prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import warnings from typing import Optional, Tuple, Union import numpy as np import numpy.typing as npt from pybasic.linalg import dct2d, idct2d, fro_norm, l1_norm from pybasic.utils import timed_ctx rng = np.random.default_rng(seed=0) def scalar_shrink(arr: npt.NDArray, epsilon: float) -> npt.NDArray: return np.sign(arr) * np.maximum(np.abs(arr) - epsilon, 0) def inexact_alm_rspca_l1( ims: npt.NDArray, *, flatfield_reg: float, darkfield_reg: float, optim_tol: float, max_iters: int, weight: Optional[npt.NDArray] = None, compute_darkfield: bool = False, # darkfield_upper_lim: float = 1e7, ) -> Tuple[npt.NDArray, ...]: if weight is not None: if weight.shape != ims.shape: raise ValueError( f"Mismatch between dims of weight ({weight.shape}) and images ({ims.shape})" ) weight = np.ones(ims.shape) lm1 = 0 # lagrange multiplier # lm2 = 0 ent1 = 1 # ? ent2 = 10 # convenience shapes n = ims.shape[0] im_dims = ims.shape[1:3] full_dims = ims.shape # variables im_res = np.zeros(full_dims) base = np.ones((n, 1, 1)) dark_res = np.zeros(im_dims) flat = np.zeros(im_dims) # adaptive penalty ims_vec = ims.reshape((n, -1)) norm_two = np.linalg.svd(ims_vec, compute_uv=False, full_matrices=False)[0] pen = 12.5 / norm_two # initial penalty pen_max = pen * 1e7 pen_mult = 1.5 # TODO: can we set the initial penalty to something reasonable without having to # compute the SVD? # convenience constants ims_norm = fro_norm(ims) ims_min = ims.min() dark_mean = 0 # A_upper_lim = ims.min(axis=0) # A_inmask = np.zeros((h, w)) # A_inmask[h // 6 : h // 6 * 5, w // 6 : w // 6 * 5] = 1 it = 0 while True: # update flatfield im_base = base * flat + dark_res _diff = (ims - im_base - im_res + lm1 / pen) / ent1 _diff = _diff.mean(axis=0) flat_f = dct2d(flat) + dct2d(_diff) flat_f = scalar_shrink(flat_f, flatfield_reg / (ent1 * pen)) flat = idct2d(flat_f) # update residual im_base = base * flat + dark_res im_res += (ims - im_base - im_res + lm1 / pen) / ent1 im_res = scalar_shrink(im_res, weight / (ent1 * pen)) # update baseline im_diff = ims - im_res base = im_diff.mean(axis=(1, 2), keepdims=True) / im_diff.mean() base[base < 0] = 0 if compute_darkfield: # calculate dark_mean using least-square fitting base_valid_ind = (base < 1).squeeze() im_diff_valid = im_diff[base_valid_ind] base_valid = base[base_valid_ind] flat_mean = flat.mean() _flat_gt = flat > (flat_mean - 1e-6) _flat_lt = flat < (flat_mean + 1e-6) diff = (im_diff_valid[:, _flat_gt].mean(axis=-1)) - ( im_diff_valid[:, _flat_lt].mean(axis=-1) ) n_valid = np.count_nonzero(base_valid_ind) _temp1 = np.square(base_valid).sum() _temp2 = base_valid.sum() _temp3 = diff.sum() _temp4 = (base_valid * diff).sum() _temp5 = _temp2 * _temp3 - n_valid * _temp4 if _temp5 == 0: dark_mean = 0 else: dark_mean = (_temp1 * _temp3 - _temp2 * _temp4) / _temp5 # clip to reasonable values dark_mean = max(dark_mean, 0) dark_mean = min(dark_mean, ims_min / flat_mean) # optimize dark_res _diff = (im_diff_valid - base_valid * flat).mean(axis=0) dark_diff = dark_mean * (flat_mean - flat) dark_res = _diff - _diff.mean() - dark_diff dark_res_f = dct2d(dark_res) dark_res_f = scalar_shrink(dark_res_f, darkfield_reg / (ent2 * pen)) dark_res = idct2d(dark_res_f) dark_res = scalar_shrink(dark_res, darkfield_reg / (ent2 * pen)) dark_res += dark_diff # update lagrangian multiplier # if I'm understanding Table 1 in the supplementary section correctly, the next # line is missing from the MATLAB implementation im_base = base * flat + dark_res im_diff = ims - im_base - im_res lm1 += pen * im_diff # update penalty pen = min(pen * pen_mult, pen_max) # check for stop condition it += 1 is_converged = (fro_norm(im_diff) / ims_norm) < optim_tol if is_converged: print(f"Converged in {it} iterations") break if not is_converged and it >= max_iters: warnings.warn("Maximum iterations reached") break dark_res += dark_mean * flat return im_base, im_res, dark_res def basic( images: npt.NDArray, *, flatfield_reg: Optional[float] = None, darkfield_reg: Optional[float] = None, optim_tol: float = 1e-6, max_iters: int = 500, compute_darkfield: bool = False, eps: float = 0.1, reweight_tol: float = 1e-3, max_reweight_iters: int = 10, ) -> Union[npt.NDArray, Tuple[npt.NDArray, npt.NDArray]]: if images.ndim != 3: raise ValueError("Images must be 3D (IYX)") ims = images orig_dims = ims.shape[1:3] # resize to working size full_dims = ims.shape im_dims = ims.shape[1:3] # apply automatic regularization coefficient strategy if flatfield_reg is None or darkfield_reg is None: ims_norm = ims.mean(axis=0) ims_norm /= ims_norm.mean() ims_dct = dct2d(ims_norm) ims_l1 = l1_norm(ims_dct) if flatfield_reg is None: flatfield_reg = ims_l1 / 800 if darkfield_reg is None: darkfield_reg = ims_l1 / 2_000 print(f"Flat reg: {flatfield_reg:,.3f}, dark reg: {darkfield_reg:,.3f}") ims =
np.sort(ims, axis=0)
numpy.sort
#!/usr/bin/env python3 import os import numpy as np from shutil import copytree, rmtree, copy2 import subprocess import shlex import sqlite3 from tqdm import tqdm import shutil import torch from .torch_matchers import mutual_nn_matcher from .colmap_read_model import CAMERA_MODELS, CAMERA_MODEL_IDS from .colmap_read_model import read_cameras_binary, read_images_binary, read_points3d_binary model_bins = ['images.bin', 'cameras.bin', 'points3D.bin'] model_txts = ['images.txt', 'cameras.txt', 'points3D.txt'] cam_model_name_to_id = dict([(cm.model_name, cm.model_id) for cm in CAMERA_MODELS]) supported_custom_ftrs = ['d2-net'] class MapperOptions: def __init__(self): self.params = { "filter_max_reproj_error": 4, "filter_min_tri_angle": 1.5, "ba_global_max_refinements": 5, "ba_global_max_refinement_change": 0.0005 } self.pref = "Mapper." class SiftMatchingOptions: def __init__(self): self.params = {"max_ratio": 0.8, "max_distance": 0.7, "max_error": 4, "min_inlier_ratio": 0.25} self.pref = "SiftMatching." def getImgNameToImgIdMap(database): connection = sqlite3.connect(database) cursor = connection.cursor() img_nm_to_id = {} cursor.execute("SELECT name, image_id FROM images;") for row in cursor: img_nm_to_id[row[0]] = row[1] cursor.close() connection.close() return img_nm_to_id def getCameraIds(database): connection = sqlite3.connect(database) cursor = connection.cursor() camera_ids = [] cursor.execute("SELECT camera_id FROM cameras;") for row in cursor: camera_ids.append(row[0]) cursor.close() connection.close() return camera_ids def nextCameraId(database): return max(getCameraIds(database)) + 1 def getImageIds(database): connection = sqlite3.connect(database) cursor = connection.cursor() image_ids = [] cursor.execute("SELECT image_id FROM images;") for row in cursor: image_ids.append(row[0]) cursor.close() connection.close() return image_ids def addColmapCameras(colmap_cams, database, cam_ids, prior_focal_length=False): connection = sqlite3.connect(database) cursor = connection.cursor() for colmap_cam, cam_id in zip(colmap_cams, cam_ids): cursor.execute("INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)", (cam_id, cam_model_name_to_id[colmap_cam.model], colmap_cam.width, colmap_cam.height, colmap_cam.params.tostring(), prior_focal_length)) connection.commit() cursor.close() connection.close() def setCameraIdForImages(images, cam_ids, database): connection = sqlite3.connect(database) cursor = connection.cursor() for img, cam_id in zip(images, cam_ids): cursor.execute("UPDATE images SET camera_id=? WHERE name=?;", (cam_id, img)) connection.commit() cursor.close() connection.close() def imgIdsToPairId(image_id1, image_id2): if image_id1 > image_id2: return 2147483647 * image_id2 + image_id1 else: return 2147483647 * image_id1 + image_id2 def extractFeaturesFromImages(database, img_dir, input_imgs_rel_path, method, tmp_dir='/tmp', pref=''): if method is None: extr_img_list = os.path.join(tmp_dir, pref+'extractor_img_list.txt') print("- write image list for extraction in {}".format(extr_img_list)) with open(extr_img_list, 'w') as f: f.writelines([v+'\n' for v in input_imgs_rel_path]) extract_cmd = ('colmap feature_extractor --database_path {} --image_path {} ' '--image_list_path {} ').format(database, img_dir, extr_img_list) subprocess.call(shlex.split(extract_cmd)) elif method in supported_custom_ftrs: new_img_id_s = max(getImageIds(database)) + 1 new_cam_id_s = max(getCameraIds(database)) + 1 new_img_ids = list(range(new_img_id_s, new_img_id_s + len(input_imgs_rel_path))) new_cam_ids = list(range(new_cam_id_s, new_cam_id_s + len(input_imgs_rel_path))) print("New image ids: ", new_img_id_s) print("New camera ids: ", new_cam_id_s) addImagesAndCameras(database, input_imgs_rel_path, new_img_ids, new_cam_ids) importCustomFeatures(input_imgs_rel_path, new_img_ids, img_dir, database, method) else: assert False, 'Unknown method type {}.'.format(method) def triangulatePointsFromModel(database, img_dir, model_dir, mapper_options): output_dir = os.path.join(model_dir, 'output') if not os.path.exists(output_dir): os.makedirs(output_dir) triangulation_cmd = ("colmap point_triangulator --database_path {} " "--image_path {} --input_path {} --output_path {} " ).format( database, img_dir, model_dir, output_dir) for k, v in mapper_options.params.items(): triangulation_cmd += " --{} {}".format(mapper_options.pref+k, v) subprocess.call(shlex.split(triangulation_cmd)) convert_cmd = ("colmap model_converter --input_path {} " "--output_path {} --output_type TXT").format(output_dir, output_dir) subprocess.call(shlex.split(convert_cmd)) for v in model_txts: os.remove(os.path.join(model_dir, v)) for v in (model_bins + model_txts): shutil.copy2(os.path.join(output_dir, v), os.path.join(model_dir, v)) shutil.rmtree(output_dir) def makeEmpty3DPoints(model_dir): point_fn = os.path.join(model_dir, 'points3D.txt') if os.path.exists(point_fn): os.remove(point_fn) os.mknod(point_fn) def matchFeaturesInList(database, img_dir, match_list, method, sift_match_options): if method is None: pass elif method in supported_custom_ftrs: all_img_nm_to_id = getImgNameToImgIdMap(database) matchCustomFeatures(all_img_nm_to_id, img_dir, match_list, database, method) else: assert False, 'Unknown method type {}.'.format(method) matcher_import_cmd = ("colmap matches_importer --database_path {} " "--match_list_path {} --match_type pairs ").format( database, match_list) for k, v in sift_match_options.params.items(): matcher_import_cmd += " --{} {}".format(sift_match_options.pref+k, v) subprocess.call(shlex.split(matcher_import_cmd)) def importCustomFeatures(image_names, image_ids, img_dir, database, method): connection = sqlite3.connect(database) cursor = connection.cursor() for image_name, image_id in tqdm(zip(image_names, image_ids), total=len(image_names)): features_path = os.path.join( img_dir, '%s.%s' % (image_name, method)) keypoints = np.load(features_path)['keypoints'] n_keypoints = keypoints.shape[0] # Keep only x, y coordinates. keypoints = keypoints[:, : 2] # Add placeholder scale, orientation. keypoints = np.concatenate([keypoints, np.ones((n_keypoints, 1)), np.zeros( (n_keypoints, 1))], axis=1).astype(np.float32) keypoints_str = keypoints.tostring() cursor.execute("INSERT INTO keypoints(image_id, rows, cols, data) VALUES(?, ?, ?, ?);", (image_id, keypoints.shape[0], keypoints.shape[1], keypoints_str)) # Close the connection to the database. connection.commit() cursor.close() connection.close() def addImagesAndCameras(database, names, image_ids, camera_ids): connection = sqlite3.connect(database) cursor = connection.cursor() for nm, img_id, cam_id in zip(names, image_ids, camera_ids): cursor.execute( "INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", (img_id, nm, cam_id, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan)) # copy the first camera rows = cursor.execute("SELECT * FROM cameras") _, model, width, height, params, prior = next(rows) for cam_id in camera_ids: cursor.execute("INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)", (cam_id, model, width, height, params, prior)) connection.commit() cursor.close() connection.close() def matchCustomFeatures(img_nm_to_id, img_dir, match_list, database, method): connection = sqlite3.connect(database) cursor = connection.cursor() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") with open(match_list, 'r') as f: raw_pairs = f.readlines() print('Found {} pairs.'.format(len(raw_pairs))) image_pair_ids = set() for raw_pair in tqdm(raw_pairs, total=len(raw_pairs)): image_name1, image_name2 = raw_pair.strip('\n').split(' ') if image_name1 not in img_nm_to_id or image_name2 not in img_nm_to_id: print("Failed to find {} - {} in known images. Skip".format( image_name1, image_name2)) continue features_path1 = os.path.join(img_dir, '%s.%s' % (image_name1, method)) features_path2 = os.path.join(img_dir, '%s.%s' % (image_name2, method)) descriptors1 = torch.from_numpy( np.load(features_path1)['descriptors']).to(device) descriptors2 = torch.from_numpy( np.load(features_path2)['descriptors']).to(device) matches = mutual_nn_matcher( descriptors1, descriptors2).astype(np.uint32) image_id1, image_id2 = img_nm_to_id[image_name1], img_nm_to_id[image_name2] image_pair_id = imgIdsToPairId(image_id1, image_id2) if image_pair_id in image_pair_ids: continue image_pair_ids.add(image_pair_id) if image_id1 > image_id2: matches = matches[:, [1, 0]] matches_str = matches.tostring() cursor.execute("INSERT INTO matches(pair_id, rows, cols, data) VALUES(?, ?, ?, ?);", (image_pair_id, matches.shape[0], matches.shape[1], matches_str)) connection.commit() cursor.close() connection.close() def sqliteExecuteAtomic(database, cmds): connection = sqlite3.connect(database) cursor = connection.cursor() for cmd in cmds: cursor.execute(cmd) connection.commit() cursor.close() connection.close() def getModelDirs(sparse_top_dir): model_dirs = [] for dirpath, dirnames, filenames in os.walk(sparse_top_dir): if not dirnames: if 'points3D.bin' in filenames or 'points3D.txt' in filenames: model_dirs.append(dirpath) return sorted(model_dirs) def readMultipleModels(model_dirs): all_images = [] all_points = [] all_cameras = [] img_nm_to_img_id = {} for md in model_dirs: print("- processing {}...".format(md)) img_fn = os.path.join(md, 'images.bin') if not os.path.exists(img_fn): print(" - cannot find {}, skip.".format(img_fn)) continue cur_imgs = read_images_binary(img_fn) n_del = 0 for img_id in cur_imgs: img_nm_to_img_id[cur_imgs[img_id].name] = img_id for prev_imgs in all_images: if img_id in prev_imgs: del prev_imgs[img_id] n_del += 1 print(" - delete {} duplicate images from previous models".format(n_del)) all_images.append(cur_imgs) cur_points = read_points3d_binary(os.path.join(md, 'points3D.bin')) all_points.append(cur_points) cur_cameras = read_cameras_binary(os.path.join(md, 'cameras.bin')) all_cameras.append(cur_cameras) print('Read {} images, {} 3D points and {} cameras'.format( sum([len(v) for v in all_images]), sum([len(v) for v in all_points]), sum([len(v) for v in all_cameras]))) return all_images, all_points, all_cameras, img_nm_to_img_id def writeEmptyImageList(in_fn, out_fn): with open(os.path.join(out_fn), 'w') as fout: with open(os.path.join(in_fn), 'r') as fin: cnt = 0 for line in fin: if line.startswith('#'): continue if cnt % 2 == 0: fout.write('{}\n\n'.format(line.strip())) cnt += 1 def convertModel(md, output_type): convert_cmd = ("colmap model_converter --input_path {} " "--output_path {} --output_type {}").format(md, md, output_type) subprocess.call(shlex.split(convert_cmd)) def cleanModel(md, clean_type): if clean_type == 'TXT': for v in model_txts: os.remove(os.path.join(md, v)) elif clean_type == 'BIN': for v in model_bins: os.remove(os.path.join(md, v)) else: assert False, "Clean type: {}".format(clean_type) def copyModel(in_dir, out_dir, model_type): if model_type == 'TXT': for b in model_txts: copy2(os.path.join(in_dir, b), os.path.join(out_dir, b)) elif model_type == 'BIN': for b in model_bins: copy2(os.path.join(in_dir, b), os.path.join(out_dir, b)) else: assert False, "Type: {}".format(model_type) def ftrType2Suffix(ftr_type): suffix = '' if ftr_type is None else '_{}'.format(ftr_type) return suffix def