 'gen_b_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. if args.net in ['res101_unit_update', 'res101_unit_update_coco', 'res101_unit_update_coco_final']: fasterRCNN = resnet(imdb.classes, 101, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() config = get_config(args.config) gen_a = VAEGenA(config['input_dim_a'], config['gen']) gen_b = VAEGenB(config['input_dim_b'], config['gen']) checkpoint_a = torch.load(load_name_gen_a) checkpoint_b = torch.load(load_name_gen_b) gen_a.load_state_dict(checkpoint_a['model']) gen_b.load_state_dict(checkpoint_b['model']) gen_a = gen_a.cuda() gen_b = gen_b.cuda() print("load checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True if args.cuda: fasterRCNN.cuda() start = time.time() max_per_image = 100 vis = args.vis if vis: thresh = 0.05 else: thresh = 0.0 save_name = 'faster_rcnn_10' num_images = len(imdb.image_index) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] output_dir = get_output_dir(imdb, save_name) dataset = roibatchLoader(roidb, ratio_list, ratio_index, 1, \ imdb.num_classes, training=False, normalize = False) dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True) data_iter = iter(dataloader) _t = {'im_detect': time.time(), 'misc': time.time()} det_file = os.path.join(output_dir, 'detections.pkl') if args.use_tfboard: from tensorboardX import SummaryWriter logger = SummaryWriter(f'logs/{cfg.EXP_DIR}_test/') fasterRCNN.eval() empty_array = np.transpose(np.array([[],[],[],[],[]]), (1,0)) for i in range(num_images): data = next(data_iter) im_data.data.resize_(data[0].size()).copy_(data[0]) im_info.data.resize_(data[1].size()).copy_(data[1]) gt_boxes.data.resize_(data[2].size()).copy_(data[2]) num_boxes.data.resize_(data[3].size()).copy_(data[3]) im_shape = im_data.size() nw_resize = Resize_GPU(im_shape[2], im_shape[3]) content, _ = gen_b(im_data) outputs = gen_a(content) im_data_1 = (outputs + 1) / 2. im_data_1 = nw_resize(im_data_1) lines = [] with open('/content/MMTOD/data/VOCdevkit2007/VOC2007/ImageSets/Main/test.txt') as f: lines = f.readlines() #print(lines) path = './flir2' img = im_data_1.clone().detach() tensor = img.cpu().numpy() tensor2 =
np.squeeze(tensor, axis=0)
numpy.squeeze
import gym from gym.spaces import Box, Dict import string from env.utils import * from env.utils import compute_graph import heft class DAGEnv(gym.Env): def __init__(self, n, node_types, window, env_type, noise=False): if isinstance(node_types, int): p = node_types node_types = np.ones(p) else: p = len(node_types) self.observation_space = Dict self.action_space = "Graph" self.noise = noise self.time = 0 self.num_steps = 0 self.p = p self.n = n self.window = window self.env_type = env_type if self.env_type == 'LU': self.max_duration_cpu = max(durations_cpu_lu) self.max_duration_gpu = max(durations_gpu_lu) self.task_data = ggen_denselu(self.n, self.noise) elif self.env_type == 'QR': self.max_duration_cpu = max(durations_cpu_qr) self.max_duration_gpu = max(durations_gpu_qr) self.task_data = ggen_QR(self.n, self.noise) elif self.env_type == 'chol': self.max_duration_cpu = max(durations_cpu) self.max_duration_gpu = max(durations_gpu) self.task_data = ggen_cholesky(self.n, self.noise) else: raise EnvironmentError('not implemented') self.num_nodes = self.task_data.num_nodes self.sum_task = torch.sum(self.task_data.x, dim=0) self.norm_desc_features = self.task_data.add_features_descendant()[0] / self.sum_task self.cluster = Cluster(node_types=node_types.astype(int), communication_cost=np.zeros((p, p))) self.running = -1 * np.ones(p) # array of task number self.running_task2proc = {} self.ready_proc = np.zeros(p) # for each processor, the time where it becomes available self.ready_tasks = [] self.processed = {} self.compeur_task = 0 self.current_proc = 0 self.is_homogene = (np.mean(self.cluster.node_types) - 1) * np.mean(self.cluster.node_types) == 0 self.critic_path_duration = None self.total_work_normalized = None # self.task_to_CP = np.zeros(len(self.task_graph.task_list)) # compute heft string_cluster = string.printable[:self.p] dic_heft = {} for edge in np.array(self.task_data.edge_index.t()): dic_heft[edge[0]] = dic_heft.get(edge[0], ()) + (edge[1],) def compcost(job, agent): idx = string_cluster.find(agent) duration = self.task_data.task_list[job].durations[self.cluster.node_types[idx]] return duration def commcost(ni, nj, A, B): return 0 orders, jobson = heft.schedule(dic_heft, string_cluster, compcost, commcost) try: self.heft_time = orders[jobson[self.num_nodes - 1]][-1].end except: # ok if test self.heft_time = max([v[-1] for v in orders.values() if len(v) > 0]) def reset(self): # self.task_data = random_ggen_fifo(self.n, self.max_in, self.max_out, self.noise) if self.env_type == 'LU': self.task_data = ggen_denselu(self.n, self.noise) elif self.env_type == 'QR': self.task_data = ggen_QR(self.n, self.noise) elif self.env_type == 'chol': self.task_data = ggen_cholesky(self.n, self.noise) else: raise EnvironmentError('not implemented') self.time = 0 self.num_steps = 0 self.running = -1 * np.ones(self.p).astype(int) self.running_task2proc = {} self.ready_proc = np.zeros(self.p) # self.ready_tasks.append(0) self.current_proc = 0 # compute initial doable tasks new_ready_tasks = torch.arange(0, self.num_nodes)[torch.logical_not(isin(torch.arange(0, self.num_nodes), self.task_data.edge_index[1, :]))] self.ready_tasks = new_ready_tasks.tolist() self.processed = {} self.compeur_task = 0 # if self.noise > 0: # for i in range(self.task_data.num_nodes): # self.task_data.task_list[i].durations[1] = self.task_data.task_list[i].duration_gpu + np.random.normal(0, self.noise) return self._compute_state() def step(self, action, render_before=False, render_after=False, enforce=True, speed=False): """ first implementation, with only [-1, 0, ..., T] actions :param action: -1: does nothing. t: schedules t on the current available processor :return: next_state, reward, done, info """ self.num_steps += 1 self._find_available_proc() if action == -1 and enforce: if len(self.running_task2proc) == 0: # the agent does nothing but every proc is available: we enforce an arbitrary action action = self.ready_tasks[0] if action != -1: self.compeur_task += 1 self._choose_task_processor(action, self.current_proc) if render_before: self.render() done = self._go_to_next_action(action, enforce) if render_after and not speed: self.render() reward = (self.heft_time - self.time)/self.heft_time if done else 0 info = {'episode': {'r': reward, 'length': self.num_steps, 'time': self.time}, 'bad_transition': False} if speed: return 0, reward, done, info return self._compute_state(), reward, done, info def _find_available_proc(self): while (self.current_proc < self.p) and (self.running[self.current_proc] > -1): self.current_proc += 1 if self.current_proc == self.p: # no new proc available self.current_proc == 0 self._forward_in_time() while (self.current_proc < self.p) and (self.running[self.current_proc] > -1): self.current_proc += 1 def _forward_in_time(self): if len(self.ready_proc[self.ready_proc > self.time]) > 0: min_time = np.min(self.ready_proc[self.ready_proc > self.time]) else: min_time = 0 self.time = min_time self.ready_proc[self.ready_proc < self.time] = self.time tasks_finished = self.running[np.logical_and(self.ready_proc == self.time, self.running > -1)].copy() self.running[self.ready_proc == self.time] = -1 for task in tasks_finished: del self.running_task2proc[task] # compute successors of finished tasks mask = isin(self.task_data.edge_index[0], torch.tensor(tasks_finished)) list_succ = self.task_data.edge_index[1][mask] list_succ = torch.unique(list_succ) # remove nodes self.task_data.remove_edges(tasks_finished) # compute new available tasks new_ready_tasks = list_succ[torch.logical_not(isin(list_succ, self.task_data.edge_index[1, :]))] self.ready_tasks += new_ready_tasks.tolist() self.current_proc = np.argmin(self.running) def _go_to_next_action(self, previous_action, enforce=True): has_just_passed = self.is_homogene and previous_action == -1 and enforce if has_just_passed: self._forward_in_time() elif previous_action == -1: self.current_proc += 1 while len(self.ready_tasks) == 0: self._forward_in_time() if self._isdone(): return True self._find_available_proc() return False def _choose_task_processor(self, action, processor): # assert action in self.ready_tasks if action != -1: self.ready_proc[processor] += self.task_data.task_list[action].durations[self.cluster.node_types[processor]] self.ready_tasks.remove(action) self.processed[self.task_data.task_list[action].barcode] = [processor, self.time] self.running_task2proc[action] = processor self.running[processor] = action def _compute_state(self): visible_graph, node_num = compute_sub_graph(self.task_data, torch.tensor(np.concatenate((self.running[self.running > -1], self.ready_tasks)), dtype=torch.long), self.window) visible_graph.x, ready = self._compute_embeddings(node_num) return {'graph': visible_graph, 'node_num': node_num, 'ready': ready} def _remaining_time(self, running_tasks): return torch.tensor([self.ready_proc[self.running_task2proc[task.item()]] for task in running_tasks]) - self.time def _isdone(self): # return (self.task_data.edge_index.shape[-1] == 0) and (len(self.running_task2proc) == 0) return (self.compeur_task == self.num_nodes and (len(self.running_task2proc) == 0)) def _compute_embeddings(self, tasks): ready = isin(tasks, torch.tensor(self.ready_tasks)).float() running = isin(tasks, torch.tensor(self.running[self.running > -1])).squeeze(-1) remaining_time = torch.zeros(tasks.shape[0]) remaining_time[running] = self._remaining_time(tasks[running].squeeze(-1)).to(torch.float) remaining_time = remaining_time.unsqueeze(-1) n_succ = torch.sum((tasks == self.task_data.edge_index[0]).float(), dim=1).unsqueeze(-1) n_pred = torch.sum((tasks == self.task_data.edge_index[1]).float(), dim=1).unsqueeze(-1) task_num = self.task_data.task_list[tasks.squeeze(-1)] if isinstance(task_num, Task): task_type = torch.tensor([[4]]) else: task_type = torch.tensor([task.type for task in task_num]).unsqueeze(-1) num_classes = 4 one_hot_type = (task_type == torch.arange(num_classes).reshape(1, num_classes)).float() # add other embeddings descendant_features_norm = self.norm_desc_features[tasks].squeeze(1) # CP below task # cpl = torch.zeros(tasks.shape[0]) # for i, task in enumerate(tasks): # if self.task_to_CP[task] == 0: # cpl[i] = CPAndWorkBelow(self.task_graph.task_list[task], self.n, durations_gpu)[0] / self.critic_path_duration # self.task_to_CP[task] = cpl[i] # else: # cpl[i] = self.task_to_CP[task] # cpl = cpl.unsqueeze(-1) # add node type node_type = torch.ones(tasks.shape[0]) * self.cluster.node_types[self.current_proc] node_type = node_type.unsqueeze((-1)) if sum(self.cluster.node_types == 1) == 0: min_ready_gpu = torch.FloatTensor([1]).repeat(tasks.shape[0]).unsqueeze((-1)) else: min_ready_gpu = min(self.ready_proc[self.cluster.node_types == 1] - self.time)/self.max_duration_gpu min_ready_gpu = torch.FloatTensor([min_ready_gpu]).repeat(tasks.shape[0]).unsqueeze((-1)) if sum(self.cluster.node_types == 0) == 0: min_ready_cpu = torch.FloatTensor([1]).repeat(tasks.shape[0]).unsqueeze((-1)) else: min_ready_cpu = min(self.ready_proc[self.cluster.node_types == 0] - self.time) / self.max_duration_cpu min_ready_cpu = torch.FloatTensor([min_ready_cpu]).repeat(tasks.shape[0]).unsqueeze((-1)) # if self.current_proc > 3: # print("what") # return (torch.cat((n_succ/10, n_pred/10, one_hot_type, ready, running.unsqueeze(-1).float(), remaining_time/10, cpl), dim=1), # ready) # return (torch.cat((n_succ/10, n_pred/10, one_hot_type, ready, running.unsqueeze(-1).float(), remaining_time/10), dim=1), # ready) # return (torch.cat((n_succ, n_pred, one_hot_type, ready, running.unsqueeze(-1).float(), remaining_time, cpl), dim=1), # ready) return (torch.cat((n_succ, n_pred, one_hot_type, ready, running.unsqueeze(-1).float(), remaining_time, descendant_features_norm, node_type, min_ready_gpu, min_ready_cpu), dim=1), ready) # return cpl, ready # return (torch.cat((one_hot_type, ready, running.unsqueeze(-1).float(), remaining_time, cpl, node_type), dim=1), # ready) # # Compute HEFT # def _compute_embeddings_heterogenous(self, tasks): def render(self): def color_task(task): colors = [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]] if task in self.running: time_proportion =1 - (self.ready_proc[self.running_task2proc[task]] - self.time)/\ self.task_data.task_list[task].duration_cpu color_time = [1., time_proportion, time_proportion] return color_time elif task in self.ready_tasks: return colors[1] return colors[2] def color_processor(processor): if self.running[processor] == -1: return [0, 1, 0] if self.current_proc == processor else [0.7, 0.7, 0.7] else: time_proportion = (self.ready_proc[processor] - self.time) / \ self.task_data.task_list[self.running[processor]].duration_cpu return [time_proportion, 0, 0] visible_graph, node_num = compute_sub_graph(self.task_data, torch.tensor(np.concatenate((self.running[self.running > -1], self.ready_tasks)), dtype=torch.long), self.window) plt.figure(figsize=(8 , 8)) plt.suptitle('time: {}'.format(self.time)) plt.subplot(121) plt.box(on=None) visible_graph.render(root=list(self.running[self.running > -1])) # plt.title('time: {}'.format(self.time)) # plt.show() plt.subplot(122) plt.box(on=None) graph = to_networkx(Data(visible_graph.x, visible_graph.edge_index.contiguous())) pos = graphviz_layout(graph, prog='dot', root=None) # pos = graphviz_layout(G, prog='tree') node_color = [color_task(task[0].item()) for task in node_num] # plt.figure(figsize=(8, 8)) nx.draw_networkx_nodes(graph, pos, node_color=node_color) nx.draw_networkx_edges(graph, pos) labels = {} for i, task in enumerate(node_num): if task[0].item() in self.ready_tasks: labels[i] = task[0].item() nx.draw_networkx_labels(graph, pos, labels, font_size=16) # plt.title('time: {}'.format(self.time)) plt.show() # Cluster edges_list = [(u, v, {"cost": self.cluster.communication_cost[u, v]}) for u in range(self.p) for v in range(self.p) if u != v] colors = [color_processor(p) for p in range(self.p)] G = nx.Graph() G.add_nodes_from(list(range(len(self.cluster.node_types)))) G.add_edges_from(edges_list) pos = graphviz_layout(G) node_labels = {} for i, node_type in enumerate(self.cluster.node_types): node_labels[i] = ["CPU", "GPU"][node_type] plt.figure(figsize=(8, 8)) nx.draw_networkx_nodes(G, pos=pos, node_color=colors, node_size=1000) nx.draw_networkx_edges(G, pos=pos) nx.draw_networkx_edge_labels(G, pos=pos) nx.draw_networkx_labels(G, pos, node_labels, font_size=16) plt.show() def visualize_schedule(self, figsize=(80, 30), fig_file=None, flip=False): def get_data(env): P = env.p Processed = env.processed for k, v in Processed.items(): Processed[k] = [int(v[0]), int(v[1])] # makespan should be dicrete and durations should be discretized makespan = int(env.time) data = np.ones((P, makespan)) * (-1) data = data.astype(int) compl_data = [[] for _ in range(P)] for x, sched in Processed.items(): tasktype = x[0] pr = sched[0] s_time = sched[1] e_time = s_time + Task(x).durations[env.cluster.node_types[pr]] data[pr, s_time:e_time] = tasktype if tasktype == 0: compl_data[pr].insert(0, (x[1])) elif tasktype == 1: compl_data[pr].insert(0, (x[1], x[2])) elif tasktype == 2: compl_data[pr].insert(0, (x[1], x[2])) else: compl_data[pr].insert(0, (x[1], x[2], x[3])) return data, compl_data def avg(a, b): return (a + b) / 2.0 P = self.p data, compl_data = get_data(self) if flip: data = data[-1::-1, :] compl_data = compl_data[-1::-1] fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ax.axes.get_yaxis().set_visible(False) ax.set_aspect(1) for y, row in enumerate(data): # for x, col in enumerate(row): x = 0 i = 0 indices_in_row = compl_data[y] while x < len(row): col = row[x] if col != -1: shift = Task([col]).durations[self.cluster.node_types[y]] indices = indices_in_row[i] else: x = x + 1 continue x1 = [x, x + shift] y1 = np.array([y, y]) y2 = y1 + 1 if col == 0: plt.fill_between(x1, y1, y2=y2, facecolor='green', edgecolor='Black') plt.text(avg(x1[0], x1[1]), avg(y1[0], y2[0]), 'C({})'.format(indices), horizontalalignment='center', verticalalignment='center', fontsize=30) if col == 1: plt.fill_between(x1, y1, y2=y2, facecolor='red', edgecolor='Black') plt.text(avg(x1[0], x1[1]), avg(y1[0], y2[0]), "S{}".format(indices), horizontalalignment='center', verticalalignment='center', fontsize=30) if col == 2: plt.fill_between(x1, y1, y2=y2, facecolor='orange', edgecolor='Black') plt.text(avg(x1[0], x1[1]), avg(y1[0], y2[0]), "T{}".format(indices), horizontalalignment='center', verticalalignment='center', fontsize=30) if col == 3: plt.fill_between(x1, y1, y2=y2, facecolor='yellow', edgecolor='Black') plt.text(avg(x1[0], x1[1]), avg(y1[0], y2[0]), "G{}".format(indices), horizontalalignment='center', verticalalignment='center', fontsize=30) x = x + shift i = i + 1 plt.ylim(P, 0) plt.xlim(-1e-3, data.shape[1] + 1e-3) plt.xticks(fontsize=50) if fig_file != None: plt.savefig(fig_file) return def export(self): se # legacy code class CholeskyTaskGraph(gym.Env): def __init__(self, n, node_types, window, noise=False): if isinstance(node_types, int): p = node_types node_types = np.ones(p) else: p = len(node_types) self.observation_space = Dict self.action_space = "Graph" self.noise = noise self.time = 0 self.num_steps = 0 self.n = n self.p = p self.window = window self.task_graph = compute_graph(n=n, noise=noise) self.task_data = TaskGraph(self.task_graph.x.clone(), self.task_graph.edge_index.clone(), self.task_graph.task_list.copy()) # self.task_to_asap = {v: k for (k, v) in enumerate(self.task_data.task_list)} self.cluster = Cluster(node_types=node_types.astype(int), communication_cost=np.zeros((p, p))) self.running = -1 * np.ones(p) # array of task number self.running_task2proc = {} self.ready_proc = np.zeros(p) # for each processor, the time where it becomes available self.ready_tasks = [] self.processed = {} self.current_proc = 0 self.is_homogene = (np.mean(self.cluster.node_types) - 1) * np.mean(self.cluster.node_types) == 0 self.critic_path_duration = sum(durations_gpu[:-2]) * (self.n - 1) + durations_gpu[0] # 158 self.total_work_normalized = (n * durations_gpu[0] + n * (n - 1) / 2 * (durations_gpu[1] + durations_gpu[2]) + \ n * (n - 1) * (n - 2) / 6 * durations_gpu[3]) / p # 536 / p self.task_to_CP = np.zeros(len(self.task_graph.task_list)) def reset(self): self.task_data = TaskGraph(self.task_graph.x.clone(), self.task_graph.edge_index.clone(), self.task_graph.task_list.copy()) self.time = 0 self.num_steps = 0 self.running = -1 * np.ones(self.p).astype(int) self.running_task2proc = {} self.ready_proc =
np.zeros(self.p)
numpy.zeros
# coding=utf-8 """ Drivers for Monte Carlo sampling of chemical states, such as tautomers and protomers. """ import copy import logging import math import random from pandas import DataFrame import pandas as pd from pandas.util.testing import assert_frame_equal import sys import numpy as np import os from simtk import unit from simtk import openmm as mm from saltswap.swapper import Swapper from .proposals import ( _StateProposal, SaltSwapProposal, UniformSwapProposal, COOHDummyMover, ) from .topology import Topology from .saltswap_utils import update_fractional_stateVector from .pka import available_pkas from .ions import NeutralChargeRule, choose_neutralizing_ions_by_method from simtk.openmm import app from numbers import Number import re from .logger import log from abc import ABCMeta, abstractmethod from lxml import etree, objectify from typing import Dict, List, Optional, Tuple, Any, Callable from .integrators import GHMCIntegrator, GBAOABIntegrator from enum import Enum import itertools from collections import defaultdict kB = (1.0 * unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA).in_units_of( unit.kilojoules_per_mole / unit.kelvin ) np.set_printoptions(precision=15) class SamplingMethod(Enum): """Enum for describing different sampling strategies.""" # MarkovChain Monte carlo sampling of states with Metropolis-Hastings like accept/reject test # Including Non-equilibrium candidate monte carlo (NCMC) MCMC = 0 # Importance sampling, where only one state is sampled and the work is calculated to switch, # includind annealed importance sampling IMPORTANCE = 1 class _TitratableResidue: """Representation of a single residue with multiple titration states.""" def __init__(self): """ Instantiate a _TitratableResidue Notes ----- This class should not be instantiated directly. Use `from_lists` or `from_serialized_xml` instead. This class is intended for internal use by the ProtonDrive. """ # The indices of the residue atoms in the system self.atom_indices = list() # List to store titration states self.titration_states: List[_TitrationState] = list() self.index = None self.name = None self.residue_type = None # NonbondedForce exceptions associated with this titration state self.exception_indices = list() self._state = None self._pka_data = None self._residue_pka = None return def __eq__(self, other): for own_state, other_state in zip( self.titration_states, other.titration_states ): if own_state != other_state: return False if self.name != other.name: return False if self.residue_type != other.residue_type: return False if self.index != other.index: return False if self._state != other._state: return False if self._pka_data is not None and other._pka_data is not None: try: assert_frame_equal( self._pka_data, other._pka_data, check_less_precise=4 ) except AssertionError: return False if self._residue_pka != other._residue_pka: return False return True @classmethod def from_lists( cls, atom_indices, group_index, name, residue_type, exception_indices, pka_data=None, residue_pka=None, ): """ Instantiate a _TitratableResidue from lists and strings that contain all necessary information Parameters ---------- atom_indices - list of system indices of the residue atoms group_index - the index of the residue in the list of titratable residues name - str, an identifier for this residue residue_type - str, the 3 letter residue type in the forcefield specification (e.g. AS4). exception_indices - list of NonbondedForce exceptions associated with this titration state pka_data - dict, optional, dict of weights, with pH as key. floats as keys. Not compatible with residue_pka option. residue_pka - PopulationCalculator, optional. Can be used to provide target weights at a given pH. Not compatible with pka_data option. """ # The indices of the residue atoms in the system obj = cls() obj.atom_indices = list(atom_indices) # deep copy # List to store titration states obj.titration_states = list() obj.index = group_index obj.name = name obj.residue_type = residue_type # NonbondedForce exceptions associated with this titration state obj.exception_indices = exception_indices obj._state = None obj._pka_data = None obj._residue_pka = None if pka_data is not None and residue_pka is not None: raise ValueError("You can only provide pka_data, or residue_pka, not both.") elif pka_data is not None: obj._pka_data = pka_data elif residue_pka is not None: obj._residue_pka = residue_pka return obj @classmethod def from_serialized_xml(cls, xmltree): """Create a titratable residue from a serialized titratable residue. Parameters ---------- xmltree - etree.ElementTree or compatible lxml class, should only contain one residue. Returns ------- obj - a newly instantiated _TitratableResidue object. """ # prevent accidental modification of the user supplied file. xmltree = copy.deepcopy(xmltree) obj = cls() # The indices of the residue atoms in the system atom_indices = list() res = xmltree.xpath("/TitratableResidue")[0] for atom in xmltree.xpath("/TitratableResidue/atom"): atom_indices.append(int(atom.get("index"))) obj.atom_indices = atom_indices # List to store titration states obj.titration_states = list() obj.index = int(res.get("index")) obj.name = str(res.get("name")) obj.residue_type = str(res.get("type")) # NonbondedForce exceptions associated with this titration state exception_indices = list() for exception in xmltree.xpath("/TitratableResidue/exception"): exception_indices.append(int(exception.get("index"))) obj.exception_indices = exception_indices obj._state = None obj._pka_data = None obj._residue_pka = None # parse the pka data block as if an html table pka_data = xmltree.xpath("/TitratableResidue/pka_data") if len(pka_data): pka_data = copy.deepcopy(pka_data[0]) pka_data.tag = "table" obj._pka_data = pd.read_html(etree.tostring(pka_data))[0] res_pka = res.get("residue_pka") if res_pka is not None: obj._residue_pka = available_pkas[res_pka] if obj._pka_data is not None and obj._residue_pka is not None: raise ValueError("You can only provide pka_data, or residue_pka, not both.") states = xmltree.xpath("/TitratableResidue/TitrationState") obj.titration_states = [None] * len(states) for state in states: state_index = int(state.get("index")) obj.titration_states[state_index] = _TitrationState.from_serialized_xml( state ) # Set the titration state of this residue obj.state = int(res.get("state")) return obj def add_state(self, state): """Adds a _TitrationState to the residue.""" self.titration_states.append(state) def serialize(self): """ Create an xml representation of this residue. Returns ------- res - lxml tree containing residue information """ # xml factory E = objectify.E res = E.TitratableResidue( name=self.name, type=self.residue_type, index=str(self.index), state=str(self.state_index), ) if self._residue_pka is not None: # residue_pka holds a reference to the base class. # Storing the name of the type, which can be looked to find it from the available_pkas dict res.set("residue_pka", self.residue_type) for atom_index in self.atom_indices: objectify.SubElement(res, "atom", index=str(atom_index)) for exception_index in self.exception_indices: objectify.SubElement(res, "exception", index=str(exception_index)) if self._pka_data is not None: res.pka_data = objectify.fromstring(self._pka_data.to_html(index=False)) res.TitrationState = E.TitrationState() res.TitrationState[:] = [ state.serialize(index) for index, state in enumerate(self.titration_states) ][:] return res def get_populations(self, pH, temperature=None, ionic_strength=None, strict=True): """Return the state populations for a given pH. Parameters ---------- pH - float, the pH for which populations should be returned temperature - float, the temperature in Kelvin that should be used to find the log populations if available. Optional, soft requirement. Won't throw error if not matched. ionic_strength - float, the ionic strength in millimolar that should be used to find the log populations if available. Optional, soft requirement. Won't throw error if not matched. strict - bool, default True. If there are no pH dependent weights, throw an error. Else, just return default weights. Notes ----- Temperature, and ionic strength are soft requirements. """ log_weights = np.empty(len(self)) # look up weights in the dictionary if self._pka_data is not None: # Search an appropriate log population value from the dataframe that was constructed. # Temperature and Ionic strength aren't always provided. for state, group in self._pka_data.groupby("State"): # Get the first element where the pH matches, the temperature potentially matches, and the ionic strenght potentially matches state = int(state) pH_match = group["pH"] == pH temperature_match = True ionic_strength_match = True if temperature is not None: temperature_match = group["Temperature (K)"].isin( [temperature, None] ) if ionic_strength is not None: ionic_strength_match = group["Ionic strength (mM)"].isin( ionic_strength, None ) matches = group.loc[pH_match & temperature_match & ionic_strength_match] # If there are no matches, throw an error if len(matches) == 0: raise ValueError( "There is no matching pH/temperature condition available for residue {}.".format( self.name ) ) # get the first one else: first_row = next(matches.iterrows()) # index 1 is the row values, get the log population log_population = first_row[1]["log population"] log_weights[state] = log_population # calculate residue weights from pka object elif self._residue_pka is not None: log_weights = self._residue_pka(pH).populations() # If there is no pH dependent population specified, return the current target populations. # This will be equal if this was never specified previously. See the target_weights property. else: if strict: raise RuntimeError( "Residue is not adjustable by pH. {}".format(self.name) ) else: log_weights = np.log(np.asarray(self.target_weights)) return np.asarray(log_weights) def set_populations(self, pH): """ Set the target weights using the pH Parameters ---------- pH - float, the pH of the simulation. """ # old_weights = np.asarray(self.target_weights) self.target_weights = np.exp(self.get_populations(pH, strict=True)) ph_correction = -np.log(self.target_weights) self.g_k_values = np.asarray(self.g_k_values) + ph_correction @property def state(self): """ Returns ------- _TitrationState """ return self.titration_states[self._state] @property def state_index(self): """ The index of the current state of the residue. """ return self._state @state.setter def state(self, state: int): """ Set the titration state index. Warning: does not update the parameters. This should only be modified by a proton drive. """ if state > len(self): raise IndexError( "Titration state index out of bounds. ( > {}".format(len(self)) ) self._state = state @property def target_weights(self): """Target weight of each state. Default is equal weights.""" target_weights = [state.target_weight for state in self.titration_states] if None in target_weights: return [1.0 / len(self)] * len(self) else: return target_weights @target_weights.setter def target_weights(self, weights): """Set sampling target weights for all states.""" if not len(weights) == len(self): raise ValueError( "The number of weights needs to be equal to the number of states." ) for id, state in enumerate(self): state.target_weight = weights[id] @property def g_k_values(self) -> List[float]: """A list containing the g_k value for each state.""" return [state.g_k for state in self] @g_k_values.setter def g_k_values(self, g_klist: List[float]): """Set sampling target weights for all states.""" if not len(g_klist) == len(self): raise ValueError( "The number of g_k values needs to be equal to the number of states." ) for id, state in enumerate(self): state.g_k = g_klist[id] @property def proton_count(self): """Number of titratable protons in current state.""" return self.state.proton_count @property def proton_counts(self): """Number of titratable protons active in each state.""" return [state.proton_count for state in self] def __len__(self): """Return length of group.""" return len(self.titration_states) def __getitem__(self, item): """Retrieve state by index. Parameters ---------- item - int Titration state to be accessed. """ if item >= len(self.titration_states): raise IndexError("Titration state outside of range.") else: return self.titration_states[item] @property def atom_status(self): """Returns boolean array of atoms, and if they're switched on. Defined as charge equal to 0 (to precision of 1.e-9 """ return [0 if abs(charge) < 1.0e-9 else 1 for charge in self.state.charges] @property def total_charge(self) -> int: """Total charge of the current titration state.""" return self.state.total_charge @property def total_charges(self): """Total charge of each state.""" return [state.total_charge for state in self] class _TitrationState: """Representation of a titration state.""" def __init__(self): """Instantiate a _TitrationState, for internal use by ProtonDrive classes.""" self.g_k = None # dimensionless quantity self.charges = list() self.proton_count = ( None ) # Number of titratable protons compared to the most deprotonated state self._cation_count = ( None ) # Number of cations to maintain charge compared to other states self._anion_count = ( None ) # Number of anions to maintain charge compared to other states self._forces = list() self._target_weight = None # MC moves should be functions that take the positions, and return updated positions, # and a log (reverse/forward) proposal probability ratio self._mc_moves = dict() # Dict[str, List[COOHDummyMover]] @classmethod def from_lists( cls, g_k: float, charges: List[float], proton_count: int, cation_count: int, anion_count: int, cooh_movers: Optional[List[COOHDummyMover]] = None, ): """Instantiate a _TitrationState from g_k, proton count and a list of the charges Returns ------- obj - a new _TitrationState instance """ obj = cls() obj.g_k = g_k # dimensionless quantity obj.charges = copy.deepcopy(charges) obj.proton_count = proton_count obj._cation_count = cation_count obj._anion_count = anion_count # Note that forces are to be manually added by force caching functionality in ProtonDrives obj._forces = list() obj._target_weight = None if cooh_movers is not None: for mover in cooh_movers: if "COOH" not in obj._mc_moves: obj._mc_moves["COOH"] = list() obj._mc_moves["COOH"].append(mover) return obj @classmethod def from_serialized_xml(cls, state_element): """ Deserialize a _TitrationState from a previously serialized xml tree Parameters ---------- xmltree - etree.Element or compatible lxml class containing one single titration state Returns ------- obj - a new _TitrationState instance """ obj = cls() # prevent accidental modification state = copy.deepcopy(state_element) obj.proton_count = int(state.get("proton_count")) obj._cation_count = int(state.get("cation_count")) obj._anion_count = int(state.get("anion_count")) target_weight = state.get("target_weight") obj._target_weight = ( None if target_weight == "None" else np.float64(target_weight) ) obj.g_k = np.float64(state.get("g_k")) charges = state.xpath("charge") obj.charges = [None] * len(charges) for charge in charges: # Get the array index charge_index = int(charge.get("charge_index")) charge_value = np.float64(charge.text) obj.charges[charge_index] = charge_value # forces is a list of forces, though currently in practice its of length one and contains only nonbonded force # Inside each force is a dict containing 'atoms', and 'exceptions' # 'atoms' and 'exceptions' are lists # Inside of the list are dicts. # Each dictionary contains the parameters for either an atom, or an exception. # For atom it contains 'charge', 'sigma', 'epsilon', and 'atom_index'. # For exception it contains 'exception_index' 'particle1' 'particle2' 'chargeProd' 'sigma', and 'epsilon' forces = state.xpath("force") obj._forces = [None] * len(forces) for f_index, force in enumerate(forces): force_dict = dict(atoms=list(), exceptions=list()) for atom in force.xpath("atom"): atom_dict = dict() for key in [ "atom_index", "charge", "epsilon", "sigma", "radius", "scaleFactor", ]: if key == "atom_index": atom_dict[key] = int(atom.get(key)) else: param_value = atom.get(key) if param_value is not None: atom_dict[key] = np.float64(param_value) force_dict["atoms"].append(atom_dict) for exception in force.xpath("exception"): exc_dict = dict() for key in [ "chargeProd", "epsilon", "exception_index", "particle1", "particle2", "sigma", ]: if key in ["particle1", "particle2", "exception_index"]: exc_dict[key] = int(exception.get(key)) else: exc_dict[key] = np.float64(exception.get(key)) force_dict["exceptions"].append(exc_dict) obj._forces[f_index] = force_dict # instantiate supported MCMoves from xml # throws KeyError if there is an unimplemented move present for child in state.xpath("MCMoves")[0].iterchildren(): if child.tag == "COOH": for grandchild in child.iterchildren(): if grandchild.tag == "COOHDummyMover": mover = COOHDummyMover.from_xml(grandchild) try: obj._mc_moves["COOH"].append(mover) except KeyError: obj._mc_moves["COOH"] = [mover] else: raise KeyError( "Unknown COOH movetype found in XML: {}".format( grandchild.tag ) ) else: raise KeyError( "Unsupported MC movetype found in XML: {}".format(child.tag) ) return obj @property def total_charge(self) -> int: """Return the total charge of the state.""" return int(round(sum(self.charges))) @property def anion_count(self) -> int: return self._anion_count @anion_count.setter def anion_count(self, n_anions: int): if type(n_anions) != int: raise TypeError("The anion count should be integer.") self._anion_count = n_anions @property def cation_count(self) -> int: return self._cation_count @cation_count.setter def cation_count(self, n_cations: int): if type(n_cations) != int: raise TypeError("The cation count should be integer.") self._cation_count = n_cations @property def forces(self): return self._forces @forces.setter def forces(self, force_params): self._forces = copy.deepcopy(force_params) @property def target_weight(self): return self._target_weight @target_weight.setter def target_weight(self, weight): self._target_weight = weight def serialize(self, index=None): """Serialize a state into xml etree. Returns ------- state - objectify tree """ E = objectify.E if index is not None: index = str(index) # Only serializing values that are not properties. state = E.TitrationState( proton_count=str(self.proton_count), cation_count=str(self._cation_count), anion_count=str(self._anion_count), target_weight=str(self.target_weight), index=index, g_k=str(self.g_k), ) q_tags = list() for q_index, q in enumerate(self.charges): # Ensure float is numpy type for print precision as specified in numpy print options q = np.float64(q) q_tags.append(E.charge("{:.15f}".format(q), charge_index=str(q_index))) state.charge = E.charge state.charge[:] = q_tags[:] # forces is a list of forces, though currently in practice its of length one and contains only nonbonded force # Other forces will get serialized correctly, but deserialization may be an issue. # Inside each force is a dict containing 'atoms', and 'exceptions' # 'atoms' and 'exceptions' are lists # Inside of the list are dicts. # Each dictionary contains the parameters for either an atom, or an exception. # For atom it contains 'charge', 'sigma', 'epsilon', and 'atom_index'. # For exception it contains 'exception_index' 'particle1' 'particle2' 'chargeProd' 'sigma', and 'epsilon' for f_index, force in enumerate(self._forces): force_xml = E.force( index=str( f_index ) # the force index in the internal state, not the force index in openmm ) atoms = force["atoms"] if "exceptions" in force: exceptions = force["exceptions"] else: exceptions = [] for atom in atoms: # Convert to string for xml storage atom_strings = dict(atom) for key in atom.keys(): if key == "atom_index": atom_strings[key] = str(atom[key]) else: # Ensure numpy type for print precision atom_strings[key] = "{:.15f}".format(np.float64(atom[key])) atom_tag = objectify.SubElement(force_xml, "atom", **atom_strings) for exception in exceptions: exception_strings = dict(exception) for key in exception.keys(): if key in ["particle1", "particle2", "exception_index"]: exception_strings[key] = str(exception[key]) else: # Ensure numpy type for print precision exception_strings[key] = "{:.15f}".format( np.float64(exception[key]) ) exception_tag = objectify.SubElement( force_xml, "exception", **exception_strings ) state.append(force_xml) # Titration state specific MCMoves are serialized using their to_xml method mcmoves = objectify.SubElement(state, "MCMoves") for mcmove, mcmovelist in self._mc_moves.items(): mcmovexml = objectify.fromstring("<{}/>".format(mcmove)) for submove in mcmovelist: submovexml = objectify.fromstring(submove.to_xml()) mcmovexml.append(submovexml) mcmoves.append(mcmovexml) return state def __eq__(self, other): """Compare the equality of two _TitrationState objects.""" if not isinstance(other, _TitrationState): return False float_atol = 1.0e-10 if not np.isclose( self._target_weight, other._target_weight, rtol=0.0, atol=float_atol ): return False if not np.isclose( self.proton_count, other.proton_count, rtol=0.0, atol=float_atol ): return False if not np.isclose(self.g_k, other.g_k, rtol=0.0, atol=float_atol): return False if len(self.charges) != len(other.charges): return False # Check if all stored charges are equal if not np.all( np.isclose(self.charges, other.charges, atol=float_atol, rtol=0.0) ): return False # check if all force parameters are equal for own_force, other_force in zip(self._forces, other._forces): own_atoms, other_atoms = own_force["atoms"], other_force["atoms"] own_exceptions, other_exceptions = ( own_force["exceptions"], other_force["exceptions"], ) for own_atom, other_atom in zip(own_atoms, other_atoms): for key in own_atom.keys(): if not np.isclose( own_atom[key], other_atom[key], rtol=0.0, atol=float_atol ): return False for own_exception, other_exception in zip(own_exceptions, other_exceptions): for key in own_exception.keys(): if not np.isclose( own_exception[key], other_exception[key], rtol=0.0, atol=float_atol, ): return False # Everything that was checked seems equal. return True class SAMSApproach(Enum): """Various ways of running SAMS for a titration drive. Notes ----- This class is defined here for indicating which approach is used to run SAMS SAMSApproach.ONESITE - A single residue is sampled using SAMS, while the rest is treated normally. SAMSAproach.MULTISITE - A combination of all residue states is treated as a single state. Example: 2 hydroxy residues have 4 states (OH1 OH2, O-1 OH2, OH1 O-1, O-1 O-2) """ ONESITE = 0 MULTISITE = 1 class Stage(Enum): """Stages of a sams run.""" NODECAY = ( -1 ) # Initial guess constructing, do not adjust gain factor or SAMS iteration number. SLOWDECAY = 0 # Fast gain but not optimal convergence FASTDECAY = 1 # Slower gain but optimal asymptotic convergence EQUILIBRIUM = 2 # No adaptation of g_k class UpdateRule(Enum): """SAMS update rule.""" BINARY = 0 GLOBAL = 1 class _SAMSState: """A table to contain SAMS free energies (zeta or g_k) and targets (pi) for constant-pH residues.""" def __init__( self, state_counts: List[int], approach: SAMSApproach, group_index: Optional[int] = None, update_rule: UpdateRule = UpdateRule.BINARY, beta_sams: float = 0.5, flatness_criterion: float = 0.05, min_burn: int = 200, min_slow: int = 200, min_fast: int = 200, ): """Set up tracking for SAMS calibration weights. Parameters ---------- state_counts - list of the number of states that each titratable residue has. approach - one of the available ways of running SAMS (see ``SAMSApproach``) group_index - integer, SAMSApproach.ONESITE only, specify the site. update_rule - The update rule to use beta_sams - SAMS two-stage coefficient to determine gain in first stage flatness_criterion - how flat the absolute histogram needs to be to switch to slow gain min_burn - minimum iterations before gain decay is initiated min_slow - minimum number of SAMS iterations before fast decay is initiated. min_fast - minimum number of SAMS iterations before equilibrium stage is initiated. """ # Contains SAMS free energy estimates self._free_energy_table: np.ndarray = None # Target weights self._target_table: np.ndarray = None # Observed histogram counts self._observed_table: np.ndarray = None # Indices in flattened array self._index_table: np.ndarray = None # state of the free energy calculation self._update_rule: UpdateRule = update_rule self._beta_sams: float = beta_sams self._flatness_criterion = flatness_criterion self._min_burn: int = min_burn self._min_slow: int = min_slow self._min_fast: int = min_fast # Starting adaptation uses negative numbers to indicate burn-in self._current_adaptation: int = -1 * min_burn self._stage: Stage = Stage.NODECAY self._end_of_slowdecay: int = 0 if not isinstance(approach, SAMSApproach): raise TypeError("Please provide a SAMSApproach.") # Group index is the last residue if not provided if approach is SAMSApproach.ONESITE: self.group_index = -1 if group_index is None else group_index elif approach is SAMSApproach.MULTISITE: if group_index is not None: raise NotImplementedError( "group_index should not be provided for multi site SAMS." ) self.group_index = group_index self.approach = approach if approach is SAMSApproach.ONESITE: # Every value in the table is the sams free energy/target weight of one independent titration state # Note that the weights in one site should only change for one residue at a time. # However, calibrated values may be stored, as they are internally used for calculation of relative probabilities. self._free_energy_table = list() self._target_table = list() self._index_table = list() self._observed_table = list() for state in state_counts: self._free_energy_table.append(np.zeros(state, dtype=np.float64)) targets = np.ones(state, dtype=np.float64) / state self._target_table.append(targets) self._observed_table.append(np.zeros(state, dtype=np.float64)) self._index_table.append(np.arange(state)) self._free_energy_table = np.asarray(self._free_energy_table) self._target_table = np.asarray(self._target_table) self._index_table = np.asarray(self._index_table) self._observed_table = np.asarray(self._observed_table) elif approach is SAMSApproach.MULTISITE: # Every value in the table is one joint titration state # Default value set to 0, but can be tweaked later with initial guesses. self._free_energy_table = np.zeros(state_counts, dtype=np.float64) # These should be equal for multisite sams total_count = int(np.prod(state_counts)) self._target_table = np.ones(state_counts, dtype=np.float64) / (total_count) self._observed_table = np.zeros(state_counts, dtype=np.float64) # For looking up index in the flattened array. self._index_table = np.arange(total_count).reshape(state_counts) def free_energy(self, titration_states: List[int]) -> float: """Return the sams free energy value for the provided titration state. Parameters ---------- titration_states - list of the indices of the titration state of each individual residue Notes ----- For one site, only the free energy of the calibrated residue is added. """ # In case of the one site sams approach, its only the current state of the residue that is being calibrated. if self.approach is SAMSApproach.ONESITE: if len(titration_states) != len(self._free_energy_table): raise ValueError( "The number of titration states in the table does not match what was provided." ) state = titration_states[self.group_index] return self._free_energy_table[self.group_index][state] # In case of the multisite sams approach, the sams weight is the one value in the table matching the joint state elif self.approach is SAMSApproach.MULTISITE: if len(titration_states) != len(self._free_energy_table.shape): raise ValueError( "The number of titration states provided does not match the dimensionality of the table." ) return self._free_energy_table[tuple(titration_states)] def target(self, titration_states: List[int]) -> np.float64: """Return the target weight for the supplied state.""" # In case of the one site sams approach, the sams weight is the total weight of every titration state weight = None if self.approach is SAMSApproach.ONESITE: current_state = titration_states[self.group_index] if len(titration_states) != len(self._free_energy_table): raise ValueError( "The number of titration states in the table does not match what was provided." ) return self._target_table[self.group_index][current_state] # In case of the multisite sams approach, the sams weight is the one value in the table matching the joint state elif self.approach is SAMSApproach.MULTISITE: if len(titration_states) != len(self._free_energy_table.shape): raise ValueError( "The number of titration states provided does not match the dimensionality of the table." ) weight = self._target_table[tuple(titration_states)] return weight def observed(self, titration_states: List[int]) -> np.float64: """Return the histogram count for the supplied state.""" # In case of the one site sams approach, the sams weight is the total weight of every titration state counts = None if self.approach is SAMSApproach.ONESITE: current_state = titration_states[self.group_index] if len(titration_states) != len(self._observed_table): raise ValueError( "The number of titration states in the table does not match what was provided." ) return self._observed_table[self.group_index][current_state] # In case of the multisite sams approach, the sams weight is the one value in the table matching the joint state elif self.approach is SAMSApproach.MULTISITE: if len(titration_states) != len(self._observed_table.shape): raise ValueError( "The number of titration states provided does not match the dimensionality of the table." ) counts = self._observed_table[tuple(titration_states)] return counts @property def targets(self) -> np.ndarray: """Return entire row of targets.""" if self.approach is SAMSApproach.ONESITE: return self._target_table[self.group_index] elif self.approach is SAMSApproach.MULTISITE: return self._target_table.flatten() @property def observed_counts(self) -> np.ndarray: """Return entire row of histogram counts.""" if self.approach is SAMSApproach.ONESITE: return self._observed_table[self.group_index] elif self.approach is SAMSApproach.MULTISITE: return self._observed_table.flatten() @property def deviation_from_target(self) -> np.ndarray: """Return the signed deviation from target for every state.""" # Ensure normalization works even if all observations are zero. total = max(1.0, np.sum(self.observed_counts)) return (self.observed_counts / total) - self.targets @property def max_absolute_deviation(self) -> float: """Return the maximum absolute deviation between sampled and target histogram.""" return np.max(np.abs(self.deviation_from_target)) @property def free_energies(self) -> np.ndarray: """Return entire row of sams free energies.""" if self.approach is SAMSApproach.ONESITE: return self._free_energy_table[self.group_index] elif self.approach is SAMSApproach.MULTISITE: return self._free_energy_table.flatten() @free_energies.setter def free_energies(self, free_energies: np.ndarray): """Update all free energy values from a 1D array.""" if not free_energies.ndim == 1: raise ValueError("Free energy input needs to be one dimensional.") if self.approach is SAMSApproach.ONESITE: self._free_energy_table[self.group_index] = free_energies elif self.approach is SAMSApproach.MULTISITE: self._free_energy_table = free_energies.reshape( self._free_energy_table.shape ) @targets.setter def targets(self, targets): """Update all targets from a 1D array.""" if not targets.ndim == 1: raise ValueError("Target input needs to be one dimensional.") if self.approach is SAMSApproach.ONESITE: self._target_table[self.group_index] = targets elif self.approach is SAMSApproach.MULTISITE: self._target_table = targets.reshape(self._target_table.shape) @observed_counts.setter def observed_counts(self, counts): """Update all observed counts from a 1D array.""" if not counts.ndim == 1: raise ValueError("Target input needs to be one dimensional.") if self.approach is SAMSApproach.ONESITE: self._observed_table[self.group_index] = counts elif self.approach is SAMSApproach.MULTISITE: self._observed_table = counts.reshape(self._observed_table.shape) def reset_observed_counts(self): """Reset the observed counts to zero.""" self.observed_counts =
np.zeros_like(self.observed_counts)
numpy.zeros_like
# Copyright (c) 2020: <NAME> (<EMAIL>). # # This file is modified from <https://github.com/philip-huang/PIXOR>: # Copyright (c) [2019] [<NAME>] # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """Utils for PIXOR detection.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import os import pickle import numpy as np import tensorflow as tf from shapely.geometry import Polygon def get_eval_lists(images, latents, model_net, pixor_size=128): gt_boxes_list = [] corners_list = [] scores_list = [] gt_pixor_state_list = [] recons_pixor_state_list = [] for i in range(len(latents)): latent_eps = latents[i] image_eps = images[i] for j in range(len(latent_eps)): latent = latent_eps[j] dict_obs = image_eps[j] dict_recons = model_net.reconstruct_pixor(latent) vh_clas_recons = tf.squeeze(dict_recons['vh_clas'], axis=-1) # (B,H,W,1) vh_regr_recons = dict_recons['vh_regr'] # (B,H,W,6) decoded_reg_recons = decode_reg(vh_regr_recons, pixor_size) # (B,H,W,8) pixor_state_recons = dict_recons['pixor_state'] vh_clas_obs = tf.squeeze(dict_obs['vh_clas'], axis=-1) # (B,H,W,1) vh_regr_obs = dict_obs['vh_regr'] # (B,H,W,6) decoded_reg_obs = decode_reg(vh_regr_obs, pixor_size) # (B,H,W,8) pixor_state_obs = dict_obs['pixor_state'] B = vh_regr_obs.shape[0] for k in range(B): gt_boxes, _ = pixor_postprocess(vh_clas_obs[k], decoded_reg_obs[k]) corners, scores = pixor_postprocess(vh_clas_recons[k], decoded_reg_recons[k]) # (N,4,2) gt_boxes_list.append(gt_boxes) corners_list.append(corners) scores_list.append(scores) gt_pixor_state_list.append(pixor_state_obs[k]) recons_pixor_state_list.append(pixor_state_recons[k]) return gt_boxes_list, corners_list, scores_list, gt_pixor_state_list, recons_pixor_state_list def get_eval_metrics(images, latents, model_net, pixor_size=128, ap_range=[0.3,0.5,0.7], filename = 'metrics'): gt_boxes_list, corners_list, scores_list, gt_pixor_state_list, recons_pixor_state_list \ = get_eval_lists(images, latents, model_net, pixor_size=pixor_size) N = len(gt_boxes_list) APs = {} precisions = {} recalls = {} for ap in ap_range: gts = 0 preds = 0 all_scores = [] all_matches = [] for i in range(N): gt_boxes = gt_boxes_list[i] corners = corners_list[i] scores = scores_list[i] gt_match, pred_match, overlaps = compute_matches(gt_boxes, corners, scores, iou_threshold=ap) num_gt = gt_boxes.shape[0] num_pred = len(scores) gts += num_gt preds += num_pred all_scores.extend(list(scores)) all_matches.extend(list(pred_match)) all_scores = np.array(all_scores) all_matches = np.array(all_matches) sort_ids = np.argsort(all_scores) all_matches = all_matches[sort_ids[::-1]] if gts == 0 or preds == 0: return AP, precision, recall, p, r = compute_ap(all_matches, gts, preds) print('ap', ap) print('AP', AP) print('precision', p) print('recall', r) APs[ap] = AP precisions[ap] = precision recalls[ap] = recall results = {} results['APs'] = APs results['precisions'] = precisions results['recalls'] = recalls error_position = [] error_heading = [] error_velocity = [] for i in range(N): gt_pixor_state = gt_pixor_state_list[i] recons_pixor_state = recons_pixor_state_list[i] x0, y0, cos0, sin0, v0 = gt_pixor_state x, y, cos, sin, v = recons_pixor_state error_position.append(np.sqrt((x-x0)**2+(y-y0)**2)) yaw0 = np.arctan2(sin0, cos0) cos0 = np.cos(yaw0) sin0 = np.sin(yaw0) yaw = np.arctan2(sin, cos) cos =
np.cos(yaw)
numpy.cos
#!/usr/bin/env python # CREATED:2014-01-18 14:09:05 by <NAME> <<EMAIL>> # unit tests for util routines # Disable cache import os try: os.environ.pop("LIBROSA_CACHE_DIR") except: pass import platform import numpy as np import scipy.sparse import pytest import warnings import librosa from test_core import srand np.set_printoptions(precision=3) def test_example_audio_file(): assert os.path.exists(librosa.util.example_audio_file()) @pytest.mark.parametrize("frame_length", [4, 8]) @pytest.mark.parametrize("hop_length", [2, 4]) @pytest.mark.parametrize("y", [np.random.randn(32)]) @pytest.mark.parametrize("axis", [0, -1]) def test_frame1d(frame_length, hop_length, axis, y): y_frame = librosa.util.frame(y, frame_length=frame_length, hop_length=hop_length, axis=axis) if axis == -1: y_frame = y_frame.T for i in range(y_frame.shape[0]): assert np.allclose(y_frame[i], y[i * hop_length : (i * hop_length + frame_length)]) @pytest.mark.parametrize("frame_length", [4, 8]) @pytest.mark.parametrize("hop_length", [2, 4]) @pytest.mark.parametrize( "y, axis", [(np.asfortranarray(np.random.randn(16, 32)), -1), (np.ascontiguousarray(np.random.randn(16, 32)), 0)] ) def test_frame2d(frame_length, hop_length, axis, y): y_frame = librosa.util.frame(y, frame_length=frame_length, hop_length=hop_length, axis=axis) if axis == -1: y_frame = y_frame.T y = y.T for i in range(y_frame.shape[0]): assert np.allclose(y_frame[i], y[i * hop_length : (i * hop_length + frame_length)]) def test_frame_0stride(): x = np.arange(10) xpad = x[np.newaxis] xpad2 = np.atleast_2d(x) xf = librosa.util.frame(x, 3, 1) xfpad = librosa.util.frame(xpad, 3, 1) xfpad2 = librosa.util.frame(xpad2, 3, 1) assert np.allclose(xf, xfpad) assert np.allclose(xf, xfpad2) @pytest.mark.xfail(raises=librosa.ParameterError) def test_frame_badtype(): librosa.util.frame([1, 2, 3, 4], frame_length=2, hop_length=1) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("axis", [0, -1]) @pytest.mark.parametrize("x", [np.arange(16)]) def test_frame_too_short(x, axis): librosa.util.frame(x, frame_length=17, hop_length=1, axis=axis) @pytest.mark.xfail(raises=librosa.ParameterError) def test_frame_bad_hop(): librosa.util.frame(np.arange(16), frame_length=4, hop_length=0) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("axis", [1, 2]) def test_frame_bad_axis(axis): librosa.util.frame(np.zeros((3, 3, 3)), frame_length=2, hop_length=1, axis=axis) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("x, axis", [(np.zeros((4, 4), order="C"), -1), (np.zeros((4, 4), order="F"), 0)]) def test_frame_bad_contiguity(x, axis): librosa.util.frame(x, frame_length=2, hop_length=1, axis=axis) @pytest.mark.parametrize("y", [np.ones((16,)), np.ones((16, 16))]) @pytest.mark.parametrize("m", [0, 10]) @pytest.mark.parametrize("axis", [0, -1]) @pytest.mark.parametrize("mode", ["constant", "edge", "reflect"]) def test_pad_center(y, m, axis, mode): n = m + y.shape[axis] y_out = librosa.util.pad_center(y, n, axis=axis, mode=mode) n_len = y.shape[axis] n_pad = int((n - n_len) / 2) eq_slice = [slice(None)] * y.ndim eq_slice[axis] = slice(n_pad, n_pad + n_len) assert np.allclose(y, y_out[tuple(eq_slice)]) @pytest.mark.parametrize("y", [np.ones((16,)), np.ones((16, 16))]) @pytest.mark.parametrize("n", [0, 10]) @pytest.mark.parametrize("axis", [0, -1]) @pytest.mark.parametrize("mode", ["constant", "edge", "reflect"]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_pad_center_fail(y, n, axis, mode): librosa.util.pad_center(y, n, axis=axis, mode=mode) @pytest.mark.parametrize("y", [np.ones((16,)), np.ones((16, 16))]) @pytest.mark.parametrize("m", [-5, 0, 5]) @pytest.mark.parametrize("axis", [0, -1]) def test_fix_length(y, m, axis): n = m + y.shape[axis] y_out = librosa.util.fix_length(y, n, axis=axis) eq_slice = [slice(None)] * y.ndim eq_slice[axis] = slice(y.shape[axis]) if n > y.shape[axis]: assert np.allclose(y, y_out[tuple(eq_slice)]) else: assert np.allclose(y[tuple(eq_slice)], y) @pytest.mark.parametrize("frames", [np.arange(20, 100, step=15)]) @pytest.mark.parametrize("x_min", [0, 20]) @pytest.mark.parametrize("x_max", [20, 70, 120]) @pytest.mark.parametrize("pad", [False, True]) def test_fix_frames(frames, x_min, x_max, pad): f_fix = librosa.util.fix_frames(frames, x_min=x_min, x_max=x_max, pad=pad) if x_min is not None: if pad: assert f_fix[0] == x_min assert np.all(f_fix >= x_min) if x_max is not None: if pad: assert f_fix[-1] == x_max assert np.all(f_fix <= x_max) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("frames", [np.arange(-20, 100)]) @pytest.mark.parametrize("x_min", [None, 0, 20]) @pytest.mark.parametrize("x_max", [None, 0, 20]) @pytest.mark.parametrize("pad", [False, True]) def test_fix_frames_fail_negative(frames, x_min, x_max, pad): librosa.util.fix_frames(frames, x_min, x_max, pad) @pytest.mark.parametrize("norm", [np.inf, -np.inf, 0, 0.5, 1.0, 2.0, None]) @pytest.mark.parametrize("ndims,axis", [(1, 0), (1, -1), (2, 0), (2, 1), (2, -1), (3, 0), (3, 1), (3, 2), (3, -1)]) def test_normalize(ndims, norm, axis): srand() X = np.random.randn(*([4] * ndims)) X_norm = librosa.util.normalize(X, norm=norm, axis=axis) # Shape and dtype checks assert X_norm.dtype == X.dtype assert X_norm.shape == X.shape if norm is None: assert np.allclose(X, X_norm) return X_norm = np.abs(X_norm) if norm == np.inf: values = np.max(X_norm, axis=axis) elif norm == -np.inf: values = np.min(X_norm, axis=axis) elif norm == 0: # XXX: normalization here isn't quite right values = np.ones(1) else: values = np.sum(X_norm ** norm, axis=axis) ** (1.0 / norm) assert np.allclose(values, np.ones_like(values)) @pytest.mark.parametrize("norm", ["inf", -0.5, -2]) @pytest.mark.parametrize("X", [np.ones((3, 3))]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_normalize_badnorm(X, norm): librosa.util.normalize(X, norm=norm) @pytest.mark.parametrize("badval", [np.nan, np.inf, -np.inf]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_normalize_bad_input(badval): X = np.ones((3, 3)) X[0] = badval librosa.util.normalize(X, norm=np.inf, axis=0) @pytest.mark.parametrize("fill", [7, "foo"]) @pytest.mark.parametrize("X", [np.ones((2, 2))]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_normalize_badfill(X, fill): librosa.util.normalize(X, fill=fill) @pytest.mark.parametrize("x", [np.asarray([[0, 1, 2, 3]])]) @pytest.mark.parametrize( "threshold, result", [(None, [[0, 1, 1, 1]]), (1, [[0, 1, 1, 1]]), (2, [[0, 1, 1, 1]]), (3, [[0, 1, 2, 1]]), (4, [[0, 1, 2, 3]])], ) def test_normalize_threshold(x, threshold, result): assert np.allclose(librosa.util.normalize(x, threshold=threshold), result) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("x", [np.asarray([[0, 1, 2, 3]])]) @pytest.mark.parametrize("threshold", [0, -1]) def test_normalize_threshold_fail(x, threshold): librosa.util.normalize(x, threshold=threshold) @pytest.mark.xfail(raises=librosa.ParameterError) def test_normalize_fill_l0(): X = np.ones((2, 2)) librosa.util.normalize(X, fill=True, norm=0) @pytest.mark.parametrize("norm", [1, 2, np.inf]) @pytest.mark.parametrize("X", [np.zeros((3, 3))]) def test_normalize_fill_allaxes(X, norm): Xn = librosa.util.normalize(X, fill=True, axis=None, norm=norm) if norm is np.inf: assert np.allclose(Xn, 1) else: assert np.allclose(np.sum(Xn ** norm) ** (1.0 / norm), 1) @pytest.mark.parametrize("norm", [1, 2, np.inf]) @pytest.mark.parametrize("X", [np.zeros((3, 3))]) def test_normalize_nofill(X, norm): Xn = librosa.util.normalize(X, fill=False, norm=norm) assert np.allclose(Xn, 0) @pytest.mark.parametrize("X", [np.asarray([[0.0, 1], [0, 1]])]) @pytest.mark.parametrize("norm,value", [(1, 0.5), (2, np.sqrt(2) / 2), (np.inf, 1)]) @pytest.mark.parametrize("threshold", [0.5, 2]) def test_normalize_fill(X, threshold, norm, value): Xn = librosa.util.normalize(X, fill=True, norm=norm, threshold=threshold) assert np.allclose(Xn, value) @pytest.mark.parametrize("ndim", [1, 3]) @pytest.mark.parametrize("axis", [0, 1, -1]) @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("value", [None, np.min, np.mean, np.max]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_axis_sort_badndim(ndim, axis, index, value): data = np.zeros([2] * ndim) librosa.util.axis_sort(data, axis=axis, index=index, value=value) @pytest.mark.parametrize("ndim", [2]) @pytest.mark.parametrize("axis", [0, 1, -1]) @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("value", [None, np.min, np.mean, np.max]) def test_axis_sort(ndim, axis, index, value): srand() data = np.random.randn(*([10] * ndim)) if index: Xsorted, idx = librosa.util.axis_sort(data, axis=axis, index=index, value=value) cmp_slice = [slice(None)] * ndim cmp_slice[axis] = idx assert np.allclose(data[tuple(cmp_slice)], Xsorted) else: Xsorted = librosa.util.axis_sort(data, axis=axis, index=index, value=value) compare_axis = np.mod(1 - axis, 2) if value is None: value = np.argmax sort_values = value(Xsorted, axis=compare_axis) assert np.allclose(sort_values, np.sort(sort_values)) @pytest.mark.parametrize( "int_from, int_to", [ (np.asarray([[0, 2], [0, 4], [3, 6]]), np.empty((0, 2), dtype=int)), (np.empty((0, 2), dtype=int), np.asarray([[0, 2], [0, 4], [3, 6]])), ], ) @pytest.mark.xfail(raises=librosa.ParameterError) def test_match_intervals_empty(int_from, int_to): librosa.util.match_intervals(int_from, int_to) @pytest.mark.xfail(raises=librosa.ParameterError) def test_match_intervals_strict_fail(): int_from = np.asarray([[0, 3], [2, 4], [5, 7]]) int_to = np.asarray([[0, 2], [0, 4]]) librosa.util.match_intervals(int_from, int_to, strict=True) @pytest.mark.parametrize("int_from", [np.asarray([[0, 3], [2, 4], [5, 7]])]) @pytest.mark.parametrize("int_to", [np.asarray([[0, 2], [0, 4], [3, 6]])]) @pytest.mark.parametrize("matches", [np.asarray([1, 1, 2])]) def test_match_intervals_strict(int_from, int_to, matches): test_matches = librosa.util.match_intervals(int_from, int_to, strict=True) assert np.array_equal(matches, test_matches) @pytest.mark.parametrize("int_from", [np.asarray([[0, 3], [2, 4], [5, 7]])]) @pytest.mark.parametrize( "int_to,matches", [ (np.asarray([[0, 2], [0, 4], [3, 6]]), np.asarray([1, 1, 2])), (np.asarray([[0, 2], [0, 4]]), np.asarray([1, 1, 1])), ], ) def test_match_intervals_nonstrict(int_from, int_to, matches): test_matches = librosa.util.match_intervals(int_from, int_to, strict=False) assert np.array_equal(matches, test_matches) @pytest.mark.parametrize("n", [1, 5, 20, 100]) @pytest.mark.parametrize("m", [1, 5, 20, 100]) def test_match_events(n, m): srand() ev1 = np.abs(np.random.randn(n)) ev2 = np.abs(np.random.randn(m)) match = librosa.util.match_events(ev1, ev2) for i in range(len(match)): values = np.asarray([np.abs(ev1[i] - e2) for e2 in ev2]) assert not np.any(values < values[match[i]]) @pytest.mark.parametrize("ev1,ev2", [(np.array([]), np.arange(5)), (np.arange(5), np.array([]))]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_match_events_failempty(ev1, ev2): librosa.util.match_events(ev1, ev2) @pytest.mark.parametrize("events_from", [np.asarray([5, 15, 25])]) @pytest.mark.parametrize("events_to", [np.asarray([0, 10, 20, 30])]) @pytest.mark.parametrize("left,right,target", [(False, True, [10, 20, 30]), (True, False, [0, 10, 20])]) def test_match_events_onesided(events_from, events_to, left, right, target): events_from = np.asarray(events_from) events_to = np.asarray(events_to) match = librosa.util.match_events(events_from, events_to, left=left, right=right) assert np.allclose(target, events_to[match]) def test_match_events_twosided(): events_from = np.asarray([5, 15, 25]) events_to = np.asarray([5, 15, 25, 30]) match = librosa.util.match_events(events_from, events_to, left=False, right=False) assert np.allclose(match, [0, 1, 2]) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize( "events_from,events_to,left,right", [ ([40, 15, 25], [0, 10, 20, 30], False, True), # right-sided fail ([-1, 15, 25], [0, 10, 20, 30], True, False), # left-sided fail ([-1, 15, 25], [0, 10, 20, 30], False, False), # two-sided fail ], ) def test_match_events_onesided_fail(events_from, events_to, left, right): events_from = np.asarray(events_from) events_to = np.asarray(events_to) librosa.util.match_events(events_from, events_to, left=left, right=right) @pytest.mark.parametrize("ndim, axis", [(n, m) for n in range(1, 5) for m in range(n)]) def test_localmax(ndim, axis): srand() data = np.random.randn(*([7] * ndim)) lm = librosa.util.localmax(data, axis=axis) for hits in np.argwhere(lm): for offset in [-1, 1]: compare_idx = hits.copy() compare_idx[axis] += offset if compare_idx[axis] < 0: continue if compare_idx[axis] >= data.shape[axis]: continue if offset < 0: assert data[tuple(hits)] > data[tuple(compare_idx)] else: assert data[tuple(hits)] >= data[tuple(compare_idx)] @pytest.mark.parametrize("x", [np.random.randn(_) ** 2 for _ in [1, 5, 10, 100]]) @pytest.mark.parametrize("pre_max", [0, 1, 10]) @pytest.mark.parametrize("post_max", [1, 10]) @pytest.mark.parametrize("pre_avg", [0, 1, 10]) @pytest.mark.parametrize("post_avg", [1, 10]) @pytest.mark.parametrize("wait", [0, 1, 10]) @pytest.mark.parametrize("delta", [0.05, 100.0]) def test_peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait): peaks = librosa.util.peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait) for i in peaks: # Test 1: is it a peak in this window? s = i - pre_max if s < 0: s = 0 t = i + post_max diff = x[i] - np.max(x[s:t]) assert diff > 0 or np.isclose(diff, 0, rtol=1e-3, atol=1e-4) # Test 2: is it a big enough peak to count? s = i - pre_avg if s < 0: s = 0 t = i + post_avg diff = x[i] - (delta + np.mean(x[s:t])) assert diff > 0 or np.isclose(diff, 0, rtol=1e-3, atol=1e-4) # Test 3: peak separation assert not np.any(np.diff(peaks) <= wait) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("x", [np.random.randn(_) ** 2 for _ in [1, 5, 10, 100]]) @pytest.mark.parametrize( "pre_max,post_max,pre_avg,post_avg,delta,wait", [ (-1, 1, 1, 1, 0.05, 1), # negative pre-max (1, -1, 1, 1, 0.05, 1), # negative post-max (1, 0, 1, 1, 0.05, 1), # 0 post-max (1, 1, -1, 1, 0.05, 1), # negative pre-avg (1, 1, 1, -1, 0.05, 1), # negative post-avg (1, 1, 1, 0, 0.05, 1), # zero post-avg (1, 1, 1, 1, -0.05, 1), # negative delta (1, 1, 1, 1, 0.05, -1), # negative wait ], ) def test_peak_pick_fail(x, pre_max, post_max, pre_avg, post_avg, delta, wait): librosa.util.peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait) @pytest.mark.xfail(raises=librosa.ParameterError) def test_peak_pick_shape_fail(): # Can't pick peaks on 2d inputs librosa.util.peak_pick(np.eye(2), 1, 1, 1, 1, 0.5, 1) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("ndim", [3, 4]) def test_sparsify_rows_ndimfail(ndim): X = np.zeros([2] * ndim) librosa.util.sparsify_rows(X) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("quantile", [1.0, -1, 2.0]) @pytest.mark.parametrize("X", [np.ones((3, 3))]) def test_sparsify_rows_badquantile(X, quantile): librosa.util.sparsify_rows(X, quantile=quantile) @pytest.mark.parametrize("ndim", [1, 2]) @pytest.mark.parametrize("d", [1, 5, 10, 100]) @pytest.mark.parametrize("q", [0.0, 0.01, 0.25, 0.5, 0.99]) def test_sparsify_rows(ndim, d, q): srand() X = np.random.randn(*([d] * ndim)) ** 4 X = np.asarray(X) xs = librosa.util.sparsify_rows(X, quantile=q) if ndim == 1: X = X.reshape((1, -1)) assert np.allclose(xs.shape, X.shape) # And make sure that xs matches X on nonzeros xsd = np.asarray(xs.todense()) for i in range(xs.shape[0]): assert np.allclose(xsd[i, xs[i].indices], X[i, xs[i].indices]) # Compute row-wise magnitude marginals v_in = np.sum(np.abs(X), axis=-1) v_out = np.sum(np.abs(xsd), axis=-1) # Ensure that v_out retains 1-q fraction of v_in assert np.all(v_out >= (1.0 - q) * v_in) @pytest.mark.parametrize( "searchdir", [os.path.join(os.path.curdir, "tests"), os.path.join(os.path.curdir, "tests", "data")] ) @pytest.mark.parametrize("ext", [None, "wav", "WAV", ["wav"], ["WAV"]]) @pytest.mark.parametrize("recurse", [True]) @pytest.mark.parametrize("case_sensitive", list({False} | {platform.system() != "Windows"})) @pytest.mark.parametrize("limit", [None, 1, 2]) @pytest.mark.parametrize("offset", [0, 1, -1]) @pytest.mark.parametrize( "output", [ [ os.path.join(os.path.abspath(os.path.curdir), "tests", "data", s) for s in ["test1_22050.mp3", "test1_22050.wav", "test1_44100.wav", "test2_8000.wav"] ] ], ) def test_find_files(searchdir, ext, recurse, case_sensitive, limit, offset, output): files = librosa.util.find_files( searchdir, ext=ext, recurse=recurse, case_sensitive=case_sensitive, limit=limit, offset=offset ) targets = output if ext is not None: # If we're only seeking wavs, bump off the mp3 file targets = targets[1:] s1 = slice(offset, None) s2 = slice(limit) if case_sensitive and ext not in (None, "wav", ["wav"]): assert len(files) == 0 else: assert set(files) == set(targets[s1][s2]) def test_find_files_nonrecurse(): files = librosa.util.find_files(os.path.join(os.path.curdir, "tests"), recurse=False) assert len(files) == 0 # fail if ext is not none, we're case-sensitive, and looking for WAV @pytest.mark.parametrize("ext", ["WAV", ["WAV"]]) def test_find_files_case_sensitive(ext): files = librosa.util.find_files(os.path.join(os.path.curdir, "tests"), ext=ext, case_sensitive=True) # On windows, this test won't work if platform.system() != "Windows": assert len(files) == 0 @pytest.mark.parametrize("x_in", np.linspace(-2, 2, num=6)) @pytest.mark.parametrize("cast", [None, np.floor, np.ceil]) def test_valid_int(x_in, cast): z = librosa.util.valid_int(x_in, cast) assert isinstance(z, int) if cast is None: assert z == int(np.floor(x_in)) else: assert z == int(cast(x_in)) @pytest.mark.parametrize("x", np.linspace(-2, 2, num=3)) @pytest.mark.parametrize("cast", [7]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_valid_int_fail(x, cast): # Test with a non-callable cast operator librosa.util.valid_int(x, cast) @pytest.mark.parametrize( "ivals", [np.asarray([[0, 1], [1, 2]]), np.asarray([[0, 0], [1, 1]]), np.asarray([[0, 2], [1, 2]])] ) def test_valid_intervals(ivals): librosa.util.valid_intervals(ivals) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize( "ivals", [np.asarray([]), np.arange(2), np.ones((2, 2, 2)), np.ones((2, 3))] # ndim=0 # ndim=1 # ndim=3 ) # ndim=2, shape[1] != 2 def test_valid_intervals_badshape(ivals): # fail if ndim != 2 or shape[1] != 2 librosa.util.valid_intervals(ivals) @pytest.mark.xfail(raises=librosa.ParameterError) @pytest.mark.parametrize("intval", [np.asarray([[0, 1], [2, 1]])]) def test_valid_intervals_fail(intval): # Test for issue #712: intervals must have non-negative duration librosa.util.valid_intervals(intval) def test_warning_deprecated(): @librosa.util.decorators.deprecated("old_version", "new_version") def __dummy(): return True with warnings.catch_warnings(record=True) as out: x = __dummy() # Make sure we still get the right value assert x is True # And that the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert "deprecated" in str(out[0].message).lower() def test_warning_moved(): @librosa.util.decorators.moved("from", "old_version", "new_version") def __dummy(): return True with warnings.catch_warnings(record=True) as out: x = __dummy() # Make sure we still get the right value assert x is True # And that the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert "moved" in str(out[0].message).lower() def test_warning_rename_kw_pass(): warnings.resetwarnings() warnings.simplefilter("always") ov = librosa.util.Deprecated() nv = 23 with warnings.catch_warnings(record=True) as out: v = librosa.util.rename_kw("old", ov, "new", nv, "0", "1") assert v == nv # Make sure no warning triggered assert len(out) == 0 def test_warning_rename_kw_fail(): warnings.resetwarnings() warnings.simplefilter("always") ov = 27 nv = 23 with warnings.catch_warnings(record=True) as out: v = librosa.util.rename_kw("old", ov, "new", nv, "0", "1") assert v == ov # Make sure the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert "renamed" in str(out[0].message).lower() @pytest.mark.parametrize("idx", [np.arange(10, 90, 10), np.arange(10, 90, 15)]) @pytest.mark.parametrize("idx_min", [None, 5, 15]) @pytest.mark.parametrize("idx_max", [None, 85, 100]) @pytest.mark.parametrize("step", [None, 2]) @pytest.mark.parametrize("pad", [False, True]) def test_index_to_slice(idx, idx_min, idx_max, step, pad): slices = librosa.util.index_to_slice(idx, idx_min=idx_min, idx_max=idx_max, step=step, pad=pad) if pad: if idx_min is not None: assert slices[0].start == idx_min if idx.min() != idx_min: slices = slices[1:] if idx_max is not None: assert slices[-1].stop == idx_max if idx.max() != idx_max: slices = slices[:-1] if idx_min is not None: idx = idx[idx >= idx_min] if idx_max is not None: idx = idx[idx <= idx_max] idx = np.unique(idx) assert len(slices) == len(idx) - 1 for sl, start, stop in zip(slices, idx, idx[1:]): assert sl.start == start assert sl.stop == stop assert sl.step == step @pytest.mark.parametrize("aggregate", [None, np.mean, np.sum]) @pytest.mark.parametrize("ndim,axis", [(1, 0), (1, -1), (2, 0), (2, 1), (2, -1), (3, 0), (3, 2), (3, -1)]) def test_sync(aggregate, ndim, axis): data = np.ones([6] * ndim, dtype=np.float) # Make some slices that don't fill the entire dimension slices = [slice(1, 3), slice(3, 4)] dsync = librosa.util.sync(data, slices, aggregate=aggregate, axis=axis) # Check the axis shapes assert dsync.shape[axis] == len(slices) s_test = list(dsync.shape) del s_test[axis] s_orig = list(data.shape) del s_orig[axis] assert s_test == s_orig # The first slice will sum to 2 and have mean 1 idx = [slice(None)] * ndim idx[axis] = 0 if aggregate is np.sum: assert np.allclose(dsync[idx], 2) else: assert np.allclose(dsync[idx], 1) # The second slice will sum to 1 and have mean 1 idx[axis] = 1 assert np.allclose(dsync[idx], 1) @pytest.mark.parametrize("aggregate", [np.mean, np.max]) def test_sync_slices(aggregate): x = np.arange(8, dtype=float) slices = [slice(0, 2), slice(2, 4), slice(4, 6), slice(6, 8)] xsync = librosa.util.sync(x, slices, aggregate=aggregate) if aggregate is np.mean: assert np.allclose(xsync, [0.5, 2.5, 4.5, 6.5]) elif aggregate is np.max: assert np.allclose(xsync, [1, 3, 5, 7]) else: assert False @pytest.mark.parametrize("aggregate", [np.mean, np.max]) @pytest.mark.parametrize("atype", [list, np.asarray]) def test_sync_frames(aggregate, atype): x = np.arange(8, dtype=float) frames = atype([0, 2, 4, 6, 8]) xsync = librosa.util.sync(x, frames, aggregate=aggregate) if aggregate is np.mean: assert np.allclose(xsync, [0.5, 2.5, 4.5, 6.5]) elif aggregate is np.max: assert np.allclose(xsync, [1, 3, 5, 7]) else: assert False @pytest.mark.parametrize("atype", [list, np.asarray]) @pytest.mark.parametrize("pad", [False, True]) def test_sync_frames_pad(atype, pad): x = np.arange(8, dtype=float) frames = atype([2, 4, 6]) xsync = librosa.util.sync(x, frames, pad=pad) if pad: assert np.allclose(xsync, [0.5, 2.5, 4.5, 6.5]) else: assert np.allclose(xsync, [2.5, 4.5]) @pytest.mark.parametrize("data", [np.mod(np.arange(135), 5)]) @pytest.mark.parametrize("idx", [["foo", "bar"], [None], [slice(None), None]]) @pytest.mark.xfail(raises=librosa.ParameterError) def test_sync_fail(data, idx): librosa.util.sync(data, idx) @pytest.mark.parametrize("power", [1, 2, 50, 100, np.inf]) @pytest.mark.parametrize("split_zeros", [False, True]) def test_softmask(power, split_zeros): srand() X = np.abs(np.random.randn(10, 10)) X_ref = np.abs(np.random.randn(10, 10)) # Zero out some rows X[3, :] = 0 X_ref[3, :] = 0 M = librosa.util.softmask(X, X_ref, power=power, split_zeros=split_zeros) assert np.all(0 <= M) and np.all(M <= 1) if split_zeros and np.isfinite(power): assert np.allclose(M[3, :], 0.5) else: assert not np.any(M[3, :]), M[3] def test_softmask_int(): X = 2 * np.ones((3, 3), dtype=np.int32) X_ref = np.vander(np.arange(3)) M1 = librosa.util.softmask(X, X_ref, power=1) M2 = librosa.util.softmask(X_ref, X, power=1) assert np.allclose(M1 + M2, 1) @pytest.mark.parametrize( "x,x_ref,power,split_zeros", [ (-np.ones(3), np.ones(3), 1, False), (np.ones(3), -np.ones(3), 1, False), (np.ones(3), np.ones(4), 1, False), (np.ones(3), np.ones(3), 0, False), (np.ones(3), np.ones(3), -1, False), ], ) @pytest.mark.xfail(raises=librosa.ParameterError) def test_softmask_fail(x, x_ref, power, split_zeros): librosa.util.softmask(x, x_ref, power=power, split_zeros=split_zeros) @pytest.mark.parametrize( "x,value", [ (1, np.finfo(np.float32).tiny), (np.ones(3, dtype=int), np.finfo(np.float32).tiny), (np.ones(3, dtype=np.float32), np.finfo(np.float32).tiny), (1.0, np.finfo(np.float64).tiny), (np.ones(3, dtype=np.float64), np.finfo(np.float64).tiny), (1j, np.finfo(np.complex128).tiny), (np.ones(3, dtype=np.complex64), np.finfo(np.complex64).tiny), (np.ones(3, dtype=np.complex128), np.finfo(np.complex128).tiny), ], ) def test_tiny(x, value): assert value == librosa.util.tiny(x) def test_util_fill_off_diagonal_8_8(): # Case 1: Square matrix (N=M) mut_x = np.ones((8, 8)) librosa.util.fill_off_diagonal(mut_x, 0.25) gt_x = np.array( [ [1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], ] ) assert np.array_equal(mut_x, gt_x) assert np.array_equal(mut_x, gt_x.T) def test_util_fill_off_diagonal_8_12(): # Case 2a: N!=M mut_x = np.ones((8, 12)) librosa.util.fill_off_diagonal(mut_x, 0.25) gt_x = np.array( [ [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], ] ) assert np.array_equal(mut_x, gt_x) # Case 2b: (N!=M).T mut_x = np.ones((8, 12)).T librosa.util.fill_off_diagonal(mut_x, 0.25) assert np.array_equal(mut_x, gt_x.T) @pytest.mark.parametrize("dtype_A", [np.float32, np.float64]) @pytest.mark.parametrize("dtype_B", [np.float32, np.float64]) def test_nnls_vector(dtype_A, dtype_B): srand() # Make a random basis A = np.random.randn(5, 7).astype(dtype_A) # Make a random latent vector x = np.random.randn(A.shape[1]) ** 2 B = A.dot(x).astype(dtype_B) x_rec = librosa.util.nnls(A, B) assert np.all(x_rec >= 0) assert np.sqrt(np.mean((B - A.dot(x_rec)) ** 2)) <= 1e-6 @pytest.mark.parametrize("dtype_A", [np.float32, np.float64]) @pytest.mark.parametrize("dtype_B", [np.float32, np.float64]) @pytest.mark.parametrize("x_size", [3, 30]) def test_nnls_matrix(dtype_A, dtype_B, x_size): srand() # Make a random basis A = np.random.randn(5, 7).astype(dtype_A) # Make a random latent matrix # when x_size is 3, B is 7x3 (smaller than A) x = np.random.randn(A.shape[1], x_size) ** 2 B = A.dot(x).astype(dtype_B) x_rec = librosa.util.nnls(A, B) assert np.all(x_rec >= 0) assert np.sqrt(np.mean((B - A.dot(x_rec)) ** 2)) <= 1e-5 @pytest.mark.parametrize("dtype_A", [np.float32, np.float64]) @pytest.mark.parametrize("dtype_B", [np.float32, np.float64]) @pytest.mark.parametrize("x_size", [16, 64, 256]) def test_nnls_multiblock(dtype_A, dtype_B, x_size): srand() # Make a random basis A = np.random.randn(7, 1025).astype(dtype_A) # Make a random latent matrix # when x_size is 3, B is 7x3 (smaller than A) x = np.random.randn(A.shape[1], x_size) ** 2 B = A.dot(x).astype(dtype_B) x_rec = librosa.util.nnls(A, B) assert np.all(x_rec >= 0) assert np.sqrt(np.mean((B - A.dot(x_rec)) ** 2)) <= 1e-4 @pytest.fixture def psig(): # [[0, 1, 2, 3, 4]] # axis=1 or -1 ==> [-1.5, 1, 1, 1, -1.5] # axis=0 ==> [0, 0, 0, 0, 0] return np.arange(0, 5, dtype=float)[np.newaxis] @pytest.mark.parametrize("edge_order", [1, 2]) @pytest.mark.parametrize("axis", [0, 1, -1]) def test_cyclic_gradient(psig, edge_order, axis): grad = librosa.util.cyclic_gradient(psig, edge_order=edge_order, axis=axis) assert grad.shape == psig.shape assert grad.dtype == psig.dtype # Check the values if axis == 0: assert
np.allclose(grad, 0)
numpy.allclose
import numpy as np from numba import njit import scipy as sp import scipy.optimize as spo from netket.stats import ( statistics as _statistics, mean as _mean, sum_inplace as _sum_inplace, ) from netket.utils import ( MPI_comm as _MPI_comm, n_nodes as _n_nodes, node_number as _rank ) from mpi4py import MPI from netket.machine import QGPSLinExp class SupervisedLearning(): def __init__(self, machine): self.machine = machine def mean_squared_error(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: local_error = np.sum(weightings * abs(np.exp(self.machine.log_val(basis)) - target_amplitudes)**2) else: local_error = 0.0 return _MPI_comm.allreduce(local_error) def mean_squared_error_der(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: estimates = np.exp(self.machine.log_val(basis)) der_log = self.machine.der_log(basis) residuals = (estimates - target_amplitudes).conj()*weightings der = 2 * np.einsum("ij,i,i->j", der_log, estimates, residuals) if self.machine.has_complex_parameters: der = np.concatenate((der.real, (1.j*der).real)) else: if self.machine.has_complex_parameters: der = np.zeros(2*self.machine._npar) else: der = np.zeros(self.machine._npar) return _sum_inplace(der) def mean_squared_error_hess(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: estimates = np.exp(self.machine.log_val(basis)) der = self.machine.der_log(basis) proper_der = (der.T * estimates) hess_el = self.machine.hess(basis) wfn_hess_first_term = hess_el.T * estimates wfn_hess_sec_term = np.einsum("ij,jk->ikj", proper_der, der) wfn_hess = wfn_hess_first_term + wfn_hess_sec_term residuals = (estimates-target_amplitudes).conj()*weightings hess_first_term = (np.dot(wfn_hess, residuals)) hess_sec_term = np.matmul(proper_der*weightings, proper_der.T.conj()) if self.machine.has_complex_parameters: hess_first_term = np.block([[hess_first_term.real, (1.j*hess_first_term).real],[(1.j*hess_first_term).real,-hess_first_term.real]]) hess_sec_term = np.block([[hess_sec_term, -1.j*hess_sec_term],[1.j*hess_sec_term, hess_sec_term]]) else: if self.machine.has_complex_parameters: hess = np.zeros(2*self.machine._npar) else: hess = np.zeros(self.machine._npar) hess = 2 * (hess_first_term + hess_sec_term) return _sum_inplace(hess) def overlap(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) predictions = np.exp(self.machine.log_val(basis)) overlap = abs(_MPI_comm.allreduce(np.sum(weightings * predictions * target_amplitudes.conj())))**2 norm = _MPI_comm.allreduce(np.sum(weightings * abs(predictions)**2)) * _MPI_comm.allreduce(np.sum(weightings * abs(target_amplitudes)**2)) return overlap/norm def overlap_der(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) estimates = np.exp(self.machine.log_val(basis)).conj() der = self.machine.der_log(basis).conj() overlap1 = _sum_inplace(np.einsum("i,ij->j", (weightings * estimates * target_amplitudes), der)) norm1 = _MPI_comm.allreduce(np.sum(weightings * estimates * target_amplitudes)) overlap2 = _sum_inplace(np.einsum("i,ij->j", (weightings * abs(estimates)**2), der)) norm2 = _MPI_comm.allreduce(np.sum(weightings * abs(estimates)**2)) derivative = overlap1/norm1 - overlap2/norm2 overlap = self.overlap(basis, target_amplitudes, weightings) if self.machine.has_complex_parameters: derivative = np.concatenate((derivative.real, derivative.imag)) return overlap * derivative.real def neg_log_overlap_der(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) estimates = np.exp(self.machine.log_val(basis)).conj() der = self.machine.der_log(basis).conj() overlap1 = _sum_inplace(np.einsum("i,ij->j", (weightings * estimates * target_amplitudes), der)) norm1 = _MPI_comm.allreduce(np.sum(weightings * estimates * target_amplitudes)) overlap2 = _sum_inplace(np.einsum("i,ij->j", (weightings * abs(estimates)**2), der)) norm2 = _MPI_comm.allreduce(np.sum(weightings * abs(estimates)**2)) derivative = -overlap1/norm1 + overlap2/norm2 if self.machine.has_complex_parameters: derivative = np.concatenate((derivative.real, derivative.imag)) return derivative.real def bayes_loss(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) return beta/2 * self.mean_squared_error(basis, target_amplitudes, weightings) + 0.5 * np.sum((parameters**2) * alpha) def grad_bayes(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) der = beta/2 * self.mean_squared_error_der(basis, target_amplitudes, weightings) der += parameters * alpha return der def hess_bayes(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) hess = beta/2 * self.mean_squared_error_hess(basis, target_amplitudes, weightings) hess += np.diag(alpha) return hess def get_bias(self, target_amplitudes, weightings=None, dtype=complex): if len(target_amplitudes) > 0: if weightings is None: local_sum = np.sum(np.log(target_amplitudes)) n_terms = len(target_amplitudes) else: local_sum = np.sum(np.log(target_amplitudes)*weightings) n_terms = np.sum(weightings) else: local_sum = 0. n_terms = 1 return _MPI_comm.allreduce(local_sum)/_MPI_comm.allreduce(n_terms) class QGPSLearning(SupervisedLearning): def __init__(self, machine, init_alpha=1.0, bond_min_id=0, bond_max_id=None, complex_expand=True): super().__init__(machine) self.K = None self.weights = None self.site_prod = None self.confs = None self.ref_site = None self.bond_min_id = bond_min_id if bond_max_id is None: self.bond_max_id = self.machine._epsilon.shape[1] else: self.bond_max_id = bond_max_id self.n_bond = self.bond_max_id - self.bond_min_id self.complex_expand = complex_expand self.local_dim = self.machine.hilbert._local_size if self.complex_expand and self.machine.dtype==complex: self.alpha_mat = np.ones((self.machine._epsilon.shape[0], self.local_dim*2*self.n_bond))*init_alpha else: self.alpha_mat = np.ones((self.machine._epsilon.shape[0], self.local_dim*self.n_bond))*init_alpha self.alpha_cutoff = 1.e10 self.kern_cutoff = 1.e-15 self.sinv_fallback = True self.alpha_convergence_tol = 1.e-15 @staticmethod @njit() def kernel_mat_inner(site_prod, ref_site, confs, Smap, sym_spin_flip_sign, K): K.fill(0.0) for i in range(site_prod.shape[0]): for x in range(site_prod.shape[1]): for t in range(site_prod.shape[2]): if sym_spin_flip_sign[t] * confs[i, Smap[t, ref_site]] < 0.0: K[i, 2*x] += site_prod[i, x, t] else: K[i, 2*x+1] += site_prod[i, x, t] return K @staticmethod @njit() def compute_site_prod_fast(epsilon, bond_min, bond_max, ref_site, confs, Smap, sym_spin_flip_sign, site_product): site_product.fill(1.0) for i in range(confs.shape[0]): for (x, w) in enumerate(range(bond_min, bond_max)): for t in range(Smap.shape[0]): for j in range(confs.shape[1]): if j != ref_site: if sym_spin_flip_sign[t] * confs[i, Smap[t,j]] < 0: site_product[i, x, t] *= epsilon[j, w, 0] else: site_product[i, x, t] *= epsilon[j, w, 1] return site_product @staticmethod @njit() def update_site_prod_fast(epsilon, bond_min, bond_max, ref_site, ref_site_old, confs, Smap, sym_spin_flip_sign, site_product): eps = np.finfo(np.double).eps for (x, w) in enumerate(range(bond_min, bond_max)): if abs(epsilon[ref_site, w, 0]) > 1.e4 * eps and abs(epsilon[ref_site, w, 1]) > 1.e4 * eps: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): if sym_spin_flip_sign[t] * confs[i, Smap[t,ref_site]] < 0: site_product[i, x, t] /= epsilon[ref_site, w, 0] else: site_product[i, x, t] /= epsilon[ref_site, w, 1] if sym_spin_flip_sign[t] * confs[i, Smap[t,ref_site_old]] < 0: site_product[i, x, t] *= epsilon[ref_site_old, w, 0] else: site_product[i, x, t] *= epsilon[ref_site_old, w, 1] else: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): site_product[i, x, t] = 1.0 for j in range(confs.shape[1]): if j != ref_site: if sym_spin_flip_sign[t] * confs[i, Smap[t,j]] < 0: site_product[i, x, t] *= epsilon[j, w, 0] else: site_product[i, x, t] *= epsilon[j, w, 1] return site_product @staticmethod @njit() def kernel_mat_inner_fermion(site_prod, ref_site, confs, Smap, sym_spin_flip_sign, K): K.fill(0.0) for i in range(site_prod.shape[0]): for x in range(site_prod.shape[1]): for t in range(site_prod.shape[2]): index = round(confs[i, Smap[t, ref_site]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 K[i, 4*x + index] += site_prod[i, x, t] return K @staticmethod @njit() def compute_site_prod_fast_fermion(epsilon, bond_min, bond_max, ref_site, confs, Smap, sym_spin_flip_sign, site_product): site_product.fill(1.0) for i in range(confs.shape[0]): for (x, w) in enumerate(range(bond_min, bond_max)): for t in range(Smap.shape[0]): for j in range(confs.shape[1]): if j != ref_site: index = round(confs[i, Smap[t, j]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 site_product[i, x, t] *= epsilon[j, w, index] return site_product @staticmethod @njit() def update_site_prod_fast_fermion(epsilon, bond_min, bond_max, ref_site, ref_site_old, confs, Smap, sym_spin_flip_sign, site_product): eps = np.finfo(np.double).eps for (x, w) in enumerate(range(bond_min, bond_max)): if np.min(np.abs(epsilon[ref_site, w, :])) > 1.e4 * eps: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): index = round(confs[i, Smap[t, ref_site]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 site_product[i, x, t] /= epsilon[ref_site, w, index] index = round(confs[i, Smap[t, ref_site_old]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 site_product[i, x, t] *= epsilon[ref_site_old, w, index] else: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): site_product[i, x, t] = 1.0 for j in range(confs.shape[1]): if j != ref_site: index = round(confs[i, Smap[t, j]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 site_product[i, x, t] *= epsilon[j, w, index] return site_product def compute_site_prod(self): if self.site_prod is None: self.site_prod = np.zeros((self.confs.shape[0], self.n_bond, self.machine._Smap.shape[0]), dtype=self.machine._epsilon.dtype) if self.local_dim == 2: self.site_prod = self.compute_site_prod_fast(self.machine._epsilon, self.bond_min_id, self.bond_max_id, self.ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.site_prod) else: self.site_prod = self.compute_site_prod_fast_fermion(self.machine._epsilon, self.bond_min_id, self.bond_max_id, self.ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.site_prod) self.site_prod_ref_site = self.ref_site def update_site_prod(self): if self.site_prod_ref_site != self.ref_site: if self.local_dim == 2: self.site_prod = self.update_site_prod_fast(self.machine._epsilon, self.bond_min_id, self.bond_max_id, self.ref_site, self.site_prod_ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.site_prod) else: self.site_prod = self.update_site_prod_fast_fermion(self.machine._epsilon, self.bond_min_id, self.bond_max_id, self.ref_site, self.site_prod_ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.site_prod) self.site_prod_ref_site = self.ref_site def set_kernel_mat(self, confs, multiplication=None): update_K = False assert(self.ref_site is not None) if self.site_prod is None or self.confs is None or np.sum(self.confs != confs) != 0: self.confs = confs self.compute_site_prod() update_K = True elif self.ref_site != self.site_prod_ref_site: self.update_site_prod() update_K = True if self.K is None: self.K = np.zeros((confs.shape[0], self.n_bond * self.local_dim), dtype=self.machine._epsilon.dtype) update_K = True if update_K: if self.local_dim == 2: self.K = self.kernel_mat_inner(self.site_prod, self.ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.K) else: self.K = self.kernel_mat_inner_fermion(self.site_prod, self.ref_site, self.confs, self.machine._Smap, self.machine._sym_spin_flip_sign, self.K) if multiplication is not None: # TODO: maybe this should be done better self.K = (self.K.T * multiplication).T return self.K def reset(self): self.site_prod = None self.K = None def setup_fit_alpha_dep(self): self.active_elements = self.alpha_mat[self.ref_site,:] < self.alpha_cutoff if self.complex_expand and self.machine.dtype==complex: self.KtK_alpha = self.KtK + np.diag(self.alpha_mat[self.ref_site,:]/2) else: self.KtK_alpha = self.KtK + np.diag(self.alpha_mat[self.ref_site,:]) self.valid_kern = abs(np.diag(self.KtK)) > self.kern_cutoff if np.sum(self.active_elements) > 0: # try: if False: L = sp.linalg.cholesky(self.KtK_alpha[np.ix_(self.active_elements, self.active_elements)], lower=True) self.Sinv = sp.linalg.solve_triangular(L, np.eye(self.KtK_alpha.shape[0]), check_finite=False, lower=True) weights = sp.linalg.cho_solve((L, True), self.y[self.active_elements]) self.cholesky = True else: # except: self.Sinv = np.linalg.inv(self.KtK_alpha[np.ix_(self.active_elements, self.active_elements)]) if self.sinv_fallback: weights = self.Sinv.dot(self.y[self.active_elements]) else: weights = sp.linalg.lstsq(self.KtK_alpha[np.ix_(self.active_elements, self.active_elements)], self.y[self.active_elements])[0] self.cholesky = False # if _rank == 0: # print("Warning! Cholesky failed.") if self.weights is None: if not self.complex_expand and self.machine.dtype==complex: self.weights = np.zeros(self.alpha_mat.shape[1], dtype=complex) else: self.weights = np.zeros(self.alpha_mat.shape[1], dtype=float) else: self.weights.fill(0.0) if np.sum(self.active_elements) > 0: # potentially distribute weights across processes self.weights[self.active_elements] = weights def log_marg_lik_alpha_der(self): derivative_alpha = 1/(self.alpha_mat[self.ref_site, :]) if self.cholesky: if self.complex_expand and self.machine.dtype==complex: derivative_alpha[self.active_elements] -= 0.5 * np.sum(abs(self.Sinv) ** 2, 0) else: derivative_alpha[self.active_elements] -= np.sum(abs(self.Sinv) ** 2, 0) else: if self.complex_expand and self.machine.dtype==complex: derivative_alpha[self.active_elements] -= np.diag(0.5 * self.Sinv).real else: derivative_alpha[self.active_elements] -= np.diag(self.Sinv).real derivative_alpha -= (self.weights.conj() * self.weights).real if self.complex_expand or self.machine.dtype==float: derivative_alpha *= 0.5 return derivative_alpha.real def set_up_prediction(self, confset): if self.ref_site is None: self.ref_site = 0 self.set_kernel_mat(confset) def squared_error(self, confset, target_amplitudes, weightings = None): errors = abs(self.predict(confset) - target_amplitudes)**2 if weightings is not None: errors *= weightings return _MPI_comm.allreduce(np.sum(errors)) def squared_error_log_space(self, confset, target_amplitudes, weightings = None): errors = abs(np.log(self.predict(confset)) - np.log(target_amplitudes))**2 if weightings is not None: errors *= weightings return _MPI_comm.allreduce(np.sum(errors)) class QGPSLearningExp(QGPSLearning): def __init__(self, machine, init_alpha = 1.0, init_noise_tilde = 1.e-1, complex_expand=True): if isinstance(machine, QGPSLinExp): min_bond_id = machine._n_bond_lin else: min_bond_id = 0 super().__init__(machine, init_alpha=init_alpha, bond_min_id=min_bond_id, complex_expand=complex_expand) self.noise_tilde = init_noise_tilde def get_bias(self, target_amplitudes, weightings=None, dtype=complex): if weightings is None: return _mean(np.log(target_amplitudes)) else: return _MPI_comm.allreduce(np.sum(np.log(target_amplitudes)*weightings))/_MPI_comm.allreduce(np.sum(weightings)) def predict(self, confset): assert(confset.size > 0) self.set_up_prediction(confset) return np.exp(self.K.dot((self.machine._epsilon[self.ref_site, self.bond_min_id:self.bond_max_id, :]).flatten())) def setup_fit_noise_dep(self, weightings=None): if self.noise_tilde == 0.: self.S_diag = np.ones(len(self.exp_amps)) else: self.S_diag = 1/(np.log1p(self.noise_tilde/(abs(self.exp_amps)**2))) if weightings is not None: self.S_diag *= weightings self.weightings = weightings self.KtK = _sum_inplace(np.dot(self.K.conj().T, np.einsum("i,ij->ij", self.S_diag, self.K))) self.y = _sum_inplace(self.K.conj().T.dot(self.S_diag * self.fit_data)) if self.complex_expand and self.machine.dtype==complex: self.KtK = np.block([[self.KtK.real, -self.KtK.imag],[self.KtK.imag, self.KtK.real]]) self.y = np.concatenate((self.y.real, self.y.imag)) self.setup_fit_alpha_dep() def setup_fit(self, confset, target_amplitudes, ref_site, multiplication=None, weightings=None): self.ref_site = ref_site self.exp_amps = target_amplitudes.astype(self.machine._epsilon.dtype) if self.machine._epsilon.dtype == float: if multiplication is not None: self.fit_data = np.log(abs(self.exp_amps/multiplication)) else: self.fit_data = np.log(abs(self.exp_amps)) else: if multiplication is not None: self.fit_data = np.log(self.exp_amps/multiplication) else: self.fit_data = np.log(self.exp_amps) self.set_kernel_mat(confset) self.setup_fit_noise_dep(weightings=weightings) def log_marg_lik(self): if self.weightings is not None: if self.machine.dtype==complex: log_lik = -(np.sum(self.weightings * np.log(np.pi/(self.S_diag/self.weightings)))) else: log_lik = -(np.sum(self.weightings * np.log(2*np.pi/(self.S_diag/self.weightings)))) else: if self.machine.dtype==complex: log_lik = -(np.sum(np.log(np.pi/self.S_diag))) else: log_lik = -(np.sum(np.log(2*np.pi/self.S_diag))) log_lik -= np.dot(self.fit_data.conj(), self.S_diag * self.fit_data) log_lik = _MPI_comm.allreduce(log_lik) if self.cholesky: if self.complex_expand and self.machine.dtype==complex: log_lik += 0.5 * np.sum(np.log(0.5 * abs(np.diag(self.Sinv))**2)) else: log_lik += 2 * np.sum(np.log(abs(np.diag(self.Sinv)))) else: if self.complex_expand and self.machine.dtype==complex: log_lik += 0.5 * np.linalg.slogdet(0.5 * self.Sinv)[1] else: log_lik += np.linalg.slogdet(self.Sinv)[1] if self.complex_expand and self.machine.dtype==complex: log_lik += 0.5 * np.sum(np.log(self.alpha_mat[self.ref_site, self.active_elements])) else: log_lik += np.sum(np.log(self.alpha_mat[self.ref_site, self.active_elements])) weights = self.weights[self.active_elements] log_lik += np.dot(weights.conj(), np.dot(self.KtK_alpha[np.ix_(self.active_elements, self.active_elements)], weights)) if self.machine.dtype==float: log_lik *= 0.5 return log_lik.real def log_marg_lik_noise_der(self): del_S = 1/((abs(self.exp_amps)**2) * (1 + self.noise_tilde/(abs(self.exp_amps)**2))) Delta_S = - (self.S_diag**2 * del_S) if self.weightings is not None: Delta_S /= self.weightings derivative_noise = -np.sum(self.S_diag * del_S) K = self.K KtK_der = self.K.conj().T.dot(np.diag(Delta_S).dot(self.K)) if self.complex_expand and self.machine.dtype==complex: KtK_der = np.block([[KtK_der.real, -KtK_der.imag],[KtK_der.imag, KtK_der.real]]) K = np.hstack((K, 1.j * K)) K = K[:,self.active_elements] KtK_der = KtK_der[np.ix_(self.active_elements, self.active_elements)] if self.cholesky: if self.complex_expand and self.machine.dtype==complex: derivative_noise -= 0.5 * np.trace(KtK_der.dot(self.Sinv.conj().T.dot(self.Sinv))) else: derivative_noise -= np.trace(KtK_der.dot(self.Sinv.conj().T.dot(self.Sinv))) else: if self.complex_expand and self.machine.dtype==complex: derivative_noise -= 0.5 * np.trace(KtK_der.dot(self.Sinv)) else: derivative_noise -= np.trace(KtK_der.dot(self.Sinv)) weights = self.weights[self.active_elements] derivative_noise -= self.fit_data.conj().dot(Delta_S*self.fit_data) derivative_noise -= weights.conj().dot(KtK_der.dot(weights)) derivative_noise += 2*self.fit_data.conj().dot(Delta_S*K.dot(weights)) derivative_noise = _MPI_comm.allreduce(derivative_noise) if self.machine.dtype==float: derivative_noise *= 0.5 return derivative_noise.real def opt_alpha(self, max_iterations=None, rvm=False): alpha_old = self.alpha_mat[self.ref_site, :].copy() converged = False j = 0 if max_iterations is not None: if j >= max_iterations: converged = True while not converged: if self.cholesky: if self.complex_expand and self.machine.dtype==complex: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*0.5*np.sum(abs(self.Sinv) ** 2, 0)) else: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*np.sum(abs(self.Sinv) ** 2, 0)) else: if self.complex_expand and self.machine.dtype==complex: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*0.5*np.diag(self.Sinv).real) else: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*np.diag(self.Sinv).real) if rvm: self.alpha_mat[self.ref_site, self.active_elements] = (gamma/((self.weights.conj()*self.weights)[self.active_elements])).real else: self.alpha_mat[self.ref_site, self.active_elements] = ((np.sum(gamma)/(self.weights.conj().dot(self.weights))).real) self.setup_fit_alpha_dep() j += 1 if np.sum(abs(self.alpha_mat[self.ref_site, :] - alpha_old)**2) < self.alpha_convergence_tol: converged = True np.copyto(alpha_old, self.alpha_mat[self.ref_site, :]) if max_iterations is not None: if j >= max_iterations: converged = True def fit_step(self, confset, target_amplitudes, ref_site, noise_bounds=[(None, None)], opt_alpha=True, opt_noise=True, max_alpha_iterations=None, max_noise_iterations=None, rvm=False, multiplication=None, weightings=None): self.setup_fit(confset, target_amplitudes, ref_site, multiplication=multiplication, weightings=weightings) if opt_noise: alpha_init = self.alpha_mat.copy() def ML(x): self.noise_tilde = np.exp(x[0]) if opt_alpha: np.copyto(self.alpha_mat, alpha_init) self.setup_fit_noise_dep(weightings=weightings) if opt_alpha: self.opt_alpha(max_iterations=max_alpha_iterations, rvm=rvm) return -self.log_marg_lik() def derivative(x): self.noise_tilde = np.exp(x[0]) if opt_alpha: np.copyto(self.alpha_mat, alpha_init) self.setup_fit_noise_dep(weightings=weightings) if opt_alpha: self.opt_alpha(max_iterations=max_alpha_iterations, rvm=rvm) der_noise = self.log_marg_lik_noise_der() return - der_noise * np.exp(x) def update_alpha(x): self.noise_tilde = np.exp(x[0]) if opt_alpha: self.opt_alpha(max_iterations=max_alpha_iterations, rvm=rvm) np.copyto(alpha_init, self.alpha_mat) if max_noise_iterations is not None: opt = sp.optimize.minimize(ML, np.log(self.noise_tilde), options={"maxiter" : max_noise_iterations}, jac=derivative, bounds=noise_bounds, callback=update_alpha) else: opt = sp.optimize.minimize(ML, np.log(self.noise_tilde), jac=derivative, bounds=noise_bounds, callback=update_alpha) self.noise_tilde = np.exp(opt.x)[0] if opt_alpha: np.copyto(self.alpha_mat, alpha_init) self.setup_fit_noise_dep(weightings=weightings) if opt_alpha: self.opt_alpha(max_iterations=max_alpha_iterations, rvm=rvm) self.machine._epsilon[ref_site, self.bond_min_id:self.bond_max_id, :] = self.weights[:self.local_dim*self.n_bond].reshape(self.n_bond, self.local_dim) if self.complex_expand and self.machine.dtype==complex: self.machine._epsilon[ref_site, self.bond_min_id:self.bond_max_id, :] += 1.j * self.weights[self.local_dim*self.n_bond:].reshape(self.n_bond, self.local_dim) return ''' parts of the following code are based on the code from https://github.com/AmazaspShumik/sklearn-bayes which is published under the following MIT license: Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' def compute_sparsity_quantities(self): bxy = self.y bxx = np.diag(self.KtK) if self.cholesky: xxr = np.dot(self.KtK[:, self.active_elements], self.Sinv.conj().T) rxy = np.dot(self.Sinv, self.y[self.active_elements]) S = bxx - np.sum(abs(xxr) ** 2, axis=1) Q = bxy - np.dot(xxr, rxy) else: XXa = self.KtK[:, self.active_elements] XS = np.dot(XXa, self.Sinv) S = bxx - np.sum(XS * XXa, 1) Q = bxy - np.dot(XS, self.y[self.active_elements]) S = S.real Q = Q.real # Use following: # (EQ 1) q = A*Q/(A - S) ; s = A*S/(A-S), so if A = np.PINF q = Q, s = S qi = np.copy(Q) si = np.copy(S) # If A is not np.PINF, then it should be 'active' feature => use (EQ 1) Qa, Sa = Q[self.active_elements], S[self.active_elements] if self.complex_expand and self.machine.dtype==complex: qi[self.active_elements] = self.alpha_mat[self.ref_site, self.active_elements] * Qa / (self.alpha_mat[self.ref_site, self.active_elements] - 2*Sa) si[self.active_elements] = self.alpha_mat[self.ref_site, self.active_elements] * Sa / (self.alpha_mat[self.ref_site, self.active_elements] - 2*Sa) else: qi[self.active_elements] = self.alpha_mat[self.ref_site, self.active_elements] * Qa / (self.alpha_mat[self.ref_site, self.active_elements] - Sa) si[self.active_elements] = self.alpha_mat[self.ref_site, self.active_elements] * Sa / (self.alpha_mat[self.ref_site, self.active_elements] - Sa) return [si, qi, S, Q] def update_precisions(self, s, q, S, Q): deltaL = np.zeros(Q.shape[0]) theta = abs(q) ** 2 - s add = (theta > 0) * (self.active_elements == False) recompute = (theta > 0) * (self.active_elements == True) delete = (theta <= 0) * (self.active_elements == True) # compute sparsity & quality parameters corresponding to features in # three groups identified above Qadd, Sadd = Q[add], S[add] if self.complex_expand and self.machine.dtype==complex: Qrec, Srec, Arec = Q[recompute], S[recompute], self.alpha_mat[self.ref_site, recompute]/2 Qdel, Sdel, Adel = Q[delete], S[delete], self.alpha_mat[self.ref_site, delete]/2 else: Qrec, Srec, Arec = Q[recompute], S[recompute], self.alpha_mat[self.ref_site, recompute] Qdel, Sdel, Adel = Q[delete], S[delete], self.alpha_mat[self.ref_site, delete] # compute new alpha's (precision parameters) for features that are # currently in model and will be recomputed Anew = s[recompute] ** 2 / (theta[recompute]) delta_alpha = (1. / Anew) - (1. / Arec) # compute change in log marginal likelihood deltaL[add] = (abs(Qadd) ** 2 - Sadd) / Sadd + np.log(Sadd / abs(Qadd) ** 2) deltaL[recompute] = abs(Qrec) ** 2 / (Srec + 1. / delta_alpha) - np.log(1 + Srec * delta_alpha) deltaL[delete] = abs(Qdel) ** 2 / (Sdel - Adel) - np.log(1 - Sdel / Adel) deltaL = np.nan_to_num(deltaL, nan=np.NINF, posinf=np.NINF, neginf=np.NINF) # find feature which caused largest change in likelihood feature_index = np.argmax(deltaL) if theta[feature_index] > 0: if self.complex_expand and self.machine.dtype==complex: self.alpha_mat[self.ref_site, feature_index] = 2 * (s[feature_index] ** 2 / theta[feature_index]) else: self.alpha_mat[self.ref_site, feature_index] = s[feature_index] ** 2 / theta[feature_index] else: # at least one active features if self.active_elements[feature_index] == True and np.sum(self.active_elements) >= 2: self.alpha_mat[self.ref_site, feature_index] = np.PINF return def fit_step_growing_RVM(self, confset, target_amplitudes, ref_site,alpha_iterations=None, multiplication=None, weightings=None): self.setup_fit(confset, target_amplitudes, ref_site, multiplication=multiplication, weightings=weightings) if np.max(self.active_elements) == 0: if np.min(abs(np.diag(self.KtK))) < np.finfo(np.float32).eps: self.alpha_mat[self.ref_site, 0] = np.finfo(np.float32).eps else: projections = (abs(self.y) **2 / np.diag(self.KtK)) ind = np.argmax(projections) alpha_est = (((np.diag(self.KtK))**2 / (abs(self.y)**2 - np.diag(self.KtK))).real)[ind] if alpha_est > 0.: self.alpha_mat[self.ref_site, ind] = alpha_est if self.complex_expand and self.machine.dtype==complex: self.alpha_mat[self.ref_site, ind] *= 2 else: self.alpha_mat[self.ref_site, ind] = 1. if self.complex_expand and self.machine.dtype==complex: self.alpha_mat[self.ref_site, ind] *= 2 print(alpha_est) self.setup_fit_alpha_dep() for i in range(alpha_iterations): s, q, S, Q = self.compute_sparsity_quantities() self.update_precisions(s, q, S, Q) self.setup_fit_alpha_dep() self.machine._epsilon[ref_site, self.bond_min_id:self.bond_max_id, :] = self.weights[:self.local_dim*self.n_bond].reshape(self.n_bond, self.local_dim) if self.complex_expand and self.machine.dtype==complex: self.machine._epsilon[ref_site, self.bond_min_id:self.bond_max_id, :] += 1.j * self.weights[self.local_dim*self.n_bond:].reshape(self.n_bond, self.local_dim) return class QGPSLearningLin(QGPSLearning): def __init__(self, machine, init_alpha = 1.0, init_noise = 1.e-1, complex_expand=True): if isinstance(machine, QGPSLinExp): super().__init__(machine, init_alpha=init_alpha, bond_max_id=machine._n_bond_lin, complex_expand=complex_expand) else: super().__init__(machine, init_alpha=init_alpha, complex_expand=complex_expand) self.noise = init_noise self.noise_convergence_tol = self.alpha_convergence_tol def get_bias(self, target_amplitudes, dtype=complex): return _MPI_comm.allreduce(np.max(np.abs(target_amplitudes)), op=MPI.MAX) def predict(self, confset): assert(confset.size > 0) self.set_up_prediction(confset) return self.K.dot((self.machine._epsilon[self.ref_site, self.bond_min_id:self.bond_max_id, :]).flatten()) def setup_KtK(self, weightings=None): if weightings is not None: self.KtK_no_noise = _sum_inplace(np.dot(self.K.conj().T, np.einsum("i,ij->ij", weightings, self.K))) self.y_no_noise = _sum_inplace(self.K.conj().T.dot(weightings * self.fit_data)) else: self.KtK_no_noise = _sum_inplace(np.dot(self.K.conj().T, self.K)) self.y_no_noise = _sum_inplace(self.K.conj().T.dot(self.fit_data)) self.weightings = weightings self.setup_fit_noise_dep() def setup_fit_noise_dep(self): self.KtK = self.KtK_no_noise/self.noise self.y = self.y_no_noise/self.noise if self.complex_expand and self.machine.dtype==complex: self.KtK = np.block([[self.KtK.real, -self.KtK.imag],[self.KtK.imag, self.KtK.real]]) self.y = np.concatenate((self.y.real, self.y.imag)) self.setup_fit_alpha_dep() def setup_fit(self, confset, target_amplitudes, ref_site, multiplication=None, weightings=None): self.ref_site = ref_site self.fit_data = target_amplitudes.astype(self.machine._epsilon.dtype) self.set_kernel_mat(confset, multiplication=multiplication) self.setup_KtK(weightings=weightings) if weightings is not None: N = np.sum(weightings) else: N = len(self.fit_data) self.N = _MPI_comm.allreduce(N) def log_marg_lik(self): if self.weightings is not None: N = np.sum(self.weightings) else: N = len(self.y) log_lik = -N * np.log(2*np.pi) log_lik -= N * np.log(self.noise) if self.weightings is None: log_lik -= np.dot(self.fit_data.conj(), self.fit_data)/self.noise else: log_lik -= np.dot(self.fit_data.conj(), self.weightings*self.fit_data)/self.noise log_lik = _MPI_comm.allreduce(log_lik) if self.cholesky: log_lik += 2*np.sum(np.log(np.diag(self.Sinv))) else: log_lik += np.linalg.slogdet(self.Sinv)[1] log_lik += np.sum(np.log(self.alpha_mat[self.ref_site, :])) weights = self.weights[self.active_elements] log_lik += np.dot(weights.conj(), np.dot(self.KtK_alpha[np.ix_(self.active_elements, self.active_elements)], weights)) return 0.5*log_lik.real def fit_step(self, confset, target_amplitudes, ref_site, opt_alpha=True, opt_noise=True, max_iterations=None, rvm=False, multiplication=None, weightings=None): self.setup_fit(confset, target_amplitudes, ref_site, multiplication=multiplication, weightings=weightings) if opt_alpha or opt_noise: alpha_old = self.alpha_mat[self.ref_site, :].copy() noise_old = self.noise converged = False j = 0 if max_iterations is not None: if j >= max_iterations: converged = True while not converged: if self.cholesky: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*np.sum(abs(self.Sinv) ** 2, 0)) else: gamma = (1 - (self.alpha_mat[self.ref_site, self.active_elements])*np.diag(self.Sinv).real) if opt_alpha: if rvm: self.alpha_mat[self.ref_site, self.active_elements] = (gamma/((self.weights.conj()*self.weights)[self.active_elements])).real else: self.alpha_mat[self.ref_site, :] = ((np.sum(gamma)/(self.weights.conj().dot(self.weights))).real) if opt_noise: kern_mat = self.K if self.complex_expand and self.machine.dtype==complex: kern_mat =
np.hstack((kern_mat, 1.j * kern_mat))
numpy.hstack
"""GaussianMLPMultitaskPolicy.""" import akro import numpy as np import tensorflow as tf from metarl.tf.models import GaussianMLPModel from metarl.tf.policies.multitask_policy import StochasticMultitaskPolicy class GaussianMLPMultitaskPolicy(StochasticMultitaskPolicy): """GaussianMLPMultitaskPolicy. Args: env_spec (metarl.envs.env_spec.EnvSpec): Environment specification. embedding (metarl.tf.embeddings.Embedding): Embedding network. task_space (akro.Box): Space of the task. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for mean. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. learn_std (bool): Is std trainable. adaptive_std (bool): Is std a neural network. If False, it will be a parameter. std_share_network (bool): Boolean for whether mean and std share the same network. init_std (float): Initial value for std. std_hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for std. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. min_std (float): If not None, the std is at least the value of min_std, to avoid numerical issues. max_std (float): If not None, the std is at most the value of max_std, to avoid numerical issues. std_hidden_nonlinearity (callable): Nonlinearity for each hidden layer in the std network. It should return a tf.Tensor. Set it to None to maintain a linear activation. std_output_nonlinearity (callable): Nonlinearity for output layer in the std network. It should return a tf.Tensor. Set it to None to maintain a linear activation. std_parameterization (str): How the std should be parametrized. There are a few options: - exp: the logarithm of the std will be stored, and applied a exponential transformation - softplus: the std will be computed as log(1+exp(x)) layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, env_spec, embedding, task_space, name='GaussianMLPMultitaskPolicy', hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, hidden_w_init=tf.glorot_uniform_initializer(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.glorot_uniform_initializer(), output_b_init=tf.zeros_initializer(), learn_std=True, adaptive_std=False, std_share_network=False, init_std=1.0, min_std=1e-6, max_std=None, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=tf.nn.tanh, std_output_nonlinearity=None, std_parameterization='exp', layer_normalization=False): assert isinstance(env_spec.action_space, akro.Box) super().__init__(env_spec, embedding, task_space, name) self.obs_dim = env_spec.observation_space.flat_dim self.action_dim = env_spec.action_space.flat_dim self.model = GaussianMLPModel( output_dim=self.action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, learn_std=learn_std, adaptive_std=adaptive_std, std_share_network=std_share_network, init_std=init_std, min_std=min_std, max_std=max_std, std_hidden_sizes=std_hidden_sizes, std_hidden_nonlinearity=std_hidden_nonlinearity, std_output_nonlinearity=std_output_nonlinearity, std_parameterization=std_parameterization, layer_normalization=layer_normalization, name='GaussianMLPModel') self._initialize() def _initialize(self): state_input = tf.compat.v1.placeholder(tf.float32, shape=(None, self.obs_dim)) task_input = self._embedding.input latent_input = tf.compat.v1.placeholder( tf.float32, shape=(None, self._embedding.latent_dim)) with tf.compat.v1.variable_scope(self.name) as vs: self._variable_scope = vs with tf.variable_scope('concat_latent_obs'): latent_state_input = tf.concat( [latent_input, state_input], axis=-1) self.model.build(latent_state_input, name='from_latent') # Connect with embedding network's latent output with tf.variable_scope('concat_embed_obs'): latent_dist_info_sym = self._embedding.dist_info_sym( task_input, name='dist_info_sym') latent_var = self._embedding.distribution.sample_sym( latent_dist_info_sym) embed_state_input = tf.concat( [latent_var, state_input], axis=-1) self.model.build(embed_state_input, name='default') self._f_dist_latent_obs = tf.compat.v1.get_default_session().make_callable( [ self.model.networks['from_latent'].mean, self.model.networks['from_latent'].log_std ], feed_list=[latent_input, state_input]) self._f_dist_task_obs = tf.compat.v1.get_default_session().make_callable( [ self.model.networks['default'].mean, self.model.networks['default'].log_std, self._embedding.latent_mean, self._embedding.latent_std_param, ], feed_list=[task_input, state_input]) def get_action(self, observation): """Get action sampled from the policy. Args: observation (np.ndarray): Observation from the environment. Returns: (np.ndarray): Action sampled from the policy. """ flat_task_obs = self.task_observation_space.flatten(observation) flat_task, flat_obs = self.split_observation(flat_task_obs) (action_mean, action_log_std, latent_mean, latent_log_std) = self._f_dist_task_obs([flat_task], [flat_obs]) rnd = np.random.normal(size=action_mean.shape) action_sample = rnd * np.exp(action_log_std) + action_mean action_sample = self.action_space.unflatten(action_sample[0]) action_mean = self.action_space.unflatten(action_mean[0]) action_log_std = self.action_space.unflatten(action_log_std[0]) mean = self._embedding.latent_space.unflatten(latent_mean[0]) log_std = self._embedding.latent_space.unflatten(latent_log_std[0]) latent_info = dict(mean=latent_mean, log_std=latent_log_std) return action, dict(mean=action_mean, log_std=action_log_std, latent_info=latent_info) def get_action_from_latent(self, latent, observation): """Get action sampled from the latent and observation. Args: latent (np.ndarray): Latent var from the policy. observation (np.ndarray): Observation from the environment. Returns: (np.ndarray): Action sampled from the policy. """ flat_obs = self.observation_space.flatten(observation) flat_latent = self.latent_space.flatten(latent) mean, log_std = self._f_dist_latent_obs([flat_latent], [flat_obs]) rnd = np.random.normal(size=mean.shape) sample = rnd *
np.exp(log_std)
numpy.exp
import torch import numpy as np import utils.utils_geom import utils.utils_basic np.set_printoptions(suppress=True, precision=6, threshold=2000) def merge_rt_py(r, t): # r is 3 x 3 # t is 3 or maybe 3 x 1 t = np.reshape(t, [3, 1]) rt = np.concatenate((r,t), axis=1) # rt is 3 x 4 br = np.reshape(np.array([0,0,0,1], np.float32), [1, 4]) # br is 1 x 4 rt = np.concatenate((rt, br), axis=0) # rt is 4 x 4 return rt def split_rt_py(rt): r = rt[:3,:3] t = rt[:3,3] r = np.reshape(r, [3, 3]) t = np.reshape(t, [3, 1]) return r, t def apply_4x4_py(rt, xyz): # rt is 4 x 4 # xyz is N x 3 r, t = split_rt_py(rt) xyz = np.transpose(xyz, [1, 0]) # xyz is xyz1 x 3 x N xyz = np.dot(r, xyz) # xyz is xyz1 x 3 x N xyz = np.transpose(xyz, [1, 0]) # xyz is xyz1 x N x 3 t = np.reshape(t, [1, 3]) xyz = xyz + t return xyz def rigid_transform_3D(xyz_cam0, xyz_cam1, do_ransac=True): xyz_cam0 = xyz_cam0.detach().cpu().numpy() xyz_cam1 = xyz_cam1.detach().cpu().numpy() cam1_T_cam0 = rigid_transform_3D_py(xyz_cam0, xyz_cam1, do_ransac=do_ransac) cam1_T_cam0 = torch.from_numpy(cam1_T_cam0).float().to('cuda') return cam1_T_cam0 def rigid_transform_3D_py_helper(xyz0, xyz1): assert len(xyz0) == len(xyz1) N = xyz0.shape[0] # total points if N > 3: centroid_xyz0 = np.mean(xyz0, axis=0) centroid_xyz1 = np.mean(xyz1, axis=0) # print('centroid_xyz0', centroid_xyz0) # print('centroid_xyz1', centroid_xyz1) # center the points xyz0 = xyz0 - np.tile(centroid_xyz0, (N, 1)) xyz1 = xyz1 - np.tile(centroid_xyz1, (N, 1)) H = np.dot(xyz0.T, xyz1) U, S, Vt =
np.linalg.svd(H)
numpy.linalg.svd
__author__ = 'Chronis' from pySLM.definitions import SLM import numpy as np from tkinter import _setit import PIL from astropy.io import fits import pygame, os, time, pickle from tkinter import * from tkinter import ttk from tkinter import filedialog import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import threading import matplotlib.image as mplimg from matplotlib.colors import Normalize from matplotlib import cm from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg def cart2pol(x,y): """ Takes cartesian (2D) coordinates and transforms them into polar. """ rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return (rho, phi) class dummyClass: def __init__(self): print('Dummy class') self.maps = {'zero': np.zeros((1024, 768, 3))} self.SLM_type = 'None' self.pixelSize = 8 self.dimensions = (1024, 768, 3) self.width = 1024 self.height = 768 self.size = (1024, 768) class StdoutRedirector(object): """ Redirects all stdout to this object which then can be embeded into a text widget """ def __init__(self, text_widget): self.text_space = text_widget def write(self, string): self.text_space.insert('end', string) self.text_space.see('end') def flush(self): pass def array2PIL(arr, size): mode = 'RGBA' arr = arr.reshape(arr.shape[0]*arr.shape[1], arr.shape[2]) if len(arr[0]) == 3: arr = np.c_[arr, 255*np.ones((len(arr), 1), np.uint8)] return PIL.Image.frombuffer(mode, size, arr.tostring(), 'raw', mode, 0, 1) class DropMenu: """ DropMenu is a widget that will contain various functionalities of a menu """ def __init__(self, master, window): # Create dropdown menu self.path = os.getcwd() self.window = window self.master = master self.menu = Menu(self.master) self.master.config(menu=self.menu) # File Option************************************************ self.FileMenu = Menu(self.menu) self.menu.add_cascade(label='File', menu=self.FileMenu) self.FileMenu.add_command(label='Open phase map') self.FileMenu.add_command(label='Save as FITS', command=lambda: self.save_fits()) self.FileMenu.add_command(label='Save weighting function') self.FileMenu.add_separator() self.FileMenu.add_command(label='Exit', command=self._quit) # Settings option*********************************************** self.SettingsMenu = Menu(self.menu) self.menu.add_cascade(label='Settings', menu=self.SettingsMenu) self.SettingsMenu.add_command(label='Calibration curve', command=self.calibration_callback) self.SettingsMenu.add_command(label='Star info', command=self.star_info_callback) # Tools option************************************************** self.ToolMenu = Menu(self.menu) self.menu.add_cascade(label='Tools', menu=self.ToolMenu) self.ToolMenu.add_command(label='Count') self.ToolMenu.add_command(label='Histogram') # Help option ******************************************** self.HelpMenu = Menu(self.menu) self.menu.add_cascade(label='Help', menu=self.HelpMenu) self.HelpMenu.add_command(label='Documentation') self.HelpMenu.add_command(label='App Help') # Variables ********************************************** try: self.menu_data = pickle.load(open("SLM_data.p", 'rb')) self.phase_curve = self.menu_data['phase curve'] except: file = filedialog.askopenfilename(title="Select phase curve(.npy)") phase = np.load(file) self.menu_data = {'phase curve': phase} self.phase_curve = phase pickle.dump(self.menu_data, open("SLM_data.p", 'wb')) # take data point from phase curve and fit a polynomial such that each phase shift value in radians # corresponds to a gray value. The inverse case gray->rad will just takes these data points p = np.polyfit(self.phase_curve, np.arange(0, 256), deg=3) self.rad_2_gray = np.poly1d(p) # size of SLM pixel in microns (um) self.slm_pxl = StringVar() # variables for SLM characteristics and system setup used in Multiple stars self.slm_pxl.set('36') self.intensity = StringVar() self.wavelength = StringVar() self.Fnum = StringVar() self.lD = StringVar() self.lD.set('4') def star_info_callback(self): """ Contains info about the optical bench and SLM :return: """ toplevel_r = Toplevel() toplevel_r.title('Star info') toplevel_r.geometry("400x150+300+300") toplevel = ttk.Frame(toplevel_r) toplevel.grid(column=0, row=0, sticky=(N, W, E, S)) self.wavelength.set('633') wavelength_entry = Entry(toplevel, textvariable=self.wavelength,justify='center') wavelength_lab = Label(toplevel, text='Wavelength (nm):') self.Fnum.set('230') Fnum_entry = Entry(toplevel, textvariable=self.Fnum, justify='center') Fnum_lab = Label(toplevel, text='F # :') self.intensity.set('1') intensity_entry = Entry(toplevel, textvariable=self.intensity, justify='center') intensity_lab = Label(toplevel, text='Intensity :') """As discussed, here are the correct parameters for the coordinates conversion in the SLM plane : F# = 230 Pixel_size = 36 um The spot size in the SLM plane right now is lambda*F# ~ 145 um ~ 4 pixels. """ slm_pxl_lab = Label(toplevel, text='SLM pixel size (um):', justify='center') slm_pxl_entry = Entry(toplevel, textvariable=self.slm_pxl) lD_lab = Label(toplevel, text='#pixels per l/D:') lD_entry = Entry(toplevel, textvariable=self.lD) separator = ttk.Separator(toplevel, orient=VERTICAL) set_button = ttk.Button(toplevel, text='Set', command=self.apply_star_info) wavelength_lab.grid(column=0, row=0) wavelength_entry.grid(column=1, row=0) Fnum_lab.grid(column=0, row=1) Fnum_entry.grid(column=1, row=1) intensity_lab.grid(column=0, row=2) intensity_entry.grid(column=1, row=2) separator.grid(column=2, row=0, rowspan=3, sticky=(N, S)) slm_pxl_lab.grid(column=3, row=0) slm_pxl_entry.grid(column=3, row=1) lD_lab.grid(column=3, row=2) lD_entry.grid(column=3, row=3) set_button.grid(column=0, row=4) def apply_star_info(self): pass def calibration_callback(self): """ Plots the current phase response curve and allows to select a new one :return: """ toplevel_r = Toplevel() toplevel_r.title('Grayvalues calibration') toplevel_r.geometry("300x300+300+300") toplevel = ttk.Frame(toplevel_r) toplevel.grid(column=0, row=0, sticky=(N, W, E, S)) self.curve_plot, self.ax = plt.subplots(figsize=(3,3)) self.line = self.ax.plot(np.arange(256), self.phase_curve, 'o') self.ax.set_xlim([-1, 260]) self.ax.set_xlabel("gray values") self.ax.set_ylabel("Phase shift[$\pi$]") data_plot = FigureCanvasTkAgg(self.curve_plot, master=toplevel) data_plot.show() import_curve_button = ttk.Button(toplevel, text='Import curve', command=self.import_curve_callback) import_curve_button.grid(column=0, row=2) data_plot.get_tk_widget().grid(column=1, row=2, columnspan=4, rowspan=4) return def import_curve_callback(self): """ Used for insertion of new phase curve calibration curve. Expects an numpy array of length 256 corresponding to each grayvalue :return: """ file = filedialog.askopenfilename(title="Select phase curve(.npy)") phase = np.load(file) self.menu_data = {'phase curve': phase} self.phase_curve = phase self.line[0].set_data(np.arange(256), phase) plt.draw() pickle.dump(self.menu_data, open("SLM_data.p", 'wb')) return def save_fits(self, name=None): """ Save current open phase mask as a FITS file with the center information contained in the header """ file = filedialog.asksaveasfilename(master=self.master, title='Save as..', initialdir=self.path) if file is None: return self.path = os.path.dirname(file) file += '.fits' # current = 0 if name is None: current = self.window.maps_var.get() else: current = name if current == '': return mask = self.window.SLM.maps[current]['data'] if self.window.active: mask = self.window.image hdu = fits.PrimaryHDU() hdu.data = mask[:, :, 0] hdu.header['center'] = str(self.window.center_position) if len(self.window.center_position) > 1: hdu.header['stars'] = str(self.window.multiple_star_position) + "\ ([l/D, azimuth]" """ if mask['star info']: for k, val in mask['star info']: hdu.header[k] = val """ hdu.header['DATE'] = time.strftime("%d/%m/%Y") hdu.writeto(file) return def _quit(self): self.window.SLM.quit() self.master.quit() # stops mainloop self.master.destroy() return class SLMViewer: """ Basic GUI that enables communication with SLM , on/off switch and import/manipulation of phase maps """ def __init__(self, root): self.master = Frame(root) self.master.grid(column=0, row=0, sticky=(N, W, E, S)) root.title('SLM Controller') try: self.SLM = SLM() print("SLM type is %s"%self.SLM.SLM_type) except UserWarning: self.SLM = dummyClass() #raise UserWarning('No SLM connected.') self.menu = DropMenu(root, self) # add drop-down menu #self.SLM.pixelSize = int(self.menu.slm_pxl.get()) # ===================================================================================== # make canvas self.off_image = np.zeros(self.SLM.dimensions) self.image = self.off_image self.fig, self.ax = plt.subplots() self.norm = Normalize(vmin=0, vmax=255) self.cmap = cm.gray self.im = plt.imshow(self.image[:, :, 0].T, cmap=self.cmap, norm=self.norm) self.ax.get_xaxis().set_visible(False) self.ax.get_yaxis().set_visible(False) # get image plot onto canvas and app self.data_plot = FigureCanvasTkAgg(self.fig, master=self.master) self.data_plot.get_tk_widget().configure(borderwidth=0) self.fig.suptitle('SLM type : %s'%self.SLM.SLM_type, fontsize=12, fontweight='bold') self.data_plot.show() self.fig.canvas.mpl_connect('button_press_event', self.click_callback) # ==================================================================================== # import phase maps frame self.import_maps_frame = ttk.LabelFrame(self.master, text='Phase maps') self.import_map_button = ttk.Button(self.import_maps_frame, text='Import map', command=self.import_map_callback) self.clear_list_button = ttk.Button(self.import_maps_frame, text='Clear', command=self.clear_maps) self.maps_var = StringVar() self.maps_var.set('') if len(self.SLM.maps) > 0: self.maps = [m for m in self.SLM.maps] else: self.maps = ['Zeros'] self.maps_options = OptionMenu(self.import_maps_frame, self.maps_var, *self.maps) self.maps_options.grid(column=0, row=0) self.import_map_button.grid(column=1, row=0) self.clear_list_button.grid(column=1, row=1) # ============================================================================================ # Set up center(s) position # ============================================================================================= # default mouse position for center is center of SLM self.mouse_coordinates = (int(self.SLM.width/2), int(self.SLM.height/2)) self.center_position = [[int(self.SLM.width/2), int(self.SLM.height/2)]] self.plot_update() self.center_step = 1 # ============================================================================================= # Phase mask activation/de-activation # ============================================================================================= self.active_frame = LabelFrame(self.master, text='Activate') self.active_var = StringVar() self.active_var.set('OFF') self.activation_button = Button(self.active_frame, textvariable=self.active_var, command=self.activate, bg='firebrick2') self.activation_button.grid(column=0, row=0) self.active = False # ========================================================================================== # OPTIONS FRAME # ========================================================================================== self.notebook = ttk.Notebook(self.master) self.fqpm_frame = Frame(self.notebook) self.vortex_frame = Frame(self.notebook) self.multiple_frame = Frame(self.notebook) self.zernike_frame = Frame(self.notebook) self.rotate_frame = Frame(self.notebook) self.notebook.add(self.fqpm_frame, text='FQ/EO') self.notebook.add(self.vortex_frame, text='Vortex') self.notebook.add(self.multiple_frame, text='Multiple') self.notebook.add(self.zernike_frame, text='Zernike') self.notebook.add(self.rotate_frame, text='Phase shift') self.notebook.grid() # =========================================================================================== # Star info in multiple star frame # =========================================================================================== self.stars_frame = ttk.LabelFrame(self.multiple_frame, text='Stars') self.star_1 = Label(self.stars_frame, text='Star 1') self.star_2 = Label(self.stars_frame, text='Star 2', state=DISABLED) self.star_3 = Label(self.stars_frame, text='Star 3', state=DISABLED) self.star_1.grid(column=0, row=1) self.star_2.grid(column=0, row=2) self.star_3.grid(column=0, row=3) I_lab = ttk.Label(self.stars_frame, text='Intensity', width=10) magn_lab = ttk.Label(self.stars_frame, text='Magnitude', width=10) l_lab = ttk.Label(self.stars_frame, text='Wavelength(nm)', width=10) F_lab = ttk.Label(self.stars_frame, text='F #', width=10) lD_lab = ttk.Label(self.stars_frame, text='l/D', width=10) phi_lab= ttk.Label(self.stars_frame, text='phi(pi)', width=10) C_lab = ttk.Label(self.stars_frame, text='Center(x,y)', width=10) magn_lab.grid(column=1, row=0) I_lab.grid(column=2, row=0) l_lab.grid(column=3, row=0) F_lab.grid(column=4, row=0) lD_lab.grid(column=5, row=0) phi_lab.grid(column=6, row=0) C_lab.grid(column=7, row=0) # 1st star -- always visible self.M1 = StringVar() self.M1.set('0') M1_entry = ttk.Entry(self.stars_frame, textvariable=self.M1, width=10) M1_entry.grid(column=1, row=1) self.I1_num = StringVar() self.I1_num.set('1') self.I1_entry = ttk.Entry(self.stars_frame, textvariable=self.I1_num, width=10) self.I1_entry.grid(column=2, row=1) self.l1_num = StringVar() self.l1_num.set('633') self.l1_entry = ttk.Entry(self.stars_frame, textvariable=self.l1_num, width=10) self.l1_entry.grid(column=3, row=1) self.F1_num = StringVar() self.F1_num.set('230') self.F1_entry = ttk.Entry(self.stars_frame, textvariable=self.F1_num, width=10) self.F1_entry.grid(column=4, row=1) self.starc1 = StringVar() self.starc1.set('%i,%i' % (int(self.SLM.width/2), int(self.SLM.height/2))) self.center1_lab = Entry(self.stars_frame, textvariable=self.starc1, width=10) self.center1_lab.grid(column=7, row=1) # star 2 self.M2 = StringVar() self.M2.set('0') self.M2_entry = ttk.Entry(self.stars_frame, textvariable=self.M2, width=10, state=DISABLED) self.M2_entry.grid(column=1, row=2) self.M2_entry.bind("<Return>", self.magnitude_to_intensity) self.I2_num = StringVar() self.I2_num.set('1') self.I2_entry = ttk.Entry(self.stars_frame, textvariable=self.I2_num, width=10, state=DISABLED) self.I2_entry.bind("<Return>", self.magnitude_to_intensity) self.I2_entry.grid(column=2, row=2) self.l2_num = StringVar() self.l2_num.set('633') self.l2_entry = ttk.Entry(self.stars_frame, textvariable=self.l2_num, width=10, state=DISABLED) self.l2_entry.grid(column=3, row=2) self.F2_num = StringVar() self.F2_num.set('230') self.F2_entry = ttk.Entry(self.stars_frame, textvariable=self.F2_num, width=10, state=DISABLED) self.F2_entry.grid(column=4, row=2) self.starc2 = StringVar() self.starc2.set('0,0') self.lD_star2 = StringVar() self.lD_star2.set('1') self.lD_star2_entry = Entry(self.stars_frame, textvariable=self.lD_star2, width=10, state=DISABLED) self.lD_star2_entry.grid(column=5, row=2) self.phi_star2 = StringVar() self.phi_star2.set('0') self.phi_star2_entry = Entry(self.stars_frame, textvariable=self.phi_star2, width=10, state=DISABLED) self.phi_star2_entry.grid(column=6, row=2) self.center2_lab = Entry(self.stars_frame, textvariable=self.starc2, width=10, state=DISABLED) self.center2_lab.grid(column=7, row=2) self.center2_lab.bind("<Return>", self.l_over_D_callback) # star 3 self.M3 = StringVar() self.M3.set('0') self.M3_entry = ttk.Entry(self.stars_frame, textvariable=self.M3, width=10, state=DISABLED) self.M3_entry.grid(column=1, row=3) self.M3_entry.bind("<Return>", self.magnitude_to_intensity) self.I3_num = StringVar() self.I3_num.set('1') self.I3_entry = ttk.Entry(self.stars_frame, textvariable=self.I3_num, width=10, state=DISABLED) self.I3_entry.grid(column=2, row=3) self.I3_entry.bind("<Return>", self.magnitude_to_intensity) self.l3_num = StringVar() self.l3_num.set('633') self.l3_entry = ttk.Entry(self.stars_frame, textvariable=self.l3_num, width=10, state=DISABLED) self.l3_entry.grid(column=3, row=3) self.F3_num = StringVar() self.F3_num.set('230') self.F3_entry = ttk.Entry(self.stars_frame, textvariable=self.F3_num, width=10, state=DISABLED) self.F3_entry.grid(column=4, row=3) self.starc3 = StringVar() self.starc3.set('0,0') self.lD_star3 = StringVar() self.lD_star3.set('1') self.lD_star3_entry = Entry(self.stars_frame, textvariable=self.lD_star3, width=10, state=DISABLED) self.lD_star3_entry.grid(column=5, row=3) self.phi_star3 = StringVar() self.phi_star3.set('0') self.phi_star3_entry = Entry(self.stars_frame, textvariable=self.phi_star3, width=10, state=DISABLED) self.phi_star3_entry.grid(column=6, row=3) self.center3_lab = Entry(self.stars_frame, textvariable=self.starc3, width=10, state=DISABLED) self.center3_lab.grid(column=7, row=3) self.center3_lab.bind("<Return>", self.l_over_D_callback) # ============================================================================================ # FQPM and EOPM frame # ============================================================================================ self.center1_lab_fqpm = Entry(self.fqpm_frame, textvariable=self.starc1) self.center1_lab_fqpm.grid(column=4, row=0) self.single_button = ttk.Button(self.fqpm_frame, text='Make map', command=lambda: self.make_map('single')) self.single_button.grid(column=0, row=0) map_types = ['FQPM', 'EOPM', 'FLAT'] self.map_type_var = StringVar() self.map_type_var.set('FQPM') self.map_type_menu = OptionMenu(self.fqpm_frame, self.map_type_var, *map_types) self.map_type_menu.grid(row=0, column=2) # ========================================================================================================= # CONTROL FRAME # ========================================================================================================= self.control_frame = ttk.LabelFrame(self.master, text='Center Controls') self.cstep_var = StringVar() self.cstep_var.set('1') self.center_step_entry = Entry(self.control_frame, textvariable=self.cstep_var, justify='center') self.center_step_entry.bind("<Return>", self.set_center_step) self.center_control_up = ttk.Button(self.control_frame, text='^', command=lambda: self.center_move('up', 0)) self.center_control_down = ttk.Button(self.control_frame, text='v', command=lambda: self.center_move('down',0)) self.center_control_left = ttk.Button(self.control_frame, text='<', command=lambda: self.center_move('left',0)) self.center_control_right = ttk.Button(self.control_frame, text='>', command=lambda: self.center_move('right',0)) self.center_control_up.grid(column=1, row=0) self.center_control_down.grid(column=1, row=2) self.center_control_left.grid(column=0, row=1) self.center_control_right.grid(column=2, row=1) self.center_step_entry.grid(column=1, row=1) self.center_num = ['1'] self.center_var = StringVar() self.center_var.set('1') # Set gray values self.val_1 = 0 self.val_2 = 1 self.grayval_frame = ttk.LabelFrame(self.fqpm_frame, text='Gray values') self.gray_1_val = StringVar() self.gray_1_val.set('0') self.gray_1_entry = Entry(self.grayval_frame, textvariable=self.gray_1_val, justify='center') self.gray_1_entry.bind("<Return>", self.arrow_return) self.gray_1_entry.bind("<Up>", self.arrow_return) self.gray_1_entry.bind("<Down>", self.arrow_return) self.gray_1_entry.bind("<Left>", self.arrow_return) self.gray_1_entry.bind("<Right>", self.arrow_return) self.gray_2_val = StringVar() self.gray_2_val.set('0') self.gray_2_entry = Entry(self.grayval_frame, textvariable=self.gray_2_val, justify='center') self.gray_2_entry.bind("<Return>", self.arrow_return) self.gray_2_entry.bind("<Up>", self.arrow_return) self.gray_2_entry.bind("<Down>", self.arrow_return) self.gray_2_entry.bind("<Left>", self.arrow_return) self.gray_2_entry.bind("<Right>", self.arrow_return) self.gray_1_lab = ttk.Label(self.grayval_frame, text='Gray-value 1') self.gray_2_lab = ttk.Label(self.grayval_frame, text='Gray-value 2') self.phase_1_val = StringVar() self.phase_1_val.set('Phase: %.3f rad'%self.menu.phase_curve[int(self.gray_1_val.get())]) self.phase_2_val = StringVar() self.phase_2_val.set('Phase: %.3f rad'%self.menu.phase_curve[int(self.gray_2_val.get())]) self.phase_1_lab = ttk.Label(self.grayval_frame, textvariable=self.phase_1_val) self.phase_2_lab = ttk.Label(self.grayval_frame, textvariable=self.phase_2_val) self.gray_1_lab.grid(column=0, row=0) self.gray_2_lab.grid(column=0, row=1) self.gray_1_entry.grid(column=1, row=0) self.gray_2_entry.grid(column=1, row=1) self.phase_1_lab.grid(column=2, row=0) self.phase_2_lab.grid(column=2, row=1) # ============================================================================================ # ZERNIKE TAB # ============================================================================================ # implement various zernike terms which can be used to correct aberrations due to the SLM back-plate #DEFOCUS defocus_coeff_lab = ttk.Label(self.zernike_frame, text='Defocus:') defocus_coeff_lab.grid(column=0, row=0) self.defocus_coeff = DoubleVar() self.defocus_coeff.set(0) defocus_coeff_entry = Entry(self.zernike_frame, textvariable=self.defocus_coeff) defocus_coeff_entry.grid(column=1, row=0) #OBLIQUE ASTIGMATISM astigm_coeff_lab = ttk.Label(self.zernike_frame, text='Obliq. Astigmatism:') astigm_coeff_lab.grid(column=2, row=1) self.astigm_coeff = DoubleVar() self.astigm_coeff.set(0) astigm_coeff_entry = Entry(self.zernike_frame, textvariable=self.astigm_coeff) astigm_coeff_entry.grid(column=3, row=1) # VERTICAL ASTIGMATISM secastigm_coeff_lab = ttk.Label(self.zernike_frame, text='Vert. Astigmatism:') secastigm_coeff_lab.grid(column=0, row=1) self.secastigm_coeff = DoubleVar() self.secastigm_coeff.set(0) secastigm_coeff_entry = Entry(self.zernike_frame, textvariable=self.secastigm_coeff) secastigm_coeff_entry.grid(column=1, row=1) #TILT tilt_coeff_lab = ttk.Label(self.zernike_frame, text='Tilt:') tilt_coeff_lab.grid(column=2, row=2) self.tilt_coeff = DoubleVar() self.tilt_coeff.set(0) tilt_coeff_entry = Entry(self.zernike_frame, textvariable=self.tilt_coeff) tilt_coeff_entry.grid(column=3, row=2) #TIP tip_coeff_lab = ttk.Label(self.zernike_frame, text='Tip:') tip_coeff_lab.grid(column=0, row=2) self.tip_coeff = DoubleVar() self.tip_coeff.set(0) tip_coeff_entry = Entry(self.zernike_frame, textvariable=self.tip_coeff) tip_coeff_entry.grid(column=1, row=2) # X AND Y GRADIENTS xgrad_coeff_lab = ttk.Label(self.zernike_frame, text='X gradient:') xgrad_coeff_lab.grid(column=2, row=3) self.xgrad_coeff = DoubleVar() self.xgrad_coeff.set(0) xgrad_coeff_entry = Entry(self.zernike_frame, textvariable=self.xgrad_coeff) xgrad_coeff_entry.grid(column=3, row=3) ygrad_coeff_lab = ttk.Label(self.zernike_frame, text='Y gradient:') ygrad_coeff_lab.grid(column=0, row=3) self.ygrad_coeff = DoubleVar() self.ygrad_coeff.set(0) ygrad_coeff_entry = Entry(self.zernike_frame, textvariable=self.ygrad_coeff) ygrad_coeff_entry.grid(column=1, row=3) # Phase shift of the zernike correction zernike_range_lab = Label(self.zernike_frame, text='Phase shift of zernike') zernike_range_lab.grid(column=0, row=4) self.zernike_min = DoubleVar() self.zernike_min.set(0) zernike_min_entry = Entry(self.zernike_frame, textvariable=self.zernike_min) zernike_min_entry.grid(column=1, row=4) self.zernike_max = DoubleVar() self.zernike_max.set(1) zernike_max_entry = Entry(self.zernike_frame, textvariable=self.zernike_max) zernike_max_entry.grid(column=2, row=4) # Apply zernike corrections to the phase mask currently active or selected apply_zernike = ttk.Button(self.zernike_frame, text='Apply', command=self.apply_zernike) apply_zernike.grid(column=4, row=0) # functions implementing the various zernike polynomials self.Defocus = lambda r: np.sqrt(3)*(2*r**2) self.Astigm = lambda r, theta: np.sqrt(6)*(r**2)*np.sin(2*theta) self.VertAstigm = lambda r, theta: np.sqrt(6) * (r ** 2) * np.cos(2 * theta) self.SecAstigm = lambda r, theta: np.sqrt(10)*(4*r**4-3*r**3)*np.sin(2*theta) self.XGrad = lambda x: abs(x) self.YGrad = lambda y: abs(y) self.Tip = lambda r, theta: 2*r*np.cos(theta) self.Tilt = lambda r, theta: 2*r*np.sin(theta) # mesh grid used to create the 2d zernike polynomials in cartesian and polar coordinates self.xx, self.yy = np.meshgrid(np.arange(-self.SLM.width/2, self.SLM.width/2), np.arange(-self.SLM.height/2, self.SLM.height/2)) self.R, self.Theta = cart2pol(self.xx, self.yy) # zernike_gray1_lab = Label(self.zernike_frame, text='Gray1') # zernike_gray1_lab.grid(column=0, row=3) # self.zernike_gray1 = IntVar() # self.zernike_gray1.set(85) # zernike_gray1_entry = Entry(self.zernike_frame, textvariable=self.zernike_gray1) # zernike_gray1_entry.grid(column=1, row=3) # # zernike_gray2_lab = Label(self.zernike_frame, text='Gray2') # zernike_gray2_lab.grid(column=0, row=4) # self.zernike_gray2 = IntVar() # self.zernike_gray2.set(255) # zernike_gray2_entry = Entry(self.zernike_frame, textvariable=self.zernike_gray2) # zernike_gray2_entry.grid(column=1, row=4) self.zernike_gray1_old = 85 self.zernike_gray2_old = 255 # ====================================================================================== self.grayval_frame.grid(column=0, row=1, columnspan=5) self.control_frame.grid(column=0, row=2, columnspan=5) # ====================================================================================== # Multiple sources # ====================================================================================== # Pack star center vars together for easy access self.center_labels = [self.starc1, self.starc2, self.starc3] # make frame where a binary star map or triple star map can be created # binary phase map using airy pattern distribution for each star self.binary_frame = ttk.Frame(self.multiple_frame) self.binary_button = ttk.Button(self.binary_frame, text='Binary', command=lambda: self.make_map('binary'), state=DISABLED) self.binary_button.grid(column=1, row=1) self.checkbox_val = IntVar() binary_checkbox = Checkbutton(self.binary_frame, text='Save map', variable=self.checkbox_val) binary_checkbox.grid(column=3, row=1) self.tertiary_button = ttk.Button(self.binary_frame, text='Tertiary star', command=lambda: self.make_map('triple'), state=DISABLED) self.tertiary_button.grid(column=2, row=1) self.new_map_name = StringVar() self.new_map_name.set('Map name') self.new_map_name_entry = Entry(self.binary_frame, textvariable=self.new_map_name) self.new_map_name_entry_single = Entry(self.fqpm_frame, textvariable=self.new_map_name) self.new_map_name_entry_single.grid(column=3, row=0) self.new_map_name_entry.grid(column=0, row=1) self.save_filetypes = [('Windows Bitmap', '*.bmp'), ('Text File', '*.txt'), ('Fits File', '*.fits')] add_center_button = ttk.Button(self.binary_frame, text='Add', command=self.add_center) add_center_button.grid(column=0, row=0) self.centers_options = OptionMenu(self.binary_frame, self.center_var, *self.center_num) self.centers_options.grid(column=1, row=0) self.stars_frame.grid(column=0, row=0) self.binary_frame.grid(column=0, row=2) # ===================================================================================================== # Vortex tab # ===================================================================================================== self.make_vortex = ttk.Button(self.vortex_frame, text='Make vortex', command=lambda: self.make_map('vortex')) self.make_vortex.grid(column=0, row=0) # charge of the vortex charge_lab = ttk.Label(self.vortex_frame, text='charge') charge_lab.grid(column=2, row=1) self.charge = IntVar() self.charge.set(2) self.charge_entry = Entry(self.vortex_frame, textvariable=self.charge, width=10) self.charge_entry.bind("<Return>", self.charge_callback) self.charge_entry.grid(column=3, row=1) # coordinates entry coordinates_lab = ttk.Label(self.vortex_frame, text='Coordinates') coordinates_lab.grid(column=0, row=1) self.vortex_coordinates = StringVar() self.vortex_coordinates.set('%i, %i' % (int(self.SLM.width/2), int(self.SLM.height/2))) self.vortex_coordinates_entry = Entry(self.vortex_frame, textvariable=self.vortex_coordinates, width=10) self.vortex_coordinates_entry.grid(column=1, row=1) # label indicating gray values gray_lab = ttk.Label(self.vortex_frame, text='Gray values') gray_lab.grid(column=1, row=3, columnspan=2) # gray value for the 0 pi phase gray0_lab = ttk.Label(self.vortex_frame, text='0:', width=10) gray0_lab.grid(column=0, row=4) self.gray0 = IntVar() self.gray0.set(0) self.gray0_entry = Entry(self.vortex_frame, textvariable=self.gray0, width=10) self.gray0_entry.grid(column=1, row=4) # gray value for 2pi phase gray2pi_lab = ttk.Label(self.vortex_frame, text='2pi:', width=10) gray2pi_lab.grid(column=2, row=4) self.gray2pi = IntVar() self.gray2pi.set(0) self.gray2pi_entry = Entry(self.vortex_frame, textvariable=self.gray2pi, width=10) self.gray2pi_entry.grid(column=3, row=4) # button to change gray values of vortex on the fly self.gray_vortex_button = ttk.Button(self.vortex_frame, text='Change', command=self.vortex_change_grayvalues) self.gray_vortex_button.grid(column=4, row=4) # ============================================================================================================ # ZERNIKE WAVEFRONT SENSING # ============================================================================================================ create_rotating_button = ttk.Button(self.rotate_frame, text='Create', command=lambda: self.make_map('rotate')) self.rotate_button = ttk.Button(self.rotate_frame, text='Rotate', command=self.rotate_callback, state=DISABLED) self.rotating_var = StringVar() self.rotating_var.set('0-pi') self.rotating_label = ttk.Label(self.rotate_frame, textvariable=self.rotating_var, state=DISABLED) self.rotating_list = ['0', 'pi/2', 'pi', '3pi/2'] self.whichZernike = 0 self.rotateZernike_dict = {} lD_label = Label(self.rotate_frame, text="l/D", width=10) self.lD_var = IntVar() self.lD_var.set(10) l_over_D_entry = ttk.Entry(self.rotate_frame, textvariable=self.lD_var, width=10) create_rotating_button.grid(column=0, row=0) self.rotate_button.grid(column=1, row=0) self.rotating_label.grid(column=2, row=0) lD_label.grid(column=1, row=1) l_over_D_entry.grid(column=2, row=1) # ====================================================================================================== self.multiple_star_position = [] # ============================================================================================================= # Text frame # ======================================================================================================== self.text_frame = ttk.Frame(self.master) scrollbar = Scrollbar(self.text_frame) scrollbar.grid(column=4, row=0) self.text = Text(self.text_frame, height=5, width=40, wrap='word', yscrollcommand=scrollbar.set) self.text.insert(INSERT, "Initializing SLM..\n") self.text.grid(column=0, row=0, columnspan=4) sys.stdout = StdoutRedirector(self.text) # assign stdout to custom class def rotating_mask(self): """ Create map with 1s in the center circle and 0 else :return: """ if self.active: self.image = np.zeros(self.SLM.dimensions, dtype=np.uint8) self.active = False self.activation_button.config(bg='firebrick2') self.active_var.set('OFF') m = np.zeros(self.SLM.size) if self.lD_var.get() < 0: return m[np.where(self.R.T <= self.lD_var.get())] = 1 v0 = int(self.menu.rad_2_gray(0)) v1 = int(self.menu.rad_2_gray(0.5)) v2 = int(self.menu.rad_2_gray(1)) v3 = int(self.menu.rad_2_gray(1.5)) print(v0, v1, v2, v3) # 0 - pi p0 =
np.zeros(self.SLM.size)
numpy.zeros
# Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import enum import errno import json import os import pprint import time from abc import ABCMeta, abstractmethod, abstractproperty from collections import namedtuple import numpy as np import click class GoldenOutputNotAvailableError(Exception): pass class NoCorrectnessDesired(Exception): pass class ExtrasNeeded(Exception): def __init__(self, extras): super(ExtrasNeeded, self).__init__( 'Missing needed packages for benchmark; to fix, pip install {}'.format( ' '.join(extras))) self.extras = extras class FrontendCommand(click.Command): def __init__(self, networks, *args, **kwargs): super(FrontendCommand, self).__init__(*args, **kwargs) self.__networks = networks def format_epilog(self, ctx, formatter): with formatter.section('Supported Networks'): formatter.write_text(', '.join(self.__networks)) class Precision(enum.Enum): TRAINING = 0.2 INFERENCE = 5e-04 class StopWatch(object): def __init__(self, use_callgrind): self._start = None self._stop = None self._use_callgrind = use_callgrind self._callgrind_active = False self._total = 0.0 def start_outer(self): # Like start(), but does not turn on callgrind. self._start = time.time() def start(self): self._start = time.time() if self._use_callgrind: os.system('callgrind_control --instr=on {}'.format(os.getpid())) self._callgrind_active = True def stop(self): if self._start is not None: stop = time.time() self._total += stop - self._start self._start = None if self._callgrind_active: self._callgrind_active = False os.system('callgrind_control --instr=off {}'.format(os.getpid())) def elapsed(self): return self._total class Output(object): def __init__(self): self.contents = None self.precision = 'untested' class Params( namedtuple('Params', [ 'batch_size', 'epochs', 'examples', 'warmups', 'network_name', 'backend_name', 'backend_opts', 'learn_phase' ])): """Parameters applied to a network during benchmarking.""" __slots__ = () @property def epoch_size(self): return self.examples // self.epochs class ExplicitParamBuilder(object): """Builds Params for an explicit benchmark run.""" def __init__(self, batch_size, epochs, examples, warmups=32, learn_phase=None): if not examples: examples = 1024 self.params = Params(batch_size, epochs, examples, warmups, None, None, None, learn_phase) def __call__(self, frontend, backend_name, network_names): if not network_names: raise click.UsageError('No networks specified; did you mean to add --blanket-run?') for network_name in network_names: params = self.params._replace(network_name=network_name, backend_name=backend_name) yield params class BlanketParamBuilder(object): """Builds Params for a blanket benchmark run.""" def __init__(self, epochs, learn_phase=None): self.params = Params(None, epochs, 256, 32, None, None, None, learn_phase=learn_phase) def __call__(self, frontend, backend_name, network_names): if network_names: raise click.UsageError( 'Networks specified with --blanket-run; choose one or the other') for network_name in frontend.network_names: for batch_size in frontend.blanket_batch_sizes: params = self.params._replace(network_name=network_name, batch_size=batch_size, backend_name=backend_name) yield params class ConsoleReporter(object): def __init__(self): self.configuration = {} def report(self, params, results, output): print(results) def complete(self): pass class ExplicitReporter(object): """Handles reports for an explicit benchmark run.""" def __init__(self, result_dir): self.result_dir = result_dir self.configuration = {} def report(self, params, results, output): try: os.makedirs(self.result_dir) except OSError as ex: if ex.errno != errno.EEXIST: click.echo(ex) return pprint.pprint(results) with open(os.path.join(self.result_dir, 'result.json'), 'w') as out: json.dump(results, out) if isinstance(output, np.ndarray): np.save(os.path.join(self.result_dir, 'result.npy'), output) def complete(self): pass class BlanketReporter(object): """Handles reports for a blanket benchmark run.""" def __init__(self, result_dir): self.result_dir = result_dir self.outputs = {} self.configuration = {} self.configuration['frontend'] = None self.configuration['backend'] = None self.configuration['train'] = False self.configuration['blanket_run'] = True def report(self, params, results, output): composite_str = ":".join( [params.backend_name, params.network_name, str(params.batch_size)]) self.outputs[composite_str] = {'results': dict(results)} def complete(self): self.outputs['run_configuration'] = self.configuration try: os.makedirs(self.result_dir) except OSError as ex: if ex.errno != errno.EEXIST: click.echo(ex) return with open( os.path.join( self.result_dir, '{}-{}-report.json'.format(self.configuration['backend'], self.configuration['frontend'])), 'w') as out: json.dump(self.outputs, out, sort_keys=True, indent=2) def _inner_run(reports, frontend, network_names, params, warmup, callgrind, print_stacktraces, tile=None): import plaidbench.cli as pb model = frontend.model(params) click.secho('Running {0} examples with {1}, batch size {2}, on backend {3}'.format( params.examples, params.network_name, params.batch_size, params.backend_name), fg='magenta') benchmark_results = {} model_output = None if params.examples % params.batch_size != 0: raise ValueError('The number of examples must be divisible by the batch size.') try: model.validate() model.setup() exec_stop_watch = StopWatch(callgrind) compile_stop_watch = StopWatch(callgrind) click.echo('Compiling network...', nl=False) compile_stop_watch.start_outer() model.compile() compile_stop_watch.stop() model_output, overrides = model.run(once=True) if tile: click.echo(' Saving Tile to {}...'.format(tile), nl=False) model.model.predict_function._invoker.save(tile) # Run a few more warmups -- this seems to improve the variability of the # benchmark results. if warmup: click.echo(' Warming up...', nl=False) model.run(warmup=True) click.echo(' Running...') exec_stop_watch.start_outer() _, overrides = model.run() exec_stop_watch.stop() # Record stopwatch times execution_duration = overrides.get('time', exec_stop_watch.elapsed()) exec_per_example = overrides.get('lastExecTimeInNS', execution_duration / params.examples) compile_duration = compile_stop_watch.elapsed() flops = overrides.get('flops', None) gflops = None if flops: gflops = (flops / 10.0**9 / exec_per_example) benchmark_results['GFLOP/s'] = gflops benchmark_results['flops'] = flops benchmark_results['compile_duration'] = compile_duration benchmark_results['duration_per_example'] = exec_per_example benchmark_results['tile_duration_per_example'] = exec_per_example benchmark_results['examples'] = params.examples benchmark_results['batch_size'] = params.batch_size benchmark_results['model'] = params.network_name benchmark_results['backend'] = params.backend_name resstr = 'Example finished, elapsed: {:.3f}s (compile), {:.3f}s (execution)\n'.format( compile_duration, execution_duration) if gflops: resstr += ', {:.2f} (GFLOP/s)'.format(gflops) click.secho(resstr, fg='cyan', bold=True) print( "-----------------------------------------------------------------------------------------" ) print("%-20s %-25s %-20s" % ("Network Name", "Inference Latency", "Time / FPS")) print( "-----------------------------------------------------------------------------------------" ) print("%-20s %-25s %-20s" % (params.network_name, "%.2f ms" % (exec_per_example * 1000), "%.2f ms / %.2f fps" % (exec_per_example * 1000, 1.0 / exec_per_example))) (golden_output, precision) = model.golden_output() (correct, max_error, max_abs_error, fail_ratio) = Runner._check_correctness(golden_output, model_output, precision.value) benchmark_results['correct'] = correct benchmark_results['max_error'] = float(max_error) benchmark_results['max_abs_error'] = float(max_abs_error) benchmark_results['fail_ratio'] = fail_ratio if correct: status = 'PASS' else: status = 'FAIL' click.secho('Correctness: {}, max_error: {}, max_abs_error: {}, fail_ratio: {}'.format( status, max_error, max_abs_error, fail_ratio), fg='green' if status == 'PASS' else 'red') except GoldenOutputNotAvailableError: click.echo('Correctness: untested. Could not find golden data to compare against.') except NoCorrectnessDesired: pass # Error handling except Exception as ex: # click.echo statements click.echo(ex) click.echo('Set --print-stacktraces to see the entire traceback') # Record error benchmark_results['exception'] = str(ex) if print_stacktraces: raise finally: reports.append((params, benchmark_results, model_output)) class Runner(object): """Runs an ML benchmark.""" def __init__(self, param_builder=ExplicitParamBuilder(1, 2, 1024), reporter=ConsoleReporter()): """Initializes the benchmark runner. Args: param_builder ((frontend, [str])->((Model, Params)...)): A callable that takes a frontend and a list of network names, and returns a sequence of (Model, Params) tuples describing the benchmarks to be run. reporter (Reporter): Handles benchmark reports. """ self.verbose = False self.result_dir = None self.callgrind = False self.param_builder = param_builder self.print_stacktraces = False self.reporter = reporter self.warmup = True self.timeout_secs = None self.tile = None def run(self, frontend, backend_name, network_names): """Runs a set of benchmarks. Args: frontend (Frontend): The interface to the ML frontend. network_names ([str]): The names of the networks to benchmark. """ self.reporter.configuration['frontend'] = frontend.name self.reporter.configuration['backend'] = backend_name self.reporter.configuration['example_size'] = self.param_builder.params.examples reports = [] try: for params in self.param_builder(frontend, backend_name, network_names): _inner_run( reports, frontend, network_names, params, self.warmup, self.callgrind, self.print_stacktraces, self.tile, ) except KeyboardInterrupt: click.secho("Aborting all runs...", fg="red") finally: # Reporter's gonna report for report in reports: self.reporter.report(*report) self.reporter.complete() return 0 @staticmethod def _check_correctness(base_output, cur_output, precision): # TODO: Parameterize relative and absolute error tolerance correct = np.allclose(base_output, cur_output, rtol=precision, atol=1e-06) # This duplicates allclose calculation for more detailed report relative_error = ((precision * np.absolute(base_output - cur_output)) / (1e-06 + precision *
np.absolute(cur_output)
numpy.absolute