checkWorkspaceAndGetPath(colmap_ws, ftr_type=None, img_dir='images', sparse_dir='sparse', database='database'): assert os.path.exists(colmap_ws) suffix = ftrType2Suffix(ftr_type) base_sparse_dir = os.path.join(colmap_ws, sparse_dir+suffix) base_img_dir = os.path.join(colmap_ws, img_dir) base_db = os.path.join(colmap_ws, '{}{}.db'.format(database, suffix)) assert os.path.isdir(base_sparse_dir) and os.path.isdir(base_img_dir) and\ os.path.exists(base_db) print("Found Colmap workspace:") print(" - {}: {}".format('sparse dir', base_sparse_dir)) print(" - {}: {}".format('image dir', base_img_dir)) print(" - {}: {}".format('database', base_db)) return base_sparse_dir, base_img_dir, base_db def cloneColmapWorkspace(input_ws, output_ws, ftr_type=None, overwrite_sparse=True, overwrite_database=False): print("Copying COLMAP workspace...") input_sparse_dir, input_img_dir, input_database = checkWorkspaceAndGetPath(input_ws, ftr_type) suffix = ftrType2Suffix(ftr_type) img_dir = os.path.join(output_ws, 'images') sparse_dir = os.path.join(output_ws, 'sparse'+suffix) database = os.path.join(output_ws, 'database{}.db'.format(suffix)) if os.path.exists(output_ws): print("- Output workspace exist.") else: os.makedirs(output_ws) if not os.path.exists(img_dir): copytree(input_img_dir, img_dir) else: print("- Image folder exists, skip.") if os.path.exists(sparse_dir) and overwrite_sparse: print("- Remove old sparse dir.") rmtree(sparse_dir) if not os.path.exists(sparse_dir): copytree(input_sparse_dir, sparse_dir) if not os.path.exists(database) or overwrite_database: print("- Copy database.") copy2(input_database, database) def getKeypointsImgId(cursor, img_id, n_col=6): # https://github.com/colmap/colmap/blob/dev/src/base/database.cc#L54 # The keypoints are stored as 6 columns anyway cursor.execute("SELECT data FROM keypoints WHERE image_id=?;", (img_id,)) row = next(cursor) assert row[0] return np.frombuffer(row[0], dtype=np.float32).reshape(-1, n_col) def getTwoViewGeoMatchIndices(cursor, pair_id): cursor.execute("SELECT data from two_view_geometries where pair_id=?;", (pair_id, )) row = next(cursor) assert row[0] return np.frombuffer(row[0], dtype=np.uint32).reshape(-1, 2) def getCameraIdImageId(cursor, img_id): cursor.execute("SELECT camera_id FROM images WHERE image_id=?;", (img_id,)) row = next(cursor) assert row[0] return row[0] def getCameraWidthAndHeight(cursor, cam_id): cursor.execute("SELECT width FROM cameras WHERE camera_id=?;", (cam_id,)) row = next(cursor) w = row[0] cursor.execute("SELECT height FROM cameras WHERE camera_id=?;", (cam_id,)) row = next(cursor) h = row[0] return w, h def getCameraPrincipalPoint(cursor, cam_id): cursor.execute("SELECT model FROM cameras WHERE camera_id=?;", (cam_id,)) row = next(cursor) assert row[0] model_name = CAMERA_MODEL_IDS[row[0]].model_name print("Camera model: {}".format(model_name)) cursor.execute("SELECT params FROM cameras WHERE camera_id=?;", (cam_id,)) row = next(cursor) assert row[0] if model_name == 'PINHOLE': params = np.frombuffer(row[0], dtype=np.float64).reshape(4,) return params[2], params[3] elif model_name == 'SIMPLE_RADIAL': params = np.frombuffer(row[0], dtype=np.float64).reshape(4,) return params[1], params[2] else: assert False def getDescriptorsImgId(cursor, img_id): cursor.execute("SELECT data FROM descriptors WHERE image_id=?;", (img_id,)) row = next(cursor) assert row[0] return np.frombuffer(row[0], dtype=np.uint8).reshape(-1, 128) def affineToThetaScale(affine): # see https://github.com/colmap/colmap/blob/dev/src/feature/types.cc assert affine.shape == (4,) scale =
np.sqrt(affine[0]**2 + affine[1]**2)
numpy.sqrt
from typing import Tuple, Union, Callable, Optional, Sequence from typing_extensions import Literal # < 3.8 from scanpy import logging as logg from anndata import AnnData from numba import njit from scipy.sparse import issparse, spmatrix, csr_matrix, isspmatrix_csr from sklearn.metrics import pairwise_distances import numpy as np import pandas as pd from squidpy._docs import d, inject_docs from squidpy._utils import Signal, SigQueue, parallelize, _get_n_cores from squidpy.gr._utils import ( _save_data, _extract_expression, _assert_spatial_basis, _assert_connectivity_key, _assert_non_empty_sequence, ) from squidpy._constants._pkg_constants import Key __all__ = ["sepal"] @d.dedent @inject_docs(key=Key.obsp.spatial_conn()) def sepal( adata: AnnData, max_neighs: Literal[4, 6], genes: Optional[Union[str, Sequence[str]]] = None, n_iter: Optional[int] = 30000, dt: float = 0.001, thresh: float = 1e-8, connectivity_key: str = Key.obsp.spatial_conn(), spatial_key: str = Key.obsm.spatial, layer: Optional[str] = None, use_raw: bool = False, copy: bool = False, n_jobs: Optional[int] = None, backend: str = "loky", show_progress_bar: bool = True, ) -> Optional[pd.DataFrame]: """ Identify spatially variable genes with *Sepal*. *Sepal* is a method that simulates a diffusion process to quantify spatial structure in tissue. See :cite:`andersson2021` for reference. Parameters ---------- %(adata)s max_neighs Maximum number of neighbors of a node in the graph. Valid options are: - `4` - for a square-grid (ST, Dbit-seq). - `6` - for a hexagonal-grid (Visium). genes List of gene names, as stored in :attr:`anndata.AnnData.var_names`, used to compute sepal score. If `None`, it's computed :attr:`anndata.AnnData.var` ``['highly_variable']``, if present. Otherwise, it's computed for all genes. n_iter Maximum number of iterations for the diffusion simulation. If ``n_iter`` iterations are reached, the simulation will terminate even though convergence has not been achieved. dt Time step in diffusion simulation. thresh Entropy threshold for convergence of diffusion simulation. %(conn_key)s %(spatial_key)s layer Layer in :attr:`anndata.AnnData.layers` to use. If `None`, use :attr:`anndata.AnnData.X`. use_raw Whether to access :attr:`anndata.AnnData.raw`. %(copy)s %(parallelize)s Returns ------- If ``copy = True``, returns a :class:`pandas.DataFrame` with the sepal scores. Otherwise, modifies the ``adata`` with the following key: - :attr:`anndata.AnnData.uns` ``['sepal_score']`` - the sepal scores. Notes ----- If some genes in :attr:`anndata.AnnData.uns` ``['sepal_score']`` are `NaN`, consider re-running the function with increased ``n_iter``. """ _assert_connectivity_key(adata, connectivity_key) _assert_spatial_basis(adata, key=spatial_key) if max_neighs not in (4, 6): raise ValueError(f"Expected `max_neighs` to be either `4` or `6`, found `{max_neighs}`.") spatial = adata.obsm[spatial_key].astype(np.float_) if genes is None: genes = adata.var_names.values if "highly_variable" in adata.var.columns: genes = genes[adata.var["highly_variable"].values] genes = _assert_non_empty_sequence(genes, name="genes") n_jobs = _get_n_cores(n_jobs) g = adata.obsp[connectivity_key] if not isspmatrix_csr(g): g = csr_matrix(g) g.eliminate_zeros() max_n = np.diff(g.indptr).max() if max_n != max_neighs: raise ValueError(f"Expected `max_neighs={max_neighs}`, found node with `{max_n}` neighbors.") # get saturated/unsaturated nodes sat, sat_idx, unsat, unsat_idx = _compute_idxs(g, spatial, max_neighs, "l1") # get counts vals, genes = _extract_expression(adata, genes=genes, use_raw=use_raw, layer=layer) start = logg.info(f"Calculating sepal score for `{len(genes)}` genes using `{n_jobs}` core(s)") score = parallelize( _score_helper, collection=np.arange(len(genes)), extractor=np.hstack, use_ixs=False, n_jobs=n_jobs, backend=backend, show_progress_bar=show_progress_bar, )( vals=vals, max_neighs=max_neighs, n_iter=n_iter, sat=sat, sat_idx=sat_idx, unsat=unsat, unsat_idx=unsat_idx, dt=dt, thresh=thresh, ) key_added = "sepal_score" sepal_score = pd.DataFrame(score, index=genes, columns=[key_added]) if sepal_score[key_added].isna().any(): logg.warning("Found `NaN` in sepal scores, consider increasing `n_iter` to a higher value") sepal_score.sort_values(by=key_added, ascending=False, inplace=True) if copy: logg.info("Finish", time=start) return sepal_score _save_data(adata, attr="uns", key=key_added, data=sepal_score, time=start) def _score_helper( ixs: Sequence[int], vals: Union[spmatrix, np.ndarray], max_neighs: int, n_iter: int, sat: np.ndarray, sat_idx: np.ndarray, unsat: np.ndarray, unsat_idx: np.ndarray, dt: np.float_, thresh: np.float_, queue: Optional[SigQueue] = None, ) -> np.ndarray: if max_neighs == 4: fun = _laplacian_rect elif max_neighs == 6: fun = _laplacian_hex else: raise NotImplementedError(f"Laplacian for `{max_neighs}` neighbors is not yet implemented.") score, sparse = [], issparse(vals) for i in ixs: conc = vals[:, i].A.flatten() if sparse else vals[:, i].copy() time_iter = _diffusion(conc, fun, n_iter, sat, sat_idx, unsat, unsat_idx, dt=dt, thresh=thresh) score.append(dt * time_iter) if queue is not None: queue.put(Signal.UPDATE) if queue is not None: queue.put(Signal.FINISH) return np.array(score) @njit(fastmath=True) def _diffusion( conc: np.ndarray, laplacian: Callable[[np.ndarray, np.ndarray, np.ndarray], np.float_], n_iter: int, sat: np.ndarray, sat_idx: np.ndarray, unsat: np.ndarray, unsat_idx: np.ndarray, dt: float = 0.001, D: float = 1.0, thresh: float = 1e-8, ) -> np.float_: """Simulate diffusion process on a regular graph.""" sat_shape, conc_shape = sat.shape[0], conc.shape[0] entropy_arr = np.zeros(n_iter) prev_ent = 1.0 nhood = np.zeros(sat_shape) weights = np.ones(sat_shape) for i in range(n_iter): for j in range(sat_shape): nhood[j] = np.sum(conc[sat_idx[j]]) d2 = laplacian(conc[sat], nhood, weights) dcdt =
np.zeros(conc_shape)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals range = getattr(__builtins__, 'xrange', range) # end of py2 compatability boilerplate """Tests for `mass_ts` package.""" import os import pytest import numpy as np import mass_ts from mass_ts import _mass_ts as mts MODULE_PATH = mass_ts.__path__[0] def test_mass(): ts = np.array([1, 1, 1, 2, 1, 1, 4, 5]) query = np.array([2, 1, 1, 4]) actual = mts.mass(ts, query) desired = np.array([ 3.43092352e+00, 3.43092352e+00, 2.98023224e-08, 1.85113597e+00 ]) np.testing.assert_almost_equal(actual, desired) def test_mass_corr_coef(): ts =
np.array([1, 1, 1, 2, 1, 1, 4, 5])
numpy.array
import numpy as np import matplotlib.pyplot as plt from os import makedirs from os.path import isfile, exists from scipy.constants import mu_0 # from numba import njit def calcDipolMomentAnalytical(remanence, volume): """ Calculating the magnetic moment from the remanence in T and the volume in m^3""" m = remanence * volume / mu_0 # [A * m^2] return m def plotSimple(data, FOV, fig, ax, cbar=True, **args): """ Generate simple colorcoded plot of 2D grid data with contour. Returns axes object.""" im = ax.imshow(data, extent=FOV, origin="lower", **args) cs = ax.contour(data, colors="k", extent=FOV, origin="lower", linestyles="dotted") class nf(float): def __repr__(self): s = f"{self:.1f}" return f"{self:.0f}" if s[-1] == "0" else s cs.levels = [nf(val) for val in cs.levels] if plt.rcParams["text.usetex"]: fmt = r"%r" else: fmt = "%r" ax.clabel(cs, cs.levels, inline=True, fmt=fmt, fontsize=10) if cbar == True: fig.colorbar(im, ax=ax) return im def centerCut(field, axis): """return a slice of the data at the center for the specified axis""" dims = np.shape(field) return np.take(field, indices=int(dims[axis] / 2), axis=axis) def isHarmonic(field, sphericalMask, shellMask): """Checks if the extrema of the field are in the shell.""" fullField = np.multiply(field, sphericalMask) # [T] reducedField = np.multiply(field, shellMask) if int(ptpPPM(fullField)) > int(ptpPPM(reducedField)): print( "ptpPPM of field:", ptpPPM(fullField), "ptpPPM on surface", ptpPPM(reducedField), ) print("Masked field is NOT a harmonic function...") return False else: print( "ptpPPM of field:", ptpPPM(fullField), "ptpPPM on surface", ptpPPM(reducedField), ) print("Masked field is harmonic.") sizeSpherical = int(np.nansum(sphericalMask)) sizeShell = int(np.nansum(shellMask)) print( "Reduced size of field from {} to {} ({}%)".format( sizeSpherical, sizeShell, int(100 * sizeShell / sizeSpherical) ) ) return True def genQmesh(field, resolution): """Generate a mesh of quadratic coordinates""" mask = np.zeros(np.shape(field)) xAxis = np.linspace( -(np.size(field, 0) - 1) * resolution / 2, (np.size(field, 0) - 1) * resolution / 2, np.size(field, 0), ) yAxis = np.linspace( -(np.size(field, 1) - 1) * resolution / 2, (np.size(field, 1) - 1) * resolution / 2, np.size(field, 1), ) zAxis = np.linspace( -(np.size(field, 2) - 1) * resolution / 2, (np.size(field, 2) - 1) * resolution / 2, np.size(field, 2), ) xAxis, yAxis, zAxis = np.meshgrid(xAxis, yAxis, zAxis) xAxisSquare = np.square(xAxis) yAxisSquare = np.square(yAxis) zAxisSquare = np.square(zAxis) return mask, xAxisSquare, yAxisSquare, zAxisSquare def genMask( field, resolution, diameter=False, shellThickness=False, axis=False, debug=False ): """Generate a mask for a spherical shell""" mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if (shellThickness != False) and (diameter != False): if debug == True: print( "Creating shell mask. (resolution = {}, diameter = {}, shellThickness = {})".format( resolution, diameter, shellThickness ) ) print("The shell is added inside the sphere surface!") rAxisSquare = xAxisSquare + yAxisSquare + zAxisSquare innerRadiusSquare = (diameter / 2 - shellThickness) ** 2 outerRadiusSquare = (diameter / 2) ** 2 mask[ (rAxisSquare <= outerRadiusSquare) & (rAxisSquare >= innerRadiusSquare) ] = 1 mask[mask == 0] = "NaN" return mask def genSphericalMask(field, diameter, resolution): """generate spherical mask with >>diameter<< for a >>field<< and a given >>resolution<< """ mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) mask[xAxisSquare + yAxisSquare + zAxisSquare <= (diameter / 2) ** 2] = 1 mask[mask == 0] = "NaN" return mask def genSliceMask(field, diameter, resolution, axis="x"): """generate mask for a circular slice with >>diameter<< for a >>field<< and a given >>resolution<< Every input variable has to have the same unit (mm or m or ...) """ mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if axis == "z": mask[ (xAxisSquare + yAxisSquare <= (diameter / 2) ** 2) & (zAxisSquare == 0) ] = 1 if axis == "y": mask[ (xAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (yAxisSquare == 0) ] = 1 if axis == "x": mask[ (yAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (xAxisSquare == 0) ] = 1 mask[mask == 0] = "NaN" return mask def genEllipseSliceMask(field, a, b, resolution, axis="x"): """generate mask for a circulat slice with >>diameter<< for a >>field<< and a given >>resolution<< Every input variable has to have the same unit (mm or m or ...) """ # generate spherical mask mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if axis == "z": mask[ (xAxisSquare / (a / 2) ** 2 + yAxisSquare / (b / 2) ** 2 <= 1) & (zAxisSquare == 0) ] = 1 elif axis == "y": mask[ (xAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1) & (yAxisSquare == 0) ] = 1 elif axis == "x": mask[ (yAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1) & (xAxisSquare == 0) ] = 1 mask[mask == 0] = "NaN" return mask def ptpPPM(field): """Calculate the peak-to-peak homogeneity in ppm.""" return 1e6 * (np.nanmax(field) - np.nanmin(field)) / np.nanmean(field) def saveParameters(parameters, folder): """Saving a dict to the file parameters.npy . If the file exist it is beeing updated, if the parameters are not stored already. __future__: Fix usecase: Some parameters are in dict which are identical to the stored ones and some are new! """ try: print("Saving parameters to file...", end=" ") print("\x1b[6;30;42m", *parameters.keys(), "\x1b[0m", end=" ") oldParameters = loadParameters(folder) if parameters.items() <= oldParameters.items(): print(" ... the parameters are already saved and identical.") elif set(parameters).issubset( set(oldParameters) ): # here just keys are compared! print( " ...\x1b[6;37;41m" + " parameters are NOT saved. Other parameters are stored. Please cleanup! " + "\x1b[0m" ) else: oldParameters.update(parameters) np.save(folder + "/parameters", oldParameters) print(" ... added.") except FileNotFoundError or AttributeError: np.save(folder + "/parameters", parameters) oldParameters = parameters # print('The following parameters are currently stored:\n', *oldParameters.keys()) def loadParameters(folder): return np.load(folder + "/parameters.npy", allow_pickle=True).item() def loadParameter(key, folder): return loadParameters(folder)[key] def displayParameters(folder): print(loadParameters(folder)) def createShimfieldsShimRingV2( numMagnets=(32, 44), rings=4, radii=(0.074, 0.097), zRange=(-0.08, -0.039, 0.039, 0.08), resolution=1000, kValue=2, simDimensions=(0.04, 0.04, 0.04), numRotations=2, ): """ Calculating the magnetic field distributions for a single or multiple Halbach Rings. This has to be multiplied with the magnetic moment amplitude of a magnet to get the real distribution For every magnet position we set 4 different rotations: 0°, 45°, 90°, 135°. This has to be considered in the cost function otherwise two magnets are placed in one position resolution is the amount of sample points times data points in one dimension """ mu = mu_0 # positioning of the magnets in a circle if len(zRange) == 2: rings = np.linspace(zRange[0], zRange[1], rings) elif rings == len(zRange): rings = np.array(zRange) else: print("No clear definition how to place shims...") rotation_elements = np.linspace(0, np.pi, numRotations, endpoint=False) # create array to store field data count = 0 if type(numMagnets) in (list, tuple): totalNumMagnets = np.sum(numMagnets) * np.size(rings) * numRotations else: totalNumMagnets = numMagnets * np.size(rings) * numRotations * len(radii) print(totalNumMagnets, numMagnets, np.size(rings), np.size(numRotations)) shimFields = np.zeros( ( int(simDimensions[0] * resolution) + 1, int(simDimensions[1] * resolution) + 1, int(simDimensions[2] * resolution) + 1, 3, totalNumMagnets, ), dtype=np.float32, ) for rotation in rotation_elements: # create halbach array for row in rings: for i, radius in enumerate(radii): angle_elements = np.linspace( -np.pi, np.pi, numMagnets[i], endpoint=False ) for angle in angle_elements: print( "Simulating magnet " + str(count + 1) + " of " + str(totalNumMagnets), end="\t", ) position = (row, radius * np.cos(angle), radius * np.sin(angle)) print( "@ position {:2.2},\t {:2.2},\t {:2.2}".format(*position), end="\r", ) angle = kValue * angle + rotation dip_vec = [0, np.sin(angle), -np.cos(angle)] dip_vec = np.multiply(dip_vec, mu) dip_vec = np.divide(dip_vec, 4 * np.pi) # create mesh coordinates x = np.linspace( -simDimensions[0] / 2 + position[0], simDimensions[0] / 2 + position[0], int(simDimensions[0] * resolution) + 1, dtype=np.float32, ) y = np.linspace( -simDimensions[1] / 2 + position[1], simDimensions[1] / 2 + position[1], int(simDimensions[1] * resolution) + 1, dtype=np.float32, ) z = np.linspace( -simDimensions[2] / 2 + position[2], simDimensions[2] / 2 + position[2], int(simDimensions[2] * resolution) + 1, dtype=np.float32, ) x, y, z = np.meshgrid(x, y, z) vec_dot_dip = 3 * (y * dip_vec[1] + z * dip_vec[2]) # calculate the distance of each mesh point to magnet, optimised for speed # for improved memory performance move in to b0 calculations vec_mag = np.square(x) + np.square(y) + np.square(z) # if the magnet is in the origin, we divide by 0, therefore we set it to nan to # avoid getting and error. if this has any effect on speed just leave it out # as we do not care about the values outside of the FOV and even less inside the magnets vec_mag[(vec_mag <= 1e-15) & (vec_mag >= -1e-15)] = "NaN" vec_mag_3 = np.power(vec_mag, 1.5) vec_mag_5 = np.power(vec_mag, 2.5) del vec_mag # calculate contributions of magnet to total field, dipole always points in yz plane # so second term is zero for the x component shimFields[:, :, :, 0, count] = np.divide( np.multiply(x, vec_dot_dip), vec_mag_5 ) shimFields[:, :, :, 1, count] = np.divide( np.multiply(y, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[1], vec_mag_3) shimFields[:, :, :, 2, count] = np.divide( np.multiply(z, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[2], vec_mag_3) count += 1 print( "All magnets are simulated, the shim field array has shape:", np.shape(shimFields), "\t\t\t", ) return shimFields.swapaxes( 0, 1 ) # using i,j indexing as the other is too confusing.... def createShimfieldsDoubleRings( numMagnets=72, rings=1, radii=(0.115, 0.12), zRange=(0, 0), resolution=1000, kValue=2, simDimensions=(0.04, 0.04, 0.04), numRotations=4, ): """ Calculating the magnetic field distributions for a single or multiple Halbach Rings. This has to be multiplied with the magnetic moment amplitude of a magnet to get the real distribution For every magnet position we set 4 different rotations: 0°, 45°, 90°, 135°. This has to be considered in the cost function otherwise two magnets are placed in one position resolution is the amount of sample points times data points in one dimension """ mu = mu_0 # positioning of the magnets in a circle if len(zRange) == 2: rings = np.linspace(zRange[0], zRange[1], rings) elif rings == len(zRange): rings = np.array(zRange) else: print("No clear definition how to place shims...") rotation_elements = np.linspace(0, np.pi, numRotations, endpoint=False) # create array to store field data count = 0 totalNumMagnets = numMagnets * np.size(rings) * numRotations * len(radii) print(totalNumMagnets, numMagnets, np.size(rings), np.size(numRotations)) shimFields = np.zeros( ( int(simDimensions[0] * resolution) + 1, int(simDimensions[1] * resolution) + 1, int(simDimensions[2] * resolution) + 1, 3, totalNumMagnets, ), dtype=np.float32, ) for rotation in rotation_elements: angle_elements = np.linspace(-np.pi, np.pi, numMagnets, endpoint=False) # create halbach array for row in rings: for angle in angle_elements: for radius in radii: print( "Simulating magnet " + str(count + 1) + " of " + str(totalNumMagnets), end="\t", ) position = (row, radius * np.cos(angle), radius * np.sin(angle)) print( "@ position {:2.2},\t {:2.2},\t {:2.2}".format(*position), end="\r", ) angle = kValue * angle + rotation dip_vec = [0, np.sin(angle), -np.cos(angle)] dip_vec = np.multiply(dip_vec, mu) dip_vec = np.divide(dip_vec, 4 * np.pi) # create mesh coordinates x = np.linspace( -simDimensions[0] / 2 + position[0], simDimensions[0] / 2 + position[0], int(simDimensions[0] * resolution) + 1, dtype=np.float32, ) y = np.linspace( -simDimensions[1] / 2 + position[1], simDimensions[1] / 2 + position[1], int(simDimensions[1] * resolution) + 1, dtype=np.float32, ) z = np.linspace( -simDimensions[2] / 2 + position[2], simDimensions[2] / 2 + position[2], int(simDimensions[2] * resolution) + 1, dtype=np.float32, ) x, y, z = np.meshgrid(x, y, z) vec_dot_dip = 3 * (y * dip_vec[1] + z * dip_vec[2]) # calculate the distance of each mesh point to magnet, optimised for speed # for improved memory performance move in to b0 calculations vec_mag = np.square(x) + np.square(y) + np.square(z) # if the magnet is in the origin, we divide by 0, therefore we set it to nan to # avoid getting and error. if this has any effect on speed just leave it out # as we do not care about the values outside of the FOV and even less inside the magnets vec_mag[(vec_mag <= 1e-15) & (vec_mag >= -1e-15)] = "NaN" vec_mag_3 = np.power(vec_mag, 1.5) vec_mag_5 = np.power(vec_mag, 2.5) del vec_mag # calculate contributions of magnet to total field, dipole always points in yz plane # so second term is zero for the x component shimFields[:, :, :, 0, count] = np.divide( np.multiply(x, vec_dot_dip), vec_mag_5 ) shimFields[:, :, :, 1, count] = np.divide( np.multiply(y, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[1], vec_mag_3) shimFields[:, :, :, 2, count] = np.divide( np.multiply(z, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[2], vec_mag_3) count += 1 print( "All magnets are simulated, the shim field array has shape:", np.shape(shimFields), "\t\t\t", ) return shimFields.swapaxes( 0, 1 ) # using i,j indexing as the other is too confusing.... def createShimfields( numMagnets=72, rings=1, radius=0.115, zRange=(0, 0), resolution=1000, kValue=2, simDimensions=(0.04, 0.04, 0.04), numRotations=4, ): """ Calculating the magnetic field distributions for a single or multiple Halbach Rings. This has to be multiplied with the magnetic moment amplitude of a magnet to get the real distribution For every magnet position we set 4 different rotations: 0°, 45°, 90°, 135°. This has to be considered in the cost function otherwise two magnets are placed in one position resolution is the amount of sample points times data points in one dimension """ mu_0 = mu # positioning of the magnets in a circle if len(zRange) == 2: rings = np.linspace(zRange[0], zRange[1], rings) elif rings == len(zRange): rings = np.array(zRange) else: print("No clear definition how to place shims...") rotation_elements = np.linspace(0, np.pi, numRotations, endpoint=False) # create array to store field data count = 0 totalNumMagnets = numMagnets * np.size(rings) * numRotations print(totalNumMagnets, numMagnets, np.size(rings), np.size(numRotations)) shimFields = np.zeros( ( int(simDimensions[0] * resolution) + 1, int(simDimensions[1] * resolution) + 1, int(simDimensions[2] * resolution) + 1, 3, totalNumMagnets, ), dtype=np.float32, ) for rotation in rotation_elements: angle_elements = np.linspace(-np.pi, np.pi, numMagnets, endpoint=False) # create halbach array for row in rings: for angle in angle_elements: print( "Simulating magnet " + str(count + 1) + " of " + str(totalNumMagnets), end="\t", ) position = (row, radius * np.cos(angle), radius * np.sin(angle)) print( "@ position {:2.2},\t {:2.2},\t {:2.2}".format(*position), end="\r" ) angle = kValue * angle + rotation dip_vec = [0, np.sin(angle), -np.cos(angle)] dip_vec = np.multiply(dip_vec, mu) dip_vec = np.divide(dip_vec, 4 * np.pi) # create mesh coordinates x = np.linspace( -simDimensions[0] / 2 + position[0], simDimensions[0] / 2 + position[0], int(simDimensions[0] * resolution) + 1, dtype=np.float32, ) y = np.linspace( -simDimensions[1] / 2 + position[1], simDimensions[1] / 2 + position[1], int(simDimensions[1] * resolution) + 1, dtype=np.float32, ) z = np.linspace( -simDimensions[2] / 2 + position[2], simDimensions[2] / 2 + position[2], int(simDimensions[2] * resolution) + 1, dtype=np.float32, ) x, y, z = np.meshgrid(x, y, z) vec_dot_dip = 3 * (y * dip_vec[1] + z * dip_vec[2]) # calculate the distance of each mesh point to magnet, optimised for speed # for improved memory performance move in to b0 calculations vec_mag = np.square(x) + np.square(y) + np.square(z) # if the magnet is in the origin, we divide by 0, therefore we set it to nan to # avoid getting and error. if this has any effect on speed just leave it out # as we do not care about the values outside of the FOV and even less inside the magnets vec_mag[(vec_mag <= 1e-15) & (vec_mag >= -1e-15)] = "NaN" vec_mag_3 = np.power(vec_mag, 1.5) vec_mag_5 = np.power(vec_mag, 2.5) del vec_mag # calculate contributions of magnet to total field, dipole always points in yz plane # so second term is zero for the x component shimFields[:, :, :, 0, count] = np.divide( np.multiply(x, vec_dot_dip), vec_mag_5 ) shimFields[:, :, :, 1, count] = np.divide( np.multiply(y, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[1], vec_mag_3) shimFields[:, :, :, 2, count] = np.divide( np.multiply(z, vec_dot_dip), vec_mag_5 ) - np.divide(dip_vec[2], vec_mag_3) count += 1 print( "All magnets are simulated, the shim field array has shape:", np.shape(shimFields), "\t\t\t", ) return shimFields.swapaxes( 0, 1 ) # using i,j indexing as the other is too confusing.... # @njit # this can increase calculation time significantly # # the individual in the genetic algorithm needs to be changed to # # a numpy array, check "One Max Problem: Using Numpy" in the deap documentation! def dna2vector(dna, dipolMoments, numRotations, numMagnets): """Casts structured *dna to shim *vector*. The *dna* is structured each element of the dna vector stands for one magnet position and its value represents the type. The values of each element are structured in the following way: 0 -------------> No magnet, 1 -------------> Magnet of type 1 rotated by 0° ... 2*rotations ---> Magnet of type 1 rotated to the last angle before 360° 2*rotations+1 -> Magnet of type 2 rotated by 0° ... *(Type x stands for Magnet with dipol moment x) The resulting *vector* will contain the dipol strengths as values and the rotations will be written successively, meaning first all magnets / dipol strengths with 0° deviation from the Halbach Dipole orientation will be written, then the first rotation and so on... *dipolMoments* is a list of all dipole moments ordered in the same order as the dna. This list should only contain positive values! *numRotations* is the number of rotations of the magnets possible in one half circle, so there are in total 2*rotations possible for each magnet. *numMagnets* is the number of possible magnets to be placed. """ vector = [0] * numMagnets * numRotations # np.zeros((len(dna))*numRotations) for magnetPos, gene in enumerate(dna): if gene != 0: magnetType, rotation = divmod((gene - 1), (2 * numRotations)) if rotation >= numRotations: sign = -1 rotation = rotation % numRotations else: sign = 1 index = int(magnetPos + rotation * numMagnets) vector[index] = sign * dipolMoments[magnetType] return vector def saveResults(parameters, shimmedField, folder): counter = 0 filename = folder + "/results{}.npy" while isfile(filename.format(counter)): counter += 1 filename = filename.format(counter) np.save(filename, parameters) np.save(folder + "/shimmedField{}".format(counter), shimmedField) def initSimulation(name): if not exists(name): makedirs(name) print("New folder", name, "created.") def importComsol(filename): """Imports 3D Grid Data from Comsol Multiphysics Export the data with Comsol in the following manner: Expressions: Bx, By, Bz, Bmean Output: File type: Text Data format: Spreadsheet For "Points to evaluate in" you have two options: a) Grid: use range(start, step, end) with the same value of step for each direction b) Regular Grid: The number of points for each dimension should be such that the resolution is equal in each direction """ raw = np.loadtxt(filename, skiprows=9, delimiter=",") x = raw[:, 0] y = raw[:, 1] z = raw[:, 2] Bx = raw[:, 3] By = raw[:, 4] Bz = raw[:, 5] Bnorm = raw[:, 6] def getRes(x): res = np.abs(np.unique(x)[1] - np.unique(x)[0]) return res def getShift(x): shift = x[np.argmin(np.abs(x))] return shift res = (getRes(x), getRes(y), getRes(z)) shift = (getShift(x), getShift(y), getShift(z)) xInd = np.array((x - shift[0]) / res[0], dtype=int) yInd = np.array((y - shift[1]) / res[1], dtype=int) zInd = np.array((z - shift[2]) / res[2], dtype=int) xInd -= np.min(xInd) yInd -= np.min(yInd) zInd -= np.min(zInd) dims = (np.unique(x).shape[0],
np.unique(y)
numpy.unique
import numpy as np import matplotlib.pyplot as plt def create_donut(): N = 1000 Inner_R = 10 Outer_R = 20 print(N) #Distance from the origin = radius + random normal #Angle theta is uniformly distributed between (0, 2pi) R1 = np.random.randn(N) + Inner_R theta = 2*np.pi*np.random.random(N) X_inner = np.concatenate([[R1 * np.cos(theta)], [R1 * np.sin(theta)]]).T #Create concentric circle inner R2 =
np.random.randn(N)
numpy.random.randn
""" This module has one function named calculate() that uses Numpy to output the mean, variance, standard deviation, max, min, and sum of the rows, columns, and elements in a 3 x 3 matrix. The input of the function is a list containing 9 digits. The function converts the list into a 3 x 3 Numpy array, and then returns a dictionary containing the mean, variance, standard deviation, max, min, and sum along both axes and for the flattened matrix. """ from typing import Union import numpy as np def calculate(num_list: list) -> dict[str, list[list[Union[int, float]]]]: """Calculate the mean, variance, standard deviation, max, min and sum along both axes and for a flattened matrix. The input list must have 9 elements. Not more nor less. Args: num_list (list): Input list of numbers for the matrix. Raises: ValueError: Raise Value Error if the elements are not exactly 9 elements. Returns: dict[str, list[list[Union[int, float]]]]: Dictionary with all calculations. """ if len(num_list) != 9: raise ValueError("List must contain nine numbers.") num_matrix: np.array = np.array(num_list).reshape((3, 3)) calculations: dict[str, list[list[Union[int, float]]]] = { "mean": [ np.mean(num_matrix, axis=0).tolist(), np.mean(num_matrix, axis=1).tolist(), np.mean(num_matrix.tolist()), ], "variance": [ np.var(num_matrix, axis=0).tolist(), np.var(num_matrix, axis=1).tolist(), np.var(num_matrix.tolist()), ], "standard deviation": [ np.std(num_matrix, axis=0).tolist(),