""" plotting.py ----------- This module provides classes and functions for visualizing data and neural networks. By: <NAME>, Ph.D., 2018 """ # Compatibility imports from __future__ import absolute_import, division, print_function # 3rd party imports import numpy as np import tensorflow as tf from biosppy.signals import ecg import matplotlib.pyplot as plt from ipywidgets import interact, fixed from biosppy.signals.tools import filter_signal def plot_class_activation_map(model, index, time_series, labels, fs): """ Plots one univariate time series Parameters ---------- model : object Active model with live session index : int time series id time_series : np.array([m, length]) image array labels : np.array([m,]) a 1D array of length m training examples containing class labels fs : int sample frequency """ # Label lookup label_lookup = ['Normal Sinus Rhythm', 'Atrial Fibrillation', 'Other Rhythm'] # Get logits logits = model.sess.run( fetches=[model.graph.logits], feed_dict={ model.graph.x: time_series[[index]], model.graph.y: labels[[index]], model.graph.is_training: False, } ) # Get output conv conv = model.sess.run( fetches=[model.graph.net], feed_dict={ model.graph.x: time_series[[index]], model.graph.y: labels[[index]], model.graph.is_training: False, } ) # Get class activation map cam = model.sess.run(get_class_map(conv[0], np.squeeze(np.argmax(logits)))) # cam = ((cam - cam.min()) / (cam.max() - cam.min())) cam = cam[0, :, 0] cam_time = np.arange(conv[0].shape[1]) / (conv[0].shape[1] / 60) # Get non-zero-pad indices non_zero_index = np.where(time_series[index, :, 0] != 0)[0] # Get non-zero-pad waveform time_series_filt = time_series[index, non_zero_index, 0] time_series_filt_ts = np.arange(time_series_filt.shape[0]) * 1 / fs # Linear interpolation cam_time_intrp = np.arange(time_series[index].shape[0]) * 1 / fs cam_intrp = np.interp(cam_time_intrp, cam_time, cam) # Get non-zero-pad cam cam_filt = cam_intrp[non_zero_index] # Setup figure fig = plt.figure(figsize=(15, 10)) fig.subplots_adjust(wspace=0, hspace=0) ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=5) ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=5) # ax3 = plt.subplot2grid((3, 5), (2, 1), colspan=3) prob = model.sess.run(tf.nn.softmax(logits[0])) # Set plot title ax1.set_title( 'True Label: ' + label_lookup[np.squeeze(np.argmax(labels[index]))] + '\n' + 'Predicted Label: ' + label_lookup[np.squeeze(np.argmax(logits))] + '\n' + 'Normal Sinus Rhythm: ' + str(np.round(prob[0][0], 2)) + ' Atrial Fibrillation: ' + str(np.round(prob[0][1], 2)) + ' Other Rhythm: ' + str(np.round(prob[0][2], 2)), fontsize=20, y=1.03 ) # Plot image ax1.plot(time_series_filt_ts, time_series_filt, '-k', lw=1.5) # Axes labels ax1.set_ylabel('Normalized Amplitude', fontsize=22) ax1.set_xlim([0, time_series_filt_ts.max()]) ax1.tick_params(labelbottom='off') ax1.yaxis.set_tick_params(labelsize=16) # Plot CAM ax2.plot(time_series_filt_ts, cam_filt, '-k', lw=1.5) # Axes labels ax2.set_xlabel('Time, seconds', fontsize=22) ax2.set_ylabel('Class Activation Map', fontsize=22) ax2.set_xlim([0, time_series_filt_ts.max()]) # ax2.set_ylim([cam_filt.min()-0.05, cam_filt.max()+0.05]) ax2.set_ylim([-3, 35]) ax2.xaxis.set_tick_params(labelsize=16) ax2.yaxis.set_tick_params(labelsize=16) # # Get ECG object # ecg_object = ecg.ecg(time_series_filt, sampling_rate=fs, show=False) # # # Get waveform templates # templates, _ = _get_templates(time_series_filt, ecg_object['rpeaks'], 0.4, 0.6, fs) # # cam_filt, _, _ = filter_signal(signal=cam_filt, # ftype='FIR', # band='bandpass', # order=int(0.3 * fs), # frequency=[3, 100], # sampling_rate=fs) # # # Get cam templates # cam_templates, _ = _get_templates(cam_filt, ecg_object['rpeaks'], 0.4, 0.6, fs) # # ax3.plot(templates, '-', color=[0.7, 0.7, 0.7]) # ax3.plot(np.median(templates, axis=1), '-k') # # ax3.set_ylim([-0.5, 1.5]) # # ax4 = ax3.twinx() # ax4.plot(cam_templates, '-r', lw=0.25, alpha=0.5) # ax4.plot(np.mean(cam_templates, axis=1), '-r') # # ax4.set_ylim([np.median(cam_templates, axis=1).min()-0.02, np.median(cam_templates, axis=1).max()+0.02]) plt.show() def _get_templates(waveform, rpeaks, before, after, fs): # convert delimiters to samples before = int(before * fs) after = int(after * fs) # Sort R-Peaks in ascending order rpeaks = np.sort(rpeaks) # Get number of sample points in waveform length = len(waveform) # Create empty list for templates templates = [] # Create empty list for new rpeaks that match templates dimension rpeaks_new = np.empty(0, dtype=int) # Loop through R-Peaks for rpeak in rpeaks: # Before R-Peak a = rpeak - before if a < 0: continue # After R-Peak b = rpeak + after if b > length: break # Append template list templates.append(waveform[a:b]) # Append new rpeaks list rpeaks_new =
np.append(rpeaks_new, rpeak)
numpy.append
"""Module for calibrating the double spike composition.""" import numpy as np from scipy.optimize import minimize from .isodata import normalise_composition, realproptoratioprop, ratioproptorealprop from .errors import calcratiocov def spike_calibration( isodata, spike_measurement, mixture_measurement, isoinv=None, standard=None ): """A simple least squares routine for calibrating a double spike from spike-standard mixtures. Args: isodata: object of class IsoData, e.g. IsoData('Fe') spike_measurement (array): a matrix of beam intensities for direct measurements of the spike. Columns correspond to the different isotopes e.g. for Fe, first column is 54Fe, second is 56Fe, third is 57Fe, fourth is 58Fe. The matrix should have the same number of columns as there are isotopes available. mixture_measurement (array): a matrix of beam intensities for the measurements of spike-standarard mixtures. isoinv (array): the isotopes to use in the fitting, e.g [54, 56, 57, 58]. If None this is read from isodata. standard (array): standard composition. If None this is read from isodata. Returns: This routine estimates the spike composition given a direct measurement of the spike and measurements of spike-standard mixtures. The routine minimises the chi-squared misfit between the measurements and model, where measurements are weighted according to the expected covariance given in isodata.errormodel['measured']. Output is returned as a dictionary with the following fields: calibrated_spike: the estimated spike composition prop_mixture: the proportion of spike in the spike-sample mixtures beta_mixture: the fractionation factors for the mixture measurements beta_spike: the fractionation factors for the spike measurements misfit: the chi-squared misfit df: the degrees of freedom for the chi-squared statistic """ if isoinv is None: if isodata.isoinv is None: raise Exception("Inversion isotopes not specified.") isoinv = isodata.isoinv if standard is None: standard = isodata.standard # make sure working with numpy arrays spike_measurement = np.array(spike_measurement) mixture_measurement = np.array(mixture_measurement) # make sure working with two dimensional arrays if mixture_measurement.ndim == 1: mixture_measurement = mixture_measurement[np.newaxis, :] if spike_measurement.ndim == 1: spike_measurement = spike_measurement[np.newaxis, :] # normalise so have compositional vectors spike_measurement = normalise_composition(spike_measurement) mixture_measurement = normalise_composition(mixture_measurement) # choose isotope to denominator by using largest isotope in spike isoinv = isodata.isoindex(isoinv) ix = np.argmax(spike_measurement[0, isoinv]) deno = isoinv[ix] nume = isoinv[isoinv != deno] isoinv = np.concatenate((np.array([deno]), nume)) invrat = isodata.invrat(isoinv) An = isodata.ratio(standard, deno) At = isodata.ratio(spike_measurement, deno) Am = isodata.ratio(mixture_measurement, deno) AP = np.log(isodata.ratio(isodata.mass, deno)) n_m = mixture_measurement.shape[0] n_t = spike_measurement.shape[0] emod_mixture = isodata.errormodel["measured"] VAms = [ calcratiocov(mixture_measurement[i, :], emod_mixture, deno) for i in range(n_m) ] emod_spike = isodata.errormodel["measured"] VAts = [calcratiocov(spike_measurement[i, :], emod_spike, deno) for i in range(n_t)] n = An[invrat] P = AP[invrat] t = At[:, invrat] m = Am[:, invrat] Vms = [V[np.ix_(invrat, invrat)] for V in VAms] Vts = [V[np.ix_(invrat, invrat)] for V in VAts] Sms = [np.linalg.inv(V) for V in Vms] Sts = [np.linalg.inv(V) for V in Vts] # form initial guess of model parameters. guess a 50-50 mix, with no fractionation prop0 = 0.5 lambda0 = realproptoratioprop(prop0, At[0, :], An) * np.ones(m.shape[0]) beta0 = 0.0 * np.ones(m.shape[0]) betaT0 = 0.0 * np.ones(t.shape[0]) T0 = t[0, :] z0 = np.concatenate((lambda0, beta0, betaT0, T0)) df = (t.shape[0] + m.shape[0]) * len(invrat) - len(z0) # degrees of freedom res = minimize( objective, z0, args=(m, t, P, n, Sms, Sts, n_m, n_t), jac=True, tol=1e-16, options={"disp": False, "gtol": 1e-8, "eps": 1e-12}, ) z = res.x misfit = res.fun lambda_, beta, betat, T = z_to_params(z, P, n_m, n_t) # Reconstruct spike vector calibrated_spike = np.zeros_like(spike_measurement[0, :]) calibrated_spike[deno] = 1.0 calibrated_spike[nume] = T # For isotopes that were not used in inversion, work out an expectation based on known betat isonum = np.arange(isodata.nisos) unused = np.array(list(set(isonum).difference(set(isoinv)))) if len(unused) > 0: expected_spike_measurement = np.mean(spike_measurement, axis=0) expected_betat = np.mean(betat) expected_spike = expected_spike_measurement * np.exp( -np.log(isodata.mass) * expected_betat ) expected_spike = normalise_composition(expected_spike) expected_unused = expected_spike[unused] / expected_spike[deno] calibrated_spike[unused] = expected_unused calibrated_spike = normalise_composition(calibrated_spike) AT = isodata.ratio(calibrated_spike, deno) prop = [ratioproptorealprop(lam, AT, An) for lam in lambda_] out = { "calibrated_spike": calibrated_spike, "prop_mixture": prop, "beta_mixture": beta, "beta_spike": betat, "misfit": misfit, "df": df, } return out def objective(z, m, t, P, n, Wm, Wt, n_m, n_t): """The objective function and its Jacobian for the chi-squared minimization.""" me, te = mt_expected(z, P, n, n_m, n_t) res_m = m - me res_t = t - te obs = [] for i in range(res_m.shape[0]): rm = res_m[i, :][np.newaxis, :] obs.append((rm @ Wm[i] @ rm.T)[0][0]) for i in range(res_t.shape[0]): rt = res_t[i, :][np.newaxis, :] obs.append((rt @ Wt[i] @ rt.T)[0][0]) ob = sum(obs) dmdz, dtdz = dmt_expected_dz(z, P, n, n_m, n_t) dob_dzs = [] for i in range(res_m.shape[0]): rm = res_m[i, :][np.newaxis, :] dmidz = dmdz[i, :, :] dob_dzs.append(-(2 * rm @ Wm[i] @ dmidz)[0]) for i in range(res_t.shape[0]): rt = res_t[i, :][np.newaxis, :] dtidz = dtdz[i, :, :] dob_dzs.append(-(2 * rt @ Wt[i] @ dtidz)[0]) dob_dz =
np.vstack(dob_dzs)
numpy.vstack
import gym import os import torch import stable_baselines3 from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback, EvalCallback from stable_baselines3 import SAC from particle import ParticleEnv, get_particle_env from gym.wrappers import TimeLimit import torch as th import numpy as np import matplotlib.pyplot as plt import pickle as pkl from collections import defaultdict, Counter import h5py from tqdm import tqdm max_episode_steps = 100 def train(total_timesteps=int(5e4)): eval_env = TimeLimit(ParticleEnv(), max_episode_steps) env = TimeLimit(ParticleEnv(), max_episode_steps) eval_callback = EvalCallback(eval_env, best_model_save_path='./logs/best_model', log_path='./logs/results', eval_freq=5000) checkpoint_callback = CheckpointCallback(save_freq=5000, save_path='./logs/') callback = CallbackList([checkpoint_callback, eval_callback]) model = SAC('MlpPolicy', env, tensorboard_log="./log", batch_size=1024) model.learn(total_timesteps, callback=callback) return model def collect_offline_data_from_model(model): replay_buffer = model.replay_buffer unscale_action = model.policy.unscale_action pos = replay_buffer.pos # SAC of sb3 will scale action automatically, so un-scale it manually. samples = {'observations': replay_buffer.observations[:pos].reshape(pos, -1), 'actions': unscale_action(replay_buffer.actions[:pos].reshape(pos, -1)), 'rewards': replay_buffer.rewards[:pos].reshape(pos), 'terminals': replay_buffer.dones[:pos].reshape(pos), 'timeouts': replay_buffer.timeouts[:pos].reshape(pos)} return samples def collect_offline_data(num=int(2e5), policy_path=None): env = TimeLimit(ParticleEnv(), max_episode_steps) episode_rewards = [] episode_reward = 0 obs = env.reset() samples = defaultdict(list) model = None if policy_path is not None: model = SAC.load(policy_path) for t in tqdm(range(num)): if model is None: action = env.action_space.sample() else: action, state = model.predict(obs, deterministic=True) next_obs, reward, done, _ = env.step(action) episode_reward += reward samples['observations'].append(obs) samples['actions'].append(action) samples['rewards'].append(reward) samples['terminals'].append(float(done)) samples['timeouts'].append(float(0)) if done: obs = env.reset() episode_rewards.append(episode_reward) episode_reward = 0 else: obs = next_obs np_samples = {} for key in samples.keys(): np_samples[key] = np.array(samples[key]) return np_samples, min(episode_rewards), max(episode_rewards) def collect_multi_offline_data(num=int(2e5), policy_path_dir=None, end_policy_epoch=40000): policy_paths = os.listdir(policy_path_dir) policy_paths = filter(lambda x: x.endswith("zip"), policy_paths) policy_paths = list(filter(lambda x: int(x.split("_")[2]) <= end_policy_epoch, policy_paths)) num_pre_policy = int((num / len(policy_paths) / max_episode_steps) + 1) * max_episode_steps episode_rewards = [] samples = defaultdict(list) for policy_name in tqdm(policy_paths): path = os.path.join(policy_path_dir, policy_name) policy_samples, policy_min, policy_max = collect_offline_data(num_pre_policy, path) episode_rewards.extend([policy_min, policy_max]) for key in policy_samples.keys(): samples[key].append(policy_samples[key]) np_samples = {} for key in samples.keys(): np_samples[key] =
np.concatenate(samples[key])
numpy.concatenate
# Copyright 2019-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for various properties of covariance matrices as well as fidelity calculations for Gaussian states. """ # pylint: disable=too-many-arguments import numpy as np from scipy.linalg import sqrtm from ..symplectic import sympmat def is_valid_cov(cov, hbar=2, rtol=1e-05, atol=1e-08): r"""Checks if the covariance matrix is a valid quantum covariance matrix. Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (bool): whether the given covariance matrix is a valid covariance matrix """ (n, m) = cov.shape if n != m: # raise ValueError("The input matrix must be square") return False if not np.allclose(cov, np.transpose(cov), rtol=rtol, atol=atol): # raise ValueError("The input matrix is not symmetric") return False if n % 2 != 0: # raise ValueError("The input matrix is of even dimension") return False nmodes = n // 2 vals = np.linalg.eigvalsh(cov + 0.5j * hbar * sympmat(nmodes)) vals[np.abs(vals) < atol] = 0.0 if np.all(vals >= 0): # raise ValueError("The input matrix violates the uncertainty relation") return True return False def is_pure_cov(cov, hbar=2, rtol=1e-05, atol=1e-08): r"""Checks if the covariance matrix is a valid quantum covariance matrix that corresponds to a quantum pure state Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (bool): whether the given covariance matrix corresponds to a pure state """ if is_valid_cov(cov, hbar=hbar, rtol=rtol, atol=atol): purity = 1 / np.sqrt(np.linalg.det(2 * cov / hbar)) if np.allclose(purity, 1.0, rtol=rtol, atol=atol): return True return False def is_classical_cov(cov, hbar=2, atol=1e-08): r"""Checks if the covariance matrix can be efficiently sampled. Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (bool): whether the given covariance matrix corresponds to a classical state """ if is_valid_cov(cov, hbar=hbar, atol=atol): (n, _) = cov.shape vals = np.linalg.eigvalsh(cov - 0.5 * hbar * np.identity(n)) vals[np.abs(vals) < atol] = 0.0 if np.all(vals >= 0): return True return False def fidelity(mu1, cov1, mu2, cov2, hbar=2, rtol=1e-05, atol=1e-08): r"""Calculates the fidelity between two Gaussian quantum states. For two pure states :math:`|\psi_1 \rangle, \ |\psi_2 \rangle` the fidelity is given by :math:`|\langle \psi_1|\psi_2 \rangle|^2` Note that if the covariance matrices correspond to pure states this function reduces to the modulus square of the overlap of their state vectors. For the derivation see `'Quantum Fidelity for Arbitrary Gaussian States', Banchi et al. <10.1103/PhysRevLett.115.260501>`_. The actual implementation used here corresponds to the *square* of Eq. 96 of `'Gaussian states and operations - a quick reference', Brask <https://arxiv.org/abs/2102.05748>`_. Args: mu1 (array): vector of means of the first state cov1 (array): covariance matrix of the first state mu2 (array): vector of means of the second state cov2 (array): covariance matrix of the second state hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (float): value of the fidelity between the two states """ n0, n1 = cov1.shape m0, m1 = cov2.shape (l0,) = mu1.shape (l1,) = mu1.shape if not n0 == n1 == m0 == m1 == l0 == l1: raise ValueError("The inputs have incompatible shapes") # We first convert all the inputs to quantities where hbar = 1 sigma1 = cov1 / hbar sigma2 = cov2 / hbar deltar = (mu1 - mu2) / np.sqrt(hbar) omega = sympmat(n0 // 2) # The symplectic matrix sigma = sigma1 + sigma2 sigma_inv = np.linalg.inv(sigma) vaux = omega.T @ sigma_inv @ (0.25 * omega + sigma2 @ omega @ sigma1) sqrtm_arg = np.identity(n0) + 0.25 * np.linalg.inv(vaux @ omega @ vaux @ omega) # The sqrtm function has issues with matrices that are close to zero, hence we branch if np.allclose(sqrtm_arg, 0, rtol=rtol, atol=atol): mat_sqrtm = np.zeros_like(sqrtm_arg) else: mat_sqrtm = sqrtm(sqrtm_arg) det_arg = 2 * (mat_sqrtm + np.identity(n0)) @ vaux f = np.sqrt(np.linalg.det(sigma_inv) *
np.linalg.det(det_arg)
numpy.linalg.det
import numpy as np from scipy.optimize import minimize from scipy.optimize import Bounds __all__ = [ "MAD", "SemiDeviation", "VaR_Hist", "CVaR_Hist", "WR", "LPM", "Entropic_RM", "EVaR_Hist", "MDD_Abs", "ADD_Abs", "DaR_Abs", "CDaR_Abs", "EDaR_Abs", "UCI_Abs", "MDD_Rel", "ADD_Rel", "DaR_Rel", "CDaR_Rel", "EDaR_Rel", "UCI_Rel", "Sharpe_Risk", "Sharpe", "Risk_Contribution", ] def MAD(X): r""" Calculate the Mean Absolute Deviation (MAD) of a returns series. .. math:: \text{MAD}(X) = \frac{1}{T}\sum_{t=1}^{T} | X_{t} - \mathbb{E}(X_{t}) | Parameters ---------- X : 1d-array Returns series, must have Tx1 size. Returns ------- value : float MAD of a returns series. Raises ------ ValueError When the value cannot be calculated. Examples -------- Examples should be written in doctest format, and should illustrate how to use the function. >>> print([i for i in example_generator(4)]) [0, 1, 2, 3] """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") value = np.mean(np.absolute(a - np.mean(a, axis=0)), axis=0) value = np.array(value).item() return value def SemiDeviation(X): r""" Calculate the Semi Deviation of a returns series. .. math:: \text{SemiDev}(X) = \left [ \frac{1}{T-1}\sum_{t=1}^{T} (X_{t} - \mathbb{E}(X_{t}))^2 \right ]^{1/2} Parameters ---------- X : 1d-array Returns series, must have Tx1 size. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float Semi Deviation of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") mu = np.mean(a, axis=0) value = mu - a n = value.shape[0] value = np.sum(np.power(value[np.where(value >= 0)], 2)) / (n - 1) value = np.power(value, 0.5).item() return value def VaR_Hist(X, alpha=0.05): r""" Calculate the Value at Risk (VaR) of a returns series. .. math:: \text{VaR}_{\alpha}(X) = -\inf_{t \in (0,T)} \left \{ X_{t} \in \mathbb{R}: F_{X}(X_{t})>\alpha \right \} Parameters ---------- X : 1d-array Returns series, must have Tx1 size. alpha : float, optional Significance level of VaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float VaR of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") sorted_a = np.sort(a, axis=0) index = int(np.ceil(alpha * len(sorted_a)) - 1) value = -sorted_a[index] value = np.array(value).item() return value def CVaR_Hist(X, alpha=0.05): r""" Calculate the Conditional Value at Risk (CVaR) of a returns series. .. math:: \text{CVaR}_{\alpha}(X) = \text{VaR}_{\alpha}(X) + \frac{1}{\alpha T} \sum_{t=1}^{T} \max(-X_{t} - \text{VaR}_{\alpha}(X), 0) Parameters ---------- X : 1d-array Returns series, must have Tx1 size. alpha : float, optional Significance level of CVaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float CVaR of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") sorted_a = np.sort(a, axis=0) index = int(np.ceil(alpha * len(sorted_a)) - 1) sum_var = 0 for i in range(0, index + 1): sum_var = sum_var + sorted_a[i] - sorted_a[index] value = -sorted_a[index] - sum_var / (alpha * len(sorted_a)) value = np.array(value).item() return value def WR(X): r""" Calculate the Worst Realization (WR) or Worst Scenario of a returns series. .. math:: \text{WR}(X) = \max(-X) Parameters ---------- X : 1d-array Returns series, must have Tx1 size. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float WR of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") sorted_a = np.sort(a, axis=0) value = -sorted_a[0] value = np.array(value).item() return value def LPM(X, MAR=0, p=1): r""" Calculate the First or Second Lower Partial Moment of a returns series. .. math:: \text{LPM}(X, \text{MAR}, 1) &= \frac{1}{T}\sum_{t=1}^{T} \max(\text{MAR} - X_{t}, 0) \\ \text{LPM}(X, \text{MAR}, 2) &= \left [ \frac{1}{T-1}\sum_{t=1}^{T} \max(\text{MAR} - X_{t}, 0)^{2} \right ]^{\frac{1}{2}} \\ Where: :math:`\text{MAR}` is the minimum acceptable return. :math:`p` is the order of the :math:`\text{LPM}`. Parameters ---------- X : 1d-array Returns series, must have Tx1 size. MAR : float, optional Minimum acceptable return. The default is 0. p : float, optional can be {1,2} order of the :math:`\text{LPM}`. The default is 1. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float p-th Lower Partial Moment of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") if p not in [1, 2]: raise ValueError("p can only be 1 or 2") value = MAR - a if p == 2: n = value.shape[0] - 1 else: n = value.shape[0] value = np.sum(np.power(value[np.where(value >= 0)], p)) / n value = np.power(value, 1 / p).item() return value def Entropic_RM(X, z=1, alpha=0.05): r""" Calculate the Entropic Risk Measure (ERM) of a returns series. .. math:: \text{ERM}_{\alpha}(X) = z\ln \left (\frac{M_X(z^{-1})}{\alpha} \right ) Where: :math:`M_X(z)` is the moment generating function of X. Parameters ---------- X : 1d-array Returns series, must have Tx1 size. theta : float, optional Risk aversion parameter, must be greater than zero. The default is 1. alpha : float, optional Significance level of EVaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float ERM of a returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") value = np.mean(np.exp(-1 / z * a), axis=0) value = z * (np.log(value) + np.log(1 / alpha)) value = np.array(value).item() return value def _Entropic_RM(z, X, alpha=0.05): a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") value = np.mean(np.exp(-1 / z * a), axis=0) value = z * (np.log(value) + np.log(1 / alpha)) value = np.array(value).item() return value def EVaR_Hist(X, alpha=0.05): r""" Calculate the Entropic Value at Risk (EVaR) of a returns series. .. math:: \text{EVaR}_{\alpha}(X) = \inf_{z>0} \left \{ z \ln \left (\frac{M_X(z^{-1})}{\alpha} \right ) \right \} Where: :math:`M_X(t)` is the moment generating function of X. Parameters ---------- X : 1d-array Returns series, must have Tx1 size. alpha : float, optional Significance level of EVaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- (value, z) : tuple EVaR of a returns series and value of z that minimize EVaR. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") bnd = Bounds([1e-12], [np.inf]) result = minimize( _Entropic_RM, [1], args=(X, alpha), method="SLSQP", bounds=bnd, tol=1e-12 ) t = result.x t = t.item() value = _Entropic_RM(t, X, alpha) return (value, t) def MDD_Abs(X): r""" Calculate the Maximum Drawdown (MDD) of a returns series using uncumpounded cumulative returns. .. math:: \text{MDD}(X) = \max_{j \in (0,T)} \left [\max_{t \in (0,j)} \left ( \sum_{i=0}^{t}X_{i} \right ) - \sum_{i=0}^{j}X_{i} \right ] Parameters ---------- X : 1d-array Returns series, must have Tx1 size. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float MDD of an uncumpounded cumulative returns. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") prices = np.insert(np.array(a), 0, 1, axis=0) NAV = np.cumsum(np.array(prices), axis=0) value = 0 peak = -99999 for i in NAV: if i > peak: peak = i DD = peak - i if DD > value: value = DD value = np.array(value).item() return value def ADD_Abs(X): r""" Calculate the Average Drawdown (ADD) of a returns series using uncumpounded cumulative returns. .. math:: \text{ADD}(X) = \frac{1}{T}\sum_{j=0}^{T}\left [ \max_{t \in (0,j)} \left ( \sum_{i=0}^{t}X_{i} \right ) - \sum_{i=0}^{j}X_{i} \right ] Parameters ---------- X : 1d-array Returns series, must have Tx1 size. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float ADD of an uncumpounded cumulative returns. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") prices = np.insert(np.array(a), 0, 1, axis=0) NAV = np.cumsum(np.array(prices), axis=0) value = 0 peak = -99999 n = 0 for i in NAV: if i > peak: peak = i DD = peak - i if DD > 0: value += DD n += 1 if n == 0: value = 0 else: value = value / (n - 1) value = np.array(value).item() return value def DaR_Abs(X, alpha=0.05): r""" Calculate the Drawdown at Risk (DaR) of a returns series using uncumpounded cumulative returns. .. math:: \text{DaR}_{\alpha}(X) & = \max_{j \in (0,T)} \left \{ \text{DD}(X,j) \in \mathbb{R}: F_{\text{DD}} \left ( \text{DD}(X,j) \right )< 1-\alpha \right \} \\ \text{DD}(X,j) & = \max_{t \in (0,j)} \left ( \sum_{i=0}^{t}X_{i} \right )- \sum_{i=0}^{j}X_{i} Parameters ---------- X : 1d-array Returns series, must have Tx1 size.. alpha : float, optional Significance level of DaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float DaR of an uncumpounded cumulative returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") prices = np.insert(np.array(a), 0, 1, axis=0) NAV = np.cumsum(np.array(prices), axis=0) DD = [] peak = -99999 for i in NAV: if i > peak: peak = i DD.append(-(peak - i)) del DD[0] sorted_DD = np.sort(np.array(DD), axis=0) index = int(np.ceil(alpha * len(sorted_DD)) - 1) value = -sorted_DD[index] value = np.array(value).item() return value def CDaR_Abs(X, alpha=0.05): r""" Calculate the Conditional Drawdown at Risk (CDaR) of a returns series using uncumpounded cumulative returns. .. math:: \text{CDaR}_{\alpha}(X) = \text{DaR}_{\alpha}(X) + \frac{1}{\alpha T} \sum_{j=0}^{T} \max \left [ \max_{t \in (0,j)} \left ( \sum_{i=0}^{t}X_{i} \right ) - \sum_{i=0}^{j}X_{i} - \text{DaR}_{\alpha}(X), 0 \right ] Where: :math:`\text{DaR}_{\alpha}` is the Drawdown at Risk of an uncumpound cumulated return series :math:`X`. Parameters ---------- X : 1d-array Returns series, must have Tx1 size.. alpha : float, optional Significance level of CDaR. The default is 0.05. Raises ------ ValueError When the value cannot be calculated. Returns ------- value : float CDaR of an uncumpounded cumulative returns series. """ a = np.array(X, ndmin=2) if a.shape[0] == 1 and a.shape[1] > 1: a = a.T if a.shape[0] > 1 and a.shape[1] > 1: raise ValueError("returns must have Tx1 size") prices = np.insert(
np.array(a)
numpy.array
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import os import sys import six import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.fluid as fluid from paddle.fluid.optimizer import Adam import paddle.fluid.framework as framework from test_imperative_base import new_program_scope from paddle.optimizer.lr import LRScheduler BATCH_SIZE = 16 BATCH_NUM = 4 EPOCH_NUM = 4 SEED = 10 IMAGE_SIZE = 784 CLASS_NUM = 10 if six.PY2: LARGE_PARAM = 2**2 else: LARGE_PARAM = 2**26 def random_batch_reader(): def _get_random_inputs_and_labels(): np.random.seed(SEED) image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32') label = np.random.randint(0, CLASS_NUM - 1, ( BATCH_SIZE, 1, )).astype('int64') return image, label def __reader__(): for _ in range(BATCH_NUM): batch_image, batch_label = _get_random_inputs_and_labels() batch_image = paddle.to_tensor(batch_image) batch_label = paddle.to_tensor(batch_label) yield batch_image, batch_label return __reader__ class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM) def forward(self, x): return self._linear(x) class LayerWithLargeParameters(paddle.nn.Layer): def __init__(self): super(LayerWithLargeParameters, self).__init__() self._l = paddle.nn.Linear(10, LARGE_PARAM) def forward(self, x): y = self._l(x) return y def train(layer, loader, loss_fn, opt): for epoch_id in range(EPOCH_NUM): for batch_id, (image, label) in enumerate(loader()): out = layer(image) loss = loss_fn(out, label) loss.backward() opt.step() opt.clear_grad() class TestSaveLoadLargeParameters(unittest.TestCase): def setUp(self): pass def test_large_parameters_paddle_save(self): # enable dygraph mode paddle.disable_static() # create network layer = LayerWithLargeParameters() save_dict = layer.state_dict() path = os.path.join("test_paddle_save_load_large_param_save", "layer.pdparams") if six.PY2: protocol = 2 else: protocol = 4 paddle.save(save_dict, path, protocol=protocol) dict_load = paddle.load(path) # compare results before and after saving for key, value in save_dict.items(): self.assertTrue( np.array_equal(dict_load[key].numpy(), value.numpy())) class TestSaveLoadPickle(unittest.TestCase): def test_pickle_protocol(self): # enable dygraph mode paddle.disable_static() # create network layer = LinearNet() save_dict = layer.state_dict() path = os.path.join("test_paddle_save_load_pickle_protocol", "layer.pdparams") with self.assertRaises(ValueError): paddle.save(save_dict, path, 2.0) with self.assertRaises(ValueError): paddle.save(save_dict, path, 1) with self.assertRaises(ValueError): paddle.save(save_dict, path, 5) protocols = [2, ] if sys.version_info.major >= 3 and sys.version_info.minor >= 4: protocols += [3, 4] for protocol in protocols: paddle.save(save_dict, path, pickle_protocol=protocol) dict_load = paddle.load(path) # compare results before and after saving for key, value in save_dict.items(): self.assertTrue( np.array_equal(dict_load[key].numpy(), value.numpy())) class TestSaveLoadAny(unittest.TestCase): def set_zero(self, prog, place, scope=None): if scope is None: scope = fluid.global_scope() for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: ten = scope.find_var(var.name).get_tensor() if ten is not None: ten.set(np.zeros_like(np.array(ten)), place) new_t = np.array(scope.find_var(var.name).get_tensor()) self.assertTrue(np.sum(np.abs(new_t)) == 0) def replace_static_save(self, program, model_path, pickle_protocol=2): with self.assertRaises(TypeError): program.state_dict(1) with self.assertRaises(TypeError): program.state_dict(scope=1) with self.assertRaises(ValueError): program.state_dict('x') state_dict_param = program.state_dict('param') paddle.save(state_dict_param, model_path + '.pdparams') state_dict_opt = program.state_dict('opt') paddle.save(state_dict_opt, model_path + '.pdopt') state_dict_all = program.state_dict() paddle.save(state_dict_opt, model_path + '.pdall') def replace_static_load(self, program, model_path): with self.assertRaises(TypeError): program.set_state_dict(1) state_dict_param = paddle.load(model_path + '.pdparams') state_dict_param['fake_var_name.@@'] = np.random.randn(1, 2) state_dict_param['static_x'] = 'UserWarning' program.set_state_dict(state_dict_param) state_dict_param['static_x'] = np.random.randn(1, 2) program.set_state_dict(state_dict_param) program.set_state_dict(state_dict_param) state_dict_opt = paddle.load(model_path + '.pdopt') program.set_state_dict(state_dict_opt) def test_replace_static_save_load(self): paddle.enable_static() with new_program_scope(): x = paddle.static.data( name="static_x", shape=[None, IMAGE_SIZE], dtype='float32') z = paddle.static.nn.fc(x, 10) z = paddle.static.nn.fc(z, 10, bias_attr=False) loss = fluid.layers.reduce_mean(z) opt = Adam(learning_rate=1e-3) opt.minimize(loss) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) prog = paddle.static.default_main_program() fake_inputs = np.random.randn(2, IMAGE_SIZE).astype('float32') exe.run(prog, feed={'static_x': fake_inputs}, fetch_list=[loss]) base_map = {} for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_map[var.name] = t path = os.path.join("test_replace_static_save_load", "model") # paddle.save, legacy paddle.fluid.load self.replace_static_save(prog, path) self.set_zero(prog, place) paddle.fluid.io.load(prog, path) for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, np.array(base_t))) # legacy paddle.fluid.save, paddle.load paddle.fluid.io.save(prog, path) self.set_zero(prog, place) self.replace_static_load(prog, path) for var in prog.list_vars(): if isinstance(var, framework.Parameter) or var.persistable: new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, base_t)) # test for return tensor path_vars = 'test_replace_save_load_return_tensor_static/model' for var in prog.list_vars(): if var.persistable: tensor = var.get_value(fluid.global_scope()) paddle.save(tensor, os.path.join(path_vars, var.name)) with self.assertRaises(TypeError): var.get_value('fluid.global_scope()') with self.assertRaises(ValueError): x.get_value() with self.assertRaises(TypeError): x.set_value('1') fake_data = np.zeros([3, 2, 1, 2, 3]) with self.assertRaises(TypeError): x.set_value(fake_data, '1') with self.assertRaises(ValueError): x.set_value(fake_data) with self.assertRaises(ValueError): var.set_value(fake_data) # set var to zero self.set_zero(prog, place) for var in prog.list_vars(): if var.persistable: tensor = paddle.load( os.path.join(path_vars, var.name), return_numpy=False) var.set_value(tensor) new_t = np.array(fluid.global_scope().find_var(var.name) .get_tensor()) base_t = base_map[var.name] self.assertTrue(np.array_equal(new_t, base_t)) def test_paddle_save_load_v2(self): paddle.disable_static() class StepDecay(LRScheduler): def __init__(self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False): self.step_size = step_size self.gamma = gamma super(StepDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): i = self.last_epoch // self.step_size return self.base_lr * (self.gamma**i) layer = LinearNet() inps = paddle.randn([2, IMAGE_SIZE]) adam = opt.Adam( learning_rate=StepDecay(0.1, 1), parameters=layer.parameters()) y = layer(inps) y.mean().backward() adam.step() state_dict = adam.state_dict() path = 'paddle_save_load_v2/model.pdparams' with self.assertRaises(TypeError): paddle.save(state_dict, path, use_binary_format='False') # legacy paddle.save, paddle.load paddle.framework.io._legacy_save(state_dict, path) load_dict_tensor = paddle.load(path, return_numpy=False) # legacy paddle.load, paddle.save paddle.save(state_dict, path) load_dict_np = paddle.framework.io._legacy_load(path) for k, v in state_dict.items(): if isinstance(v, dict): self.assertTrue(v == load_dict_tensor[k]) else: self.assertTrue( np.array_equal(v.numpy(), load_dict_tensor[k].numpy())) if not np.array_equal(v.numpy(), load_dict_np[k]): print(v.numpy()) print(load_dict_np[k]) self.assertTrue(np.array_equal(v.numpy(), load_dict_np[k])) def test_single_pickle_var_dygraph(self): # enable dygraph mode paddle.disable_static() layer = LinearNet() path = 'paddle_save_load_v2/var_dygraph' tensor = layer._linear.weight with self.assertRaises(ValueError): paddle.save(tensor, path, pickle_protocol='3') with self.assertRaises(ValueError): paddle.save(tensor, path, pickle_protocol=5) paddle.save(tensor, path) t_dygraph = paddle.load(path) np_dygraph = paddle.load(path, return_numpy=True) self.assertTrue(isinstance(t_dygraph, paddle.fluid.core.VarBase)) self.assertTrue(np.array_equal(tensor.numpy(), np_dygraph)) self.assertTrue(np.array_equal(tensor.numpy(), t_dygraph.numpy())) paddle.enable_static() lod_static = paddle.load(path) np_static = paddle.load(path, return_numpy=True) self.assertTrue(isinstance(lod_static, paddle.fluid.core.LoDTensor)) self.assertTrue(np.array_equal(tensor.numpy(), np_static)) self.assertTrue(np.array_equal(tensor.numpy(), np.array(lod_static))) def test_single_pickle_var_static(self): # enable static mode paddle.enable_static() with new_program_scope(): # create network x = paddle.static.data( name="x", shape=[None, IMAGE_SIZE], dtype='float32') z = paddle.static.nn.fc(x, 128) loss = fluid.layers.reduce_mean(z) place = fluid.CPUPlace( ) if not paddle.fluid.core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) prog = paddle.static.default_main_program() for var in prog.list_vars(): if list(var.shape) == [IMAGE_SIZE, 128]: tensor = var.get_value() break scope = fluid.global_scope() origin_tensor = np.array(tensor) path = 'test_single_pickle_var_static/var' paddle.save(tensor, path) self.set_zero(prog, place, scope) # static load lod_static = paddle.load(path) np_static = paddle.load(path, return_numpy=True) # set_tensor(np.ndarray) var.set_value(np_static, scope) self.assertTrue(np.array_equal(origin_tensor, np.array(tensor))) # set_tensor(LoDTensor) self.set_zero(prog, place, scope) var.set_value(lod_static, scope) self.assertTrue(np.array_equal(origin_tensor, np.array(tensor))) # enable dygraph mode paddle.disable_static() var_dygraph = paddle.load(path) np_dygraph = paddle.load(path, return_numpy=True) self.assertTrue(np.array_equal(np.array(tensor), np_dygraph)) self.assertTrue(np.array_equal(np.array(tensor), var_dygraph.numpy())) def test_dygraph_save_static_load(self): inps = np.random.randn(1, IMAGE_SIZE).astype('float32') path = 'test_dygraph_save_static_load/dy-static.pdparams' paddle.disable_static() with paddle.utils.unique_name.guard(): layer = LinearNet() state_dict_dy = layer.state_dict() paddle.save(state_dict_dy, path) paddle.enable_static() with new_program_scope(): layer = LinearNet() data = paddle.static.data( name='x_static_save', shape=(None, IMAGE_SIZE), dtype='float32') y_static = layer(data) program = paddle.static.default_main_program() place = fluid.CPUPlace( ) if not paddle.fluid.core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(paddle.static.default_startup_program()) state_dict = paddle.load(path, keep_name_table=True) program.set_state_dict(state_dict) state_dict_param = program.state_dict("param") for name, tensor in state_dict_dy.items(): self.assertTrue( np.array_equal(tensor.numpy(), np.array(state_dict_param[tensor.name]))) def test_save_load_complex_object_dygraph_save(self): paddle.disable_static() layer = paddle.nn.Linear(3, 4) state_dict = layer.state_dict() obj1 = [ paddle.randn( [3, 4], dtype='float32'),
np.random.randn(5, 6)
numpy.random.randn
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # ryanvolz's Ambiguity Function](https://gist.github.com/ryanvolz/8b0d9f3e48ec8ddcef4d import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation def ambiguity(code, nfreq=1): """Calculate the ambiguity function of code for nfreq frequencies. The ambiguity function is the square of the autocorrelation, normalized so the peak value is 1. For correct results, we require that nfreq >= len(code). The result is a 2-D array with the first index corresponding to frequency shift. The code is frequency shifted by normalized frequencies of range(nfreq)/nfreq and correlated with the baseband code. The result amb[0] gives the ambiguity with 0 frequency shift, amb[1] with 1/nfreq frequency shift, etc. These frequencies are the same as (and are in the same order as) the FFT frequencies for an nfreq- length FFT. ****Thus, the peak value is at amb[0, len(code) - 1]**** To relocate the peak to the middle of the result, use np.fft.fftshift(amb, axes=0) To relocate the peak to the [0, 0] entry, use np.fft.ifftshift(amb, axes=1) """ inlen = len(code) outlen = 2*inlen - 1 #if nfreq < inlen: # nfreq = inlen # Doppler shift the code to form a correlation bank in the form of a matrix doppleridx = np.arange(nfreq)[:, np.newaxis]*np.arange(inlen) dopplermat = np.exp(2*np.pi*1j*doppleridx/nfreq) # code is conjugated to form matched correlation codebank = code.conj()*dopplermat # initialize the output autocorrelation array acorr = np.zeros((nfreq, outlen), np.complex_) # correlate the Doppler-shifted codes with the original code # to get autocorrelation for k, shifted_code in enumerate(codebank): acorr[k] = np.correlate(code, shifted_code, mode='full') # calculate ambiguity function as normalized square magnitude of autocorrelation # (index of peak value is [0, inlen - 1]) amb = np.abs(acorr / acorr[0, inlen - 1])**2 return amb def plotamb(code, channels, tone, window, rate): def update(frame_number): barker13 = np.asarray(code[0], np.complex)*mixer_sin b13amb = ambiguity(barker13, window) im.set_data(np.fft.fftshift(b13amb, axes=0).T) return im def init(): barker13 = np.ones(L, np.complex) b13amb = ambiguity(barker13, window) im.set_data(a*np.fft.fftshift(b13amb, axes=0).T) return im fig = plt.figure() plt.xlabel('Frequency Index') plt.ylabel('Delay Index') barker13 =
np.asarray(code[0], np.complex)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Thu Oct 10 13:08:11 2019 @author: logiusti """ import pickle import numpy as np import pandas as pd from sklearn import metrics from astropy.convolution import Gaussian1DKernel,convolve from multiprocessing.dummy import Pool as ThreadPool from scipy.spatial import ConvexHull, distance_matrix import Loader from Utility import timeit import json import os class Solver: r""" Class wich provies all the functionalities to do math on our data """ def __init__(self): self.loader = Loader.Loader(r"C:\Users\logiusti\Lorenzo\Data\ups") self.loader.set_all_public_variables() def get_all_pof(self, df): def sigmoid(x): """ parametrizzare """ return 1/(1+np.exp(-x+10)) def get_one_pof(p0, p, eta, clicks): """ parametrizzare """ distance = 1-(1/(1+np.linalg.norm(p0-p, 1))) pof_eta_load = sigmoid(0.75*eta**.5 + 0.6*clicks**.5) pof = distance*pof_eta_load**.5 return pof def get_p0_name(): # test points pts = df[[2, 3, 4]].to_numpy() # two points which are fruthest apart will occur as vertices of the convex hull candidates = pts[ConvexHull(pts).vertices] # get distances between each pair of candidate points dist_mat = distance_matrix(candidates, candidates) # get indices of candidates that are furthest apart i, j = np.unravel_index(dist_mat.argmax(), dist_mat.shape) #get the data into the df according to the most distance points tmp_df = df[(df[[2, 3, 4]].to_numpy() == candidates[j]) | (df[[2, 3, 4]].to_numpy() == candidates[i])] #return the one who has lower clicks and lower age return tmp_df.assign(f=tmp_df['eta']**2 * tmp_df['clicks']**2)\ .sort_values('f')\ .drop('f', axis=1)\ .iloc[0]['UPS'] v = [] p0 = df.loc[df['UPS'] == get_p0_name()][[2, 3, 4]].to_numpy() for _, row in df.iterrows(): p =
np.array([row[2], row[3], row[4]])
numpy.array
""" infinite_fourier.py ==================================== Module for calculating :math:`C_I` using linear algebra, based on components generated by the method of recursive images using fourier series to obtain :math:`V_{I\infty}` """ import scipy import scipy.special import numpy as np import numpy.linalg eps0= 8.854187817*10**-12 class layer: def __init__(self,eps_x,eps_y,t): """ layer class Parameters ---------- eps_x : float relative dielectric constant in the x-direction eps_ys : layer object relative dielectric constant in the y-direction t : float thickness of layer max_fourier_n : int max number of fourier compoents in model """ self.eps_x=eps_x self.eps_y=eps_y if self.eps_y>0: self.eps_r=(self.eps_x/self.eps_y)**0.5 else: self.eps_r=1 self.t=t self.t_eff=t*self.eps_r self.interface_pos_dir=None self.interface_neg_dir=None class interface: """ Interface class Parameters ---------- layer_pos_dir : layer object The layer in positive y-direction layer_neg_dir : layer object The layer in negative y-direction y : float y-coordinate of the layer max_fourier_n : int max number of fourier compoents in model """ def __init__(self,layer_pos_dir,layer_neg_dir,y,max_fourier_n): self.layer_pos_dir=layer_pos_dir self.layer_neg_dir=layer_neg_dir # calculate regular (not effective) r and t eps1=np.sqrt(layer_pos_dir.eps_y*layer_pos_dir.eps_x) eps2=np.sqrt(layer_neg_dir.eps_y*layer_neg_dir.eps_x) self.r_pos_dir=(eps2-eps1)/(eps1+eps2) self.t_pos_dir=self.r_pos_dir+1 self.r_neg_dir=-self.r_pos_dir self.t_neg_dir=self.r_neg_dir+1 self.y=y # set all effective coefficients to None, are calculated when the get functions are called self.r_pos_dir_eff=np.full((max_fourier_n), None) self.t_pos_dir_eff=np.full((max_fourier_n), None) self.r_neg_dir_eff=np.full((max_fourier_n), None) self.t_neg_dir_eff=np.full((max_fourier_n), None) def get_r_pos_dir_eff(self,n): """ Calculate :math:`\\r_{eff}` in the positive direction Parameters ---------- n : int Forier compoent """ if self.r_pos_dir_eff[n]==None: if self.layer_pos_dir.interface_pos_dir==None: # if this is the last material, it has infinite extension, and it is easy self.r_pos_dir_eff[n]=self.r_pos_dir self.t_pos_dir_eff[n]=self.t_pos_dir else: # if this is not the last material, calculate effective coefficients r and t rup=self.layer_pos_dir.interface_pos_dir.get_r_pos_dir_eff(n) t=self.layer_pos_dir.t_eff exp=np.exp(-np.pi*2*t*(2*n+1)) factor=1/(1-self.r_neg_dir*rup*exp) #== sum {m=0->inf} (self.r_neg_dir*rup*exp)^m self.r_pos_dir_eff[n]=self.r_pos_dir+self.t_pos_dir*rup*self.t_neg_dir*exp*factor self.t_pos_dir_eff[n]=self.t_pos_dir+self.t_pos_dir*rup*self.r_neg_dir*exp*factor return self.r_pos_dir_eff[n] def get_t_pos_dir_eff(self,n): """ Calculate :math:`\\t_{eff}` in the positive direction Parameters ---------- n : int Forier compoent """ if self.t_pos_dir_eff[n]==None: self.get_r_pos_dir_eff(n) return self.t_pos_dir_eff[n] def get_r_neg_dir_eff(self,n): """ Calculate :math:`\\r_{eff}` in the negative direction Parameters ---------- n : int Forier compoent """ if self.r_neg_dir_eff[n]==None: if self.layer_neg_dir.interface_neg_dir==None: # if this is the first material, it has infinite extension, and it is easy self.r_neg_dir_eff[n]=self.r_neg_dir self.t_neg_dir_eff[n]=self.t_neg_dir else: # if this is not the last material, calculate effective coefficients r and t rne=self.layer_neg_dir.interface_neg_dir.get_r_neg_dir_eff(n) t=self.layer_neg_dir.t_eff exp=np.exp(-np.pi*2*t*(2*n+1)) factor=1/(1-self.r_pos_dir*rne*exp) self.r_neg_dir_eff[n]=self.r_neg_dir+self.t_neg_dir*rne*self.t_pos_dir*exp*factor self.t_neg_dir_eff[n]=self.t_neg_dir+self.t_neg_dir*rne*self.r_pos_dir*exp*factor return self.r_neg_dir_eff[n] def get_t_neg_dir_eff(self,n): """ Calculate :math:`\\t_{eff}` in the negative direction Parameters ---------- n : int Forier compoent """ if self.t_neg_dir_eff[n]==None: self.get_r_neg_dir_eff(n) return self.t_neg_dir_eff[n] class single_recursive_images: """ A class that houses the potential, capacitance and electric fields from the method of recursive images. The values obtained are unphysical, as the potential at the electrodes is not constant. Parameters ---------- eta : float cover fraction of the electrodes interface_of_electrodes : int interface for the electrodes thickness_of_layers : list of floats thicknesses of the layers, this list will be 2 shorter than eps_x_of_layers and eps_y_of_layers, as the outermost layers have no defined thickness, but are infinite eps_x_of_layers : list of floats in-plane dielectric constant of the layers eps_y_of_layers : list of floats out-of-plane dielectric constant of the layers max_fourier_n : int, optional maximum number of fourier components to considder, defaults to 120 accuracy_limit : float, optional reflections with less than accuracy_limit are ignored, defaults to 10**-15 inherit: single_recursive_images object or None, optional If not None, will inherit layers and interfaces from the pobject indicated. If None, new layer and interface objects will be created. Defaults to None """ _A_ditcts=dict()#adict[k][n]=A_{2n+1} _V_dicts=dict()#Vdict[k][x]=V_{I,inf}(x,0) #Common variables #---------------- #_A_ditcts : dictionary # :math:`A(\\eta)_{2n+1}` is stored here so it does not need to be recalculated for later iterations #_V_dicts : dictionary # :math:`V(\\eta)_{2n+1}` is stored here so it does not need to be recalculated for later iterations def __init__(self,eta,interface_of_electrodes,thickness_of_layers,eps_x_of_layers,eps_y_of_layers,max_fourier_n=120,accuracy_limit=10**-15, inherit=None, hybrid=True): """ Returns ------- class object """ self.hybrid=hybrid # declare the layers and interfaces, if not inherited if inherit==None: self.layers=[] for e11,e33,T in zip(eps_x_of_layers,eps_y_of_layers,[np.inf]+list(thickness_of_layers)+[np.inf]): self.layers.append(layer(e11,e33,T)) self.interfaces=[] for i, _ in enumerate(self.layers[0:-1]): if i==0: z=0 else: z=sum(thickness_of_layers[0:i]) self.interfaces.append(interface(self.layers[i+1],self.layers[i],z,max_fourier_n)) self.layers[i].interface_pos_dir=self.interfaces[-1] self.layers[i+1].interface_neg_dir=self.interfaces[-1] else: self.layers=inherit.layers self.interfaces=inherit.interfaces self.eta=np.array(eta) self.interface_of_electrodes=interface_of_electrodes self.number_of_layers=len(self.layers) self.max_fourier_n=max_fourier_n self.accuracy_limit=accuracy_limit self.k=np.sin(np.pi/2*self.eta) self.Kk= scipy.special.ellipk(float(self.k**2)) self.Kpk= scipy.special.ellipk(1-float(self.k**2)) if not self.k in self._A_ditcts: self._A_ditcts[self.k]=dict() self.adict=self._A_ditcts[self.k] #dict()#adict[n]=A_{2n+1} if self.hybrid: if not self.k in self._V_dicts: self._V_dicts[self.k]=dict() self.Vdict=self._V_dicts[self.k] #dict()#adict[n]=A_{2n+1} '''if not self.k in self._V_dicts: self._V_dicts[self.k]=dict() self.Vdict=self._V_dicts[self.k] #dict()#adict[n]=A_{2n+1}''' self.tree=[] self.P_field_pos=np.full((max_fourier_n), None)#r_pos_dir) self.P_field_neg=np.full((max_fourier_n), None)#t_pos_dir) def get_P_field_pos(self,n): """ Gets the sum of all fields projected from the electrodes in the positive direction for fourier compoent n Parameters ---------- n : int fourier compoent Returns ------- float multiplication factor of projected fields with respect to the case with no reflections """ if self.P_field_pos[n]==None: if not self.P_field_pos[n-1]==1: # if self.P_field_pos[n-1]==1, we conclude that it will be 1 for all further components # sum of fields originating from the field initially projected in the positive direction if len(self.interfaces)>self.interface_of_electrodes+1: rpo=self.interfaces[self.interface_of_electrodes+1].get_r_pos_dir_eff(n) rne=self.interfaces[self.interface_of_electrodes].get_r_neg_dir_eff(n) t=self.layers[self.interface_of_electrodes+1].t_eff self.P_field_pos[n]=1/(1-rpo*rne*np.exp(-np.pi*2*t*(2*n+1))) else: self.P_field_pos[n]=1 # sum of fields originating from the field initially projected in the negative direction if self.interface_of_electrodes>0: rpo=self.interfaces[self.interface_of_electrodes].get_r_pos_dir_eff(n) tpo=self.interfaces[self.interface_of_electrodes].get_t_pos_dir_eff(n) rne=self.interfaces[self.interface_of_electrodes-1].get_r_neg_dir_eff(n) t=self.layers[self.interface_of_electrodes].t_eff self.P_field_pos[n]+=rne*tpo*np.exp(-np.pi*2*t*(2*n+1)) / (1-rpo*rne*np.exp(-np.pi*2*t*(2*n+1))) if abs(self.P_field_pos[n]-1)<self.accuracy_limit: # mark that we are done calculating components, by setting self.P_field_pos[n]=1 self.P_field_pos[n]=1 else: self.P_field_pos[n]=1 return self.P_field_pos[n] def get_P_field_neg(self,n): """ Gets the sum of all fields projected from the electrodes in the negative direction for fourier compoent n Parameters ---------- n : int fourier compoent Returns ------- float multiplication factor of projected fields with respect to the case with no reflections """ if self.P_field_neg[n]==None: if not self.P_field_neg[n-1]==1: # if self.P_field_neg[n-1]==1, we conclude that it will be 1 for all further components # sum of fields originating from the field initially projected in the positive direction if self.interface_of_electrodes>0: rpo=self.interfaces[self.interface_of_electrodes].get_r_pos_dir_eff(n) rne=self.interfaces[self.interface_of_electrodes-1].get_r_neg_dir_eff(n) t=self.layers[self.interface_of_electrodes].t_eff self.P_field_neg[n]=1/(1-rpo*rne*np.exp(-np.pi*2*t*(2*n+1))) else: self.P_field_neg[n]=1 # sum of fields originating from the field initially projected in the positive direction if len(self.interfaces)>self.interface_of_electrodes+1: rpo=self.interfaces[self.interface_of_electrodes+1].get_r_pos_dir_eff(n) rne=self.interfaces[self.interface_of_electrodes].get_r_neg_dir_eff(n) tne=self.interfaces[self.interface_of_electrodes].get_t_neg_dir_eff(n) t=self.layers[self.interface_of_electrodes+1].t_eff self.P_field_neg[n]+=rpo*tne*np.exp(-np.pi*2*t*(2*n+1)) / (1-rpo*rne*np.exp(-np.pi*2*t*(2*n+1))) if abs(self.P_field_neg[n]-1)<self.accuracy_limit: # mark that we are done calculating components, by setting self.P_field_pos[n]=1 self.P_field_neg[n]=1 else: self.P_field_neg[n]=1 return self.P_field_neg[n] def get_C(self): """ Returns ------- float capacitace """ eps_above=self.layers[self.interface_of_electrodes].eps_y*self.layers[self.interface_of_electrodes].eps_r eps_below=self.layers[self.interface_of_electrodes+1].eps_y*self.layers[self.interface_of_electrodes+1].eps_r return (eps_above+eps_below)*self.Kk/self.Kpk*eps0/2 def get_C_int_Ex(self): """ Function for calculating the capacitance by integrating :math:`\\varepsilon_xE_x` at :math:`x=0`.\n Used for testing, as it should give same output as get_C().\n For all practical applications get_C() should be used instead\n Returns ------- float capacitace """ if self.layers[0].eps_x>0: G,error=scipy.integrate.quad(lambda y: self.get_Ex(0,y), -np.inf, 0) C= G*self.layers[0].eps_x*eps0 else: C=0 for i in range(self.number_of_layers-2): if self.layers[i+1].eps_x>0: G,error=scipy.integrate.quad(lambda y: self.get_Ex(0,y), self.interfaces[i].y, self.interfaces[i+1].y) C+= G*self.layers[i+1].eps_x*eps0 if self.layers[-1].eps_x>0: G,error=scipy.integrate.quad(lambda y: self.get_Ex(0,y), self.interfaces[-1].y, np.inf) C+= G*self.layers[-1].eps_x*eps0 return C def getA(self,n): """ calculates :math:`A_{2n+1}` Parameters ---------- n : fourier compoent Returns ------- float A_(2n+1) """ if not n in self.adict: Pn=scipy.special.legendre(n)(2*self.k**2-1) self.adict[n]=np.pi/self.Kpk*Pn #=A_{2n+1} return self.adict[n] def get_V_Ex_Ey(self,x,y,get_V=1,get_Ex=1,get_Ey=1): # accepts 'x' as a list, but 'y' must be single value """ Function for calculating the the potential and electric fields at coordinates (x,y) The potential and fields are calculated as the sum of the field going away from the electrodes, and the field going towards the electrodes. The amplitude of the field going away from the electrode is: sum_{n=0->inf} (all t_{eff,n} from electrodes to layer)*exp(-pi*exp_arg_fac*(2n+1)) where exp(-pi*exp_arg_fac*(2n+1))is calculated as cur_exp=exp(-pi*exp_arg_fac)*exp(-2*pi*exp_arg_fac)^n Similarly, the amplitude of the field going away from the electrode is: sum_{n=0->inf} (all t_{eff,n} from electrodes to layer)*(r_{eff,n} at the next interface)*exp(-pi*reverse_exp_arg_fac*(2n+1)) where exp(-pi*reverse_exp_arg_fac*(2n+1))is calculated as cur_exp=exp(-pi*reverse_exp_arg_fac)exp(-2*pi*reverse_exp_arg_fac)^n Parameters ---------- x : float or list of floats x-coordiate(s) y : float y-coordiate get_V : bool, optional V is only calculated if this flag is set to True, default: True get_Ex : bool, optional Ex is only calculated if this flag is set to True, default: True get_Ey : bool, optional Ey is only calculated if this flag is set to True, default: True Returns ------- list of floats for V, Ex, Ey """ x=np.array(x) x=np.atleast_1d(x) if self.hybrid: if y==self.interfaces[self.interface_of_electrodes].y and get_V==1 and get_Ex==0 and get_Ey==0: V=self.get_V_electrodes(x) return V, 0,0 V=np.zeros(x.size) Ex=np.zeros(x.size) Ey=np.zeros(x.size) # get current layer we are in layer=0 while layer<len(self.interfaces) and self.interfaces[layer].y <= y: layer+=1 distPrior=0 reflected_field=0 if self.interfaces[self.interface_of_electrodes].y <= y: # we are above electrodes direction=1 getPfield=self.get_P_field_pos for i in range(self.interface_of_electrodes+1,layer): distPrior+=self.layers[i].t_eff # calculate exp_arg_fac, the argument for the exponential, i.e. exp((2n+1)*exp_arg_fac) exp_arg_fac=-np.pi*( (y-self.interfaces[layer-1].y)*self.layers[layer].eps_r+distPrior ) if len(self.interfaces) > layer: reverse_exp_arg_fac=-np.pi*( (self.interfaces[layer].y-y)*self.layers[layer].eps_r+self.layers[layer].t_eff+distPrior ) reflected_field=1 else: # we are below electrodes direction=-1 getPfield=self.get_P_field_neg for i in range(self.interface_of_electrodes,layer,direction): distPrior+=self.layers[i].t_eff exp_arg_fac=-np.pi*( direction*(y-self.interfaces[layer].y)*self.layers[layer].eps_r+distPrior ) if layer>0: reverse_exp_arg_fac=-np.pi*( direction*(self.interfaces[layer-1].y-y)*self.layers[layer].eps_r+self.layers[layer].t_eff+distPrior ) reflected_field=1 exp_mul_fac=np.exp(exp_arg_fac*2) # <- multiplication factor for the exponential attenuation cur_exp=np.exp(exp_arg_fac) # <- current exponential attenuation if reflected_field==1: #if there is a reflected field, do also for this reverse_exp_mul_fac=
np.exp(reverse_exp_arg_fac*2)
numpy.exp
# -*- coding: UTF-8 -*- import math import pymatgen as mg from ase.utils import gcd, basestring from ase.build import bulk from copy import deepcopy from numpy.linalg import norm, solve from pymatgen.analysis.graphs import MoleculeGraph, StructureGraph from pymatgen.core.structure import Molecule from pymatgen.io.vasp.inputs import Poscar from ase import io import networkx.algorithms.isomorphism as iso import numpy as np import networkx as nx from pymatgen.core.lattice import Lattice from pymatgen.core.sites import PeriodicSite # used for deciding which atoms are bonded from pymatgen.analysis.local_env import JmolNN import os import sys import time from functools import wraps from collections import Counter def from_ASE_to_pymatgen(working_dir, images): """ change ASE structure to pymatgen structure """ file_name = working_dir + "/temp.POSCAR.vasp" io.write(file_name, images) modify_poscar(file_name) slab = mg.Structure.from_file(file_name) os.remove(file_name) return slab def modify_poscar(file): """ Change the file to compliant POSCAR. """ index = 0 prev_file = open(file, 'r') new_file = open(file+'.new', 'w') for line in prev_file: if index == 0: tmp = line new_file.write('slab\n') elif index == 5: #new_file.write(tmp) new_file.write(line) else: new_file.write(line) index = index+1 prev_file.close() new_file.close() os.remove(file) os.rename(file+'.new', file) def surface(lattice, indices, layers, tol=1e-10, termination=0): """Create surface from a given lattice and Miller indices. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. indices: sequence of three int Surface normal in Miller indices (h,k,l). layers: int Number of equivalent layers of the slab. termination: int The termination "number" for your crystal. The same value will not produce the same termination for different symetrically identical bulk structures, but changing this value allows your to explore all the possible terminations for the bulk structure you provide it. note: this code is not well tested """ indices = np.asarray(indices) if indices.shape != (3,) or not indices.any() or indices.dtype != int: raise ValueError('%s is an invalid surface type' % indices) if isinstance(lattice, basestring): lattice = bulk(lattice, cubic=True) h, k, l = indices h0, k0, l0 = (indices == 0) if termination != 0: # changing termination import warnings warnings.warn('Work on changing terminations is currently in ' 'progress. Code may not behave as expected.') lattice1 = deepcopy(lattice) cell = lattice1.get_cell() pt = [0, 0, 0] millers = list(indices) for index, item in enumerate(millers): if item == 0: millers[index] = 10 ** 9 # make zeros large numbers elif pt == [0, 0, 0]: # for numerical stability pt = list(cell[index] / float(item) / np.linalg.norm(cell[index])) h1, k1, l1 = millers N = np.array(cell[0] / h1 + cell[1] / k1 + cell[2] / l1) n = N / np.linalg.norm(N) # making a unit vector normal to cut plane d = [np.round(np.dot(n, (a - pt)), 4) for a in lattice.get_scaled_positions()] d = set(d) d = sorted(list(d)) d = [0] + d # distances of atoms from cut plane displacement = (h * cell[0] + k * cell[1] + l * cell[2]) * d[termination] lattice1.positions += displacement lattice = lattice1 if h0 and k0 or h0 and l0 or k0 and l0: # if two indices are zero if not h0: c1, c2, c3 = [(0, 1, 0), (0, 0, 1), (1, 0, 0)] if not k0: c1, c2, c3 = [(0, 0, 1), (1, 0, 0), (0, 1, 0)] if not l0: c1, c2, c3 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] else: p, q = ext_gcd(k, l) a1, a2, a3 = lattice.cell # constants describing the dot product of basis c1 and c2: # dot(c1,c2) = k1+i*k2, i in Z k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3), l * a2 - k * a3) k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3), l * a2 - k * a3) if abs(k2) > tol: i = -int(round(k1 / k2)) # i corresponding to the optimal basis p, q = p + i * l, q - i * k a, b = ext_gcd(p * k + q * l, h) c1 = (p * k + q * l, -p * h, -q * h) c2 = np.array((0, l, -k)) // abs(gcd(l, k)) c3 = (b, a * p, a * q) surf = build(lattice, np.array([c1, c2, c3]), layers, tol) return surf def ext_gcd(a, b): """ Extended Euclidean Algorithm. Find the result for ax + by = gcd(a, b). Parameters ---------- a: int b: int """ if b == 0: return 1, 0 elif a % b == 0: return 0, 1 else: x, y = ext_gcd(b, a % b) return y, x - y * (a // b) def build(lattice, basis, layers, tol): """ Transform the structure to original surface based on basis. Parameters ---------- basis: 3 * 3 matrix, [[a, b, c], ...] the basis vectors of the target surfaces. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. layers: int Number of equivalent layers of the slab. """ surf = lattice.copy() scaled = solve(basis.T, surf.get_scaled_positions().T).T scaled -= np.floor(scaled + tol) surf.set_scaled_positions(scaled) surf.set_cell(np.dot(basis, surf.cell), scale_atoms=True) surf *= (1, 1, layers) return surf def modify_cell(structure): """ This is the final step of a molecular reconstruction step, and would align z direction to be perpendicular to the surface Parameters --------- structure: Atoms object or str In this structure, the z direction might not be perpendicular to the target surface. """ slab = structure.copy() a1, a2, a3 = slab.cell slab.set_cell([a1, a2, np.cross(a1, a2) * np.dot(a3, np.cross(a1, a2)) / norm(np.cross(a1, a2)) ** 2]) # Change unit cell to have the x-axis parallel with a surface vector # and z perpendicular to the surface: a1, a2, a3 = slab.cell slab.set_cell([(norm(a1), 0, 0), (np.dot(a1, a2) / norm(a1), np.sqrt(norm(a2) ** 2 - (np.dot(a1, a2) / norm(a1)) ** 2), 0), (0, 0, norm(a3))], scale_atoms=True) slab.pbc = (True, True, False) scaled = slab.get_scaled_positions() scaled[:, :2] %= 1 slab.set_scaled_positions(scaled) return slab def handle_with_molecules(slab_move, delta, down=True): """ Move some very tiny fragments of broken molecule to the other side. This is a preparation step for the move_method, which could minimize the limitations. Parameters ---------- slab_move: Atoms structure slab_move is the original surfaces that is generated by ase library. delta: list of double, [delta_x, delta_y, delta_z] Add or subtract the delta (cart_coords) to the tiny broken molecules to initially repair parts of molecules. down: bool True: Add a delta to the tiny broken molecules that are located at the bottom, False: subtract a delta to the tiny broken molecules that are located at the top. """ slab_sg = StructureGraph.with_local_env_strategy(slab_move, JmolNN()) slab_supercell_sg = slab_sg * (3, 3, 1) slab_sg_graph = nx.Graph(slab_supercell_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (slab_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(slab_supercell_sg.structure[n].specie)) molecules = [] for subgraph in super_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] # get the frac_cood of every atom for every molecules coord_z_list = [slab_move.lattice.get_fractional_coords( coord)[-1] for coord in coords] if down is True: temp = [coord_z < 0.5 for coord_z in coord_z_list] else: temp = [coord_z > 0.5 for coord_z in coord_z_list] if not all(temp) or len(coords) > 6: continue species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) # molecules are the list of molecules that need to be moved move_list = [] move_sites = reduced_sites(molecules, slab_move) for move_site in move_sites: for i, atom in enumerate(slab_move): if atom.is_periodic_image(move_site): move_list.append(i) break coords_move = slab_move.cart_coords species_move = slab_move.species slab_move.remove_sites(move_list) for i in move_list: if down is True: new_coord = np.array(coords_move[i]) + np.array(delta) else: new_coord = np.array(coords_move[i]) - np.array(delta) slab_move.append(species_move[i], new_coord, coords_are_cartesian=True) return slab_move def Find_Broken_Molecules(slab, sg, species_intact, coords_intact, unique_bulk_subgraphs): """ Use molecular identification method to find those molecules in the surface that are different from that in the bulk. Parameters ---------- slab: Atoms structure The surface that is generated by ase library and might have broken molecules. sg: list of Molecules Unique Molecules in bulk Structure. species_intact: list, ['specie_1', 'specie_2', ...] A list of atomic species of intact molecules. coords_intact: list, [[coord_1_1, coord_1_2, coord_1_3], ...] A list of atomic cart_coords of intact molecules. unique_bulk_subgraphs: list of graphs A list of intact molecules' graphs. Note that every graph is this list is unique """ slab_sg = StructureGraph.with_local_env_strategy(slab, JmolNN()) # enlarge the cell to a (3 * 3 * 1) super_cell slab_supercell_sg = slab_sg * (3, 3, 1) different_subgraphs_in_slab, slab_molecules = \ get_slab_different_subgraphs(slab_supercell_sg, unique_bulk_subgraphs) slab_molecules = double_screen(slab_molecules, sg) # the molecules in slab_original would be the template #print("The number of molecules that need to be fixed : " + # str(len(slab_molecules))) # slab_molecules are the molecules that are broken and need to be fixed delete_sites = reduced_sites(slab_molecules, slab) # delete_list is the list of broken atoms delete_list = [] for delete_site in delete_sites: for i, atom in enumerate(slab): if atom.is_periodic_image(delete_site): delete_list.append(i) break species_all = slab.species coords_all = slab.cart_coords for i, atom in enumerate(slab): temp = [i == delete for delete in delete_list] if not any(temp): species_intact.append(species_all[i]) coords_intact.append(coords_all[i]) delete_list = [] # remove intact molecules in the slab for convenience #print("Delete all atoms!") for i, atom in enumerate(slab): delete_list.append(i) slab.remove_sites(delete_list) sites = [] for slab_molecule in slab_molecules: for curr_site in slab_molecule: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) for site in sites: # add the broken molecules into the system slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def get_broken_molecules(self, bulk_subgraphs, use_weights=False): # compare each molecule in slab to each molecule in the bulk, # get rid of isomorohic, molecules store the brokens """ Retrieve broken_subgraphs as molecules Will return nonunique molecules, duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Returns: ------- : list of nonunique broken Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs(supercell_sg.graph)) # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: molecule_subgraphs.append(subgraph) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # remove complete molecules in subgraphs different_subgraphs = [] start = time.time() for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in different_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass #molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules # now define how we test for isomorphism def node_match(n1, n2): """the strategy for node matching in is_isomorphic. Parameters ------ n1, n2 : node Returns: ------- True of false : bool based on whether the species of two nodes are the same. """ return n1['specie'] == n2['specie'] def get_bulk_molecules(self, use_weights=False): # get rid of the repetitve molecule in bulk, only left with unique molecule###### """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Parameters: ------ use_weights: (bool) If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. Returns: ------- list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic # enlarge the structureGraph object to a supercell supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs # create networkx undirected graph object to supercell_sg.graph = nx.Graph(supercell_sg.graph) # store the input graph # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs( supercell_sg.graph)) # add specie names to graph to be able to test for isomorphism for subgraph in all_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # prune duplicate subgraphs unique_subgraphs = [] for subgraph in all_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) molecules.append(molecule) return molecules, unique_subgraphs #################convert to undirected mx.graph and then determine if isomorphic############### def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. Parameters: ---------- other: MoleculeGraph object to be compared. Returns: ------- bool """ if self.molecule.composition != other.molecule.composition: return False else: self_undir = self.graph.to_undirected() other_undir = other.graph.to_undirected() nm = iso.categorical_node_match("specie", "ERROR") isomorphic = nx.is_isomorphic(self_undir, other_undir, node_match=nm) return isomorphic def reduced_sites(molecules, slab): """ Find atoms that appear again due to the periodicity. Parameters: ----------- molecules: List[molecule]. All molecules that might be within or out of the slab boundary. slab: ASE structure. Slab structure. Returns: -------- sites: List[atom]. """ sites = [] for molecule in molecules: for curr_site in molecule: curr_site = PeriodicSite( curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) return sites def is_isomorphic(molecule1, molecule2): """ Determin whether two molecules are the same. Parameters: ----------- molecule1 and molecule2. Returns: -------- bool. """ return isomorphic_to(MoleculeGraph.with_local_env_strategy(molecule1, JmolNN()), MoleculeGraph.with_local_env_strategy(molecule2, JmolNN())) def double_screen(slab_molecules, bulk_molecules): """ Double check with bulk if there is any molecule already present in bulk """ delete_list = [] for bulk_molecule in bulk_molecules: for i, slab_molecule in enumerate(slab_molecules): if is_isomorphic(bulk_molecule, slab_molecule): delete_list.append(i) tmp = [x for i, x in enumerate(slab_molecules) if i not in delete_list] return tmp def print_run_time(func): """ One wrapper that output the run_time of a funtion. """ @wraps(func) def wrapper(*args, **kw): local_time = time.time() func(*args, **kw) print('Current Function [%s] run time is %.2fs' % (func.__name__, time.time() - local_time)) return wrapper def updatePOSCAR(output_file): """This function is used to correct the output file (POSCAR) of ase. Parameters: ---------- output_file : str The file of surface written by the write function of ase. Returns: ------- file : str The file that is corrected. """ with open(output_file, 'r') as original_file: lines = original_file.readlines() line1 = lines[0] lines.insert(5, " " + line1) with open(output_file, 'w') as final_file_1: for i in range(len(lines)): final_file_1.writelines(lines[i]) structure = mg.Structure.from_file(output_file) lattice = Lattice(structure.lattice.matrix) frac_coords = lattice.get_fractional_coords(structure.cart_coords) for i in range(frac_coords.shape[0]): for j in range(frac_coords.shape[1]): if abs(frac_coords[i][j] - 1) < 1e-5: frac_coords[i][j] = 1 if abs(frac_coords[i][j] - 0) < 1e-5: frac_coords[i][j] = 0 with open(output_file, 'r') as final_file_2: lines = final_file_2.readlines() lines[7] = 'Direct' + '\n' for i in range(np.array(frac_coords).shape[0]): lines[8 + i] = " " + str(np.array(frac_coords)[i, :][0]) + ' ' + str(np.array(frac_coords)[i, :][1]) +\ ' ' + str(np.array(frac_coords)[i, :][2]) + '\n' with open(output_file, 'w') as final_file: for i in range(len(lines)): final_file.writelines(lines[i]) def edge_match(e1, e2): """the strategy for edge matching in is_isomorphic. Parameters: ---------- e1, e2 : edge). Returns: ------- True or false : bool based on whether the length of bonds are the same or close to each other. """ return abs(e1['weight'] - e2['weight']) / e2['weight'] < 1e-5 def get_bulk_subgraphs(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: in_boundary = any([d['to_jimage'] == (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if in_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: super_subgraphs.remove(subgraph) continue molecules = [] for subgraph in super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return super_subgraphs, molecules def get_bulk_subgraphs_v2(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) molecules = [] for subgraph in all_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return all_super_subgraphs, molecules def get_bulk_subgraphs_v3(slab_first, bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk and generate HashGraph to modify atoms' positions. Parameters: ----------- slab_first: pymatgen structure. Original slab structure that cleaved by ASE bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- delta_cart: List[float]. c_difference between two adajacent layers. super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) frac_coods = [0] * len(bulk_structure_sg.structure) initial_index = -100 molecules = [] for subgraph in all_super_subgraphs: HashGraph = {} for u, v, d in subgraph.edges(data=True): change_z = list(d['to_jimage'])[-1] if change_z != 0: change_z = 1 if slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[u].coords)[-1] > slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[v].coords)[-1] else -1 try: HashGraph[str(u)].append([str(v), change_z]) except KeyError: HashGraph[str(u)] = [initial_index, [str(v), change_z]] try: HashGraph[str(v)].append([str(u), -change_z]) except KeyError: HashGraph[str(v)] = [initial_index, [str(u), -change_z]] first_node = list(HashGraph.keys())[0] count = 1 HashGraph[first_node][0] = 0 Pending_node = [first_node] Pending_node_2 = [] while(count < len(list(HashGraph.keys()))): for node in Pending_node: for value in HashGraph[node][1: ]: if HashGraph[value[0]][0] == initial_index: count += 1 HashGraph[value[0]][0] = HashGraph[node][0] + value[1] Pending_node_2.append(value[0]) Pending_node = deepcopy(Pending_node_2) Pending_node_2 = [] # min_z = min([value[0] for value in HashGraph.values()]) min_z = int(Counter([value[0] for value in HashGraph.values()]).most_common(1)[0][0]) delta = np.array(slab_first.lattice.matrix[-1]) for key in HashGraph.keys(): HashGraph[key][0] -= min_z coords = [bulk_structure_sg.structure[n].coords + delta * HashGraph[str(n)][0] for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return delta, all_super_subgraphs, molecules def get_bulk_subgraphs_unique(bulk_structure_sg): """ get unique subgraphs of bulk based on graph algorithm. This function would only return unique molecules and its graphs, but not any duplicates present in the crystal. (A duplicate defined as an isomorphic crystals. Parameters: ----------- bulk_structure_sg : nx.SturctureGraph class, this one is actually the supercell one that is equal to(3, 3, 3) * unit cell. Returns: -------- unique_super_graphs : (list) [graph, ...], represent the unique subgraphs in the supercell and expecially in the boundary of supercell. molecules : (list) [molecule, ...], represent the molecules that are correlated to the unque subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) unique_super_subgraphs = [] for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: continue already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_super_subgraphs] if not any(already_present): unique_super_subgraphs.append(subgraph) molecules = [] for subgraph in unique_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return unique_super_subgraphs, molecules def get_slab_different_subgraphs(slab_supercell_sg, unique_super_bulk_subgraphs): """this function is used to find all the subgraphs in slab that are different from those in bulk. Parameters: ---------- slab_supercell_sg : nx.StructureGraph, the graph of the whole slabs. Note: In order to thoughtoutly describe the graph, the slab_supercell_sg = (3, 3, 1) * slab_sg unique_super_bulk_subgraphs : list. Returns: ------- different_subgraphs : list [different_subgraph, ...], which is the list of subgraphs that are different from those in bulk. In this function, we would only find the different subgraphs based on its species. slab_molecules : list [slab_molecule, ...], slab_molecule is the mg.Molecule of diffenert_subgraphs. """ slab_supercell_sg_graph = nx.Graph(slab_supercell_sg.graph) all_subgraphs = list(nx.connected_component_subgraphs (slab_supercell_sg_graph)) molecule_subgraphs = [] for subgraph in all_subgraphs: intersets_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersets_boundary: molecule_subgraphs.append(subgraph) #print("molecule_subgraphs : ", len(molecule_subgraphs)) for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str( slab_supercell_sg.structure[n].specie)) nm = iso.categorical_node_match("specie", "ERROR") different_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in unique_super_bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) slab_molecules = [] for subgraph in different_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) slab_molecules.append(molecule) return different_subgraphs, slab_molecules def belong_to(species1, species2): """ Determine whether species1 are totally included by species2. """ if len(species1) > len(species2): return False i = 0 species_1 = species1[:] species_2 = species2[:] while i < len(species_1): find = False for j in range(len(species_2)): if species_1[i] == species_2[j]: del species_1[i] find = True del species_2[j] break if find is False: return False return True def length_belong_to(weights1, weights2): """ Determine whether weights1 are totally included by weights2 weights are the list [weight, weight, ...] of one node """ if len(weights1) > len(weights2): return False i = 0 weights_1 = weights1[:] weights_2 = weights2[:] while i < len(weights_1): find = False for j in range(len(weights_2)): if abs((weights_1[i] - weights_2[j]) / weights_2[j]) < 1e-5: del weights_1[i] find = True del weights_2[j] break if find is False: return False return True def weights_all_belong_to(all_weight1, all_weight2, species1, species2): """ Determine whether one graph is totally included by another graph by comparing species and weights. """ if len(all_weight1) > len(all_weight2): return False i = 0 account = 0 total = len(all_weight1) all_weight_1 = all_weight1[:] all_weight_2 = all_weight2[:] species_1 = species1[:] species_2 = species2[:] while i < len(all_weight_1): find = False for j in range(len(all_weight_2)): if length_belong_to(all_weight_1[i], all_weight_2[j]) and species_1[i] == species_2[j]: del all_weight_1[i] del species_1[i] del species_2[j] account += 1 del all_weight_2[j] find = True break if not find: i += 1 if account >= 2.0 / 3.0 * total: return True return False def brokenMolecules_and_corresspoundingIntactMolecules(new_different_subgraphs, unique_super_subgraphs): """ NOT used in current reconstruction method!!! Determine the intact molecules that each molecule (broken or intact) belongs to by compcomparing the species and weights of broken molecules and intact molecules. Parameters: ----------- new_different_subgraphs: List[subgraph]. Subgraphs of all molecules. unique_super_subgraphs: List[subgraph]. Subgraphs of all bulk's unique molecules. Returns: -------- qualified_subgraphs: List[subgraph]. List of subgraph of molecules in the raw slab. unique_super_subgraphs: List[subgraph]. List of subgraph of corresspounding intact molecules. The length of qualified_unique_subgraphs should be the same as the length of qualified_subgraphs. """ qualified_subgraphs = [] qualified_unique_subgraphs = [] # account = 1 #print("trying to find the connection between broken molecules " # "and intact molecules") for subgraph in new_different_subgraphs: subgraph_species = [] weights_all = [] for n, nbrs in subgraph.adjacency(): subgraph_species.append(subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) weights_all.append(weights) find = False for unique_subgraph in unique_super_subgraphs: unique_subgraph_species = [] unique_weights_all = [] for n, nbrs in unique_subgraph.adjacency(): unique_subgraph_species.append( unique_subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) unique_weights_all.append(weights) if not belong_to(subgraph_species, unique_subgraph_species): continue else: if not weights_all_belong_to(weights_all, unique_weights_all, subgraph_species, unique_subgraph_species): continue else: find = True qualified_subgraphs.append(subgraph) qualified_unique_subgraphs.append(unique_subgraph) break if find is False: print("can't find the qualified subgraphs") sys.exit() return qualified_subgraphs, qualified_unique_subgraphs def fix_broken_molecules(qualified_subgraphs, qualified_unique_subgraphs, bulk_super_structure_sg, slab_supercell_sg, slab, c_frac_min, fixed_c_negative=False): """ NOT used in the current reconstruction method!!! Fix broken molecules based on graph theory. After determine the affiliation between all molecules in raw slabs and intact molecules in the original bulk, this function would replace those broken molecules with intact molecules. Parameters: ----------- qualified_subgraphs: List[subgraph]. List of subgraphs of all molecules in the raw molecules. qualified_unique_subgraphs: List[subgraph]. Each element in the list is the subgraph of corresspounding intact molecule of "qualified_subgraphs" in the previous list. bulk_super_structure_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of original bulk. slab_supercell_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of raw slab. slab: ASE structure. Raw slab after ASE cleaving. c_frac_min: float. Fractional coordinate of the lowest atom in raw slabs in c direction. fixed_c_negative: bool Fix the broken molecules in the lower side or not? Default option is False. Returns: -------- slab: pymatgen structure. Slab after reconstruction. """ molecules_new = [] #print("trying to fix the broken molecules...") for i in range(len(qualified_subgraphs)): qualified_subgraphs_species = [] qualified_subgraphs_nodes_neibs = [] qualified_subgraphs_all_weights = [] nodes_qualified_subgraphs = [] for n, nbrs in qualified_subgraphs[i].adjacency(): nodes_qualified_subgraphs.append(n) neibs = [] weights = [] qualified_subgraphs_species.append( qualified_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_subgraphs_nodes_neibs.append(neibs) qualified_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_species = [] qualified_unique_subgraphs_nodes_neibs = [] qualified_unique_subgraphs_all_weights = [] nodes_qualified_unique_subgraphs = [] for n, nbrs in qualified_unique_subgraphs[i].adjacency(): nodes_qualified_unique_subgraphs.append(n) neibs = [] weights = [] qualified_unique_subgraphs_species.append( qualified_unique_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_unique_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_nodes_neibs.append(neibs) node1 = [] node2 = [] account = 0 for t in range(len(qualified_subgraphs_species)): account = 0 for k in range(len(qualified_unique_subgraphs_species)): account = 0 if qualified_subgraphs_species[t] == qualified_unique_subgraphs_species[k] \ and length_belong_to(qualified_subgraphs_all_weights[t], qualified_unique_subgraphs_all_weights[k]) \ and len(qualified_subgraphs_all_weights[t]) == 3: node1 = [nodes_qualified_subgraphs[t]] node2 = [nodes_qualified_unique_subgraphs[k]] account = 0 for a_index, a_weight in enumerate(qualified_subgraphs_all_weights[t]): for index, weight in enumerate(qualified_unique_subgraphs_all_weights[k]): has1 = qualified_subgraphs_nodes_neibs[t][a_index] in node1 has2 = qualified_unique_subgraphs_nodes_neibs[k][index] in node2 if abs(weight - a_weight) / weight < 1e-5 and has1 is False and has2 is False: node1.append( qualified_subgraphs_nodes_neibs[t][a_index]) node2.append( qualified_unique_subgraphs_nodes_neibs[k][index]) account += 1 break if account >= 3: break if account >= 3: break if account < 3: print("can't find the corresspounding point") sys.exit() coords1 = [slab_supercell_sg.structure[n].coords for n in node1] coords2 = [bulk_super_structure_sg.structure[n].coords for n in node2] relative1 = np.array([np.array(coords1[n]) - np.array(coords1[0]) for n in list(range(1, 4))]) relative2 = np.array([np.array(coords2[n]) - np.array(coords2[0]) for n in list(range(1, 4))]) try: rotationMatrix = np.dot(relative1.T, np.linalg.inv(relative2.T)) except np.linalg.LinAlgError as err: if 'Singular matrix' in str(err): for m in range(relative1.shape[0]): if relative1[m, 0] == 0 and relative1[m, 1] == 0 and relative1[m, 2] == 0: relative1[m, 0] = 1e-9 relative1[m, 2] = -1e-9 for m in range(relative1.shape[1]): if relative1[0, m] == 0 and relative1[1, m] == 0 and relative1[2, m] == 0: relative1[0, m] = 1e-9 relative1[2, m] = -1e-9 for m in range(relative2.shape[0]): if relative2[m, 0] == 0 and relative2[m, 1] == 0 and relative2[m, 2] == 0: relative2[m, 0] = 1e-9 relative2[m, 2] = -1e-9 for m in range(relative2.shape[1]): if relative2[0, m] == 0 and relative2[1, m] == 0 and relative2[2, m] == 0: relative2[0, m] = 1e-9 relative2[2, m] = -1e-9 rotationMatrix = np.dot( relative1.T, np.linalg.inv(relative2.T)) else: print('failed') sys.exit() relative = np.array([np.array(bulk_super_structure_sg.structure[n].coords) -
np.array(coords2[0])