np.std(num_matrix, axis=1)
numpy.std
import os import fire import numpy as np import torch from torch import optim from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms from libs.Visualize import Visualize from models.VAE import VAE class Main(): def __init__(self, z_dim): """Constructor Args: z_dim (int): Dimensions of the latent variable. Returns: None. """ self.z_dim = z_dim self.dataloader_train = None self.dataloader_valid = None self.dataloader_test = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = VAE(self.z_dim).to(self.device) self.writer = SummaryWriter(log_dir="./logs") self.lr = 0.001 self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr) self.num_max_epochs = 1000 self.num_no_improved = 0 self.num_batch_train = 0 self.num_batch_valid = 0 self.loss_valid = 10 ** 7 # Initialize with a large value self.loss_valid_min = 10 ** 7 # Initialize with a large value self.Visualize = Visualize(self.z_dim, self.dataloader_test, self.model, self.device) def createDirectories(self): """Create directories for the tensorboard and learned model Args: None. Returns: None. """ if not os.path.exists("./logs"): os.makedirs("./logs") if not os.path.exists("./params"): os.makedirs("./params") def createDataLoader(self): """Download MNIST and convert it to data loaders Args: None. Returns: None. """ transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.view(-1))]) # Preprocessing for MNIST images dataset_train_valid = datasets.MNIST("./", train=True, download=True, transform=transform) # Separate train data and test data to get a dataset dataset_test = datasets.MNIST("./", train=False, download=True, transform=transform) # Use 20% of train data as validation data size_train_valid = len(dataset_train_valid) # 60000 size_train = int(size_train_valid * 0.8) # 48000 size_valid = size_train_valid - size_train # 12000 dataset_train, dataset_valid = torch.utils.data.random_split(dataset_train_valid, [size_train, size_valid]) # Create dataloaders from the datasets self.dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=1000, shuffle=True) self.dataloader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=1000, shuffle=False) self.dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1000, shuffle=False) self.Visualize.dataloader_test = self.dataloader_test def train_batch(self): """Batch-based learning for training data Args: None. Returns: None. """ self.model.train() for x, _ in self.dataloader_train: lower_bound, _, _ = self.model(x, self.device) loss = -sum(lower_bound) self.model.zero_grad() loss.backward() self.optimizer.step() self.writer.add_scalar("Loss_train/KL", -lower_bound[0].cpu().detach().numpy(), self.num_iter + self.num_batch_train) self.writer.add_scalar("Loss_train/Reconst", -lower_bound[1].cpu().detach().numpy(), self.num_iter + self.num_batch_train) self.num_batch_train += 1 self.num_batch_train -= 1 def valid_batch(self): """Batch-based learning for validating data Args: None. Returns: None. """ loss = [] self.model.eval() for x, _ in self.dataloader_valid: lower_bound, _, _ = self.model(x, self.device) loss.append(-sum(lower_bound).cpu().detach().numpy()) self.writer.add_scalar("Loss_valid/KL", -lower_bound[0].cpu().detach().numpy(), self.num_iter + self.num_batch_valid) self.writer.add_scalar("Loss_valid/Reconst", -lower_bound[1].cpu().detach().numpy(), self.num_iter + self.num_batch_valid) self.num_batch_valid += 1 self.num_batch_valid -= 1 self.loss_valid =
np.mean(loss)
numpy.mean
#!/usr/bin/env python # -*- coding: utf-8 -*- # ######################################################################### # Copyright (c) 2016, UChicago Argonne, LLC. All rights reserved. # # # # Copyright 2016. UChicago Argonne, LLC. This software was produced # # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # # U.S. Department of Energy. The U.S. Government has rights to use, # # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # # modified to produce derivative works, such modified software should # # be clearly marked, so as not to confuse it with the version available # # from ANL. # # # # Additionally, redistribution and use in source and binary forms, with # # or without modification, are permitted provided that the following # # conditions are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of UChicago Argonne, LLC, Argonne National # # Laboratory, ANL, the U.S. Government, nor the names of its # # contributors may be used to endorse or promote products derived # # from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # ######################################################################### """Defines methods for reconstructing data from the :mod:`.acquisition` module. The algorithm module contains methods for reconstructing tomographic data including gridrec, SIRT, ART, and MLEM. These methods can be used as benchmarks for custom reconstruction methods or as an easy way to access reconstruction algorithms for developing other methods such as noise correction. .. note:: Using `tomopy <https://github.com/tomopy/tomopy>`_ is recommended instead of these functions for heavy computation. .. moduleauthor:: <NAME> <<EMAIL>> """ import logging import numpy as np from xdesign.acquisition import thv_to_zxy logger = logging.getLogger(__name__) __author__ = "<NAME>" __copyright__ = "Copyright (c) 2016, UChicago Argonne, LLC." __docformat__ = 'restructuredtext en' __all__ = ['art', 'sirt', 'mlem', 'update_progress'] def update_progress(progress): """Draw a process bar in the terminal. Parameters ------------- process : float The percentage completed e.g. 0.10 for 10% """ percent = progress * 100 nbars = int(progress * 10) print( '\r[{0}{1}] {2:.2f}%'.format('#' * nbars, ' ' * (10 - nbars), percent), end='' ) if progress == 1: print('') def get_mids_and_lengths(x0, y0, x1, y1, gx, gy): """Return the midpoints and intersection lengths of a line and a grid. Parameters ---------- x0,y0,x1,y1 : float Two points which define the line. Points must be outside the grid gx,gy : :py:class:`np.array` Defines positions for the gridlines Return ------ xm,ym : :py:class:`np.array` Coordinates along the line within each intersected grid pixel. dist : :py:class:`np.array` Lengths of the line segments crossing each pixel """ # avoid upper-right boundary errors if (x1 - x0) == 0: x0 += 1e-6 if (y1 - y0) == 0: y0 += 1e-6 # vector lengths (ax, ay) ax = (gx - x0) / (x1 - x0) ay = (gy - y0) / (y1 - y0) # edges of alpha (a0, a1) ax0 = min(ax[0], ax[-1]) ax1 = max(ax[0], ax[-1]) ay0 = min(ay[0], ay[-1]) ay1 = max(ay[0], ay[-1]) a0 = max(max(ax0, ay0), 0) a1 = min(min(ax1, ay1), 1) # sorted alpha vector cx = (ax >= a0) & (ax <= a1) cy = (ay >= a0) & (ay <= a1) alpha = np.sort(np.r_[ax[cx], ay[cy]]) # lengths xv = x0 + alpha * (x1 - x0) yv = y0 + alpha * (y1 - y0) lx = np.ediff1d(xv) ly = np.ediff1d(yv) dist = np.sqrt(lx**2 + ly**2) # indexing mid = alpha[:-1] + np.ediff1d(alpha) / 2. xm = x0 + mid * (x1 - x0) ym = y0 + mid * (y1 - y0) return xm, ym, dist def art( gmin, gsize, data, theta, h, init, niter=10, weights=None, save_interval=None ): """Reconstruct data using ART algorithm. :cite:`Gordon1970`.""" assert data.size == theta.size == h.size, "theta, h, must be" \ "the equal lengths" data = data.ravel() theta = theta.ravel() h = h.ravel() if weights is None: weights = np.ones(data.shape) if save_interval is None: save_interval = niter archive = list() # Convert from probe to global coords srcx, srcy, detx, dety = thv_to_zxy(theta, h) # grid frame (gx, gy) sx, sy = init.shape gx = np.linspace(gmin[0], gmin[0] + gsize[0], sx + 1, endpoint=True) gy = np.linspace(gmin[1], gmin[1] + gsize[1], sy + 1, endpoint=True) midlengths = dict() # cache the result of get_mids_and_lengths for n in range(niter): if n % save_interval == 0: archive.append(init.copy()) # update = np.zeros(init.shape) # nupdate = np.zeros(init.shape, dtype=np.uint) update_progress(n / niter) for m in range(data.size): # get intersection locations and lengths if m in midlengths: xm, ym, dist = midlengths[m] else: xm, ym, dist = get_mids_and_lengths( srcx[m], srcy[m], detx[m], dety[m], gx, gy ) midlengths[m] = (xm, ym, dist) # convert midpoints of line segments to indices ix = np.floor(sx * (xm - gmin[0]) / gsize[0]).astype('int') iy = np.floor(sy * (ym - gmin[1]) / gsize[1]).astype('int') # simulate acquistion from initial guess dist2 = np.dot(dist, dist) if dist2 != 0: ind = (dist != 0) & (0 <= ix) & (ix < sx) \ & (0 <= iy) & (iy < sy) sim = np.dot(dist[ind], init[ix[ind], iy[ind]]) upd = np.true_divide((data[m] - sim), dist2) init[ix[ind], iy[ind]] += dist[ind] * upd archive.append(init.copy()) update_progress(1) if save_interval == niter: return init else: return archive def sirt( gmin, gsize, data, theta, h, init, niter=10, weights=None, save_interval=None ): """Reconstruct data using SIRT algorithm. :cite:`Gilbert1972`.""" assert data.size == theta.size == h.size, "theta, h, must be" \ "the equal lengths" data = data.ravel() theta = theta.ravel() h = h.ravel() if weights is None: weights = np.ones(data.shape) if save_interval is None: save_interval = niter archive = list() # Convert from probe to global coords srcx, srcy, detx, dety = thv_to_zxy(theta, h) # grid frame (gx, gy) sx, sy = init.shape gx = np.linspace(gmin[0], gmin[0] + gsize[0], sx + 1, endpoint=True) gy = np.linspace(gmin[1], gmin[1] + gsize[1], sy + 1, endpoint=True) midlengths = dict() # cache the result of get_mids_and_lengths for n in range(niter): if n % save_interval == 0: archive.append(init.copy()) update = np.zeros(init.shape) nupdate = np.zeros(init.shape, dtype=np.uint) update_progress(n / niter) for m in range(data.size): # get intersection locations and lengths if m in midlengths: xm, ym, dist = midlengths[m] else: xm, ym, dist = get_mids_and_lengths( srcx[m], srcy[m], detx[m], dety[m], gx, gy ) midlengths[m] = (xm, ym, dist) # convert midpoints of line segments to indices ix = np.floor(sx * (xm - gmin[0]) / gsize[0]).astype('int') iy = np.floor(sy * (ym - gmin[1]) / gsize[1]).astype('int') # simulate acquistion from initial guess dist2 = np.dot(dist, dist) if dist2 != 0: ind = (dist != 0) & (0 <= ix) & (ix < sx) \ & (0 <= iy) & (iy < sy) sim = np.dot(dist[ind], init[ix[ind], iy[ind]]) upd = np.true_divide((data[m] - sim), dist2) update[ix[ind], iy[ind]] += dist[ind] * upd nupdate[ix[ind], iy[ind]] += 1 nupdate[nupdate == 0] = 1 init += np.true_divide(update, nupdate) archive.append(init.copy()) update_progress(1) if save_interval == niter: return init else: return archive def mlem(gmin, gsize, data, theta, h, init, niter=10): """Reconstruct data using MLEM algorithm.""" assert data.size == theta.size == h.size, "theta, h, must be" \ "the equal lengths" data = data.ravel() theta = theta.ravel() h = h.ravel() # if weights is None: # weights = np.ones(data.shape) # if save_interval is None: # save_interval = niter # archive = list() # Convert from probe to global coords srcx, srcy, detx, dety = thv_to_zxy(theta, h) # grid frame (gx, gy) sx, sy = init.shape gx =
np.linspace(gmin[0], gmin[0] + gsize[0], sx + 1, endpoint=True)
numpy.linspace
from datasets import register_dataset from datasets.reid_dataset import ReidDataset from datasets.pose_dataset import PoseDataset from builders import transform_builder import os import numpy as np from datasets.utils import HeaderItem from datasets.lip import make_joint_info from datasets.reid.market_seg import make_seg_info from settings import Config from PIL import Image import csv from datasets.reid_dataset import make_pid_dataset def make_reid_annotated(csv_file, data_dir, seg_dir=None, attribute_file=None, pose_file=None, pid_limit=None): data, header, info = make_pid_dataset(csv_file, data_dir, pid_limit) if pose_file is not None: joint_info = make_joint_info() info['joint_info'] = joint_info info['num_joints'] = joint_info.n_joints header['coords'] = HeaderItem((joint_info.n_joints, 2), np.ndarray((16, 2), dtype=np.float32)), with open(pose_file, 'r') as f: reader = csv.reader(f, delimiter=',') length = sum(1 for row in reader) f.seek(0) if length == len(data): for d, row in zip(data, reader): row = list(map(float, row)) coords = np.asarray(row).reshape(16, 2) d['coords'] = coords d['head_size'] = np.linalg.norm(coords[joint_info.ids.b_head] - coords[joint_info.ids.b_neck]) else: data_iter = iter(data) d = next(data_iter) for idx, row in enumerate(reader): if idx == d['row_idx']: row = list(map(float, row)) coords = np.asarray(row).reshape(16, 2) d['coords'] = coords d['head_size'] =
np.linalg.norm(coords[joint_info.ids.b_head] - coords[joint_info.ids.b_neck])
numpy.linalg.norm
#!/usr/bin/env python # # Copyright (C) 2017 - Massachusetts Institute of Technology (MIT) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Module used to simulate cloud code is there a maximum amount to the number density of certain gas before it condense out? """ import os import sys import math import cmath import numpy as np import scipy.special as special #import matplotlib.pyplot as plt class Cloud_Simulator(): """ Placeholder base class for all cloud models... """ def __init__(self): pass class Simple_Gray_Cloud_Simulator(Cloud_Simulator): """ Well, Americans call it "Gray", English call it "Grey". Simplistic Cloud model that assumed a cloud deck at a given pressure It's assumed the same cloudiness (optical depth) below the cloud deck It's also assumed that the cloud are wavelength/wavenumber independent. """ def __init__(self, cloud_deck_pressure=100, cloud_absorption_amount=0.1): self.deck = cloud_deck_pressure self.absorb = cloud_absorption_amount def get_cloud_absorption(self, nu, pressure, wn=True): if pressure >= self.deck: return np.ones(len(nu))*self.absorb else: return np.zeros(len(nu)) class Complex_Gray_Cloud_Simulator(Cloud_Simulator): """ A place for testing some more interesting gray clouds, not very physical. Precursor to implementing a more physical model in the future. A more complex varient of the simple gray that could potentially have 1. varying absorption (optical depth) 2. multiple cloud decks and cloud truncate 3. wavelength/wavenumber dependent a. single/multiple shapes? profiles? 4. scattering due to different objects in the sky? 5. asymetric cloud? this could be a bit difficult to implement 6. time varying cloud? this would need a dynamic transit simulation... 7. different output methods? """ def __init__(self, cloud_deck_pressure=[100,10000], cloud_absorption_amount=[0.1,1], cloud_truncate_pressure = 100000): self.deck = cloud_deck_pressure self.absorb = cloud_absorption_amount self.truncate = cloud_truncate_pressure def simulate_profile(self, profile): """ Let's start with some gaussian profiles? """ pass def get_cloud_cross_section(self): "Placeholder" pass def get_cloud_absorption(self, nu, pressure, wn=True): """ returns cloud absorption """ if pressure >= self.deck: return np.ones(len(nu))*self.absorb else: return np.zeros(len(nu)) class Physical_Cloud_Simulator(): def __init__(self,lambd,radius): self.lambd = lambd self.radius = radius if type(self.radius) != type([]): self.radius = [self.radius] def mie_abcd(self,m,x): nmax=round(2+x+(4*x**(1./3.))) i = 1.0j n = np.arange(1,nmax+1,1) nu = (n+0.5) z = np.multiply(m,x) m2 = np.multiply(m,m) sqx = np.sqrt(0.5*(math.pi)/x) sqz = np.sqrt(0.5*(math.pi)/z) bx = (np.multiply((special.jv(nu,x)),sqx)) bz = np.multiply((special.jv(nu,z)),sqz) yx = np.multiply((special.yv(nu,x)),sqx) hx = bx+(i*yx) sinx = np.array((cmath.sin(x))/x) b1x = np.append(sinx,bx[0:int(nmax-1)]) sinz = (cmath.sin(z))/z b1z = np.append(sinz,bz[0:int(nmax-1)]) cosx = np.array((cmath.cos(x))/x) y1x = np.append(-cosx,yx[0:int(nmax-1)]) h1x = b1x+(i*y1x) ax = (np.multiply(x,b1x))-(np.multiply(n,bx)) az = (np.multiply(z,b1z))-(np.multiply(n,bz)) ahx = (np.multiply(x,h1x))-(np.multiply(n,hx)) m2bz = np.multiply(m2,bz) antop = (np.multiply(m2bz,ax))-np.multiply(bx,az) anbot = (m2*bz*ahx)-(hx*az) an = np.true_divide(antop,anbot) bn = (bz*ax-bx*az)/(bz*ahx-hx*az) cn = (bx*ahx-hx*ax)/(bz*ahx-hx*az) dn = m*(bx*ahx-hx*ax)/(m2*bz*ahx-hx*az) return np.array([an, bn, cn, dn]) def Mie(self,m,x): if np.any(x)==0: #To avoid a singularity at x=0 return 0,0,0,0 nmax=round(2+x+(4*x**(1./3.))) n1=int(nmax-1); n = np.arange(1,nmax+1,1) cn=2*n+1 c1n=np.true_divide((np.multiply(n,(n+2))),(n+1)) c2n=np.true_divide((np.true_divide(cn,n)),(n+1)) x2=x*x f=self.mie_abcd(m,x) anp=(f[0,:]).real anpp=(f[0,:]).imag bnp=(f[1,:]).real bnpp=(f[1,:]).imag g1=np.empty([4,int(nmax)]) # displaced numbers used fo g1[0,0:int(n1)]=anp[1:int(nmax)] # asymmetry parameter, p. 120 g1[1,0:int(n1)]=anpp[1:int(nmax)] g1[2,0:n1]=bnp[1:int(nmax)] g1[3,0:n1]=bnpp[1:int(nmax)] dn=np.multiply(cn,(anp+bnp)) q=sum(dn); qext=2*q/x2; en=np.multiply(cn,(np.multiply(anp,anp)+ np.multiply(anpp,anpp)+
np.multiply(bnp,bnp)
numpy.multiply
# coding: utf-8 import numpy as np # Libraries necessary for visualizing import seaborn as sns import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import warnings from scipy.signal import argrelmax,argrelmin import matplotlib.font_manager as fm import copy from data_reader import DataReader import os from coordinate_transform import * class forceAnalyzer(DataReader): def __init__(self,relative_data_folder,filenames,plate_rotation=20): super().__init__(relative_data_folder,filenames,skiprows=6, column_name=['Fx','Fy','Fz','Mx','My','Mz','Syncro','ExtIn1','ExtIn2']) self.plate_rotation = plate_rotation self.set_analysis_target(0) def set_analysis_target(self, analysis_id=0, scale=2.0): self.extract_syncronized_data(analysis_id=analysis_id) self.get_first_landing_point(analysis_id=analysis_id) self.max_peek=[] self.get_max_peek(analysis_id=analysis_id) self.modify_force_plate_raw(analysis_id=analysis_id, scale=scale) self.get_action_point(analysis_id=analysis_id, threshold=40) def extract_syncronized_data(self,analysis_id=0): df = self.df_list[analysis_id] df_copy = df[df.ExtIn1 == 1].copy() df_copy['time'] = df_copy['time'].values - df_copy['time'].values[0] self.df_list[analysis_id] = df_copy self.df_list[analysis_id] = self.df_list[analysis_id].drop(['Syncro','ExtIn1','ExtIn2'], axis=1) def moving_filter(self,x,window_size,min_periods): return pd.Series(x).rolling(window=window_size, min_periods=min_periods, center=True).mean().values def EMA(self,x, alpha): return pd.Series(x).ewm(alpha=alpha).mean() def get_peek_action_point(self,analysis_id=0): return [self.df_list[analysis_id]['action_x'].values[self.max_peek], self.df_list[analysis_id]['action_y'].values[self.max_peek]] def get_peek_action_point_for_converting(self): xs,ys =self.get_peek_action_point() points = [] for x,y in zip(xs,ys): points.append([x,y,0]) return points def get_peek_action_point_for_trans(self): xs,ys =self.get_peek_action_point() points = [] for x,y in zip(xs,ys): points.append([x,y,0.,1.]) return points def getNearestValue(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値 """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 idx = np.abs(array - num).argmin() return array[idx] def get_max_peek(self,threshold=5.,analysis_id=0): force_plate_data=self.df_list[analysis_id] self.max_peek = list(argrelmax(force_plate_data['Fz'].values,order=1000)[0]) tmp = copy.deepcopy(self.max_peek) for i in tmp: if force_plate_data['Fz'].values[i] < threshold: self.max_peek.remove(i) def get_peek_time(self,analysis_id=0): return self.df_list[analysis_id]['time'].values[self.max_peek] def get_first_landing_point(self, analysis_id=0): force_plate_data = self.df_list[analysis_id].copy() x_max_peek = argrelmax(force_plate_data['Fz'].values,order=50) x_min_peek = argrelmin(force_plate_data['Fz'].values,order=100) # print(x_min_peek,x_max_peek) offset_peek_list= [] for value in x_max_peek[0]: if abs(force_plate_data['Fz'].values[value] - force_plate_data['Fz'].values[self.getNearestValue(x_min_peek[0],value)]) > 100: offset_peek_list.append(value) # print(offset_peek_list) self.first_landing_point = offset_peek_list[0] print('first landing point is ',self.first_landing_point) def export_from_first_landing_point(self, analysis_id=0): force_plate_data = self.df_list[analysis_id].copy() self.get_first_landing_point(analysis_id=analysis_id) force_cutted_df = force_plate_data[self.first_landing_point:len(force_plate_data)] # print(force_cutted_df) # force_cutted_df.plot(y='Fz', figsize=(16,4), alpha=0.5) force_cutted_df.to_csv('force_plate_cutted_data_a6.csv') def get_action_point(self,analysis_id=0,scale=1., threshold=20): Mx = self.df_list[analysis_id]['Mx'].values*scale My = self.df_list[analysis_id]['My'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale tmp_action_x = [] tmp_action_y = [] for mx,my,f in zip(Mx,My,Fz): if abs(f) > threshold: tmp_action_x.append(my/f) tmp_action_y.append(mx/f) else: tmp_action_x.append(-1) tmp_action_y.append(-1) self.action_x = np.array(tmp_action_x) self.action_y = np.array(tmp_action_y) self.df_list[analysis_id]['action_x'] = self.action_x self.df_list[analysis_id]['action_y'] = self.action_y def modify_force_plate_raw(self, analysis_id=0, scale=1.0): Fx = self.df_list[analysis_id]['Fx'].values*scale Fy = self.df_list[analysis_id]['Fy'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale Mx = self.df_list[analysis_id]['Mx'].values*scale My = self.df_list[analysis_id]['My'].values*scale Mz = self.df_list[analysis_id]['Mz'].values*scale self.df_list[analysis_id]['Fx'] = Fx self.df_list[analysis_id]['Fy'] = Fy self.df_list[analysis_id]['Fz'] = Fz self.df_list[analysis_id]['Mx'] = Mx self.df_list[analysis_id]['My'] = My self.df_list[analysis_id]['Mz'] = Mz def add_motion_coordinate_action_point(self, simultaneous_trans_matrix,analysis_id=0): motion_coordinate_action_point_x = [] motion_coordinate_action_point_y = [] motion_coordinate_action_point_z = [] for x, y in zip(self.action_x, self.action_y): if x == -1 or y == -1: motion_coordinate_action_point_x.append(0) motion_coordinate_action_point_y.append(0) motion_coordinate_action_point_z.append(0) else: arr = np.array([x, y, 0., 1.]) motion_pos = np.dot(simultaneous_trans_matrix, arr) motion_coordinate_action_point_x.append(motion_pos[0]) motion_coordinate_action_point_y.append(motion_pos[1]) motion_coordinate_action_point_z.append(motion_pos[2]) self.df_list[analysis_id]['motion_coordinate_action_point_x'] = motion_coordinate_action_point_x self.df_list[analysis_id]['motion_coordinate_action_point_y'] = motion_coordinate_action_point_y self.df_list[analysis_id]['motion_coordinate_action_point_z'] = motion_coordinate_action_point_z def add_corrected_force_data(self,analysis_id=0, scale=1.0): corrected_Fx = [] corrected_Fy = [] corrected_Fz = [] Fx = self.df_list[analysis_id]['Fx'].values*scale Fy = self.df_list[analysis_id]['Fy'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale for fx, fy, fz in zip(Fx,Fy,Fz): arr = np.array([fx, fy, fz]) corrected_force = np.dot(get_rotation_x(deg2rad(self.plate_rotation)),arr) corrected_Fx.append(corrected_force[0]) corrected_Fy.append(corrected_force[1]) corrected_Fz.append(corrected_force[2]) self.df_list[analysis_id]['corrected_Fx'] = corrected_Fx self.df_list[analysis_id]['corrected_Fy'] = corrected_Fy self.df_list[analysis_id]['corrected_Fz'] = corrected_Fz def save_data(self, save_dir, filename, analysis_id=0, update=False): if not os.path.isdir(save_dir+'synchro'): print('Creating new save folder ...') print('Save path : ', save_dir+'synchro') os.mkdir(save_dir+'synchro') if not os.path.isfile(save_dir+'synchro\\'+filename) or update == True: df_copy = self.df_list[analysis_id].copy() df_copy = df_copy.set_index('time') df_copy.to_csv(save_dir+'synchro\\'+filename) def plot_peek_action_point(self): xs,ys =self.get_peek_action_point() f = plt.figure() i = 0 for x,y in zip(xs,ys): plt.plot(x, y, "o", color=cm.spectral(i/10.0)) i += 1 f.subplots_adjust(right=0.8) plt.show() plt.close() def plot(self,analysis_id=0): target_area = ['Fx','Fy','Fz','Mx','My','Mz'] force_plate_data = self.df_list[analysis_id].copy() # print(force_plate_data) column_name = force_plate_data.columns.values column_name_tmp = [] column_name_tmp_array = [] for target_name in target_area: column_name_tmp = [name for name in column_name if target_name in name] column_name_tmp_array.extend(column_name_tmp) column_name = column_name_tmp_array # print(column_name) f = plt.figure() plt.title('Force plate csv data when liftting up object', color='black') force_plate_data.plot(x='time',y=column_name[0:3], figsize=(16,4), alpha=0.5,ax=f.gca()) plt.plot(force_plate_data['time'].values[self.max_peek], force_plate_data['Fz'].values[self.max_peek], "ro") if self.first_landing_point is not 0: plt.plot(force_plate_data['time'].values[self.first_landing_point], force_plate_data['Fz'].values[self.first_landing_point], "bo") plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) f.subplots_adjust(right=0.8) plt.show() plt.close() class motionAnalyzer(DataReader): def __init__(self,relative_data_folder,filename,key_label): super().__init__(relative_data_folder,filename,data_freq=100,key_label_name=key_label) self.simple_modify_data() self.peek_time = 0 def simple_modify_data(self): for df in self.df_list: for i in range(len(df)-1): tmp = df.iloc[i+1] for j,x in enumerate(tmp[0:9]): if x == 0: df.iloc[i+1,j] = df.iloc[i,j] def set_peek_time(self,peek_time): self.peek_time = peek_time self.get_nearest_time() def getNearestValue(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値 """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 idx = np.abs(array - num).argmin() return array[idx] def getNearestIndex(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値のインデックス """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 return np.abs(array - num).argmin() def get_nearest_time(self,analysis_id=0): tmp = copy.deepcopy(self.peek_time) self.peek_time = [] for x in tmp: self.peek_time.append(self.getNearestIndex(self.df_list[analysis_id]['time'].values ,x)) def get_peek_points(self, analysis_id=0): tmp = self.df_list[analysis_id].iloc[self.peek_time].values return tmp[:,:9] def get_euclid_distance(self,vec): return np.linalg.norm(vec) def get_nearest_two_points(self): for points in self.get_peek_points(): each_point = [[points[0:3]],[points[3:6]],[points[6:9]]] points_num = [[0,1],[1,2],[2,0]] distance = [] distance.append(np.array(each_point[0])-np.array(each_point[1])) distance.append(np.array(each_point[1])-np.array(each_point[2])) distance.append(np.array(each_point[2])-np.array(each_point[0])) tmp = [100000,-1] for i,dis in enumerate(distance): tmp_dis = self.get_euclid_distance(dis) if tmp_dis < tmp[0]: tmp = [tmp_dis,i] break two_points = [] for points in self.get_peek_points(): each_point = [[points[0:3]],[points[3:6]],[points[6:9]]] two_points.append([each_point[points_num[tmp[1]][0]],each_point[points_num[tmp[1]][1]]]) return two_points def get_middle_point(self,two_points): return (np.array(two_points[0])+
np.array(two_points[1])
numpy.array
""" Defines classes with represent SPAM operations, along with supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np import scipy.sparse as _sps import collections as _collections import numbers as _numbers import itertools as _itertools import functools as _functools import copy as _copy from .. import optimize as _opt from ..tools import matrixtools as _mt from ..tools import optools as _gt from ..tools import basistools as _bt from ..tools import listtools as _lt from ..tools import slicetools as _slct from ..tools import compattools as _compat from ..tools import symplectic as _symp from .basis import Basis as _Basis from .protectedarray import ProtectedArray as _ProtectedArray from . import modelmember as _modelmember from . import term as _term from . import stabilizer as _stabilizer from .polynomial import Polynomial as _Polynomial from . import replib from .opcalc import bulk_eval_compact_polys_complex as _bulk_eval_compact_polys_complex IMAG_TOL = 1e-8 # tolerance for imaginary part being considered zero def optimize_spamvec(vecToOptimize, targetVec): """ Optimize the parameters of vecToOptimize so that the the resulting SPAM vector is as close as possible to targetVec. This is trivial for the case of FullSPAMVec instances, but for other types of parameterization this involves an iterative optimization over all the parameters of vecToOptimize. Parameters ---------- vecToOptimize : SPAMVec The vector to optimize. This object gets altered. targetVec : SPAMVec The SPAM vector used as the target. Returns ------- None """ #TODO: cleanup this code: if isinstance(vecToOptimize, StaticSPAMVec): return # nothing to optimize if isinstance(vecToOptimize, FullSPAMVec): if(targetVec.dim != vecToOptimize.dim): # special case: gates can have different overall dimension vecToOptimize.dim = targetVec.dim # this is a HACK to allow model selection code to work correctly vecToOptimize.set_value(targetVec) # just copy entire overall matrix since fully parameterized return assert(targetVec.dim == vecToOptimize.dim) # vectors must have the same overall dimension targetVector = _np.asarray(targetVec) def _objective_func(param_vec): vecToOptimize.from_vector(param_vec) return _mt.frobeniusnorm(vecToOptimize - targetVector) x0 = vecToOptimize.to_vector() minSol = _opt.minimize(_objective_func, x0, method='BFGS', maxiter=10000, maxfev=10000, tol=1e-6, callback=None) vecToOptimize.from_vector(minSol.x) #print("DEBUG: optimized vector to min frobenius distance %g" % _mt.frobeniusnorm(vecToOptimize-targetVector)) def convert(spamvec, toType, basis, extra=None): """ Convert SPAM vector to a new type of parameterization, potentially creating a new SPAMVec object. Raises ValueError for invalid conversions. Parameters ---------- spamvec : SPAMVec SPAM vector to convert toType : {"full","TP","static","static unitary","clifford",LINDBLAD} The type of parameterizaton to convert to. "LINDBLAD" is a placeholder for the various Lindblad parameterization types. See :method:`Model.set_all_parameterizations` for more details. basis : {'std', 'gm', 'pp', 'qt'} or Basis object The basis for `spamvec`. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). extra : object, optional Additional information for conversion. Returns ------- SPAMVec The converted SPAM vector, usually a distinct object from the object passed as input. """ if toType == "full": if isinstance(spamvec, FullSPAMVec): return spamvec # no conversion necessary else: typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return FullSPAMVec(spamvec.todense(), typ=typ) elif toType == "TP": if isinstance(spamvec, TPSPAMVec): return spamvec # no conversion necessary else: return TPSPAMVec(spamvec.todense()) # above will raise ValueError if conversion cannot be done elif toType == "TrueCPTP": # a non-lindbladian CPTP spamvec that hasn't worked well... if isinstance(spamvec, CPTPSPAMVec): return spamvec # no conversion necessary else: return CPTPSPAMVec(spamvec, basis) # above will raise ValueError if conversion cannot be done elif toType == "static": if isinstance(spamvec, StaticSPAMVec): return spamvec # no conversion necessary else: typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return StaticSPAMVec(spamvec, typ=typ) elif toType == "static unitary": dmvec = _bt.change_basis(spamvec.todense(), basis, 'std') purevec = _gt.dmvec_to_state(dmvec) return StaticSPAMVec(purevec, "statevec", spamvec._prep_or_effect) elif _gt.is_valid_lindblad_paramtype(toType): if extra is None: purevec = spamvec # right now, we don't try to extract a "closest pure vec" # to spamvec - below will fail if spamvec isn't pure. else: purevec = extra # assume extra info is a pure vector nQubits = _np.log2(spamvec.dim) / 2.0 bQubits = bool(abs(nQubits - round(nQubits)) < 1e-10) # integer # of qubits? proj_basis = "pp" if (basis == "pp" or bQubits) else basis typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return LindbladSPAMVec.from_spamvec_obj( spamvec, typ, toType, None, proj_basis, basis, truncate=True, lazy=True) elif toType == "clifford": if isinstance(spamvec, StabilizerSPAMVec): return spamvec # no conversion necessary purevec = spamvec.flatten() # assume a pure state (otherwise would # need to change Model dim) return StabilizerSPAMVec.from_dense_purevec(purevec) else: raise ValueError("Invalid toType argument: %s" % toType) def _convert_to_lindblad_base(vec, typ, new_evotype, mxBasis="pp"): """ Attempts to convert `vec` to a static (0 params) SPAMVec with evoution type `new_evotype`. Used to convert spam vecs to being LindbladSPAMVec objects. """ if vec._evotype == new_evotype and vec.num_params() == 0: return vec # no conversion necessary if new_evotype == "densitymx": return StaticSPAMVec(vec.todense(), "densitymx", typ) if new_evotype in ("svterm", "cterm"): if isinstance(vec, ComputationalSPAMVec): # special case when conversion is easy return ComputationalSPAMVec(vec._zvals, new_evotype, typ) elif vec._evotype == "densitymx": # then try to extract a (static) pure state from vec wth # evotype 'statevec' or 'stabilizer' <=> 'svterm', 'cterm' if isinstance(vec, DenseSPAMVec): dmvec = _bt.change_basis(vec, mxBasis, 'std') purestate = StaticSPAMVec(_gt.dmvec_to_state(dmvec), 'statevec', typ) elif isinstance(vec, PureStateSPAMVec): purestate = vec.pure_state_vec # evotype 'statevec' else: raise ValueError("Unable to obtain pure state from density matrix type %s!" % type(vec)) if new_evotype == "cterm": # then purestate 'statevec' => 'stabilizer' (if possible) if typ == "prep": purestate = StabilizerSPAMVec.from_dense_purevec(purestate.todense()) else: # type == "effect" purestate = StabilizerEffectVec.from_dense_purevec(purestate.todense()) return PureStateSPAMVec(purestate, new_evotype, mxBasis, typ) raise ValueError("Could not convert %s (evotype %s) to %s w/0 params!" % (str(type(vec)), vec._evotype, new_evotype)) def finite_difference_deriv_wrt_params(spamvec, wrtFilter=None, eps=1e-7): """ Computes a finite-difference Jacobian for a SPAMVec object. The returned value is a matrix whose columns are the vectorized derivatives of the spam vector with respect to a single parameter, matching the format expected from the spam vectors's `deriv_wrt_params` method. Parameters ---------- spamvec : SPAMVec The spam vector object to compute a Jacobian for. eps : float, optional The finite difference step to use. Returns ------- numpy.ndarray An M by N matrix where M is the number of gate elements and N is the number of gate parameters. """ dim = spamvec.get_dimension() spamvec2 = spamvec.copy() p = spamvec.to_vector() fd_deriv = _np.empty((dim, spamvec.num_params()), 'd') # assume real (?) for i in range(spamvec.num_params()): p_plus_dp = p.copy() p_plus_dp[i] += eps spamvec2.from_vector(p_plus_dp, close=True) fd_deriv[:, i:i + 1] = (spamvec2 - spamvec) / eps fd_deriv.shape = [dim, spamvec.num_params()] if wrtFilter is None: return fd_deriv else: return _np.take(fd_deriv, wrtFilter, axis=1) def check_deriv_wrt_params(spamvec, deriv_to_check=None, wrtFilter=None, eps=1e-7): """ Checks the `deriv_wrt_params` method of a SPAMVec object. This routine is meant to be used as an aid in testing and debugging SPAMVec classes by comparing the finite-difference Jacobian that *should* be returned by `spamvec.deriv_wrt_params` with the one that actually is. A ValueError is raised if the two do not match. Parameters ---------- spamvec : SPAMVec The gate object to test. deriv_to_check : numpy.ndarray or None, optional If not None, the Jacobian to compare against the finite difference result. If None, `spamvec.deriv_wrt_parms()` is used. Setting this argument can be useful when the function is called *within* a LinearOperator class's `deriv_wrt_params()` method itself as a part of testing. eps : float, optional The finite difference step to use. Returns ------- None """ fd_deriv = finite_difference_deriv_wrt_params(spamvec, wrtFilter, eps) if deriv_to_check is None: deriv_to_check = spamvec.deriv_wrt_params() #print("Deriv shapes = %s and %s" % (str(fd_deriv.shape), # str(deriv_to_check.shape))) #print("finite difference deriv = \n",fd_deriv) #print("deriv_wrt_params deriv = \n",deriv_to_check) #print("deriv_wrt_params - finite diff deriv = \n", # deriv_to_check - fd_deriv) for i in range(deriv_to_check.shape[0]): for j in range(deriv_to_check.shape[1]): diff = abs(deriv_to_check[i, j] - fd_deriv[i, j]) if diff > 5 * eps: print("deriv_chk_mismatch: (%d,%d): %g (comp) - %g (fd) = %g" % (i, j, deriv_to_check[i, j], fd_deriv[i, j], diff)) if _np.linalg.norm(fd_deriv - deriv_to_check) > 100 * eps: raise ValueError("Failed check of deriv_wrt_params:\n" " norm diff = %g" % _np.linalg.norm(fd_deriv - deriv_to_check)) class SPAMVec(_modelmember.ModelMember): """ Excapulates a parameterization of a state preparation OR POVM effect vector. This class is the common base class for all specific parameterizations of a SPAM vector. """ def __init__(self, rep, evotype, typ): """ Initialize a new SPAM Vector """ if isinstance(rep, int): # For operators that have no representation themselves (term ops) dim = rep # allow passing an integer as `rep`. rep = None else: dim = rep.dim super(SPAMVec, self).__init__(dim, evotype) self._rep = rep self._prep_or_effect = typ @property def size(self): """ Return the number of independent elements in this gate (when viewed as a dense array) """ return self.dim @property def outcomes(self): """ Return the z-value outcomes corresponding to this effect SPAM vector in the context of a stabilizer-state simulation. """ raise NotImplementedError("'outcomes' property is not implemented for %s objects" % self.__class__.__name__) def set_value(self, vec): """ Attempts to modify SPAMVec parameters so that the specified raw SPAM vector becomes vec. Will raise ValueError if this operation is not possible. Parameters ---------- vec : array_like or SPAMVec A numpy array representing a SPAM vector, or a SPAMVec object. Returns ------- None """ raise ValueError("Cannot set the value of a %s directly!" % self.__class__.__name__) def set_time(self, t): """ Sets the current time for a time-dependent operator. For time-independent operators (the default), this function does absolutely nothing. Parameters ---------- t : float The current time. Returns ------- None """ pass def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. """ raise NotImplementedError("todense(...) not implemented for %s objects!" % self.__class__.__name__) # def torep(self, typ, outrep=None): # """ # Return a "representation" object for this SPAM vector. # Such objects are primarily used internally by pyGSTi to compute # things like probabilities more efficiently. # # Parameters # ---------- # typ : {'prep','effect'} # The type of representation (for cases when the vector type is # not already defined). # # outrep : StateRep # If not None, an existing state representation appropriate to this # SPAM vector that may be used instead of allocating a new one. # # Returns # ------- # StateRep # """ # if typ == "prep": # if self._evotype == "statevec": # return replib.SVStateRep(self.todense()) # elif self._evotype == "densitymx": # return replib.DMStateRep(self.todense()) # raise NotImplementedError("torep(%s) not implemented for %s objects!" % # (self._evotype, self.__class__.__name__)) # elif typ == "effect": # if self._evotype == "statevec": # return replib.SVEffectRep_Dense(self.todense()) # elif self._evotype == "densitymx": # return replib.DMEffectRep_Dense(self.todense()) # raise NotImplementedError("torep(%s) not implemented for %s objects!" % # (self._evotype, self.__class__.__name__)) # else: # raise ValueError("Invalid `typ` argument for torep(): %s" % typ) def get_taylor_order_terms(self, order, max_poly_vars=100, return_poly_coeffs=False): """ Get the `order`-th order Taylor-expansion terms of this SPAM vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the SPAMVec's parameters, where the polynomial's variable indices index the *global* parameters of the SPAMVec's parent (usually a :class:`Model`) , not the SPAMVec's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ raise NotImplementedError("get_taylor_order_terms(...) not implemented for %s objects!" % self.__class__.__name__) def get_highmagnitude_terms(self, min_term_mag, force_firstorder=True, max_taylor_order=3, max_poly_vars=100): """ Get the terms (from a Taylor expansion of this SPAM vector) that have magnitude above `min_term_mag` (the magnitude of a term is taken to be the absolute value of its coefficient), considering only those terms up to some maximum Taylor expansion order, `max_taylor_order`. Note that this function also *sets* the magnitudes of the returned terms (by calling `term.set_magnitude(...)`) based on the current values of this SPAM vector's parameters. This is an essential step to using these terms in pruned-path-integral calculations later on. Parameters ---------- min_term_mag : float the threshold for term magnitudes: only terms with magnitudes above this value are returned. force_firstorder : bool, optional if True, then always return all the first-order Taylor-series terms, even if they have magnitudes smaller than `min_term_mag`. This behavior is needed for using GST with pruned-term calculations, as we may begin with a guess model that has no error (all terms have zero magnitude!) and still need to compute a meaningful jacobian at this point. max_taylor_order : int, optional the maximum Taylor-order to consider when checking whether term- magnitudes exceed `min_term_mag`. Returns ------- highmag_terms : list A list of the high-magnitude terms that were found. These terms are *sorted* in descending order by term-magnitude. first_order_indices : list A list of the indices into `highmag_terms` that mark which of these terms are first-order Taylor terms (useful when we're forcing these terms to always be present). """ #NOTE: SAME as for LinearOperator class -- TODO consolidate in FUTURE #print("DB: SPAM get_high_magnitude_terms") v = self.to_vector() taylor_order = 0 terms = []; last_len = -1; first_order_magmax = 1.0 while len(terms) > last_len: # while we keep adding something if taylor_order > 1 and first_order_magmax**taylor_order < min_term_mag: break # there's no way any terms at this order reach min_term_mag - exit now! MAX_CACHED_TERM_ORDER = 1 if taylor_order <= MAX_CACHED_TERM_ORDER: #print("order ",taylor_order," : ",len(terms), "terms") terms_at_order, cpolys = self.get_taylor_order_terms(taylor_order, max_poly_vars, True) coeffs = _bulk_eval_compact_polys_complex( cpolys[0], cpolys[1], v, (len(terms_at_order),)) # an array of coeffs mags = _np.abs(coeffs) last_len = len(terms) #OLD: terms_at_order = [ t.copy_with_magnitude(abs(coeff)) for coeff, t in zip(coeffs, terms_at_order) ] if taylor_order == 1: #OLD: first_order_magmax = max([t.magnitude for t in terms_at_order]) first_order_magmax = max(mags) if force_firstorder: terms.extend([(taylor_order, t.copy_with_magnitude(mag)) for coeff, mag, t in zip(coeffs, mags, terms_at_order)]) else: for mag, t in zip(mags, terms_at_order): if mag >= min_term_mag: terms.append((taylor_order, t.copy_with_magnitude(mag))) else: for mag, t in zip(mags, terms_at_order): if mag >= min_term_mag: terms.append((taylor_order, t.copy_with_magnitude(mag))) else: terms.extend([(taylor_order, t) for t in self.get_taylor_order_terms_above_mag(taylor_order, max_poly_vars, min_term_mag)]) taylor_order += 1 if taylor_order > max_taylor_order: break #Sort terms based on magnitude sorted_terms = sorted(terms, key=lambda t: t[1].magnitude, reverse=True) first_order_indices = [i for i, t in enumerate(sorted_terms) if t[0] == 1] return [t[1] for t in sorted_terms], first_order_indices def get_taylor_order_terms_above_mag(self, order, max_poly_vars, min_term_mag): """ TODO: docstring """ v = self.to_vector() terms_at_order, cpolys = self.get_taylor_order_terms(order, max_poly_vars, True) coeffs = _bulk_eval_compact_polys_complex( cpolys[0], cpolys[1], v, (len(terms_at_order),)) # an array of coeffs terms_at_order = [t.copy_with_magnitude(abs(coeff)) for coeff, t in zip(coeffs, terms_at_order)] return [t for t in terms_at_order if t.magnitude >= min_term_mag] def frobeniusdist2(self, otherSpamVec, typ, transform=None, inv_transform=None): """ Return the squared frobenius difference between this spam vector and `otherSpamVec`, optionally transforming this vector first using `transform` and `inv_transform` (depending on the value of `typ`). Parameters ---------- otherSpamVec : SPAMVec The other spam vector typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed. transform, inv_transform : numpy.ndarray The transformation (if not None) to be performed. Returns ------- float """ vec = self.todense() if typ == 'prep': if inv_transform is None: return _gt.frobeniusdist2(vec, otherSpamVec.todense()) else: return _gt.frobeniusdist2(_np.dot(inv_transform, vec), otherSpamVec.todense()) elif typ == "effect": if transform is None: return _gt.frobeniusdist2(vec, otherSpamVec.todense()) else: return _gt.frobeniusdist2(_np.dot(_np.transpose(transform), vec), otherSpamVec.todense()) else: raise ValueError("Invalid 'typ' argument: %s" % typ) def residuals(self, otherSpamVec, typ, transform=None, inv_transform=None): """ Return a vector of residuals between this spam vector and `otherSpamVec`, optionally transforming this vector first using `transform` and `inv_transform` (depending on the value of `typ`). Parameters ---------- otherSpamVec : SPAMVec The other spam vector typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed. transform, inv_transform : numpy.ndarray The transformation (if not None) to be performed. Returns ------- float """ vec = self.todense() if typ == 'prep': if inv_transform is None: return _gt.residuals(vec, otherSpamVec.todense()) else: return _gt.residuals(_np.dot(inv_transform, vec), otherSpamVec.todense()) elif typ == "effect": if transform is None: return _gt.residuals(vec, otherSpamVec.todense()) else: return _gt.residuals(_np.dot(_np.transpose(transform), vec), otherSpamVec.todense()) def transform(self, S, typ): """ Update SPAM (column) vector V as inv(S) * V or S^T * V for preparation or effect SPAM vectors, respectively. Note that this is equivalent to state preparation vectors getting mapped: `rho -> inv(S) * rho` and the *transpose* of effect vectors being mapped as `E^T -> E^T * S`. Generally, the transform function updates the *parameters* of the SPAM vector such that the resulting vector is altered as described above. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- S : GaugeGroupElement A gauge group element which specifies the "S" matrix (and it's inverse) used in the above similarity transform. typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed (see above). """ if typ == 'prep': Si = S.get_transform_matrix_inverse() self.set_value(_np.dot(Si, self.todense())) elif typ == 'effect': Smx = S.get_transform_matrix() self.set_value(_np.dot(_np.transpose(Smx), self.todense())) #Evec^T --> ( Evec^T * S )^T else: raise ValueError("Invalid typ argument: %s" % typ) def depolarize(self, amount): """ Depolarize this SPAM vector by the given `amount`. Generally, the depolarize function updates the *parameters* of the SPAMVec such that the resulting vector is depolarized. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- amount : float or tuple The amount to depolarize by. If a tuple, it must have length equal to one less than the dimension of the gate. All but the first element of the spam vector (often corresponding to the identity element) are multiplied by `amount` (if a float) or the corresponding `amount[i]` (if a tuple). Returns ------- None """ if isinstance(amount, float) or _compat.isint(amount): D = _np.diag([1] + [1 - amount] * (self.dim - 1)) else: assert(len(amount) == self.dim - 1) D = _np.diag([1] + list(1.0 - _np.array(amount, 'd'))) self.set_value(_np.dot(D, self.todense())) def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return 0 # no parameters def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ return _np.array([], 'd') # no parameters def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ assert(len(v) == 0) # should be no parameters, and nothing to do def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. An empty 2D array in the StaticSPAMVec case (num_params == 0). Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ dtype = complex if self._evotype == 'statevec' else 'd' derivMx = _np.zeros((self.dim, 0), dtype) if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ #Default: assume Hessian can be nonzero if there are any parameters return self.num_params() > 0 def hessian_wrt_params(self, wrtFilter1=None, wrtFilter2=None): """ Construct the Hessian of this SPAM vector with respect to its parameters. This function returns a tensor whose first axis corresponds to the flattened operation matrix and whose 2nd and 3rd axes correspond to the parameters that are differentiated with respect to. Parameters ---------- wrtFilter1, wrtFilter2 : list Lists of indices of the paramters to take first and second derivatives with respect to. If None, then derivatives are taken with respect to all of the vectors's parameters. Returns ------- numpy array Hessian with shape (dimension, num_params1, num_params2) """ if not self.has_nonzero_hessian(): return _np.zeros(self.size, self.num_params(), self.num_params()) # FUTURE: create a finite differencing hessian method? raise NotImplementedError("hessian_wrt_params(...) is not implemented for %s objects" % self.__class__.__name__) #Note: no __str__ fn @staticmethod def convert_to_vector(V): """ Static method that converts a vector-like object to a 2D numpy dim x 1 column array. Parameters ---------- V : array_like Returns ------- numpy array """ if isinstance(V, SPAMVec): vector = V.todense().copy() vector.shape = (vector.size, 1) elif isinstance(V, _np.ndarray): vector = V.copy() if len(vector.shape) == 1: # convert (N,) shape vecs to (N,1) vector.shape = (vector.size, 1) else: try: len(V) # XXX this is an abuse of exception handling except: raise ValueError("%s doesn't look like an array/list" % V) try: d2s = [len(row) for row in V] except TypeError: # thrown if len(row) fails because no 2nd dim d2s = None if d2s is not None: if any([len(row) != 1 for row in V]): raise ValueError("%s is 2-dimensional but 2nd dim != 1" % V) typ = 'd' if _np.all(