numpy.array
from gehm.utils.np_distances import * from tests.test_data import create_test_data import pytest import numpy as np import torch from numpy import cos, sin @pytest.mark.distances def test_nx_second_order_proximity(create_test_data): G,G_undir=create_test_data nodes=np.array(G.nodes) # Test 1: Ordering when subset proximity sel1=nodes[[0,1,2,3]] sel2=nodes[[0,3,2,1]] prox1=nx_second_order_proximity(G,sel1,False) prox2=nx_second_order_proximity(G,sel2,False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[0,1]==prox2[0,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[1,2]==prox2[3,2]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 2: Ordering when whole network proximity prox1=nx_second_order_proximity(G,sel1,True) prox2=nx_second_order_proximity(G,sel2,True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,3]==prox2[3,3]), "Ordering problem, {} != {}".format(prox1[1,3],prox2[3,3]) assert (prox1[3,1]==prox2[1,1]), "Ordering problem, {} != {}".format(prox1[3,1],prox2[1,1]) # Test 3+4: Without row normalization prox1=nx_second_order_proximity(G,sel1,False, norm_rows=False) prox2=nx_second_order_proximity(G,sel2,False, norm_rows=False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[0,1]==prox2[0,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[1,2]==prox2[3,2]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) prox1=nx_second_order_proximity(G,sel1,True, norm_rows=False) prox2=nx_second_order_proximity(G,sel2,True, norm_rows=False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,3]==prox2[3,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[3,1]==prox2[1,1]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 5+6: Without row normalization, but with batch normalization prox1=nx_second_order_proximity(G,sel1,False, norm_rows=False, norm_rows_in_sample=True) prox2=nx_second_order_proximity(G,sel2,False, norm_rows=False, norm_rows_in_sample=True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[0,1]==prox2[0,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[1,2]==prox2[3,2]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) prox1=nx_second_order_proximity(G,sel1,True, norm_rows=False, norm_rows_in_sample=True) prox2=nx_second_order_proximity(G,sel2,True, norm_rows=False, norm_rows_in_sample=True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,3]==prox2[3,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[3,1]==prox2[1,1]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 7: Whole network, but return batch order prox1=nx_second_order_proximity(G,sel1,True, norm_rows=True, to_batch=True) prox2=nx_second_order_proximity(G,sel2,True, norm_rows=True, to_batch=True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,0]==prox2[3,0]), "Ordering problem, {} != {}".format(prox1[1,0],prox2[3,0]) assert (prox1[3,1]==prox2[1,3]), "Ordering problem, {} != {}".format(prox1[3,1],prox2[1,3]) # Test 8: Whole network, but return batch order, no norm prox1=nx_second_order_proximity(G,sel1,True, norm_rows=False, to_batch=True) prox2=nx_second_order_proximity(G,sel2,True, norm_rows=False, to_batch=True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,0]==prox2[3,0]), "Ordering problem, {} != {}".format(prox1[1,0],prox2[3,0]) assert (prox1[3,1]==prox2[1,3]), "Ordering problem, {} != {}".format(prox1[3,1],prox2[1,3]) # Now repeat everything with an undirected graph: G=G_undir nodes=np.array(G.nodes) # Test 1: Ordering when subset proximity sel1=nodes[[0,1,2,3]] sel2=nodes[[0,3,2,1]] prox1=nx_second_order_proximity(G,sel1,False) prox2=nx_second_order_proximity(G,sel2,False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[0,1]==prox2[0,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[1,2]==prox2[3,2]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 2: Ordering when whole network proximity prox1=nx_second_order_proximity(G,sel1,True) prox2=nx_second_order_proximity(G,sel2,True) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,3]==prox2[3,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[3,1]==prox2[1,1]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 3+4: Without row normalization prox1=nx_second_order_proximity(G,sel1,False, norm_rows=False) prox2=nx_second_order_proximity(G,sel2,False, norm_rows=False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[0,1]==prox2[0,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[1,2]==prox2[3,2]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) prox1=nx_second_order_proximity(G,sel1,True, norm_rows=False) prox2=nx_second_order_proximity(G,sel2,True, norm_rows=False) prox1=np.round(prox1,5) prox2=np.round(prox2,5) assert (prox1[1,3]==prox2[3,3]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) assert (prox1[3,1]==prox2[1,1]), "Ordering problem, {} != {}".format(prox1[0,1],prox2[0,3]) # Test 5+6: Without row normalization, but with batch normalization prox1=nx_second_order_proximity(G,sel1,False, norm_rows=False, norm_rows_in_sample=True) prox2=nx_second_order_proximity(G,sel2,False, norm_rows=False, norm_rows_in_sample=True) prox1=
np.round(prox1,5)
numpy.round
from resample import _util as u import numpy as np from numpy.testing import assert_equal, assert_allclose import pytest @pytest.mark.parametrize("method", (0, 1)) def test_rcont_1(method): m = np.arange(6).reshape((3, 2)) r = np.sum(m, axis=1) c = np.sum(m, axis=0) rng = np.random.default_rng(1) for w in u.rcont(5, r, c, method, rng): assert_equal(np.sum(w, axis=0), c) assert_equal(np.sum(w, axis=1), r) @pytest.mark.parametrize("shape", ((2, 3), (3, 2), (3, 3), (3, 4), (4, 3))) def test_rcont_2(shape): m = np.arange(np.prod(shape)).reshape(shape) r = np.sum(m, axis=1) c = np.sum(m, axis=0) # Patefield should give same results if zero row or column is inserted rng = np.random.default_rng(1) w1 = u.rcont(5, r, c, 1, rng) r2 = np.zeros(len(r) + 1) r2[0] = r[0] r2[2:] = r[1:] rng = np.random.default_rng(1) w2 = u.rcont(5, r2, c, 1, rng) assert_equal(w2[:, 1, :], 0) mask = np.ones(w2.shape[1], dtype=bool) mask[1] = False assert_equal(w2[:, mask, :], w1) c2 = np.zeros(len(c) + 1) c2[0] = c[0] c2[2:] = c[1:] rng = np.random.default_rng(1) w2 = u.rcont(5, r, c2, 1, rng) assert_equal(w2[:, :, 1], 0) mask = np.ones(w2.shape[2], dtype=bool) mask[1] = False assert_equal(w2[:, :, mask], w1) rng = np.random.default_rng(1) w2 = u.rcont(5, r2, c2, 1, rng) assert_equal(w2[:, 1, 1], 0) r_mask = np.ones(w2.shape[1], dtype=bool) r_mask[1] = False c_mask = np.ones(w2.shape[2], dtype=bool) c_mask[1] = False assert_equal(w2[:, r_mask, :][:, :, c_mask], w1) def test_rcont_bad_method(): m = np.arange(6).reshape(3, 2) r = np.sum(m, axis=1) c = np.sum(m, axis=0) rng = np.random.default_rng(1) with pytest.raises(ValueError): u.rcont(5, r, c, 2, rng) @pytest.mark.parametrize("method", (0, 1)) def test_rcont_bad_input(method): m = np.arange(6).reshape(3, 2) r = np.sum(m, axis=1) c = np.sum(m, axis=0) rng =
np.random.default_rng(1)
numpy.random.default_rng
""" Project: RadarBook File: ovals_of_cassini_example.py Created by: <NAME> On: 7/2/2018 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ import sys from Chapter04.ui.OvalsOfCassini_ui import Ui_MainWindow from numpy import linspace, log10, sqrt, sin, cos, imag, real from scipy.constants import c, Boltzmann as k, pi from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.backends.qt_compat import QtCore from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class OvalsOfCassini(QMainWindow, Ui_MainWindow): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) # Connect to the input boxes, when the user presses enter the form updates self.separation_distance.returnPressed.connect(self._update_canvas) self.system_temperature.returnPressed.connect(self._update_canvas) self.bandwidth.returnPressed.connect(self._update_canvas) self.noise_figure.returnPressed.connect(self._update_canvas) self.transmit_losses.returnPressed.connect(self._update_canvas) self.receive_losses.returnPressed.connect(self._update_canvas) self.peak_power.returnPressed.connect(self._update_canvas) self.transmit_antenna_gain.returnPressed.connect(self._update_canvas) self.receive_antenna_gain.returnPressed.connect(self._update_canvas) self.frequency.returnPressed.connect(self._update_canvas) self.bistatic_target_rcs.returnPressed.connect(self._update_canvas) # Set up a figure for the plotting canvas fig = Figure() self.axes1 = fig.add_subplot(111) self.my_canvas = FigureCanvas(fig) # Add the canvas to the vertical layout self.verticalLayout.addWidget(self.my_canvas) self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(self.my_canvas, self)) # Update the canvas for the first display self._update_canvas() def _update_canvas(self): """ Update the figure when the user changes an input value. :return: """ # Get the values from the form separation_distance = float(self.separation_distance.text()) system_temperature = float(self.system_temperature.text()) bandwidth = float(self.bandwidth.text()) noise_figure = float(self.noise_figure.text()) transmit_losses = float(self.transmit_losses.text()) receive_losses = float(self.receive_losses.text()) peak_power = float(self.peak_power.text()) transmit_antenna_gain = float(self.transmit_antenna_gain.text()) receive_antenna_gain = float(self.receive_antenna_gain.text()) frequency = float(self.frequency.text()) bistatic_target_rcs = float(self.bistatic_target_rcs.text()) # Number of points for plotting ovals number_of_points = 100000 # Parameters for the Cassini ovals equation # r ^ 4 + a ^ 4 - 2 a ^ 2 r ^ 2(1 + cos(2 theta)) = b ^ 4 # Parameter "a" a = 0.5 * separation_distance # Calculate the wavelength (m) wavelength = c / frequency # Calculate the bistatic radar range factor bistatic_range_factor = (peak_power * transmit_antenna_gain * receive_antenna_gain * wavelength ** 2 * 10.0 ** (bistatic_target_rcs / 10.0)) / ((4.0 * pi) ** 3 * k * system_temperature * bandwidth * 10.0 ** (noise_figure / 10.0) * transmit_losses * receive_losses) # Full angle sweep t = linspace(0, 2.0 * pi, number_of_points) # Calculate the signal to noise ratio at which a = b SNR_0 = 10.0 * log10(16.0 * bistatic_range_factor / separation_distance ** 4) # Create the list of signal to noise ratios to plot SNR = [SNR_0 - 6, SNR_0 - 3, SNR_0, SNR_0 + 3] # Clear the axes for the updated plot self.axes1.clear() # Loop over all the desired signal to noise ratios for s in SNR: # Convert to linear units snr = 10.0 ** (s / 10.0) # Parameter for Cassini ovals b = (bistatic_range_factor / snr) ** 0.25 if a > b: # Calculate the +/- curves r1 = sqrt(a ** 2 * (cos(2.0 * t) + sqrt(cos(2 * t) ** 2 - 1.0 + (b / a) ** 4))) r2 = sqrt(a ** 2 * (cos(2.0 * t) - sqrt(cos(2 * t) ** 2 - 1.0 + (b / a) ** 4))) # Find the correct indices for imaginary parts = 0 i1 = imag(r1) == 0 i2 = imag(r2) == 0 r1 = real(r1) r2 = real(r2) # Plot both parts of the curve label_text = "SNR = {:.1f}".format(s) self.axes1.plot(r1[i1] * cos(t[i1]), r1[i1] * sin(t[i1]), 'k.', label=label_text) self.axes1.plot(r2[i2] *
cos(t[i2])
numpy.cos
# -*- coding: utf-8 -*- # @Time : 2018/12/21 11:12 # @Author : Alan # @Email : <EMAIL> # @File : Utils.py # @Software: PyCharm import tensorflow as tf import time from datetime import timedelta import numpy as np from collections import defaultdict import pickle import os from collections import Counter UNKNOWN = '<UNK>' PADDING = '<PAD>' # print tensor shape def print_shape(varname, var): """ :param varname: tensor name :param var: tensor variable """ try: print('{0} : {1}'.format(varname, var.get_shape())) except: print('{0} : {1}'.format(varname, np.shape(var))) # print log info on SCREEN and LOG file simultaneously def print_log(*args, **kwargs): print(*args) if len(kwargs) > 0: print(*args, **kwargs) return None # print all used hyper-parameters on both SCREEN an LOG file def print_args(args, log_file): """ :Param args: all used hyper-parameters :Param log_f: the log life """ argsDict = vars(args) argsList = sorted(argsDict.items()) print_log("------------- HYPER PARAMETERS -------------", file = log_file) for a in argsList: print_log("%s: %s" % (a[0], str(a[1])), file = log_file) print("-----------------------------------------", file = log_file) return None # time cost def get_time_diff(startTime): endTime = time.time() diff = endTime - startTime return timedelta(seconds = int(round(diff))) # count the number of trainable parameters in model def count_parameters(): totalParams = 0 for variable in tf.trainable_variables(): shape = variable.get_shape() variableParams = 1 for dim in shape: variableParams *= dim.value totalParams += variableParams return totalParams # 余弦相似度计算 def feature2cos_sim(feat_q, feat_a): # feat_q: 2D:(bz, hz) norm_q = tf.sqrt(tf.reduce_sum(tf.multiply(feat_q, feat_q), 1)) norm_a = tf.sqrt(tf.reduce_sum(tf.multiply(feat_a, feat_a), 1)) mul_q_a = tf.reduce_sum(tf.multiply(feat_q, feat_a), 1) cos_sim_q_a = tf.div(mul_q_a, tf.multiply(norm_q, norm_a)) return tf.clip_by_value(cos_sim_q_a, 1e-5, 0.99999) # margin Loss def cal_loss_and_acc(ori_cand, ori_neg, M): # the target function zero = tf.fill(tf.shape(ori_cand), 0.0) margin = tf.fill(tf.shape(ori_cand), M) # 0.2 # 采用margin loss作为损失函数,希望正样本分数越高越好,负样本分数越低越好 with tf.name_scope("loss"): losses = tf.maximum(zero, tf.subtract(margin, tf.subtract(ori_cand, ori_neg))) loss = tf.reduce_sum(losses) # cal accurancy # 该acc计算方式有待考量 with tf.name_scope("acc"): correct = tf.equal(zero, losses) acc = tf.reduce_mean(tf.cast(correct, "float"), name="acc") return loss, acc def map_score(qids, labels, preds): """""" labels = [int(i) for i in labels] qid2cand = defaultdict(list) for qid, label, pred in zip(qids, labels, preds): qid2cand[qid].append((pred, label)) average_precs = [] for qid, candidates in qid2cand.items(): average_prec = 0 running_correct_count = 0 for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if label > 0: running_correct_count += 1 average_prec += float(running_correct_count) / i average_precs.append(average_prec / (running_correct_count + 1e-6)) map_score = sum(average_precs) / len(average_precs) return map_score def mean_reciprocal_rank(qids, labels, preds): """""" labels = [int(i) for i in labels] qid2cand = defaultdict(list) for qid, label, pred in zip(qids, labels, preds): qid2cand[qid].append((pred, label)) mrr = 0. for qid, candidates in qid2cand.items(): for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if label > 0: mrr += 1. / i break mrr /= len(qid2cand) return mrr def precision_at_k(qids, labels, preds, k=1): """""" labels = [int(i) for i in labels] qid2cand = defaultdict(list) for qid, label, pred in zip(qids, labels, preds): qid2cand[qid].append((pred, label)) p_at_k = 0.0 good_qids = [] for qid, candidates in qid2cand.items(): for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if i == k and label > 0: p_at_k += 1. good_qids.append(qid) if i > k: break p_at_k /= len(qid2cand) return p_at_k def new_map_score(labels, preds): """ :param labels: (questions_classes, list_wise) ----> (873, 15) :param preds: (questions_classes, list_wise) ----> (873, 15) :return: """ assert len(preds) == len(labels), "Invalid Input! pred:%s label:%s" % (len(preds), len(labels)) qid2cand = defaultdict(list) for qid in range(len(labels)): qid2cand[qid] = zip(preds[qid], labels[qid]) average_precs = [] for qid, candidates in qid2cand.items(): average_prec = 0 running_correct_count = 0 for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if label > 0: running_correct_count += 1 average_prec += float(running_correct_count) / i average_precs.append(average_prec / (running_correct_count + 1e-6)) map_score = sum(average_precs) / len(average_precs) return map_score def new_mean_reciprocal_rank(labels, preds): """ :param labels: (questions_classes, list_wise) ----> (873, 15) :param preds: (questions_classes, list_wise) ----> (873, 15) :return: """ assert len(preds) == len(labels), "Invalid Input! pred:%s label:%s" % (len(preds), len(labels)) qid2cand = defaultdict(list) for qid in range(len(labels)): qid2cand[qid] = zip(preds[qid], labels[qid]) mrr = 0. for qid, candidates in qid2cand.items(): for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if label > 0: mrr += 1. / i break mrr /= len(qid2cand) return mrr def new_precision_at_k(labels, preds, k=1): """ :param labels: (questions_classes, list_wise) ----> (873, 15) :param preds: (questions_classes, list_wise) ----> (873, 15) :return: """ assert len(preds) == len(labels), "Invalid Input! pred:%s label:%s" % (len(preds), len(labels)) qid2cand = defaultdict(list) for qid in range(len(labels)): qid2cand[qid] = zip(preds[qid], labels[qid]) p_at_k = 0.0 good_qids = [] for qid, candidates in qid2cand.items(): for i, (score, label) in enumerate(sorted(candidates, key=lambda asd: asd[0], reverse=True), 1): if i == k and label > 0: p_at_k += 1. good_qids.append(qid) if i > k: break p_at_k /= len(qid2cand) return p_at_k if __name__ == '__main__': print(new_map_score(np.array([[0, 0, 1], [0, 0, 1]]), np.array([[0.8, 0.1, 0.1], [0.4, 0.3, 0.3]]))) print(new_map_score(np.array([[0, 0, 1], [0, 0, 1]]),
np.array([[-0.8, -0.1, -0.1], [-0.4, -0.2, -0.2]])
numpy.array
# %% [markdown] # # Load and import import os from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from graspy.plot import gridplot, heatmap, pairplot from graspy.simulations import sbm from graspy.utils import binarize, get_lcc, is_fully_connected from src.data import load_everything from src.hierarchy import normalized_laplacian, signal_flow from src.utils import savefig FNAME = os.path.basename(__file__)[:-3] print(FNAME) SAVEFIGS = True DEFAULT_FMT = "png" DEFUALT_DPI = 150 plt.style.use("seaborn-white") sns.set_palette("deep") sns.set_context("talk", font_scale=1) def stashfig(name, **kws): if SAVEFIGS: savefig(name, foldername=FNAME, fmt=DEFAULT_FMT, dpi=DEFUALT_DPI, **kws) # %% [markdown] # # null simulation def get_feedforward_B(low_p, diag_p, feedforward_p, n_blocks=5): B = np.zeros((n_blocks, n_blocks)) B += low_p B -= np.diag(np.diag(B)) B -= np.diag(np.diag(B, k=1), k=1) B += np.diag(diag_p * np.ones(n_blocks)) B += np.diag(feedforward_p * np.ones(n_blocks - 1), k=1) return B # block_probs = get_feedforward_B(low_p, diag_p, feedforward_p) def get_recurrent_feedforward_B(low_p, diag_p, feedforward_p, n_blocks=5): alternating = np.ones(2 * n_blocks - 1) alternating[1::2] = 0 late_alternating =
np.ones(2 * n_blocks - 1)
numpy.ones
#!/usr/bin/env python3 #General Packages import numpy as np import matplotlib.pyplot as plt #Packages to make life easier import os from tqdm import tqdm def find_adjacent(pt, skeleton): pt_list = [] if skeleton[pt[0]-1][pt[1]-1] == 1: pt_list.append((pt[0]-1,pt[1]-1)) if skeleton[pt[0]-1][pt[1]] == 1: pt_list.append((pt[0]-1,pt[1])) if skeleton[pt[0]-1][pt[1]+1] == 1: pt_list.append((pt[0]-1, pt[1]+1)) if skeleton[pt[0]][pt[1]-1] == 1: pt_list.append((pt[0], pt[1]-1)) if skeleton[pt[0]][pt[1]+1] == 1: pt_list.append((pt[0], pt[1]+1)) if skeleton[pt[0]+1][pt[1]-1] == 1: pt_list.append((pt[0]+1, pt[1]-1)) if skeleton[pt[0]+1][pt[1]] == 1: pt_list.append((pt[0]+1, pt[1])) if skeleton[pt[0]+1][pt[1]+1] == 1: pt_list.append((pt[0]+1, pt[1]+1)) return pt_list def generate_node_connections(node_pts): node_num = len(node_pts[0]) connection_mtx = np.zeros((node_num, node_num), dtype=int) #Generate matrix of connection lengths, 0 is no connection for i, pt in enumerate(node_pts[0]): path_list = find_adjacent(pt, skeleton) for p, path_start in enumerate(path_list): cur_p = path_start last_p = pt path_length = 1 while cur_p not in node_pts[0]: paths = find_adjacent(cur_p, skeleton) if len(paths) > 2: print("This point has too many adjacent points") break paths.remove(last_p) last_p = cur_p cur_p = paths[0] path_length+=1 node_idx = node_pts[0].index(cur_p) connection_mtx[i][node_idx] = path_length # print('\n'.join([''.join(['{:3}'.format(item) for item in row]) for row in connection_mtx])) #Convert from matrix to list of connections and lengths node_connection_list = [[],[],[],[]] for i, pt in enumerate(node_pts[0]): nz =
np.nonzero(connection_mtx[i])
numpy.nonzero
import sys sys.path import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from tqdm import tqdm_notebook import json import xlrd import torch import torchvision import numpy as np import pandas as pd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms from pathlib import Path from torch.utils.data import Dataset, DataLoader from torchvision.transforms import transforms from torchvision.utils import make_grid from sklearn.metrics import roc_curve, auc, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score class ECG_Net(nn.Module): def __init__(self, init_weights= True, num_classes=26, cfg = None): super(ECG_Net, self).__init__() if cfg is None: cfg = [32, 32,32, 64,64,64, 128, 128, 128, 256, 256, 256, 512, 512, 512] inchannel = 12 self.pre_conv = nn.Sequential( nn.Conv1d(inchannel, cfg[0], kernel_size=21, stride= 2, padding=10, bias=True), nn.BatchNorm1d(cfg[0]), nn.ReLU(), nn.Conv1d(cfg[0], cfg[1], kernel_size=21, stride= 2, padding=10, bias=True), nn.BatchNorm1d(cfg[1]), nn.ReLU(), nn.Conv1d(cfg[1], cfg[2], kernel_size=21, stride= 2, padding=10, bias=True), nn.BatchNorm1d(cfg[2]), nn.ReLU(), nn.MaxPool1d(2, stride=2) ) self.stage1 = nn.Sequential( nn.Conv1d(cfg[2], cfg[3], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[3]), nn.ReLU(), nn.Conv1d(cfg[3], cfg[4], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[4]), nn.ReLU(), nn.Conv1d(cfg[4], cfg[5], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[5]), nn.ReLU(), nn.MaxPool1d(2, stride=2) ) self.stage2 = nn.Sequential( nn.Conv1d(cfg[5], cfg[6], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[6]), nn.ReLU(), nn.Conv1d(cfg[6], cfg[7], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[7]), nn.ReLU(), nn.Conv1d(cfg[7], cfg[8], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[8]), nn.ReLU(), nn.MaxPool1d(2, stride=2) ) self.stage3 = nn.Sequential( nn.Conv1d(cfg[8], cfg[9], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[9]), nn.ReLU(), nn.Conv1d(cfg[9], cfg[10], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[10]), nn.ReLU(), nn.Conv1d(cfg[10], cfg[11], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[11]), nn.ReLU(), nn.MaxPool1d(2, stride=2) ) self.stage4 = nn.Sequential( nn.Conv1d(cfg[11], cfg[12], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[12]), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(cfg[12], cfg[13], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[13]), nn.ReLU(), nn.MaxPool1d(2, stride=2), nn.Conv1d(cfg[13], cfg[14], kernel_size=5, stride= 1, padding=2, bias=True), nn.BatchNorm1d(cfg[14]), nn.ReLU(), nn.MaxPool1d(2, stride=2) ) self.avg_pool = nn.AvgPool1d(2, stride=2) self.dense1 =nn.Sequential( nn.Linear(cfg[14]*2, 512, bias = True), nn.ReLU(), nn.Dropout(p=0.6) ) self.dense2 =nn.Sequential( nn.Linear(512, 512, bias = True), nn.ReLU(), nn.Dropout(p=0.6) ) self.classifer = nn.Sequential( nn.Linear(512, num_classes, bias = True), nn.Sigmoid() ) if init_weights: self._initialize_weights() def forward(self, x): x = torch.squeeze(x, dim=1) x = torch.transpose(x, 1, 2) out = self.pre_conv(x) out = self.stage1(out) out = self.stage2(out) out = self.stage3(out) out = self.stage4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.dense1(out) out = self.dense2(out) out = self.classifer(out) return out def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.constant_(m.bias, 0) nn.init.xavier_normal_(m.weight) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) nn.init.xavier_normal_(m.weight) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ECG_Net().to(device) def train_model(model,train_loader,val_loader,batch_size, num_epochs,loss_fun,optimizer): # to track the training loss as the model trains train_losses = [] # to track the validation loss as the model trains valid_losses = [] # to track the average training loss per epoch as the model trains avg_train_losses = [] # to track the average validation loss per epoch as the model trains avg_valid_losses = [] for epoch in tqdm_notebook(range(1, num_epochs + 1)): if epoch in [10,20,30,40,50]: for param_group in optimizer.param_groups: param_group['lr']*=0.1 train_running_precision = 0.0 train_running_recall = 0.0 val_running_precision = 0.0 val_running_recall = 0.0 train_running_acc = 0 val_running_acc = 0 train_batch_num = 0 val_batch_num = 0 ################### # train the model # ################### model.train() # model for training for batch_idx, (data, label) in tqdm_notebook(enumerate(train_loader)): data, label = data.float().to(device), label.to(device) data, target = Variable(data), Variable(label) optimizer.zero_grad() output = model(data) loss = loss_fun(output, label) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=5, norm_type=2) optimizer.step() train_losses.append(loss.item()) train_batch_num +=1 ###################### # validate the model # ###################### pre_result = [] label_tmp = [] model.eval() # prep model for evaluation with torch.no_grad(): for batchsize,(data, label) in tqdm_notebook(enumerate(val_loader)): data, label = data.float().to(device), label.to(device) data, target = Variable(data), Variable(label) output = model(data) loss = loss_fun(output, label).item() # sum up batch loss valid_losses.append(loss) pre_result.append(output) label_tmp.append(label) pred = torch.cat(pre_result,dim=0) label = torch.cat(label_tmp,dim=0) best_thres=np.array([0.8, 0.8, 0.64, 0.76 , 0.75 ,0.61, 0.71, 0.78, 0.47, 0.8, 0.49, 0.85, 0.57, 0.32 , 0.68, 0.46, 0.22, 0.83, 0.87 ,0.11, 0.52, 0.58, 0.85, 0.43 , 0.75, 0.33 ]) best_thres = torch.from_numpy(best_thres) acc_result = torch.ge(pred.cpu(), best_thres) acc_result = acc_result+0 acc = accuracy_score(label.cpu(), acc_result.cpu(),normalize = True) train_loss = np.average(train_losses) valid_loss =
np.average(valid_losses)
numpy.average
import numpy as np from scipy.spatial import Delaunay from sklearn.linear_model import LinearRegression from collections import defaultdict from math import inf def closest_points(point, points, k): K = [] for i in range(len(points)): point2 = [points[i][0][0], points[i][1][0]] # points[i][0] + points[i][1] dist = np.linalg.norm(np.array(point) - np.array(point2)) if dist < k: K.append(point2) return K def in_hull(p, hull): if not isinstance(hull, Delaunay): hull = Delaunay(hull) return hull.find_simplex(p) >= 0 def LWR(X, Q, weights, point): y = np.zeros((len(X), len(point))) for i in range(len(X)-1): y[i] = Q[X[i][0]][X[i][1]] regr = LinearRegression() # need to use another function regr.fit(X, y, sample_weight=weights) return regr.predict(point) def find_max_q(env, alpha, gamma, h, k_threshold, Q, e,): qmax = [-inf, -inf] actions = np.linspace(env.min_action, env.max_action, 1000) for a in actions: qnew = hedger_prediction(env.state, a, h, k_threshold, env, alpha, gamma, Q, e) if np.all(qmax < qnew): qmax = qnew return qmax def hedger_prediction(state, action, h, k_threshold, env, alpha, gamma, Q, e): q =
np.array(state + action)
numpy.array
import os import cv2 import numpy as np import tensorflow as tf import random import math from config import cfg from data_augmentation import get_training_patches, check_for_TTA, generate_TTA_tiles ratio_threshold = [0.25, 0.2, 0.15, 0.1, 0.05] data_path = cfg.data_path image_folder = 'images' gt_folder = 'ground_truth' log_path = '../log' mean_r, mean_g, mean_b = -1, -1, -1 def get_mean_color_values(): print("Calculating mean colors for training dataset!!") img_path = data_path + '/train/' + image_folder + '/' r_channels = [] g_channels = [] b_channels = [] for file in os.listdir(img_path): img = cv2.imread(img_path + file) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) r_channels.append(img[:,:,0]) g_channels.append(img[:,:,1]) b_channels.append(img[:,:,2]) mean_r = np.mean(np.array(r_channels)) mean_g = np.mean(np.array(g_channels)) mean_b = np.mean(np.array(b_channels)) print("mean values for - R: {0}, G: {1}, B: {2}".format(mean_r, mean_g, mean_b)) return mean_r, mean_g, mean_b if cfg.compute_mean_rgb and mean_r == -1 and mean_g == -1 and mean_b == -1: mean_r, mean_g, mean_b = get_mean_color_values() else: mean_r, mean_g, mean_b = 103.61419795694658, 109.0776216765373, 100.39708955555578 def get_num_patches_per_tile(height, width, training_stride=cfg.patch_size//2): total_width = width + (2 * cfg.train_tile_padding) num_patches_width = int((total_width-cfg.patch_size)/training_stride) total_height = height + (2 * cfg.train_tile_padding) num_patches_height = int((total_height-cfg.patch_size)/training_stride) return num_patches_height, num_patches_width def load_training_data(epoch): batch_size = cfg.batch_size patch_size = cfg.patch_size path = data_path img_path = data_path + '/train/' + image_folder + '/' gt_path = data_path + '/train/' + gt_folder + '/' num_building_px = 0 total_num_px = 0 image_files = os.listdir(img_path) random.shuffle(image_files) if len(image_files) % cfg.image_tile_per_mini_epoch == 0: call_count = len(image_files) // cfg.image_tile_per_mini_epoch else: call_count = (len(image_files) // cfg.image_tile_per_mini_epoch) + 1 #call_count is the number of times the loop will iterate to get all patches for 1 epoch yield call_count height, width, _ = cv2.imread(img_path + image_files[0]).shape stride = cfg.patch_size//2 num_patches_height, num_patches_width = get_num_patches_per_tile(height, width, stride) num_patches_per_tile = num_patches_height * num_patches_width train_count = num_patches_per_tile * cfg.image_tile_per_mini_epoch train_count -= train_count % cfg.batch_size val_count = 10 * cfg.batch_size num_patches_per_img = num_patches_per_tile x_list = [] y_list = [] if cfg.patch_generation == 'sequential' or (cfg.patch_generation == 'alternating' and epoch%2==0): for i in range(num_patches_width): x_list += [i * stride] x_list *= num_patches_height for i in range(num_patches_height): y_list += [i * stride] * num_patches_width ########### to shuffle the list of x and corresponding y positions ############ shuffled_index = random.sample(range(0,len(x_list)), len(x_list)) x_list_new = [] y_list_new = [] for position_index in shuffled_index: x_list_new.append(x_list[position_index]) y_list_new.append(y_list[position_index]) x_list = x_list_new y_list = y_list_new else: # x_list, y_list = np.random.randint(cfg.tile_width + (2 * cfg.tile_padding)-cfg.patch_size, size = (2, num_patches_per_img)) x_list = np.random.randint(width + (2 * cfg.train_tile_padding)-cfg.patch_size, size = (num_patches_per_img)) y_list = np.random.randint(height + (2 * cfg.train_tile_padding)-cfg.patch_size, size = (num_patches_per_img)) for call_num in range(call_count): img_tiles = [] gt_tiles = [] for i in range(cfg.image_tile_per_mini_epoch): if len(image_files) == 0: break image_file = image_files.pop() img = cv2.imread(img_path + image_file) img = cv2.copyMakeBorder(img, cfg.train_tile_padding, cfg.train_tile_padding, cfg.train_tile_padding, cfg.train_tile_padding, cv2.BORDER_REFLECT_101) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_tiles.append(img) gt = cv2.imread(gt_path + image_file, 0) gt = cv2.copyMakeBorder(gt, cfg.train_tile_padding, cfg.train_tile_padding, cfg.train_tile_padding, cfg.train_tile_padding, cv2.BORDER_REFLECT_101) gt_tiles.append(gt) images, ground_truths = get_training_patches(img_tiles, gt_tiles, x_list, y_list, mean_r, mean_g, mean_b) images = np.array(images).astype(np.float32) / 255. ground_truths = np.array(ground_truths).astype(np.float32) / 255. # else block drops batches if building to non-building ratio is less than than threshold for first 5 epoch and maintain_ratio flag is set to True if not cfg.maintain_ratio or epoch > 4: trX = images[:train_count] trY = ground_truths[:train_count] valX = images[-val_count:] valY = ground_truths[-val_count:] trY = trY.reshape((-1, cfg.patch_size, cfg.patch_size, 1)) valY = valY.reshape((val_count, cfg.patch_size, cfg.patch_size, 1)) num_tr_batch = trY.shape[0] // cfg.batch_size num_val_batch = val_count // cfg.batch_size else: threshold = ratio_threshold[epoch] special_batch_images = [] special_batch_gt = [] for batch_index in range(0, images.shape[0], cfg.batch_size): check_batch = np.array(ground_truths[batch_index:batch_index+cfg.batch_size]).astype(np.uint8) building_px_count = np.count_nonzero(check_batch) total_px_count = check_batch.size if building_px_count/total_px_count >= threshold: # for batch in range(cfg.batch_size): special_batch_images.extend(images[batch_index : batch_index+cfg.batch_size]) special_batch_gt.extend(ground_truths[batch_index : batch_index+cfg.batch_size]) special_train_count = len(special_batch_images) special_val_count = 2 * cfg.batch_size images = np.array(special_batch_images) ground_truths = np.array(special_batch_gt) trX = images[:special_train_count] trY = ground_truths[:special_train_count] valX = images[-special_val_count:] valY = ground_truths[-special_val_count:] trY = trY.reshape((special_train_count, cfg.patch_size, cfg.patch_size, 1)) valY = valY.reshape((special_val_count, cfg.patch_size, cfg.patch_size, 1)) num_tr_batch = special_train_count // cfg.batch_size num_val_batch = special_val_count // cfg.batch_size yield trX, trY.astype(np.uint8), num_tr_batch, valX, valY.astype(np.uint8), num_val_batch num_building_px += np.count_nonzero(trY) total_num_px += trY.size building_total_ratio = round((num_building_px / total_num_px) * 100, 2) print("epoch: {0}, building to total pixels ratio: {1}%".format(epoch, building_total_ratio)) def get_patch_weights(patch_size=cfg.test_patch_size): choice = 1 if choice == 0: step_size = (1.0 - 0.5)/(patch_size/2) a = np.arange(1.0, 0.5, -step_size) b = a[::-1] c = np.concatenate((b,a)) ct = c.reshape(-1,1) x = ct*c return x elif choice == 1: min_weight = 0.5 step_count = patch_size//4 step_size = (1.0 - min_weight)/step_count a = np.ones(shape=(patch_size,patch_size), dtype=np.float32) a = a * min_weight for i in range(1, step_count + 1): a[i:-i, i:-i] += step_size a = cv2.GaussianBlur(a,(5,5),0) return a else: a = np.ones(shape=(patch_size,patch_size), dtype=np.float32) return a def get_image_path(): if cfg.is_training: test_img_path = data_path + '/validation/' + image_folder + '/' else: test_img_path = data_path + '/test/' + image_folder + '/' tta_status = check_for_TTA(test_img_path) if cfg.test_time_augmentation and not tta_status: generate_TTA_tiles(test_img_path, test_img_path) # files = [f for f in os.listdir(test_img_path) if f.endswith('.tif')] files = [f for f in os.listdir(test_img_path)] file_count = len(files) yield file_count for fi in files: yield str(test_img_path + '/' + fi) def get_image_patches(img_path, patch_size=cfg.test_patch_size, batch_size=cfg.batch_size, batch_count=250, stride=cfg.test_patch_size//2, log_path='../log'): img = cv2.imread(img_path) img = cv2.copyMakeBorder(img, cfg.test_tile_padding, cfg.test_tile_padding, cfg.test_tile_padding, cfg.test_tile_padding, cv2.BORDER_REFLECT_101) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32) ##Segment to get mean subtracted image mean_adjusted_img_r = img[:,:,0] - mean_r mean_adjusted_img_g = img[:,:,1] - mean_g mean_adjusted_img_b = img[:,:,2] - mean_b img = cv2.merge([mean_adjusted_img_r, mean_adjusted_img_g, mean_adjusted_img_b]).astype(np.float32) img = img / 255. x, y, z = img.shape yield x, y call_count = math.ceil((((x - patch_size)/stride + 1)*((y - patch_size)/stride + 1))/(batch_size*batch_count)) yield call_count # print('call_count: {0}'.format(call_count)) img_map =
np.zeros((x, y), dtype=np.float32)
numpy.zeros
from __future__ import print_function from optparse import OptionParser import numpy as np import healpy as hp import matplotlib.pyplot as plt import pymaster as nmt import os import sys DTOR=np.pi/180 def opt_callback(option, opt, value, parser): setattr(parser.values, option.dest, value.split(',')) parser = OptionParser() parser.add_option('--nside', dest='nside_out', default=512, type=int, help='Resolution parameter') parser.add_option('--isim-ini', dest='isim_ini', default=1, type=int, help='Index of first simulation') parser.add_option('--isim-end', dest='isim_end', default=100, type=int, help='Index of last simulation') parser.add_option('--wo-contaminants', dest='wo_cont', default=False, action='store_true', help='Set if you don\'t want to use contaminants') parser.add_option('--plot', dest='plot_stuff', default=False, action='store_true', help='Set if you want to produce plots') parser.add_option('--wo-pureb', dest='wo_pureb', default=False, action='store_true', help='Set if you don\'t want to purify B-modes') parser.add_option('--no-deproject',dest='no_deproject',default=False,action='store_true', help='Set if you will include contaminants but won\'t clean them') parser.add_option('--no-debias',dest='no_debias',default=False,action='store_true', help='Set if you will include contaminants, clean them but won\'t correct for the bias') (o, args) = parser.parse_args() nsims=o.isim_end-o.isim_ini+1 w_cont=not o.wo_cont w_pureb=not o.wo_pureb #Create output directory predir="tests_sph" os.system("mkdir -p "+predir) prefix=predir+"/run_pure0%d_ns%d_cont%d"%(w_pureb,o.nside_out,w_cont) if o.no_deproject : prefix+="_no_deproj" if o.no_debias : prefix+="_no_debias" #Read theory power spectra def read_cl_camb(fname) : data=np.loadtxt(fname,unpack=True) ll=np.arange(3*o.nside_out,dtype=float) fac=2*np.pi/(ll[2:]*(ll[2:]+1.)) cl_tt=np.zeros_like(ll); cl_tt[2:]=data[1,:3*o.nside_out-2]*fac cl_ee=np.zeros_like(ll); cl_ee[2:]=data[2,:3*o.nside_out-2]*fac cl_bb=np.zeros_like(ll); cl_bb[2:]=data[3,:3*o.nside_out-2]*fac cl_te=np.zeros_like(ll); cl_te[2:]=data[4,:3*o.nside_out-2]*fac return ll,cl_tt,cl_ee,cl_bb,cl_te l,cltt,clee,clbb,clte=read_cl_camb("data/cls_cmb.txt") #Noise power spectrum nlev=(1.*np.pi/(180*60))**2 #1 uK-arcmin noise level nltt=nlev*(np.ones_like(l)+(25./(l+0.1))**2.4) #1/ell noise with a knee scale of ell=10 (optimistic) nlee=2*nltt; nlbb=2*nltt; nlte=0*nltt #Beam fwhm_amin=20. #Corresponding to 0.5m aperture at 90GHz beam=np.exp(-0.5*l*(l+1)*(fwhm_amin*np.pi/(180*60*2.355))**2) #Read mask mask=hp.read_map("data/mask_cmb_ns%d.fits"%o.nside_out,verbose=False) fsky=np.mean(mask/
np.amax(mask)
numpy.amax
import h5py import numpy as np from pyquaternion import Quaternion import argparse import os import sys parser = argparse.ArgumentParser(description='Generate new IMU measurements for all trajectories in the given hdf5 file') parser.add_argument('--hdf5_path', type=str, help='path to hdf5 file',required=True) args = parser.parse_args() if __name__ == '__main__': answer = str(input("Warning: this script will overwrite IMU measurements stored in the given hdf5 dataset. \n"+ \ "Do you want to proceed? (y/n): ")) if not(answer=="y" or answer=="Y"): sys.exit(0) database = h5py.File(args.hdf5_path, "a") db_path = os.path.dirname(args.hdf5_path) # IMU noise parameters chosen randomly in a range of values encountered in real devices noise_acc = 2 * np.power(10., -np.random.uniform(low=1., high=3., size=(1, 3))) noise_gyr = np.power(10., -np.random.uniform(low=1., high=3., size=(1, 3))) imu_bias_acc_rw = 2 * np.power(10., -np.random.uniform(low=3., high=6., size=(1, 3))) imu_bias_gyr_rw = np.power(10., -np.random.uniform(low=4., high=6., size=(1, 3))) for dataset in database: print("Currently processing : %s" % dataset) gt_group = database[dataset]["groundtruth"] gt_attitude = gt_group["attitude"] gt_angular_vel = gt_group["angular_velocity"] gt_accelerations = gt_group["acceleration"] imu_group = database[dataset]["imu"] # Set init parameters imu_accelerometer = np.zeros(gt_attitude.shape, dtype=float) imu_gyroscope = np.zeros(gt_attitude.shape, dtype=float) imu_bias_acc = np.random.normal([0., 0., 0.], imu_bias_acc_rw) imu_bias_gyr = np.random.normal([0., 0., 0.], imu_bias_gyr_rw) init_bias_est_acc = imu_bias_acc + np.random.normal([0., 0., 0.], noise_acc / 50) init_bias_est_gyr = imu_bias_gyr + np.random.normal([0., 0., 0.], noise_gyr / 50) imu_group["accelerometer"].attrs["init_bias_est"] = init_bias_est_acc imu_group["gyroscope"].attrs["init_bias_est"] = init_bias_est_gyr # Pass over trajectory to generate simulated sensor measurements for i in range(gt_attitude.shape[0]): attitude = Quaternion(gt_attitude[i, :]) imu_accelerometer = attitude.conjugate.rotate(gt_accelerations[i, :] + np.array([0., 0., -9.81])) \ + imu_bias_acc + np.random.normal([0., 0., 0.], noise_acc) imu_gyroscope = gt_angular_vel[i, :] + imu_bias_gyr +
np.random.normal([0., 0., 0.], noise_gyr)
numpy.random.normal
"""Implementation of a variety of regression predictors.""" import numpy as np import scipy import sklearn.metrics from PIL import Image class Predictor(): """Base class for predictors. Parameters ---------- zs_train : list List of training observations. ys_train : list List of training measurements. online : boolean Flag to determine whether prediction should incorporate basic memory. """ def __init__(self, zs=[], ys=[], online=False): """Create a predictor.""" self.zs_train = zs self.ys_train = ys if online: self.prev_pred = np.zeros_like(ys[0]) self.online = online def add_data(self, zs, ys): """Add data to the predictor. Parameters ---------- zs : list Observations to add. ys : list Corresponding labels. """ assert len(zs) == len(ys) self.zs_train += zs self.ys_train += ys def pred(self, zs): """Prediction function. Parameters ---------- zs : list New observations. Returns ------- preds : list Predicted labels. """ preds, _ = self.compute_pred(zs) if self.online: if np.linalg.norm(preds[-1]) < 1e-6: print('using prev pred!') preds[-1] = self.prev_pred else: prev_pred = preds[-1] return preds class KernelPredictor(Predictor): """Nonparametric Nadarya-Watson kernel estimator. y_hat = sum_t y_t * Ind(d(z_t, z) < gamma) Parameters ---------- distance : str The type of distance metric to use. Currently only l2 is implemented. gamma: float Bandwidth parameter. transform : str The type of transformation to perform on observations before computing the distance. """ def __init__(self, zs=[], ys=[], distance='l2', gamma=1, transform='identity', online=False): super().__init__(zs=zs, ys=ys, online=False) self.zs_train_arr = None distance_dict = {'l2': self._default_distance} transform_dict = {'identity': self._default_transform, 'resnet': self._resnet_transform, 'sift': self._sift_transform, 'canny': self._canny_transform, 'hog': self._hog_transform, 'gaussian': self._gaussian_transform} self.distance = distance_dict[distance] self.transform = transform_dict[transform] self.gamma = gamma def _default_distance(self, x, y): return sklearn.metrics.pairwise.euclidean_distances(x, y) def _default_transform(self, zs): return np.array(zs).reshape(len(zs), -1) def _sift_transform(self, zs): import cv2 n_features = 10 sift = cv2.xfeatures2d.SIFT_create(n_features) vecs = [] for z in zs: if len(z.shape) < 3: rgb_arr = 255*(np.array([z]*3).T) else: rgb_arr = z[:, :, :] _, descriptors = sift.detectAndCompute(np.uint8(rgb_arr), None) vecs.append(descriptors[:10].flatten()) return np.array(vecs) def _canny_transform(self, zs): import cv2 vecs = [] for z in zs: if len(z.shape) < 3: rgb_arr = 255*(np.array([z]*3).T) else: rgb_arr = z[:, :, :] edges = cv2.Canny(np.uint8(rgb_arr), 100, 200) vecs.append(edges.flatten()) return np.array(vecs) def _gaussian_transform(self, zs): import skimage vecs = [] for z in zs: if len(z.shape) < 3: rgb_arr = 255*(np.array([z]*3).T) else: rgb_arr = z[:, :, :] transform = skimage.filters.gaussian(rgb_arr, sigma=2) vecs.append(transform.flatten()) return np.array(vecs) def _hog_transform(self, zs): from skimage.feature import hog vecs = [] for z in zs: if len(z.shape) < 3: rgb_arr = 255*(np.array([z]*3).T) else: rgb_arr = z[:, :, :] _, hog_img = hog(rgb_arr, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualize=True, multichannel=True) vecs.append(hog_img.flatten()) return np.array(vecs) def _resnet_transform(self, zs): from img2vec_pytorch import Img2Vec img2vec = Img2Vec(cuda=False) img_list = []; vecs = [] for z in zs: if len(z.shape) < 3: rgb_arr = 255*(np.array([z]*3).T) else: rgb_arr = z img_list.append(Image.fromarray(np.uint8(rgb_arr))) vecs += [img2vec.get_vec(img_list[-1], tensor=False)] return np.vstack(vecs) def add_data(self, zs, ys): super().add_data(zs=zs, ys=ys) self.zs_train_arr = None def compute_pred(self, zs, param_list=None): """Compute predictions. Parameters ---------- zs : list New observations. param_list: list, optional List of alternate hyperparameters to try. Returns ------- preds : list or dict Predicted measurements. sTs : list or dict Coverage terms. """ if self.zs_train_arr is None: # lazy updates self.zs_train_arr = self.transform(self.zs_train) zs = self.transform(zs) distances = self.distance(
np.array(self.zs_train_arr)
numpy.array
from __future__ import print_function, absolute_import, division import contextlib import sys import numpy as np import random import threading import gc from numba import unittest_support as unittest from numba.errors import TypingError from numba import config from numba import njit from numba import types from numba import utils from numba.numpy_support import version as numpy_version from .support import MemoryLeakMixin, TestCase, tag nrtjit = njit(_nrt=True, nogil=True) def np_concatenate1(a, b, c): return np.concatenate((a, b, c)) def np_concatenate2(a, b, c, axis): return np.concatenate((a, b, c), axis=axis) def np_stack1(a, b, c): return np.stack((a, b, c)) def np_stack2(a, b, c, axis): return np.stack((a, b, c), axis=axis) def np_hstack(a, b, c): return np.hstack((a, b, c)) def np_vstack(a, b, c): return np.vstack((a, b, c)) def np_dstack(a, b, c): return np.dstack((a, b, c)) def np_column_stack(a, b, c): return np.column_stack((a, b, c)) class BaseTest(TestCase): def check_outputs(self, pyfunc, argslist, exact=True): cfunc = nrtjit(pyfunc) for args in argslist: expected = pyfunc(*args) ret = cfunc(*args) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.dtype, expected.dtype) self.assertStridesEqual(ret, expected) if exact: np.testing.assert_equal(expected, ret) else: np.testing.assert_allclose(expected, ret) class NrtRefCtTest(MemoryLeakMixin): def assert_array_nrt_refct(self, arr, expect): self.assertEqual(arr.base.refcount, expect) class TestDynArray(NrtRefCtTest, TestCase): def test_empty_0d(self): @nrtjit def foo(): arr = np.empty(()) arr[()] = 42 return arr arr = foo() self.assert_array_nrt_refct(arr, 1) np.testing.assert_equal(42, arr) self.assertEqual(arr.size, 1) self.assertEqual(arr.shape, ()) self.assertEqual(arr.dtype, np.dtype(np.float64)) self.assertEqual(arr.strides, ()) arr.fill(123) # test writability np.testing.assert_equal(123, arr) del arr def test_empty_1d(self): @nrtjit def foo(n): arr = np.empty(n) for i in range(n): arr[i] = i return arr n = 3 arr = foo(n) self.assert_array_nrt_refct(arr, 1) np.testing.assert_equal(np.arange(n), arr) self.assertEqual(arr.size, n) self.assertEqual(arr.shape, (n,)) self.assertEqual(arr.dtype, np.dtype(np.float64)) self.assertEqual(arr.strides, (np.dtype(np.float64).itemsize,)) arr.fill(123) # test writability np.testing.assert_equal(123, arr) del arr def test_empty_2d(self): def pyfunc(m, n): arr = np.empty((m, n), np.int32) for i in range(m): for j in range(n): arr[i, j] = i + j return arr cfunc = nrtjit(pyfunc) m = 4 n = 3 expected_arr = pyfunc(m, n) got_arr = cfunc(m, n) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_empty_3d(self): def pyfunc(m, n, p): arr = np.empty((m, n, p), np.int32) for i in range(m): for j in range(n): for k in range(p): arr[i, j, k] = i + j + k return arr cfunc = nrtjit(pyfunc) m = 4 n = 3 p = 2 expected_arr = pyfunc(m, n, p) got_arr = cfunc(m, n, p) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_empty_2d_sliced(self): def pyfunc(m, n, p): arr = np.empty((m, n), np.int32) for i in range(m): for j in range(n): arr[i, j] = i + j return arr[p] cfunc = nrtjit(pyfunc) m = 4 n = 3 p = 2 expected_arr = pyfunc(m, n, p) got_arr = cfunc(m, n, p) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_return_global_array(self): y = np.ones(4, dtype=np.float32) initrefct = sys.getrefcount(y) def return_external_array(): return y cfunc = nrtjit(return_external_array) out = cfunc() # out reference by cfunc self.assertEqual(initrefct + 1, sys.getrefcount(y)) np.testing.assert_equal(y, out) np.testing.assert_equal(y, np.ones(4, dtype=np.float32)) np.testing.assert_equal(out, np.ones(4, dtype=np.float32)) del out gc.collect() # out is only referenced by cfunc self.assertEqual(initrefct + 1, sys.getrefcount(y)) del cfunc gc.collect() # y is no longer referenced by cfunc self.assertEqual(initrefct, sys.getrefcount(y)) @tag('important') def test_return_global_array_sliced(self): y = np.ones(4, dtype=np.float32) def return_external_array(): return y[2:] cfunc = nrtjit(return_external_array) out = cfunc() self.assertIsNone(out.base) yy = y[2:] np.testing.assert_equal(yy, out) np.testing.assert_equal(yy, np.ones(2, dtype=np.float32)) np.testing.assert_equal(out, np.ones(2, dtype=np.float32)) def test_array_pass_through(self): def pyfunc(y): return y arr = np.ones(4, dtype=np.float32) cfunc = nrtjit(pyfunc) expected = cfunc(arr) got = pyfunc(arr) np.testing.assert_equal(expected, arr) np.testing.assert_equal(expected, got) self.assertIs(expected, arr) self.assertIs(expected, got) @tag('important') def test_array_pass_through_sliced(self): def pyfunc(y): return y[y.size // 2:] arr = np.ones(4, dtype=np.float32) initrefct = sys.getrefcount(arr) cfunc = nrtjit(pyfunc) got = cfunc(arr) self.assertEqual(initrefct + 1, sys.getrefcount(arr)) expected = pyfunc(arr) self.assertEqual(initrefct + 2, sys.getrefcount(arr)) np.testing.assert_equal(expected, arr[arr.size // 2]) np.testing.assert_equal(expected, got) del expected self.assertEqual(initrefct + 1, sys.getrefcount(arr)) del got self.assertEqual(initrefct, sys.getrefcount(arr)) def test_ufunc_with_allocated_output(self): def pyfunc(a, b): out = np.empty(a.shape) np.add(a, b, out) return out cfunc = nrtjit(pyfunc) # 1D case arr_a = np.random.random(10) arr_b = np.random.random(10) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) # 2D case arr_a = np.random.random(10).reshape(2, 5) arr_b = np.random.random(10).reshape(2, 5) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) # 3D case arr_a = np.random.random(70).reshape(2, 5, 7) arr_b = np.random.random(70).reshape(2, 5, 7) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) def test_allocation_mt(self): """ This test exercises the array allocation in multithreaded usecase. This stress the freelist inside NRT. """ def pyfunc(inp): out = np.empty(inp.size) # Zero fill for i in range(out.size): out[i] = 0 for i in range(inp[0]): # Allocate inside a loop tmp = np.empty(inp.size) # Write to tmp for j in range(tmp.size): tmp[j] = inp[j] # out = tmp + i for j in range(tmp.size): out[j] += tmp[j] + i return out cfunc = nrtjit(pyfunc) size = 10 # small array size so that the computation is short arr = np.random.randint(1, 10, size) frozen_arr = arr.copy() np.testing.assert_equal(pyfunc(arr), cfunc(arr)) # Ensure we did not modify the input np.testing.assert_equal(frozen_arr, arr) workers = [] inputs = [] outputs = [] # Make wrapper to store the output def wrapped(inp, out): out[:] = cfunc(inp) # Create a lot of worker threads to create contention for i in range(100): arr = np.random.randint(1, 10, size) out = np.empty_like(arr) thread = threading.Thread(target=wrapped, args=(arr, out), name="worker{0}".format(i)) workers.append(thread) inputs.append(arr) outputs.append(out) # Launch worker threads for thread in workers: thread.start() # Join worker threads for thread in workers: thread.join() # Check result for inp, out in zip(inputs, outputs): np.testing.assert_equal(pyfunc(inp), out) def test_refct_mt(self): """ This test exercises the refct in multithreaded code """ def pyfunc(n, inp): out = np.empty(inp.size) for i in range(out.size): out[i] = inp[i] + 1 # Use swap to trigger many refct ops for i in range(n): out, inp = inp, out return out cfunc = nrtjit(pyfunc) size = 10 input = np.arange(size, dtype=np.float) expected_refct = sys.getrefcount(input) swapct = random.randrange(1000) expected = pyfunc(swapct, input) np.testing.assert_equal(expected, cfunc(swapct, input)) # The following checks can discover a reference count error del expected self.assertEqual(expected_refct, sys.getrefcount(input)) workers = [] outputs = [] swapcts = [] # Make wrapper to store the output def wrapped(n, input, out): out[:] = cfunc(n, input) # Create worker threads for i in range(100): out = np.empty(size) # All thread shares the same input swapct = random.randrange(1000) thread = threading.Thread(target=wrapped, args=(swapct, input, out), name="worker{0}".format(i)) workers.append(thread) outputs.append(out) swapcts.append(swapct) # Launch worker threads for thread in workers: thread.start() # Join worker threads for thread in workers: thread.join() # Check result for swapct, out in zip(swapcts, outputs): np.testing.assert_equal(pyfunc(swapct, input), out) del outputs, workers # The following checks can discover a reference count error self.assertEqual(expected_refct, sys.getrefcount(input)) def test_swap(self): def pyfunc(x, y, t): """Swap array x and y for t number of times """ for i in range(t): x, y = y, x return x, y cfunc = nrtjit(pyfunc) x = np.random.random(100) y = np.random.random(100) t = 100 initrefct = sys.getrefcount(x), sys.getrefcount(y) expect, got = pyfunc(x, y, t), cfunc(x, y, t) self.assertIsNone(got[0].base) self.assertIsNone(got[1].base) np.testing.assert_equal(expect, got) del expect, got self.assertEqual(initrefct, (sys.getrefcount(x), sys.getrefcount(y))) def test_return_tuple_of_array(self): def pyfunc(x): y = np.empty(x.size) for i in range(y.size): y[i] = x[i] + 1 return x, y cfunc = nrtjit(pyfunc) x = np.random.random(5) initrefct = sys.getrefcount(x) expected_x, expected_y = pyfunc(x) got_x, got_y = cfunc(x) self.assertIs(x, expected_x) self.assertIs(x, got_x) np.testing.assert_equal(expected_x, got_x) np.testing.assert_equal(expected_y, got_y) del expected_x, got_x self.assertEqual(initrefct, sys.getrefcount(x)) self.assertEqual(sys.getrefcount(expected_y), sys.getrefcount(got_y)) def test_return_tuple_of_array_created(self): def pyfunc(x): y = np.empty(x.size) for i in range(y.size): y[i] = x[i] + 1 out = y, y return out cfunc = nrtjit(pyfunc) x = np.random.random(5) expected_x, expected_y = pyfunc(x) got_x, got_y = cfunc(x) np.testing.assert_equal(expected_x, got_x) np.testing.assert_equal(expected_y, got_y) # getrefcount owns 1, got_y owns 1 self.assertEqual(2, sys.getrefcount(got_y)) # getrefcount owns 1, got_y owns 1 self.assertEqual(2, sys.getrefcount(got_y)) def test_issue_with_return_leak(self): """ Dispatcher returns a new reference. It need to workaround it for now. """ @nrtjit def inner(out): return out def pyfunc(x): return inner(x) cfunc = nrtjit(pyfunc) arr = np.arange(10) old_refct = sys.getrefcount(arr) self.assertEqual(old_refct, sys.getrefcount(pyfunc(arr))) self.assertEqual(old_refct, sys.getrefcount(cfunc(arr))) self.assertEqual(old_refct, sys.getrefcount(arr)) class ConstructorBaseTest(NrtRefCtTest): def check_0d(self, pyfunc): cfunc = nrtjit(pyfunc) expected = pyfunc() ret = cfunc() self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) def check_1d(self, pyfunc): cfunc = nrtjit(pyfunc) n = 3 expected = pyfunc(n) ret = cfunc(n) self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) # errors with self.assertRaises(ValueError) as cm: cfunc(-1) self.assertEqual(str(cm.exception), "negative dimensions not allowed") def check_2d(self, pyfunc): cfunc = nrtjit(pyfunc) m, n = 2, 3 expected = pyfunc(m, n) ret = cfunc(m, n) self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) # errors with self.assertRaises(ValueError) as cm: cfunc(2, -1) self.assertEqual(str(cm.exception), "negative dimensions not allowed") def check_alloc_size(self, pyfunc): """Checks that pyfunc will error, not segfaulting due to array size.""" cfunc = nrtjit(pyfunc) with self.assertRaises(ValueError) as e: cfunc() self.assertIn( "array is too big", str(e.exception) ) class TestNdZeros(ConstructorBaseTest, TestCase): def setUp(self): super(TestNdZeros, self).setUp() self.pyfunc = np.zeros def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_0d(self): pyfunc = self.pyfunc def func(): return pyfunc(()) self.check_0d(func) def test_1d(self): pyfunc = self.pyfunc def func(n): return pyfunc(n) self.check_1d(func) def test_1d_dtype(self): pyfunc = self.pyfunc def func(n): return pyfunc(n, np.int32) self.check_1d(func) def test_1d_dtype_instance(self): # dtype as numpy dtype, not as scalar class pyfunc = self.pyfunc _dtype = np.dtype('int32') def func(n): return pyfunc(n, _dtype) self.check_1d(func) def test_2d(self): pyfunc = self.pyfunc def func(m, n): return pyfunc((m, n)) self.check_2d(func) def test_2d_shape_dtypes(self): # Test for issue #4575 pyfunc = self.pyfunc def func1(m, n): return pyfunc((np.int16(m), np.int32(n))) self.check_2d(func1) # Using a 64-bit value checks that 32 bit systems will downcast to intp def func2(m, n): return pyfunc((np.int64(m), np.int8(n))) self.check_2d(func2) # Make sure an error is thrown if we can't downcast safely if config.IS_32BITS: cfunc = nrtjit(lambda m, n: pyfunc((m, n))) with self.assertRaises(ValueError): cfunc(np.int64(1 << (32 - 1)), 1) @tag('important') def test_2d_dtype_kwarg(self): pyfunc = self.pyfunc def func(m, n): return pyfunc((m, n), dtype=np.complex64) self.check_2d(func) def test_alloc_size(self): pyfunc = self.pyfunc width = types.intp.bitwidth def gen_func(shape, dtype): return lambda : pyfunc(shape, dtype) # Under these values numba will segfault, but thats another issue self.check_alloc_size(gen_func(1 << width - 2, np.intp)) self.check_alloc_size(gen_func((1 << width - 8, 64), np.intp)) class TestNdOnes(TestNdZeros): def setUp(self): super(TestNdOnes, self).setUp() self.pyfunc = np.ones @unittest.skipIf(numpy_version < (1, 8), "test requires Numpy 1.8 or later") class TestNdFull(ConstructorBaseTest, TestCase): def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_0d(self): def func(): return np.full((), 4.5) self.check_0d(func) def test_1d(self): def func(n): return np.full(n, 4.5) self.check_1d(func) def test_1d_dtype(self): def func(n): return np.full(n, 4.5, np.bool_) self.check_1d(func) def test_1d_dtype_instance(self): dtype = np.dtype('bool') def func(n): return np.full(n, 4.5, dtype) self.check_1d(func) def test_2d(self): def func(m, n): return np.full((m, n), 4.5) self.check_2d(func) def test_2d_dtype_kwarg(self): def func(m, n): return np.full((m, n), 1 + 4.5j, dtype=np.complex64) self.check_2d(func) def test_2d_dtype_from_type(self): # tests issue #2862 def func(m, n): return np.full((m, n), np.int32(1)) self.check_2d(func) # tests meta issues from #2862, that np < 1.12 always # returns float64. Complex uses `.real`, imaginary part dropped def func(m, n): return np.full((m, n), np.complex128(1)) self.check_2d(func) # and that if a dtype is specified, this influences the return type def func(m, n): return np.full((m, n), 1, dtype=np.int8) self.check_2d(func) def test_2d_shape_dtypes(self): # Test for issue #4575 def func1(m, n): return np.full((np.int16(m), np.int32(n)), 4.5) self.check_2d(func1) # Using a 64-bit value checks that 32 bit systems will downcast to intp def func2(m, n): return np.full((np.int64(m), np.int8(n)), 4.5) self.check_2d(func2) # Make sure an error is thrown if we can't downcast safely if config.IS_32BITS: cfunc = nrtjit(lambda m, n: np.full((m, n), 4.5)) with self.assertRaises(ValueError): cfunc(np.int64(1 << (32 - 1)), 1) def test_alloc_size(self): width = types.intp.bitwidth def gen_func(shape, value): return lambda : np.full(shape, value) # Under these values numba will segfault, but thats another issue self.check_alloc_size(gen_func(1 << width - 2, 1)) self.check_alloc_size(gen_func((1 << width - 8, 64), 1)) class ConstructorLikeBaseTest(object): def mutate_array(self, arr): try: arr.fill(42) except (TypeError, ValueError): # Try something else (e.g. Numpy 1.6 with structured dtypes) fill_value = b'x' * arr.dtype.itemsize arr.fill(fill_value) def check_like(self, pyfunc, dtype): def check_arr(arr): expected = pyfunc(arr) ret = cfunc(arr) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.dtype, expected.dtype) self.assertStridesEqual(ret, expected) self.check_result_value(ret, expected) # test writability self.mutate_array(ret) self.mutate_array(expected) np.testing.assert_equal(ret, expected) orig = np.linspace(0, 5, 6).astype(dtype) cfunc = nrtjit(pyfunc) for shape in (6, (2, 3), (1, 2, 3), (3, 1, 2), ()): if shape == (): arr = orig[-1:].reshape(()) else: arr = orig.reshape(shape) check_arr(arr) # Non-contiguous array if arr.ndim > 0: check_arr(arr[::2]) # Check new array doesn't inherit readonly flag arr.flags['WRITEABLE'] = False # verify read-only with self.assertRaises(ValueError): arr[0] = 1 check_arr(arr) # Scalar argument => should produce a 0-d array check_arr(orig[0]) class TestNdEmptyLike(ConstructorLikeBaseTest, TestCase): def setUp(self): super(TestNdEmptyLike, self).setUp() self.pyfunc = np.empty_like def check_result_value(self, ret, expected): pass def test_like(self): pyfunc = self.pyfunc def func(arr): return pyfunc(arr) self.check_like(func, np.float64) def test_like_structured(self): dtype = np.dtype([('a', np.int16), ('b', np.float32)]) pyfunc = self.pyfunc def func(arr): return pyfunc(arr) self.check_like(func, dtype) def test_like_dtype(self): pyfunc = self.pyfunc def func(arr): return pyfunc(arr, np.int32) self.check_like(func, np.float64) def test_like_dtype_instance(self): dtype = np.dtype('int32') pyfunc = self.pyfunc def func(arr): return pyfunc(arr, dtype) self.check_like(func, np.float64) def test_like_dtype_structured(self): dtype = np.dtype([('a', np.int16), ('b', np.float32)]) pyfunc = self.pyfunc def func(arr): return pyfunc(arr, dtype) self.check_like(func, np.float64) def test_like_dtype_kwarg(self): pyfunc = self.pyfunc def func(arr): return pyfunc(arr, dtype=np.int32) self.check_like(func, np.float64) class TestNdZerosLike(TestNdEmptyLike): def setUp(self): super(TestNdZerosLike, self).setUp() self.pyfunc = np.zeros_like def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_like_structured(self): super(TestNdZerosLike, self).test_like_structured() def test_like_dtype_structured(self): super(TestNdZerosLike, self).test_like_dtype_structured() class TestNdOnesLike(TestNdZerosLike): def setUp(self): super(TestNdOnesLike, self).setUp() self.pyfunc = np.ones_like self.expected_value = 1 # Not supported yet. @unittest.expectedFailure def test_like_structured(self): super(TestNdOnesLike, self).test_like_structured() @unittest.expectedFailure def test_like_dtype_structured(self): super(TestNdOnesLike, self).test_like_dtype_structured() @unittest.skipIf(numpy_version < (1, 8), "test requires Numpy 1.8 or later") class TestNdFullLike(ConstructorLikeBaseTest, TestCase): def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_like(self): def func(arr): return np.full_like(arr, 3.5) self.check_like(func, np.float64) # Not supported yet. @unittest.expectedFailure def test_like_structured(self): dtype = np.dtype([('a', np.int16), ('b', np.float32)]) def func(arr): return np.full_like(arr, 4.5) self.check_like(func, dtype) def test_like_dtype(self): def func(arr): return np.full_like(arr, 4.5, np.bool_) self.check_like(func, np.float64) def test_like_dtype_instance(self): dtype = np.dtype('bool') def func(arr): return np.full_like(arr, 4.5, dtype) self.check_like(func, np.float64) def test_like_dtype_kwarg(self): def func(arr): return np.full_like(arr, 4.5, dtype=np.bool_) self.check_like(func, np.float64) class TestNdIdentity(BaseTest): def check_identity(self, pyfunc): self.check_outputs(pyfunc, [(3,)]) def test_identity(self): def func(n): return np.identity(n) self.check_identity(func) def test_identity_dtype(self): for dtype in (np.complex64, np.int16, np.bool_,
np.dtype('bool')
numpy.dtype
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for lift metrics.""" from absl.testing import parameterized import apache_beam as beam from apache_beam.testing import util import numpy as np import tensorflow as tf from tensorflow_model_analysis.addons.fairness.metrics import lift from tensorflow_model_analysis.eval_saved_model import testutil from tensorflow_model_analysis.metrics import metric_types from tensorflow_model_analysis.metrics import metric_util from tensorflow_model_analysis.proto import config_pb2 class LiftTest(testutil.TensorflowModelAnalysisTest, parameterized.TestCase): def _assert_test(self, num_buckets, baseline_examples, comparison_examples, lift_metric_value, ignore_out_of_bound_examples=False): eval_config = config_pb2.EvalConfig( cross_slicing_specs=[config_pb2.CrossSlicingSpec()]) computations = lift.Lift( num_buckets=num_buckets, ignore_out_of_bound_examples=ignore_out_of_bound_examples).computations( eval_config=eval_config) histogram = computations[0] lift_metrics = computations[1] with beam.Pipeline() as pipeline: # pylint: disable=no-value-for-parameter baseline_result = ( pipeline | 'CreateB' >> beam.Create(baseline_examples) | 'ProcessB' >> beam.Map(metric_util.to_standard_metric_inputs) | 'AddSliceB' >> beam.Map(lambda x: ((), x)) | 'ComputeHistogramB' >> beam.CombinePerKey(histogram.combiner) ) # pyformat: ignore comparison_result = ( pipeline | 'CreateC' >> beam.Create(comparison_examples) | 'ProcessC' >> beam.Map(metric_util.to_standard_metric_inputs) | 'AddSliceC' >> beam.Map(lambda x: (('slice'), x)) | 'ComputeHistogramC' >> beam.CombinePerKey(histogram.combiner) ) # pyformat: ignore # pylint: enable=no-value-for-parameter merged_result = ((baseline_result, comparison_result) | 'MergePCollections' >> beam.Flatten()) def check_result(got): try: self.assertLen(got, 2) slice_1, metric_1 = got[0] slice_2, metric_2 = got[1] lift_value = None if not slice_1: lift_value = lift_metrics.cross_slice_comparison(metric_1, metric_2) else: lift_value = lift_metrics.cross_slice_comparison(metric_2, metric_1) self.assertDictElementsAlmostEqual( lift_value, { metric_types.MetricKey(name=f'lift@{num_buckets}'): lift_metric_value, }) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(merged_result, check_result, label='result') def testLift_continuousLabelsAndPredictions(self): baseline_examples = [{ 'labels': np.array([0.0]), 'predictions': np.array([0.1]), 'example_weights': np.array([3.0]), }, { 'labels': np.array([0.3]), 'predictions': np.array([0.5]), 'example_weights': np.array([5.0]), }, { 'labels': np.array([0.6]), 'predictions': np.array([0.8]), 'example_weights': np.array([2.0]), }, { 'labels': np.array([0.9]), 'predictions': np.array([0.3]), 'example_weights': np.array([8.0]), }, { 'labels':
np.array([0.9])
numpy.array
import os, sys import inspect currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import soundpy as sp import numpy as np import pytest test_dir = 'test_audio/' test_audiofile = '{}audio2channels.wav'.format(test_dir) test_traffic = '{}traffic.wav'.format(test_dir) test_python = '{}python.wav'.format(test_dir) test_horn = '{}car_horn.wav'.format(test_dir) def test_separate_dependent_var_2d(): data = np.array(range(18)).reshape(-1,1) with pytest.raises(ValueError): X, y = sp.feats.separate_dependent_var(data) def test_separate_dependent_var_3d(): data = np.array(range(12)).reshape(2,2,3) X, y = sp.feats.separate_dependent_var(data) expected1 = np.array([[[ 0, 1],[ 3, 4]],[[ 6, 7],[ 9, 10]]]) expected2 = np.array([2, 8]) assert np.array_equal(expected1, X) assert np.array_equal(expected2, y) def test_separate_dependent_var_3d_1feature_valueerror(): data = np.array(range(12)).reshape(2,6,1) with pytest.raises(ValueError): X, y = sp.feats.separate_dependent_var(data) def test_separate_dependent_var_3d_2feats(): data = np.array(range(12)).reshape(2,3,2) X, y = sp.feats.separate_dependent_var(data) expected1 = np.array([[[ 0],[ 2],[ 4]],[[ 6],[ 8],[10]]]) expected2 = np.array([1, 7]) assert np.array_equal(expected1, X) assert
np.array_equal(expected2, y)
numpy.array_equal
import time from .base import ControllerBase from .myqt import QT from spikeinterface.widgets.utils import get_unit_colors from spikeinterface.toolkit import (get_template_extremum_channel, get_template_channel_sparsity, compute_correlograms, localize_units, compute_num_spikes, WaveformPrincipalComponent, compute_template_similarity) import numpy as np spike_dtype =[('sample_index', 'int64'), ('unit_index', 'int64'), ('channel_index', 'int64'), ('segment_index', 'int64'), ('visible', 'bool'), ('selected', 'bool'), ('included_in_pc', 'bool')] _MAX_SPIKE_PER_UNIT_WARNING = 5000 class SpikeinterfaceController(ControllerBase): def __init__(self, waveform_extractor=None,parent=None, verbose=False): ControllerBase.__init__(self, parent=parent) self.we = waveform_extractor max_spikes_per_unit = self.we._params['max_spikes_per_unit'] if max_spikes_per_unit > _MAX_SPIKE_PER_UNIT_WARNING: print(f'You have {max_spikes_per_unit} in your WaveformExtractor, the display can be slow') print(f'You should re run the WaveformExtractor with max_spikes_per_unit=500') if waveform_extractor.is_extension('principal_components'): self.pc = waveform_extractor.load_extension('principal_components') else: self.pc = None if waveform_extractor.is_extension('quality_metrics'): qmc = waveform_extractor.load_extension('quality_metrics') self.metrics = qmc._metrics else: self.metrics = None if waveform_extractor.is_extension('spike_amplitudes'): sac = waveform_extractor.load_extension('spike_amplitudes') self.spike_amplitudes = sac.get_amplitudes(outputs='by_unit') else: self.spike_amplitudes = None # some direct attribute self.num_segments = self.we.recording.get_num_segments() self.sampling_frequency = self.we.recording.get_sampling_frequency() self.colors = get_unit_colors(self.we.sorting) self.qcolors = {} for unit_id, color in self.colors.items(): r, g, b, a = color self.qcolors[unit_id] = QT.QColor(int(r*255), int(g*255), int(b*255)) self.unit_visible_dict = {unit_id:False for unit_id in self.unit_ids} self.unit_visible_dict[self.unit_ids[0]] = True if verbose: t0 = time.perf_counter() print('Gather all spikes') all_spikes = self.we.sorting.get_all_spike_trains(outputs='unit_index') num_spikes = np.sum(e[0].size for e in all_spikes) # make internal spike vector self.spikes =
np.zeros(num_spikes, dtype=spike_dtype)
numpy.zeros
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer, StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import OPTICS import statsmodels.api as sm import statsmodels.tsa.stattools as ts from itertools import combinations, chain import warnings class OpticsPairs: """ This class implements the pairs selection framework outlined in <NAME> and <NAME>'s publication: Enhancing a Pairs Trading strategy with the application of Machine Learning [1]. <http://premio-vidigal.inesc.pt/pdf/SimaoSarmentoMSc-resumo.pdf>`_ Their work is motivated by the need to find "profitable pairs while constraining the search space" [1]. To achieve this, security returns are first reduced via principal component analysis. Next the securities are paired through clustering via the OPTICS algorithim introduced by Ankerst et. al in their publication: OPTICS: Ordering Points To Identify the Clustering Structure [2] <https://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf>`_ Finally, the pairs are filtered by criteria including: the Engle-Granger test, analysis of the Hurst exponent, half-life filtering, and practical implementation requirements. """ def __init__(self, data: pd.DataFrame): """ Initializes OpticsPairs object and calculates one-period returns of securities. :param data: pd.DataFrame containing time series returns of various assets. Dimensions of dataframe should be TxN. """ self.prices = data self.securities = self.prices.columns self.returns = self.prices.pct_change()[1:] self.returns_reduced = None # Reduced transform of returns from PCA self.components_ = None # Components generated from PCA self.n_components_ = None # Number of components of PCA self.explained_variance_ratio_ = None # Vairance explained by PCA self.pairs = None # Potential pairs found from OPTICS clusters self.engle_granger_tests = None # pvalue Engle-Granger cointegration self.norm_spreads = None # Z-score of spreads generated from pairs self.hurst_exponents = None # Hurst exponent from normalized spreads self.half_lives = None # Half-life of normalized spreads self.avg_cross_count = None # Ann average count of spread crosses mean self.pairs_df = None # Dataframeof summary stats and potential pairs self.filtered_pairs = None # Filtered pairs_df self.cluster_labels = None # Array of cluster labels for securities def reduce_PCA(self, n_components_: int = 10, Scaler=StandardScaler(), random_state: int = 42): """ Reduces self.returns to dimensions equal to n_components_ through principal component analysis. Returns are first scaled via the Scaler parameter. Then calculate correlation matrix of scaled returns. Finally, principal component analysis is used to reduce dimensions. :param n_components_: An integer to denote number of dimensions for pca. Authors recommend n_components_ <= 15 [1]. :param Scaler: A transformer to scale input data. Scaled data is recommended for principal component analysis. :param random_state: An integer to denote the seed for PCA() to insure reproducibility. """ if self.returns is None: raise ValueError("returns not found: input price dataframe \ into OpticsPairs instance") if n_components_ > int(15): warnings.warn("Maximum n_components_ recommended is 15") # PCA pipeline pipe = Pipeline([ # Normalize raw data via user input scaler ('scaler', Scaler), # Perform PCA on scaled returns ('pca', PCA(n_components=n_components_, random_state=random_state)) ]) self.returns_reduced = pipe.fit_transform(self.returns) self.components_ = pipe['pca'].components_ self.n_components_ = pipe['pca'].n_components_ self.explained_variance_ratio_ = pipe['pca'].explained_variance_ratio_ def find_pairs(self): """ Uses OPTICS algorithim to find clusters of similar securities within PCA component space. Once clusters labels are assigned, function generates series of tuples containing unique pairs of securities within the same cluster. """ if self.returns_reduced is None: raise ValueError("returns_reduced not found: must run \ .reduce_PCA() before this function") # Initialize and fit OPTICS cluster to PCA components clustering = OPTICS() clustering.fit(self.components_.T) # Create cluster data frame and identify trading pairs clusters = pd.DataFrame({'security': self.securities, 'cluster': clustering.labels_}) # Clusters with label == -1 are 'noise' # From OPTICS sk-learn documentation: Noisy samples and points # which are not included in a leaf cluster of cluster_hierarchy_ # are labeled as -1 clusters = clusters[clusters['cluster'] != -1] # Group securities by cluster and flatten list of combination lists groups = clusters.groupby('cluster') combos = list(groups['security'].apply(combinations, 2)) # All pairs pairs = list(chain.from_iterable(combos)) # Flatten list of lists print(f"Found {len(pairs)} potential pairs") self.pairs = pd.Series(pairs) self.cluster_labels = clustering.labels_ def calc_eg_norm_spreads(self): """ Calculates the p-value of the t-stat from the Engle-Granger cointegration test. Calculates normalized beta-adjusted spread series of potential pairs. """ if self.prices is None: raise ValueError("prices not found: must initialize with \ price dataframe before this function") if self.pairs is None: raise ValueError("pairs not found: must run .find_pairs() \ before this function") engle_granger_tests = [] norm_spreads = [] # Test each pair for cointegration for pair in self.pairs: security_0 = self.prices[pair[0]] security_1 = self.prices[pair[1]] # Get independent and dependent variables # for OLS calculation and corresponding # pvalue for Engle-Granger tests security_0.fillna(0, inplace=True) security_1.fillna(0, inplace=True) pvalue, x_, y_ = OpticsPairs.get_ols_variables(security_0, security_1) engle_granger_tests.append(pvalue) x = np.array(x_, dtype=float) y = np.array(y_, dtype=float) # Get parameters and calculate spread model = sm.OLS(y, x) result = model.fit() alpha, beta = result.params[0], result.params[1] spread = y - (alpha + beta*x.T[1]) norm_spread = OpticsPairs.calc_zscore(spread) norm_spreads.append(norm_spread) # Convert spreads from list to dataframe norm_spreads = pd.DataFrame(np.transpose(norm_spreads), index=self.prices.index) self.alpha = alpha self.beta = beta self.norm_spreads = norm_spreads self.engle_granger_tests = pd.Series(engle_granger_tests) @staticmethod def get_ols_variables(security_0: str, security_1: str): """ Compares t-stats of two Engle-Granger cointegration tests. Returns independent and dependent variables for OLS. :params security_0: String identifier of first security. :params security_1: String identifier of second security. """ test_0 = ts.coint(security_0, security_1) test_1 = ts.coint(security_1, security_0) t_stat_0, pvalue_0 = test_0[0], test_0[1] t_stat_1, pvalue_1 = test_1[0], test_1[1] # Avoid reliance on dependent variable and choose smallest t-stat # for Engle-Granger Test # Use corresponding independent and dependent variables to # calculate spread if abs(t_stat_0) < abs(t_stat_1): pvalue = pvalue_0 x = sm.add_constant(np.asarray(security_1)) y = np.asarray(security_0) else: pvalue = pvalue_1 x = sm.add_constant(np.asarray(security_0)) y = np.asarray(security_1) return pvalue, x, y def calc_hurst_exponents(self): """ Calculates Hurst exponent of each potential pair's normalized spread. """ if self.norm_spreads is None: raise ValueError("norm_spreads not found: must run \ .calc_eg_norm_spreads before this function") hurst_exponents = [] # Calculate Hurst exponents and generate series for col in self.norm_spreads.columns: hurst_exp = OpticsPairs.hurst(self.norm_spreads[col].values) hurst_exponents.append(hurst_exp) self.hurst_exponents = pd.Series(hurst_exponents) def calc_half_lives(self): """ Calculates half-life of each potential pair's normalized spread. """ if self.norm_spreads is None: raise ValueError("norm_spreads not found: must run \ .calc_eg_norm_spreads before this function") self.norm_spreads.fillna(0, inplace=True) self.half_lives = self.norm_spreads.apply(OpticsPairs.half_life) def calc_avg_cross_count(self, trading_year: float = 252.0): """ Calculates the average number of instances per year the normalized spread of potential pairs crosses the mean. Authors recommend trading pairs that cross mean on average 12 times per year [1]. """ if self.prices is None: raise ValueError("prices not found: must initialize with \ price dataframe before this function") if self.norm_spreads is None: raise ValueError("norm_spreads not found: must run \ .calc_eg_norm_spreads() before this function") # Find number of years n_days = len(self.prices) n_years = n_days/trading_year # Find annual average cross count cross_count = self.norm_spreads.apply(OpticsPairs.count_crosses) self.avg_cross_count = cross_count/n_years def filter_pairs(self, max_pvalue: float = 0.05, max_hurst_exp: float = 0.5, max_half_life: float = 252.0, min_half_life: float = 1.0, min_avg_cross: float = 12.0): """ Generates a summary dataframe of potential pairs containing: 1. Engle-Granger p-value 2. Hurst exponent 3. Half-life 4. Average Cross Count Filters summary dataframe to include pairs that meet user specified criteria. :param max_pvalue: A floating number to eliminate potential pairs with Engle-Granger t-stat pvalues above max_pvalue. Default set to 5%. :param max_hurst_exp: A floating number to eliminate potential pairs with Hurst exponents greater than max_hurst_exp. Values below 0.5 represent mean-reverting pairs. Default set to 0.5. :param max_half_life: A floating number to eliminate potential pairs with half-lives above user defined value. Default value set to 252.0. :param min_half_life: A floating number to eliminate potential pairs with half-lives below user defined value. Default value set to 1.0. :min_avg_cross: A floating number to eliminate potential pairs with average cross count less than user defined value. Default value set to 12.0 """ required = [self.prices, self.engle_granger_tests, self.hurst_exponents, self.half_lives, self.avg_cross_count] for i in required: if i is None: raise ValueError("Required: \n 1. prices \n 2. \ engle_granger_tests \n 3. hurst_exponents \ \n 4. half_lives \n 5. avg_cross_count") # Generate summary dataframe of potential trading pairs pairs_df = pd.concat([self.pairs, self.engle_granger_tests, self.hurst_exponents, self.half_lives, self.avg_cross_count], axis=1) pairs_df.columns = ['pair', 'pvalue', 'hurst_exp', 'half_life', 'avg_cross_count'] # Find pairs that meet user defined criteria filtered_pairs = pairs_df.loc[ # Significant Engle-Grange test AND (pairs_df['pvalue'] <= max_pvalue) & # Mean reverting according to Hurst exponent AND (pairs_df['hurst_exp'] < max_hurst_exp) & # Half-life above minimum value AND # Half-life below maximum value AND ((pairs_df['half_life'] >= min_half_life) & (pairs_df['half_life'] <= max_half_life)) & # Produces sufficient number of trading opportunities (pairs_df['avg_cross_count'] >= min_avg_cross)] self.pairs_df = pairs_df self.filtered_pairs = filtered_pairs if len(self.filtered_pairs) == 0: print("No tradable pairs found. Try relaxing criteria.") else: n_pairs = len(self.filtered_pairs) print(f"Found {n_pairs} tradable pairs!") def plot_pair_price_spread(self, idx: int): """ Plots the price path of both securities in selected pair, with dual axis. Plots the normalized spread of the price paths. """ required = [self.prices, self.pairs, self.norm_spreads, self.half_lives, self.avg_cross_count] for i in required: if i is None: raise ValueError("Required: \n 1. prices \n 2. pairs \ \n 3. norm_spreads") fontsize = 20 securities = self.pairs[idx] fig, axs = plt.subplots(2, 1, sharex=True, figsize=(20, 10)) # first security (left axis) security = securities[0] color = 'tab:blue' axs[0].plot(self.prices[security], color=color) axs[0].set_ylabel(security, color=color, fontsize=fontsize) axs[0].tick_params(axis='y', labelcolor=color) axs[0].set_title('pair_'+str(idx)+' prices', fontsize=fontsize) # second security (right axis) security = securities[1] color = 'tab:orange' axs2 = axs[0].twinx() axs2.plot(self.prices[security], color=color) axs2.set_ylabel(security, color=color, fontsize=fontsize) axs2.tick_params(axis='y', labelcolor=color) # plot spread axs[1].plot(self.norm_spreads[idx], color='black') axs[1].set_ylabel('spread_z_score', fontsize=fontsize, color='white') axs[1].set_xlabel('date', fontsize=fontsize, color='white') axs[1].set_title('pair_'+str(idx)+' normalized spread', fontsize=fontsize, color='white') axs[1].axhline(0, color='blue', ls='--') axs[1].axhline(1, color='r', ls='--') axs[1].axhline(-1, color='r', ls='--') fig.tight_layout() def plot_explained_variance(self): """ Plots the cumulative variance explained by principal component analysis. """ if self.explained_variance_ratio_ is None: raise ValueError("explained_variance_ratio_ missing: run \ .reduce_PCA() before this function") fig, axs = plt.subplots() axs.set_title('PCA Cumulative Explained Variance') axs.plot(np.cumsum(self.explained_variance_ratio_)) axs.set_xlabel('number of components') axs.set_ylabel('explained variance') fig.tight_layout() def plot_loadings(self, n: int = 5): """ Plots up to 5 bar charts depicting the loadings of each component, by security. """ if self.components_ is None: raise ValueError("components_ missing: run \ .reduce_PCA() before this function") n_loadings = min(n, self.n_components_) fig, axs = plt.subplots(n_loadings, 1, sharex=True, figsize=(20, 20)) fontsize = 18 for i in range(n_loadings): axs[i].bar([i for i in range(self.components_.shape[1])], self.components_[i]) axs[i].set_ylabel('component_'+str(i)+' loading', fontsize=fontsize) axs[0].set_title('PCA Loadings', fontsize=fontsize) axs[i].set_xlabel('security_observation', fontsize=fontsize) fig.tight_layout() def plot_clusters(self, n_dimensions: int = 2): """ Plots a 2-dimension or 3-dimension scatter plot of security principal component loadings. Plots either the first two or three principal components and colors securities according to their cluster label found from OPTICS algorithm. :param n_dimensions: An integer to denote how many dimensions to plot. Default value is two. """ for i in [self.n_components_, self.components_, self.cluster_labels]: if i is None: raise ValueError("Required: \n 1. n_components \n 2. \ reduced_returns") fontsize = 15 figsize = (10, 10) if n_dimensions == 2: fig, axs = plt.subplots(1, 1, figsize=figsize) axs.scatter(self.components_[0].T[self.cluster_labels != -1], self.components_[1].T[self.cluster_labels != -1], c=self.cluster_labels[self.cluster_labels != -1]) axs.scatter(self.components_[0].T[self.cluster_labels == -1], self.components_[1].T[self.cluster_labels == -1], c=self.cluster_labels[self.cluster_labels == -1], alpha=0.1) axs.set_title('OPTICS Clusters', fontsize=fontsize) axs.set_xlabel('component_0 loading', fontsize=fontsize) axs.set_ylabel('component_1 loading', fontsize=fontsize) fig.tight_layout() elif n_dimensions == 3: fig = plt.figure(figsize=figsize) axs = fig.add_subplot(111, projection='3d') axs.scatter(self.components_[0].T[self.cluster_labels != -1], self.components_[1].T[self.cluster_labels != -1], self.components_[2].T[self.cluster_labels != -1], c=self.cluster_labels[self.cluster_labels != -1]) axs.scatter(self.components_[0].T[self.cluster_labels == -1], self.components_[1].T[self.cluster_labels == -1], self.components_[2].T[self.cluster_labels == -1], c=self.cluster_labels[self.cluster_labels == -1], alpha=0.1) axs.set_title('OPTICS Clusters', fontsize=fontsize) axs.set_xlabel('component_0 loading', fontsize=fontsize) axs.set_ylabel('component_1 loading', fontsize=fontsize) axs.set_zlabel('component_2 loading', fontsize=fontsize) fig.tight_layout() else: warnings.warn("Cannot visualize more than three dimensions!") @staticmethod def hurst(norm_spread): """ Calculates Hurst exponent. https://en.wikipedia.org/wiki/Hurst_exponent :param norm_spread: An array like object used to calculate half-life. """ # Create the range of lag values lags = range(2, 100) # Calculate the array of the variances of the lagged differences diffs = [np.subtract(norm_spread[l:], norm_spread[:-l]) for l in lags] tau = [np.sqrt(np.std(diff)) for diff in diffs] # Use a linear fit to estimate the Hurst Exponent poly = np.polyfit(