_np.isreal(V)
numpy.isreal
# -*- coding: utf-8 -*- from utils import * import numpy as np import cv2 import matplotlib.pyplot as plt im = cv2.imread('images/cup1.jpg') imgray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) [m, n, _] = np.shape(im) white = np.zeros((m, n, 3)) white[:, :, 0] = 255 white[:, :, 1] = 255 white[:, :, 2] = 255 black = np.zeros((m, n, 3)) black[:, :, 0] = 0 black[:, :, 1] = 0 black[:, :, 2] = 0 d1 = im - white f1 = np.sqrt(d1[:, :, 0] ** 2 + d1[:, :, 1] ** 2 + d1[:, :, 2] ** 2) d2 = im - black f2 = np.sqrt(d2[:, :, 0] ** 2 + d2[:, :, 1] ** 2 + d2[:, :, 2] ** 2) f = f1 - f2 tau = 0.1 sigma = 0.05 mu = 1000 u = primal_dual(imgray, sigma, tau, mu, f, iters=12) u[u>0.5] = 1 u[u<=0.5] = 0 u =
np.array(u, dtype=np.int32)
numpy.array
import numpy as np from static_frame.core.util import immutable_filter class ArrayGO: ''' A grow only, one-dimensional, object type array, specifically for usage in IndexHierarchy IndexLevel objects. ''' __slots__ = ( '_dtype', '_array', '_array_mutable', '_recache', ) # NOTE: this can be implemented with one array, where we overallocate for growth, then grow as needed, or with an array and list. Since most instaces will not need to grow (only edge nodes), overall efficiency might be greater with a list def __init__(self, iterable, *, dtype=object, own_iterable=False): ''' Args: own_iterable: flag iterable as ownable by this instance. ''' self._dtype = dtype if isinstance(iterable, np.ndarray): if own_iterable: self._array = iterable self._array.flags.writeable = False else: self._array = immutable_filter(iterable) assert self._array.dtype == self._dtype self._recache = False self._array_mutable = None else: self._array = None self._recache = True # always call list to get new object, or realize a generator if own_iterable: self._array_mutable = iterable else: self._array_mutable = list(iterable) def _update_array_cache(self): if self._array_mutable is not None: if self._array is not None: len_base = len(self._array) array = np.empty( len_base + len(self._array_mutable), self._dtype) array[:len_base] = self._array array[len_base:] = self._array_mutable array.flags.writeable = False self._array = array self._array_mutable = None else: self._array =
np.array(self._array_mutable, self._dtype)
numpy.array
import numpy as np import matplotlib.pyplot as plt f = np.load('../mnist.npz') image, label = f['x_train'][7], f['y_train'][7] def show_conv(): filter = np.array([ [1, 1, 1], [0, 0, 0], [-1, -1, -1]]) plt.figure(0, figsize=(9, 5)) ax1 = plt.subplot(121) ax1.imshow(image, cmap='gray') plt.xticks(()) plt.yticks(()) ax2 = plt.subplot(122) plt.ion() texts = [] feature_map = np.zeros((26, 26)) flip_filter = np.flipud(np.fliplr(filter)) # flip both sides of the filter for i in range(26): for j in range(26): if texts: fm.remove() for n in range(3): for m in range(3): if len(texts) != 9: texts.append(ax1.text(j+m, i+n, filter[n, m], color='w', size=8, ha='center', va='center',)) else: texts[n*3+m].set_position((j+m, i+n)) feature_map[i, j] = np.sum(flip_filter * image[i:i+3, j:j+3]) fm = ax2.imshow(feature_map, cmap='gray', vmax=255*3, vmin=-255*3) plt.xticks(()) plt.yticks(()) plt.pause(0.001) plt.ioff() plt.show() def show_result(): filters = [ np.array([ [1, 1, 1], [0, 0, 0], [-1, -1, -1]]), np.array([ [-1, -1, -1], [0, 0, 0], [1, 1, 1]]), np.array([ [1, 0, -1], [1, 0, -1], [1, 0, -1]]), np.array([ [-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) ] plt.figure(0) plt.title('Original image') plt.imshow(image, cmap='gray') plt.xticks(()) plt.yticks(()) plt.figure(1) for n in range(4): feature_map = np.zeros((26, 26)) flip_filter = np.flipud(np.fliplr(filters[n])) for i in range(26): for j in range(26): feature_map[i, j] =
np.sum(image[i:i + 3, j:j + 3] * flip_filter)
numpy.sum
import numpy as np from copy import deepcopy class sepCEM: """ Cross-entropy methods. """ def __init__(self, num_params, batch_size, mu_init=None, sigma_init=1e-3, sigma_init_aa=1e-3, pop_size=256, damp=1e-3, damp_limit=1e-5, damp_aa=0.2, damp_limit_aa=0.1, parents=None, elitism=False, antithetic=False): # misc self.num_params = num_params self.batch_size = batch_size # distribution parameters if mu_init is None: self.mu = np.zeros((self.batch_size, self.num_params)) else: self.mu = np.array(mu_init) self.sigma = sigma_init self.sigma_aa = sigma_init_aa self.damp = damp self.damp_limit = damp_limit self.damp_aa = damp_aa self.damp_limit_aa = damp_limit_aa self.tau = 0.95 self.cov = np.ones((self.batch_size, self.num_params)) self.cov[:, :3] *= self.sigma self.cov[:, 3:] *= self.sigma_aa # elite stuff self.elitism = elitism self.elite = np.random.rand(self.batch_size, self.num_params) self.elite[:, :3] = np.sqrt(self.sigma) self.elite[:, 3:] =
np.sqrt(self.sigma_aa)
numpy.sqrt
import chainer import chainer.links as L import chainer.functions as F import argparse import cv2 import numpy as np from glob import glob import matplotlib.pyplot as plt num_classes = 2 img_height, img_width = 64, 64 out_height, out_width = 64, 64 channel = 3 GPU = -1 class Mynet(chainer.Chain): def __init__(self, train=False): self.train = train super(Mynet, self).__init__() with self.init_scope(): self.dec1 = L.Convolution2D(None, 32, ksize=3, pad=1, stride=1) self.dec2 = L.Convolution2D(None, 16, ksize=3, pad=1, stride=1) self.enc2 = L.Deconvolution2D(None, 32, ksize=2, stride=2) self.enc1 = L.Deconvolution2D(None, channel, ksize=2, stride=2) def forward(self, x): x = self.dec1(x) x = F.max_pooling_2d(x, ksize=2, stride=2) x = self.dec2(x) x = F.max_pooling_2d(x, ksize=2, stride=2) x = self.enc2(x) x = self.enc1(x) return x CLS = {'akahara': [0,0,128], 'madara': [0,128,0]} # get train data def data_load(path, hf=False, vf=False, rot=False): xs = [] paths = [] for dir_path in glob(path + '/*'): for path in glob(dir_path + '/*'): x = cv2.imread(path) if channel == 1: x = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) x = cv2.resize(x, (img_width, img_height)).astype(np.float32) x = x / 127.5 - 1. if channel == 3: x = x[..., ::-1] xs.append(x) paths.append(path) if hf: xs.append(x[:, ::-1]) paths.append(path) if vf: xs.append(x[::-1]) paths.append(path) if hf and vf: xs.append(x[::-1, ::-1]) paths.append(path) if rot != False: angle = 0 scale = 1 while angle < 360: angle += rot if channel == 1: _h, _w = x.shape max_side = max(_h, _w) tmp = np.zeros([max_side, max_side]) else: _h, _w, _c = x.shape max_side = max(_h, _w) tmp = np.zeros([max_side, max_side, _c]) tx = int((max_side - _w) / 2) ty = int((max_side - _h) / 2) tmp[ty: ty+_h, tx: tx+_w] = x.copy() M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale) _x = cv2.warpAffine(tmp, M, (max_side, max_side)) _x = _x[tx:tx+_w, ty:ty+_h] xs.append(_x) paths.append(path) xs = np.array(xs) if channel == 1: xs = np.expand_dims(xs, axis=-1) xs = xs.transpose(0,3,1,2) return xs, paths # train def train(): # model model = Mynet(train=True) if GPU >= 0: chainer.cuda.get_device(GPU).use() model.to_gpu() opt = chainer.optimizers.Adam(0.001) opt.setup(model) #opt.add_hook(chainer.optimizer.WeightDecay(0.0005)) xs, paths = data_load('../Dataset/train/images/', hf=True, vf=True, rot=1) # training mb = 64 mbi = 0 train_ind = np.arange(len(xs)) np.random.seed(0)
np.random.shuffle(train_ind)
numpy.random.shuffle
########################################################################## ########################################################################## ## ## What are you doing looking at this file? ## ########################################################################## ########################################################################## # # Just kidding. There is some useful stuff in here that will help you complete # some of the labs and your project. Feel free to adapt it. # # (Sorry about the awful commenting though. Do as I say, not as I do, etc...) import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from ipywidgets import interact, fixed, interactive_output, HBox, Button, VBox, Output, IntSlider, Checkbox, FloatSlider, FloatLogSlider, Dropdown TEXTSIZE = 16 from IPython.display import clear_output import time from scipy.optimize import curve_fit from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm as colmap from copy import copy from scipy.stats import multivariate_normal # commenting in here is pretty shocking tbh # wairakei model def wairakei_data(): # load some data tq, q = np.genfromtxt('wk_production_history.csv', delimiter=',', unpack=True) tp, p = np.genfromtxt('wk_pressure_history.csv', delimiter=',', unpack=True) # plot some data f,ax1 = plt.subplots(1,1,figsize=(12,6)) ax1.plot(tq,q,'b-',label='production') ax1.plot([],[],'ro',label='pressure') ax1.set_xlabel('time [yr]',size=TEXTSIZE) ax1.set_ylabel('production rate [kg/s]',size=TEXTSIZE) ax2 = ax1.twinx() ax2.plot(tp,p,'ro') v = 2. for tpi,pi in zip(tp,p): ax2.plot([tpi,tpi],[pi-v,pi+v], 'r-', lw=0.5) ax2.set_ylabel('pressure [bar]',size=TEXTSIZE); for ax in [ax1,ax2]: ax.tick_params(axis='both',labelsize=TEXTSIZE) ax.set_xlim([None,1980]) ax1.legend(prop={'size':TEXTSIZE}) plt.show() def lpm_plot(i=1): f,ax = plt.subplots(1,1, figsize=(12,6)) ax.axis('off') ax.set_xlim([0,1]) ax.set_ylim([0,1]) r = 0.3 cx,cy = [0.5,0.35] h = 0.3 dh = -0.13 dh2 = 0.05 e = 4. th = np.linspace(0,np.pi,101) col = 'r' ax.fill_between([0,1],[0,0],[1,1],color='b',alpha=0.1, zorder = 0) ax.plot(cx + r*np.cos(th), cy + r*np.sin(th)/e, color = col, ls = '-') ax.plot(cx + r*np.cos(th), cy - r*np.sin(th)/e, color = col, ls = '-') ax.plot(cx + r*np.cos(th), cy + r*np.sin(th)/e+h, color = col, ls = '--') ax.plot(cx + r*np.cos(th), cy - r*np.sin(th)/e+h, color = col, ls = '--') ax.plot([cx+r,cx+r],[cy,cy+h],color=col,ls='--') ax.plot([cx-r,cx-r],[cy,cy+h],color=col,ls='--') ax.plot(cx + r*np.cos(th), cy + r*np.sin(th)/e+h+(i>0)*dh+(i>1)*dh2, color = col, ls = '-') ax.plot(cx + r*np.cos(th), cy - r*np.sin(th)/e+h+(i>0)*dh+(i>1)*dh2, color = col, ls = '-') ax.plot([cx+r,cx+r],[cy,cy+h+(i>0)*dh+(i>1)*dh2],color=col,ls='-') ax.plot([cx-r,cx-r],[cy,cy+h+(i>0)*dh+(i>1)*dh2],color=col,ls='-') ax.fill_between(cx + r*np.cos(th),cy - r*np.sin(th)/e,cy + r*np.sin(th)/e+h+(i>0)*dh+(i>1)*dh2, color='r', alpha = 0.1) if i > 0: cube(ax, 0.90, 0.8, 0.025, 'r') ax.arrow(cx+1.05*r,cy+1.2*(h+dh)+0.05, 0.05, 0.14, color = 'r', head_width=0.02, head_length=0.04, length_includes_head=True) if i > 1: cube(ax, 0.85, 0.5, 0.015, 'b') cube(ax, 0.15, 0.5, 0.015, 'b') cube(ax, 0.85, 0.35, 0.015, 'b') cube(ax, 0.15, 0.35, 0.015, 'b') cube(ax, 0.25, 0.23, 0.015, 'b') cube(ax, 0.50, 0.18, 0.015, 'b') cube(ax, 0.75, 0.23, 0.015, 'b') ax.arrow(0.17,0.5,0.02,0.0, color = 'b', head_width=0.02, head_length=0.01, length_includes_head=True) ax.arrow(0.83,0.5,-0.02,0.0, color = 'b', head_width=0.02, head_length=0.01, length_includes_head=True) ax.arrow(0.17,0.35,0.02,0.0, color = 'b', head_width=0.02, head_length=0.01, length_includes_head=True) ax.arrow(0.83,0.35,-0.02,0.0, color = 'b', head_width=0.02, head_length=0.01, length_includes_head=True) ax.arrow(0.50,0.21,0.,0.04, color = 'b', head_width=0.01, head_length=0.02, length_includes_head=True) ax.arrow(0.26,0.25,0.015,0.025, color = 'b', head_width=0.015, head_length=0.01, length_includes_head=True) ax.arrow(0.74,0.25,-0.015,0.025, color = 'b', head_width=0.015, head_length=0.01, length_includes_head=True) if i > 2: for fr in [0.35,0.70,0.90]: ax.plot(cx + r*np.cos(th), cy + r*np.sin(th)/e+h+fr*(dh+dh2), color = 'k', ls = '--') ax.plot(cx + r*np.cos(th), cy - r*np.sin(th)/e+h+fr*(dh+dh2), color = 'k', ls = '--') ax.fill_between(cx + r*np.cos(th), cy - r*np.sin(th)/e+h+fr*(dh+dh2), cy + r*np.sin(th)/e+h+fr*(dh+dh2), color = 'k', alpha = 0.1) ax.arrow(0.18, cy+h, 0, dh+dh2, color = 'k', head_width=0.01, head_length=0.02, length_includes_head=True) ax.text(0.17, cy+h+0.5*(dh+dh2), 'lowers\nover time', color='k', ha = 'right', va='center', size=TEXTSIZE-1, fontstyle = 'italic') xt1,xt2,xt3,xt4 = [0.2,0.06,0.07,0.07] yt = 0.85 yt2 = 0.05 ax.text(xt1,yt,r'$\dot{P}$ =', color = 'k', size = TEXTSIZE+4) if i == 0: ax.text(xt1+xt2,yt,r'$0$', color = 'k', size = TEXTSIZE+4) if i > 0: ax.text(xt1+xt2,yt,r'$-aq$', color = 'r', size = TEXTSIZE+4) if i > 1: ax.text(xt1+xt2+xt3,yt,r'$-bP$', color = 'b', size = TEXTSIZE+4) if i > 2: ax.text(xt1+xt2+xt3+xt4,yt,r'$-c\dot{q}$', color = 'k', size = TEXTSIZE+4) if i == 0: ax.text(0.5, yt2, 'reservoir initially at pressure equilibrium', size = TEXTSIZE+4, ha = 'center', va = 'bottom', fontstyle = 'italic') elif i == 1: ax.text(0.5, yt2, 'extraction from reservoir at rate, $q$', size = TEXTSIZE+4, ha = 'center', va = 'bottom', fontstyle = 'italic') elif i == 2: ax.text(0.5, yt2, 'recharge from surrounding rock, proportional to $P$', size = TEXTSIZE+4, ha = 'center', va = 'bottom', fontstyle = 'italic') elif i == 3: ax.text(0.5, yt2, 'response to extraction not instantaneous: "slow drainage", $\dot{q}$', size = TEXTSIZE+4, ha = 'center', va = 'bottom', fontstyle = 'italic') plt.show() def cube(ax,x0,y0,dx,col): dy = dx*2. s2 = 2 ax.plot([x0+dx/s2,x0, x0-dx,x0-dx,x0,x0],[y0+dy/s2,y0,y0,y0-dy,y0-dy,y0],color=col,ls='-') ax.plot([x0-dx,x0-dx+dx/s2,x0+dx/s2,x0+dx/s2,x0],[y0,y0+dy/s2,y0+dy/s2,y0+dy/s2-dy,y0-dy],color=col,ls='-') ax.fill_between([x0-dx,x0-dx+dx/s2,x0,x0+dx/s2],[y0-dy,y0-dy,y0-dy,y0-dy+dy/s2],[y0,y0+dy/s2,y0+dy/s2,y0+dy/s2],color=col,alpha=0.1) def lpm_demo(): sldr = IntSlider(value=0, description='slide me!', min = 0, max = 3, step = 1, continuous_update = False, readout=False) return VBox([sldr, interactive_output(lpm_plot, {'i':sldr})]) def plot_lpm_models(a,b,c): # load some data tq,q = np.genfromtxt('wk_production_history.csv', delimiter = ',')[:28,:].T tp,p = np.genfromtxt('wk_pressure_history.csv', delimiter = ',')[:28,:].T dqdt = 0.