np.log(lags)
numpy.log
""" Module for parsing intermediate data from Hipparcos and Gaia. For Hipparcos (both reductions) and Gaia, the scan angle theta is the angle between the north equitorial pole (declination) and the along-scan axis, defined as positive if east of the north pole (positive for increasing RA). Author: <NAME> <NAME> """ import numpy as np import pandas as pd from scipy import stats, special import warnings from ast import literal_eval import os import re import glob import itertools from math import ceil, floor import pkg_resources from astropy.time import Time from astropy.table import QTable, Column, Table from htof import settings as st from htof.utils.data_utils import merge_consortia, safe_concatenate from htof.utils.parse_utils import gaia_obmt_to_tcb_julian_year import abc class DataParser(object): """ Base class for parsing Hip1, Hip2 and Gaia data. self.epoch, self.covariance_matrix and self.scan_angle are saved as pandas.DataFrame. use .values (e.g. self.epoch.values) to call the ndarray version. """ def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, along_scan_errs=None, parallax_factors=None, meta=None): if meta is None: meta = {} self.scan_angle = pd.Series(scan_angle, dtype=np.float64) self._epoch = pd.DataFrame(epoch, dtype=np.float64) self.residuals = pd.Series(residuals, dtype=np.float64) self.parallax_factors = pd.Series(parallax_factors, dtype=np.float64) self.along_scan_errs = pd.Series(along_scan_errs, dtype=np.float64) self.inverse_covariance_matrix = inverse_covariance_matrix self.meta = meta @staticmethod def get_intermediate_data_file_path(star_id: str, intermediate_data_directory: str): star_id = str(star_id) filepath = os.path.join(os.path.join(intermediate_data_directory, '**/'), '*' + star_id + '*') filepath_list = glob.glob(filepath, recursive=True) if len(filepath_list) != 1: # search for the star id with leading zeros stripped filepath = os.path.join(os.path.join(intermediate_data_directory, '**/'), '*' + star_id.lstrip('0') + '*') filepath_list = glob.glob(filepath, recursive=True) if len(filepath_list) != 1: # search for files with the full 6 digit hipparcos string filepath = os.path.join(os.path.join(intermediate_data_directory, '**/'), '*' + star_id.zfill(6) + '*') filepath_list = glob.glob(filepath, recursive=True) if len(filepath_list) != 1: # take the file with which contains only the hip id if there are multiple matches filepath = os.path.join(os.path.join(intermediate_data_directory, '**/'), '*' + star_id.lstrip('0') + '*') filepath_list = match_filename(glob.glob(filepath, recursive=True), star_id) if len(filepath_list) == 0: raise FileNotFoundError('No file with name containing {0} or {1} or {2} found in {3}' ''.format(star_id, star_id.lstrip('0'), star_id.zfill(6), intermediate_data_directory)) if len(filepath_list) > 1: raise FileNotFoundError('Unable to find the correct file among the {0} files containing {1}' 'found in {2}'.format(len(filepath_list), star_id, intermediate_data_directory)) return filepath_list[0] @staticmethod def read_intermediate_data_file(star_id: str, intermediate_data_directory: str, skiprows, header, sep): iad_filepath = DataParser.get_intermediate_data_file_path(star_id, intermediate_data_directory) data = pd.read_csv(iad_filepath, sep=sep, skiprows=skiprows, header=header, engine='python') return data @abc.abstractmethod def parse(self, star_id: str, intermediate_data_parent_directory: str, **kwargs): pass # pragma: no cover def julian_day_epoch(self): return self._epoch.values.flatten() @property def epoch(self): return self._epoch.values.flatten() def calculate_inverse_covariance_matrices(self, cross_scan_along_scan_var_ratio=np.inf): self.inverse_covariance_matrix = calc_inverse_covariance_matrices(self.scan_angle, cross_scan_along_scan_var_ratio=cross_scan_along_scan_var_ratio, along_scan_errs=self.along_scan_errs, star_id=self.meta.get('star_id', None)) def write(self, path: str, *args, **kwargs): """ :param path: str. filepath to write out the processed data. :param args: arguments for astropy.table.Table.write() :param kwargs: keyword arguments for astropy.table.Table.write() :return: None Note: The IntermediateDataParser.inverse_covariance_matrix are added to the table as strings so that they are easily writable. The icov matrix is saved a string. Each element of t['icov'] can be recovered with ast.literal_eval(t['icov'][i]) where i is the index. ast.literal_eval(t['icov'][i]) will return a 2x2 list. """ t = self.as_table() # transform icov matrices as writable strings. t['icov'] = [str(icov.tolist()) for icov in t['icov']] t.write(path, fast_writer=False, *args, **kwargs) def as_table(self): """ :return: astropy.table.QTable The IntermediateDataParser object tabulated. This table has as columns all of the attributes of IntermediateDataParser. For any attribute which is empty or None, the column will contain zeros. """ cols = [self.scan_angle, self.julian_day_epoch(), self.residuals, self.along_scan_errs, self.inverse_covariance_matrix] cols = [Column(col) for col in cols] # replacing incorrect length columns with empties. cols = [col if len(col) == len(self) else Column(None, length=len(self)) for col in cols] t = QTable(cols, names=['scan_angle', 'julian_day_epoch', 'residuals', 'along_scan_errs', 'icov']) return t def __add__(self, other): all_scan_angles = pd.concat([self.scan_angle, other.scan_angle]) all_epoch = pd.concat([pd.DataFrame(self.julian_day_epoch()), pd.DataFrame(other.julian_day_epoch())]) all_residuals = pd.concat([self.residuals, other.residuals]) all_along_scan_errs = pd.concat([self.along_scan_errs, other.along_scan_errs]) # TODO: add parallax factors. Tricky because gaia missions do not have them. all_inverse_covariance_matrix = safe_concatenate(self.inverse_covariance_matrix, other.inverse_covariance_matrix) return DataParser(scan_angle=all_scan_angles, epoch=all_epoch, residuals=all_residuals, inverse_covariance_matrix=all_inverse_covariance_matrix, along_scan_errs=all_along_scan_errs) def __radd__(self, other): if other == 0: return self return self.__add__(other) def __len__(self): return len(self._epoch) class GaiaData(DataParser): DEAD_TIME_TABLE_NAME = None def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, min_epoch=-np.inf, max_epoch=np.inf, along_scan_errs=None, meta=None): super(GaiaData, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, meta=meta, inverse_covariance_matrix=inverse_covariance_matrix) self.min_epoch = min_epoch self.max_epoch = max_epoch def parse(self, star_id, intermediate_data_directory, **kwargs): self.meta['star_id'] = star_id data = self.read_intermediate_data_file(star_id, intermediate_data_directory, skiprows=0, header='infer', sep=r'\s*,\s*') data = self.trim_data(data['ObservationTimeAtBarycentre[BarycentricJulianDateInTCB]'], data, self.min_epoch, self.max_epoch) data = self.reject_dead_times(data['ObservationTimeAtBarycentre[BarycentricJulianDateInTCB]'], data) self._epoch = data['ObservationTimeAtBarycentre[BarycentricJulianDateInTCB]'] self.scan_angle = data['scanAngle[rad]'] def trim_data(self, epochs, data, min_mjd, max_mjd): valid = np.logical_and(epochs >= min_mjd, epochs <= max_mjd) return data[valid].dropna() def reject_dead_times(self, epochs, data): # there will be different astrometric gaps for gaia DR2 and DR3 because rejection criteria may change. # hence we have the appropriate parsers have different values for DEAD_TIME_TABLE_NAME. if self.DEAD_TIME_TABLE_NAME is None: # return the data if there is no dead time table specified. return data dead_time_table = Table.read(self.DEAD_TIME_TABLE_NAME) # convert on board mission time (OBMT) to julian day for col, newcol in zip(['start', 'end'], ['start_tcb_jd', 'end_tcb_jd']): dead_time_table[newcol] = gaia_obmt_to_tcb_julian_year(dead_time_table[col]).jd # make a mask of the epochs. Those that are within a dead time window have a value of 0 (masked) valid = np.ones(len(data), dtype=bool) for entry in dead_time_table: valid[np.logical_and(epochs >= entry['start_tcb_jd'], epochs <= entry['end_tcb_jd'])] = 0 # reject the epochs which fall within a dead time window data = data[valid].dropna() return data class DecimalYearData(DataParser): def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, along_scan_errs=None, meta=None): super(DecimalYearData, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, meta=meta, inverse_covariance_matrix=inverse_covariance_matrix) def parse(self, star_id, intermediate_data_parent_directory, **kwargs): pass # pragma: no cover def julian_day_epoch(self): return Time(self._epoch.values.flatten(), format='decimalyear').jd def calc_inverse_covariance_matrices(scan_angles, cross_scan_along_scan_var_ratio=np.inf, along_scan_errs=None, star_id=None): """ :param scan_angles: pandas.DataFrame. data frame with scan angles, e.g. as-is from IntermediateDataParser.read_intermediate_data_file. scan_angles.values is a numpy array with the scan angles :param cross_scan_along_scan_var_ratio: var_cross_scan / var_along_scan :param along_scan_errs: array. array of len(scan_angles), the errors in the along scan direction, one for each scan in scan_angles. :return An ndarray with shape (len(scan_angles), 2, 2), e.g. an array of covariance matrices in the same order as the scan angles """ if along_scan_errs is None or len(along_scan_errs) == 0: along_scan_errs = np.ones_like(scan_angles.values.flatten()) if np.any(np.isclose(along_scan_errs, 0)): warnings.warn(f'The IAD of {star_id} contained an along scan error that ' 'is zero. This is unphysical, the observation should ' 'probably have been marked as rejected. ' 'In order to compute the inverse covariance matrices for ' 'this source we are setting this AL error to a large ' 'number (1 arcsec) and continue. ', RuntimeWarning) along_scan_errs[np.isclose(along_scan_errs, 0)] = 1000 icovariance_matrices = [] icov_matrix_in_scan_basis = np.array([[1, 0], [0, 1/cross_scan_along_scan_var_ratio]]) for theta, err in zip(scan_angles.values.flatten(), along_scan_errs): c, s = np.cos(theta), np.sin(theta) Rot = np.array([[s, -c], [c, s]]) icov_matrix_in_ra_dec_basis = np.matmul(np.matmul(1/(err ** 2) * Rot, icov_matrix_in_scan_basis), Rot.T) icovariance_matrices.append(icov_matrix_in_ra_dec_basis) return np.array(icovariance_matrices) class HipparcosOriginalData(DecimalYearData): def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, along_scan_errs=None): super(HipparcosOriginalData, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, inverse_covariance_matrix=inverse_covariance_matrix) def parse(self, star_id, intermediate_data_directory, data_choice='MERGED'): """ :param star_id: a string which is just the number for the HIP ID. :param intermediate_data_directory: the path (string) to the place where the intermediate data is stored, e.g. Hip2/IntermediateData/resrec note you have to specify the file resrec or absrec. We use the residual records, so specify resrec. :param data_choice: 'FAST' or 'NDAC', 'BOTH', or 'MERGED. The standard is 'MERGED' which does a merger of the 'NDAC' and 'FAST' data reductions in the same way as the hipparcos 1991.25 catalog. 'BOTH' keeps both consortia's data in the IAD, which would be unphysical and is just for debugging. 'FAST' would keep only the FAST consortia data, likewise only NDAC would be kept if you selected 'NDAC'. """ if (data_choice != 'NDAC') and (data_choice != 'FAST') and (data_choice != 'MERGED')\ and (data_choice != 'BOTH'): raise ValueError('data choice has to be either NDAC or FAST or MERGED or BOTH.') self.meta['star_id'] = star_id data = self.read_intermediate_data_file(star_id, intermediate_data_directory, skiprows=10, header='infer', sep=r'\s*\|\s*') data = self._fix_unnamed_column(data) data = self._select_data(data, data_choice) # compute scan angles and observations epochs according to van Leeuwen & Evans 1998 # 10.1051/aas:1998218, eq. 11 & 12. self.scan_angle = np.arctan2(data['IA3'], data['IA4']) # unit radians, arctan2(sin, cos) # Use the larger denominator when computing the epoch offset. # This increases numerical precision and avoids NaNs if one of the two fields (IA3, IA4) is exactly zero. self._epoch = 1991.25 + (data['IA6'] / data['IA3']).where(abs(data['IA3']) > abs(data['IA4']), (data['IA7'] / data['IA4'])) self.residuals = data['IA8'] # unit milli-arcseconds (mas) self.along_scan_errs = data['IA9'] # unit milli-arcseconds self.parallax_factors = data['IA5'] @staticmethod def _select_data(data, data_choice): # restrict intermediate data to either NDAC, FAST, or merge the NDAC and FAST results. if data_choice == 'MERGED': data = merge_consortia(data) elif data_choice != 'BOTH': data = data[data['IA2'].str.upper() == {'NDAC': 'N', 'FAST': 'F'}[data_choice]] return data @staticmethod def _fix_unnamed_column(data, correct_key='IA2', col_idx=1): data.rename(columns={data.columns[col_idx]: correct_key}, inplace=True) return data class HipparcosRereductionDVDBook(DecimalYearData): def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, along_scan_errs=None, meta=None): super(HipparcosRereductionDVDBook, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, meta=meta, inverse_covariance_matrix=inverse_covariance_matrix) self._additional_rejected_epochs = {} # epochs that need to be rejected due to the write out bug. self._rejected_epochs = {} # epochs that are known rejects, e.g., # those that have negative AL errors in the java tool def read_header(self, star_id, intermediate_data_directory): header = self.read_intermediate_data_file(star_id, intermediate_data_directory, skiprows=0, header=None, sep=r'\s+') return header def parse(self, star_id, intermediate_data_directory, error_inflate=True, header_rows=1, attempt_adhoc_rejection=True, **kwargs): """ :param: star_id: :param: intermediate_data_directory: :param: error_inflate: True if the along-scan errors are to be corrected by the inflation factor according to Appendix B of D. Michalik et al. 2014. Only turn this off for tests, or if the parameters required to compute the error inflation are unavailable. :param: header_rows: int. :return: Compute scan angles and observations epochs from van Leeuwen 2007, table G.8 see also Figure 2.1, section 2.5.1, and section 4.1.2 NOTE: that the Hipparcos re-reduction book and the figures therein describe the scan angle against the north ecliptic pole. NOTE: In the actual intermediate astrometry data on the DVD the scan angle psi is given in the equatorial system. This is similar to the original Hipparcos and Gaia (Source: private communication between <NAME> and <NAME>, April 2019), which define the scan angle theta as East of the North equatorial pole. theta = pi / 2 - psi, see Brandt et al. (2021), Section 2.2.2." """ self.meta['star_id'] = star_id header = self.read_header(star_id, intermediate_data_directory) data = self.read_intermediate_data_file(star_id, intermediate_data_directory, skiprows=header_rows, header=None, sep=r'\s+') self.scan_angle = np.arctan2(data[3], data[4]) # data[3] = sin(theta) = cos(psi), data[4] = cos(theta) = sin(psi) self._epoch = data[1] + 1991.25 self.residuals = data[5] # unit milli-arcseconds (mas) self.along_scan_errs = data[6] # unit milli-arcseconds (mas) self.parallax_factors = data[2] self.meta['catalog_f2'] = header.iloc[0][6] self.meta['catalog_soltype'] = header.iloc[0][4] # TODO need to calculate f2 newly using htof. Like we do in the java tool. n_transits, nparam, percent_rejected = header.iloc[0][2], get_nparam(header.iloc[0][4]), header.iloc[0][7] if attempt_adhoc_rejection: warnings.warn(f"For source {self.meta['star_id']}. The DVD IAD does not indicate which observation epochs were " "rejected for the final solution. htof will attempt to find which epochs to " "reject in order to reproduce the catalog parameters. However, if this source " "also has some corrupted residuals (see Brandt et al. 2021, Section 4), then " "this will fail. We recommend you switch to using the IAD from the Java tool, " "since that version of the IAD indicates rejected epochs with negative " "uncertainties.", UserWarning) self.rejected_epochs = find_epochs_to_reject_DVD(self, n_transits, percent_rejected, nparam, self.meta['catalog_f2']) if error_inflate: # adjust the along scan errors so that the errors on the best fit parameters match the catalog. self.along_scan_errs *= self.error_inflation_factor(n_transits, nparam, self.meta['catalog_f2']) return header, data @staticmethod def error_inflation_factor(ntr, nparam, f2): """ :param ntr: int. Number of transits used in the catalog solution. I.e. this should be N_transit_total - N_reject. So if N_reject is unknown, then the error inflation factor will be slightly wrong. :param nparam: int. Number of parameters used in the solution (e.g. 5, 7, 9..) :param f2: float. Goodness of fit metric. field F2 in the Hipparcos Re-reduction catalog. :return: u. float. The errors are to be scaled by u = Sqrt(Q/v) in equation B.4 of <NAME> et al. 2014. (Title: Joint astrometric solution of Hipparcos and Gaia) NOTE: ntr (the number of transits) given in the header of the Hip2 IAD, is not necessarily the number of transits used in the actual solution. """ num_transits_used = ntr nu = num_transits_used - nparam # equation B.1 of <NAME> et al. 2014 Q = nu * (np.sqrt(2/(9*nu))*f2 + 1 - 2/(9*nu))**3 # equation B.3 u = np.sqrt(Q/nu) # equation B.4. This is the chi squared statistic of the fit. return u def _reject_epochs(self, attr_to_set, value): residuals_to_reject, orbits_to_reject = value['residual/along_scan_error'], value['orbit/scan_angle/time'] not_outlier = np.ones(len(self), dtype=bool) np.put(not_outlier, residuals_to_reject, False) self.residuals, self.along_scan_errs = self.residuals[not_outlier], self.along_scan_errs[not_outlier] not_outlier = np.ones(len(self), dtype=bool) np.put(not_outlier, orbits_to_reject, False) self._epoch, self.scan_angle = self._epoch[not_outlier], self.scan_angle[not_outlier] self.parallax_factors = self.parallax_factors[not_outlier] setattr(self, attr_to_set, value) @property def additional_rejected_epochs(self): return self._additional_rejected_epochs @additional_rejected_epochs.setter def additional_rejected_epochs(self, value): self._reject_epochs('_additional_rejected_epochs', value) @property def rejected_epochs(self): return self._rejected_epochs @rejected_epochs.setter def rejected_epochs(self, value): self._reject_epochs('_rejected_epochs', value) class HipparcosRereductionJavaTool(HipparcosRereductionDVDBook): EPOCHREJECTLIST = Table.read(pkg_resources.resource_filename('htof', 'data/epoch_reject_shortlist.csv'), format='ascii') def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, along_scan_errs=None, meta=None): super(HipparcosRereductionJavaTool, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, inverse_covariance_matrix=inverse_covariance_matrix, meta=meta) def read_header(self, star_id, intermediate_data_directory): fpath = self.get_intermediate_data_file_path(star_id, intermediate_data_directory) with open(fpath) as f: lines = f.readlines() hline_fst = [float(i) for i in lines[6].split('#')[1].split()] hline_scd = [float(i) for i in lines[8].split('#')[1].split()] hline_trd = [float(i) if not ('---' in i) else np.nan for i in lines[10].split('#')[1].split()] hline_fst = {key: val for key, val in zip(['HIP', 'MCE', 'NRES', 'NC', 'isol_n', 'SCE', 'F2', 'F1'], hline_fst)} hline_scd = {key: val for key, val in zip(['Hp','B-V','VarAnn','NOB','NR'], hline_scd)} hline_trd = {key: val for key, val in zip(['RAdeg', 'DEdeg', 'Plx', 'pm_RA', 'pm_DE', 'e_RA', 'e_DE', 'e_Plx', 'e_pmRA', 'e_pmDE', 'dpmRA', 'dpmDE', 'e_dpmRA', 'e_dpmDE', 'ddpmRA', 'ddpmDE', 'e_ddpmRA', 'e_ddpmDE', 'upsRA', 'upsDE', 'e_upsRA', 'e_upsDE', 'var'], hline_trd)} return {'first': hline_fst, 'second': hline_scd, 'third': hline_trd} def parse(self, star_id, intermediate_data_directory, error_inflate=True, attempt_adhoc_rejection=True, reject_known=True, **kwargs): self.meta['star_id'] = star_id header = self.read_header(star_id, intermediate_data_directory) raw_data = self.read_intermediate_data_file(star_id, intermediate_data_directory, skiprows=13, header=None, sep=r'\s+') self.scan_angle = np.arctan2(raw_data[3], raw_data[4]) # data[3] = sin(theta) = cos(psi), data[4] = cos(theta) = sin(psi) self._epoch = raw_data[1] + 1991.25 self.residuals = raw_data[5] # unit milli-arcseconds (mas) self.along_scan_errs = raw_data[6] # unit milli-arcseconds (mas) self.parallax_factors = raw_data[2] self.meta['catalog_f2'] = header['first']['F2'] self.meta['catalog_soltype'] = header['first']['isol_n'] n_transits, n_expected_transits = header['first']['NRES'], header['second']['NOB'] n_additional_reject = int(n_transits) - int(n_expected_transits) # self.meta['catalog_f2'] = header.iloc[0][6] # this is already set in HipparcosRereductionDVDBook.parse() # self.meta['catalog_soltype'] = header.iloc[0][4] # this is already set in HipparcosRereductionDVDBook.parse() max_n_auto_reject = 4 if attempt_adhoc_rejection: if 3 >= n_additional_reject > 0: self.additional_rejected_epochs = find_epochs_to_reject_java(self, n_additional_reject) if max_n_auto_reject >= n_additional_reject > 3: orbit_number = raw_data[0].values self.additional_rejected_epochs = find_epochs_to_reject_java_large(self, n_additional_reject, orbit_number) if n_additional_reject > max_n_auto_reject: # These take too long to do automatically, pull the epochs to reject from the file that we computed correct_id = header['first']['HIP'] t = self.EPOCHREJECTLIST[self.EPOCHREJECTLIST['hip_id'] == int(correct_id)] if len(t) == 1: self.additional_rejected_epochs = {'residual/along_scan_error': literal_eval(t['residual/along_scan_error'][0]), 'orbit/scan_angle/time': literal_eval(t['orbit/scan_angle/time'][0])} else: warnings.warn(f'Cannot fix {star_id}. It has more than {max_n_auto_reject} corrupted epochs than can be ' f'corrected on-the-fly. The correct epochs to reject are not in our precomputed list ' f'(epoch_reject_shortlist.csv). This happens for sources where it is computationally ' f'infeasible to find an ad-hoc correction.', UserWarning) # pragma: no cover if not attempt_adhoc_rejection and n_additional_reject > 0: warnings.warn(f"attempt_adhoc_rejection = False and {star_id} has {n_additional_reject} " "discrepant observations. You have disabled the ad-hoc " "correction for this Java tool source. The IAD do not correspond " "to the best fit catalog solution. ", UserWarning) epochs_to_reject = np.where(self.along_scan_errs <= 0)[0] # note that we have to reject # the epochs with negative along scan errors (the formally known epochs that need to be rejected) # AFTER we have done the bug correction (rejected the epochs from the write out bug). This order # is important because the ad-hoc correction shuffles the orbits. if len(epochs_to_reject) > 0 and reject_known: # setting self.rejected_epochs also rejects the epochs (see the @setter) self.rejected_epochs = {'residual/along_scan_error': list(epochs_to_reject), 'orbit/scan_angle/time': list(epochs_to_reject)} # compute f2 of the residuals (with ad-hoc correction where applicable) nparam = get_nparam(str(int(header['first']['isol_n']))) Q = np.sum((self.residuals/self.along_scan_errs)**2) n_transits_final = len(self) # note that n_transits_final = n_expected_transits - number of indicated rejects (By negative AL errors) self.meta['calculated_f2'] = special.erfcinv(stats.chi2.sf(Q, n_transits_final - nparam)*2)*np.sqrt(2) if error_inflate: # WARNING: we use the catalog (Van Leeuwen 2014 Java tool F2) f2 value here to calculate the error inflation # factor. this is because for some sources, the calculated f2 value is much larger than the # catalog value. E.g., HIP 87275 has a catalog f2 of 65.29, and a newly calculated f2 is using # chi2.sf is infinity. # Therefore the error inflation in the catalog is ~7, while the error inflation assuming # the new f2 is infinity. We adopt the catalog f2 so as to reproduce the catalog solution and errors. # The developers have not yet found this f2 discrepency to be an issue, but any source with it # should still be treated with caution. self.along_scan_errs *= self.error_inflation_factor(n_transits_final, nparam, self.meta['catalog_f2']) return header, raw_data class GaiaDR2(GaiaData): DEAD_TIME_TABLE_NAME = pkg_resources.resource_filename('htof', 'data/astrometric_gaps_gaiadr2_08252020.csv') def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, meta=None, min_epoch=st.GaiaDR2_min_epoch, max_epoch=st.GaiaDR2_max_epoch, along_scan_errs=None): super(GaiaDR2, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, inverse_covariance_matrix=inverse_covariance_matrix, min_epoch=min_epoch, max_epoch=max_epoch, meta=meta) class GaiaeDR3(GaiaData): DEAD_TIME_TABLE_NAME = pkg_resources.resource_filename('htof', 'data/astrometric_gaps_gaiaedr3_12232020.csv') def __init__(self, scan_angle=None, epoch=None, residuals=None, inverse_covariance_matrix=None, meta=None, min_epoch=st.GaiaeDR3_min_epoch, max_epoch=st.GaiaeDR3_max_epoch, along_scan_errs=None): super(GaiaeDR3, self).__init__(scan_angle=scan_angle, along_scan_errs=along_scan_errs, epoch=epoch, residuals=residuals, inverse_covariance_matrix=inverse_covariance_matrix, min_epoch=min_epoch, max_epoch=max_epoch, meta=meta) def digits_only(x: str): return re.sub("[^0-9]", "", x) def match_filename(paths, star_id): return [f for f in paths if digits_only(os.path.basename(f).split('.')[0]).zfill(6) == star_id.zfill(6)] def find_epochs_to_reject_DVD(data: DataParser, n_transits, percent_rejected, nparam, catalog_f2): # just looks for combinations of orbits within the dvd IAD that yield a stationary point of chisquared. # Note that this does not work for sources with the data corruption. chi2_thresh = 1 possible_rejects = np.arange(len(data)) min_n_reject = max(floor((percent_rejected - 1) / 100 * n_transits), 0) max_n_reject = max(ceil((percent_rejected + 1) / 100 * n_transits), 1) max_n_reject = min(max_n_reject, 3) # limit to three rejected sources so that combinatorics dont blow up. # calculate the chisquared partials sin_scan = np.sin(data.scan_angle.values) cos_scan = np.cos(data.scan_angle.values) dt = data.epoch - 1991.25 rows_to_keep = np.ones(len(data), dtype=bool) orbit_factors = np.array([data.parallax_factors.values, sin_scan, cos_scan, dt * sin_scan, dt * cos_scan]) residual_factors = (data.residuals.values / data.along_scan_errs.values ** 2) chi2_vector = (2 * residual_factors * orbit_factors).T sum_chisquared_partials_norejects = np.sqrt(np.sum(np.sum(chi2_vector, axis=0) ** 2)) # we should be able to do the orbit reject calculation fairly easily in memory. # for 100 choose 3 we have like 250,000 combinations of orbits -- we should be able to # do those in 10,000 orbit chunks in memory and gain a factor of 10,000 speed up. candidate_row_rejects_pern = [[]] candidate_row_chisquared_partials_pern = [sum_chisquared_partials_norejects] n_reject = max(min_n_reject, 1) while n_reject < max_n_reject: candidate_row_rejects = [] candidate_row_chisquared_partials = [] combinations = list(set(itertools.combinations(possible_rejects, int(n_reject)))) for rows_to_reject in combinations: rows_to_keep[list(rows_to_reject)] = False # sum the square of the chi2 partials to decide for whether or not it is a stationary point. sum_chisquared_partials = np.sqrt(np.sum(np.sum(chi2_vector[rows_to_keep], axis=0) ** 2)) candidate_row_rejects.append(rows_to_reject) candidate_row_chisquared_partials.append(sum_chisquared_partials) # reset for the next loop: rows_to_keep[list(rows_to_reject)] = True n_reject += 1 candidate_row_rejects_pern.append(np.array(candidate_row_rejects)[np.argmin(candidate_row_chisquared_partials)]) candidate_row_chisquared_partials_pern.append(np.min(candidate_row_chisquared_partials)) # see if any of the rejections are viable (i.e., check if this IAD is messed up in an unrepairable way) if np.min(candidate_row_chisquared_partials_pern) > chi2_thresh: warnings.warn(f"Failed to find which observations of this DVD source {data.meta['star_id']} " f"that should have been marked as rejected. " f"The chi squared partials were larger than {chi2_thresh}. " f"DVD source {data.meta['star_id']} is likely a source with corrupted data. " f"Aborting rejection routine and using IAD as was " f"read from the DVD data. ", UserWarning) # pragma: no cover return {'residual/along_scan_error': [], 'orbit/scan_angle/time': []} # exclude any rejections that do not yield stationary points. viable_rejections = np.where(
np.array(candidate_row_chisquared_partials_pern)
numpy.array
# SPDX-License-Identifier: (BSD-3) #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Python module for Time Domain Moment Tensor Inversion (tdmtpy), Version: 0.1 Last updated on February 11, 2020 @module: tdmtpy @author: <NAME> (<EMAIL>) Usage 1. From command line: tdmt [input_file], if no input file is specified code will look for default input file "./mtinv.in" 2. Input file example (e.g. mtinv.in), check :Class: `tdmtpy.Header` and :Class: `tdmtpy.Station` for more details on the input parameters. datetime: 2019-07-16T20:10:31.473 longitude: -121.757 latitude: 37.8187 data_dir: example/dc green_dir: example/gf greentype: herrmann component: ZRT depth: 10 degree: 5 weight: 1 plot: 1 correlate: 0 NAME DISTANCE AZIMUTH SHIFT NPTS DT USED(1/0) FILTER NC NP LCRN HCRN MODEL STLO STLA BK.FARB.00 110 263 30 100 1.0 1 bp 2 2 0.05 0.1 gil7 -123.0011 37.69782 BK.SAO.00 120 167 30 150 1.0 1 bp 2 2 0.05 0.1 gil7 -121.44722 36.76403 BK.CMB.00 123 78 30 150 1.0 0 bp 2 2 0.05 0.1 gil7 -120.38651 38.03455 BK.MNRC.00 132 333 30 150 1.0 1 bp 2 2 0.05 0.1 gil7 -122.44277 38.87874 NC.AFD. 143 29 30 150 1.0 1 bp 2 2 0.05 0.1 gil7 -120.968971 38.94597 3. Data and Green's functions are in SAC binary format, and are corrected for instrument response, filtered, and decimated. File name coventions are described below: Data - [NAME].[COMPONENTS].dat NAME = station name in inputfile COMPONENTS = t, r, z e.g. BK.CMB.00.z.dat, BK.CMB.00.t.dat GFs - [NAME].[DEPTH].[GF_NAME] NAME = station name in inputfile DEPTH = source depth with four significant digits COMPONENTS = t, r, z GF_NAME = herrmann format has 10: tss tds rss rds rdd zss zds zdd rex zex, e.g. BK.CMB.00.10.0000.zds tensor format has 18 (if using all three components): xx, yy, zz, xy, xz, yz, e.g. BK.CMB.00.10.0000.zxy 4. Two output files are created "mtinv.out" and "max.mtinv.out" after running the code. mtinv.out = moment tensor depth search results, best solution on the second line (after header) max.mtinv.out = best solution with the highest VR, includes additional station information 5. If plot = 1 code will generate figures (e.g. figure0.pdf, figure1.pdf, etc.) with beach balls and waveform fits plotted """ from __future__ import (absolute_import, division, print_function, unicode_literals) from obspy.core import read, Stream from scipy.signal import fftconvolve import sys import numpy as np import multiprocessing as mp import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import matplotlib.collections as mpl_collections from matplotlib import patches, transforms from obspy.imaging.beachball import xy2patch from obspy.imaging.scripts.mopad import BeachBall as mopad_BeachBall from obspy.imaging.scripts.mopad import MomentTensor as mopad_MomentTensor from obspy.imaging.scripts.mopad import epsilon from math import pi, sqrt def loadfile(path_and_file=None): """ Input text file containing all information needed to set :class:`tdmtpy.Header` and :class:`tdmtpy.Station` attributes. """ if path_and_file is None: fname = 'mtinv.in' else: fname = path_and_file try: with open(fname) as f: pass except IOError: raise IOError("Input file '%s' not found."%fname) # `Header` names and corresponding types parser = dict(datetime = str, longitude = float, latitude = float, datadir = str, greendir = str, greentype = lambda x: x.upper(), component = lambda x: x.lower(), depth = _set_depth, degree = int, weight = int, plot = int, correlate = int) # Read headers and define formats with open(fname,'r') as f: for key, parse in parser.items(): parser[key] = parse(next(f).split()[1]) next(f) # Skip Line 14 items = [ line.split() for line in f ] # Station-specific info header = Header(parser) # `Station` names and corresponding types parser = dict(name = np.object_, distance = np.float_, azimuth = np.float_, shift = np.int_, npts = np.int_, dt = np.float_, used = np.object_, filtertype = np.object_, nc = np.int_, np = np.int_, lcrn = np.float_, hcrn = np.float_, model = np.object_, stlo = np.float_, stla = np.float_) for (key, parse), col in zip(parser.items(),zip(*items)): parser[key] = parse(col) parser['name'] = parser['name'].astype('U') parser['used'] = parser['used'].astype('U') parser['filtertype'] = parser['filtertype'].astype('U') parser['model'] = parser['model'].astype('U') station = Station(parser,ncomp=len(header.component)) mt = TDMT(header=header,station=station) return mt def _set_depth(depth_str): """ Depth search based on minimum source depth, maximum source depth, and vertical spacing :param depth_str: a comma-delimited string depth_min,depth_max,spacing (e.g. 10,30,5) or a fixed depth """ depth = np.float_(depth_str.split(':')) if depth.size == 3: start = depth[0] step = depth[2] stop = depth[1] + step depth_profile = [ z for z in np.arange(start,stop,step) ] elif depth.size == 1: depth_profile = depth else: raise ValueError return depth_profile class Header(object): """ Container for header information of tdmtpy TDMT object Header object contains all header information of a :class:`tdmtpy.TDMT` object. These are required for every TDMT object. :param hdr: dict, optional dict containing headers loaded from :func: `tdmtpy.loadfile` .. rubric:: Attributes, defaults to None if not supplied. All attributes must be defined to run inversion. datetime: string Event origin time in ObsPy UTCDatetime calendar/ordinal date representation (e.g. "2009-W53-7T12:23:34.5" or "2009-365T12:23:34.5" ) longitude: float Event longitude in decimal degrees latitude: float Event latitude in decimal degrees datadir: string Path to data files greendir: string Path to green's function files greentype: string Green's function format. Supported formats are: "HERRMANN"-1D elementary seismograms, "TENSOR"-1D or 3D Green's tensor. component: string Data and Green's function components. Options are: "ZRT"-vertica, radial and transverse, "Z"-vertical only. depth: np.float Fixed source depth or vertical depth profile on which the inverse is solved. Depth profile is constructed using the parameters speicifed in the input file. See Class Header.set_depth for more details. degree: int Number of independent parameters in the inversion. Options are: 5-deviatoric inversion, 6-full inversion. weight: int Data weighting function, same weights are applited to all components of a station. Options are: 0-No weights applied, 1-Inverse distance weighting, 2-inverse variance weighting plot: int Whether or not to plot results. False/0-No, True/1-Yes correlate: int Whether or not to search for best time shifts between data and synthetics using cross-correlation. False/0-No, True/1-Yes. """ def __init__(self,hdr=None): if hdr is None: self.datetime = None self.longitude = None self.latitude = None self.datadir = None self.greendir = None self.greentype = None self.component = None self.depth = None self.degree = None self.weight = None self.plot = False self.time_search = 0 self.correlate = 0 else: self._read_hdr(hdr) def __str__(self): f = "{0:>15}: {1}\n" ret = ''.join([ f.format(key,str(getattr(self,key))) for key in vars(self)] ) return ret def _read_hdr(self,hdr): self.datetime = hdr['datetime'] self.longitude = hdr['longitude'] self.latitude = hdr['latitude'] self.datadir = hdr['datadir'] self.greendir = hdr['greendir'] self.greentype = hdr['greentype'] self.component = hdr['component'] self.depth = hdr['depth'] self.degree = hdr['degree'] self.weight = hdr['weight'] self.plot = hdr['plot'] self.correlate = hdr['correlate'] def _repr_pretty_(self, p, cycle): p.text(str(self)) class Station(object): """ Container for station information of tdmtpy TDMT object Station object contains all station information of a :class:`tdmtpy.TDMT` object. These are required for every TDMT object. :param stat: dict, optional A dictionary containing station-specific parameters id (file name), distance, azimuth, dt, npts, shift, used. See README on format. :param ncomp: int, required number of components .. rubric:: Attributes, required unless marked as optional nsta: int Number of stations ncomp: int Numbber of components name: np.string Station/file names distance: np.float Source-receiver distance azimuth: np.float Source-receiver azimuth dt: np.float Sampling interval npts: np.int Number of samples shift: np.int Time shift in samples used: np.int Invert data (1) or prediction only (0) index1: np.int Beginning of each component/trace in d = Gm index2: np.int End of each component/trace in d = Gm """ def __init__(self,stat=None,ncomp=None): if stat is None: self.nsta = None self.ncomp = None self.name = None self.distance = None self.azimuth = None self.shift = None self.npts = None self.dt = None self.used = None self.index1 = None self.index2 = None else: self._read_stat(stat,ncomp) def __str__(self): f = "{0:>10}: {1}\n" ret = ''.join([ f.format(key,str(getattr(self,key))) for key in vars(self)] ) return ret def _read_stat(self,stat,ncomp): self.nsta = len(stat['name']) self.ncomp = ncomp self.name = stat['name'] self.distance = stat['distance'] self.azimuth = stat['azimuth'] self.shift = stat['shift'] self.npts = stat['npts'] self.dt = stat['dt'] self._set_used(stat['used']) self._set_indices() def _set_used(self,used): """ Determine which components to invert """ if self.ncomp == 1: self.used = np.ones((self.nsta,1),dtype=np.int) self.used.T[:] = used else: self.used = np.ones((self.nsta,3),dtype=np.int) if np.any(np.char.rfind(used,',') != -1): for i in range(self.nsta): self.used[i,:] = used[i].split(',') else: self.used.T[:] = used def _set_indices(self): """ Calculate indices of each component in inversion matrix (d and G) """ if self.npts is None or self.ncomp is None or self.nsta is None: print('Missing station information.') else: index2 = np.cumsum(np.repeat(self.npts,self.ncomp), dtype=np.int) index1 = np.zeros(self.ncomp * self.nsta, dtype=np.int) index1[1::] = index2[0:-1] self.index1 = index1.reshape(self.nsta,self.ncomp) self.index2 = index2.reshape(self.nsta,self.ncomp) def _repr_pretty_(self, p, cycle): p.text(str(self)) def xcorr(arr1,arr2,normalize=True): """ Compute cross-correlation coefficient """ c = fftconvolve(arr2[::-1],arr1,mode='valid') if normalize: norm = (np.sum(arr1**2)*np.sum(arr2**2))**0.5 if norm <= np.finfo(float).eps: # norm is zero c[:] = 0 elif c.dtype == float: c /= norm else: c = c/norm return c def invert(d,G,w,greentype,degree,plot,nsta,used,index1,index2): # d = data a = invert4a(d,G,w) M = a2M(a,greentype,degree) # Variance reduction Gm = np.dot(G,a) dGm = w*(d-Gm)**2 dd = w*d**2 VR = (1-np.sum(dGm)/np.sum(dd))*100 # Station VR used = np.sum(used,axis=1) ind1 = index1[:,0] ind2 = index2[:,-1] staVR = [ (1-np.sum(dGm[b:e])/np.sum(dd[b:e]))*100 if yes else None for yes, b, e in zip(used,ind1,ind2) ] out = {} out.update(decompose(M,plot)) if plot: out['a'] = a # a coefficients to compute synthetics out['VR'] = VR out['staVR'] = staVR # Display outputs iso = {5:'Deviatoric',6:'Full'} print('\n%s Moment Tensor Inversion'%iso[degree]) print('Mw = %.2f'%out['mw']) print('Percent DC/CLVD/ISO = %d/%d/%d'%(out['pdc'],out['pclvd'],out['piso'])) print('VR = %.2f%%'%out['VR']) return out def gaussj(A,b): """ Gaussian-Jordan elimination and back substitution """ # Make a copy to avoid altering input x = np.copy(b) n = len(x) # Gaussian-Jordan elimination for k in range(0,n-1): for i in range(k+1,n): if A[i,k] != 0.0: lam = A[i,k]/A[k,k] A[i,k+1:n] = A[i,k+1:n] - lam*A[k,k+1:n] x[i] = x[i]-lam*x[k] # Back substitution for k in range(n-1,-1,-1): x[k] = (x[k]-np.dot(A[k,k+1:n],x[k+1:n]))/A[k,k] return x def invert4a(d,G,w): # Perform linear least-squares inversion # coefficients to elementary moment tensors d = d[w!=0] G = G[w!=0,:] # squeeze, remove single-dimensional entries w = w[w!=0] Gt = (G).transpose() Gtd = np.dot(Gt,np.dot(np.diag(w),d)) GtG = np.dot(Gt,np.dot(np.diag(w),G)) # Compute the inverse GtGinv a = gaussj(GtG,Gtd) return a def a2M(a,greentype,degree): # aij coefficients (weights to elementary moment tensors) to moment tensor elements M = [ None for _ in range(6) ] # Ordering Mxx, Myy, Mzz, Mxy, Mxz, Myz if greentype == 'TENSOR': M[3] = a[0] M[4] = a[3] M[5] = a[2] if degree == 6: M[0] = a[1] - a[4] + a[5] M[1] = -a[1] + a[5] M[2] = a[4] + a[5] elif degree == 5: M[0] = a[1] - a[4] M[1] = -a[1] M[2] = a[4] else: pass if greentype == 'HERRMANN': M[0] = a[0] M[1] = a[3] M[3] = a[1] M[4] = a[2] M[5] = a[4] if degree == 6: M[2] = a[5] elif degree == 5: M[2] = -(a[0]+a[3]) else: pass return M def find_strike_rake_dip(u,n): """ Compute strike,rake and dip """ # Inputs: u = slip vector, n = fault normal dip = np.arccos(-1*u[2])*180/np.pi strike = np.arcsin(-1*u[0]/np.sqrt(u[0]**2+u[1]**2))*180/np.pi # Determine the quadrant if u[1] < 0: strike = 180-strike rake = np.arcsin(-1*n[2]/np.sin(dip*np.pi/180))*180/np.pi cos_rake = n[0]*np.cos(strike*np.pi/180)+n[1]*np.sin(strike*np.pi/180) if cos_rake < 0: rake = 180-rake if strike < 0: strike = strike+360 if rake < -180: rake = rake+360 if rake > 180: rake = rake-360 return (strike,rake,dip) def find_fault_planes(M,M_dc): eigVal, eigVec = np.linalg.eig(M_dc) # sort in ascending order: dc_eigvec = np.real(np.take(eigVec,np.argsort(eigVal),1)) # Principal axes: #n = dc_eigvec[:,1] p = dc_eigvec[:,2] t = dc_eigvec[:,0] # str/rake/dip for plane-1 u1 = (1/np.sqrt(2))*(t+p) # slip vector n1 = (1/np.sqrt(2))*(p-t) # fault normal # u,n calculations from Vavrycuk (2015) angles.m if u1[2] > 0: # vertical component is always negative! u1 = -1*u1 if (np.dot(np.dot(u1.T,M),n1)+np.dot(np.dot(n1.T,M),u1)) < 0: n1 = -1*n1 str1,rake1,dip1 = find_strike_rake_dip(u1,n1) # str/rake/dip for plane-2 u2 = n1 n2 = u1 if u2[2] > 0: # vertical component is always negative! u2 = -1*u2 n2 = -1*n2 str2,rake2,dip2 = find_strike_rake_dip(u2,n2) #null_axis = dc_eigvec[:,1] #t_axis = t #p_axis = p return ( [(str1,dip1,rake1),(str2,dip2,rake2)] ) def eigen2lune(lam): """ Convert eigenvalues to source-type parameters on a lune (Tape and Tape, GJI 2012) :param eigenvalues: in descending order """ lambda_mag = sqrt(lam[0]**2 + lam[1]**2 + lam[2]**2) if np.sum(lam) != 0: bdot = np.sum(lam)/(sqrt(3)*lambda_mag) if bdot > 1: bdot = 1 elif bdot < -1: bdot = -1 #bdot[bdot>1] = 1 #bdot[bdot<-1] = -1 delta = 90 - np.arccos(bdot)*180/pi else: delta = 0. if lam[0] == lam[2]: gamma = 0 else: gamma = np.arctan((-lam[0] + 2*lam[1] - lam[2]) / (sqrt(3)*(lam[0] - lam[2])))*180/pi return ([gamma,delta]) def decompose(m,plot=False): M = np.array([[m[0],m[3],m[4]], [m[3],m[1],m[5]], [m[4],m[5],m[2]]]) M *= 1e20 # dyne-cm # Isotropic part: M_iso = np.diag(np.array([1. / 3 * np.trace(M), 1. / 3 * np.trace(M), 1. / 3 * np.trace(M)])) miso = 1. / 3 * np.trace(M) # Deviatoric part: M_dev = M - M_iso # compute eigenvalues and -vectors: eigVal, _ = np.linalg.eig(M) eigenvalues = np.real(np.take(eigVal,np.argsort(eigVal)[::-1])) # deviatoric eigenvalues and -vectors eigVal, eigVec = np.linalg.eig(M_dev) # sort in absolute value ascending order: dev_eigval = np.real(np.take(eigVal,np.argsort(abs(eigVal)))) dev_eigvec = np.real(np.take(eigVec,np.argsort(abs(eigVal)),1)) # Jost and Herrmann, 1989 definition of eigenvalues: m1 = dev_eigval[0] # m2 = dev_eigval[1] m3 = dev_eigval[2] # deviatoric moment if m3 == 0.: # isotropic only F = 0.5 else: F = -1*m1/m3 # Construct Dyadic Description of Vector Dipoles: a3a3 = np.column_stack([dev_eigvec[:,2],dev_eigvec[:,2],dev_eigvec[:,2]]) a3a3 = a3a3*a3a3.T a2a2 = np.column_stack([dev_eigvec[:,1],dev_eigvec[:,1],dev_eigvec[:,1]]) a2a2 = a2a2*a2a2.T a1a1 = np.column_stack([dev_eigvec[:,0],dev_eigvec[:,0],dev_eigvec[:,0]]) a1a1 = a1a1*a1a1.T M_clvd = m3*F*(2*a3a3-a2a2-a1a1) # CLVD tensor mclvd = abs(m3)*abs(F)*2 M_dc = m3*(1-2*F)*(a3a3-a2a2) # DC tensor mdc = abs(m3)*abs(1-2*F) # Bowers and Hudson moment mo = abs(miso)+abs(m3) # iso moment + dev moment mw = (np.log10(mo)-16.05)*2/3 mw_dev = 2*np.log10(mo)/3-10.73 # Calculate percentage #piso = int(round(abs(miso)/mo*100,6)) #pdc = int(round((1-2*abs(F))*(1-piso/100.)*100,6)) #pclvd = int(100 - piso - pdc) piso = abs(miso)/mo*100 pdc = mdc/mo*100 pclvd = mclvd/mo*100 # DC Fault planes fps = find_fault_planes(M,M_dc) # Find gamma and delta, Tape&Tape lune parameters lune = eigen2lune(eigenvalues) res = {'M':[ M[0,0],M[1,1],M[2,2],M[0,1],M[0,2],M[1,2] ], 'eigenvalues':eigenvalues, 'mo':mo, 'mw':mw, 'mw_dev':mw_dev, 'miso':miso, 'mdc':mdc, 'mclvd': mclvd, 'pdc':pdc, 'pclvd':pclvd,'piso':piso, 'fps':fps, 'lune':lune} if plot: DEV = [ M_dev[0,0],M_dev[1,1],M_dev[2,2],M_dev[0,1],M_dev[0,2],M_dev[1,2] ] ISO = [ M_iso[0,0],M_iso[1,1],M_iso[2,2],M_iso[0,1],M_iso[0,2],M_iso[1,2] ] CLVD = [ M_clvd[0,0],M_clvd[1,1],M_clvd[2,2],M_clvd[0,1],M_clvd[0,2],M_clvd[1,2] ] res.update({'DEV':DEV, 'ISO':ISO, 'CLVD':CLVD}) return res def new_page(nsta,nrows,ncols,annot='',offset=2,figsize=(10,8)): gs = GridSpec(nrows+offset,ncols,hspace=0.5,wspace=0.1) f = plt.figure(figsize=figsize) # Annotations and beach balls ax0 = f.add_subplot(gs[0:offset,:],xlim=(-5,3.55),ylim=(-0.75,0.6),aspect='equal') ax0.text(-5,0,annot,fontsize=11,verticalalignment='center') ax0.set_axis_off() # Waveforms ax1 = np.empty((nsta,3),dtype=np.object) # create empty axes for i in range(nsta): ax1[i,0] = f.add_subplot(gs[i+offset,0]) ax1[i,1] = f.add_subplot(gs[i+offset,1]) ax1[i,2] = f.add_subplot(gs[i+offset,2]) # Adjust axes for i in range(nsta-1): adjust_spines(ax1[i,0],['left','bottom']) for j in range(1,3): adjust_spines(ax1[i,j],[]) adjust_spines(ax1[-1,0],['left','bottom']) adjust_spines(ax1[-1,1],['bottom']) adjust_spines(ax1[-1,2],['bottom']) # Title ax1[0,0].set_title('Vertical',verticalalignment='bottom',fontsize=10) ax1[0,1].set_title('Radial',verticalalignment='bottom',fontsize=10) ax1[0,2].set_title('Tangential',verticalalignment='bottom',fontsize=10) return (f,ax0,ax1) def adjust_spines(ax,spines): ax.tick_params(direction='in',labelsize=8) for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward',5)) # outward by 5 points else: spine.set_color('none') # don't draw spine # turn off ticks where there is no spine if 'left' in spines: ax.yaxis.set_ticks_position('left') else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') ax.set_xlabel('time (s)') else: ax.xaxis.set_ticks([]) def beach(fm, linewidth=1, facecolor='0.75', bgcolor='w', edgecolor='k', alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False, zorder=100, mopad_basis='NED', axes=None, show_iso=False): """ Function taken from obspy.imaging.mopad_wrapper, minor modification to include isotropic components, original source code only handles pure iso. """ # initialize beachball mt = mopad_MomentTensor(fm, system=mopad_basis) bb = mopad_BeachBall(mt, npoints=size) ## Snippets added by <NAME> if show_iso: bb._plot_isotropic_part = True bb._nodallines_in_NED_system() ## bb._setup_BB(unit_circle=False) # extract the coordinates and colors of the lines radius = width / 2.0 neg_nodalline = bb._nodalline_negative_final_US pos_nodalline = bb._nodalline_positive_final_US tension_colour = facecolor pressure_colour = bgcolor if nofill: tension_colour = 'none' pressure_colour = 'none' # based on mopads _setup_plot_US() function # collect patches for the selection coll = [None, None, None] coll[0] = patches.Circle(xy, radius=radius) coll[1] = xy2patch(neg_nodalline[0, :], neg_nodalline[1, :], radius, xy) coll[2] = xy2patch(pos_nodalline[0, :], pos_nodalline[1, :], radius, xy) # set the color of the three parts fc = [None, None, None] if bb._plot_clr_order > 0: fc[0] = pressure_colour fc[1] = tension_colour fc[2] = tension_colour if bb._plot_curve_in_curve != 0: fc[0] = tension_colour if bb._plot_curve_in_curve < 1: fc[1] = pressure_colour fc[2] = tension_colour else: coll = [coll[i] for i in (0, 2, 1)] fc[1] = pressure_colour fc[2] = tension_colour else: fc[0] = tension_colour fc[1] = pressure_colour fc[2] = pressure_colour if bb._plot_curve_in_curve != 0: fc[0] = pressure_colour if bb._plot_curve_in_curve < 1: fc[1] = tension_colour fc[2] = pressure_colour else: coll = [coll[i] for i in (0, 2, 1)] fc[1] = tension_colour fc[2] = pressure_colour if bb._pure_isotropic: if abs(np.trace(bb._M)) > epsilon: # use the circle as the most upper layer coll = [coll[0]] if bb._plot_clr_order < 0: fc = [tension_colour] else: fc = [pressure_colour] # transform the patches to a path collection and set # the appropriate attributes collection = mpl_collections.PatchCollection(coll, match_original=False) collection.set_facecolors(fc) # Use the given axes to maintain the aspect ratio of beachballs on figure # resize. if axes is not None: # This is what holds the aspect ratio (but breaks the positioning) collection.set_transform(transforms.IdentityTransform()) # Next is a dirty hack to fix the positioning: # 1. Need to bring the all patches to the origin (0, 0). for p in collection._paths: p.vertices -= xy # 2. Then use the offset property of the collection to position the # patches collection.set_offsets(xy) collection._transOffset = axes.transData collection.set_edgecolors(edgecolor) collection.set_alpha(alpha) collection.set_linewidth(linewidth) collection.set_zorder(zorder) return collection class TDMT(object): """ Class for time domain moment tensor inversion, the necessary attributes need to be defined by reading the input parameter file (e.g. mtinv.in) """ def __init__(self,header=None,station=None): self.header = header self.station = station if self.header is not None and self.station is not None: self._read_green_library() # Read Green's functions (synthetics) data = self._read_data() # Read data if self.header.correlate: self._find_time_shift(data) d = [ self._data2d(data,shift) for shift in self.shift ] else: d = self._data2d(data,self.station.shift) d = [ d for _ in self.header.depth ] # data array for inversion self.shift = [ self.station.shift for _ in self.header.depth ] self.d = d self._calculate_weights() else: print('No headers are defined.') def run(self): # Run inversion self._run_inversion() # Find solution with maximum VR val = [ r.get('VR') for r in self.solutions ] self.best = val.index(max(val)) # Store index of best solution self.station.shift = self.shift[self.best] # update sample shift self.d = self.d[self.best] # update data vector if self.header.weight == 2: # update weights if using inverse variance self.stawei = self.stawei[self.best] else: self.stawei = self.stawei[0] def write(self): # Write solutions to files self._write_solutions2list() # depth search results, best solution with max VR on top self._write_best2text() # write station-specific results for best solution if self.header.plot: self.plot() def plot(self): # Plot waveform fits and focal mechanisms of best solution solution = self.solutions[self.best] Gm = np.dot(self.G[self.best],solution['a']) stavr = [ '%.0f'%val if val else '' for val in solution['staVR'] ] #time = self.npts*self.dt annot = '\n'.join(['Depth = %s km'%self.header.depth[self.best], 'Mo = %.2E dyne-cm'%solution['mo'], 'Mw = %.2f'%solution['mw'], 'Percent DC/CLVD/ISO = %d/%d/%d'%(solution['pdc'],solution['pclvd'],solution['piso']), 'VR = %.2f%%'%solution['VR']]) # Beach balls TURN 2 FUNCTION if self.header.degree == 5: fm = (solution['M'], solution['fps'][0], solution['CLVD']) width = (1, 0.01*solution['pdc'],0.01*solution['pclvd']) fmtxt = ('Deviatoric','DC','CLVD') fmx = (1-0.01*solution['pdc']*0.25, 2.5-0.01*solution['pclvd']*0.5) elif self.header.degree == 6: fm = (solution['M'],solution['DEV'],solution['ISO']) width = (1, 0.01*(solution['pdc']+solution['pclvd']), 0.01*solution['piso']) fmtxt = ('Full','Deviatoric','ISO') fmx = (1-0.01*(solution['pdc']+solution['pclvd'])*0.25, 2.5-0.01*solution['piso']*0.5) nrows = 6 ncols = 3 a = self.station.nsta/nrows nPages = int(a) + ((int(a) - a) !=0 ) lst = list(range(0,self.station.nsta,nrows)) lst.append(self.station.nsta) pages = (range(lst[i],lst[i+1]) for i in range(nPages)) x = 0.55*np.sin(self.station.azimuth*np.pi/180) y = 0.55*np.cos(self.station.azimuth*np.pi/180) syntcol = np.empty(self.station.used.shape,dtype='<U5') syntcol[self.station.used==1] = 'green' syntcol[self.station.used==0] = '0.5' datacol = np.empty(self.station.used.shape,dtype='<U5') datacol[self.station.used==1] = 'black' datacol[self.station.used==0] = '0.5' for page, group in enumerate(pages): #tmax = np.max(time[group]) f, ax0, ax1 = new_page(len(group),nrows+1,ncols,annot=annot) #+1 for beach ball ax0.text(fmx[0],0,'=',horizontalalignment='center',verticalalignment='center') ax0.text(fmx[1],0,'+',horizontalalignment='center',verticalalignment='center') for i in range(self.station.nsta): if np.sum(self.station.used[i,:]): ax0.plot(x[i],y[i],marker=(3,0,-self.station.azimuth[i]),color='green',zorder=101) else: ax0.plot(x[i],y[i],marker=(3,0,-self.station.azimuth[i]),color='0.5',zorder=101) for i in range(len(fm)): beach1 = beach(fm[i],xy=(i+0.5*i,0),width=width[i],show_iso=True) ax0.add_collection(beach1) ax0.text(i+0.5*i,0.55,fmtxt[i],horizontalalignment='center') for i, stat in enumerate(group): t = np.arange(0,self.station.npts[stat]*self.station.dt[stat],self.station.dt[stat]) data = np.reshape(self.d[self.station.index1[stat,0]:self.station.index2[stat,-1]], (self.station.ncomp,self.station.npts[stat])) synt = np.reshape(Gm[self.station.index1[stat,0]:self.station.index2[stat,-1]], (self.station.ncomp,self.station.npts[stat])) ymin = np.min([data,synt]) ymax = np.max([data,synt]) for j in range(self.station.ncomp): ax1[i,j].plot(t,data[j,:],color=datacol[stat,j]) ax1[i,j].plot(t,synt[j,:],color=syntcol[stat,j],dashes=[6,2]) ax1[i,j].set_ylim(ymin,ymax) ax1[i,j].set_xlim(0,t[-1]) ax1[i,0].set_yticks([ymin,0,ymax]) ax1[i,0].set_yticklabels(['%.2e'%ymin, '0', '%.2e'%ymax]) ax1[i,0].text(0,ymax, self.station.name[stat], fontsize=10,fontweight='bold',verticalalignment='top') ax1[i,1].text(0,ymin, r'($\mathit{r},\varphi$)=(%-.2f,%-.0f)'%( self.station.distance[stat],self.station.azimuth[stat]), fontsize=8,verticalalignment='bottom') ax1[i,2].text(0,ymin,'%d,%s'%( self.station.shift[stat],stavr[stat]),fontsize=8,verticalalignment='bottom') f.savefig('figure%d.pdf'%(page)) plt.close(f) def _read_green_library(self,precision=4): options = {'HERRMANN': ['_green_herrmann',('ss','ds','dd','ex')], 'TENSOR': ['_green_tensor',('xx','xy','xz','yy','yz','zz')]} greenlist = [ ''.join([c,suffix]) for suffix in options[self.header.greentype][1] for c in self.header.component ] G = [ None for _ in self.header.depth ] green = [ None for _ in self.header.depth ] for i, depth in enumerate(self.header.depth): call_green_method = getattr(self,options[self.header.greentype][0]) gg = call_green_method(depth,greenlist,precision) G[i] = gg[0] if self.header.correlate: green[i] = gg[1] self.G = G self.green = green def _green_tensor(self,depth,greenlist,precision): depth_str = '{:.{prec}f}'.format(depth,prec=precision) gg = dict.fromkeys(greenlist,None) G = np.zeros((np.sum(self.station.ncomp*self.station.npts),self.header.degree),dtype=np.float) v = [ getattr(self.station,k) for k in ('name','npts','index1','index2') ] for stat,npts,b,e in zip(*v): file = '%s/%s.%s'%(self.header.greendir,stat,depth_str) for suffix in greenlist: gg[suffix] = read('%s.%s'%(file,suffix))[0].data[0:npts] # Read vertical then (if 3-C) horizontals # Construct the six basis functions (elemntary moment tensors) # Reference: Kikuchi and Kanamori,1991 (BSSA) for c,ii,jj in zip(self.header.component,b,e): G[ii:jj,0] = gg[c+'xy'] G[ii:jj,1] = gg[c+'xx'] - gg[c+'yy'] G[ii:jj,2] = gg[c+'yz'] G[ii:jj,3] = gg[c+'xz'] G[ii:jj,4] = -gg[c+'xx'] + gg[c+'zz'] if self.header.degree == 6: G[ii:jj,5] = gg[c+'xx'] + gg[c+'yy'] + gg[c+'zz'] return (G, None) def _green_herrmann(self,depth,greenlist,precision): """ Load all station Green's functions """ depth_str = '{:.{prec}f}'.format(depth,prec=precision) gg = dict.fromkeys(greenlist,None) green = np.zeros((np.sum(self.station.ncomp*self.station.npts),self.header.degree-2),dtype=np.float) G = np.zeros((np.sum(self.station.ncomp*self.station.npts),self.header.degree),dtype=np.float) v = [ getattr(self.station,k) for k in ('name','npts','azimuth','index1','index2') ] for stat,npts,azimuth,b,e in zip(*v): file = '%s/%s.%s'%(self.header.greendir,stat,depth_str) alpha = azimuth*(pi/180) for suffix in greenlist: if suffix == 'tdd' or suffix == 'tex': gg[suffix] = np.zeros((npts,)) else: gg[suffix] = read('%s.%s'%(file,suffix))[0].data[0:npts] # Constrcut Green's function vector using equations 6, 7 and 8from <NAME> Dreger, 2008 (GJI) # Some signs are flipped to match sign convention of basis Green's functions from RB Herrmann 2002, # Appendix B of Computer Programs in Seismology. # http://www.eas.slu.edu/eqc/eqccps.html # Vertical components G[b[0]:e[0],1] = gg['zss']*np.sin(2*alpha) # mxy G[b[0]:e[0],2] = gg['zds']*np.cos(alpha) # mxz G[b[0]:e[0],4] = gg['zds']*np.sin(alpha) # myz if self.header.degree == 5: G[b[0]:e[0],0] = 0.5*gg['zss']*np.cos(2*alpha) - 0.5*gg['zdd'] # mxx G[b[0]:e[0],3] = -0.5*gg['zss']*np.cos(2*alpha) - 0.5*gg['zdd'] # myy elif self.header.degree == 6: G[b[0]:e[0],0] = ( 0.5*gg['zss']*np.cos(2*alpha) - 0.166667*gg['zdd'] + 0.33333*gg['zex'] ) # mxx G[b[0]:e[0],3] = ( -0.5*gg['zss']*np.cos(2*alpha) - 0.166667*gg['zdd'] + 0.33333*gg['zex'] ) # myy G[b[0]:e[0],5] = 0.33333*gg['zdd'] + 0.33333*gg['zex'] # mzz # Read horizontals if self.header.component == 'zrt': G[b[2]:e[2],1] = -gg['tss']*np.cos(2*alpha) # mxy G[b[1]:e[1],1] = gg['rss']*np.sin(2*alpha) G[b[2]:e[2],2] = gg['tds']*np.sin(alpha) # mxz G[b[1]:e[1],2] = gg['rds']*np.cos(alpha) G[b[2]:e[2],4] = -gg['tds']*np.cos(alpha) # myz G[b[1]:e[1],4] = gg['rds']*np.sin(alpha) G[b[2]:e[2],0] = 0.5*gg['tss']*np.sin(2*alpha) # mxx G[b[2]:e[2],3] = -0.5*gg['tss']*np.sin(2*alpha) # myy if self.header.degree == 5: G[b[1]:e[1],0] = 0.5*gg['rss']*
np.cos(2*alpha)
numpy.cos
import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.sparse import csr_matrix, identity, kron from scipy.sparse.linalg import eigs, eigsh import itertools from scipy.linalg import block_diag, eig, expm, eigh from scipy.sparse import save_npz, load_npz, csr_matrix, csc_matrix import scipy.sparse as sp from scipy.special import binom import yaml import copy import warnings import os import time from .Hamiltonians import DisplacedAnharmonicOscillator, PolymerVibrations, Polymer, DiagonalizeHamiltonian, LadderOperators from .general_Liouvillian_classes import LiouvillianConstructor class OpenPolymer(Polymer,LiouvillianConstructor): def __init__(self,site_energies,site_couplings,dipoles): """Extends Polymer object to an open systems framework, using the Lindblad formalism to describe bath coupling """ super().__init__(site_energies,site_couplings,dipoles) # Values that need to be set self.optical_dephasing_gamma = 0 self.optical_relaxation_gamma = 0 self.site_to_site_dephasing_gamma = 0 self.site_to_site_relaxation_gamma = 0 self.exciton_relaxation_gamma = 0 self.exciton_exciton_dephasing_gamma = 0 self.kT = 0 def optical_dephasing_operator(self): total_deph = self.occupied_list[0].copy() for i in range(1,len(self.occupied_list)): total_deph += self.occupied_list[i] return total_deph def optical_dephasing_instructions(self): O = self.optical_dephasing_operator() gamma = self.optical_dephasing_gamma return self.make_Lindblad_instructions(gamma,O) def optical_dephasing_Liouvillian(self): instructions = self.optical_dephasing_instructions() return self.make_Liouvillian(instructions) def boltzmann_factors(self,E1,E2): if E1 == E2: return 0.5,0.5 if E1 < E2: return self.boltzmann_factors_ordered_inputs(E1,E2) else: E1_to_E2, E2_to_E1 = self.boltzmann_factors_ordered_inputs(E2,E1) return E2_to_E1, E1_to_E2 def boltzmann_factors_ordered_inputs(self,E1,E2): """E1 must be less than E2""" if self.kT == 0: return 1, 0 Z = np.exp(-E1/self.kT) + np.exp(-E2/self.kT) if np.isclose(Z,0): E2_to_E1 = 1 E1_to_E2 = 0 else: E2_to_E1 = np.exp(-E1/self.kT)/Z E1_to_E2 = np.exp(-E2/self.kT)/Z return E2_to_E1, E1_to_E2 def optical_relaxation_instructions(self): eg = 0 ins_list = [] gamma = self.optical_relaxation_gamma for n in range(len(self.energies)): en = self.energies[n] bg, bn = self.boltzmann_factors(eg,en) O = self.up_list[n] instructions2 = self.make_Lindblad_instructions(gamma * bg,O.T) ins_list += instructions2 if np.isclose(bn,0): pass else: instructions1 = self.make_Lindblad_instructions(gamma * bn,O) ins_list += instructions1 return ins_list def optical_relaxation_Liouvillian(self): inst_list = self.optical_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_relaxation_instructions(self): nm = itertools.combinations(range(len(self.energies)),2) i = 0 ins_list = [] gamma = self.site_to_site_relaxation_gamma for n,m in nm: en = self.energies[n] em = self.energies[m] bn,bm = self.boltzmann_factors(en,em) O = self.exchange_list[i] instructions1 = self.make_Lindblad_instructions(gamma * bn,O) instructions2 = self.make_Lindblad_instructions(gamma * bm,O.T) ins_list += instructions1 ins_list += instructions2 i+=1 return ins_list def site_to_site_relaxation_Liouvillian(self): inst_list = self.site_to_site_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_dephasing_operator_list(self): s_deph_list = [] for (i,j) in itertools.combinations(range(self.num_sites),2): s_deph_list.append(self.occupied_list[i] - self.occupied_list[j]) return s_deph_list def all_site_dephasing_instructions(self): s_deph_list = self.site_to_site_dephasing_operator_list() Lindblad_instruction_list = [] gamma = self.site_to_site_dephasing_gamma for O in s_deph_list: Lindblad_instruction_list += self.make_Lindblad_instructions(gamma,O) return Lindblad_instruction_list def all_site_dephasing_Liouvillian(self): inst_list = self.all_site_dephasing_instructions() L = self.make_Liouvillian(inst_list) return L/(2*self.num_sites) def set_electronic_dissipation_instructions(self): inst_list = [] if self.optical_dephasing_gamma != 0: inst_list += self.optical_dephasing_instructions() if self.site_to_site_dephasing_gamma != 0: inst_list += self.all_site_dephasing_instructions() if self.site_to_site_relaxation_gamma != 0: inst_list += self.site_to_site_relaxation_instructions() if self.optical_relaxation_gamma != 0: inst_list += self.optical_relaxation_instructions() self.electronic_dissipation_instructions = inst_list def make_manifold_hamiltonian_instructions(self,ket_manifold,bra_manifold): Hket = self.get_electronic_hamiltonian(manifold_num = ket_manifold) Hbra = self.get_electronic_hamiltonian(manifold_num = bra_manifold) return self.make_commutator_instructions2(-1j*Hket,-1j*Hbra) def make_total_Liouvillian(self): drho = self.make_Liouvillian(self.make_manifold_hamiltonian_instructions('all','all')) if self.num_sites > 1: drho += self.all_exciton_dephasing_Liouvillian() drho += self.exciton_relaxation_Liouvillian() # drho += self.optical_relaxation_Liouvillian() drho += self.optical_dephasing_Liouvillian() self.L = drho def eigfun(self,L,*,check_eigenvectors = True,invert = True,populations_only = False): eigvals, eigvecs = np.linalg.eig(L) eigvals = np.round(eigvals,12) sort_indices = eigvals.argsort() eigvals.sort() eigvecs = eigvecs[:,sort_indices] for i in range(eigvals.size): max_index = np.argmax(np.abs(eigvecs[:,i])) if np.real(eigvecs[max_index,i]) < 0: eigvecs[:,i] *= -1 if eigvals[i] == 0: # eigenvalues of 0 correspond to thermal distributions, # which should have unit trace in the Hamiltonian space if populations_only: trace_norm = eigvecs[:,i].sum() eigvecs[:,i] = eigvecs[:,i] / trace_norm else: shape = int(np.sqrt(eigvals.size)) trace_norm = eigvecs[:,i].reshape(shape,shape).trace() if np.isclose(trace_norm,0): pass else: eigvecs[:,i] = eigvecs[:,i] / trace_norm if invert: eigvecs_left = np.linalg.pinv(eigvecs) else: eigvals_left, eigvecs_left = np.linalg.eig(L.T) eigvals_left = np.round(eigvals_left,12) sort_indices_left = eigvals_left.argsort() eigvals_left.sort() eigvecs_left = eigvecs_left[:,sort_indices_left] eigvecs_left = eigvecs_left.T for i in range(eigvals_left.size): norm = np.dot(eigvecs_left[i,:],eigvecs[:,i]) eigvecs_left[i,:] *= 1/norm if check_eigenvectors: LV = L.dot(eigvecs) D = eigvecs_left.dot(LV) if np.allclose(D,np.diag(eigvals),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(eigvals))))) self.eigenvalues = eigvals self.eigenvectors = {'left':eigvecs_left,'right':eigvecs} return eigvals, eigvecs, eigvecs_left def save_L(self,dirname): save_npz(os.path.join(dirname,'L.npz'),csr_matrix(self.L)) def save_L_by_manifold(self): np.savez(os.path.join(self.base_path,'L.npz'),**self.L_by_manifold) def save_eigsystem(self,dirname): np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds = self.eigenvectors['right']) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds = self.eigenvectors['left']) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds = self.eigenvalues) def save_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu.shape[0]) mu_ket = np.kron(self.mu,II.T) mu_bra = np.kron(II,self.mu.T) mu_mask_tol = 10 mu_ket_t = np.dot(np.dot(evl,mu_ket),ev) mu_ket_3d = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d[:,:,0] = mu_ket_t mu_bra_t = np.dot(np.dot(evl,mu_bra),ev) mu_bra_3d = np.zeros((mu_bra_t.shape[0],mu_bra_t.shape[0],3),dtype='complex') mu_bra_3d[:,:,0] = mu_bra_t if mask: ket_mask = np.zeros(mu_ket_t.shape,dtype='bool') ket_mask[:,:] = np.round(mu_ket_t,mu_mask_tol)[:,:] mu_ket_t_masked = mu_ket_t * ket_mask mu_ket_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d_masked[:,:,0] = mu_ket_t_masked bra_mask = np.zeros(mu_bra_t.shape,dtype='bool') bra_mask[:,:] = np.round(mu_bra_t,mu_mask_tol)[:,:] mu_bra_t_masked = mu_bra_t * bra_mask mu_bra_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_bra_3d_masked[:,:,0] = mu_bra_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket=ket_mask,bra=bra_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket=mu_ket_3d_masked,bra=mu_bra_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(self.mu_ket_up.T,II.T) mu_bra_up = np.kron(II,self.mu_ket_up) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_t = np.dot(np.dot(evl,mu_ket_up),ev) mu_ket_up_3d = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up_t mu_bra_up_t = np.dot(np.dot(evl,mu_bra_up),ev) mu_bra_up_3d = np.zeros((mu_bra_up_t.shape[0],mu_bra_up_t.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up_t mu_ket_down_t = np.dot(np.dot(evl,mu_ket_down),ev) mu_ket_down_3d = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down_t mu_bra_down_t = np.dot(np.dot(evl,mu_bra_down),ev) mu_bra_down_3d = np.zeros((mu_bra_down_t.shape[0],mu_bra_down_t.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down_t if mask: ket_up_mask = np.zeros(mu_ket_up_t.shape,dtype='bool') ket_up_mask[:,:] = np.round(mu_ket_up_t,mu_mask_tol)[:,:] mu_ket_up_t_masked = mu_ket_up_t * ket_up_mask mu_ket_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d_masked[:,:,0] = mu_ket_up_t_masked bra_up_mask = np.zeros(mu_bra_up_t.shape,dtype='bool') bra_up_mask[:,:] = np.round(mu_bra_up_t,mu_mask_tol)[:,:] mu_bra_up_t_masked = mu_bra_up_t * bra_up_mask mu_bra_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_bra_up_3d_masked[:,:,0] = mu_bra_up_t_masked ket_down_mask = np.zeros(mu_ket_down_t.shape,dtype='bool') ket_down_mask[:,:] = np.round(mu_ket_down_t,mu_mask_tol)[:,:] mu_ket_down_t_masked = mu_ket_down_t * ket_down_mask mu_ket_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d_masked[:,:,0] = mu_ket_down_t_masked bra_down_mask = np.zeros(mu_bra_down_t.shape,dtype='bool') bra_down_mask[:,:] = np.round(mu_bra_down_t,mu_mask_tol)[:,:] mu_bra_down_t_masked = mu_bra_down_t * bra_down_mask mu_bra_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_bra_down_3d_masked[:,:,0] = mu_bra_down_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket_up=ket_up_mask,bra_up=bra_up_mask, ket_down=ket_down_mask,bra_down=bra_down_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket_up=mu_ket_up_3d_masked, bra_up=mu_bra_up_3d_masked,ket_down=mu_ket_down_3d_masked, bra_down=mu_bra_down_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu_site_basis(self,dirname): II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(self.mu_ket_up.T,II.T) mu_bra_up = np.kron(II,self.mu_ket_up) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_3d = np.zeros((mu_ket_up.shape[0],mu_ket_up.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up mu_bra_up_3d = np.zeros((mu_bra_up.shape[0],mu_bra_up.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up mu_ket_down_3d = np.zeros((mu_ket_down.shape[0],mu_ket_down.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down mu_bra_down_3d = np.zeros((mu_bra_down.shape[0],mu_bra_down.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down np.savez(os.path.join(dirname,'mu_site_basis.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) class OpenPolymerVibrations(OpenPolymer): def __init__(self,yaml_file,*,mask_by_occupation_num=True,force_detailed_balance=False,for_RKE=False): """Initial set-up is the same as for the Polymer class, but I also need to unpack the vibrational_frequencies, which must be passed as a nested list. Each site may have N vibrational modes, and each has a frequency, a displacement and a frequency shift for the excited state for sites a, b, ... """ with open(yaml_file) as yamlstream: params = yaml.load(yamlstream,Loader=yaml.SafeLoader) self.base_path = os.path.split(yaml_file)[0] self.save_path = os.path.join(self.base_path,'open') os.makedirs(self.save_path,exist_ok=True) super().__init__(params['site_energies'],params['site_couplings'],np.array(params['dipoles'])) self.H_diagonalization_time = 0 self.L_diagonalization_time = 0 self.L_construction_time = 0 self.truncation_size = params['initial truncation size'] try: self.maximum_manifold = params['maximum_manifold'] except: self.maximum_manifold = np.inf self.maximum_manifold = min(self.maximum_manifold,self.num_sites) self.params = params self.set_bath_coupling() if self.optical_relaxation_gamma != 0: self.manifolds_separable = False else: self.manifolds_separable = True self.set_electronic_dissipation_instructions() self.occupation_num_mask = mask_by_occupation_num self.set_vibrations() self.set_vibrational_ladder_operators() e_ham = self.extract_electronic_subspace(self.electronic_hamiltonian,0,self.maximum_manifold) self.total_hamiltonian = np.kron(e_ham,self.vibrational_identity) self.add_vibrations() t0 = time.time() self.set_H_eigsystem_by_manifold() self.H_diagonalization_time = time.time() - t0 self.make_condon_mu() self.make_condon_mu_dict() if force_detailed_balance: H_eigentransform = True t0 = time.time() self.all_instructions = self.make_commutator_instructions(-1j*self.total_hamiltonian) self.set_L_by_manifold(H_eigentransform=H_eigentransform,add_eigenstate_relaxation_effects = False) self.add_eigenstate_relaxation_effects() self.add_eigenstate_optical_dephasing_effects() self.L_construction_time = time.time() - t0 else: H_eigentransform = False t0 = time.time() self.all_instructions = self.convert_electronic_instructions_to_full_instructions(self.electronic_dissipation_instructions) self.all_instructions += self.make_commutator_instructions(-1j*self.total_hamiltonian) self.all_instructions += self.vibrational_dissipation_instructions() if self.manifolds_separable: self.set_L_by_manifold(H_eigentransform=H_eigentransform) else: self.set_L() self.L_construction_time = time.time() - t0 if for_RKE: self.set_mu_by_manifold(H_eigentransform=H_eigentransform,L_eigentransform=False) self.save_mu_by_manifold(pruned=False) self.save_L_by_manifold() self.save_rho0(H_eigentransform=H_eigentransform) else: t0 = time.time() if self.manifolds_separable: self.set_eigensystem_by_manifold(force_detailed_balance = force_detailed_balance) self.set_mu_by_manifold(H_eigentransform=H_eigentransform) self.save_mu_by_manifold(pruned=True) self.save_eigensystem_by_manifold() self.L_diagonalization_time = time.time() - t0 else: self.set_eigensystem() # self.set_mu() # self.save_mu(pruned=True) # self.save_eigensystem() # self.L_diagonalization_time = time.time() - t0 self.save_timings() def save_timings(self): save_dict = {'H_diagonalization_time':self.H_diagonalization_time, 'L_diagonalization_time':self.L_diagonalization_time, 'L_construction_time':self.L_construction_time} np.savez(os.path.join(self.save_path,'Liouvillian_timings.npz'),**save_dict) def set_H_eigsystem_by_manifold(self): self.H_eigenvalues = [] self.H_eigenvectors = [] for i in range(self.maximum_manifold+1): e,v = np.linalg.eigh(self.extract_vibronic_manifold(self.total_hamiltonian,i)) for i in range(e.size): max_ind = np.argmax(np.abs(v[:,i])) if v[max_ind,i] < 0: v[:,i] = v[:,i] * -1 self.H_eigenvalues.append(e) self.H_eigenvectors.append(v) def save_rho0(self,*,H_eigentransform=False): H_size = self.H_eigenvalues[0].size if H_size == 1: rho0 = np.array([[1]]) elif self.kT == 0: rho0 = np.zeros((H_size,H_size)) rho0[0,0] = 1 else: Z = np.sum(np.exp(-self.H_eigenvalues[0]/self.kT)) rho0_diag = np.exp(-self.H_eigenvalues[0]/self.kT)/Z rho0 = np.diag(rho0_diag) if H_eigentransform: # Already in the eigenbasis pass else: # Go back to original basis v = self.H_eigenvectors[0] rho0 = v.dot(rho0.dot(v.T)) rho0 = rho0.flatten() np.save(os.path.join(self.base_path,'rho0.npy'),rho0) def save_L(self): save_npz(os.path.join(self.save_path,'L.npz'),csr_matrix(self.L)) def save_L_by_manifold(self): np.savez(os.path.join(self.save_path,'L.npz'),**self.L_by_manifold) def eigfun2(self,ket_manifold_num,bra_manifold_num,*,check_eigenvectors = True): key = str(ket_manifold_num) + str(bra_manifold_num) L = self.L_by_manifold[key] E = L.diagonal().copy() V = np.eye(E.size,dtype='complex') VL = V.copy() if ket_manifold_num == bra_manifold_num: size = self.H_eigenvalues[ket_manifold_num].size pop_inds = np.arange(size)*(size+1) L_pop = L[pop_inds,:] L_pop = L_pop[:,pop_inds] e, v, vl = self.eigfun(L_pop,populations_only=True) E[pop_inds] = e[:] for i,j in zip(pop_inds,range(len(pop_inds))): V[pop_inds,i] = v[:,j] VL[pop_inds,i] = vl[:,j] if check_eigenvectors: LV = L.dot(V) D = VL.dot(LV) if np.allclose(D,np.diag(E),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(E))))) self.eigenvalues = E self.eigenvectors = {'left':VL,'right':V} return E,V,VL def vibrational_occupation_to_indices(self,vibration,occ_num,manifold_num): single_mode_occ = np.arange(self.truncation_size) vib_occ = self.vibrational_vector_of_ones_kron(vibration,single_mode_occ) masked_single_mode_occ = vib_occ[self.vibrational_mask] electronic_manifold_hamiltonian = self.get_electronic_hamiltonian(manifold_num = manifold_num) elec_size = electronic_manifold_hamiltonian.shape[0] masked_single_mode_occ = np.kron(np.ones(elec_size),masked_single_mode_occ) return np.where(masked_single_mode_occ == occ_num)[0] def electronic_occupation_to_indices(self,site_num,manifold_num): single_mode_occ = np.arange(2) elec_occ = self.electronic_vector_of_ones_kron(site_num,single_mode_occ) mask = self.electronic_manifold_mask(manifold_num) masked_elec_occ = elec_occ[mask] masked_elec_occ = np.kron(masked_elec_occ,np.ones(self.vibrational_mask[0].size)) return np.where(masked_elec_occ == 1)[0] def get_vibrational_relaxation_rates(self,manifold_num): e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): for n in range(self.num_vibrations): if j > i: rates[i,j] += self.single_vibrational_relaxation_rate(i,j,n,manifold_num) return rates def single_vibrational_relaxation_rate(self,i,j,vibration,manifold_num): vi = self.H_eigenvectors[manifold_num][:,i] vj = self.H_eigenvectors[manifold_num][:,j] rate = 0 for k in range(self.truncation_size): k_inds = self.vibrational_occupation_to_indices(vibration,k,manifold_num) kp1_inds = self.vibrational_occupation_to_indices(vibration,k+1,manifold_num) for k_ind,kp1_ind in zip(k_inds,kp1_inds): rate = rate + np.abs(vi[k_ind])**2 * np.abs(vj[kp1_ind])**2*np.sqrt(k+1) return rate def get_electronic_relaxation_rates(self,a,b,manifold_num): e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): if j > i: rates[i,j] += self.single_electronic_relaxation_rate(i,j,a,b,manifold_num) return rates def get_all_electronic_relaxation_rates(self,manifold_num): """Treats all sites as having the same relaxation rates """ e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): if j > i: for a in range(len(self.energies)): Ea = self.energies[a] for b in range(len(self.energies)): Eb = self.energies[b] if Eb > Ea: rates[i,j] += self.single_electronic_relaxation_rate(i,j,a,b,manifold_num) return rates def get_all_relaxation_rates(self,manifold_num): rates = self.vibrational_gamma * self.get_vibrational_relaxation_rates(manifold_num) rates = rates + self.site_to_site_relaxation_gamma * self.get_all_electronic_relaxation_rates(manifold_num) return rates def all_eigenstate_relaxation_instructions_by_manifold(self,manifold_num): rates = self.get_all_relaxation_rates(manifold_num) E = self.H_eigenvalues[manifold_num] ins = [] for i in range(rates.shape[0]): for j in range(rates.shape[1]): if j > i: O = np.zeros(rates.shape) O[i,j] = 1 down, up = self.boltzmann_factors(E[i],E[j]) down = down * rates[i,j] up = up * rates[i,j] ins += self.make_Lindblad_instructions(down,O) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions(up,O.T) return ins def all_eigenstate_relaxation_instructions_by_coherence(self,ket_manifold_num,bra_manifold_num): if ket_manifold_num == bra_manifold_num: return self.all_eigenstate_relaxation_instructions_by_manifold(ket_manifold_num) ket_rates = self.get_all_relaxation_rates(ket_manifold_num) E_ket = self.H_eigenvalues[ket_manifold_num] bra_rates = self.get_all_relaxation_rates(bra_manifold_num) E_bra = self.H_eigenvalues[bra_manifold_num] ins = [] Obra = np.zeros(bra_rates.shape) for i in range(ket_rates.shape[0]): for j in range(ket_rates.shape[1]): if j > i: Oket = np.zeros(ket_rates.shape) Oket[i,j] = 1 down,up = self.boltzmann_factors(E_ket[i],E_ket[j]) down = down * ket_rates[i,j] up = up * ket_rates[i,j] ins += self.make_Lindblad_instructions2_Obra0(down,Oket,Obra) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions2_Obra0(up,Oket.T,Obra) Oket = np.zeros(ket_rates.shape) for i in range(bra_rates.shape[0]): for j in range(bra_rates.shape[1]): if j > i: Obra = np.zeros(bra_rates.shape) Obra[i,j] = 1 down,up = self.boltzmann_factors(E_bra[i],E_bra[j]) down = down * bra_rates[i,j] up = up * bra_rates[i,j] ins += self.make_Lindblad_instructions2_Oket0(down,Oket,Obra) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions2_Oket0(up,Oket,Obra.T) return ins def single_electronic_relaxation_rate(self,i,j,a,b,manifold_num): vi = self.H_eigenvectors[manifold_num][:,i] vj = self.H_eigenvectors[manifold_num][:,j] a_inds = self.electronic_occupation_to_indices(a,manifold_num) b_inds = self.electronic_occupation_to_indices(b,manifold_num) rate = np.sum(np.abs(vi[a_inds])**2) * np.sum(np.abs(vj[b_inds])**2) return rate def make_eigenstate_relaxation_Lindblad_all_rates(self,rates,manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" E = self.H_eigenvalues[manifold_num] size = E.size pop_inds = np.arange(size)*(size+1) pop_subspace = np.zeros((pop_inds.size,pop_inds.size)) L_diagonal = np.zeros((size,size)) for i in range(size): for j in range(size): if j > i: down,up = self.boltzmann_factors(E[i],E[j]) down = down * rates[i,j] up = up * rates[i,j] pop_subspace[j,j] += -0.5*down pop_subspace[i,j] += 0.5*down pop_subspace[i,i] += -0.5*up pop_subspace[j,i] += 0.5*up L_diagonal[j,:] += -0.25*down L_diagonal[:,j] += -0.25*down L_diagonal[j,j] += -0.5*down L_diagonal[i,:] += -0.25*up L_diagonal[:,i] += -0.25*up L_diagonal[i,i] += -0.5*up L_total = np.diag(L_diagonal.ravel()) for i,j in zip(pop_inds,np.arange(pop_inds.size)): L_total[i,pop_inds] = pop_subspace[j,:] return L_total def make_eigenstate_relaxation_Lindblad_all_rates_by_coherence(self,ket_rates,bra_rates,ket_manifold_num,bra_manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" if ket_manifold_num == bra_manifold_num: return self.make_eigenstate_relaxation_Lindblad_all_rates(ket_rates,ket_manifold_num) E_ket = self.H_eigenvalues[ket_manifold_num] E_bra = self.H_eigenvalues[bra_manifold_num] ket_size = E_ket.size bra_size = E_bra.size L_diagonal = np.zeros((ket_size,bra_size)) for i in range(ket_size): for j in range(ket_size): if j > i: down,up = self.boltzmann_factors(E_ket[i],E_ket[j]) down = down * ket_rates[i,j] up = up * ket_rates[i,j] L_diagonal[j,:] += -0.25*down L_diagonal[i,:] += -0.25*up for i in range(bra_size): for j in range(bra_size): if j > i: down,up = self.boltzmann_factors(E_bra[i],E_bra[j]) down = down * bra_rates[i,j] down = down * bra_rates[i,j] L_diagonal[:,j] += -0.25*down L_diagonal[:,i] += -0.25*up L_total = np.diag(L_diagonal.ravel()) return L_total def add_eigenstate_relaxation_effects(self): for k in range(self.maximum_manifold+1): rates_k = self.get_all_relaxation_rates(k) for l in range(self.maximum_manifold+1): rates_l = self.get_all_relaxation_rates(l) key = str(k) + str(l) L = self.L_by_manifold[key] L += self.make_eigenstate_relaxation_Lindblad_all_rates_by_coherence(rates_k,rates_l,k,l) def add_eigenstate_optical_dephasing_effects(self): for k in range(self.maximum_manifold+1): for l in range(self.maximum_manifold+1): if k == l: pass else: key = str(k) + str(l) L = self.L_by_manifold[key] L += self.make_eigenstate_optical_dephasing_Lindblad(k,l) def make_eigenstate_relaxation_Lindblad(self,gamma,i,j,manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" size = self.H_eigenvalues[manifold_num].size pop_inds = np.arange(size)*(size+1) pop_subspace = np.zeros((pop_inds.size,pop_inds.size)) pop_subspace[j,j] = -0.5 pop_subspace[i,j] = 0.5 L_diagonal = np.zeros((size,size)) L_diagonal[j,:] = -0.25 L_diagonal[:,j] = -0.25 L_diagonal[j,j] = -0.5 L_total = np.diag(L_diagonal.ravel()) for i,j in zip(pop_inds,np.arange(pop_inds.size)): L_total[i,pop_inds] = pop_subspace[j,:] return gamma*L_total def make_eigenstate_relaxation_Lindblad_optical_coherence(self,gamma,i,j,ket_manifold_num,bra_manifold_num,*, relaxation_in_ket = True): """From j to i. Factor of 0.25 matches my previous definition of Lindblad formalism""" ket_size = self.H_eigenvalues[ket_manifold_num].size bra_size = self.H_eigenvalues[bra_manifold_num].size L_diagonal = np.zeros((ket_size,bra_size)) if relaxation_in_ket: L_diagonal[j,:] = -0.25 else: L_diagonal[:,j] = -0.25 L_total = np.diag(L_diagonal.ravel()) return gamma*L_total def make_eigenstate_optical_dephasing_Lindblad(self,ket_manifold_num,bra_manifold_num): """Use a constant dephasing rate for all states: my best idea is to createe the dephasing Lindblad for the electronic space only, and use it to fill in a single rate on the diagonal of the Liouvillian. The trick is to get dephasing between the nth and n+kth manifold right, when k > 1 (k = 1 is simply gamma)""" opt_deph = self.optical_dephasing_Liouvillian().diagonal().reshape(self.electronic_hamiltonian.shape) opt_deph = self.extract_coherence(opt_deph,ket_manifold_num,bra_manifold_num).ravel() if np.allclose(opt_deph[0],opt_deph): pass else: raise Exception('All optical dephasing rates are not the same, unknown error') ket_size = self.H_eigenvalues[ket_manifold_num].size bra_size = self.H_eigenvalues[bra_manifold_num].size opt_deph =
np.ones((ket_size,bra_size),dtype='complex')
numpy.ones
import cv2 import numpy as np # 肤色检测,返回只保留肤色的图像 def get_skin_hsv(img): hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) back = np.zeros(img.shape, np.uint8) (h0, s0, v0) = cv2.split(hsv_img) (x, y) = h0.shape for i in range(x): for j in range(y): if (h0[i][j] > 0) and (h0[i][j] < 40) and (s0[i][j] > 60) and (s0[i][j] < 255) and (v0[i][j] > 70) and (v0[i][j] < 255): back[i][j] = img[i][j] img[i][j] = 0 return back def get_skin_yuv(img): ycrcb_img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) (y, cr, cb) = cv2.split(ycrcb_img) (x, y) = cr.shape back = np.zeros(img.shape, np.uint8) for i in range(x): for j in range(y): if (cr[i][j] > 144.5) and (cr[i][j] < 200) and (cb[i][j] > 67) and (cb[i][j] < 136): back[i][j]=img[i][j] img[i][j]=0 return back # 提升对比度,采用直方图正规化 def imageHistNormalization(I): ''' 直方图正规化 将Imin和Imax之间的像素值映射到Omin到Omax也就是0-255的区间 Imin到Imax的区间范围肯定是小于或等于Omin到Omax的 正规化之后不用再进行截断操作了 ''' Imax = np.max(I) Imin =
np.min(I)
numpy.min
from typing import Union from sklearn.neighbors import NearestNeighbors from scipy.sparse import csr_matrix import numpy as np from scipy.stats import mode from anndata import AnnData import pandas as pd from anndata import AnnData from .utils import vecfld_from_adata from ..preprocessing.utils import pca_monocle from ..tools.clustering import ( hdbscan, leiden, louvain, infomap, ) from ..tools.Markov import ( velocity_on_grid, grid_velocity_filter, prepare_velocity_grid_data, ) from ..dynamo_logger import main_info from ..utils import LoggerManager, copy_adata from .scVectorField import SvcVectorField def cluster_field( adata, basis="pca", features=["speed", "potential", "divergence", "acceleration", "curvature", "curl"], add_embedding_basis=True, embedding_basis=None, normalize=False, method="leiden", cores=1, copy=False, **kwargs, ): """Cluster cells based on vector field features. We would like to see whether the vector field can be used to better define cell state/types. This can be accessed via characterizing critical points (attractor/saddle/repressor, etc.) and characteristic curves (nullcline, separatrix). However, the calculation of those is not easy, for example, a strict definition of an attractor is states where velocity is 0 and the eigenvalue of the jacobian matrix at that point is all negative. Under this strict definition, we may sometimes find the attractors are very far away from our sampled cell states which makes them less meaningful although this can be largely avoided when we decide to remove the density correction during the velocity projection. This is not unexpected as the vector field we learned is defined via a set of basis functions based on gaussian kernels and thus it is hard to satisfy that strict definition. Fortunately, we can handle this better with the help of a different set of ideas. Instead of using critical points by the classical dynamic system methods, we can use some machine learning approaches that are based on extracting geometric features of streamline to "cluster vector field space" for define cell states/type. This requires calculating, potential (ordered pseudotime), speed, curliness, divergence, acceleration, curvature, etc. Thanks to the fact that we can analytically calculate Jacobian matrix matrix, those quantities of the vector field function can be conveniently and efficiently calculated. Parameters ---------- adata: :class:`~anndata.AnnData`. adata object that includes both newly synthesized and total gene expression of cells. Alternatively, the object should include both unspliced and spliced gene expression of cells. basis: `str` or None (default: `None`) The space that will be used for calculating vector field features. Valid names includes, for example, `pca`, `umap`, etc. embedding_basis: `str` or None (default: `None`) The embedding basis that will be combined with the vector field feature space for clustering. normalize: `bool` (default: `False`) Whether to mean center and scale the feature across all cells. method: `str` (default: `leiden`) The method that will be used for clustering, one of `{'kmeans'', 'hdbscan', 'louvain', 'leiden'}`. If `louvain` or `leiden` used, you need to have `cdlib` installed. cores: `int` (default: 1) The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. copy: Whether to return a new deep copy of `adata` instead of updating `adata` object passed in arguments. kwargs: Any additional arguments that will be passed to either kmeans, hdbscan, louvain or leiden clustering algorithms. Returns ------- """ logger = LoggerManager.gen_logger("dynamo-cluster_field") logger.log_time() adata = copy_adata(adata) if copy else adata if method in ["louvain", "leiden"]: try: from cdlib import algorithms "leiden" in dir(algorithms) except ImportError: raise ImportError( "You need to install the excellent package `cdlib` if you want to use louvain or leiden " "for clustering." ) features = list( set(features).intersection(["speed", "potential", "divergence", "acceleration", "curvature", "curl"]) ) if len(features) < 1: raise ValueError( "features has to be selected from ['speed', 'potential', 'divergence', 'acceleration', " f"'curvature', 'curl']. your feature is {features}" ) feature_key = [ "speed_" + basis, basis + "_ddhodge_potential", "divergence_" + basis, "acceleration_" + basis, "curvature_" + basis, "curl_" + basis, ] feature_list = [i + "_" + basis if i != "potential" else basis + "_ddhodge_" + i for i in features] if feature_key[0] not in adata.obs.keys() and feature_key[0] in feature_list: from ..vectorfield import speed speed(adata, basis=basis) if feature_key[1] not in adata.obs.keys() and feature_key[1] in feature_list: from ..ext import ddhodge ddhodge(adata, basis=basis) if feature_key[2] not in adata.obs.keys() and feature_key[2] in feature_list: from ..vectorfield import divergence divergence(adata, basis=basis) if feature_key[3] not in adata.obs.keys() and feature_key[3] in feature_list: from ..vectorfield import acceleration acceleration(adata, basis=basis) if feature_key[4] not in adata.obs.keys() and feature_key[4] in feature_list: from ..vectorfield import curvature curvature(adata, basis=basis) if feature_key[5] not in adata.obs.keys() and feature_key[5] in feature_list: from ..vectorfield import curl curl(adata, basis=basis) feature_data = adata.obs.loc[:, feature_list].values if embedding_basis is None: embedding_basis = basis if add_embedding_basis: X = np.hstack((feature_data, adata.obsm["X_" + embedding_basis])) else: X = feature_data if normalize: # X = (X - X.min(0)) / X.ptp(0) X = (X - X.mean(0)) / X.std(0) if method in ["hdbscan", "kmeans"]: if method == "hdbscan": key = "field_hdbscan" hdbscan(adata, X_data=X, result_key=key, **kwargs) elif method == "kmeans": from sklearn.cluster import KMeans key = "field_kmeans" kmeans = KMeans(random_state=0, **kwargs).fit(X) adata.obs[key] = kmeans.labels_.astype("str") # clusters need to be categorical variables adata.obs[key] = adata.obs.obs[key].astype("category") elif method in ["louvain", "leiden", "infomap"]: if X.shape[0] > 200000 and X.shape[1] > 2: from pynndescent import NNDescent nbrs = NNDescent( X, metric="euclidean", n_neighbors=31, n_jobs=cores, random_state=19491001, ) nbrs_idx, dist = nbrs.query(X, k=31) else: nbrs = NearestNeighbors(n_neighbors=31, n_jobs=cores).fit(X) dist, nbrs_idx = nbrs.kneighbors(X) row = np.repeat(nbrs_idx[:, 0], 30) col = nbrs_idx[:, 1:].flatten() graph = csr_matrix( (np.repeat(1, len(col)), (row, col)), shape=(adata.n_obs, adata.n_obs), ) adata.obsp["vf_feature_knn"] = graph if method == "leiden": leiden( adata, adj_matrix_key="vf_feature_knn", result_key="field_leiden", ) elif method == "louvain": louvain( adata, adj_matrix_key="vf_feature_knn", result_key="field_louvain", ) elif method == "infomap": infomap( adata, adj_matrix_key="vf_feature_knn", result_key="field_infomap", ) logger.finish_progress(progress_name="clustering_field") if copy: return adata return None def streamline_clusters( adata: AnnData, basis: str = "umap", features: list = ["speed", "divergence", "acceleration", "curvature", "curl"], method: str = "sparsevfc", xy_grid_nums: list = [50, 50], density: float = 5, curvature_method: int = 1, feature_bins: int = 10, clustering_method: str = "leiden", assign_fixedpoints: bool = False, reversed_fixedpoints: bool = False, **kwargs, ): """ Parameters ---------- adata basis features method xy_grid_nums density curvature_method feature_bins clustering_method Returns ------- """ import matplotlib.pyplot as plt if method in ["louvain", "leiden"]: try: from cdlib import algorithms "leiden" in dir(algorithms) except ImportError: raise ImportError( "You need to install the excellent package `cdlib` if you want to use louvain or leiden " "for clustering." ) vf_dict, func = vecfld_from_adata(adata, basis=basis) grid_kwargs_dict = { "density": None, "smooth": None, "n_neighbors": None, "min_mass": None, "autoscale": False, "adjust_for_stream": True, "V_threshold": None, } if method.lower() == "sparsevfc": X, V = adata.obsm["X_" + basis], adata.obsm["velocity_" + basis] X_grid, p_mass, neighs, weight = prepare_velocity_grid_data( X, xy_grid_nums, density=grid_kwargs_dict["density"], smooth=grid_kwargs_dict["smooth"], n_neighbors=grid_kwargs_dict["n_neighbors"], ) for i in ["density", "smooth", "n_neighbors"]: grid_kwargs_dict.pop(i) V_emb = func(X) V_grid = (V_emb[neighs] * weight[:, :, None]).sum(1) / np.maximum(1, p_mass)[:, None] X_grid, V_grid = grid_velocity_filter( V_emb=V, neighs=neighs, p_mass=p_mass, X_grid=X_grid, V_grid=V_grid, **grid_kwargs_dict, ) elif method.lower() == "gaussian": X_grid, V_grid, D = velocity_on_grid( vf_dict["X"], vf_dict["Y"], xy_grid_nums, cut_off_velocity=True, **grid_kwargs_dict, ) else: raise ValueError(f"only `sparsevfc` and `gaussian` method supported") strm = plt.streamplot( X_grid[0], X_grid[1], V_grid[0], V_grid[1], density=density, ) strm_res = strm.lines.get_segments() # get streamline segements # split segments into different streamlines line_list_ori = {} line_ind = 0 for i, seg in enumerate(strm_res): if i == 0: line_list_ori[0] = [seg] else: # the second point from the previous segment should be the same from the first point in the current segment if all(strm_res[i - 1][1] == seg[0]): line_list_ori[line_ind].append(seg) else: line_ind += 1 line_list_ori[line_ind] = [seg] line_list = line_list_ori.copy() # convert to list of numpy arrays. for key, values in line_list_ori.items(): line_list_ori[key] = np.array(values).reshape((-1, 2)) # remove duplicated rows from the numpy arrays. for key, values in line_list.items(): line_list[key] = np.unique(np.array(values).reshape((-1, 2)), axis=0) vector_field_class = SvcVectorField() vector_field_class.from_adata(adata, basis=basis) has_acc = True if "acceleration" in features else False has_curv = True if "curvature" in features else False has_div = True if "divergence" in features else False has_speed = True if "speed" in features else False has_curl = True if "curl" in features else False if has_acc: acc_dict = {} if has_curv: cur_1_dict = {} cur_2_dict = {} if has_div: div_dict = {} if has_speed: speed_dict = {} if has_curl: curl_dict = {} # save features along the streameline and create histogram for each feature bins = feature_bins # number of feature bins line_len = [] feature_df = np.zeros((len(line_list), len(features) * bins)) for key, values in line_list.items(): line_len.append(values.shape[0]) tmp = None if has_acc: acceleration_val, acceleration_vec = vector_field_class.compute_acceleration(values) acc_dict[key] = acceleration_val _, acc_hist = np.histogram(acceleration_val, bins=(bins - 1), density=True) if tmp is None: tmp = acc_hist if has_curv: curvature_val_1 = vector_field_class.compute_curvature(values, formula=1)[0] cur_1_dict[key] = curvature_val_1 curvature_val_2, curvature_vec = vector_field_class.compute_curvature(values) cur_2_dict[key] = curvature_val_2 _, cur_1_hist = np.histogram(curvature_val_1, bins=(bins - 1), density=True) _, cur_2_hist = np.histogram(curvature_val_2, bins=(bins - 1), density=True) if tmp is None: tmp = cur_1_hist if curvature_method == 1 else cur_2_hist else: tmp = np.hstack((tmp, cur_1_hist if curvature_method == 1 else cur_2_hist)) if has_div: divergence_val = vector_field_class.compute_divergence(values) div_dict[key] = divergence_val _, div_hist = np.histogram(divergence_val, bins=(bins - 1), density=True) if tmp is None: tmp = div_hist else: tmp = np.hstack((tmp, div_hist)) if has_speed: speed_vec = vector_field_class.func(values) speed_val = np.linalg.norm(speed_vec) speed_dict[key] = speed_val _, speed_hist = np.histogram(speed_val, bins=(bins - 1), density=True) if tmp is None: tmp = speed_hist else: tmp = np.hstack((tmp, speed_hist)) if has_curl: curl_val = vector_field_class.compute_curl(values) curl_dict[key] = curl_val _, curl_hist = np.histogram(curl_val, bins=(bins - 1), density=True) if tmp is None: tmp = curl_hist else: tmp = np.hstack((tmp, curl_hist)) feature_df[key, :] = tmp # clustering feature_adata = AnnData(feature_df) pca_monocle(feature_adata, X_data=feature_df, pca_key="X_pca") if clustering_method == "louvain": louvain(feature_adata, obsm_key="X_pca") elif clustering_method == "leiden": leiden(feature_adata, obsm_key="X_pca") elif clustering_method == "infomap": infomap(feature_adata, obsm_key="X_pca") elif method in ["hdbscan", "kmeans"]: key = "field_hdbscan" hdbscan(feature_adata, X_data=feature_df, result_key=key, **kwargs) elif method == "kmeans": from sklearn.cluster import KMeans key = "field_kmeans" kmeans = KMeans(random_state=0, **kwargs).fit(X) feature_adata.obs[key] = kmeans.labels_.astype("str") # clusters need to be categorical variables feature_adata.obs[key] = adata.obs.obs[key].astype("category") else: raise ValueError( "only louvain, leiden, infomap, hdbscan and kmeans clustering supported but your requested " f"method is {method}" ) if assign_fixedpoints or reversed_fixedpoints: tmp = np.array(strm.lines.get_segments()).reshape((-1, 2)) vector_field_class.data["X"] = np.unique(tmp, axis=0) if assign_fixedpoints: ( X, valid_fps_type_assignment, assignment_id, ) = vector_field_class.assign_fixed_points(cores=1) feature_adata.obs["fixed_point"] = -1 if reversed_fixedpoints: # reverse vector field to identify source: vector_field_class.func = lambda x: -vector_field_class.func(x) ( X_rev, valid_fps_type_assignment_rev, assignment_id_rev, ) = vector_field_class.assign_fixed_points(cores=1) feature_adata.obs["rev_fixed_point"] = -1 data_X = vector_field_class.data["X"] for key, values in line_list.items(): indices = [np.where(np.logical_and(data_X[:, 0] == val[0], data_X[:, 1] == val[1]))[0][0] for val in values] # assign fixed point to the most frequent point if assign_fixedpoints: mode_val = mode(assignment_id[indices])[0][0] if not
np.isnan(mode_val)
numpy.isnan
""" Copyright 2013 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings import numpy as np import cvxpy as cp from cvxpy.atoms.affine.vstack import vstack from cvxpy.atoms.elementwise.power import power from cvxpy.expressions.variable import Variable from cvxpy.tests.base_test import BaseTest class TestExpressions(BaseTest): """ Unit tests for the expression/expression module. """ def setUp(self) -> None: pass # Test elementwise power def test_power(self) -> None: x = Variable(3) y = Variable(3) self.assertFalse(x.is_constant()) self.assertTrue(x.is_affine()) self.assertTrue(x.is_quadratic()) with warnings.catch_warnings(): warnings.simplefilter("ignore") s = power(x.T @ y, 0) self.assertTrue(s.is_constant()) self.assertTrue(s.is_affine()) self.assertTrue(s.is_quadratic()) t = power(x-y, 1) self.assertFalse(t.is_constant()) self.assertTrue(t.is_affine()) self.assertTrue(t.is_quadratic()) u = power(x+2*y, 2) self.assertFalse(u.is_constant()) self.assertFalse(u.is_affine()) self.assertTrue(u.is_quadratic()) self.assertTrue(u.is_dcp()) w = (x+2*y)**2 self.assertFalse(w.is_constant()) self.assertFalse(w.is_affine()) self.assertTrue(w.is_quadratic()) self.assertTrue(w.is_dcp()) def test_matrix_multiplication(self) -> None: x = Variable((3, 5)) y = Variable((3, 5)) self.assertFalse(x.is_constant()) self.assertTrue(x.is_affine()) self.assertTrue(x.is_quadratic()) with warnings.catch_warnings(): warnings.simplefilter("ignore") s = x.T @ y self.assertFalse(s.is_constant()) self.assertFalse(s.is_affine()) self.assertTrue(s.is_quadratic()) self.assertFalse(s.is_dcp()) def test_quad_over_lin(self) -> None: x = Variable((3, 5)) y = Variable((3, 5)) z = Variable() s = cp.quad_over_lin(x-y, z) self.assertFalse(s.is_constant()) self.assertFalse(s.is_affine()) self.assertFalse(s.is_quadratic()) self.assertTrue(s.is_dcp()) t = cp.quad_over_lin(x+2*y, 5) self.assertFalse(t.is_constant()) self.assertFalse(t.is_affine()) self.assertTrue(t.is_quadratic()) self.assertTrue(t.is_dcp()) def test_matrix_frac(self) -> None: x = Variable(5) M = np.eye(5) P = M.T @ M s = cp.matrix_frac(x, P) self.assertFalse(s.is_constant()) self.assertFalse(s.is_affine()) self.assertTrue(s.is_quadratic()) self.assertTrue(s.is_dcp()) def test_quadratic_form(self) -> None: x = Variable(5) P =
np.eye(5)
numpy.eye
import collections import fractions import json import os import re import warnings import numpy as np # pip3 install numpy import torch from scipy import ndimage import autodisc as ad warnings.filterwarnings('ignore', '.*output shape of zoom.*') # suppress warning from snd.zoom() ROUND = 10 EPS = 0.0001 class SphericPad(torch.nn.Module): """Pads spherically the input on all sides with the given padding size.""" def __init__(self, padding_size): super(SphericPad, self).__init__() if isinstance(padding_size, int): self.pad_left = self.pad_right = self.pad_top = self.pad_bottom = padding_size elif isinstance(padding_size, tuple) and len(padding_size) == 2: self.pad_left = self.pad_right = padding_size[0] self.pad_top = self.pad_bottom = padding_size[1] elif isinstance(padding_size, tuple) and len(padding_size) == 4: self.pad_left = padding_size[0] self.pad_top = padding_size[1] self.pad_right = padding_size[2] self.pad_bottom = padding_size[3] else: raise ValueError('The padding size shoud be: int, tuple of size 2 or tuple of size 4') def forward(self, input): output = torch.cat([input, input[:, :, :self.pad_bottom, :]], dim=2) output = torch.cat([output, output[:, :, :, :self.pad_right]], dim=3) output = torch.cat([output[:, :, -(self.pad_bottom + self.pad_top):-self.pad_bottom, :], output], dim=2) output = torch.cat([output[:, :, :, -(self.pad_right + self.pad_left):-self.pad_right], output], dim=3) return output def rle2arr(st): ''' Transforms an RLE string to a numpy array. Code from <NAME>. :param st Description of the array in RLE format. :return Numpy array. ''' rle_groups = re.findall("(\d*)([p-y]?[.boA-X$])", st.rstrip('!')) # [(2 yO)(1 $)(1 yO)] code_list = sum([[c] * (1 if n == '' else int(n)) for n, c in rle_groups], []) # [yO yO $ yO] code_arr = [l.split(',') for l in ','.join(code_list).split('$')] # [[yO yO] [yO]] V = [[0 if c in ['.', 'b'] else 255 if c == 'o' else ord(c) - ord('A') + 1 if len(c) == 1 else (ord(c[0]) - ord( 'p')) * 24 + (ord(c[1]) - ord('A') + 25) for c in row if c != ''] for row in code_arr] # [[255 255] [255]] maxlen = len(max(V, key=len)) A = np.array([row + [0] * (maxlen - len(row)) for row in V]) / 255 # [[1 1] [1 0]] return A class Board: def __init__(self, size=(10,10)): self.params = {'R':10, 'T':10, 'b':[1], 'm':0.1, 's':0.01, 'kn':1, 'gn':1} self.cells = np.zeros(size) def clear(self): self.cells.fill(0) '''--------------------------------------------------------------- AUTOMATON PYTORCH VERSION -------------------------------------------------------------------''' def complex_mult_torch(X, Y): """ Computes the complex multiplication in Pytorch when the tensor last dimension is 2: 0 is the real component and 1 the imaginary one""" assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' return torch.stack( (X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1], X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0]), dim=-1) def roll_n(X, axis, n): """ Rolls a tensor with a shift n on the specified axis""" f_idx = tuple(slice(None, None, None) if i != axis else slice(0,n,None) for i in range(X.dim())) b_idx = tuple(slice(None, None, None) if i != axis else slice(n,None,None) for i in range(X.dim())) front = X[f_idx] back = X[b_idx] return torch.cat([back, front],axis) class LeniaStepFFT(torch.nn.Module): """ Module pytorch that computes one Lenia Step with the fft version""" def __init__(self, R, b, kn, gn, m, s, T, is_soft_clip, is_gpu, size_y, size_x): super(LeniaStepFFT, self).__init__() self.R = R self.T = T self.dt = float (1.0 / T) self.b = b self.kn = kn self.gn = gn self.m = m self.s = s self.spheric_pad = SphericPad(int(self.R)) self.is_soft_clip = is_soft_clip self.is_gpu = is_gpu self.size_y = size_y self.size_x = size_x self.compute_kernel() def compute_kernel(self): size_y = self.size_y size_x = self.size_x # implementation of meshgrid in torch x = torch.arange(size_x) y = torch.arange(size_y) xx = x.repeat(size_y, 1) yy = y.view(-1,1).repeat(1, size_x) X = (xx - int(size_x / 2)).float() / float(self.R) Y = (yy - int(size_y / 2)).float() / float(self.R) # distance to center in normalized space D = torch.sqrt(X**2 + Y**2) # kernel k = len(self.b) kr = k * D bs = torch.tensor([float(f) for f in self.b]) b = bs[torch.min(torch.floor(kr).long(), (k-1)*torch.ones_like(kr).long())] kfunc = AutomatonPytorch.kernel_core[self.kn - 1] kernel = (D<1).float() * kfunc(torch.min(kr % 1, torch.ones_like(kr))) * b kernel_sum = torch.sum(kernel) # normalization of the kernel self.kernel_norm = (kernel / kernel_sum).unsqueeze(0).unsqueeze(0) # fft of the kernel self.kernel_FFT = torch.rfft(self.kernel_norm, signal_ndim=2, onesided=False) self.kernel_updated = False def forward(self, input): if self.is_gpu: input = input.cuda() self.kernel_FFT = self.kernel_FFT.cuda() self.world_FFT = torch.rfft(input, signal_ndim=2, onesided=False) self.potential_FFT = complex_mult_torch(self.kernel_FFT, self.world_FFT) self.potential = torch.irfft(self.potential_FFT, signal_ndim=2, onesided=False) self.potential = roll_n(self.potential, 3, self.potential.size(3)//2) self.potential = roll_n(self.potential, 2, self.potential.size(2)//2) gfunc = AutomatonPytorch.field_func[min(self.gn,2)] self.field = gfunc(self.potential, self.m, self.s) if not self.is_soft_clip: output_img = torch.clamp(input + self.dt * self.field, min=0., max=1.) else: output_img = AutomatonPytorch.soft_clip(input + self.dt * self.field, 0, 1, self.T) return output_img class LeniaStepConv2d(torch.nn.Module): """ Module pytorch that computes one Lenia Step with the conv2d version""" def __init__(self, R, b, kn, gn, m, s, T, is_soft_clip, is_gpu): super(LeniaStepConv2d, self).__init__() self.R = R self.T = T self.dt = float (1.0 / T) self.b = b self.kn = kn self.gn = gn self.m = m self.s = s self.spheric_pad = SphericPad(int(self.R)) self.is_soft_clip = is_soft_clip self.is_gpu = is_gpu self.compute_kernel() def compute_kernel(self): size_y = 2 * self.R + 1 size_x = 2 * self.R + 1 # implementation of meshgrid in torch x = torch.arange(size_x) y = torch.arange(size_y) xx = x.repeat(size_y, 1) yy = y.view(-1,1).repeat(1, size_x) X = (xx - int(size_x / 2)).float() / float(self.R) Y = (yy - int(size_y / 2)).float() / float(self.R) # distance to center in normalized space D = torch.sqrt(X**2 + Y**2) # kernel k = len(self.b) kr = k * D bs = torch.tensor([float(f) for f in self.b]) b = bs[torch.min(torch.floor(kr).long(), (k-1)*torch.ones_like(kr).long())] kfunc = AutomatonPytorch.kernel_core[self.kn - 1] kernel = (D<1).float() * kfunc(torch.min(kr % 1, torch.ones_like(kr))) * b kernel_sum = torch.sum(kernel) # normalization of the kernel self.kernel_norm = (kernel / kernel_sum).unsqueeze(0).unsqueeze(0) self.kernel_updated = False def forward(self, input): if self.is_gpu: input = input.cuda() self.kernel_norm = self.kernel_norm.cuda() self.potential = torch.nn.functional.conv2d(self.spheric_pad(input), weight = self.kernel_norm) gfunc = AutomatonPytorch.field_func[self.gn] self.field = gfunc(self.potential, self.m, self.s) if not self.is_soft_clip: output_img = torch.clamp(input + self.dt * self.field, 0, 1) # A_new = A + dt * torch.clamp(D, -A/dt, (1-A)/dt) else: output_img = AutomatonPytorch.soft_clip(input + self.dt * self.field, 0, 1, self.T) # A_new = A + dt * Automaton.soft_clip(D, -A/dt, (1-A)/dt, 1) return output_img class AutomatonPytorch: kernel_core = { 0: lambda r: (4 * r * (1-r))**4, # polynomial (quad4) 1: lambda r: torch.exp( 4 - 1 / (r * (1-r)) ), # exponential / gaussian bump (bump4) 2: lambda r, q=1/4: (r>=q).float() * (r<=1-q).float(), # step (stpz1/4) 3: lambda r, q=1/4: (r>=q).float() * (r<=1-q).float() + (r<q).float() *0.5 # staircase (life) } field_func = { 0: lambda n, m, s: torch.max(torch.zeros_like(n), 1 - (n-m)**2 / (9 * s**2) )**4 * 2 - 1, # polynomial (quad4) 1: lambda n, m, s: torch.exp( - (n-m)**2 / (2 * s**2) ) * 2 - 1, # exponential / gaussian (gaus) 2: lambda n, m, s: (torch.abs(n-m)<=s).float() * 2 - 1 # step (stpz) } @staticmethod def soft_max(x, m, k): return torch.log(torch.exp(k*x) + torch.exp(k*m)) / k @staticmethod def soft_clip(x, min, max, k): a = torch.exp(k*x) b = torch.exp(k*min) c = torch.exp(-k*max) return torch.log( 1/(a+b)+c ) / -k def __init__(self, world, version = 'fft', use_gpu = True): self.world = world #self.world_FFT = np.zeros(world.cells.shape) #self.potential_FFT = np.zeros(world.cells.shape) #self.potential = np.zeros(world.cells.shape) #self.field = np.zeros(world.cells.shape) #self.field_old = None #self.change = np.zeros(world.cells.shape) self.X = None self.Y = None self.D = None #self.gen = 0 #self.time = 0 self.is_multi_step = False self.is_soft_clip = False self.is_inverted = False self.kn = 1 self.gn = 1 # look if gpu is available if use_gpu and torch.cuda.is_available(): self.is_gpu = True else: self.is_gpu = False # initialization of the pytorch model to perform one step in Lenia if version == 'fft': self.model = LeniaStepFFT(self.world.params['R'], self.world.params['b'], (self.world.params.get('kn') or self.kn), (self.world.params.get('gn') or self.gn), self.world.params['m'], self.world.params['s'], self.world.params['T'], self.is_soft_clip, self.is_gpu, self.world.cells.shape[0], self.world.cells.shape[1]) elif version == 'conv2d': self.model = LeniaStepConv2d(self.world.params['R'], self.world.params['b'], (self.world.params.get('kn') or self.kn), (self.world.params.get('gn') or self.gn), self.world.params['m'], self.world.params['s'], self.world.params['T'], self.is_soft_clip, self.is_gpu) else: raise ValueError('Lenia pytorch automaton step calculation can be done with fft or conv 2d') if self.is_gpu: self.model = self.model.cuda() def calc_once(self): A = torch.from_numpy(self.world.cells).unsqueeze(0).unsqueeze(0).float() A_new = self.model(A) #A = A[0,0,:,:].cpu().numpy() A_new = A_new[0,0,:,:].cpu().numpy() #self.change = (A_new - A) / (1/self.world.params['T']) self.world.cells = A_new #self.gen += 1 #self.time = round(self.time + (1/self.world.params['T']), ROUND) def reset(self): pass #self.gen = 0 #self.time = 0 #self.field_old = None class Lenia(ad.core.System): @staticmethod def default_config(): def_config = ad.core.System.default_config() def_config.version = 'pytorch_fft' # reikna_fft, pytorch_fft, pytorch_conv2d def_config.use_gpu = True return def_config @staticmethod def default_system_parameters(): def_params = ad.core.System.default_system_parameters() def_params.size_y = 100 def_params.size_x = 100 def_params.R = 13 def_params.T = 10 def_params.b = [1] def_params.m = 0.15 def_params.s = 0.017 def_params.kn = 1 def_params.gn = 1 def_params.init_state = np.zeros((def_params.size_y, def_params.size_x)) return def_params def default_statistics(self): def_stats = super().default_statistics() def_stats.append(LeniaStatistics(self)) return def_stats def __init__(self, statistics=None, system_parameters=None, config=None, **kwargs): super().__init__(statistics=statistics, system_parameters=system_parameters, config=config, **kwargs) self.run_parameters = None self.world = None self.automaton = None def init_run(self, run_parameters=None): if run_parameters is None: self.run_parameters = self.system_parameters else: self.run_parameters = {**self.system_parameters, **run_parameters} self.world = Board((self.run_parameters['size_y'], self.run_parameters['size_x'])) self.world.cells = self.run_parameters["init_state"] self.world.params = self.run_parameters if np.min(self.world.cells) < 0 or np.max(self.world.cells) > 1: raise Warning('The given initial state has values below 0 and\or above 1. It will be clipped to the range [0, 1]') self.world.cells = np.clip(self.world.cells, 0, 1) if self.config.version.lower() == 'pytorch_fft': self.automaton = AutomatonPytorch(self.world, version='fft', use_gpu = self.config.use_gpu) elif self.config.version.lower() == 'pytorch_conv2d': self.automaton = AutomatonPytorch(self.world, version='conv2d', use_gpu = self.config.use_gpu) else: raise ValueError('Unknown lenia version (config.version = {!r})'.format(self.config.version)) return self.world.cells def step(self, step_idx): self.automaton.calc_once() # for some invalid parameters become the cells nan # this makes problems with the computation of the statistics # therefore, assume that all nan cells are 0 self.world.cells[np.isnan(self.world.cells)] = 0 return self.world.cells def stop(self): pass class LeniaStatistics(ad.core.SystemStatistic): '''Default statistics for the lenia system.''' DISTANCE_WEIGHT = 2 # 1=linear, 2=quadratic, ... @staticmethod def calc_statistic_diff(statistic_names, stat1, stat2, nan_value_diff=1.0, nan_nan_diff=0.0): if isinstance(stat1, list) or isinstance(stat2, list): raise NotImplementedError('Difference between statistics given as lists are not implemented!') if not isinstance(statistic_names, list): statistic_names = [statistic_names] stat1 = [stat1] stat2 = [stat2] # assume default difference for all diff = stat1 - stat2 # check if there are angle statistics and calculate there difference appropriately statistic_names_ndarray = np.array(statistic_names) angle_statistics_inds = (statistic_names_ndarray == 'activation_center_movement_angle') \ | (statistic_names_ndarray == 'activation_center_movement_angle_mean') \ | (statistic_names_ndarray == 'positive_growth_center_movement_angle') \ | (statistic_names_ndarray == 'positive_growth_center_movement_angle_mean') for angle_stat_idx in np.where(angle_statistics_inds)[0]: diff[angle_stat_idx] = ad.helper.misc.angle_difference_degree(stat1[angle_stat_idx], stat2[angle_stat_idx]) # if both statistics are nan, then the difference is nan_nan_diff (default=0) diff[np.isnan(stat1) & np.isnan(stat2)] = nan_nan_diff # if one statistic is nan, then the current diff is nan, then use nan_value_diff diff[np.isnan(diff)] = nan_value_diff return diff @staticmethod def calc_goalspace_distance(points1, points2, config, goal_space_extent=None): # normalize representations if goal_space_extent is not None: points1 = points1 - goal_space_extent[:,0] points1 = points1 / (goal_space_extent[:,1] - goal_space_extent[:,0]) points2 = points2 - goal_space_extent[:,0] points2 = points2 / (goal_space_extent[:,1] - goal_space_extent[:,0]) diff = LeniaStatistics.calc_statistic_diff(config.statistics, points1, points2) if len(diff) == 0: dist = np.array([]) elif np.ndim(diff) == 1: dist = np.linalg.norm(diff) else: dist = np.linalg.norm(diff, axis=1) return dist def __init__(self, system): super().__init__(system) # statistics self.data['is_dead'] = [] self.data['activation_mass'] = [] self.data['activation_mass_mean'] = [] self.data['activation_mass_std'] = [] self.data['activation_volume'] = [] self.data['activation_volume_mean'] = [] self.data['activation_volume_std'] = [] self.data['activation_density'] = [] self.data['activation_density_mean'] = [] self.data['activation_density_std'] = [] self.data['activation_center_position'] = [] self.data['activation_center_velocity'] = [] self.data['activation_center_velocity_mean'] = [] self.data['activation_center_velocity_std'] = [] self.data['activation_center_movement_angle'] = [] self.data['activation_center_movement_angle_mean'] = [] self.data['activation_center_movement_angle_std'] = [] self.data['activation_center_movement_angle_velocity'] = [] self.data['activation_center_movement_angle_velocity_mean'] = [] self.data['activation_center_movement_angle_velocity_std'] = [] self.data['activation_mass_asymmetry'] = [] self.data['activation_mass_asymmetry_mean'] = [] self.data['activation_mass_asymmetry_std'] = [] self.data['activation_mass_distribution'] = [] self.data['activation_mass_distribution_mean'] = [] self.data['activation_mass_distribution_std'] = [] self.data['activation_hu1'] = [] self.data['activation_hu1_mean'] = [] self.data['activation_hu1_std'] = [] self.data['activation_hu2'] = [] self.data['activation_hu2_mean'] = [] self.data['activation_hu2_std'] = [] self.data['activation_hu3'] = [] self.data['activation_hu3_mean'] = [] self.data['activation_hu3_std'] = [] self.data['activation_hu4'] = [] self.data['activation_hu4_mean'] = [] self.data['activation_hu4_std'] = [] self.data['activation_hu5'] = [] self.data['activation_hu5_mean'] = [] self.data['activation_hu5_std'] = [] self.data['activation_hu6'] = [] self.data['activation_hu6_mean'] = [] self.data['activation_hu6_std'] = [] self.data['activation_hu7'] = [] self.data['activation_hu7_mean'] = [] self.data['activation_hu7_std'] = [] self.data['activation_hu8'] = [] self.data['activation_hu8_mean'] = [] self.data['activation_hu8_std'] = [] self.data['activation_flusser9'] = [] self.data['activation_flusser9_mean'] = [] self.data['activation_flusser9_std'] = [] self.data['activation_flusser10'] = [] self.data['activation_flusser10_mean'] = [] self.data['activation_flusser10_std'] = [] self.data['activation_flusser11'] = [] self.data['activation_flusser11_mean'] = [] self.data['activation_flusser11_std'] = [] self.data['activation_flusser12'] = [] self.data['activation_flusser12_mean'] = [] self.data['activation_flusser12_std'] = [] self.data['activation_flusser13'] = [] self.data['activation_flusser13_mean'] = [] self.data['activation_flusser13_std'] = [] self.data['positive_growth_mass'] = [] self.data['positive_growth_mass_mean'] = [] self.data['positive_growth_mass_std'] = [] self.data['positive_growth_volume'] = [] self.data['positive_growth_volume_mean'] = [] self.data['positive_growth_volume_std'] = [] self.data['positive_growth_density'] = [] self.data['positive_growth_density_mean'] = [] self.data['positive_growth_density_std'] = [] self.data['positive_growth_center_position'] = [] self.data['positive_growth_center_velocity'] = [] self.data['positive_growth_center_velocity_mean'] = [] self.data['positive_growth_center_velocity_std'] = [] self.data['positive_growth_center_movement_angle'] = [] self.data['positive_growth_center_movement_angle_mean'] = [] self.data['positive_growth_center_movement_angle_std'] = [] self.data['positive_growth_center_movement_angle_velocity'] = [] self.data['positive_growth_center_movement_angle_velocity_mean'] = [] self.data['positive_growth_center_movement_angle_velocity_std'] = [] self.data['activation_positive_growth_centroid_distance'] = [] self.data['activation_positive_growth_centroid_distance_mean'] = [] self.data['activation_positive_growth_centroid_distance_std'] = [] # other self.distance_weight_matrix = LeniaStatistics.calc_distance_matrix(system.system_parameters.size_y, system.system_parameters.size_x) self.angles_from_middle = None def reset(self): # set all statistics to zero self.data = dict.fromkeys(self.data, []) def calc_after_run(self, system, all_obs): '''Calculates the final statistics for lenia observations after a run is completed''' self.reset() num_of_obs = len(all_obs) activation_mass_data = np.ones(num_of_obs) * np.nan activation_volume_data = np.ones(num_of_obs) * np.nan activation_density_data = np.ones(num_of_obs) * np.nan activation_center_position_data = np.ones((num_of_obs, 2)) * np.nan activation_center_velocity_data = np.ones(num_of_obs) * np.nan activation_center_movement_angle_data = np.ones(num_of_obs) * np.nan activation_center_movement_angle_velocity_data = np.ones(num_of_obs) * np.nan activation_mass_asymmetry_data = np.ones(num_of_obs) * np.nan activation_mass_distribution_data = np.ones(num_of_obs) * np.nan activation_hu1_data = np.ones(num_of_obs) * np.nan activation_hu2_data = np.ones(num_of_obs) * np.nan activation_hu3_data = np.ones(num_of_obs) * np.nan activation_hu4_data = np.ones(num_of_obs) * np.nan activation_hu5_data = np.ones(num_of_obs) * np.nan activation_hu6_data = np.ones(num_of_obs) * np.nan activation_hu7_data = np.ones(num_of_obs) * np.nan activation_hu8_data = np.ones(num_of_obs) * np.nan activation_flusser9_data = np.ones(num_of_obs) * np.nan activation_flusser10_data = np.ones(num_of_obs) * np.nan activation_flusser11_data = np.ones(num_of_obs) * np.nan activation_flusser12_data = np.ones(num_of_obs) * np.nan activation_flusser13_data = np.ones(num_of_obs) * np.nan positive_growth_mass_data = np.ones(num_of_obs) * np.nan positive_growth_volume_data = np.ones(num_of_obs) * np.nan positive_growth_density_data = np.ones(num_of_obs) * np.nan positive_growth_center_position_data = np.ones((num_of_obs, 2)) * np.nan positive_growth_center_velocity_data = np.ones(num_of_obs) * np.nan positive_growth_center_movement_angle_data = np.ones(num_of_obs) * np.nan positive_growth_center_movement_angle_velocity_data = np.ones(num_of_obs) * np.nan activation_positive_growth_centroid_distance_data = np.ones(num_of_obs) * np.nan # positive_growth_data = np.ones(num_of_obs) * np.nan # positive_growth_volume_data = np.ones(num_of_obs) * np.nan # positive_growth_density_data = np.ones(num_of_obs) * np.nan size_y = all_obs[0].shape[0] size_x = all_obs[0].shape[1] num_of_cells = size_y * size_x # calc initial center of mass and use it as a reference point to "center" the world around it # in consequetive steps, recalculate the center of mass and "recenter" the wolrd around them #mid_y = int((size_y-1) / 2) #mid_x = int((size_x-1) / 2) mid_y = (size_y - 1) / 2 mid_x = (size_x - 1) / 2 mid = np.array([mid_y, mid_x]) # prepare the angles of the vectors from the middle point for each point in the env, used to compute the mass asymmetry # only recompute for first calculation of statistics (self.angles_from_middle is None) or if the observation size changed if self.angles_from_middle is None or self.angles_from_middle.shape[0] != size_y or self.angles_from_middle.shape[1] != size_x: self.angles_from_middle = np.ones((size_y,size_x))*np.nan for y in range(size_y): for x in range(size_x): vec = [mid_y-y, x-mid_x] self.angles_from_middle[y][x] = ad.helper.misc.angle_of_vec_degree([vec[1], vec[0]]) activation_center_of_mass = np.array(LeniaStatistics.center_of_mass(all_obs[0])) activation_shift_to_center = mid - activation_center_of_mass init_growth = all_obs[1] - all_obs[0] positive_growth_center_of_mass = np.array(LeniaStatistics.center_of_mass(init_growth)) positive_growth_shift_to_center = mid - positive_growth_center_of_mass prev_activation_center_movement_angle = np.nan prev_positive_growth_center_movement_angle = np.nan uncentered_activation_center_position = np.array([np.nan, np.nan]) for step in range(len(all_obs)): activation = all_obs[step] # uncentered_activation_center_position = np.array(ndimage.measurements.center_of_mass(activation)) # # # set center to middle if it can not be calculated, for example if all cells are dead # if np.isnan(uncentered_activation_center_position[0]) or np.isnan(uncentered_activation_center_position[1]) or \ # uncentered_activation_center_position[0] == float('inf') or uncentered_activation_center_position[1] == float('inf'): # uncentered_activation_center_position = mid.copy() # shift the system to the last calculated center of mass so that it is in the middle # the matrix can only be shifted in discrete values, therefore the shift is transformed to integer centered_activation = np.roll(activation, activation_shift_to_center.astype(int), (0, 1)) # calculate the image moments activation_moments = ad.helper.statistics.calc_image_moments(centered_activation) # new center of mass activation_center_of_mass = np.array([activation_moments.y_avg, activation_moments.x_avg]) # calculate the change of center as a vector activation_shift_from_prev_center = mid - activation_center_of_mass # calculate the new shift to center the next obs to the new center activation_shift_to_center = activation_shift_to_center + activation_shift_from_prev_center # transform the new center, encoded as a shift from the first image, back into the original image coordinates uncentered_activation_center_position[0] = (mid_y - activation_shift_to_center[0]) % size_y uncentered_activation_center_position[1] = (mid_x - activation_shift_to_center[1]) % size_x activation_center_position_data[step] = uncentered_activation_center_position # activation mass activation_mass = activation_moments.m00 activation_mass_data[step] = activation_mass / num_of_cells # activation is number of acitvated cells divided by the number of cells # activation volume activation_volume = np.sum(activation > EPS) activation_volume_data[step] = activation_volume / num_of_cells # activation density if activation_volume == 0: activation_density_data[step] = 0 else: activation_density_data[step] = activation_mass/activation_volume # activation moments activation_hu1_data[step] = activation_moments.hu1 activation_hu2_data[step] = activation_moments.hu2 activation_hu3_data[step] = activation_moments.hu3 activation_hu4_data[step] = activation_moments.hu4 activation_hu5_data[step] = activation_moments.hu5 activation_hu6_data[step] = activation_moments.hu6 activation_hu7_data[step] = activation_moments.hu7 activation_hu8_data[step] = activation_moments.hu8 activation_flusser9_data[step] = activation_moments.flusser9 activation_flusser10_data[step] = activation_moments.flusser10 activation_flusser11_data[step] = activation_moments.flusser11 activation_flusser12_data[step] = activation_moments.flusser12 activation_flusser13_data[step] = activation_moments.flusser13 # get velocity and angle of movement # distance between the previous center of mass and the new one is the velocity # angle is computed based on the shift vector if step <= 0: activation_center_velocity = np.nan activation_center_movement_angle = np.nan activation_center_movement_angle_velocity = np.nan activation_mass_asymmetry = np.nan else: activation_center_velocity = np.linalg.norm(activation_shift_from_prev_center) if activation_center_velocity == 0: activation_center_movement_angle = np.nan else: activation_center_movement_angle = ad.helper.misc.angle_of_vec_degree([-1 * activation_shift_from_prev_center[1], activation_shift_from_prev_center[0]]) # Angular velocity, is the difference between the current and previous angle of movement if activation_center_movement_angle is np.nan or prev_activation_center_movement_angle is np.nan: activation_center_movement_angle_velocity = 0 else: activation_center_movement_angle_velocity = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, prev_activation_center_movement_angle) # activation mass asymmetry # calculate the angle between the center shift and the angle from the center to each point. # if the angle is < 180 the point is on the right side of the movement # then use its mass activation_right_side_mass = 0 if np.isnan(activation_center_movement_angle): activation_mass_asymmetry = np.nan else: if activation_mass == 0 or activation_mass_asymmetry == num_of_cells: # if all are active or dead then ther is perfect assymetry activation_mass_asymmetry = 0 else: # for y in range(size_y): # for x in range(size_x): # angle_dist = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, angles_from_middle[y][x]) # # if angle_dist < 180: # activation_right_side_mass = activation_right_side_mass + activation[y][x] angle_dist = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, self.angles_from_middle) activation_right_side_mass = np.sum(activation[angle_dist < 0]) # activation_mass_asymmetry = right_mass - left_mass = right_mass - (mass - right_mass) = 2*right_mass - mass activation_mass_asymmetry = (2 * activation_right_side_mass - activation_mass) / activation_mass prev_activation_center_movement_angle = activation_center_movement_angle activation_center_velocity_data[step] = activation_center_velocity activation_center_movement_angle_data[step] = activation_center_movement_angle activation_center_movement_angle_velocity_data[step] = activation_center_movement_angle_velocity activation_mass_asymmetry_data[step] = activation_mass_asymmetry # mass distribution around the center if activation_mass <= EPS: activation_mass_distribution = 1.0 else: activation_mass_distribution = np.sum(self.distance_weight_matrix * centered_activation) / np.sum(centered_activation) activation_mass_distribution_data[step] = activation_mass_distribution ########################################################################################################################################## # positive growth statistics uncentered_positive_growth_center_position = np.array([np.nan, np.nan]) if step <= 0: positive_growth_mass_data[step] = np.nan positive_growth_volume_data[step] = np.nan positive_growth_density_data[step] = np.nan positive_growth_center_position_data[step] = [np.nan, np.nan] positive_growth_center_velocity_data[step] = np.nan positive_growth_center_movement_angle_data[step] = np.nan positive_growth_center_movement_angle_velocity_data[step] = np.nan else: positive_growth = np.clip(all_obs[step] - all_obs[step - 1], 0, 1) # uncentered_positive_growth_center_position = np.array(StatLenia.center_of_mass(positive_growth)) # # # set center to middle if it can not be calculated, for example if all cells are dead # if np.isnan(uncentered_positive_growth_center_position[0]) or np.isnan(uncentered_positive_growth_center_position[1]) or \ # uncentered_positive_growth_center_position[0] == float('inf') or uncentered_positive_growth_center_position[1] == float('inf'): # uncentered_positive_growth_center_position = mid.copy() # # positive_growth_center_position_data[step] = uncentered_positive_growth_center_position # shift the system to the last calculated center of mass so that it is in the middle # the matrix can only be shifted in discrete values, therefore the shift is transformed to integer centered_positive_growth = np.roll(positive_growth, [int(positive_growth_shift_to_center[0]), int(positive_growth_shift_to_center[1])], (0, 1)) # new center of mass positive_growth_center_of_mass = np.array(LeniaStatistics.center_of_mass(centered_positive_growth)) # calculate the change of center as a vector positive_growth_shift_from_prev_center = mid - positive_growth_center_of_mass # calculate the new shift to center the next obs to the new center positive_growth_shift_to_center = positive_growth_shift_to_center + positive_growth_shift_from_prev_center # transform the new center, encoded as a shift from the first image, back into the original image coordinates uncentered_positive_growth_center_position[0] = (mid_y - positive_growth_shift_to_center[0]) % size_y uncentered_positive_growth_center_position[1] = (mid_x - positive_growth_shift_to_center[1]) % size_x positive_growth_center_position_data[step] = uncentered_positive_growth_center_position # growth mass positive_growth_mass = np.sum(centered_positive_growth) positive_growth_mass_data[step] = positive_growth_mass / num_of_cells # activation is number of acitvated cells divided by the number of cells # activation volume positive_growth_volume = np.sum( centered_positive_growth > EPS ) positive_growth_volume_data[step] = positive_growth_volume / num_of_cells # activation density if positive_growth_volume == 0: positive_growth_density_data[step] = 0 else: positive_growth_density_data[step] = positive_growth_mass / positive_growth_volume # get velocity and angle of movement # distance between the previous center of mass and the new one is the velocity # angle is computed based on the shift vector if step <= 1: positive_growth_center_velocity = np.nan positive_growth_center_movement_angle = np.nan positive_growth_center_movement_angle_velocity = np.nan else: positive_growth_center_velocity = np.linalg.norm(positive_growth_shift_from_prev_center) if positive_growth_center_velocity == 0: positive_growth_center_movement_angle = np.nan else: positive_growth_center_movement_angle = ad.helper.misc.angle_of_vec_degree([-1 * positive_growth_shift_from_prev_center[1], positive_growth_shift_from_prev_center[0]]) # Angular velocity, is the difference between the current and previous angle of movement if positive_growth_center_movement_angle is np.nan or prev_positive_growth_center_movement_angle is np.nan: positive_growth_center_movement_angle_velocity = 0 else: positive_growth_center_movement_angle_velocity = ad.helper.misc.angle_difference_degree(positive_growth_center_movement_angle, prev_positive_growth_center_movement_angle) prev_positive_growth_center_movement_angle = positive_growth_center_movement_angle positive_growth_center_velocity_data[step] = positive_growth_center_velocity positive_growth_center_movement_angle_data[step] = positive_growth_center_movement_angle positive_growth_center_movement_angle_velocity_data[step] = positive_growth_center_movement_angle_velocity ###################################################################################################################### # Growth - Activation centroid distance if step <= 0: activation_positive_growth_centroid_distance_data[step] = np.nan else: activation_positive_growth_centroid_distance = ad.helper.misc.get_min_distance_on_repeating_2d_array((size_y, size_x), uncentered_activation_center_position, uncentered_positive_growth_center_position) activation_positive_growth_centroid_distance_data[step] = activation_positive_growth_centroid_distance is_dead = np.all(all_obs[-1] == 1) or np.all(all_obs[-1] == 0) self.data['is_dead'] = is_dead self.data['activation_mass'] = activation_mass_data self.data['activation_mass_mean'] = np.nanmean(activation_mass_data) self.data['activation_mass_std'] = np.nanstd(activation_mass_data) self.data['activation_volume'] = activation_volume_data self.data['activation_volume_mean'] = np.nanmean(activation_volume_data) self.data['activation_volume_std'] = np.nanstd(activation_volume_data) self.data['activation_density'] = activation_density_data self.data['activation_density_mean'] = np.nanmean(activation_density_data) self.data['activation_density_std'] = np.nanstd(activation_density_data) self.data['activation_center_position'] = activation_center_position_data self.data['activation_center_velocity'] = activation_center_velocity_data self.data['activation_center_velocity_mean'] = np.nanmean(activation_center_velocity_data) self.data['activation_center_velocity_std'] = np.nanstd(activation_center_velocity_data) self.data['activation_center_movement_angle'] = activation_center_movement_angle_data self.data['activation_center_movement_angle_mean'] = ad.helper.statistics.nan_mean_over_angles_degrees(activation_center_movement_angle_data) #self.data['activation_center_movement_angle_std'] = np.nanstd(activation_center_movement_angle_data) self.data['activation_center_movement_angle_velocity'] = activation_center_movement_angle_velocity_data self.data['activation_center_movement_angle_velocity_mean'] = np.nanmean(activation_center_movement_angle_velocity_data) self.data['activation_center_movement_angle_velocity_std'] =
np.nanstd(activation_center_movement_angle_velocity_data)
numpy.nanstd
from typing import Set, Tuple, Dict, List, Any import h5py import numpy as np from itertools import product as combvec import torch from torch.utils.data import DataLoader, Dataset def load_dataset(path: str, parameter_list: Set[str]) -> Tuple[np.ndarray, Dict[str, np.ndarray]]: """ Loads a dataset from disk. Args: path: The path to the hdf5 file. parameter_list: A dictionary with the key names in the dataset. Returns: A dictionary with numpy arrays holding the complete data. """ data = {} with h5py.File(path, 'r') as h5f: images = h5f['images'][:].astype('float32') for parameter_name in parameter_list: data[parameter_name] = h5f['parameter/' + parameter_name][:].astype('float32') return images, data def crop_images(images: np.ndarray, crop_size: int) -> np.ndarray: """ Crops quadratic images around origin. Args: images: an nxmxmx matrix where n is the number of images and m is the size crop_size: the crop size Returns: The image array with the size nxcrop_sizexcrop_size """ image_size = images.shape[1] center = image_size/2 crop_padding = crop_size/2 crop_start_pixel = int(center-crop_padding) crop_end_pixel = int(center+crop_padding) return images[:, crop_start_pixel:crop_end_pixel, crop_start_pixel:crop_end_pixel] def prepare_images_tensorflow(images: np.ndarray) -> np.ndarray: """ Prepares an image ndarray to fit into the tensorflow NHWC Args: images: The images in an nxmxm format Returns: The images in the NHWC tensorflow format. """ return images.reshape(*images.shape, 1) def normalize_complete_images(images: np.ndarray) -> np.ndarray: """ Normalize the given images with respect to all images. Args: images: THe images in a NHW format. Returns: The normalized images in a NHW format. """ min_pv = np.min(images) # shift pixel values to a minimum of 0 images = images - min_pv # new maximum of the images max_pv = np.max(images) # the images values are set to 0-1 return images / max_pv def normalize_single_images(images: np.ndarray) -> np.ndarray: """ Normalize each image individually to a value range between 0 and 1 Args: images: The images in a NHW format Returns: The normalized images in a NHW format. """ for idx in range(len(images)): images[idx] = normalize_complete_images(images[idx]) return images def create_combination_index(parameter: Dict[str, np.ndarray], uniques: List[str]) -> Tuple[np.ndarray, np.ndarray]: # the x index of the image x_index = np.empty(0, dtype=int) # the y index of the image y_index = np.empty(0, dtype=int) unique_iterator, keys = _multi_uniques(parameter, uniques) number_of_entries = len(parameter[keys[0]]) for unique_point in unique_iterator: number_of_parameter = len(unique_point) selection_map = np.arange(number_of_entries) for idx in range(number_of_parameter): selection_map = np.intersect1d(selection_map, np.where(parameter[keys[idx]] == unique_point[idx])[0]) for idx in selection_map: for idy in selection_map: x_index = np.append(x_index, idx) y_index = np.append(y_index, idy) return x_index, y_index def _multi_uniques(params: Dict[str, np.ndarray], uniques: List[str]) -> Tuple[combvec, List[str]]: """ Creates an iterator for all combinations of unique tuples of the uniques values. Args: params: All parameters uniques: he parameters to be uniquely paired Returns: (iterator, parameter key list) """ unique_values = {} keys = [] for val in uniques: unique_values[val] = np.unique(params[val]) keys.append(val) iterator = combvec(*unique_values.values()) return iterator, keys ## For influence functions' notebooks # generate dataset (it transforms numpy arrays to torch tensors) class NumpyToPyTorch_DataLoader(Dataset): """Face Landmarks dataset.""" def __init__(self, X, Y, transform=None): """ Args: path transform (callable, optional): Optional transform to be applied on a sample. """ self.X = torch.from_numpy(X).float() # image # self.Y = torch.from_numpy(Y).float() # label for regression self.Y = torch.from_numpy(Y).long() # label for classification # i, j = self.Y.size()[0], self.Y.size()[1] # self.Y = self.Y.view(i, 1, j) self.transform = transform def __len__(self): return len(self.X) def __getitem__(self, index): label = self.Y[index] img = self.X[index] if self.transform: img = self.transform(img) return img, label class Downloader(object): def __init__(self, data_name, batch): self.data_name = data_name self.batch = batch # Follow information in README.md to download these datasets and save them to folder 'data' if self.data_name is 'single_cut_rephased': self.training_path = './data/validation_single_cut_rephased.h5' self.testing_path = './data/single_cut_rephased.h5' self.labels_path = './influence_functions/data_and_masks/validation_single_cut_theoretical_labels.npy' self.test_labels_path = './influence_functions/data_and_masks/single_cut_theoretical_labels.npy' self.training_mask_path = './influence_functions/data_and_masks/validation_single_cut_training_mask.npy' self.validation_mask_path = './influence_functions/data_and_masks/validation_single_cut_validation_mask.npy' self.testing_mask_path = './influence_functions/data_and_masks/single_cut_test_mask.npy' self.training_mean = 0.46388384212120864 self.training_std = 0.17022241233110608 if self.data_name is 'single_cut_with_micromotion': self.training_path = './data/validation_single_cut_56.h5' self.testing_path = './data/single_cut_56.h5' self.test_labels_path = './influence_functions/data_and_masks/single_cut_theoretical_labels.npy' self.labels_path = './influence_functions/data_and_masks/validation_single_cut_theoretical_labels.npy' self.training_mask_path = './influence_functions/data_and_masks/validation_single_cut_training_mask.npy' self.validation_mask_path = './influence_functions/data_and_masks/validation_single_cut_validation_mask.npy' self.testing_mask_path = './influence_functions/data_and_masks/single_cut_test_mask.npy' self.training_mean = 0.07900989899839451 self.training_std = 0.044015503630440524 if self.data_name is 'phase_diagram_rephased': self.training_path = './data/phase_diagram_rephased.h5' self.testing_path = './data/phase_diagram_rephased.h5' self.labels_path = './influence_functions/data_and_masks/phase_diagram_anomalydetected_labels.npy' self.test_labels_path = './influence_functions/data_and_masks/phase_diagram_anomalydetected_labels.npy' self.training_mask_path = './influence_functions/data_and_masks/phase_diagram_training_mask.npy' self.validation_mask_path = './influence_functions/data_and_masks/phase_diagram_validation_mask.npy' self.testing_mask_path = './influence_functions/data_and_masks/phase_diagram_test_mask.npy' self.training_mean = 0.47376012469840956 self.training_std = 0.16998128006793728 def train_loader(self, batch_size = None, shuffle = False): if batch_size is None: batch_size = self.batch exp_data = h5py.File(self.training_path, 'r') data = exp_data['images'] labels = np.load(self.labels_path) data_size = data.shape[0] # Load the training mask mask = np.load(self.training_mask_path) data = np.array(data) # h5py does not support fancy indexing, like masks self.training_data = data[mask] self.train_samples_no = self.training_data.shape[0] # Zerocenter normalization (with training data's mean and std) # To avoid the leak of data self.training_data = (self.training_data - self.training_mean) / self.training_std self.training_labels = labels[mask] train_set = NumpyToPyTorch_DataLoader(self.training_data, self.training_labels) train_loader = DataLoader(train_set, batch_size = batch_size, shuffle = False, num_workers = 1, pin_memory = True # CUDA only, this lets your DataLoader allocate the samples in page-locked memory, which speeds-up the transfer from CPU to GPU during training ) return train_loader#, mask - it's always the same, thanks to the fixed random seed, so I needed to save it only once def test_loader(self, batch_size = None): if batch_size is None: batch_size = self.batch exp_data = h5py.File(self.testing_path, 'r') data = exp_data['images'] labels = np.load(self.test_labels_path) data_size = data.shape[0] # Load the test mask mask = np.load(self.testing_mask_path) data = np.array(data) # h5py does not support fancy indexing, like masks self.test_data = data[mask] self.test_labels = labels[mask] self.test_samples_no = self.test_data.shape[0] # Zerocenter normalization (with training data's mean and std) # To avoid the leak of data self.test_data = (self.test_data - self.training_mean) / self.training_std test_set = NumpyToPyTorch_DataLoader(self.test_data, self.test_labels) test_loader = DataLoader(test_set, batch_size = batch_size, shuffle = False, num_workers = 1, pin_memory=True # CUDA only ) return test_loader def validation_loader(self, batch_size = None): if batch_size is None: batch_size = self.batch exp_data = h5py.File(self.training_path, 'r') data = exp_data['images'] labels = np.load(self.labels_path) data_size = data.shape[0] # Load the validation mask mask = np.load(self.validation_mask_path) data =
np.array(data)
numpy.array
""" Central module for calculating the tidal amplitudes, phases, etc. """ import numpy as np from ._time_conversion import _normalize_time from .confidence import _confidence from .constituent_selection import ut_cnstitsel from .diagnostics import _PE, _SNR, ut_diagn from .ellipse_params import ut_cs2cep from .harmonics import ut_E from .robustfit import robustfit from .utilities import Bunch default_opts = { "constit": "auto", "order_constit": None, "conf_int": "linear", "method": "ols", "trend": True, "phase": "Greenwich", "nodal": True, "infer": None, "MC_n": 200, "Rayleigh_min": 1, "robust_kw": {"weight_function": "cauchy"}, "white": False, "verbose": True, "epoch": None, } def _process_opts(opts, is_2D): newopts = Bunch(default_opts) newopts.update_values(strict=True, **opts) # TODO: add more validations. newopts.infer = validate_infer(newopts.infer, is_2D) snr = newopts.conf_int != "none" newopts.order_constit = validate_order_constit(newopts.order_constit, snr) compat_opts = _translate_opts(newopts) return compat_opts def _translate_opts(opts): # Temporary shim between new-style options and Matlab heritage. # Here or elsewhere, proper validation remains to be added. oldopts = Bunch() oldopts.cnstit = opts.constit oldopts.ordercnstit = opts.order_constit oldopts.infer = opts.infer # we will not use the matlab names, though oldopts.conf_int = True if opts.conf_int == "linear": oldopts.linci = True elif opts.conf_int == "MC": oldopts.linci = False elif opts.conf_int == "none": oldopts.conf_int = False oldopts.nodiagn = 1 else: raise ValueError("'conf_int' must be 'linear', 'MC', or 'none'") oldopts.notrend = not opts.trend oldopts["nodesatlint"] = False oldopts["nodesatnone"] = False oldopts["gwchlint"] = False oldopts["gwchnone"] = False if opts.nodal == "linear_time": oldopts["nodsatlint"] = True elif not opts.nodal: oldopts["nodsatnone"] = True if opts.phase == "linear_time": oldopts["gwchlint"] = True elif opts.phase == "raw": oldopts["gwchnone"] = True # Otherwise it should be default, 'Greenwich.' oldopts.rmin = opts.Rayleigh_min oldopts.white = opts.white oldopts.newopts = opts # So we can access new opts via the single "opt." oldopts["RunTimeDisp"] = opts.verbose oldopts.epoch = opts.epoch return oldopts def validate_infer(infer, is_2D): if infer is None or infer == "none": return None required_keys = {"inferred_names", "reference_names", "amp_ratios", "phase_offsets"} keys = set(infer.keys()) if keys < required_keys: raise ValueError("infer option must include %s" % required_keys) nI = len(infer.inferred_names) if len(infer.reference_names) != nI: raise ValueError("inferred_names must be same" " length as reference_names") nratios = 2 * nI if is_2D else nI if len(infer.amp_ratios) != nratios or len(infer.phase_offsets) != nratios: raise ValueError("ratios and offsets need to have length %d" % nratios) if "approximate" not in infer: infer.approximate = False return infer def validate_order_constit(arg, have_snr): available = ["PE", "frequency"] if have_snr: available.append("SNR") if arg is None: return "PE" if isinstance(arg, str) and arg in available: return arg if not isinstance(arg, str) and np.iterable(arg): return arg # TODO: add checking of its elements raise ValueError( f"order_constit must be one of {available} or" f" a sequence of constituents, not '{arg}'", ) def solve(t, u, v=None, lat=None, **opts): """ Calculate amplitude, phase, confidence intervals of tidal constituents. Parameters ---------- t : array_like Time in days since `epoch`, or np.datetime64 array, or pandas datetime array. u : array_like Sea-surface height, velocity component, etc. v : {None, array_like}, optional If `u` is a velocity component, `v` is the orthogonal component. lat : float, required Latitude in degrees. epoch : {string, `datetime.date`, `datetime.datetime`}, if datenum is provided in t. Default `None` if `t` is `datetime`, `np.datetime64`, or `pd.datetime array.` Optional valid strings are - 'python' : if `t` is days since '0000-12-31' - 'matlab' : if `t` is days since '0000-00-00' Or, an arbitrary date in the form 'YYYY-MM-DD'. constit : {'auto', sequence}, optional List of strings with standard letter abbreviations of tidal constituents; or 'auto' to let the list be determined based on the time span. conf_int : {'linear', 'MC', 'none'}, optional If not 'none' (string), calculate linearized confidence intervals, or use a Monte-Carlo simulation. method : {'ols', 'robust'}, optional Solve with ordinary least squares, or with a robust algorithm. trend : bool, optional True (default) to include a linear trend in the model. phase : {'Greenwich', 'linear_time', 'raw'}, optional Give Greenwich-referenced phase lags, an approximation using linearized times, or raw lags. nodal : {True, False, 'linear_time'}, optional True (default) to include nodal/satellite corrections; 'linear_time' to use the linearized time approximation; False to omit nodal corrections. Returns ------- coef : Bunch Data container with all configuration and solution information: Other Parameters ---------------- infer : {None, dict or Bunch}, optional; default is None. If not None, the items are: **inferred_names** : {sequence of N strings} inferred constituent names **reference_names** : {sequence of N strings} reference constituent names **amp_ratios** : {sequence, N or 2N floats} amplitude ratios (unitless) **phase_offsets** : {sequence, N or 2N floats} phase offsets (degrees) **approximate** : {bool, optional (default is False)} use approximate method amp_ratios and phase_offsets have length N for a scalar time series, or 2N for a vector series. order_constit : {'PE', 'SNR', 'frequency', sequence}, optional The default is 'PE' (percent energy) order, returning results ordered from high energy to low. The 'SNR' order is from high signal-to-noise ratio to low, and is available only if `conf_int` is not 'none'. The 'frequency' order is from low to high frequency. Alternatively, a sequence of constituent names may be supplied, typically the same list as given in the *constit* option. MC_n : integer, optional Not yet implemented. robust_kw : dict, optional Keyword arguments for `robustfit`, if `method` is 'robust'. Rayleigh_min : float Minimum conventional Rayleigh criterion for automatic constituent selection; default is 1. white : bool If False (default), use band-averaged spectra from the residuals in the confidence limit estimates; if True, assume a white background spectrum. verbose : {True, False}, optional True (default) turns on verbose output. False emits no messages. Note ---- `utide.reconstruct` requires the calculation of confidence intervals. Notes ----- To be added: much additional explanation. There will also be more "Other Parameters". """ compat_opts = _process_opts(opts, v is not None) coef = _solv1(t, u, v, lat, **compat_opts) return coef def _solv1(tin, uin, vin, lat, **opts): # The following returns a possibly modified copy of tin (ndarray). # t, u, v are fully edited ndarrays (unless v is None). packed = _slvinit(tin, uin, vin, lat, **opts) tin, t, u, v, tref, lor, elor, opt = packed nt = len(t) if opt["RunTimeDisp"]: print("solve: ", end="") # opt['cnstit'] = cnstit cnstit, coef = ut_cnstitsel( tref, opt["rmin"] / (24 * lor), opt["cnstit"], opt["infer"], ) # a function we don't need # coef.aux.rundescr = ut_rundescr(opt,nNR,nR,nI,t,tgd,uvgd,lat) coef.aux.opt = opt coef.aux.lat = lat if opt["RunTimeDisp"]: print("matrix prep ... ", end="") ngflgs = [opt["nodsatlint"], opt["nodsatnone"], opt["gwchlint"], opt["gwchnone"]] E_args = (lat, ngflgs, opt.prefilt) # Make the model array, starting with the harmonics. E = ut_E(t, tref, cnstit.NR.frq, cnstit.NR.lind, *E_args) # Positive and negative frequencies B = np.hstack((E, E.conj())) if opt.infer is not None: Etilp = np.empty((nt, coef.nR), dtype=complex) Etilm = np.empty((nt, coef.nR), dtype=complex) if not opt.infer.approximate: for k, ref in enumerate(cnstit.R): E = ut_E(t, tref, ref.frq, ref.lind, *E_args) # (nt,1) Q = ut_E(t, tref, ref.I.frq, ref.I.lind, *E_args) / E # (nt,ni) Qsum_p = (Q * ref.I.Rp).sum(axis=1) Etilp[:, k] = E[:, 0] * (1 + Qsum_p) Qsum_m = (Q * np.conj(ref.I.Rm)).sum(axis=1) Etilm[:, k] = E[:, 0] * (1 + Qsum_m) else: # Approximate inference. Q = np.empty((coef.nR,), dtype=float) beta = np.empty((coef.nR,), dtype=float) for k, ref in enumerate(cnstit.R): E = ut_E(t, tref, ref.frq, ref.lind, *E_args)[:, 0] Etilp[:, k] = E Etilm[:, k] = E num = ut_E(tref, tref, ref.I.frq, ref.I.lind, *E_args).real den = ut_E(tref, tref, ref.frq, ref.lind, *E_args).real Q[k] = (num / den)[0, 0] arg = np.pi * lor * 24 * (ref.I.frq - ref.frq) * (nt + 1) / nt beta[k] = np.sin(arg) / arg B = np.hstack((B, Etilp, np.conj(Etilm))) # add the mean B = np.hstack((B, np.ones((nt, 1)))) if not opt["notrend"]: B = np.hstack((B, ((t - tref) / lor)[:, np.newaxis])) # nm = B.shape[1] # 2*(nNR + nR) + 1, plus 1 if trend is included. if opt["RunTimeDisp"]: print("solution ... ", end="") if opt["twodim"]: xraw = u + 1j * v else: xraw = u if opt.newopts.method == "ols": # Model coefficients. try: m = np.linalg.lstsq(B, xraw, rcond=None)[0] except TypeError: m = np.linalg.lstsq(B, xraw)[0] W = np.ones(nt) # Uniform weighting; we could use a scalar 1, or None. else: rf = robustfit(B, xraw, **opt.newopts.robust_kw) m = rf.b W = rf.w coef.rf = rf coef.weights = W xmod = np.dot(B, m) # Model fit. if not opt["twodim"]: xmod = np.real(xmod) e = W * (xraw - xmod) # Weighted residuals. nI, nR, nNR = coef.nI, coef.nR, coef.nNR ap = np.hstack((m[:nNR], m[2 * nNR : 2 * nNR + nR])) i0 = 2 * nNR + nR am = np.hstack((m[nNR : 2 * nNR], m[i0 : i0 + nR])) Xu = np.real(ap + am) Yu = -np.imag(ap - am) if not opt["twodim"]: coef["A"], _, _, coef["g"] = ut_cs2cep(Xu, Yu) Xv = [] Yv = [] else: Xv = np.imag(ap + am) Yv = np.real(ap - am) packed = ut_cs2cep(Xu, Yu, Xv, Yv) coef["Lsmaj"], coef["Lsmin"], coef["theta"], coef["g"] = packed # Mean and trend. if opt["twodim"]: if opt["notrend"]: coef["umean"] = np.real(m[-1]) coef["vmean"] = np.imag(m[-1]) else: coef["umean"] = np.real(m[-2]) coef["vmean"] = np.imag(m[-2]) coef["uslope"] = np.real(m[-1]) / lor coef["vslope"] = np.imag(m[-1]) / lor else: if opt["notrend"]: coef["mean"] = np.real(m[-1]) else: coef["mean"] = np.real(m[-2]) coef["slope"] = np.real(m[-1]) / lor if opt.infer: # complex coefficients apI = np.empty((nI,), dtype=complex) amI = np.empty((nI,), dtype=complex) ind = 0 for k, ref in enumerate(cnstit.R): apI[ind : ind + ref.nI] = ref.I.Rp * ap[nNR + k] amI[ind : ind + ref.nI] = ref.I.Rm * am[nNR + k] ind += ref.nI XuI = (apI + amI).real YuI = -(apI - amI).imag if not opt.twodim: A, _, _, g = ut_cs2cep(XuI, YuI) coef.A = np.hstack((coef.A, A)) coef.g = np.hstack((coef.g, g)) else: XvI = (apI + amI).imag YvI = (apI - amI).real Lsmaj, Lsmin, theta, g = ut_cs2cep(XuI, YuI, XvI, YvI) coef.Lsmaj = np.hstack((coef.Lsmaj, Lsmaj)) coef.Lsmin = np.hstack((coef.Lsmin, Lsmin)) coef.theta = np.hstack((coef.theta, theta)) coef.g = np.hstack((coef.g, g)) if opt["conf_int"]: coef = _confidence( coef, cnstit, opt, t, e, tin, elor, xraw, xmod, W, m, B, Xu, Yu, Xv, Yv, ) # Diagnostics. if not opt["nodiagn"]: coef = ut_diagn(coef) # Adds a diagn dictionary, always sorted by energy. # This doesn't seem very useful. Let's directly add the variables # to the base coef structure. Then they can be sorted with everything # else. coef["PE"] = _PE(coef) coef["SNR"] = _SNR(coef) # Re-order constituents. coef = _reorder(coef, opt) # This might have added PE if it was not already present. if opt["RunTimeDisp"]: print("done.") return coef def _reorder(coef, opt): if opt["ordercnstit"] == "PE": # Default: order by decreasing energy. if "PE" not in coef: coef["PE"] = _PE(coef) ind = coef["PE"].argsort()[::-1] elif opt["ordercnstit"] == "frequency": ind = coef["aux"]["frq"].argsort() elif opt["ordercnstit"] == "SNR": # If we are here, we should be guaranteed to have SNR already. ind = coef["SNR"].argsort()[::-1] else: namelist = list(coef["name"]) ilist = [namelist.index(name) for name in opt["ordercnstit"]] ind = np.array(ilist, dtype=int) arrays = "name PE SNR A A_ci g g_ci Lsmaj Lsmaj_ci Lsmin Lsmin_ci theta theta_ci" reorderlist = [a for a in arrays.split() if a in coef] for key in reorderlist: coef[key] = coef[key][ind] coef["aux"]["frq"] = coef["aux"]["frq"][ind] coef["aux"]["lind"] = coef["aux"]["lind"][ind] return coef def _slvinit(tin, uin, vin, lat, **opts): if lat is None: raise ValueError("Latitude must be supplied") # Supporting only 1-D arrays for now; we can add "group" # support later. if tin.shape != uin.shape or tin.ndim != 1 or uin.ndim != 1: raise ValueError("t and u must be 1-D arrays") if vin is not None and vin.shape != uin.shape: raise ValueError("v must have the same shape as u") opt = Bunch(twodim=(vin is not None)) # Step 0: apply epoch to time. tin = _normalize_time(tin, opts["epoch"]) # Step 1: remove invalid times from tin, uin, vin tin = np.ma.masked_invalid(tin) uin = np.ma.masked_invalid(uin) if vin is not None: vin = np.ma.masked_invalid(vin) if np.ma.is_masked(tin): goodmask = ~np.ma.getmaskarray(tin) uin = uin.compress(goodmask) if vin is not None: vin = vin.compress(goodmask) tin = tin.compressed() # No longer masked. # Step 2: generate t, u, v from edited tin, uin, vin. v = None if np.ma.is_masked(uin) or np.ma.is_masked(vin): mask = np.ma.getmaskarray(uin) if vin is not None: mask = np.ma.mask_or(
np.ma.getmaskarray(vin)
numpy.ma.getmaskarray
#!/usr/bin/env python """ Interpolation of scattered data using ordinary kriging/collocation The program uses nearest neighbors interpolation and selects data from eight quadrants around the prediction point and uses a third-order Gauss-Markov covariance model, with a correlation length defined by the user. Provides the possibility of pre-cleaning of the data using a spatial n-sigma filter before interpolation. Observations with provided noise/error estimates (for each observation) are added to the diagonal of the covariance matrix if provided. User can also provide a constant rms-noise added to the diagonal. Takes as input a h5df file with needed data in geographical coordinates and a-priori error if needed. The user provides the wanted projection using the EPSG projection format. Output consists of an hdf5 file containing the predictions, rmse and the number of points used in the prediction, and the epsg number for the projection. Notes: If both the a-priori errors are provided and constant rms all values smaller then provided rms is set to this value providing a minimum error for the observations. To reduce the impact of highly correlated along-track measurements (seen as streaks in the interpolated raster) the 'rand' option can be used. This randomly samples N-observations in each quadrant instead of using the closest data points. Example: python interpkrig.py ifile.h5 ofile.h5 -d 10 10 -n 25 -r 50 -a 25 -p 3031 \ -c 50 10 -v lon lat dhdt dummy -e 0.1 -m dist python interpkrig.py ifile.h5 ofile.h5 -d 10 10 -n 25 -r 50 -a 25 -p 3031 \ -c 50 10 -v lon lat dhdt rmse -e 0.1 -m rand Credits: captoolkit - JPL Cryosphere Altimetry Processing Toolkit <NAME> (<EMAIL>) <NAME> (<EMAIL>) <NAME> (<EMAIL>) Jet Propulsion Laboratory, California Institute of Technology """ import h5py import pyproj import argparse import numpy as np from scipy import stats from scipy.spatial import cKDTree from scipy.spatial.distance import cdist def rand(x, n): """Draws random samples from array""" # Determine data density if len(x) > n: # Draw random samples from array I = np.random.choice(np.arange(len(x)), n, replace=False) else: # Output boolean vector - true I = np.ones(len(x), dtype=bool) return I def sort_dist(d, n): """ Sort array by distance""" # Determine if sorting needed if len(d) >= n: # Sort according to distance I = np.argsort(d) else: # Output boolean vector - true I = np.ones(len(x), dtype=bool) return I def transform_coord(proj1, proj2, x, y): """Transform coordinates from proj1 to proj2 (EPSG num).""" # Set full EPSG projection strings proj1 = pyproj.Proj("+init=EPSG:" + proj1) proj2 = pyproj.Proj("+init=EPSG:" + proj2) # Convert coordinates return pyproj.transform(proj1, proj2, x, y) def make_grid(xmin, xmax, ymin, ymax, dx, dy): """ Construct output grid-coordinates. """ Nn = int((np.abs(ymax - ymin)) / dy) + 1 # ny Ne = int((np.abs(xmax - xmin)) / dx) + 1 # nx xi = np.linspace(xmin, xmax, num=Ne) yi = np.linspace(ymin, ymax, num=Nn) return np.meshgrid(xi, yi) def spatial_filter(x, y, z, dx, dy, sigma=5.0): """ Cleaning of spatial data """ # Grid dimensions Nn = int((np.abs(y.max() - y.min())) / dy) + 1 Ne = int((np.abs(x.max() - x.min())) / dx) + 1 # Bin data f_bin = stats.binned_statistic_2d(x, y, z, bins=(Ne, Nn)) # Get bin numbers for the data index = f_bin.binnumber # Unique indexes ind = np.unique(index) # Create output zo = z.copy() # Number of unique index for i in range(len(ind)): # index for each bin idx, = np.where(index == ind[i]) # Get data zb = z[idx] # Make sure we have enough if len(zb[~np.isnan(zb)]) == 0: continue # Set to median of values dh = zb - np.nanmedian(zb) # Identify outliers foo = np.abs(dh) > sigma * np.nanstd(dh) # Set to nan-value zb[foo] = np.nan # Replace data zo[idx] = zb # Return filtered array return zo # Description of algorithm des = 'Interpolation of scattered data using ordinary kriging/collocation' # Define command-line arguments parser = argparse.ArgumentParser(description=des) parser.add_argument( 'ifile', metavar='ifile', type=str, nargs='+', help='name of input file (h5-format)') parser.add_argument( 'ofile', metavar='ofile', type=str, nargs='+', help='name of ouput file (h5-format)') parser.add_argument( '-b', metavar=('w', 'e', 's', 'n'), dest='bbox', type=float, nargs=4, help=('bounding box for geograph. region (deg or m), optional'), default=[None], ) parser.add_argument( '-d', metavar=('dx', 'dy'), dest='dxy', type=float, nargs=2, help=('spatial resolution for grid (deg or km)'), default=[1, 1], ) parser.add_argument( '-n', metavar='nobs', dest='nobs', type=int, nargs=1, help=('number of obs. for each quadrant'), default=[None], ) parser.add_argument( '-r', metavar='radius', dest='radius', type=float, nargs=1, help=('cut off distance cutoff in (km)'), default=[None], ) parser.add_argument( '-a', metavar='alpha', dest='alpha', type=float, nargs=1, help=('correlation length (km)'), default=[None], ) parser.add_argument( '-p', metavar=('epsg_num'), dest='proj', type=str, nargs=1, help=('EPSG proj number (AnIS=3031, GrIS=3413)'), default=['3031'], ) parser.add_argument( '-c', metavar=('dim', 'thres'), dest='filter', type=float, nargs=2, help=('dim. of filter in km and sigma thres'), default=[0, 0], ) parser.add_argument( '-v', metavar=('x', 'y', 'z', 's'), dest='vnames', type=str, nargs=4, help=('name of varibales in the HDF5-file'), default=['lon', 'lat', 'h_cor', 'h_rms'], ) parser.add_argument( '-e', metavar='sigma', dest='sigma', type=float, nargs=1, help=('constant rms noise value'), default=[0], ) parser.add_argument( '-m', metavar=None, dest='mode', type=str, nargs=1, help=('sampling mode: random (rand) or distance (dist).'), choices=('rand', 'dist'), default=['dist'], ) # Parser argument to variable args = parser.parse_args() # Read input from terminal ifile = args.ifile[0] ofile = args.ofile[0] bbox = args.bbox dx = args.dxy[0] * 1e3 dy = args.dxy[1] * 1e3 proj = args.proj[0] nobs = args.nobs[0] dmax = args.radius[0] * 1e3 alpha = args.alpha[0] * 1e3 sigma = args.sigma[0] dxy = args.filter[0] * 1e3 thres = args.filter[1] mode = args.mode[0] vicol = args.vnames[:] # Print parameters to screen print('parameters:') for p in list(vars(args).items()): print(p) # Get variable names xvar, yvar, zvar, svar = vicol # Load all 1d variables needed with h5py.File(ifile, 'r') as fi: # Get variables lon = fi[xvar][:] lat = fi[yvar][:] zp = fi[zvar][:] sp = fi[svar][:] if svar in fi else np.ones(lon.shape) # Remove data with NaN's lon, lat, zp, sp = lon[~np.isnan(zp)], lat[~np.isnan(zp)], \ zp[~np.isnan(zp)], sp[~np.isnan(zp)] # Transform coordinates to wanted projection xp, yp = transform_coord('4326', proj, lon, lat) # Test for different types of input if bbox[0] is not None: # Extract bounding box elements xmin, xmax, ymin, ymax = bbox else: # Create bounding box limits xmin, xmax, ymin, ymax = (xp.min() - 50. * dx), (xp.max() + 50. * dx), \ (yp.min() - 50. * dy), (yp.max() + 50. * dy) # Construct the grid Xi, Yi = make_grid(xmin, xmax, ymin, ymax, dx, dy) # Flatten prediction grid xi = Xi.ravel() yi = Yi.ravel() # Markov-model parameter a = 0.9132 * alpha # Signal variance of entire field c0 = np.nanvar(zp) # Compute noise variance crms = sigma * sigma # Output vectors zi = np.ones(len(xi)) * np.nan ei = np.ones(len(xi)) * np.nan ni = np.ones(len(xi)) * np.nan # Determine nobs for tree if mode == 'rand': n_quad = 16 else: n_quad = 8 # Check if we should filter if dxy != 0: print('-> cleaning data ...') # Clean the data in the spatial domain zp = spatial_filter(xp.copy(), yp.copy(), zp.copy(), dxy, dxy, sigma=thres) # Remove data with NaN's xp, yp, zp, sp = xp[~np.isnan(zp)], yp[~np.isnan(zp)], zp[~np.isnan(zp)], \ sp[~np.isnan(zp)] print("-> creating KDTree ...") # Construct cKDTree TreeP = cKDTree(np.c_[xp, yp]) # Enter prediction loop for i in range(len(xi)): # Find closest observations (dr, idx) = TreeP.query((xi[i], yi[i]), nobs * n_quad) # Test if closest point to far away if (np.min(dr) > dmax) or (len(zp[idx]) < 2): continue # Parameters inside cap x = xp[idx] y = yp[idx] z = zp[idx] s = sp[idx] # Noise handling if np.all(sp == 1): # Provide all obs. with the same RMS c = np.ones(len(x)) * crms else: # Set all obs. errors < crms to crms c = s ** 2 c[c < crms] = crms # Compute angle to data points theta = (180.0 / np.pi) * np.arctan2(y - yi[i], x - xi[i]) + 180 # Get index for data in 8-sectors IQ1 = (theta > 0) & (theta < 45) IQ2 = (theta > 45) & (theta < 90) IQ3 = (theta > 90) & (theta < 135) IQ4 = (theta > 135) & (theta < 180) IQ5 = (theta > 180) & (theta < 225) IQ6 = (theta > 225) & (theta < 270) IQ7 = (theta > 270) & (theta < 315) IQ8 = (theta > 315) & (theta < 360) # Merge all data to sectors Q1 = np.vstack((x[IQ1], y[IQ1], z[IQ1], c[IQ1], dr[IQ1])).T Q2 = np.vstack((x[IQ2], y[IQ2], z[IQ2], c[IQ2], dr[IQ2])).T Q3 = np.vstack((x[IQ3], y[IQ3], z[IQ3], c[IQ3], dr[IQ3])).T Q4 = np.vstack((x[IQ4], y[IQ4], z[IQ4], c[IQ4], dr[IQ4])).T Q5 = np.vstack((x[IQ5], y[IQ5], z[IQ5], c[IQ5], dr[IQ5])).T Q6 = np.vstack((x[IQ6], y[IQ6], z[IQ6], c[IQ6], dr[IQ6])).T Q7 = np.vstack((x[IQ7], y[IQ7], z[IQ7], c[IQ7], dr[IQ7])).T Q8 = np.vstack((x[IQ8], y[IQ8], z[IQ8], c[IQ8], dr[IQ8])).T # Sampling strategy if mode == 'rand': # Draw random samples from each sector I1 = rand(Q1[:, 0], nobs) I2 = rand(Q2[:, 0], nobs) I3 = rand(Q3[:, 0], nobs) I4 = rand(Q4[:, 0], nobs) I5 = rand(Q5[:, 0], nobs) I6 = rand(Q6[:, 0], nobs) I7 = rand(Q7[:, 0], nobs) I8 = rand(Q8[:, 0], nobs) else: # Draw closest samples from each sector I1 = rand(Q1[:, 4], nobs) I2 = rand(Q2[:, 4], nobs) I3 = rand(Q3[:, 4], nobs) I4 = rand(Q4[:, 4], nobs) I5 = rand(Q5[:, 4], nobs) I6 = rand(Q6[:, 4], nobs) I7 = rand(Q7[:, 4], nobs) I8 = rand(Q8[:, 4], nobs) # Stack the data Q18 = np.vstack((Q1[I1, :], Q2[I2, :], Q3[I3, :], Q4[I4, :], Q5[I5, :], \ Q6[I6, :], Q7[I7, :], Q8[I8, :])) # Extract position and data xc = Q18[:, 0] yc = Q18[:, 1] zc = Q18[:, 2] cc = Q18[:, 3] # Distance from grid node to data Dxy = Q18[:, 4] # Estimate local median (robust) and local variance of data m0 = np.nanmedian(zc) # Covariance function for Dxy Cxy = c0 * (1 + (Dxy / a) - 0.5 * (Dxy / a) ** 2) * np.exp(-Dxy / a) # Compute pair-wise distance Dxx = cdist(list(zip(xc, yc)), list(zip(xc, yc)), "euclidean") # Covariance function Dxx Cxx = c0 * (1 + (Dxx / a) - 0.5 * (Dxx / a) ** 2) * np.exp(-Dxx / a) # Measurement noise matrix N = np.eye(len(Cxx)) *
np.diag(cc)
numpy.diag
import logging import numpy as np import scipy.integrate class ZNDSolver(object): """Solver for steady solution""" def __init__(self, config, reaction_rate): self._config = config self._reaction_rate = reaction_rate self._max_lamda = 1.0 - self._config.lambda_tol self._logger = logging.getLogger(__name__) self._compute_parameters() def compute(self, grid): self._logger.info('Starting ZND structure computations') assert grid[0] < 0.0, 'Left boundary should be negative' #assert grid[-1] == 0.0, 'Right boundary should be zero' msg = ('Domain length {0:.16f} is smaller than computed steady ' 'reaction length {1:.16f}') msg = msg.format(
np.abs(grid[0])
numpy.abs
import numpy as np class CEM: def __init__(self, args, num_params, mu_init=None): # Params inform. self.num_params = num_params self.mu = np.zeros(self.num_params) if (mu_init is None) else
np.array(mu_init)
numpy.array
"""Mapping out different CBMs with different numbers and different paradigms. """ import patches import lettertask import torch.optim as optim from tqdm import tqdm import numpy as np import plotnine as gg import lazytools_sflippl as lazytools import torch.nn as nn # DATA ========================================================================= cbms = [ lettertask.data.CompositionalBinaryModel( width=width, change_probability=change_probability, samples=10000, seed=2002 ) for width, change_probability in zip( [[5, 5], [5, 5], [50, 50], [50, 50], [5, 10], [10, 50], [5, 5, 5], [10, 10, 10]], [[0.05, 0.5], [0.05, 0.2], [0.05, 0.5], [0.05, 0.2], [0.2, 0.05], [0.2, 0.1], [0.05, 0.1, 0.5], [0.05, 0.1, 0.5]] ) ] # OPTIMIZATION REGIMES ========================================================= def regime(method, lr): def optimizer(params): return method(params, lr=lr) return optimizer optimization_regimes = [] for method in [optim.SGD, optim.Adam, optim.Adadelta]: for lr in [1e-2, 1e-1, 1]: optimization_regimes.append(regime(method, lr)) loss_dfs = [] angle_dfs = [] n_epochs = 5 # NEURAL NETWORKS ============================================================== class BaRec(nn.Module): def __init__(self, latent_features, input_features=None, timesteps=None, data=None, bias=True): super().__init__() if data: input_features = input_features or data.n_vars timesteps = timesteps or data.n_timesteps elif input_features is None or timesteps is None: raise ValueError('You must either provide data or both input ' 'features and timesteps.') self.latent_features = latent_features self.input_features = input_features self.timesteps = timesteps self.encoder = nn.Linear(input_features, latent_features, bias=bias) self.predictor = nn.Linear(latent_features, timesteps, bias=bias) self.decoder = nn.Conv1d(latent_features, input_features, 1, bias=bias) def forward(self, x): code = self.encoder(x['current_values']) prediction = self.predictor(code) decoded = self.decoder(prediction).transpose(1, 2) return decoded class LaPred1P(nn.Module): def __init__(self, latent_features, input_features=None, timesteps=None, data=None, bias=True): super().__init__() if data: input_features = input_features or data.n_vars timesteps = timesteps or data.n_timesteps elif input_features is None or timesteps is None: raise ValueError('You must either provide data or both input ' 'features and timesteps.') self.latent_features = latent_features self.input_features = input_features self.timesteps = timesteps self.encoder = nn.Linear(input_features, latent_features, bias=bias) self.predictor = nn.Linear(latent_features, timesteps*latent_features, bias=bias) def forward(self, x): code = self.encoder(x['input']) prediction = self.predictor(code).\ reshape(self.timesteps, self.latent_features) return prediction class LaPred2P(nn.Module): def __init__(self, latent_features, input_features=None, timesteps=None, data=None, bias=True): super().__init__() if data: input_features = input_features or data.n_vars timesteps = timesteps or data.n_timesteps elif input_features is None or timesteps is None: raise ValueError('You must either provide data or both input ' 'features and timesteps.') self.latent_features = latent_features self.input_features = input_features self.timesteps = timesteps self.encoder = nn.Linear(input_features, latent_features, bias=bias) self.predictor = nn.Linear(latent_features, timesteps*latent_features, bias=bias) def forward(self, x): code = self.encoder(x['input']) prediction = self.predictor(x['latent_values']).\ reshape(self.timesteps, self.latent_features) return { 'latent_values': code, 'latent_prediction': prediction } # MAIN PART ==================================================================== with tqdm(total = n_epochs*len(optimization_regimes)*len(cbms)*4) as pbar: for idx_cbm, cbm in enumerate(cbms): ideal = np.identity(len(cbm.width)).repeat(cbm.width, 1) for idx_opt, opt in enumerate(optimization_regimes): cts = patches.data.Contrastive1DTimeSeries(cbm.to_array(), seed=202) # BaRec ============================================================ ## Prepare ========================================================= barec = BaRec(1, data=cts) optimizer = opt(barec.parameters()) criterion = nn.MSELoss() loss_traj = [] angles = [] running_loss = 0 ## Fit ============================================================= for epoch in range(n_epochs): for i, data in enumerate(cts): if i<len(cts): if i % 10 == 0: est = next(barec.parameters()).detach().numpy() angles.append(
np.matmul(ideal, est.T)
numpy.matmul
import os.path as osp import numpy as np import math import torch import json import copy import transforms3d import scipy.sparse import cv2 from pycocotools.coco import COCO from core.config import cfg from graph_utils import build_coarse_graphs from noise_utils import synthesize_pose from smpl import SMPL from coord_utils import world2cam, cam2pixel, process_bbox, rigid_align, get_bbox from aug_utils import affine_transform, j2d_processing, augm_params, j3d_processing, flip_2d_joint from Human36M.noise_stats import error_distribution from funcs_utils import save_obj, stop from vis import vis_3d_pose, vis_2d_pose class Human36M(torch.utils.data.Dataset): def __init__(self, mode, args): dataset_name = 'Human36M' self.debug = args.debug self.data_split = mode self.img_dir = osp.join(cfg.data_dir, dataset_name, 'images') self.annot_path = osp.join(cfg.data_dir, dataset_name, 'annotations') self.subject_genders = {1: 'female', 5: 'female', 6: 'male', 7: 'female', 8: 'male', 9: 'male', 11: 'male'} self.protocol = 2 self.action_name = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Photo', 'Waiting', 'Walking', 'WalkDog', 'WalkTogether'] self.fitting_thr = 25 # milimeter # SMPL joint set self.mesh_model = SMPL() self.smpl_root_joint_idx = self.mesh_model.root_joint_idx self.smpl_face_kps_vertex = self.mesh_model.face_kps_vertex self.smpl_vertex_num = 6890 self.smpl_joint_num = 24 self.smpl_flip_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) self.smpl_skeleton = ( (0, 1), (1, 4), (4, 7), (7, 10), (0, 2), (2, 5), (5, 8), (8, 11), (0, 3), (3, 6), (6, 9), (9, 14), (14, 17), (17, 19), (19, 21), (21, 23), (9, 13), (13, 16), (16, 18), (18, 20), (20, 22), (9, 12), (12, 15)) self.joint_regressor_smpl = self.mesh_model.layer['neutral'].th_J_regressor # H36M joint set self.human36_joint_num = 17 self.human36_joints_name = ( 'Pelvis', 'R_Hip', 'R_Knee', 'R_Ankle', 'L_Hip', 'L_Knee', 'L_Ankle', 'Torso', 'Neck', 'Nose', 'Head', 'L_Shoulder', 'L_Elbow', 'L_Wrist', 'R_Shoulder', 'R_Elbow', 'R_Wrist') self.human36_flip_pairs = ((1, 4), (2, 5), (3, 6), (14, 11), (15, 12), (16, 13)) self.human36_skeleton = ( (0, 7), (7, 8), (8, 9), (9, 10), (8, 11), (11, 12), (12, 13), (8, 14), (14, 15), (15, 16), (0, 1), (1, 2), (2, 3), (0, 4), (4, 5), (5, 6)) self.human36_root_joint_idx = self.human36_joints_name.index('Pelvis') self.human36_error_distribution = self.get_stat() self.human36_eval_joint = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16) self.joint_regressor_human36 = self.mesh_model.joint_regressor_h36m # COCO joint set self.coco_joint_num = 19 # 17 + 2, manually added pelvis and neck self.coco_joints_name = ( 'Nose', 'L_Eye', 'R_Eye', 'L_Ear', 'R_Ear', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Hip', 'R_Hip', 'L_Knee', 'R_Knee', 'L_Ankle', 'R_Ankle', 'Pelvis', 'Neck') self.coco_flip_pairs = ((1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14), (15, 16)) self.coco_skeleton = ( (1, 2), (0, 1), (0, 2), (2, 4), (1, 3), (6, 8), (8, 10), (5, 7), (7, 9), (12, 14), (14, 16), (11, 13), (13, 15), #(5, 6), #(11, 12), (17, 11), (17, 12), (17, 18), (18, 5), (18, 6), (18, 0)) self.joint_regressor_coco = self.mesh_model.joint_regressor_coco self.input_joint_name = cfg.DATASET.input_joint_set # 'coco' self.joint_num, self.skeleton, self.flip_pairs = self.get_joint_setting(self.input_joint_name) self.datalist, skip_idx, skip_img_path = self.load_data() if self.data_split == 'test': det_2d_data_path = osp.join(cfg.data_dir, dataset_name, 'absnet_output_on_testset.json') self.datalist_pose2d_det = self.load_pose2d_det(det_2d_data_path, skip_img_path) print("Check lengths of annotation and detection output: ", len(self.datalist), len(self.datalist_pose2d_det)) self.graph_Adj, self.graph_L, self.graph_perm, self.graph_perm_reverse = \ build_coarse_graphs(self.mesh_model.face, self.joint_num, self.skeleton, self.flip_pairs, levels=9) def load_pose2d_det(self, data_path, skip_list): pose_list = [] with open(data_path) as f: data = json.load(f) for img_path, pose2d in data.items(): pose2d = np.array(pose2d, dtype=np.float32) if img_path in skip_list: continue pose_list.append({'img_name': img_path, 'pose2d': pose2d}) pose_list = sorted(pose_list, key=lambda x: x['img_name']) return pose_list def get_joint_setting(self, joint_category='human36'): joint_num = eval(f'self.{joint_category}_joint_num') skeleton = eval(f'self.{joint_category}_skeleton') flip_pairs = eval(f'self.{joint_category}_flip_pairs') return joint_num, skeleton, flip_pairs def get_subsampling_ratio(self): if self.data_split == 'train': return 5 # 50 elif self.data_split == 'test': return 50 # else: assert 0, print('Unknown subset') def get_subject(self): if self.data_split == 'train': if self.protocol == 1: subject = [1, 5, 6, 7, 8, 9] elif self.protocol == 2: subject = [1, 5, 6, 7, 8] elif self.data_split == 'test': if self.protocol == 1: subject = [11] elif self.protocol == 2: subject = [9, 11] else: assert 0, print("Unknown subset") if self.debug: subject = subject[0:1] return subject def get_stat(self): ordered_stats = [] for joint in self.human36_joints_name: item = list(filter(lambda stat: stat['Joint'] == joint, error_distribution))[0] ordered_stats.append(item) return ordered_stats def generate_syn_error(self): noise = np.zeros((self.human36_joint_num, 2), dtype=np.float32) weight = np.zeros(self.human36_joint_num, dtype=np.float32) for i, ed in enumerate(self.human36_error_distribution): noise[i, 0] = np.random.normal(loc=ed['mean'][0], scale=ed['std'][0]) noise[i, 1] = np.random.normal(loc=ed['mean'][1], scale=ed['std'][1]) weight[i] = ed['weight'] prob = np.random.uniform(low=0.0, high=1.0, size=self.human36_joint_num) weight = (weight > prob) noise = noise * weight[:, None] return noise def load_data(self): print('Load annotations of Human36M Protocol ' + str(self.protocol)) subject_list = self.get_subject() sampling_ratio = self.get_subsampling_ratio() # aggregate annotations from each subject db = COCO() cameras = {} joints = {} smpl_params = {} for subject in subject_list: # data load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_data.json'), 'r') as f: annot = json.load(f) if len(db.dataset) == 0: for k, v in annot.items(): db.dataset[k] = v else: for k, v in annot.items(): db.dataset[k] += v # camera load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_camera.json'), 'r') as f: cameras[str(subject)] = json.load(f) # joint coordinate load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_joint_3d.json'), 'r') as f: joints[str(subject)] = json.load(f) # smpl parameter load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_smpl_param.json'), 'r') as f: smpl_params[str(subject)] = json.load(f) db.createIndex() skip_idx = [] datalist = [] skip_img_idx = [] for aid in db.anns.keys(): ann = db.anns[aid] image_id = ann['image_id'] img = db.loadImgs(image_id)[0] img_path = osp.join(self.img_dir, img['file_name']) img_name = img_path.split('/')[-1] # check subject and frame_idx frame_idx = img['frame_idx']; if frame_idx % sampling_ratio != 0: continue # check smpl parameter exist subject = img['subject']; action_idx = img['action_idx']; subaction_idx = img['subaction_idx']; frame_idx = img['frame_idx']; try: smpl_param = smpl_params[str(subject)][str(action_idx)][str(subaction_idx)][str(frame_idx)] except KeyError: skip_idx.append(image_id) skip_img_idx.append(img_path.split('/')[-1]) continue smpl_param['gender'] = 'neutral' # self.subject_genders[subject] # set corresponding gender # camera parameter cam_idx = img['cam_idx'] cam_param = cameras[str(subject)][str(cam_idx)] R, t, f, c = np.array(cam_param['R'], dtype=np.float32), np.array(cam_param['t'], dtype=np.float32), np.array( cam_param['f'], dtype=np.float32), np.array(cam_param['c'], dtype=np.float32) cam_param = {'R': R, 't': t, 'focal': f, 'princpt': c} # project world coordinate to cam, image coordinate space joint_world = np.array(joints[str(subject)][str(action_idx)][str(subaction_idx)][str(frame_idx)], dtype=np.float32) joint_cam = world2cam(joint_world, R, t) joint_img = cam2pixel(joint_cam, f, c) joint_vis = np.ones((self.human36_joint_num, 1)) bbox = process_bbox(np.array(ann['bbox'])) if bbox is None: continue datalist.append({ 'img_path': img_path, 'img_name': img_name, 'img_id': image_id, 'bbox': bbox, 'img_hw': (img['height'], img['width']), 'joint_img': joint_img, # [x_img, y_img, z_cam] 'joint_cam': joint_cam, # [X, Y, Z] in camera coordinate 'joint_vis': joint_vis, 'smpl_param': smpl_param, 'cam_param': cam_param}) datalist = sorted(datalist, key=lambda x: x['img_name']) return datalist, skip_idx, skip_img_idx def get_smpl_coord(self, smpl_param, cam_param): pose, shape, trans, gender = smpl_param['pose'], smpl_param['shape'], smpl_param['trans'], smpl_param['gender'] # smpl parameters (pose: 72 dimension, shape: 10 dimension) smpl_pose = torch.FloatTensor(pose).view(-1, 3) smpl_shape = torch.FloatTensor(shape).view(1, -1) # translation vector from smpl coordinate to h36m world coordinate trans = np.array(trans, dtype=np.float32).reshape(3) # camera rotation and translation R, t = np.array(cam_param['R'],dtype=np.float32).reshape(3, 3), np.array(cam_param['t'],dtype=np.float32).reshape(3) # change to mean shape if beta is too far from it smpl_shape[(smpl_shape.abs() > 3).any(dim=1)] = 0. # transform world coordinate to camera coordinate root_pose = smpl_pose[self.smpl_root_joint_idx, :].numpy() angle = np.linalg.norm(root_pose) root_pose = transforms3d.axangles.axangle2mat(root_pose / angle, angle) root_pose = np.dot(R, root_pose) axis, angle = transforms3d.axangles.mat2axangle(root_pose) root_pose = axis * angle smpl_pose[self.smpl_root_joint_idx] = torch.from_numpy(root_pose) smpl_pose = smpl_pose.view(1, -1) # get mesh and joint coordinates smpl_mesh_coord, smpl_joint_coord = self.mesh_model.layer[gender](smpl_pose, smpl_shape) # incorporate face keypoints smpl_mesh_coord = smpl_mesh_coord.numpy().astype(np.float32).reshape(-1, 3); smpl_joint_coord = smpl_joint_coord.numpy().astype(np.float32).reshape(-1, 3) # smpl_face_kps_coord = smpl_mesh_coord[self.face_kps_vertex, :].reshape(-1, 3) # smpl_joint_coord = np.concatenate((smpl_joint_coord, smpl_face_kps_coord)) # compenstate rotation (translation from origin to root joint was not cancled) smpl_trans = np.array(trans, dtype=np.float32).reshape( 3) # translation vector from smpl coordinate to h36m world coordinate smpl_trans = np.dot(R, smpl_trans[:, None]).reshape(1, 3) + t.reshape(1, 3) / 1000 root_joint_coord = smpl_joint_coord[self.smpl_root_joint_idx].reshape(1, 3) smpl_trans = smpl_trans - root_joint_coord + np.dot(R, root_joint_coord.transpose(1, 0)).transpose(1, 0) # translation smpl_mesh_coord += smpl_trans; smpl_joint_coord += smpl_trans # meter -> milimeter smpl_mesh_coord *= 1000; smpl_joint_coord *= 1000; return smpl_mesh_coord, smpl_joint_coord def get_fitting_error(self, h36m_joint, smpl_mesh): h36m_joint = h36m_joint - h36m_joint[self.human36_root_joint_idx,None,:] # root-relative h36m_from_smpl = np.dot(self.joint_regressor_human36, smpl_mesh) # translation alignment h36m_from_smpl = h36m_from_smpl - np.mean(h36m_from_smpl,0)[None,:] + np.mean(h36m_joint,0)[None,:] error = np.sqrt(np.sum((h36m_joint - h36m_from_smpl)**2,1)).mean() return error def get_coco_from_mesh(self, mesh_coord_cam, cam_param): # regress coco joints joint_coord_cam = np.dot(self.joint_regressor_coco, mesh_coord_cam) joint_coord_cam = self.add_pelvis_and_neck(joint_coord_cam) # projection f, c = cam_param['focal'], cam_param['princpt'] joint_coord_img = cam2pixel(joint_coord_cam, f, c) joint_coord_img[:, 2] = 1 return joint_coord_cam, joint_coord_img def add_pelvis_and_neck(self, joint_coord): lhip_idx = self.coco_joints_name.index('L_Hip') rhip_idx = self.coco_joints_name.index('R_Hip') pelvis = (joint_coord[lhip_idx, :] + joint_coord[rhip_idx, :]) * 0.5 pelvis = pelvis.reshape((1, -1)) lshoulder_idx = self.coco_joints_name.index('L_Shoulder') rshoulder_idx = self.coco_joints_name.index('R_Shoulder') neck = (joint_coord[lshoulder_idx, :] + joint_coord[rshoulder_idx, :]) * 0.5 neck = neck.reshape((1,-1)) joint_coord = np.concatenate((joint_coord, pelvis, neck)) return joint_coord def __len__(self): return len(self.datalist) def __getitem__(self, idx): data = copy.deepcopy(self.datalist[idx]) img_id, bbox, smpl_param, cam_param, img_shape = data['img_id'], data['bbox'].copy(), data['smpl_param'].copy(), data['cam_param'].copy(), data['img_hw'] flip, rot = augm_params(is_train=(self.data_split == 'train')) # smpl coordinates mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param, cam_param) # regress coco joints joint_cam_coco, joint_img_coco = self.get_coco_from_mesh(mesh_cam, cam_param) # h36m joints from datasets joint_cam_h36m, joint_img_h36m = data['joint_cam'], data['joint_img'][:, :2] # root relative camera coordinate mesh_cam = mesh_cam - joint_cam_h36m[:1] # joint_cam_smpl = joint_cam_smpl - joint_cam_h36m[:1] joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1] joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1] # joint_cam is PoseNet target if self.input_joint_name == 'coco': joint_img, joint_cam = joint_img_coco, joint_cam_coco elif self.input_joint_name == 'human36': joint_img, joint_cam = joint_img_h36m, joint_cam_h36m # make new bbox tight_bbox = get_bbox(joint_img) bbox = process_bbox(tight_bbox.copy()) # aug joint_img, trans = j2d_processing(joint_img.copy(), (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox, rot, 0, None) if not cfg.DATASET.use_gt_input: joint_img = self.replace_joint_img(idx, img_id, joint_img, tight_bbox, trans) if flip: joint_img = flip_2d_joint(joint_img, cfg.MODEL.input_shape[1], self.flip_pairs) joint_cam = j3d_processing(joint_cam, rot, flip, self.flip_pairs) # vis # img = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # new_img = cv2.warpAffine(img, trans, (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), flags=cv2.INTER_LINEAR) # vis_2d_pose(joint_img, new_img, self.human36_skeleton, prefix='detection') # vis_3d_pose(joint_cam, self.human36_skeleton, joint_set_name='human36', gt=True) # -> 0~1 joint_img = joint_img[:, :2] joint_img /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]]) # normalize loc&scale mean, std =
np.mean(joint_img, axis=0)
numpy.mean
# (c) <NAME> & <NAME> # routines for fitting histograms import numpy as np import scipy.special as sps MAX_NEWTON_ITERATIONS = 1000 def gauss_fit(data, binwidth=None): """ Fits a Gaussian pdf to a set of independent values (data) using maximum likelihood estimators. If fitting to a histogram, the resulting fit can be normalized if the binwidth is also supplied. """ if binwidth is None: norm = 1 else: norm = np.float(np.size(data) * binwidth) mean = np.mean(data) std = np.std(data) optParam = norm, mean, std return optParam def gamma_fit(data, binwidth): """ Fits a Gamma pdf to independent values (data) using maximum likelihood estimators. """ if binwidth is None: norm = 1 else: norm = np.float(np.size(data) * binwidth) # for large k where the Gaussian distribution is approached, # k = np.power(np.mean(data), 2.) / np.power(np.std(data), 2.) # In general, k can be approxmated to within 1.5% as s = np.log(np.mean(data)) - np.mean(np.log(data)) kguess = (3. - s + np.sqrt((s-3)**2 + 24*s)) / (12*s) # k = kguess # "accurate to within 1.5%" according to wikipedia.org # We can solve for k numerically using Newton's method. # Scipy.special has the digamma (psi) and its derivative (polygamma) # required for this. k = k_param(kguess, s) theta = np.mean(data)/k optParam = norm, k, theta return optParam def k_param(kguess, s): """ Finds the root of the maximum likelihood estimator for k using Newton's method. Routines for using Newton's method exist within the scipy package but they were not explored. This function is sufficiently well behaved such that we should not have problems solving for k, especially since we have a good estimate of k to use as a starting point. """ k = kguess val = np.log(k) - sps.psi(k) - s counter = 0 while np.abs(val) >= 0.0001: k = k - (np.log(k)-sps.psi(k)-s)/(1/k-sps.polygamma(1, k)) val =
np.log(k)
numpy.log
# # Utility functions for loading and creating and solving circuits defined by # netlists # import numpy as np import codecs import pandas as pd import liionpack as lp import os import pybamm import scipy as sp from lcapy import Circuit def read_netlist( filepath, Ri=None, Rc=None, Rb=None, Rt=None, I=None, V=None, ): """ Assumes netlist has been saved by LTSpice with format Descriptor Node1 Node2 Value Any lines starting with * are comments and . are commands so ignore them Nodes begin with N so remove that Open ended components are not allowed and their nodes start with NC (no-connection) Args: filepath (str): Path to netlist circuit file '.cir' or '.txt'. Ri (float): Internal resistance ($\Omega$). Rc (float): Connection resistance ($\Omega$). Rb (float): Busbar resistance ($\Omega$). Rt (float): Terminal connection resistance ($\Omega$). I (float): Current (A). V (float): Initial battery voltage (V). Returns: pandas.DataFrame: A netlist of circuit elements with format desc, node1, node2, value. """ # Read in the netlist if "." not in filepath: filepath += ".cir" if not os.path.isfile(filepath): temp = os.path.join(lp.CIRCUIT_DIR, filepath) if not os.path.isfile(temp): pass else: filepath = temp if ".cir" in filepath: with codecs.open(filepath, "r", "utf-16LE") as fd: Lines = fd.readlines() elif ".txt" in filepath: with open(filepath, "r") as f: Lines = f.readlines() else: raise FileNotFoundError( 'Please supply a valid file with extension ".cir" or ".txt"' ) # Ignore lines starting with * or . Lines = [l.strip("\n").split(" ") for l in Lines if l[0] not in ["*", "."]] Lines = np.array(Lines, dtype="<U16") # Read descriptions and nodes, strip N from nodes # Lines is desc | node1 | node2 desc = Lines[:, 0] node1 = Lines[:, 1] node2 = Lines[:, 2] value = Lines[:, 3] try: value = value.astype(float) except ValueError: pass node1 = np.array([x.strip("N") for x in node1], dtype=int) node2 = np.array([x.strip("N") for x in node2], dtype=int) netlist = pd.DataFrame( {"desc": desc, "node1": node1, "node2": node2, "value": value} ) # Populate the values based on the descriptions (element types) for name, val in [ ("Ri", Ri), ("Rc", Rc), ("Rb", Rb), ("Rl", Rb), ("Rt", Rt), ("I", I), ("V", V), ]: if val is not None: # netlist["desc"] consists of entries like 'Ri13' # this map finds all the entries that start with (e.g.) 'Ri' name_map = netlist["desc"].str.find(name) > -1 # then allocates the value to the corresponding indices netlist.loc[name_map, ("value")] = val lp.logger.notice("netlist " + filepath + " loaded") return netlist def setup_circuit( Np=1, Ns=1, Ri=1e-2, Rc=1e-2, Rb=1e-4, Rt=1e-5, I=80.0, V=4.2, plot=False, terminals="left", ): """ Define a netlist from a number of batteries in parallel and series Args: Np (int): Number of batteries in parallel. Ns (int): Number of batteries in series. Ri (float): Internal resistance ($\Omega$). Rc (float): Connection resistance ($\Omega$). Rb (float): Busbar resistance ($\Omega$). Rt (float): Terminal connection resistance ($\Omega$). I (float): Current (A). V (float): Initial battery voltage (V). plot (bool): Plot the circuit. terminals (string): The location of the terminals. Can be "left", "right", "left-right", "right-left" or a list or array of node integers. Returns: pandas.DataFrame: A netlist of circuit elements with format desc, node1, node2, value. """ Nc = Np Nr = Ns * 3 + 1 grid = np.arange(Nc * Nr).reshape([Nr, Nc]) coords = np.indices(grid.shape) y = coords[0, :, :] x = coords[1, :, :] # make contiguous now instead of later when netlist is done as very slow mask = np.ones([Nr, Nc], dtype=bool) # This is no longer needed as terminals connect directly to battery # Guess could also add a terminal connection resistor though # mask[1:-1, 0] = False grid[mask] = np.arange(np.sum(mask)) + 1 x = x[mask].flatten() y = y[mask].flatten() grid[~mask] = -2 # These should never be used # grid is a Nr x Nc matrix # 1st column is terminals only # 1st and last rows are busbars # Other rows alternate between series resistor and voltage source # For example if Np=1 and Nc=2, # grid = array([[ 0, 1], # busbar # # Rs # [ 2, 3], # # V # [ 4, 5], # # Ri # [ 6, 7], # # Rs # [ 8, 9], # # V # [10, 11], # # Ri # [12, 13]] # busbar) # Connections are across busbars in first and last rows, and down each column # See "01 Getting Started.ipynb" # Build data with ['element type', node1, node2, value] netlist = [] num_Rb = 0 num_V = 0 desc = [] node1 = [] node2 = [] value = [] # -ve busbars (bottom row of the grid) bus_nodes = [grid[0, :]] for nodes in bus_nodes: for i in range(len(nodes) - 1): # netline = [] desc.append("Rbn" + str(num_Rb)) num_Rb += 1 node1.append(nodes[i]) node2.append(nodes[i + 1]) value.append(Rb) num_Rs = 0 num_Ri = 0 # Series resistors and voltage sources cols = np.arange(Nc) rows = np.arange(Nr)[:-1] rtype = ["Rc", "V", "Ri"] * Ns for col in cols: # Go down the column alternating Rs, V, Ri connections between nodes nodes = grid[:, col] for row in rows: if rtype[row] == "Rc": # Inter(c)onnection / weld desc.append(rtype[row] + str(num_Rs)) num_Rs += 1 val = Rc elif rtype[row] == "Ri": # Internal resistor desc.append(rtype[row] + str(num_Ri)) num_Ri += 1 val = Ri else: # Voltage source desc.append("V" + str(num_V)) num_V += 1 val = V node1.append(nodes[row + 1]) node2.append(nodes[row]) value.append(val) # netlist.append(netline) # +ve busbar (top row of the grid) bus_nodes = [grid[-1, :]] for nodes in bus_nodes: for i in range(len(nodes) - 1): # netline = [] desc.append("Rbp" + str(num_Rb)) num_Rb += 1 node1.append(nodes[i]) node2.append(nodes[i + 1]) value.append(Rb) desc = np.asarray(desc) node1 = np.asarray(node1) node2 = np.asarray(node2) value = np.asarray(value) main_grid = { "desc": desc, "node1": node1, "node2": node2, "value": value, "node1_x": x[node1 - 1], "node1_y": y[node1 - 1], "node2_x": x[node2 - 1], "node2_y": y[node2 - 1], } # Current source - spans the entire pack if (terminals == "left") or (terminals is None): t_nodes = [0, 0] elif terminals == "right": t_nodes = [-1, -1] elif terminals == "left-right": t_nodes = [0, -1] elif terminals == "right-left": t_nodes = [-1, 0] elif isinstance(terminals, (list, np.ndarray)): t_nodes = terminals else: raise ValueError( 'Please specify a valid terminals argument: "left", ' + '"right", "left-right" or "right-left" or a list or ' + "array of nodes" ) # terminal nodes t1 = grid[-1, t_nodes[0]] t2 = grid[0, t_nodes[1]] # terminal coords x1 = x[t1 - 1] x2 = x[t2 - 1] y1 = y[t1 - 1] y2 = y[t2 - 1] nn = grid.max() + 1 # next node # coords of nodes forming current source loop if terminals == "left" or ( isinstance(terminals, (list, np.ndarray)) and np.all(np.array(terminals) == 0) ): ix = x1 - 1 dy = 0 elif terminals == "right" or ( isinstance(terminals, (list, np.ndarray)) and np.all(np.array(terminals) == -1) ): ix = x1 + 1 dy = 0 else: ix = -1 dy = 1 if dy == 0: desc = ["Rtp1", "I0", "Rtn1"] xs = np.array([x1, ix, ix, x2]) ys = np.array([y1, y1, y2, y2]) node1 = [t1, nn, 0] node2 = [nn, 0, t2] value = [Rt, I, Rt] num_elem = 3 else: desc = ["Rtp0", "Rtp1", "I0", "Rtn1", "Rtn0"] xs = np.array([x1, x1, ix, ix, x2, x2]) ys = np.array([y1, y1 + dy, y1 + dy, 0 - dy, 0 - dy, y2]) node1 = [t1, nn, nn + 1, 0, nn + 2] node2 = [nn, nn + 1, 0, nn + 2, t2] hRt = Rt / 2 value = [hRt, hRt, I, hRt, hRt] num_elem = 5 desc = np.asarray(desc) node1 = np.asarray(node1) node2 = np.asarray(node2) value = np.asarray(value) current_loop = { "desc": desc, "node1": node1, "node2": node2, "value": value, "node1_x": xs[:num_elem], "node1_y": ys[:num_elem], "node2_x": xs[1:], "node2_y": ys[1:], } for key in main_grid.keys(): main_grid[key] = np.concatenate((main_grid[key], current_loop[key])) netlist = pd.DataFrame(main_grid) if plot: lp.simple_netlist_plot(netlist) lp.logger.notice("Circuit created") return netlist def solve_circuit(netlist): """ Generate and solve the Modified Nodal Analysis (MNA) equations for the circuit. The MNA equations are a linear system Ax = z. See http://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA3.html Args: netlist (pandas.DataFrame): A netlist of circuit elements with format desc, node1, node2, value. Returns: (np.ndarray, np.ndarray): - V_node: Voltages of the voltage elements - I_batt: Currents of the current elements """ timer = pybamm.Timer() desc = np.array(netlist["desc"]).astype("<U16") node1 = np.array(netlist["node1"]) node2 = np.array(netlist["node2"]) value = np.array(netlist["value"]) nLines = netlist.shape[0] n = np.concatenate((node1, node2)).max() # Number of nodes (highest node number) m = 0 # "m" is the number of voltage sources, determined below. V_elem = ["V", "O", "E", "H"] for nm in desc: if nm[0] in V_elem: m += 1 # Construct the A matrix, which will be a (n+m) x (n+m) matrix # A = [G B] # [B.T D] # G matrix tracks the conductance between nodes (consists of floats) # B matrix tracks voltage sources between nodes (consists of -1, 0, 1) # D matrix is always zero for non-dependent sources # Construct the z vector with length (n+m) # z = [i] # [e] # i is currents and e is voltages # Use lil matrices to construct the A array G = sp.sparse.lil_matrix((n, n)) B = sp.sparse.lil_matrix((n, m)) D = sp.sparse.lil_matrix((m, m)) i = np.zeros([n, 1]) e = np.zeros([m, 1]) """ % We need to keep track of the number of voltage sources we've parsed % so far as we go through file. We start with zero. """ vsCnt = 0 """ % This loop does the bulk of filling in the arrays. It scans line by line % and fills in the arrays depending on the type of element found on the % current line. % See http://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA3.html """ for k1 in range(nLines): n1 = node1[k1] - 1 # get the two node numbers in python index format n2 = node2[k1] - 1 elem = desc[k1][0] if elem == "R": # Resistance elements: fill the G matrix only g = 1 / value[k1] # conductance = 1 / R """ % Here we fill in G array by adding conductance. % The procedure is slightly different if one of the nodes is % ground, so check for those accordingly. """ if n1 == -1: # -1 is the ground node G[n2, n2] = G[n2, n2] + g elif n2 == -1: G[n1, n1] = G[n1, n1] + g else: G[n1, n1] = G[n1, n1] + g G[n2, n2] = G[n2, n2] + g G[n1, n2] = G[n1, n2] - g G[n2, n1] = G[n2, n1] - g elif elem == "V": # Voltage elements: fill the B matrix and the e vector if n1 >= 0: B[n1, vsCnt] = B[n1, vsCnt] + 1 if n2 >= 0: B[n2, vsCnt] = B[n2, vsCnt] - 1 e[vsCnt] = value[k1] vsCnt += 1 elif elem == "I": # Current elements: fill the i vector only if n1 >= 0: i[n1] = i[n1] - value[k1] if n2 >= 0: i[n2] = i[n2] + value[k1] # Construct final matrices from sub-matrices upper = sp.sparse.hstack((G, B)) lower = sp.sparse.hstack((B.T, D)) A = sp.sparse.vstack((upper, lower)) # Convert a to csr sparse format for more efficient solving of the linear system # csr works slighhtly more robustly than csc A_csr = sp.sparse.csr_matrix(A) z = np.vstack((i, e)) toc_setup = timer.time() lp.logger.debug(f"Circuit set up in {toc_setup}") # Scipy # X = solve(A, z).flatten() X = sp.sparse.linalg.spsolve(A_csr, z).flatten() # Pypardiso # X = pypardiso.spsolve(Aspr, z).flatten() # amg # ml = pyamg.smoothed_aggregation_solver(Aspr) # X = ml.solve(b=z, tol=1e-6, maxiter=10, accel="bicgstab") # include ground node (0V) # it is counter-intuitive that z is [i,e] while X is [V,I], but this is correct V_node = np.zeros(n + 1) V_node[1:] = X[:n] I_batt = X[n:] toc = timer.time() lp.logger.debug(f"Circuit solved in {toc - toc_setup}") lp.logger.info(f"Circuit set up and solved in {toc}") return V_node, I_batt def solve_circuit_vectorized(netlist): """ Generate and solve the Modified Nodal Analysis (MNA) equations for the circuit. The MNA equations are a linear system Ax = z. See http://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA3.html Args: netlist (pandas.DataFrame): A netlist of circuit elements with format desc, node1, node2, value. Returns: (np.ndarray, np.ndarray): - V_node: Voltages of the voltage elements - I_batt: Currents of the current elements """ timer = pybamm.Timer() desc = np.array(netlist["desc"]).astype("<U1") # just take first character desc2 = np.array(netlist["desc"]).astype("<U2") # take first 2 characters node1 = np.array(netlist["node1"]) node2 = np.array(netlist["node2"]) value = np.array(netlist["value"]) n = np.concatenate((node1, node2)).max() # Number of nodes (highest node number) m = np.sum(desc == "V") # we only use V in liionpack # Construct the A matrix, which will be a (n+m) x (n+m) matrix # A = [G B] # [B.T D] # G matrix tracks the conductance between nodes (consists of floats) # B matrix tracks voltage sources between nodes (consists of -1, 0, 1) # D matrix is always zero for non-dependent sources # Construct the z vector with length (n+m) # z = [i] # [e] # i is currents and e is voltages # Use lil matrices to construct the A array G = sp.sparse.lil_matrix((n, n)) B = sp.sparse.lil_matrix((n, m)) D = sp.sparse.lil_matrix((m, m)) i = np.zeros([n, 1]) e = np.zeros([m, 1]) """ % This loop does the bulk of filling in the arrays. It scans line by line % and fills in the arrays depending on the type of element found on the % current line. % See http://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA3.html """ node1 = node1 - 1 # get the two node numbers in python index format node2 = node2 - 1 # Resistance elements: fill the G matrix only g = np.ones(len(value)) * np.nan n1_ground = node1 == -1 n2_ground = node2 == -1 r_list = [d for d in np.unique(desc2) if d[0] == "R"] for r_string in r_list: R_map = desc2 == r_string g[R_map] = 1 / value[R_map] # conductance = 1 / R R_map_n1_ground = np.logical_and(R_map, n1_ground) R_map_n2_ground =
np.logical_and(R_map, n2_ground)
numpy.logical_and
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import datetime from datetime import timedelta from functools import partial from textwrap import dedent from copy import deepcopy import logbook import toolz from logbook import TestHandler, WARNING from parameterized import parameterized from six import iteritems, itervalues, string_types from six.moves import range from testfixtures import TempDirectory import numpy as np import pandas as pd import pytz from pandas.errors import PerformanceWarning from trading_calendars import get_calendar, register_calendar import zipline.api from zipline.api import FixedSlippage from zipline.assets import Equity, Future, Asset from zipline.assets.continuous_futures import ContinuousFuture from zipline.assets.synthetic import ( make_jagged_equity_info, make_simple_equity_info, ) from zipline.errors import ( AccountControlViolation, CannotOrderDelistedAsset, IncompatibleSlippageModel, RegisterTradingControlPostInit, ScheduleFunctionInvalidCalendar, SetCancelPolicyPostInit, SymbolNotFound, TradingControlViolation, UnsupportedCancelPolicy, UnsupportedDatetimeFormat, ZeroCapitalError ) from zipline.finance.commission import PerShare, PerTrade from zipline.finance.execution import LimitOrder from zipline.finance.order import ORDER_STATUS from zipline.finance.trading import SimulationParameters from zipline.finance.asset_restrictions import ( Restriction, HistoricalRestrictions, StaticRestrictions, RESTRICTION_STATES, ) from zipline.finance.controls import AssetDateBounds from zipline.testing import ( FakeDataPortal, create_daily_df_for_asset, create_data_portal_from_trade_history, create_minute_df_for_asset, make_test_handler, make_trade_data_for_asset_info, parameter_space, str_to_seconds, to_utc, ) from zipline.testing import RecordBatchBlotter import zipline.testing.fixtures as zf from zipline.test_algorithms import ( access_account_in_init, access_portfolio_in_init, api_algo, api_get_environment_algo, api_symbol_algo, handle_data_api, handle_data_noop, initialize_api, initialize_noop, noop_algo, record_float_magic, record_variables, call_with_kwargs, call_without_kwargs, call_with_bad_kwargs_current, call_with_bad_kwargs_history, bad_type_history_assets, bad_type_history_fields, bad_type_history_bar_count, bad_type_history_frequency, bad_type_history_assets_kwarg_list, bad_type_current_assets, bad_type_current_fields, bad_type_can_trade_assets, bad_type_is_stale_assets, bad_type_history_assets_kwarg, bad_type_history_fields_kwarg, bad_type_history_bar_count_kwarg, bad_type_history_frequency_kwarg, bad_type_current_assets_kwarg, bad_type_current_fields_kwarg, call_with_bad_kwargs_get_open_orders, call_with_good_kwargs_get_open_orders, call_with_no_kwargs_get_open_orders, empty_positions, no_handle_data, ) from zipline.testing.predicates import assert_equal from zipline.utils.api_support import ZiplineAPI from zipline.utils.context_tricks import CallbackManager, nop_context from zipline.utils.events import ( date_rules, time_rules, Always, ComposedRule, Never, OncePerDay, ) import zipline.utils.factory as factory # Because test cases appear to reuse some resources. _multiprocess_can_split_ = False class TestRecord(zf.WithMakeAlgo, zf.ZiplineTestCase): ASSET_FINDER_EQUITY_SIDS = (133,) SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False def test_record_incr(self): def initialize(self): self.incr = 0 def handle_data(self, data): self.incr += 1 self.record(incr=self.incr) name = 'name' self.record(name, self.incr) zipline.api.record(name, self.incr, 'name2', 2, name3=self.incr) output = self.run_algorithm( initialize=initialize, handle_data=handle_data, ) np.testing.assert_array_equal(output['incr'].values, range(1, len(output) + 1)) np.testing.assert_array_equal(output['name'].values, range(1, len(output) + 1)) np.testing.assert_array_equal(output['name2'].values, [2] * len(output)) np.testing.assert_array_equal(output['name3'].values, range(1, len(output) + 1)) class TestMiscellaneousAPI(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' sids = 1, 2 # FIXME: Pass a benchmark source instead of this. BENCHMARK_SID = None @classmethod def make_equity_info(cls): return pd.concat(( make_simple_equity_info(cls.sids, '2002-02-1', '2007-01-01'), pd.DataFrame.from_dict( {3: {'symbol': 'PLAY', 'start_date': '2002-01-01', 'end_date': '2004-01-01', 'exchange': 'TEST'}, 4: {'symbol': 'PLAY', 'start_date': '2005-01-01', 'end_date': '2006-01-01', 'exchange': 'TEST'}}, orient='index', ), )) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 5: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'exchange': 'TEST' }, 6: { 'root_symbol': 'CL', 'symbol': 'CLK06', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-03-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-04-20', tz='UTC'), 'exchange': 'TEST', }, 7: { 'symbol': 'CLQ06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-06-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-07-20', tz='UTC'), 'exchange': 'TEST', }, 8: { 'symbol': 'CLX06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2006-02-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-09-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-10-20', tz='UTC'), 'exchange': 'TEST', } }, orient='index', ) def test_cancel_policy_outside_init(self): code = """ from zipline.api import cancel_policy, set_cancel_policy def initialize(algo): pass def handle_data(algo, data): set_cancel_policy(cancel_policy.NeverCancel()) """ algo = self.make_algo(script=code) with self.assertRaises(SetCancelPolicyPostInit): algo.run() def test_cancel_policy_invalid_param(self): code = """ from zipline.api import set_cancel_policy def initialize(algo): set_cancel_policy("foo") def handle_data(algo, data): pass """ algo = self.make_algo(script=code) with self.assertRaises(UnsupportedCancelPolicy): algo.run() def test_zipline_api_resolves_dynamically(self): # Make a dummy algo. algo = self.make_algo( initialize=lambda context: None, handle_data=lambda context, data: None, ) # Verify that api methods get resolved dynamically by patching them out # and then calling them for method in algo.all_api_methods(): name = method.__name__ sentinel = object() def fake_method(*args, **kwargs): return sentinel setattr(algo, name, fake_method) with ZiplineAPI(algo): self.assertIs(sentinel, getattr(zipline.api, name)()) def test_sid_datetime(self): algo_text = """ from zipline.api import sid, get_datetime def initialize(context): pass def handle_data(context, data): aapl_dt = data.current(sid(1), "last_traded") assert_equal(aapl_dt, get_datetime()) """ self.run_algorithm( script=algo_text, namespace={'assert_equal': self.assertEqual}, ) def test_datetime_bad_params(self): algo_text = """ from zipline.api import get_datetime from pytz import timezone def initialize(context): pass def handle_data(context, data): get_datetime(timezone) """ algo = self.make_algo(script=algo_text) with self.assertRaises(TypeError): algo.run() @parameterized.expand([ (-1000, 'invalid_base'), (0, 'invalid_base'), ]) def test_invalid_capital_base(self, cap_base, name): """ Test that the appropriate error is being raised and orders aren't filled for algos with capital base <= 0 """ algo_text = """ def initialize(context): pass def handle_data(context, data): order(sid(24), 1000) """ sim_params = SimulationParameters( start_session=pd.Timestamp("2006-01-04", tz='UTC'), end_session=pd.Timestamp("2006-01-06", tz='UTC'), capital_base=cap_base, data_frequency="minute", trading_calendar=self.trading_calendar ) with self.assertRaises(ZeroCapitalError) as exc: # make_algo will trace to TradingAlgorithm, # where the exception will be raised self.make_algo(script=algo_text, sim_params=sim_params) # Make sure the correct error was raised error = exc.exception self.assertEqual(str(error), 'initial capital base must be greater than zero') def test_get_environment(self): expected_env = { 'arena': 'backtest', 'data_frequency': 'minute', 'start': pd.Timestamp('2006-01-04 14:31:00+0000', tz='utc'), 'end': pd.Timestamp('2006-01-05 21:00:00+0000', tz='utc'), 'capital_base': 100000.0, 'platform': 'zipline' } def initialize(algo): self.assertEqual('zipline', algo.get_environment()) self.assertEqual(expected_env, algo.get_environment('*')) def handle_data(algo, data): pass self.run_algorithm(initialize=initialize, handle_data=handle_data) def test_get_open_orders(self): def initialize(algo): algo.minute = 0 def handle_data(algo, data): if algo.minute == 0: # Should be filled by the next minute algo.order(algo.sid(1), 1) # Won't be filled because the price is too low. algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) algo.order( algo.sid(2), 1, style=LimitOrder(0.01, asset=algo.sid(2)) ) all_orders = algo.get_open_orders() self.assertEqual(list(all_orders.keys()), [1, 2]) self.assertEqual(all_orders[1], algo.get_open_orders(1)) self.assertEqual(len(all_orders[1]), 1) self.assertEqual(all_orders[2], algo.get_open_orders(2)) self.assertEqual(len(all_orders[2]), 3) if algo.minute == 1: # First order should have filled. # Second order should still be open. all_orders = algo.get_open_orders() self.assertEqual(list(all_orders.keys()), [2]) self.assertEqual([], algo.get_open_orders(1)) orders_2 = algo.get_open_orders(2) self.assertEqual(all_orders[2], orders_2) self.assertEqual(len(all_orders[2]), 3) for order_ in orders_2: algo.cancel_order(order_) all_orders = algo.get_open_orders() self.assertEqual(all_orders, {}) algo.minute += 1 self.run_algorithm(initialize=initialize, handle_data=handle_data) def test_schedule_function_custom_cal(self): # run a simulation on the CMES cal, and schedule a function # using the NYSE cal algotext = """ from zipline.api import ( schedule_function, get_datetime, time_rules, date_rules, calendars, ) def initialize(context): schedule_function( func=log_nyse_open, date_rule=date_rules.every_day(), time_rule=time_rules.market_open(), calendar=calendars.CN_EQUITIES, ) schedule_function( func=log_nyse_close, date_rule=date_rules.every_day(), time_rule=time_rules.market_close(), calendar=calendars.CN_EQUITIES, ) context.nyse_opens = [] context.nyse_closes = [] def log_nyse_open(context, data): context.nyse_opens.append(get_datetime()) def log_nyse_close(context, data): context.nyse_closes.append(get_datetime()) """ algo = self.make_algo( script=algotext, sim_params=self.make_simparams( trading_calendar=get_calendar("XSHG"), ) ) algo.run() nyse = get_calendar("XSHG") for minute in algo.nyse_opens: # each minute should be a nyse session open session_label = nyse.minute_to_session_label(minute) session_open = nyse.session_open(session_label) self.assertEqual(session_open, minute) for minute in algo.nyse_closes: # each minute should be a minute before a nyse session close session_label = nyse.minute_to_session_label(minute) session_close = nyse.session_close(session_label) self.assertEqual(session_close - timedelta(minutes=1), minute) # Test that passing an invalid calendar parameter raises an error. erroring_algotext = dedent( """ from zipline.api import schedule_function from trading_calendars import get_calendar def initialize(context): schedule_function(func=my_func, calendar=get_calendar('XNYS')) def my_func(context, data): pass """ ) algo = self.make_algo( script=erroring_algotext, sim_params=self.make_simparams( trading_calendar=get_calendar("CMES"), ), ) with self.assertRaises(ScheduleFunctionInvalidCalendar): algo.run() def test_schedule_function(self): us_eastern = pytz.timezone('US/Eastern') def incrementer(algo, data): algo.func_called += 1 curdt = algo.get_datetime().tz_convert(pytz.utc) self.assertEqual( curdt, us_eastern.localize( datetime.datetime.combine( curdt.date(), datetime.time(9, 31) ), ), ) def initialize(algo): algo.func_called = 0 algo.days = 1 algo.date = None algo.schedule_function( func=incrementer, date_rule=date_rules.every_day(), time_rule=time_rules.market_open(), ) def handle_data(algo, data): if not algo.date: algo.date = algo.get_datetime().date() if algo.date < algo.get_datetime().date(): algo.days += 1 algo.date = algo.get_datetime().date() algo = self.make_algo( initialize=initialize, handle_data=handle_data, ) algo.run() self.assertEqual(algo.func_called, algo.days) def test_event_context(self): expected_data = [] collected_data_pre = [] collected_data_post = [] function_stack = [] def pre(data): function_stack.append(pre) collected_data_pre.append(data) def post(data): function_stack.append(post) collected_data_post.append(data) def initialize(context): context.add_event(Always(), f) context.add_event(Always(), g) def handle_data(context, data): function_stack.append(handle_data) expected_data.append(data) def f(context, data): function_stack.append(f) def g(context, data): function_stack.append(g) algo = self.make_algo( initialize=initialize, handle_data=handle_data, create_event_context=CallbackManager(pre, post), ) algo.run() self.assertEqual(len(expected_data), 480) self.assertEqual(collected_data_pre, expected_data) self.assertEqual(collected_data_post, expected_data) self.assertEqual( len(function_stack), 2400, 'Incorrect number of functions called: %s != 2400' % len(function_stack), ) expected_functions = [pre, handle_data, f, g, post] * 60030 for n, (f, g) in enumerate(zip(function_stack, expected_functions)): self.assertEqual( f, g, 'function at position %d was incorrect, expected %s but got %s' % (n, g.__name__, f.__name__), ) @parameterized.expand([ ('daily',), ('minute'), ]) def test_schedule_function_rule_creation(self, mode): def nop(*args, **kwargs): return None self.sim_params.data_frequency = mode algo = self.make_algo( initialize=nop, handle_data=nop, sim_params=self.sim_params, ) # Schedule something for NOT Always. # Compose two rules to ensure calendar is set properly. algo.schedule_function(nop, time_rule=Never() & Always()) event_rule = algo.event_manager._events[1].rule self.assertIsInstance(event_rule, OncePerDay) self.assertEqual(event_rule.cal, algo.trading_calendar) inner_rule = event_rule.rule self.assertIsInstance(inner_rule, ComposedRule) self.assertEqual(inner_rule.cal, algo.trading_calendar) first = inner_rule.first second = inner_rule.second composer = inner_rule.composer self.assertIsInstance(first, Always) self.assertEqual(first.cal, algo.trading_calendar) self.assertEqual(second.cal, algo.trading_calendar) if mode == 'daily': self.assertIsInstance(second, Always) else: self.assertIsInstance(second, ComposedRule) self.assertIsInstance(second.first, Never) self.assertEqual(second.first.cal, algo.trading_calendar) self.assertIsInstance(second.second, Always) self.assertEqual(second.second.cal, algo.trading_calendar) self.assertIs(composer, ComposedRule.lazy_and) def test_asset_lookup(self): algo = self.make_algo() # this date doesn't matter start_session = pd.Timestamp("2000-01-01", tz="UTC") # Test before either PLAY existed algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2001-12-01', tz='UTC') ) with self.assertRaises(SymbolNotFound): algo.symbol('PLAY') with self.assertRaises(SymbolNotFound): algo.symbols('PLAY') # Test when first PLAY exists algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2002-12-01', tz='UTC') ) list_result = algo.symbols('PLAY') self.assertEqual(3, list_result[0]) # Test after first PLAY ends algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2004-12-01', tz='UTC') ) self.assertEqual(3, algo.symbol('PLAY')) # Test after second PLAY begins algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2005-12-01', tz='UTC') ) self.assertEqual(4, algo.symbol('PLAY')) # Test after second PLAY ends algo.sim_params = algo.sim_params.create_new( start_session, pd.Timestamp('2006-12-01', tz='UTC') ) self.assertEqual(4, algo.symbol('PLAY')) list_result = algo.symbols('PLAY') self.assertEqual(4, list_result[0]) # Test lookup SID self.assertIsInstance(algo.sid(3), Equity) self.assertIsInstance(algo.sid(4), Equity) # Supplying a non-string argument to symbol() # should result in a TypeError. with self.assertRaises(TypeError): algo.symbol(1) with self.assertRaises(TypeError): algo.symbol((1,)) with self.assertRaises(TypeError): algo.symbol({1}) with self.assertRaises(TypeError): algo.symbol([1]) with self.assertRaises(TypeError): algo.symbol({'foo': 'bar'}) def test_future_symbol(self): """ Tests the future_symbol API function. """ algo = self.make_algo() algo.datetime = pd.Timestamp('2006-12-01', tz='UTC') # Check that we get the correct fields for the CLG06 symbol cl = algo.future_symbol('CLG06') self.assertEqual(cl.sid, 5) self.assertEqual(cl.symbol, 'CLG06') self.assertEqual(cl.root_symbol, 'CL') self.assertEqual(cl.start_date, pd.Timestamp('2005-12-01', tz='UTC')) self.assertEqual(cl.notice_date, pd.Timestamp('2005-12-20', tz='UTC')) self.assertEqual(cl.expiration_date, pd.Timestamp('2006-01-20', tz='UTC')) with self.assertRaises(SymbolNotFound): algo.future_symbol('') with self.assertRaises(SymbolNotFound): algo.future_symbol('PLAY') with self.assertRaises(SymbolNotFound): algo.future_symbol('FOOBAR') # Supplying a non-string argument to future_symbol() # should result in a TypeError. with self.assertRaises(TypeError): algo.future_symbol(1) with self.assertRaises(TypeError): algo.future_symbol((1,)) with self.assertRaises(TypeError): algo.future_symbol({1}) with self.assertRaises(TypeError): algo.future_symbol([1]) with self.assertRaises(TypeError): algo.future_symbol({'foo': 'bar'}) class TestSetSymbolLookupDate(zf.WithMakeAlgo, zf.ZiplineTestCase): # January 2006 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 31 START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-06', tz='UTC') SIM_PARAMS_START_DATE = pd.Timestamp('2006-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False BENCHMARK_SID = 3 @classmethod def make_equity_info(cls): dates = pd.date_range(cls.START_DATE, cls.END_DATE) assert len(dates) == 4, "Expected four dates." # Two assets with the same ticker, ending on days[1] and days[3], plus # a benchmark that spans the whole period. cls.sids = [1, 2, 3] cls.asset_starts = [dates[0], dates[2]] cls.asset_ends = [dates[1], dates[3]] return pd.DataFrame.from_records([ {'symbol': 'DUP', 'start_date': cls.asset_starts[0], 'end_date': cls.asset_ends[0], 'exchange': 'TEST', 'asset_name': 'FIRST'}, {'symbol': 'DUP', 'start_date': cls.asset_starts[1], 'end_date': cls.asset_ends[1], 'exchange': 'TEST', 'asset_name': 'SECOND'}, {'symbol': 'BENCH', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'exchange': 'TEST', 'asset_name': 'BENCHMARK'}, ], index=cls.sids) def test_set_symbol_lookup_date(self): """ Test the set_symbol_lookup_date API method. """ set_symbol_lookup_date = zipline.api.set_symbol_lookup_date def initialize(context): set_symbol_lookup_date(self.asset_ends[0]) self.assertEqual(zipline.api.symbol('DUP').sid, self.sids[0]) set_symbol_lookup_date(self.asset_ends[1]) self.assertEqual(zipline.api.symbol('DUP').sid, self.sids[1]) with self.assertRaises(UnsupportedDatetimeFormat): set_symbol_lookup_date('foobar') self.run_algorithm(initialize=initialize) class TestPositions(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2020-09-01', tz='utc') END_DATE = pd.Timestamp('2020-09-04', tz='utc') SIM_PARAMS_CAPITAL_BASE = 1000 ASSET_FINDER_EQUITY_SIDS = (1, 133) SIM_PARAMS_DATA_FREQUENCY = 'daily' @classmethod def make_equity_daily_bar_data(cls, country_code, sids): frame = pd.DataFrame( { 'open': [90, 95, 100, 105], 'high': [90, 95, 100, 105], 'low': [90, 95, 100, 105], 'close': [90, 95, 100, 105], 'volume': 100, }, index=cls.equity_daily_bar_days, ) return ((sid, frame) for sid in sids) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 1000: { 'symbol': 'CLF06', 'root_symbol': 'CL', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'auto_close_date': cls.END_DATE + cls.trading_calendar.day, 'exchange': 'CMES', 'multiplier': 100, }, }, orient='index', ) @classmethod def make_future_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Future] sids = cls.asset_finder.futures_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': 2.0, 'high': 2.0, 'low': 2.0, 'close': 2.0, 'volume': 100, }, index=minutes, ) return ((sid, frame) for sid in sids) def test_portfolio_exited_position(self): # This test ensures ensures that 'phantom' positions do not appear in # context.portfolio.positions in the case that a position has been # entered and fully exited. def initialize(context, sids): context.ordered = False context.exited = False context.sids = sids def handle_data(context, data): if not context.ordered: for s in context.sids: context.order(context.sid(s), 1) context.ordered = True if not context.exited: amounts = [pos.amount for pos in itervalues(context.portfolio.positions)] if ( len(amounts) > 0 and all([(amount == 1) for amount in amounts]) ): for stock in context.portfolio.positions: context.order(context.sid(stock), -1) context.exited = True # Should be 0 when all positions are exited. context.record(num_positions=len(context.portfolio.positions)) result = self.run_algorithm( initialize=initialize, handle_data=handle_data, sids=self.ASSET_FINDER_EQUITY_SIDS, ) expected_position_count = [ 0, # Before entering the first position 2, # After entering, exiting on this date 0, # After exiting 0, ] for i, expected in enumerate(expected_position_count): self.assertEqual(result.iloc[i,:]['num_positions'], expected) def test_noop_orders(self): asset = self.asset_finder.retrieve_asset(1) # Algorithm that tries to buy with extremely low stops/limits and tries # to sell with extremely high versions of same. Should not end up with # any positions for reasonable data. def handle_data(algo, data): ######## # Buys # ######## # Buy with low limit, shouldn't trigger. algo.order(asset, 100, limit_price=1) # But with high stop, shouldn't trigger algo.order(asset, 100, stop_price=10000000) # Buy with high limit (should trigger) but also high stop (should # prevent trigger). algo.order(asset, 100, limit_price=10000000, stop_price=10000000) # Buy with low stop (should trigger), but also low limit (should # prevent trigger). algo.order(asset, 100, limit_price=1, stop_price=1) ######### # Sells # ######### # Sell with high limit, shouldn't trigger. algo.order(asset, -100, limit_price=1000000) # Sell with low stop, shouldn't trigger. algo.order(asset, -100, stop_price=1) # Sell with low limit (should trigger), but also high stop (should # prevent trigger). algo.order(asset, -100, limit_price=1000000, stop_price=1000000) # Sell with low limit (should trigger), but also low stop (should # prevent trigger). algo.order(asset, -100, limit_price=1, stop_price=1) ################### # Rounding Checks # ################### algo.order(asset, 100, limit_price=.00000001) algo.order(asset, -100, stop_price=.00000001) daily_stats = self.run_algorithm(handle_data=handle_data) # Verify that positions are empty for all dates. empty_positions = daily_stats.positions.map(lambda x: len(x) == 0) self.assertTrue(empty_positions.all()) def test_position_weights(self): sids = (1, 133, 1000) equity_1, equity_133, future_1000 = \ self.asset_finder.retrieve_all(sids) def initialize(algo, sids_and_amounts, *args, **kwargs): algo.ordered = False algo.sids_and_amounts = sids_and_amounts algo.set_commission( us_equities=PerTrade(0), us_futures=PerTrade(0), ) algo.set_slippage( us_equities=FixedSlippage(0), us_futures=FixedSlippage(0), ) def handle_data(algo, data): if not algo.ordered: for s, amount in algo.sids_and_amounts: algo.order(algo.sid(s), amount) algo.ordered = True algo.record( position_weights=algo.portfolio.current_portfolio_weights, ) daily_stats = self.run_algorithm( sids_and_amounts=zip(sids, [2, -1, 1]), initialize=initialize, handle_data=handle_data, ) expected_position_weights = [ # No positions held on the first day. pd.Series({}), # Each equity's position value is its price times the number of # shares held. In this example, we hold a long position in 2 shares # of equity_1 so its weight is (95.0 * 2) = 190.0 divided by the # total portfolio value. The total portfolio value is the sum of # cash ($905.00) plus the value of all equity positions. # # For a futures contract, its weight is the unit price times number # of shares held times the multiplier. For future_1000, this is # (2.0 * 1 * 100) = 200.0 divided by total portfolio value. pd.Series({ equity_1: 190.0 / (190.0 - 95.0 + 905.0), equity_133: -95.0 / (190.0 - 95.0 + 905.0), future_1000: 200.0 / (190.0 - 95.0 + 905.0), }), pd.Series({ equity_1: 200.0 / (200.0 - 100.0 + 905.0), equity_133: -100.0 / (200.0 - 100.0 + 905.0), future_1000: 200.0 / (200.0 - 100.0 + 905.0), }), pd.Series({ equity_1: 210.0 / (210.0 - 105.0 + 905.0), equity_133: -105.0 / (210.0 - 105.0 + 905.0), future_1000: 200.0 / (210.0 - 105.0 + 905.0), }), ] for i, expected in enumerate(expected_position_weights): assert_equal(daily_stats.iloc[i]['position_weights'], expected) class TestBeforeTradingStart(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-06', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') SIM_PARAMS_CAPITAL_BASE = 10000 SIM_PARAMS_DATA_FREQUENCY = 'minute' EQUITY_DAILY_BAR_LOOKBACK_DAYS = EQUITY_MINUTE_BAR_LOOKBACK_DAYS = 1 DATA_PORTAL_FIRST_TRADING_DAY = pd.Timestamp("2016-01-05", tz='UTC') EQUITY_MINUTE_BAR_START_DATE = pd.Timestamp("2016-01-05", tz='UTC') FUTURE_MINUTE_BAR_START_DATE = pd.Timestamp("2016-01-05", tz='UTC') data_start = ASSET_FINDER_EQUITY_START_DATE = pd.Timestamp( '2016-01-05', tz='utc', ) SPLIT_ASSET_SID = 3 ASSET_FINDER_EQUITY_SIDS = 1, 2, SPLIT_ASSET_SID @classmethod def make_equity_minute_bar_data(cls): asset_minutes = \ cls.trading_calendar.minutes_in_range( cls.data_start, cls.END_DATE, ) minutes_count = len(asset_minutes) minutes_arr = np.arange(minutes_count) + 1 split_data = pd.DataFrame( { 'open': minutes_arr + 1, 'high': minutes_arr + 2, 'low': minutes_arr - 1, 'close': minutes_arr, 'volume': 100 * minutes_arr, }, index=asset_minutes, ) split_data.iloc[480:] = split_data.iloc[480:] / 2.0 for sid in (1, 8554): yield sid, create_minute_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, ) yield 2, create_minute_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, 50, ) yield cls.SPLIT_ASSET_SID, split_data @classmethod def make_splits_data(cls): return pd.DataFrame.from_records([ { 'effective_date': str_to_seconds('2016-01-07'), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, } ]) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): for sid in sids: yield sid, create_daily_df_for_asset( cls.trading_calendar, cls.data_start, cls.END_DATE, ) def test_data_in_bts_minute(self): algo_code = dedent(""" from zipline.api import record, sid def initialize(context): context.history_values = [] def before_trading_start(context, data): record(the_price1=data.current(sid(1), "price")) record(the_high1=data.current(sid(1), "high")) record(the_price2=data.current(sid(2), "price")) record(the_high2=data.current(sid(2), "high")) context.history_values.append(data.history( [sid(1), sid(2)], ["price", "high"], 60, "1m" )) def handle_data(context, data): pass """) algo = self.make_algo(script=algo_code) results = algo.run() # fetching data at midnight gets us the previous market minute's data self.assertEqual(240, results.iloc[0].the_price1) self.assertEqual(242, results.iloc[0].the_high1) # make sure that price is ffilled, but not other fields self.assertEqual(350, results.iloc[0].the_price2) self.assertTrue(np.isnan(results.iloc[0].the_high2)) # 10-minute history # asset1 day1 price should be 331-390 np.testing.assert_array_equal( range(331, 391), algo.history_values[0]["price"][1] ) # asset1 day1 high should be 333-392 np.testing.assert_array_equal( range(333, 393), algo.history_values[0]["high"][1] ) # asset2 day1 price should be 19 300s, then 40 350s np.testing.assert_array_equal( [300] * 19, algo.history_values[0]["price"][2][0:19] ) np.testing.assert_array_equal( [350] * 40, algo.history_values[0]["price"][2][20:] ) # asset2 day1 high should be all NaNs except for the 19th item # = 2016-01-05 20:20:00+00:00 np.testing.assert_array_equal( np.full(19, np.nan), algo.history_values[0]["high"][2][0:19] ) self.assertEqual(352, algo.history_values[0]["high"][2][19]) np.testing.assert_array_equal( np.full(40, np.nan), algo.history_values[0]["high"][2][20:] ) def test_data_in_bts_daily(self): algo_code = dedent(""" from zipline.api import record, sid def initialize(context): context.history_values = [] def before_trading_start(context, data): record(the_price1=data.current(sid(1), "price")) record(the_high1=data.current(sid(1), "high")) record(the_price2=data.current(sid(2), "price")) record(the_high2=data.current(sid(2), "high")) context.history_values.append(data.history( [sid(1), sid(2)], ["price", "high"], 1, "1d", )) def handle_data(context, data): pass """) algo = self.make_algo(script=algo_code) results = algo.run() self.assertEqual(392, results.the_high1[0]) self.assertEqual(390, results.the_price1[0]) # nan because asset2 only trades every 50 minutes self.assertTrue(np.isnan(results.the_high2[0])) self.assertTrue(350, results.the_price2[0]) self.assertEqual(392, algo.history_values[0]["high"][1][0]) self.assertEqual(390, algo.history_values[0]["price"][1][0]) self.assertEqual(352, algo.history_values[0]["high"][2][0]) self.assertEqual(350, algo.history_values[0]["price"][2][0]) def test_portfolio_bts(self): algo_code = dedent(""" from zipline.api import order, sid, record def initialize(context): context.ordered = False context.hd_portfolio = context.portfolio def before_trading_start(context, data): bts_portfolio = context.portfolio # Assert that the portfolio in BTS is the same as the last # portfolio in handle_data assert (context.hd_portfolio == bts_portfolio) record(pos_value=bts_portfolio.positions_value) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_portfolio = context.portfolio """) algo = self.make_algo(script=algo_code) results = algo.run() # Asset starts with price 1 on 1/05 and increases by 1 every minute. # Simulation starts on 1/06, where the price in bts is 390, and # positions_value is 0. On 1/07, price is 780, and after buying one # share on the first bar of 1/06, positions_value is 780 self.assertEqual(results.pos_value.iloc[0], 0) self.assertEqual(results.pos_value.iloc[1], 780) def test_account_bts(self): algo_code = dedent(""" from zipline.api import order, sid, record, set_slippage, slippage def initialize(context): context.ordered = False context.hd_account = context.account set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): bts_account = context.account # Assert that the account in BTS is the same as the last account # in handle_data assert (context.hd_account == bts_account) record(port_value=context.account.equity_with_loan) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_account = context.account """) algo = self.make_algo(script=algo_code) results = algo.run() # Starting portfolio value is 10000. Order for the asset fills on the # second bar of 1/06, where the price is 391, and costs the default # commission of 0. On 1/07, the price is 780, and the increase in # portfolio value is 780-392-0 self.assertEqual(results.port_value.iloc[0], 10000) self.assertAlmostEqual(results.port_value.iloc[1], 10000 + 780 - 392 - 0, places=2) def test_portfolio_bts_with_overnight_split(self): algo_code = dedent(""" from zipline.api import order, sid, record def initialize(context): context.ordered = False context.hd_portfolio = context.portfolio def before_trading_start(context, data): bts_portfolio = context.portfolio # Assert that the portfolio in BTS is the same as the last # portfolio in handle_data, except for the positions for k in bts_portfolio.__dict__: if k != 'positions': assert (context.hd_portfolio.__dict__[k] == bts_portfolio.__dict__[k]) record(pos_value=bts_portfolio.positions_value) record(pos_amount=bts_portfolio.positions[sid(3)].amount) record( last_sale_price=bts_portfolio.positions[sid(3)].last_sale_price ) def handle_data(context, data): if not context.ordered: order(sid(3), 1) context.ordered = True context.hd_portfolio = context.portfolio """) results = self.run_algorithm(script=algo_code) # On 1/07, positions value should by 780, same as without split self.assertEqual(results.pos_value.iloc[0], 0) self.assertEqual(results.pos_value.iloc[1], 780) # On 1/07, after applying the split, 1 share becomes 2 self.assertEqual(results.pos_amount.iloc[0], 0) self.assertEqual(results.pos_amount.iloc[1], 2) # On 1/07, after applying the split, last sale price is halved self.assertEqual(results.last_sale_price.iloc[0], 0) self.assertEqual(results.last_sale_price.iloc[1], 390) def test_account_bts_with_overnight_split(self): algo_code = dedent(""" from zipline.api import order, sid, record, set_slippage, slippage def initialize(context): context.ordered = False context.hd_account = context.account set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): bts_account = context.account # Assert that the account in BTS is the same as the last account # in handle_data assert (context.hd_account == bts_account) record(port_value=bts_account.equity_with_loan) def handle_data(context, data): if not context.ordered: order(sid(1), 1) context.ordered = True context.hd_account = context.account """) results = self.run_algorithm(script=algo_code) # On 1/07, portfolio value is the same as without split self.assertEqual(results.port_value.iloc[0], 10000) self.assertAlmostEqual(results.port_value.iloc[1], 10000 + 780 - 392 - 0, places=2) class TestAlgoScript(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-12-31', tz='utc') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False EQUITY_DAILY_BAR_LOOKBACK_DAYS = 5 # max history window length STRING_TYPE_NAMES = [s.__name__ for s in string_types] STRING_TYPE_NAMES_STRING = ', '.join(STRING_TYPE_NAMES) ASSET_TYPE_NAME = Asset.__name__ CONTINUOUS_FUTURE_NAME = ContinuousFuture.__name__ ASSET_OR_STRING_TYPE_NAMES = ', '.join([ASSET_TYPE_NAME] + STRING_TYPE_NAMES) ASSET_OR_STRING_OR_CF_TYPE_NAMES = ', '.join([ASSET_TYPE_NAME, CONTINUOUS_FUTURE_NAME] + STRING_TYPE_NAMES) ARG_TYPE_TEST_CASES = ( ('history__assets', (bad_type_history_assets, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history__fields', (bad_type_history_fields, STRING_TYPE_NAMES_STRING, True)), ('history__bar_count', (bad_type_history_bar_count, 'int', False)), ('history__frequency', (bad_type_history_frequency, STRING_TYPE_NAMES_STRING, False)), ('current__assets', (bad_type_current_assets, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('current__fields', (bad_type_current_fields, STRING_TYPE_NAMES_STRING, True)), ('is_stale__assets', (bad_type_is_stale_assets, 'Asset', True)), ('can_trade__assets', (bad_type_can_trade_assets, 'Asset', True)), ('history_kwarg__assets', (bad_type_history_assets_kwarg, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history_kwarg_bad_list__assets', (bad_type_history_assets_kwarg_list, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('history_kwarg__fields', (bad_type_history_fields_kwarg, STRING_TYPE_NAMES_STRING, True)), ('history_kwarg__bar_count', (bad_type_history_bar_count_kwarg, 'int', False)), ('history_kwarg__frequency', (bad_type_history_frequency_kwarg, STRING_TYPE_NAMES_STRING, False)), ('current_kwarg__assets', (bad_type_current_assets_kwarg, ASSET_OR_STRING_OR_CF_TYPE_NAMES, True)), ('current_kwarg__fields', (bad_type_current_fields_kwarg, STRING_TYPE_NAMES_STRING, True)), ) sids = 0, 1, 3, 133 # FIXME: Pass a benchmark explicitly here. BENCHMARK_SID = None @classmethod def make_equity_info(cls): register_calendar("TEST", get_calendar("NYSE"), force=True) data = make_simple_equity_info( cls.sids, cls.START_DATE, cls.END_DATE, ) data.loc[3, 'symbol'] = 'TEST' return data @classmethod def make_equity_daily_bar_data(cls, country_code, sids): cal = cls.trading_calendars[Equity] sessions = cal.sessions_in_range(cls.START_DATE, cls.END_DATE) frame = pd.DataFrame({ 'close': 10., 'high': 10.5, 'low': 9.5, 'open': 10., 'volume': 100, }, index=sessions) for sid in sids: yield sid, frame def test_noop(self): self.run_algorithm( initialize=initialize_noop, handle_data=handle_data_noop, ) def test_noop_string(self): self.run_algorithm(script=noop_algo) def test_no_handle_data(self): self.run_algorithm(script=no_handle_data) def test_api_calls(self): self.run_algorithm( initialize=initialize_api, handle_data=handle_data_api, ) def test_api_calls_string(self): self.run_algorithm(script=api_algo) def test_api_get_environment(self): platform = 'zipline' algo = self.make_algo( script=api_get_environment_algo, platform=platform, ) algo.run() self.assertEqual(algo.environment, platform) def test_api_symbol(self): self.run_algorithm(script=api_symbol_algo) def test_fixed_slippage(self): # verify order -> transaction -> portfolio position. # -------------- test_algo = self.make_algo( script=""" from zipline.api import (slippage, commission, set_slippage, set_commission, order, record, sid) def initialize(context): model = slippage.FixedSlippage(spread=0.10) set_slippage(model) set_commission(commission.PerTrade(100.00)) context.count = 1 context.incr = 0 def handle_data(context, data): if context.incr < context.count: order(sid(0), -1000) record(price=data.current(sid(0), "price")) context.incr += 1""", ) results = test_algo.run() # flatten the list of txns all_txns = [val for sublist in results["transactions"].tolist() for val in sublist] self.assertEqual(len(all_txns), 1) txn = all_txns[0] expected_spread = 0.05 expected_price = test_algo.recorded_vars["price"] - expected_spread self.assertEqual(expected_price, txn['price']) # make sure that the $100 commission was applied to our cash # the txn was for -1000 shares at 9.95, means -9.95k. our capital_used # for that day was therefore 9.95k, but after the $100 commission, # it should be 9.85k. self.assertEqual(9850, results.capital_used[1]) self.assertEqual(100, results["orders"].iloc[1][0]["commission"]) @parameterized.expand( [ ('no_minimum_commission', 0,), ('default_minimum_commission', 0,), ('alternate_minimum_commission', 2,), ] ) def test_volshare_slippage(self, name, minimum_commission): tempdir = TempDirectory() try: if name == "default_minimum_commission": commission_line = "set_commission(commission.PerShare(0.02))" else: commission_line = \ "set_commission(commission.PerShare(0.02, " \ "min_trade_cost={0}))".format(minimum_commission) # verify order -> transaction -> portfolio position. # -------------- # XXX: This is the last remaining consumer of # create_daily_trade_source. trades = factory.create_daily_trade_source( [0], self.sim_params, self.asset_finder, self.trading_calendar ) data_portal = create_data_portal_from_trade_history( self.asset_finder, self.trading_calendar, tempdir, self.sim_params, {0: trades} ) test_algo = self.make_algo( data_portal=data_portal, script=""" from zipline.api import * def initialize(context): model = slippage.VolumeShareSlippage( volume_limit=.3, price_impact=0.05 ) set_slippage(model) {0} context.count = 2 context.incr = 0 def handle_data(context, data): if context.incr < context.count: # order small lots to be sure the # order will fill in a single transaction order(sid(0), 5000) record(price=data.current(sid(0), "price")) record(volume=data.current(sid(0), "volume")) record(incr=context.incr) context.incr += 1 """.format(commission_line), ) results = test_algo.run() all_txns = [ val for sublist in results["transactions"].tolist() for val in sublist] self.assertEqual(len(all_txns), 67) # all_orders are all the incremental versions of the # orders as each new fill comes in. all_orders = list(toolz.concat(results['orders'])) if minimum_commission == 0: # for each incremental version of each order, the commission # should be its filled amount * 0.02 for order_ in all_orders: self.assertAlmostEqual( order_["filled"] * 0.02, order_["commission"] ) else: # the commission should be at least the min_trade_cost for order_ in all_orders: if order_["filled"] > 0: self.assertAlmostEqual( max(order_["filled"] * 0.02, minimum_commission), order_["commission"] ) else: self.assertEqual(0, order_["commission"]) finally: tempdir.cleanup() def test_incorrectly_set_futures_slippage_model(self): code = dedent( """ from zipline.api import set_slippage, slippage class MySlippage(slippage.FutureSlippageModel): def process_order(self, data, order): return data.current(order.asset, 'price'), order.amount def initialize(context): set_slippage(MySlippage()) """ ) test_algo = self.make_algo(script=code) with self.assertRaises(IncompatibleSlippageModel): # Passing a futures slippage model as the first argument, which is # for setting equity models, should fail. test_algo.run() def test_algo_record_vars(self): test_algo = self.make_algo(script=record_variables) results = test_algo.run() for i in range(1, 252): self.assertEqual(results.iloc[i-1]["incr"], i) def test_algo_record_nan(self): test_algo = self.make_algo(script=record_float_magic % 'nan') results = test_algo.run() for i in range(1, 252): self.assertTrue(np.isnan(results.iloc[i-1]["data"])) def test_batch_market_order_matches_multiple_manual_orders(self): share_counts = pd.Series([50, 100]) multi_blotter = RecordBatchBlotter() multi_test_algo = self.make_algo( script=dedent("""\ from collections import OrderedDict from six import iteritems from zipline.api import sid, order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: it = zip(context.assets, {share_counts}) for asset, shares in it: order(asset, shares) context.placed = True """).format(share_counts=list(share_counts)), blotter=multi_blotter, ) multi_stats = multi_test_algo.run() self.assertFalse(multi_blotter.order_batch_called) batch_blotter = RecordBatchBlotter() batch_test_algo = self.make_algo( script=dedent("""\ import pandas as pd from zipline.api import sid, batch_market_order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: orders = batch_market_order(pd.Series( index=context.assets, data={share_counts} )) assert len(orders) == 2, \ "len(orders) was %s but expected 2" % len(orders) for o in orders: assert o is not None, "An order is None" context.placed = True """).format(share_counts=list(share_counts)), blotter=batch_blotter, ) batch_stats = batch_test_algo.run() self.assertTrue(batch_blotter.order_batch_called) for stats in (multi_stats, batch_stats): stats.orders = stats.orders.apply( lambda orders: [toolz.dissoc(o, 'id') for o in orders] ) stats.transactions = stats.transactions.apply( lambda txns: [toolz.dissoc(txn, 'order_id') for txn in txns] ) assert_equal(multi_stats, batch_stats) def test_batch_market_order_filters_null_orders(self): share_counts = [50, 0] batch_blotter = RecordBatchBlotter() batch_test_algo = self.make_algo( script=dedent("""\ import pandas as pd from zipline.api import sid, batch_market_order def initialize(context): context.assets = [sid(0), sid(3)] context.placed = False def handle_data(context, data): if not context.placed: orders = batch_market_order(pd.Series( index=context.assets, data={share_counts} )) assert len(orders) == 1, \ "len(orders) was %s but expected 1" % len(orders) for o in orders: assert o is not None, "An order is None" context.placed = True """).format(share_counts=share_counts), blotter=batch_blotter, ) batch_test_algo.run() self.assertTrue(batch_blotter.order_batch_called) def test_order_dead_asset(self): # after asset 0 is dead params = SimulationParameters( start_session=pd.Timestamp("2007-01-03", tz='UTC'), end_session=pd.Timestamp("2007-01-05", tz='UTC'), trading_calendar=self.trading_calendar, ) # order method shouldn't blow up self.run_algorithm( script=""" from zipline.api import order, sid def initialize(context): pass def handle_data(context, data): order(sid(0), 10) """, ) # order_value and order_percent should blow up for order_str in ["order_value", "order_percent"]: test_algo = self.make_algo( script=""" from zipline.api import order_percent, order_value, sid def initialize(context): pass def handle_data(context, data): {0}(sid(0), 10) """.format(order_str), sim_params=params, ) with self.assertRaises(CannotOrderDelistedAsset): test_algo.run() def test_portfolio_in_init(self): """ Test that accessing portfolio in init doesn't break. """ self.run_algorithm(script=access_portfolio_in_init) def test_account_in_init(self): """ Test that accessing account in init doesn't break. """ self.run_algorithm(script=access_account_in_init) def test_without_kwargs(self): """ Test that api methods on the data object can be called with positional arguments. """ params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm(sim_params=params, script=call_without_kwargs) def test_good_kwargs(self): """ Test that api methods on the data object can be called with keyword arguments. """ params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm(script=call_with_kwargs, sim_params=params) @parameterized.expand([('history', call_with_bad_kwargs_history), ('current', call_with_bad_kwargs_current)]) def test_bad_kwargs(self, name, algo_text): """ Test that api methods on the data object called with bad kwargs return a meaningful TypeError that we create, rather than an unhelpful cython error """ algo = self.make_algo(script=algo_text) with self.assertRaises(TypeError) as cm: algo.run() self.assertEqual("%s() got an unexpected keyword argument 'blahblah'" % name, cm.exception.args[0]) @parameterized.expand(ARG_TYPE_TEST_CASES) def test_arg_types(self, name, inputs): keyword = name.split('__')[1] algo = self.make_algo(script=inputs[0]) with self.assertRaises(TypeError) as cm: algo.run() expected = "Expected %s argument to be of type %s%s" % ( keyword, 'or iterable of type ' if inputs[2] else '', inputs[1] ) self.assertEqual(expected, cm.exception.args[0]) def test_empty_asset_list_to_history(self): params = SimulationParameters( start_session=pd.Timestamp("2006-01-10", tz='UTC'), end_session=pd.Timestamp("2006-01-11", tz='UTC'), trading_calendar=self.trading_calendar, ) self.run_algorithm( script=dedent(""" def initialize(context): pass def handle_data(context, data): data.history([], "price", 5, '1d') """), sim_params=params, ) @parameterized.expand( [('bad_kwargs', call_with_bad_kwargs_get_open_orders), ('good_kwargs', call_with_good_kwargs_get_open_orders), ('no_kwargs', call_with_no_kwargs_get_open_orders)] ) def test_get_open_orders_kwargs(self, name, script): algo = self.make_algo(script=script) if name == 'bad_kwargs': with self.assertRaises(TypeError) as cm: algo.run() self.assertEqual('Keyword argument `sid` is no longer ' 'supported for get_open_orders. Use `asset` ' 'instead.', cm.exception.args[0]) else: algo.run() def test_empty_positions(self): """ Test that when we try context.portfolio.positions[stock] on a stock for which we have no positions, we return a Position with values 0 (but more importantly, we don't crash) and don't save this Position to the user-facing dictionary PositionTracker._positions_store """ results = self.run_algorithm(script=empty_positions) num_positions = results.num_positions amounts = results.amounts self.assertTrue(all(num_positions == 0)) self.assertTrue(all(amounts == 0)) def test_schedule_function_time_rule_positionally_misplaced(self): """ Test that when a user specifies a time rule for the date_rule argument, but no rule in the time_rule argument (e.g. schedule_function(func, <time_rule>)), we assume that means assign a time rule but no date rule """ sim_params = factory.create_simulation_parameters( start=pd.Timestamp('2006-01-12', tz='UTC'), end=pd.Timestamp('2006-01-13', tz='UTC'), data_frequency='minute' ) algocode = dedent(""" from zipline.api import time_rules, schedule_function def do_at_open(context, data): context.done_at_open.append(context.get_datetime()) def do_at_close(context, data): context.done_at_close.append(context.get_datetime()) def initialize(context): context.done_at_open = [] context.done_at_close = [] schedule_function(do_at_open, time_rules.market_open()) schedule_function(do_at_close, time_rules.market_close()) def handle_data(algo, data): pass """) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("ignore", PerformanceWarning) algo = self.make_algo(script=algocode, sim_params=sim_params) algo.run() self.assertEqual(len(w), 2) for i, warning in enumerate(w): self.assertIsInstance(warning.message, UserWarning) self.assertEqual( warning.message.args[0], 'Got a time rule for the second positional argument ' 'date_rule. You should use keyword argument ' 'time_rule= when calling schedule_function without ' 'specifying a date_rule' ) # The warnings come from line 13 and 14 in the algocode self.assertEqual(warning.lineno, 13 + i) self.assertEqual( algo.done_at_open, [pd.Timestamp('2006-01-12 14:31:00', tz='UTC'), pd.Timestamp('2006-01-13 14:31:00', tz='UTC')] ) self.assertEqual( algo.done_at_close, [pd.Timestamp('2006-01-12 20:59:00', tz='UTC'), pd.Timestamp('2006-01-13 20:59:00', tz='UTC')] ) class TestCapitalChanges(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='UTC') END_DATE = pd.Timestamp('2006-01-09', tz='UTC') # XXX: This suite only has daily data for sid 0 and only has minutely data # for sid 1. sids = ASSET_FINDER_EQUITY_SIDS = (0, 1) DAILY_SID = 0 MINUTELY_SID = 1 # FIXME: Pass a benchmark source explicitly here. BENCHMARK_SID = None @classmethod def make_equity_minute_bar_data(cls): minutes = cls.trading_calendar.minutes_in_range( cls.START_DATE, cls.END_DATE, ) closes = np.arange(100, 100 + len(minutes), 1) opens = closes highs = closes + 5 lows = closes - 5 frame = pd.DataFrame( index=minutes, data={ 'open': opens, 'high': highs, 'low': lows, 'close': closes, 'volume': 10000, }, ) yield cls.MINUTELY_SID, frame @classmethod def make_equity_daily_bar_data(cls, country_code, sids): days = cls.trading_calendar.sessions_in_range( cls.START_DATE, cls.END_DATE, ) closes = np.arange(10.0, 10.0 + len(days), 1.0) opens = closes highs = closes + 0.5 lows = closes - 0.5 frame = pd.DataFrame( index=days, data={ 'open': opens, 'high': highs, 'low': lows, 'close': closes, 'volume': 10000, }, ) yield cls.DAILY_SID, frame @parameterized.expand([ ('target', 151000.0), ('delta', 50000.0) ]) def test_capital_changes_daily_mode(self, change_type, value): capital_changes = { pd.Timestamp('2006-01-06', tz='UTC'): {'type': change_type, 'value': value} } algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(0), 1000) """ algo = self.make_algo( script=algocode, capital_changes=capital_changes, sim_params=SimulationParameters( start_session=self.START_DATE, end_session=self.END_DATE, trading_calendar=self.nyse_calendar, ) ) # We call get_generator rather than `run()` here because we care about # the raw capital change packets. gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), 1) self.assertEqual( capital_change_packets[0], {'date': pd.Timestamp('2006-01-06', tz='UTC'), 'type': 'cash', 'target': 151000.0 if change_type == 'target' else None, 'delta': 50000.0}) # 1/03: price = 10, place orders # 1/04: orders execute at price = 11, place orders # 1/05: orders execute at price = 12, place orders # 1/06: +50000 capital change, # orders execute at price = 13, place orders # 1/09: orders execute at price = 14, place orders expected_daily = {} expected_capital_changes = np.array([ 0.0, 0.0, 0.0, 50000.0, 0.0 ]) # Day 1, no transaction. Day 2, we transact, but the price of our stock # does not change. Day 3, we start getting returns expected_daily['returns'] = np.array([ 0.0, 0.0, # 1000 shares * gain of 1 (100000.0 + 1000.0) / 100000.0 - 1.0, # 2000 shares * gain of 1, capital change of +50000 (151000.0 + 2000.0) / 151000.0 - 1.0, # 3000 shares * gain of 1 (153000.0 + 3000.0) / 153000.0 - 1.0, ]) expected_daily['pnl'] = np.array([ 0.0, 0.0, 1000.00, # 1000 shares * gain of 1 2000.00, # 2000 shares * gain of 1 3000.00, # 3000 shares * gain of 1 ]) expected_daily['capital_used'] = np.array([ 0.0, -11000.0, # 1000 shares at price = 11 -12000.0, # 1000 shares at price = 12 -13000.0, # 1000 shares at price = 13 -14000.0, # 1000 shares at price = 14 ]) expected_daily['ending_cash'] = \ np.array([100000.0] * 5) + \ np.cumsum(expected_capital_changes) + \ np.cumsum(expected_daily['capital_used']) expected_daily['starting_cash'] = \ expected_daily['ending_cash'] - \ expected_daily['capital_used'] expected_daily['starting_value'] = np.array([ 0.0, 0.0, 11000.0, # 1000 shares at price = 11 24000.0, # 2000 shares at price = 12 39000.0, # 3000 shares at price = 13 ]) expected_daily['ending_value'] = \ expected_daily['starting_value'] + \ expected_daily['pnl'] - \ expected_daily['capital_used'] expected_daily['portfolio_value'] = \ expected_daily['ending_value'] + \ expected_daily['ending_cash'] stats = [ 'returns', 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value' ] expected_cumulative = { 'returns': np.cumprod(expected_daily['returns'] + 1) - 1, 'pnl': np.cumsum(expected_daily['pnl']), 'capital_used': np.cumsum(expected_daily['capital_used']), 'starting_cash': np.repeat(expected_daily['starting_cash'][0:1], 5), 'ending_cash': expected_daily['ending_cash'], 'starting_value': np.repeat(expected_daily['starting_value'][0:1], 5), 'ending_value': expected_daily['ending_value'], 'portfolio_value': expected_daily['portfolio_value'], } for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat], err_msg='daily ' + stat, ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat], err_msg='cumulative ' + stat, ) self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-06', tz='UTC'): 50000.0} ) @parameterized.expand([ ('interday_target', [('2006-01-05', 2388.0)]), ('interday_delta', [('2006-01-05', 1000.0)]), ('intraday_target', [('2006-01-05 17:00', 2184.0), ('2006-01-05 18:00', 2804.0)]), ('intraday_delta', [('2006-01-05 17:00', 500.0), ('2006-01-05 18:00', 500.0)]), ]) def test_capital_changes_minute_mode_daily_emission(self, change, values): change_loc, change_type = change.split('_') sim_params = SimulationParameters( start_session=pd.Timestamp('2006-01-04', tz='UTC'), end_session=pd.Timestamp('2006-01-05', tz='UTC'), data_frequency='minute', capital_base=1000.0, trading_calendar=self.nyse_calendar, ) capital_changes = { pd.Timestamp(datestr, tz='UTC'): { 'type': change_type, 'value': value } for datestr, value in values } algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(1), 1) """ algo = self.make_algo( script=algocode, sim_params=sim_params, capital_changes=capital_changes ) gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), len(capital_changes)) expected = [ {'date': pd.Timestamp(val[0], tz='UTC'), 'type': 'cash', 'target': val[1] if change_type == 'target' else None, 'delta': 1000.0 if len(values) == 1 else 500.0} for val in values] self.assertEqual(capital_change_packets, expected) # 1/03: place orders at price = 100, execute at 101 # 1/04: place orders at price = 490, execute at 491, # +500 capital change at 17:00 and 18:00 (intraday) # or +1000 at 00:00 (interday), # 1/05: place orders at price = 880, execute at 881 expected_daily = {} expected_capital_changes = np.array([0.0, 1000.0, 0.0]) if change_loc == 'intraday': # Fills at 491, +500 capital change comes at 638 (17:00) and # 698 (18:00), ends day at 879 day2_return = ( (1388.0 + 149.0 + 147.0) / 1388.0 * (2184.0 + 60.0 + 60.0) / 2184.0 * (2804.0 + 181.0 + 181.0) / 2804.0 - 1.0 ) else: # Fills at 491, ends day at 879, capital change +1000 day2_return = (2388.0 + 390.0 + 388.0) / 2388.0 - 1 expected_daily['returns'] = np.array([ # Fills at 101, ends day at 489 (1000.0 + 489 - 101) / 1000.0 - 1.0, day2_return, # Fills at 881, ends day at 1269 (3166.0 + 390.0 + 390.0 + 388.0) / 3166.0 - 1.0, ]) expected_daily['pnl'] = np.array([ 388.0, 390.0 + 388.0, 390.0 + 390.0 + 388.0, ]) expected_daily['capital_used'] = np.array([ -101.0, -491.0, -881.0 ]) expected_daily['ending_cash'] = \ np.array([1000.0] * 3) + \ np.cumsum(expected_capital_changes) + \ np.cumsum(expected_daily['capital_used']) expected_daily['starting_cash'] = \ expected_daily['ending_cash'] - \ expected_daily['capital_used'] if change_loc == 'intraday': # Capital changes come after day start expected_daily['starting_cash'] -= expected_capital_changes expected_daily['starting_value'] = np.array([ 0.0, 489.0, 879.0 * 2 ]) expected_daily['ending_value'] = \ expected_daily['starting_value'] + \ expected_daily['pnl'] - \ expected_daily['capital_used'] expected_daily['portfolio_value'] = \ expected_daily['ending_value'] + \ expected_daily['ending_cash'] stats = [ 'returns', 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value' ] expected_cumulative = { 'returns': np.cumprod(expected_daily['returns'] + 1) - 1, 'pnl': np.cumsum(expected_daily['pnl']), 'capital_used': np.cumsum(expected_daily['capital_used']), 'starting_cash': np.repeat(expected_daily['starting_cash'][0:1], 3), 'ending_cash': expected_daily['ending_cash'], 'starting_value': np.repeat(expected_daily['starting_value'][0:1], 3), 'ending_value': expected_daily['ending_value'], 'portfolio_value': expected_daily['portfolio_value'], } for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat] ) if change_loc == 'interday': self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05', tz='UTC'): 1000.0} ) else: self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05 17:00', tz='UTC'): 500.0, pd.Timestamp('2006-01-05 18:00', tz='UTC'): 500.0} ) @parameterized.expand([ ('interday_target', [('2006-01-05', 2388.0)]), ('interday_delta', [('2006-01-05', 1000.0)]), ('intraday_target', [('2006-01-05 17:00', 2184.0), ('2006-01-05 18:00', 2804.0)]), ('intraday_delta', [('2006-01-05 17:00', 500.0), ('2006-01-05 18:00', 500.0)]), ]) def test_capital_changes_minute_mode_minute_emission(self, change, values): change_loc, change_type = change.split('_') sim_params = SimulationParameters( start_session=pd.Timestamp('2006-01-04', tz='UTC'), end_session=pd.Timestamp('2006-01-05', tz='UTC'), data_frequency='minute', emission_rate='minute', capital_base=1000.0, trading_calendar=self.nyse_calendar, ) capital_changes = {pd.Timestamp(val[0], tz='UTC'): { 'type': change_type, 'value': val[1]} for val in values} algocode = """ from zipline.api import set_slippage, set_commission, slippage, commission, \ schedule_function, time_rules, order, sid def initialize(context): set_slippage(slippage.FixedSlippage(spread=0)) set_commission(commission.PerShare(0, 0)) schedule_function(order_stuff, time_rule=time_rules.market_open()) def order_stuff(context, data): order(sid(1), 1) """ algo = self.make_algo( script=algocode, sim_params=sim_params, capital_changes=capital_changes ) gen = algo.get_generator() results = list(gen) cumulative_perf = \ [r['cumulative_perf'] for r in results if 'cumulative_perf' in r] minute_perf = [r['minute_perf'] for r in results if 'minute_perf' in r] daily_perf = [r['daily_perf'] for r in results if 'daily_perf' in r] capital_change_packets = \ [r['capital_change'] for r in results if 'capital_change' in r] self.assertEqual(len(capital_change_packets), len(capital_changes)) expected = [ {'date': pd.Timestamp(val[0], tz='UTC'), 'type': 'cash', 'target': val[1] if change_type == 'target' else None, 'delta': 1000.0 if len(values) == 1 else 500.0} for val in values] self.assertEqual(capital_change_packets, expected) # 1/03: place orders at price = 100, execute at 101 # 1/04: place orders at price = 490, execute at 491, # +500 capital change at 17:00 and 18:00 (intraday) # or +1000 at 00:00 (interday), # 1/05: place orders at price = 880, execute at 881 # Minute perfs are cumulative for the day expected_minute = {} capital_changes_after_start = np.array([0.0] * 1170) if change_loc == 'intraday': capital_changes_after_start[539:599] = 500.0 capital_changes_after_start[599:780] = 1000.0 expected_minute['pnl'] = np.array([0.0] * 1170) expected_minute['pnl'][:2] = 0.0 expected_minute['pnl'][2:392] = 1.0 expected_minute['pnl'][392:782] = 2.0 expected_minute['pnl'][782:] = 3.0 for start, end in ((0, 390), (390, 780), (780, 1170)): expected_minute['pnl'][start:end] = \ np.cumsum(expected_minute['pnl'][start:end]) expected_minute['capital_used'] = np.concatenate(( [0.0] * 1, [-101.0] * 389, [0.0] * 1, [-491.0] * 389, [0.0] * 1, [-881.0] * 389, )) # +1000 capital changes comes before the day start if interday day2adj = 0.0 if change_loc == 'intraday' else 1000.0 expected_minute['starting_cash'] = np.concatenate(( [1000.0] * 390, # 101 spent on 1/03 [1000.0 - 101.0 + day2adj] * 390, # 101 spent on 1/03, 491 on 1/04, +1000 capital change on 1/04 [1000.0 - 101.0 - 491.0 + 1000] * 390 )) expected_minute['ending_cash'] = \ expected_minute['starting_cash'] + \ expected_minute['capital_used'] + \ capital_changes_after_start expected_minute['starting_value'] = np.concatenate(( [0.0] * 390, [489.0] * 390, [879.0 * 2] * 390 )) expected_minute['ending_value'] = \ expected_minute['starting_value'] + \ expected_minute['pnl'] - \ expected_minute['capital_used'] expected_minute['portfolio_value'] = \ expected_minute['ending_value'] + \ expected_minute['ending_cash'] expected_minute['returns'] = \ expected_minute['pnl'] / \ (expected_minute['starting_value'] + expected_minute['starting_cash']) # If the change is interday, we can just calculate the returns from # the pnl, starting_value and starting_cash. If the change is intraday, # the returns after the change have to be calculated from two # subperiods if change_loc == 'intraday': # The last packet (at 1/04 16:59) before the first capital change prev_subperiod_return = expected_minute['returns'][538] # From 1/04 17:00 to 17:59 cur_subperiod_pnl = \ expected_minute['pnl'][539:599] - expected_minute['pnl'][538] cur_subperiod_starting_value = \ np.array([expected_minute['ending_value'][538]] * 60) cur_subperiod_starting_cash = \ np.array([expected_minute['ending_cash'][538] + 500] * 60) cur_subperiod_returns = cur_subperiod_pnl / \ (cur_subperiod_starting_value + cur_subperiod_starting_cash) expected_minute['returns'][539:599] = \ (cur_subperiod_returns + 1.0) * \ (prev_subperiod_return + 1.0) - \ 1.0 # The last packet (at 1/04 17:59) before the second capital change prev_subperiod_return = expected_minute['returns'][598] # From 1/04 18:00 to 21:00 cur_subperiod_pnl = \ expected_minute['pnl'][599:780] - expected_minute['pnl'][598] cur_subperiod_starting_value = \ np.array([expected_minute['ending_value'][598]] * 181) cur_subperiod_starting_cash = \ np.array([expected_minute['ending_cash'][598] + 500] * 181) cur_subperiod_returns = cur_subperiod_pnl / \ (cur_subperiod_starting_value + cur_subperiod_starting_cash) expected_minute['returns'][599:780] = \ (cur_subperiod_returns + 1.0) * \ (prev_subperiod_return + 1.0) - \ 1.0 # The last minute packet of each day expected_daily = { k: np.array([v[389], v[779], v[1169]]) for k, v in iteritems(expected_minute) } stats = [ 'pnl', 'capital_used', 'starting_cash', 'ending_cash', 'starting_value', 'ending_value', 'portfolio_value', 'returns' ] expected_cumulative = deepcopy(expected_minute) # "Add" daily return from 1/03 to minute returns on 1/04 and 1/05 # "Add" daily return from 1/04 to minute returns on 1/05 expected_cumulative['returns'][390:] = \ (expected_cumulative['returns'][390:] + 1) * \ (expected_daily['returns'][0] + 1) - 1 expected_cumulative['returns'][780:] = \ (expected_cumulative['returns'][780:] + 1) * \ (expected_daily['returns'][1] + 1) - 1 # Add daily pnl/capital_used from 1/03 to 1/04 and 1/05 # Add daily pnl/capital_used from 1/04 to 1/05 expected_cumulative['pnl'][390:] += expected_daily['pnl'][0] expected_cumulative['pnl'][780:] += expected_daily['pnl'][1] expected_cumulative['capital_used'][390:] += \ expected_daily['capital_used'][0] expected_cumulative['capital_used'][780:] += \ expected_daily['capital_used'][1] # starting_cash, starting_value are same as those of the first daily # packet expected_cumulative['starting_cash'] = \ np.repeat(expected_daily['starting_cash'][0:1], 1170) expected_cumulative['starting_value'] = \ np.repeat(expected_daily['starting_value'][0:1], 1170) # extra cumulative packet per day from the daily packet for stat in stats: for i in (390, 781, 1172): expected_cumulative[stat] = np.insert( expected_cumulative[stat], i, expected_cumulative[stat][i-1] ) for stat in stats: np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in minute_perf]), expected_minute[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in daily_perf]), expected_daily[stat] ) np.testing.assert_array_almost_equal( np.array([perf[stat] for perf in cumulative_perf]), expected_cumulative[stat] ) if change_loc == 'interday': self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05', tz='UTC'): 1000.0} ) else: self.assertEqual( algo.capital_change_deltas, {pd.Timestamp('2006-01-05 17:00', tz='UTC'): 500.0, pd.Timestamp('2006-01-05 18:00', tz='UTC'): 500.0} ) class TestGetDatetime(zf.WithMakeAlgo, zf.ZiplineTestCase): SIM_PARAMS_DATA_FREQUENCY = 'minute' START_DATE = to_utc('2014-01-02 9:31') END_DATE = to_utc('2014-01-03 9:31') ASSET_FINDER_EQUITY_SIDS = 0, 1 # FIXME: Pass a benchmark source explicitly here. BENCHMARK_SID = None @parameterized.expand( [ ('default', None,), ('utc', 'UTC',), ('us_east', 'US/Eastern',), ] ) def test_get_datetime(self, name, tz): algo = dedent( """ import pandas as pd from zipline.api import get_datetime def initialize(context): context.tz = {tz} or 'UTC' context.first_bar = True def handle_data(context, data): dt = get_datetime({tz}) if dt.tz.zone != context.tz: raise ValueError("Mismatched Zone") if context.first_bar: if dt.tz_convert("US/Eastern").hour != 9: raise ValueError("Mismatched Hour") elif dt.tz_convert("US/Eastern").minute != 31: raise ValueError("Mismatched Minute") context.first_bar = False """.format(tz=repr(tz)) ) algo = self.make_algo(script=algo) algo.run() self.assertFalse(algo.first_bar) class TestTradingControls(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-01-06', tz='utc') sid = 133 sids = ASSET_FINDER_EQUITY_SIDS = 133, 134 SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = True @classmethod def init_class_fixtures(cls): super(TestTradingControls, cls).init_class_fixtures() cls.asset = cls.asset_finder.retrieve_asset(cls.sid) cls.another_asset = cls.asset_finder.retrieve_asset(134) def _check_algo(self, algo, expected_order_count, expected_exc): with self.assertRaises(expected_exc) if expected_exc else nop_context: algo.run() self.assertEqual(algo.order_count, expected_order_count) def check_algo_succeeds(self, algo, order_count=4): # Default for order_count assumes one order per handle_data call. self._check_algo(algo, order_count, None) def check_algo_fails(self, algo, order_count): self._check_algo(algo, order_count, TradingControlViolation) def test_set_max_position_size(self): def initialize(self, asset, max_shares, max_notional): self.set_slippage(FixedSlippage()) self.order_count = 0 self.set_max_position_size(asset=asset, max_shares=max_shares, max_notional=max_notional) # Buy one share four times. Should be fine. def handle_data(algo, data): algo.order(algo.sid(self.sid), 1) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=500.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) # Buy three shares four times. Should bail on the fourth before it's # placed. def handle_data(algo, data): algo.order(algo.sid(self.sid), 3) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=500.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 3) # Buy three shares four times. Should bail due to max_notional on the # third attempt. def handle_data(algo, data): algo.order(algo.sid(self.sid), 3) algo.order_count += 1 algo = self.make_algo( asset=self.asset, max_shares=10, max_notional=67.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 2) # Set the trading control to a different sid, then BUY ALL THE THINGS!. # Should continue normally. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( asset=self.another_asset, max_shares=10, max_notional=67.0, initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) # Set the trading control sid to None, then BUY ALL THE THINGS!. Should # fail because setting sid to None makes the control apply to all sids. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( max_shares=10, max_notional=61.0, asset=None, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) def test_set_asset_restrictions(self): def initialize(algo, sid, restrictions, on_error): algo.order_count = 0 algo.set_asset_restrictions(restrictions, on_error) def handle_data(algo, data): algo.could_trade = data.can_trade(algo.sid(self.sid)) algo.order(algo.sid(self.sid), 100) algo.order_count += 1 # Set HistoricalRestrictions for one sid for the entire simulation, # and fail. rlm = HistoricalRestrictions([ Restriction( self.sid, self.sim_params.start_session, RESTRICTION_STATES.FROZEN) ]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) # Set StaticRestrictions for one sid and fail. rlm = StaticRestrictions([self.sid]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) # just log an error on the violation if we choose not to fail. algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='log', initialize=initialize, handle_data=handle_data, ) with make_test_handler(self) as log_catcher: self.check_algo_succeeds(algo) logs = [r.message for r in log_catcher.records] self.assertIn("Order for 100 shares of Equity(133 [A]) at " "2006-01-04 21:00:00+00:00 violates trading constraint " "RestrictedListOrder({})", logs) self.assertFalse(algo.could_trade) # set the restricted list to exclude the sid, and succeed rlm = HistoricalRestrictions([ Restriction( sid, self.sim_params.start_session, RESTRICTION_STATES.FROZEN) for sid in [134, 135, 136] ]) algo = self.make_algo( sid=self.sid, restrictions=rlm, on_error='fail', initialize=initialize, handle_data=handle_data, ) self.check_algo_succeeds(algo) self.assertTrue(algo.could_trade) @parameterized.expand([ ('order_first_restricted_sid', 0), ('order_second_restricted_sid', 1) ]) def test_set_multiple_asset_restrictions(self, name, to_order_idx): def initialize(algo, restrictions1, restrictions2, on_error): algo.order_count = 0 algo.set_asset_restrictions(restrictions1, on_error) algo.set_asset_restrictions(restrictions2, on_error) def handle_data(algo, data): algo.could_trade1 = data.can_trade(algo.sid(self.sids[0])) algo.could_trade2 = data.can_trade(algo.sid(self.sids[1])) algo.order(algo.sid(self.sids[to_order_idx]), 100) algo.order_count += 1 rl1 = StaticRestrictions([self.sids[0]]) rl2 = StaticRestrictions([self.sids[1]]) algo = self.make_algo( restrictions1=rl1, restrictions2=rl2, initialize=initialize, handle_data=handle_data, on_error='fail', ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade1) self.assertFalse(algo.could_trade2) def test_set_do_not_order_list(self): def initialize(self, restricted_list): self.order_count = 0 self.set_do_not_order_list(restricted_list, on_error='fail') def handle_data(algo, data): algo.could_trade = data.can_trade(algo.sid(self.sid)) algo.order(algo.sid(self.sid), 100) algo.order_count += 1 rlm = [self.sid] algo = self.make_algo( restricted_list=rlm, initialize=initialize, handle_data=handle_data, ) self.check_algo_fails(algo, 0) self.assertFalse(algo.could_trade) def test_set_max_order_size(self): def initialize(algo, asset, max_shares, max_notional): algo.order_count = 0 algo.set_max_order_size(asset=asset, max_shares=max_shares, max_notional=max_notional) # Buy one share. def handle_data(algo, data): algo.order(algo.sid(self.sid), 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=10, max_notional=500.0, ) self.check_algo_succeeds(algo) # Buy 1, then 2, then 3, then 4 shares. Bail on the last attempt # because we exceed shares. def handle_data(algo, data): algo.order(algo.sid(self.sid), algo.order_count + 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=3, max_notional=500.0, ) self.check_algo_fails(algo, 3) # Buy 1, then 2, then 3, then 4 shares. Bail on the last attempt # because we exceed notional. def handle_data(algo, data): algo.order(algo.sid(self.sid), algo.order_count + 1) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.asset, max_shares=10, max_notional=40.0, ) self.check_algo_fails(algo, 3) # Set the trading control to a different sid, then BUY ALL THE THINGS!. # Should continue normally. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=self.another_asset, max_shares=1, max_notional=1.0, ) self.check_algo_succeeds(algo) # Set the trading control sid to None, then BUY ALL THE THINGS!. # Should fail because not specifying a sid makes the trading control # apply to all sids. def handle_data(algo, data): algo.order(algo.sid(self.sid), 10000) algo.order_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, asset=None, max_shares=1, max_notional=1.0, ) self.check_algo_fails(algo, 0) def test_set_max_order_count(self): def initialize(algo, count): algo.order_count = 0 algo.set_max_order_count(count) def handle_data(algo, data): for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo = self.make_algo( count=3, initialize=initialize, handle_data=handle_data, ) with self.assertRaises(TradingControlViolation): algo.run() self.assertEqual(algo.order_count, 3) def test_set_max_order_count_minutely(self): sim_params = self.make_simparams(data_frequency='minute') def initialize(algo, max_orders_per_day): algo.minute_count = 0 algo.order_count = 0 algo.set_max_order_count(max_orders_per_day) # Order 5 times twice in a single day, and set a max order count of # 9. The last order of the second batch should fail. def handle_data(algo, data): if algo.minute_count == 0 or algo.minute_count == 100: for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo.minute_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_orders_per_day=9, sim_params=sim_params, ) with self.assertRaises(TradingControlViolation): algo.run() self.assertEqual(algo.order_count, 9) # Set a limit of 5 orders per day, and order 5 times in the first # minute of each day. This should succeed because the counter gets # reset each day. def handle_data(algo, data): if (algo.minute_count % 390) == 0: for i in range(5): algo.order(self.asset, 1) algo.order_count += 1 algo.minute_count += 1 algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_orders_per_day=5, sim_params=sim_params, ) algo.run() # 5 orders per day times 4 days. self.assertEqual(algo.order_count, 20) def test_long_only(self): def initialize(algo): algo.order_count = 0 algo.set_long_only() # Sell immediately -> fail immediately. def handle_data(algo, data): algo.order(algo.sid(self.sid), -1) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_fails(algo, 0) # Buy on even days, sell on odd days. Never takes a short position, so # should succeed. def handle_data(algo, data): if (algo.order_count % 2) == 0: algo.order(algo.sid(self.sid), 1) else: algo.order(algo.sid(self.sid), -1) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_succeeds(algo) # Buy on first three days, then sell off holdings. Should succeed. def handle_data(algo, data): amounts = [1, 1, 1, -3] algo.order(algo.sid(self.sid), amounts[algo.order_count]) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_succeeds(algo) # Buy on first three days, then sell off holdings plus an extra share. # Should fail on the last sale. def handle_data(algo, data): amounts = [1, 1, 1, -4] algo.order(algo.sid(self.sid), amounts[algo.order_count]) algo.order_count += 1 algo = self.make_algo(initialize=initialize, handle_data=handle_data) self.check_algo_fails(algo, 3) def test_register_post_init(self): def initialize(algo): algo.initialized = True def handle_data(algo, data): with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_position_size(self.sid, 1, 1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_order_size(self.sid, 1, 1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_max_order_count(1) with self.assertRaises(RegisterTradingControlPostInit): algo.set_long_only() self.run_algorithm(initialize=initialize, handle_data=handle_data) class TestAssetDateBounds(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2014-01-02', tz='UTC') END_DATE = pd.Timestamp('2014-01-03', tz='UTC') SIM_PARAMS_START_DATE = END_DATE # Only run for one day. SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False BENCHMARK_SID = 3 @classmethod def make_equity_info(cls): T = partial(pd.Timestamp, tz='UTC') return pd.DataFrame.from_records([ {'sid': 1, 'symbol': 'OLD', 'start_date': T('1990'), 'end_date': T('1991'), 'exchange': 'TEST'}, {'sid': 2, 'symbol': 'NEW', 'start_date': T('2017'), 'end_date': T('2018'), 'exchange': 'TEST'}, {'sid': 3, 'symbol': 'GOOD', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE, 'exchange': 'TEST'}, ]) def test_asset_date_bounds(self): def initialize(algo): algo.ran = False algo.register_trading_control(AssetDateBounds(on_error='fail')) def handle_data(algo, data): # This should work because sid 3 is valid during the algo lifetime. algo.order(algo.sid(3), 1) # Sid already expired. with self.assertRaises(TradingControlViolation): algo.order(algo.sid(1), 1) # Sid doesn't exist yet. with self.assertRaises(TradingControlViolation): algo.order(algo.sid(2), 1) algo.ran = True algo = self.make_algo(initialize=initialize, handle_data=handle_data) algo.run() self.assertTrue(algo.ran) class TestAccountControls(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-04', tz='utc') END_DATE = pd.Timestamp('2006-01-06', tz='utc') sidint, = ASSET_FINDER_EQUITY_SIDS = (133,) BENCHMARK_SID = None SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False @classmethod def make_equity_daily_bar_data(cls, country_code, sids): frame = pd.DataFrame(data={ 'close': [10., 10., 11., 11.], 'open': [10., 10., 11., 11.], 'low': [9.5, 9.5, 10.45, 10.45], 'high': [10.5, 10.5, 11.55, 11.55], 'volume': [100, 100, 100, 300], }, index=cls.equity_daily_bar_days) yield cls.sidint, frame def _check_algo(self, algo, expected_exc): with self.assertRaises(expected_exc) if expected_exc else nop_context: algo.run() def check_algo_succeeds(self, algo): # Default for order_count assumes one order per handle_data call. self._check_algo(algo, None) def check_algo_fails(self, algo): self._check_algo(algo, AccountControlViolation) def test_set_max_leverage(self): def initialize(algo, max_leverage): algo.set_max_leverage(max_leverage=max_leverage) def handle_data(algo, data): algo.order(algo.sid(self.sidint), 1) algo.record(latest_time=algo.get_datetime()) # Set max leverage to 0 so buying one share fails. algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_leverage=0, ) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Set max leverage to 1 so buying one share passes def handle_data(algo, data): algo.order(algo.sid(self.sidint), 1) algo = self.make_algo( initialize=initialize, handle_data=handle_data, max_leverage=1, ) self.check_algo_succeeds(algo) def test_set_min_leverage(self): def initialize(algo, min_leverage, grace_period): algo.set_min_leverage( min_leverage=min_leverage, grace_period=grace_period ) def handle_data(algo, data): algo.order_target_percent(algo.sid(self.sidint), .5) algo.record(latest_time=algo.get_datetime()) # Helper for not having to pass init/handle_data at each callsite. def make_algo(min_leverage, grace_period): return self.make_algo( initialize=initialize, handle_data=handle_data, min_leverage=min_leverage, grace_period=grace_period, ) # Set min leverage to 1. # The algorithm will succeed because it doesn't run for more # than 10 days. offset = pd.Timedelta('10 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_succeeds(algo) # The algorithm will fail because it doesn't reach a min leverage of 1 # after 1 day. offset = pd.Timedelta('1 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Increase the offset to 2 days, and the algorithm fails a day later offset = pd.Timedelta('2 days') algo = make_algo(min_leverage=1, grace_period=offset) self.check_algo_fails(algo) self.assertEqual( algo.recorded_vars['latest_time'], pd.Timestamp('2006-01-05 21:00:00', tz='UTC'), ) # Set the min_leverage to .0001 and the algorithm succeeds. algo = make_algo(min_leverage=.0001, grace_period=offset) self.check_algo_succeeds(algo) class TestFuturesAlgo(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-06', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') FUTURE_MINUTE_BAR_START_DATE = pd.Timestamp('2016-01-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' TRADING_CALENDAR_STRS = ('us_futures',) TRADING_CALENDAR_PRIMARY_CAL = 'us_futures' BENCHMARK_SID = None @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 1: { 'symbol': 'CLG16', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2015-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2016-01-20', tz='UTC'), 'expiration_date': pd.Timestamp('2016-02-19', tz='UTC'), 'auto_close_date': pd.Timestamp('2016-01-18', tz='UTC'), 'exchange': 'TEST', }, }, orient='index', ) def test_futures_history(self): algo_code = dedent( """ from datetime import time from zipline.api import ( date_rules, get_datetime, schedule_function, sid, time_rules, ) def initialize(context): context.history_values = [] schedule_function( make_history_call, date_rules.every_day(), time_rules.market_open(), ) schedule_function( check_market_close_time, date_rules.every_day(), time_rules.market_close(), ) def make_history_call(context, data): # Ensure that the market open is 6:31am US/Eastern. open_time = get_datetime().tz_convert('US/Eastern').time() assert open_time == time(6, 31) context.history_values.append( data.history(sid(1), 'close', 5, '1m'), ) def check_market_close_time(context, data): # Ensure that this function is called at 4:59pm US/Eastern. # By default, `market_close()` uses an offset of 1 minute. close_time = get_datetime().tz_convert('US/Eastern').time() assert close_time == time(16, 59) """ ) algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) algo.run() # Assert that we were able to retrieve history data for minutes outside # of the 6:31am US/Eastern to 5:00pm US/Eastern futures open times. np.testing.assert_array_equal( algo.history_values[0].index, pd.date_range( '2016-01-06 6:27', '2016-01-06 6:31', freq='min', tz='US/Eastern', ), ) np.testing.assert_array_equal( algo.history_values[1].index, pd.date_range( '2016-01-07 6:27', '2016-01-07 6:31', freq='min', tz='US/Eastern', ), ) # Expected prices here are given by the range values created by the # default `make_future_minute_bar_data` method. np.testing.assert_array_equal( algo.history_values[0].values, list(map(float, range(2196, 2201))), ) np.testing.assert_array_equal( algo.history_values[1].values, list(map(float, range(3636, 3641))), ) @staticmethod def algo_with_slippage(slippage_model): return dedent( """ from zipline.api import ( commission, order, set_commission, set_slippage, sid, slippage, get_datetime, ) def initialize(context): commission_model = commission.PerFutureTrade(0) set_commission(us_futures=commission_model) slippage_model = slippage.{model} set_slippage(us_futures=slippage_model) context.ordered = False def handle_data(context, data): if not context.ordered: order(sid(1), 10) context.ordered = True context.order_price = data.current(sid(1), 'price') """ ).format(model=slippage_model) def test_fixed_future_slippage(self): algo_code = self.algo_with_slippage('FixedSlippage(spread=0.10)') algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) results = algo.run() # Flatten the list of transactions. all_txns = [ val for sublist in results['transactions'].tolist() for val in sublist ] self.assertEqual(len(all_txns), 1) txn = all_txns[0] # Add 1 to the expected price because the order does not fill until the # bar after the price is recorded. expected_spread = 0.05 expected_price = (algo.order_price + 1) + expected_spread self.assertEqual(txn['price'], expected_price) self.assertEqual(results['orders'][0][0]['commission'], 0.0) def test_volume_contract_slippage(self): algo_code = self.algo_with_slippage( 'VolumeShareSlippage(volume_limit=0.05, price_impact=0.1)', ) algo = self.make_algo( script=algo_code, trading_calendar=get_calendar('us_futures'), ) results = algo.run() # There should be no commissions. self.assertEqual(results['orders'][0][0]['commission'], 0.0) # Flatten the list of transactions. all_txns = [ val for sublist in results['transactions'].tolist() for val in sublist ] # With a volume limit of 0.05, and a total volume of 100 contracts # traded per minute, we should require 2 transactions to order 10 # contracts. self.assertEqual(len(all_txns), 2) for i, txn in enumerate(all_txns): # Add 1 to the order price because the order does not fill until # the bar after the price is recorded. order_price = algo.order_price + i + 1 expected_impact = order_price * 0.1 * (0.05 ** 2) expected_price = order_price + expected_impact self.assertEqual(txn['price'], expected_price) class TestAnalyzeAPIMethod(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='utc') END_DATE = pd.Timestamp('2016-01-05', tz='utc') SIM_PARAMS_DATA_FREQUENCY = 'daily' DATA_PORTAL_USE_MINUTE_DATA = False def test_analyze_called(self): self.perf_ref = None def initialize(context): pass def handle_data(context, data): pass def analyze(context, perf): self.perf_ref = perf algo = self.make_algo( initialize=initialize, handle_data=handle_data, analyze=analyze, ) results = algo.run() self.assertIs(results, self.perf_ref) class TestOrderCancelation(zf.WithMakeAlgo, zf.ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='utc') END_DATE = pd.Timestamp('2016-01-07', tz='utc') ASSET_FINDER_EQUITY_SIDS = (1,) ASSET_FINDER_EQUITY_SYMBOLS = ('ASSET1',) BENCHMARK_SID = None code = dedent( """ from zipline.api import ( sid, order, set_slippage, slippage, VolumeShareSlippage, set_cancel_policy, cancel_policy, EODCancel ) def initialize(context): set_slippage( slippage.VolumeShareSlippage( volume_limit=1, price_impact=0 ) ) {0} context.ordered = False def handle_data(context, data): if not context.ordered: order(sid(1), {1}) context.ordered = True """, ) @classmethod def make_equity_minute_bar_data(cls): asset_minutes = \ cls.trading_calendar.minutes_for_sessions_in_range( cls.START_DATE, cls.END_DATE, ) minutes_count = len(asset_minutes) minutes_arr = np.arange(1, 1 + minutes_count) # normal test data, but volume is pinned at 1 share per minute yield 1, pd.DataFrame( { 'open': minutes_arr + 1, 'high': minutes_arr + 2, 'low': minutes_arr - 1, 'close': minutes_arr, 'volume': np.full(minutes_count, 1.0), }, index=asset_minutes, ) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): yield 1, pd.DataFrame( { 'open':
np.full(3, 1, dtype=np.float64)
numpy.full
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(
np.nanmean(p_delta)
numpy.nanmean
import pickle as pkl from collections import Counter import numpy as np import nltk class DailyDialogCorpus(object): def __init__(self, corpus_path="data/dailydialog/dailydialog_split.pkl", max_vocab_cnt=30000, word2vec=True, word2vec_dim=None): self.word_vec = word2vec self.word2vec_dim = word2vec_dim self.word2vec = None data = pkl.load(open(corpus_path, "rb")) self.train_data = data["train"] self.valid_data = data["valid"] self.test_data = data["test"] print("DailyDialog Statistics: ") print("train data size: %d" % len(self.train_data)) print("valid data size: %d" % len(self.valid_data)) print("test data size: %d" % len(self.test_data)) print("\n") # DailyDialog Statistics: # train data size: 10117 # valid data size: 1500 # test data size: 1500 self.train_corpus = self.process(self.train_data) self.valid_corpus = self.process(self.valid_data) self.test_corpus = self.process(self.test_data) print(" [*] Building word vocabulary.") self.build_vocab(max_vocab_cnt) print(" [*] Loading word2vec.") self.load_word2vec() def process(self, data): new_meta = [] new_dialog = [] all_lenes = [] new_utts = [] for obj in data: topic = obj["topic"] dial = obj["utts"] lower_utts = [ ( item["floor"], # ["<s>"] + item["text"].lower().strip().split(" ") + ["</s>"], ["<s>"] + nltk.WordPunctTokenizer().tokenize(item["text"].lower().strip()) + ["</s>"], (item["act"], item["emot"]) ) for item in dial] # first all_lenes.extend([len(u) for c, u, f in lower_utts]) # second new_utts.extend([utt for floor, utt, feat in lower_utts]) # third dialog = [(utt, floor, feat) for floor, utt, feat in lower_utts] new_dialog.append(dialog) # fourth meta = (topic,) new_meta.append(meta) print("max_utt_len %d, min_utt_len %d, mean_utt_len %.4f" % \ (np.max(all_lenes),np.min(all_lenes), float(np.mean(all_lenes)))) # Max utt len 298, Min utt len 3, Mean utt len 16.54 # Max utt len 156, Min utt len 3, Mean utt len 16.83 # Max utt len 232, Min utt len 3, Mean utt len 16.80 return {"dialog": new_dialog, "meta": new_meta, "utts": new_utts} def build_vocab(self, max_vocab_cnt): all_words = [] for tokens in self.train_corpus["utts"]: all_words.extend(tokens) vocab_count = Counter(all_words).most_common() raw_vocab_size = len(vocab_count) discard_wc = np.sum([c for t, c, in vocab_count[max_vocab_cnt:]]) vocab_count = vocab_count[0:max_vocab_cnt] self.vocab = ["<pad>", "<unk>"] + [t for t, cnt in vocab_count] # list self.rev_vocab = self.word2idx = {word:idx for idx, word in enumerate(self.vocab)} # dict self.idx2word = {idx:word for idx, word in enumerate(self.vocab)} # dict self.pad_id = self.word2idx["<pad>"] self.unk_id = self.word2idx["<unk>"] self.sos_id = self.word2idx["<s>"] self.eos_id = self.word2idx["</s>"] self.vocab_size = len(self.vocab) print("raw_vocab_size %d, actual_vocab_size %d, at cut_off frequent %d OOV rate %f" % (raw_vocab_size, self.vocab_size, vocab_count[-1][1], float(discard_wc) / len(all_words))) print("<pad> index %d" % self.pad_id) print("<unk> index %d" % self.unk_id) print("<s> index %d" % self.sos_id) print("</s> index %d" % self.eos_id) print("\n") print("Building topic vocabulary...") all_topics = [] for topic, in self.train_corpus["meta"]: all_topics.append(topic) self.topic_vocab = [t for t, cnt in Counter(all_topics).most_common()] self.rev_topic_vocab = {t: idx for idx, t in enumerate(self.topic_vocab)} print("number of topics: %d" % len(self.topic_vocab)) print(self.topic_vocab) print("\n") all_dialog_acts = [] all_emots = [] for dialog in self.train_corpus["dialog"]: all_dialog_acts.extend([feat[0] for floor, utt, feat in dialog if feat is not None]) all_emots.extend([feat[1] for floor, utt, feat in dialog if feat is not None]) print("Building act vocabulary...") self.dialog_act_vocab = [t for t, cnt in Counter(all_dialog_acts).most_common()] self.rev_dialog_act_vocab = {t: idx for idx, t in enumerate(self.dialog_act_vocab)} print("number of acts: %d" % len(self.dialog_act_vocab)) print(self.dialog_act_vocab) print("\n") print("Building emotion vocabulary...") self.dialog_emot_vocab = [t for t, cnt in Counter(all_emots).most_common()] self.rev_dialog_emot_vocab = {t: idx for idx, t in enumerate(self.dialog_emot_vocab)} print("number of emots: %d" % len(self.dialog_emot_vocab)) print(self.dialog_emot_vocab) print("\n") def load_word2vec(self): if self.word_vec is False: print(" [*] No word2vec provided.") return None with open("data/glove.twitter.27B.200d.txt", "r") as f: lines = f.readlines() raw_word2vec = {} for l in lines: w, vec = l.split(" ", 1) raw_word2vec[w] = vec self.word2vec = None oov_cnt = 0 for word in self.vocab: str_vec = raw_word2vec.get(word, None) if str_vec is None: oov_cnt += 1 vec = np.random.randn(self.word2vec_dim) * 0.1 else: vec = np.fromstring(str_vec, sep=" ") vec = np.expand_dims(vec, axis=0) self.word2vec = np.concatenate((self.word2vec, vec),0) if self.word2vec is not None else vec print(" [*] word2vec shape: ") print(self.word2vec.shape) print(" [*] word2vec cannot cover %f vocab" % (float(oov_cnt)/len(self.vocab))) return self.word2vec def get_dialog_corpus(self): def _to_id_corpus(data): results = [] for dialog in data: temp = [] for utt, floor, feat in dialog: if feat is not None: id_feat = list(feat) id_feat[0] = self.rev_dialog_act_vocab[feat[0]] id_feat[1] = self.rev_dialog_emot_vocab[feat[1]] else: id_feat = None # temp.append(([self.rev_vocab.get(t, self.unk_id) for t in utt], floor, id_feat)) temp.append((utt, floor, id_feat)) results.append(temp) return results id_train = _to_id_corpus(self.train_corpus["dialog"]) id_valid = _to_id_corpus(self.valid_corpus["dialog"]) id_test = _to_id_corpus(self.test_corpus["dialog"]) return {'train': id_train, 'valid': id_valid, 'test': id_test} def get_meta_corpus(self): def _to_id_corpus(data): results = [] for (topic,) in data: results.append((self.rev_topic_vocab[topic])) return results id_train = _to_id_corpus(self.train_corpus["meta"]) id_valid = _to_id_corpus(self.valid_corpus["meta"]) id_test = _to_id_corpus(self.test_corpus["meta"]) return {'train': id_train, 'valid': id_valid, 'test': id_test} class SWDADialogCorpus(object): dialog_act_id = 0 sentiment_id = 1 liwc_id = 2 def __init__(self, corpus_path="data/swda/full_swda_clean_42da_sentiment_dialog_corpus.p", max_vocab_cnt=30000, word2vec=True, word2vec_dim=None): self.word_vec = word2vec self.word2vec_dim = word2vec_dim self.word2vec = None # self.dialog_id = 0 # self.meta_id = 1 # self.utt_id = 2 # self.sil_utt = ["<s>", "<sil>", "</s>"] data = pkl.load(open(corpus_path, "rb")) self.train_corpus = self.process(data["train"]) self.valid_corpus = self.process(data["valid"]) self.test_corpus = self.process(data["test"]) print("SWDA Statistics: ") print("train data size: %d" % len(self.train_corpus)) print("valid data size: %d" % len(self.valid_corpus)) print("test data size: %d" % len(self.test_corpus)) print("\n") self.build_vocab(max_vocab_cnt) self.load_word2vec() print("Done loading corpus") def process(self, data): new_dialog = [] new_meta = [] new_utts = [] # bod_utt = ["<s>", "<d>", "</s>"] all_lenes = [] for l in data: lower_utts = [(caller, ["<s>"] + nltk.WordPunctTokenizer().tokenize(utt.lower().strip()) + ["</s>"], feat) for caller, utt, feat in l["utts"]] all_lenes.extend([len(u) for c, u, f in lower_utts]) a_age = float(l["A"]["age"])/100.0 b_age = float(l["B"]["age"])/100.0 a_edu = float(l["A"]["education"])/3.0 b_edu = float(l["B"]["education"])/3.0 vec_a_meta = [a_age, a_edu] + ([0, 1] if l["A"]["sex"] == "FEMALE" else [1, 0]) vec_b_meta = [b_age, b_edu] + ([0, 1] if l["B"]["sex"] == "FEMALE" else [1, 0]) # for joint model we mode two side of speakers together. if A then its 0 other wise 1 meta = (vec_a_meta, vec_b_meta, l["topic"]) dialog = [(utt, int(caller=="B"), feat) for caller, utt, feat in lower_utts] # dialog = [(bod_utt, 0, None)] + [(utt, int(caller=="B"), feat) for caller, utt, feat in lower_utts] # new_utts.extend([bod_utt] + [utt for caller, utt, feat in lower_utts]) new_utts.extend([utt for caller, utt, feat in lower_utts]) new_dialog.append(dialog) new_meta.append(meta) print("max_utt_len %d, mean_utt_len %.2f, min_utt_len %d" % (
np.max(all_lenes)
numpy.max
#!/usr/bin/env python # coding: utf-8 """ @author: ackar Future edits: - Could add argparse to edits params of ML2 depends on how we want to do it though """ import os from MultiLevel2MC import MultiLevel2 import sys from multiprocessing import Process import time import datetime import numpy as np import h5py from scipy import signal import multiprocessing # ourSmoothData imported to smooth resp & lvp data def ourSmoothData(values, halfwin) : window = 2 * halfwin + 1 weights =
np.repeat(1.0, window)
numpy.repeat
import numpy as np from math import * import sys from calc_dmod import calc_lumd #from calc_kcor import calc_kcor ''' # get_colors # # Takes a list of lines from an SN data file and parses the SN parameters and host colors # Returns two arrays, one containing arrays of SN peak mag, SALT s, SALT2 x0, x1, and c parameters, and the # separation of the SN from the host nucleus, and the other containing array pairs of host colors and errors, # so that plotting can be done easily. ''' def get_colors(line_list): mag=[] mag_err=[] s=[] s_err=[] c=[] c_err=[] x0=[] x0_err=[] x1=[] x1_err=[] sep=[] u_mag=[] u_err=[] g_mag=[] g_err=[] r_mag=[] r_err=[] i_mag=[] i_err=[] z_mag=[] z_err=[] for line1 in line_list: if line1[0]=='#': continue line=line1.split(',') if len(line)<2: continue #This is to prevent an error if the line is too short if line[42]=='0.0': continue #Make sure there is an r-band R_e redshift=float(line[4]) lumd=calc_lumd(redshift) dmod=5*np.log10(lumd*10**6)-5 mag.append(float(line[5])-dmod) if line[6]=='': mag_err.append(0) else: mag_err.append(float(line[6])) c.append(float(line[11])) c_err.append(float(line[12])) s.append(float(line[13])) s_err.append(float(line[14])) sep.append(np.log10(float(line[15])/float(line[42]))) if line[7]=='' or line[9]=='': x0.append(-99) x0_err.append(-99) x1.append(-99) x1_err.append(-99) else: x0.append(float(line[7])) x0_err.append(float(line[8])) x1.append(float(line[9])) x1_err.append(float(line[10])) u_mag.append(float(line[18])) u_err.append(float(line[19])) g_mag.append(float(line[20])) g_err.append(float(line[21])) r_mag.append(float(line[22])) r_err.append(float(line[23])) i_mag.append(float(line[24])) i_err.append(float(line[25])) z_mag.append(float(line[26])) z_err.append(float(line[27])) # Convert lists to arrays for manipulation mag=np.array(mag) mag_err=np.array(mag_err) s=np.array(s) s_err=np.array(s_err) c=np.array(c) c_err=np.array(c_err) x0=np.array(x0) x0_err=np.array(x0_err) x1=np.array(x1) x1_err=np.array(x1_err) sep=np.array(sep) u_mag=np.array(u_mag) u_err=np.array(u_err) g_mag=np.array(g_mag) g_err=np.array(g_err) r_mag=np.array(r_mag) r_err=np.array(r_err) i_mag=np.array(i_mag) i_err=np.array(i_err) z_mag=np.array(z_mag) z_err=np.array(z_err) ug=u_mag-g_mag ug_err=np.sqrt(u_err**2+g_err**2) ur=u_mag-r_mag ur_err=np.sqrt(u_err**2+r_err**2) ui=u_mag-i_mag ui_err=np.sqrt(u_err**2+i_err**2) uz=u_mag-z_mag uz_err=
np.sqrt(u_err**2+z_err**2)
numpy.sqrt
# coding: utf-8 # In[1]: from __future__ import print_function import os os.environ["PATH"] += os.pathsep + 'E:/Graphviz2.38/bin' import tensorflow as tf # import keras.backend.tensorflow_backend as KTF # 指定第一块GPU可用 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0"# config = tf.ConfigProto() # config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 # config.gpu_options.per_process_gpu_memory_fraction = 0.3 # In[2]: import os import sys import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.layers import Dense, Input, GlobalMaxPooling1D, Dropout, concatenate, Concatenate, GlobalAveragePooling1D from keras.layers import Conv1D, MaxPooling1D, Embedding, Bidirectional, LSTM from keras.models import Model from models.custom_metrics import hamming_score, f1 from keras import optimizers, regularizers from keras.callbacks import EarlyStopping # import matplotlib.pyplot as plt import logging, pickle from models.attention import * from keras.utils import plot_model # In[3]: # conv_units = int(sys.argv[1]) # filter_size = 3 # pooling_size = 3 # dropout_rate = float(sys.argv[2]) # dense_units = int(sys.argv[3]) # max_len = int(sys.argv[4]) conv_units = 1024 #int(sys.argv[1]) filter_size = 3 pooling_size = 3 dropout_rate = 0.6 #float(sys.argv[2]) dense_units = 256 #int(sys.argv[3]) max_len = 800 #int(sys.argv[4]) logging.basicConfig(filename='../res/cnn_feature/{}_{}_{}_{}.log'.format(conv_units, dropout_rate, dense_units, max_len), level=logging.INFO) BASE_DIR = '' GLOVE_DIR = '../data/' # EMBEDDING_FILE = 'glove.6B.100d.txt' EMBEDDING_FILE = 'glove.6B.100d.txt' MAX_SEQUENCE_LENGTH = max_len MAX_NUM_WORDS = 20000 EMBEDDING_DIM = 100 EMBED_INIT_GLOVE = True FEAT_NUM = 24 ATTR_NUM = 128 MAX_SENTENCE = 40 # In[4]: train_file = '../data/issuedialog/train.tsv' valid_file = '../data/issuedialog/valid.tsv' test_file = '../data/issuedialog/test.tsv' train_feat_file = '../data/issuedialog/train_features.tsv' valid_feat_file = '../data/issuedialog/valid_features.tsv' test_feat_file = '../data/issuedialog/test_features.tsv' # In[5]: # first, build index mapping words in the embeddings set to their embedding vector print('Indexing word vectors.') embeddings_index = {} with open(os.path.join(GLOVE_DIR, EMBEDDING_FILE), encoding='utf8') as f: for line in f: values = line.split(' ') word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs print('Found %s word vectors.' % len(embeddings_index)) # In[6]: # second, prepare text samples and their labels print('Processing text dataset') texts = [] # list of text samples # labels_index = {'OQ': 0, 'OP': 1, 'OF': 2, 'FD': 3, 'FQ': 4, 'CQ': 5, 'AE': 6, 'AC': 7, 'IG': 8, 'CC': 9, 'UF': 10, # 'PF': 11, 'NF': 12, 'GG': 13, 'JK': 14} labels_index = {'0': 0, '1': 1} id2label = {v: k for k, v in labels_index.items()} classes_num = len(labels_index) # def load_data_and_labels(data_file): # x = [] # y = [] # i = 0 # x_dialog, y_dialog = [], [] # with open(data_file, encoding='utf8') as raw_data: # for line in raw_data: # i += 1 # # print(i) # if line != '\n': # line = line.strip() # tokens = line.split('\t') # labels = tokens[3].split('_') # x.append(tokens[1]) # each_y = [0] * classes_num # for label in labels: # each_y[labels_index[label]] = 1 # y.append(each_y) # return x, y def load_data_and_labels(data_file): x = [] y = [] y_issue = [] i = 0 x_dialog, y_dialog = [], [] issue_mark = 0 with open(data_file, encoding='utf8') as raw_data: for line in raw_data: i += 1 # print(i) if line != '\n': line = line.strip() tokens = line.split('\t') labels = tokens[3].split('_') issue_mark = int(tokens[4]) x_dialog.append(tokens[1]) each_y = [0] * classes_num for label in labels: each_y[labels_index[label]] = 1 y_dialog.append(each_y) else: # Padding of dialogues. if len(x_dialog) > MAX_SENTENCE: x_dialog = x_dialog[0:MAX_SENTENCE] y_dialog = y_dialog[0:MAX_SENTENCE] elif len(x_dialog) < MAX_SENTENCE: x_dialog += [''] * (MAX_SENTENCE - len(x_dialog)) y_dialog += [[1, 0]] * (MAX_SENTENCE - len(y_dialog)) x.append(x_dialog) y.append(y_dialog) if issue_mark == 0: y_issue.append([1, 0]) else: y_issue.append([0, 1]) x_dialog, y_dialog = [], [] return x, y, y_issue x_train, y_train, y_train_issue = load_data_and_labels(train_file) x_valid, y_valid, y_valid_issue = load_data_and_labels(valid_file) x_test, y_test, y_test_issue = load_data_and_labels(test_file) # MAX_SEQUENCE_LENGTH = max(max(map(len, x_train)), max(map(len, x_valid)), max(map(len, x_test))) # print(MAX_SEQUENCE_LENGTH) labels = np.array(y_train + y_valid + y_test) print('Found %s texts.' % len(x_train + x_valid + x_test)) # In[7]: # def load_features(data_file): # x = [] # i = 0 # x_dialog = [] # with open(data_file, encoding='utf8') as raw_data: # for line in raw_data: # i += 1 # # print(i) # if line != '\n': # line = line.strip() # tokens = line.split('\t') # features = list(map(float, tokens[1].split())) # x.append(features) # # return np.array(x) def load_features(data_file): x = [] i = 0 x_dialog = [] len_features = 0 with open(data_file, encoding='utf8') as raw_data: for line in raw_data: i += 1 # print(i) if line != '\n': line = line.strip() tokens = line.split('\t') features = list(map(float, tokens[1].split())) len_features = len(features) x_dialog.append(features) else: if len(x_dialog) > MAX_SENTENCE: x_dialog = x_dialog[0:MAX_SENTENCE] elif len(x_dialog) < MAX_SENTENCE: x_dialog += [[0] * len_features] * (MAX_SENTENCE - len(x_dialog)) x.append(x_dialog) x_dialog = [] return np.array(x) x_train_feat = load_features(train_feat_file) x_val_feat = load_features(valid_feat_file) x_test_feat = load_features(test_feat_file) print('Found %s features.' % len(x_train_feat[0])) # In[8]: # finally, vectorize the text samples into a 2D integer tensor tokenizer = Tokenizer(num_words=MAX_NUM_WORDS) x_train_sample, x_valid_sample, x_test_sample = [], [], [] for each_train in x_train: x_train_sample += each_train for each_valid in x_valid: x_valid_sample += each_valid for each_test in x_test: x_test_sample += each_test tokenizer.fit_on_texts(x_train_sample + x_valid_sample) sequences = tokenizer.texts_to_sequences(x_train_sample + x_valid_sample + x_test_sample) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) # labels = to_categorical(np.asarray(y_train)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) print('Shape of feature tensor:', x_train_feat.shape) # In[9]: print('Preparing embedding matrix.') # prepare embedding matrix num_words = min(MAX_NUM_WORDS, len(word_index) + 1) if EMBED_INIT_GLOVE: embedding_matrix = np.zeros((num_words, EMBEDDING_DIM)) for word, i in word_index.items(): if i >= MAX_NUM_WORDS: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector # load pre-trained word embeddings into an Embedding layer # note that we set trainable = False so as to keep the embeddings fixed embedding_layer = Embedding(num_words, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH * MAX_SENTENCE, trainable=True) else: embedding_layer = Embedding(num_words, EMBEDDING_DIM, embeddings_initializer='uniform', input_length=MAX_SEQUENCE_LENGTH * MAX_SENTENCE) # In[ ]: data_group, data_unit = [], [] for i, data_each in enumerate(data): if i % MAX_SENTENCE == 0 and i > 0: data_group.append(data_unit) data_unit = [list(data_each)] else: data_unit.append(list(data_each)) data_group.append(data_unit) num_validation_samples = len(y_valid) num_test_samples = len(y_test) num_train_samples = len(y_train) num_total_samples = len(labels) x_train = data_group[:num_train_samples] y_train = labels[:num_train_samples] x_val = data_group[num_train_samples: num_train_samples + num_validation_samples] y_val = labels[num_train_samples: num_train_samples + num_validation_samples] x_test = data_group[-num_test_samples:] y_test = labels[-num_test_samples:] assert len(x_train) + len(x_val) + len(x_test) == len(labels) assert len(y_train) + len(y_val) + len(y_test) == len(labels) # load sequence features def load_sequence_features(data_file): x = [] i = 0 with open(data_file, encoding='utf8') as raw_data: for line in raw_data: i += 1 # print(i) if line != '\n': line = line.strip() tokens = line.split('\t') features = tokens[1].split() abs_pos = int(features[10]) x.append(abs_pos) return np.array(x) x_train_sequence_feat = load_sequence_features(train_feat_file) x_val_sequence_feat = load_sequence_features(valid_feat_file) x_test_sequence_feat = load_sequence_features(test_feat_file) # window_size=3 context information # def gen_data_with_context(x, x_feat): # # incorporate pervious one and future one utterances as context # num_sample, size_sample = x.shape # x_trans = np.zeros((num_sample, size_sample * 3), dtype=int) # for i, abs_pos in enumerate(x_feat): # if abs_pos == 1: # if i + 1 < len(x_feat): # if x_feat[i + 1] == 1: # x_trans[i] = np.hstack((np.zeros(MAX_SEQUENCE_LENGTH), x[i], np.zeros(MAX_SEQUENCE_LENGTH))) # else: # x_trans[i] = np.hstack((np.zeros(MAX_SEQUENCE_LENGTH), x[i], x[i + 1])) # else: # x_trans[i] = np.hstack((np.zeros(MAX_SEQUENCE_LENGTH), x[i], np.zeros(MAX_SEQUENCE_LENGTH))) # elif i == num_sample - 1 or x_feat[i + 1] == 1: # x_trans[i] = np.hstack((x[i - 1], x[i], np.zeros(MAX_SEQUENCE_LENGTH))) # else: # x_trans[i] = np.hstack((x[i - 1], x[i], x[i + 1])) # return x_trans def gen_data_with_context(x): # incorporate pervious one and future one utterances as context 497x40x800 # x_trans = np.zeros((num_sample, size_sample * 3), dtype=int) x_trans, x_sentence = [], [] for dialog_embedding in x: for i, sentence_embedding in enumerate(dialog_embedding): if i == 0: x_sentence.append([0] * max_len + sentence_embedding + dialog_embedding[i + 1]) elif i < MAX_SENTENCE - 1: x_sentence.append(dialog_embedding[i - 1] + sentence_embedding + dialog_embedding[i + 1]) else: x_sentence.append(dialog_embedding[i - 1] + sentence_embedding + [0] * max_len) x_trans.append(x_sentence) x_sentence = [] x_trans = np.array(x_trans) return x_trans x_train_with_context = gen_data_with_context(x_train).astype(np.float32) x_val_with_context = gen_data_with_context(x_val).astype(np.float32) x_test_with_context = gen_data_with_context(x_test).astype(np.float32) x_train = np.array(x_train) x_val = np.array(x_val) x_test = np.array(x_test) y_train = np.array(y_train) y_val = np.array(y_val) y_test = np.array(y_test) y_train_issue = np.array(y_train_issue) y_valid_issue = np.array(y_valid_issue) y_test_issue =
np.array(y_test_issue)
numpy.array
""" SciANN-SolidMechanics.py Description: SciANN code for solution and discovery of solid mechanics from data. For additional details, please check our paper at: https://arxiv.org/abs/2003.02751 Created by <NAME> on 2/14/20. """ import os, sys, time import numpy as np from sciann.utils.math import diff from sciann import SciModel, Functional, Parameter from sciann import Data, Tie from sciann import Variable, Field import matplotlib.pyplot as plt import argparse pi = np.pi # current file name. current_file_name = os.path.basename(__file__).split(".")[0] # Lame paramters used in the paper. lmbd = 1.0 mu = 0.5 qload = 4.0 # Input interface for python. parser = argparse.ArgumentParser(description=''' SciANN code for solution and discovery of solid mechanics from data. \n For additional details, please check our paper at: https://arxiv.org/submit/3042511''' ) # Define number of data points. parser.add_argument('-l', '--layers', help='Num layers and neurons (default 4 layers each 40 neurons [40, 40, 40, 40])', type=int, nargs='+', default=[40]*4) parser.add_argument('-af', '--actf', help='Activation function (default tanh)', type=str, nargs=1, default=['tanh']) parser.add_argument('-nx', '--numx', help='Num Node in X (default 40)', type=int, nargs=1, default=[20]) parser.add_argument('-ny', '--numy', help='Num Node in Y (default 40)', type=int, nargs=1, default=[20]) parser.add_argument('-bs', '--batchsize', help='Batch size for Adam optimizer (default 32)', type=int, nargs=1, default=[32]) parser.add_argument('-e', '--epochs', help='Maximum number of epochs (default 2000)', type=int, nargs=1, default=[5000]) parser.add_argument('-lr', '--learningrate', help='Initial learning rate (default 0.001)', type=float, nargs=1, default=[0.001]) parser.add_argument('-in', '--independent_networks', help='Use independent networks for each var (default True)', type=bool, nargs=1, default=[True]) parser.add_argument('-v', '--verbose', help='Show training progress (default 2) (check Keras.fit)', type=int, nargs=1, default=[2]) parser.add_argument('--shuffle', help='Shuffle data for training (default True)', type=bool, nargs=1, default=[True]) parser.add_argument('--stopafter', help='Patience argument from Keras (default 500)', type=int, nargs=1, default=[500]) parser.add_argument('--savefreq', help='Frequency to save weights (each n-epoch)', type=int, nargs=1, default=[100000]) parser.add_argument('--dtype', help='Data type for weights and biases (default float64)', type=str, nargs=1, default=['float64']) parser.add_argument('--gpu', help='Use GPU if available (default False)', type=bool, nargs=1, default=[False]) parser.add_argument('-op', '--outputpath', help='Output path (default ./file_name)', type=str, nargs=1, default=['output']) parser.add_argument('-of', '--outputprefix', help='Output path (default res**)', type=str, nargs=1, default=['res']) parser.add_argument('-nxp', '--numxplot', help='Num Node in X for ploting final results (default 200)', type=int, nargs=1, default=[200]) parser.add_argument('-nyp', '--numyplot', help='Num Node in Y for ploting final results (default 200)', type=int, nargs=1, default=[200]) parser.add_argument('--plot', help='Plot the model', nargs='?', default=False) args = parser.parse_args() if not args.gpu[0]: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" def load(xx): x, y = xx[0], xx[1] Q = qload return Q * np.sin(pi*x) def bodyfx(xx): x, y = xx[0], xx[1] Q = qload frc = - lmbd*(4*pi**2*np.cos(2*pi*x)*np.sin(pi*y) - Q*y**3*pi*np.cos(pi*x)) \ - mu*(pi**2*np.cos(2*pi*x)*np.sin(pi*y) - Q*y**3*pi*np.cos(pi*x)) \ - 8*mu*pi**2*np.cos(2*pi*x)*np.sin(pi*y) return frc def bodyfy(xx): x, y = xx[0], xx[1] Q = qload frc = lmbd*(3*Q*y**2*np.sin(pi*x) - 2*pi**2*np.cos(pi*y)*np.sin(2*pi*x)) \ - mu*(2*pi**2*np.cos(pi*y)*np.sin(2*pi*x) + (Q*y**4*pi**2*np.sin(pi*x))/4) \ + 6*Q*mu*y**2*np.sin(pi*x) return frc def dispx(xx): x, y = xx[0], xx[1] return np.cos(2*pi*x) * np.sin(pi*y) def dispy(xx): x, y = xx[0], xx[1] Q = qload return np.sin(pi*x) * Q * y**4/4 def strainxx(xx): x, y = xx[0], xx[1] Q = qload return -2*pi*np.sin(2*pi*x)*np.sin(pi*y) def strainyy(xx): x, y = xx[0], xx[1] Q = qload return np.sin(pi*x)*Q*y**3 def strainxy(xx): x, y = xx[0], xx[1] Q = qload return 0.5*(pi*np.cos(2*pi*x)*np.cos(pi*y) + pi*np.cos(pi*x)*Q*y**4/4) def stressxx(xx): return (lmbd+2*mu)*strainxx(xx) + lmbd*strainyy(xx) def stressyy(xx): return (lmbd+2*mu)*strainyy(xx) + lmbd*strainxx(xx) def stressxy(xx): return 2.0*mu*strainxy(xx) def cust_pcolor(AX, X, Y, C, title): im = AX.pcolor(X, Y, C, cmap="jet") AX.axis("equal") AX.axis("off") AX.set_title(title, fontsize=14) plt.colorbar(im, ax=AX) def cust_semilogx(AX, X, Y, xlabel, ylabel): if X is None: im = AX.semilogy(Y) else: im = AX.semilogy(X, Y) if xlabel is not None: AX.set_xlabel(xlabel) if ylabel is not None: AX.set_ylabel(ylabel) def train(): # define output folder. if not os.path.isdir(args.outputpath[0]): os.mkdir(args.outputpath[0]) output_file_name = os.path.join(args.outputpath[0], args.outputprefix[0]) fname = output_file_name + "_{}_".format(args.actf[0]) + "x".join([str(x) for x in args.layers]) # Neural Network Setup. x = Variable("x", dtype=args.dtype[0]) y = Variable("y", dtype=args.dtype[0]) if args.independent_networks[0]: Uxy = Functional("Uxy", [x, y], args.layers, args.actf[0]) Vxy = Functional("Vxy", [x, y], args.layers, args.actf[0]) Sxx = Functional("Sxx", [x, y], args.layers, args.actf[0]) Syy = Functional("Syy", [x, y], args.layers, args.actf[0]) Sxy = Functional("Sxy", [x, y], args.layers, args.actf[0]) else: Uxy, Vxy, Sxx, Syy, Sxy = Functional( ["Uxy", "Vxy", "Sxx", "Syy", "Sxy"], [x, y], args.layers, args.actf[0]).split() lame1 = Parameter(2.0, inputs=[x,y], name="lame1") lame2 = Parameter(2.0, inputs=[x,y], name="lame2") C11 = (2*lame2 + lame1) C12 = lame1 C33 = 2*lame2 Exx = diff(Uxy, x) Eyy = diff(Vxy, y) Exy = (diff(Uxy, y) + diff(Vxy, x))*0.5 # Define constraints d1 = Data(Uxy) d2 = Data(Vxy) d3 = Data(Sxx) d4 = Data(Syy) d5 = Data(Sxy) c1 = Tie(Sxx, Exx*C11 + Eyy*C12) c2 = Tie(Syy, Eyy*C11 + Exx*C12) c3 = Tie(Sxy, Exy*C33) Lx = diff(Sxx, x) + diff(Sxy, y) Ly = diff(Sxy, x) + diff(Syy, y) # Define the optimization model (set of inputs and constraints) model = SciModel( inputs=[x, y], targets=[d1, d2, d3, d4, d5, c1, c2, c3, Lx, Ly], loss_func="mse" ) with open("{}_summary".format(fname), "w") as fobj: model.summary(print_fn=lambda x: fobj.write(x + '\n')) # Prepare training data ## Training grid XMIN, XMAX = 0.0, 1.0 YMIN, YMAX = 0.0, 1.0 Xmesh = np.linspace(XMIN, XMAX, args.numx[0]).reshape((-1, 1)) Ymesh = np.linspace(YMIN, YMAX, args.numy[0]).reshape((-1, 1)) X, Y = np.meshgrid(Xmesh, Ymesh) input_data = [X.reshape(-1, 1), Y.reshape(-1, 1)] # Assuing data is known only at boundary conditions XTOL, YTOL = np.array([XMAX-XMIN, YMAX-YMIN])*1e-6 left_ids = np.where(abs(input_data[0] - XMIN) < XTOL)[0] right_ids = np.where(abs(input_data[0] - XMAX) < XTOL)[0] bot_ids = np.where(abs(input_data[1] - YMIN) < YTOL)[0] top_ids = np.where(abs(input_data[1] - YMAX) < YTOL)[0] BC_ids = np.unique(np.concatenate([left_ids, right_ids, bot_ids, top_ids])) ## data associated to constrains defined earlier # Define constraints data_d1 = dispx(input_data) data_d2 = dispy(input_data) data_d3 = stressxx(input_data) data_d4 = stressyy(input_data) data_d5 = stressxy(input_data) data_c1 = 'zeros' data_c2 = 'zeros' data_c3 = 'zeros' data_Lx = bodyfx(input_data) data_Ly = bodyfy(input_data) target_data = [(BC_ids, data_d1), #BC: Ux - only applied at BC_ids (BC_ids, data_d2), #BC: Uy - only applied at BC_ids (BC_ids, data_d3), #BC: Sxx - only applied at BC_ids (BC_ids, data_d4), #BC: Syy - only applied at BC_ids (BC_ids, data_d5), #BC: Sxy - only applied at BC_ids data_c1, data_c2, data_c3, #Impose the constitutive model at all test points data_Lx, data_Ly] #Impose the body force at all test points # Train the model training_time = time.time() history = model.train( x_true=input_data, y_true=target_data, epochs=args.epochs[0], batch_size=args.batchsize[0], shuffle=args.shuffle[0], learning_rate=args.learningrate[0], stop_after=args.stopafter[0], verbose=args.verbose[0], save_weights_to="{}_WEIGHTS".format(fname), save_weights_freq=args.savefreq[0] ) training_time = time.time() - training_time for loss in history.history: np.savetxt(fname+"_{}".format("_".join(loss.split("/"))), np.array(history.history[loss]).reshape(-1, 1)) time_steps = np.linspace(0, training_time, len(history.history["loss"])) np.savetxt(fname+"_Time", time_steps.reshape(-1,1)) # Post process the trained model. Xmesh_plot = np.linspace(XMIN, XMAX, args.numxplot[0]).reshape((-1, 1)) Ymesh_plot =
np.linspace(YMIN, YMAX, args.numyplot[0])
numpy.linspace
# importing necessary modules import numpy as np import pandas as pd import matplotlib.pyplot as plt import itertools from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # reading the csv from github df = pd.read_csv('https://raw.githubusercontent.com/leo-ventura/programming-languages/master/data.csv') # temos que separar as linguagens de programação dos usuários (linguages como nosso x e usuarios como y) features = ['assembly','batchfile','c','c#','c++','clojure','coffeescript','css','elixir','emacs lisp','go','haskell','html','java','javascript','jupyter notebook','kotlin','lua','matlab','objective-c','objective-c++','ocaml','perl','php','powershell','purebasic','python','rascal','ruby','rust','scala','shell','swift','tex','typescript','vim script','vue'] x = df.loc[:,features].values # a ser usado no plot marker = itertools.cycle(('X', 'o', '*')) # criando vetor de soma 1 X_sum1 =
np.copy(x)
numpy.copy