*q # allocate derivative vector dqdt[1:-1] = (q[2:]-q[:-2])/(tq[2:]-tq[:-2]) # central differences dqdt[0] = (q[1]-q[0])/(tq[1]-tq[0]) # forward difference dqdt[-1] = (q[-1]-q[-2])/(tq[-1]-tq[-2]) # backward difference # plot the data with error bars f,ax = plt.subplots(1,1,figsize=(12,6)) ax.set_xlabel('time [yr]',size=TEXTSIZE) ax.plot(tp,p,'ro', label = 'observations') v = 2. for tpi,pi in zip(tp,p): ax.plot([tpi,tpi],[pi-v,pi+v], 'r-', lw=0.5) # define derivative function def lpm(pi,t,a,b,c): # order of variables important qi = np.interp(t,tq,q) # interpolate (piecewise linear) flow rate dqdti = np.interp(t,tq,dqdt) # interpolate derivative return -a*qi - b*pi - c*dqdti # compute derivative # implement an improved Euler step to solve the ODE def solve_lpm(t,a,b,c): pm = [p[0],] # initial value for t0,t1 in zip(tp[:-1],tp[1:]): # solve at pressure steps dpdt1 = lpm(pm[-1]-p[0], t0, a, b, c) # predictor gradient pp = pm[-1] + dpdt1*(t1-t0) # predictor step dpdt2 = lpm(pp-p[0], t1, a, b, c) # corrector gradient pm.append(pm[-1] + 0.5*(t1-t0)*(dpdt2+dpdt1)) # corrector step return np.interp(t, tp, pm) # interp onto requested times # solve and plot model pm = solve_lpm(tp,a,b,c) ax.plot(tp, pm, 'k-', label='model') # axes upkeep ax.set_ylabel('pressure [bar]',size=TEXTSIZE); ax.tick_params(axis='both',labelsize=TEXTSIZE) ax.legend(prop={'size':TEXTSIZE}) plt.show() def lpm_model(): # load flow rate data and compute derivative tq,q = np.genfromtxt('wk_production_history.csv', delimiter = ',')[:28,:].T tp,p = np.genfromtxt('wk_pressure_history.csv', delimiter = ',')[:28,:].T dqdt = 0.*q # allocate derivative vector dqdt[1:-1] = (q[2:]-q[:-2])/(tq[2:]-tq[:-2]) # central differences dqdt[0] = (q[1]-q[0])/(tq[1]-tq[0]) # forward difference dqdt[-1] = (q[-1]-q[-2])/(tq[-1]-tq[-2]) # backward difference # define derivative function def lpm(pi,t,a,b,c): # order of variables important qi = np.interp(t,tq,q) # interpolate (piecewise linear) flow rate dqdti = np.interp(t,tq,dqdt) # interpolate derivative return -a*qi - b*pi - c*dqdti # compute derivative # implement an imporved Euler step to solve the ODE def solve_lpm(t,a,b,c): pm = [p[0],] # initial value for t0,t1 in zip(tp[:-1],tp[1:]): # solve at pressure steps dpdt1 = lpm(pm[-1]-p[0], t0, a, b, c) # predictor gradient pp = pm[-1] + dpdt1*(t1-t0) # predictor step dpdt2 = lpm(pp-p[0], t1, a, b, c) # corrector gradient pm.append(pm[-1] + 0.5*(t1-t0)*(dpdt2+dpdt1)) # corrector step return
np.interp(t, tp, pm)
numpy.interp
import os import pickle import numpy as np from utils import word_utils global_params = { "dataset_dir": "~/AudioGrounding", "clip_dir": "audio", "data_splits": ["train", "val", "test"], "jsons": ["train.json", "val.json", "test.json"], } word_embs = {} emb_matrix, emb_shape = None, None # Load vocabulary with open(os.path.join(global_params["dataset_dir"], "vocab_info.pkl"), "rb") as store: vocab_info = pickle.load(store) vocabulary = vocab_info["vocabulary"] # Gather pretrained word embeddings for word in vocabulary: if word != word_utils.UNK_token: word_embs[word] = word_utils.word_vector(word) if emb_shape is None: emb_shape = word_embs[word].shape if emb_matrix is None: emb_matrix = word_embs[word] else: emb_matrix =
np.vstack((emb_matrix, word_embs[word]))
numpy.vstack
import cv2 import numpy as np import matplotlib.pyplot as plt import pandas as pd import argparse import glob import os from random import shuffle IMAGE_SIZE = 50 BLOCKSIZE = 20 BLOCKSTRIBE = BLOCKSIZE//2 CELLSIZE = BLOCKSIZE NBINS = 9 DERIVAPERTURE = 1 WINSIGMA = -1. HISTOGRAMNORMTYPE = 0 L2HYSTHRESHOLD = 0.2 GAMMACORRECTION = 1 NLEVELS = 64 SINEDGRADIENTS = True DATA_SET_NAME = "HOGFull1Font" FILENAME = "{}-imagesize-{}-block-{}-cell-{}-bin-{}-sined-{}" FILENAME = FILENAME.format( DATA_SET_NAME, IMAGE_SIZE, BLOCKSIZE, CELLSIZE, NBINS, SINEDGRADIENTS) def createHOGDescription(): winSize = (IMAGE_SIZE, IMAGE_SIZE) blockSize = (BLOCKSIZE, BLOCKSIZE) blockStride = (BLOCKSTRIBE, BLOCKSTRIBE) cellSize = (CELLSIZE, CELLSIZE) nbins = NBINS derivAperture = DERIVAPERTURE winSigma = WINSIGMA histogramNormType = HISTOGRAMNORMTYPE L2HysThreshold = L2HYSTHRESHOLD gammaCorrection = GAMMACORRECTION nlevels = NLEVELS signedGradients = SINEDGRADIENTS hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma, histogramNormType,L2HysThreshold,gammaCorrection,nlevels) return hog path = "C:\Python_program\Machine_learning\images\SV_BL\\" name = "SEMI_SV_B4_BL_001" img = cv2.imread(path+name+".jpg",0) img1 = cv2.imread(path+name+".jpg") # img = cv2.resize(img,(100,100)) kernel = np.ones((5,5),np.float32) kernel_3 = np.ones((3,3),np.float32)/9 kernel_chud= np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32) # kernel_chud2= np.array([[-1, -1, -1, -1, -1], # [-1, -1, -1, -1, -1], # [-1, -1, 25 -1, -1], # [-1, -1, -1, -1, -1], # [-1, -1, -1, -1, -1]], np.float32) laplacian_kernel = np.array( [[-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,48,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1]], dtype='int') laplacian_kernel2 =
np.array(( [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,80,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,-1,-1,-1,-1,-1,-1,-1]), dtype='int') # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
numpy.array
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2011 and 2012 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 9.80665, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2021 and 2022 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 9.80665]), upper=np.log([0.1, 9.80665, np.inf]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert RED_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert RED_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert RED_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log([0.074081, 0.044932, 9.80665, 12.59198]), np.array( [[1.0, 0.7, 0.3, 0.3], [0.7, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.6], [0.3, 0.3, 0.6, 1.0]]) * np.outer( [0.3, 0.4, 0.25, 0.25], [0.3, 0.4, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [0.05488, 0.05488, 9.80665, 9.80665]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. def test_FEMA_P58_Assessment_EDP_uncertainty_detection_limit(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test differs from the basic case in having unreliable EDP values above a certain limit - a typical feature of interstory drifts in dynamic simulations. Such cases should not be a problem if the limits can be estimated and they are specified as detection limits in input file. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_3.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_3.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_failed_analyses(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. Here we use EDP results with unique values assigned to failed analyses. In particular, PID=1.0 and PFA=100.0 are used when an analysis fails. These values shall be handled by detection limits of 10 and 100 for PID and PFA, respectively. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_4.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_4.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001)
assert_allclose(T_target, T_test, rtol=0.001)
numpy.testing.assert_allclose
from __future__ import (absolute_import, division, print_function) import numpy as np from .harmonics import ut_E from .utilities import Bunch from ._time_conversion import _normalize_time def reconstruct(t, coef, epoch='python', verbose=True, **opts): """ Reconstruct a tidal signal. Parameters ---------- t : array_like Time in days since `epoch`. coef : `Bunch` Data structure returned by `utide.solve` epoch : {string, `datetime.date`, `datetime.datetime`}, optional Valid strings are 'python' (default); 'matlab' if `t` is an array of Matlab datenums; or an arbitrary date in the form 'YYYY-MM-DD'. The default corresponds to the Python standard library `datetime` proleptic Gregorian calendar, starting with 1 on January 1 of year 1. verbose : {True, False}, optional True to enable output message (default). False turns off all messages. Returns ------- tide : `Bunch` Scalar time series is returned as `tide.h`; a vector series as `tide.u`, `tide.v`. """ out = Bunch() u, v = _reconstr1(t, coef, epoch=epoch, verbose=verbose, **opts) if coef['aux']['opt']['twodim']: out.u, out.v = u, v else: out.h = u return out def _reconstr1(tin, coef, **opts): # Parse inputs and options. t, goodmask, opt = _rcninit(tin, **opts) if opt['RunTimeDisp']: print('reconstruct:', end='') # Determine constituents to include. # if ~isempty(opt.cnstit) # if not np.empty(opt['cnstit']): if opt['cnstit']: # [~,ind] = ismember(cellstr(opt.cnstit),coef.name); # opt['cnstit'] in coef['name'] ind = np.where(opt['cnstit'] == coef['name']) # if ~isequal(length(ind),length(cellstr(opt.cnstit))) # error(['reconstruct: one or more of input constituents Cnstit '... # 'not found in coef.name']); else: ind = np.arange(len(coef['aux']['frq'])) if coef['aux']['opt']['twodim']: SNR = ((coef['Lsmaj']**2 + coef['Lsmin']**2) / ((coef['Lsmaj_ci']/1.96)**2 + (coef['Lsmin_ci']/1.96)**2)) PE = sum(coef['Lsmaj']**2 + coef['Lsmin']**2) PE = 100*(coef['Lsmaj']**2 + coef['Lsmin']**2)/PE else: SNR = (coef['A']**2)/((coef['A_ci']/1.96)**2) PE = 100*coef['A']**2/sum(coef['A']**2) # ind = ind[SNR[ind]>=opt['minsnr'] & PE[ind]>=opt['minpe']] ind = np.where(np.logical_and(SNR[ind] >= opt['minsnr'], PE[ind] >= opt['minpe']))[0] # Complex coefficients. rpd = np.pi/180 if coef['aux']['opt']['twodim']: ap = 0.5 * ((coef['Lsmaj'][ind] + coef['Lsmin'][ind]) * np.exp(1j*(coef['theta'][ind] - coef['g'][ind]) * rpd)) am = 0.5 * ((coef['Lsmaj'][ind] - coef['Lsmin'][ind]) * np.exp(1j*(coef['theta'][ind] + coef['g'][ind]) * rpd)) else: ap = 0.5 * coef['A'][ind] * np.exp(-1j*coef['g'][ind] * rpd) am = np.conj(ap) # Exponentials. ngflgs = [coef['aux']['opt']['nodsatlint'], coef['aux']['opt']['nodsatnone'], coef['aux']['opt']['gwchlint'], coef['aux']['opt']['gwchnone']] if opt['RunTimeDisp']: print('prep/calcs ... ', end='') E = ut_E(t, coef['aux']['reftime'], coef['aux']['frq'][ind], coef['aux']['lind'][ind], coef['aux']['lat'], ngflgs, coef['aux']['opt']['prefilt']) # Fit. # fit = E*ap + np.conj(E)*am fit = np.dot(E, ap) + np.dot(np.conj(E), am) # Mean (& trend). u = np.nan * np.ones(tin.shape) whr = goodmask if coef['aux']['opt']['twodim']: v = np.nan * np.ones(tin.shape) if coef['aux']['opt']['notrend']: u[whr] = np.real(fit) + coef['umean'] v[whr] =
np.imag(fit)
numpy.imag
from __future__ import division import numpy as np from openmdao.api import ExplicitComponent from openmdao.api import Group from .empirical_data.prop_maps import propeller_map_Raymer, propeller_map_highpower, static_propeller_map_Raymer, static_propeller_map_highpower, propeller_map_scaled, propeller_map_constant_prop_efficiency class SimplePropeller(Group): """This propeller is representative of a constant-speed prop. The technology may be old. A general, empirical efficiency map for a constant speed turboprop is used for most of the flight regime. A static thrust coefficient map (from Raymer) is used for advance ratio < 0.2 (low speed). Linear interpolation from static thrust to dynamic thrust tables at J = 0.1 to 0.2. Inputs ------ shaft_power_in : float Shaft power driving the prop (vector, W) diameter: float Prop diameter (scalar, m) rpm : float Prop RPM (vector, RPM) fltcond|rho : float Air density (vector, kg/m**3) fltcond|Utrue : float True airspeed (vector, m/s) Outputs ------- thrust : float Propeller thrust (vector, N) component_weight : float Prop weight (scalar, kg) Options ------- num_nodes : int Number of analysis points to run (sets vec length; default 1) num_blades : int Number of propeller blades (default 4) design_cp : float Design cruise power coefficient (cp) design_J : float Design advance ratio (J) """ def initialize(self): self.options.declare('num_nodes', default=1, desc='Number of flight/control conditions') self.options.declare('num_blades', default=4, desc='Number of prop blades') self.options.declare('design_cp',default=0.2,desc='Design cruise power coefficient cp') self.options.declare('design_J',default=2.2,desc='Design advance ratio J=V/n/D') def setup(self): nn = self.options['num_nodes'] n_blades = self.options['num_blades'] design_J = self.options['design_J'] design_cp = self.options['design_cp'] if n_blades == 3: propmap = propeller_map_Raymer(nn) staticpropmap = static_propeller_map_Raymer(nn) if n_blades == 4: propmap = propeller_map_highpower(nn) staticpropmap = static_propeller_map_highpower(nn) else: raise NotImplementedError('You will need to define a propeller map valid for this number of blades') self.add_subsystem('propcalcs',PropCoefficients(num_nodes=nn),promotes_inputs=["*"],promotes_outputs=["*"]) self.add_subsystem('propmap',propmap,promotes_outputs=["*"]) self.add_subsystem('staticpropmap',staticpropmap,promotes_outputs=["*"]) self.add_subsystem('thrustcalc',ThrustCalc(num_nodes=nn), promotes_inputs=["*"], promotes_outputs=["*"]) self.add_subsystem('propweights',WeightCalc(num_blades=n_blades), promotes_inputs=["*"], promotes_outputs=["*"]) self.connect('cp','propmap.cp') self.connect('cp','staticpropmap.cp') self.connect('J','propmap.J') class WeightCalc(ExplicitComponent): def initialize(self): self.options.declare('num_blades', default=4, desc='Number of prop blades') def setup(self): self.add_input('power_rating', units='hp', desc='Propulsor power rating') self.add_input('diameter', units='ft', desc='Prop diameter in feet') self.add_output('component_weight', units='lb', desc='Propeller weight') self.declare_partials('component_weight',['power_rating','diameter']) def compute(self, inputs, outputs): #Method from Roskam SVC6p90eq6.14 Kprop2 = 0.108 #for turboprops n_blades = self.options['num_blades'] W_prop = Kprop2 * (inputs['diameter']*inputs['power_rating']*n_blades**0.5)**0.782 outputs['component_weight'] = W_prop def compute_partials(self, inputs, J): Kprop2 = 0.108 #for turboprops n_blades = self.options['num_blades'] J['component_weight','power_rating'] = 0.782 * Kprop2 * (inputs['diameter']*inputs['power_rating']*n_blades**0.5)**(0.782-1) * (inputs['diameter']*n_blades**0.5) J['component_weight','diameter'] = 0.782 * Kprop2 * (inputs['diameter']*inputs['power_rating']*n_blades**0.5)**(0.782-1) * (inputs['power_rating']*n_blades**0.5) class ThrustCalc(ExplicitComponent): def initialize(self): self.options.declare('num_nodes', default=1, desc='Number of flight/control conditions') def setup(self): nn = self.options['num_nodes'] self.add_input('cp', desc='power coefficient',shape=(nn,)) self.add_input('eta_prop', desc='propulsive efficiency factor',shape=(nn,)) self.add_input('J', desc = 'advance ratio',shape=(nn,)) self.add_input('fltcond|rho', units='kg / m ** 3', desc='Air density',shape=(nn,)) self.add_input('rpm', units='rpm', val=2500*np.ones(nn), desc='Prop speed in rpm') self.add_input('diameter', units='m', val=2.5, desc='Prop diameter in m') self.add_input('ct_over_cp', val=1.5*np.ones(nn), desc='ct/cp from raymer for static condition') self.add_output('thrust', desc='Propeller thrust', units='N',shape=(nn,)) self.declare_partials('thrust',['cp','eta_prop','J','fltcond|rho','rpm','ct_over_cp'], rows=range(nn), cols=range(nn)) self.declare_partials('thrust','diameter') def compute(self, inputs, outputs): #for advance ratio j between 0.10 and 0.20, linearly interpolate the thrust coefficient from the two surrogate models jinterp_min = 0.10 jinterp_max = 0.20 j = inputs['J'] #print(inputs['eta_prop']) static_idx = np.where(j<=jinterp_min) dynamic_idx = np.where(j>=jinterp_max) tmp = np.logical_and(j>jinterp_min, j<jinterp_max) interp_idx = np.where(tmp) cp = inputs['cp'] nn = self.options['num_nodes'] ct = np.zeros(nn) ct1 = inputs['ct_over_cp'] * cp ct2 = cp * inputs['eta_prop'] / j #if j <= jinterp_min: ct[static_idx] = ct1[static_idx] #if j > jinterp_min and < jinterp_max: interv = np.ones(nn)*jinterp_max - np.ones(nn)*jinterp_min interp1 = (np.ones(nn)*jinterp_max - j) / interv interp2 = (j - np.ones(nn)*jinterp_min) / interv ct[interp_idx] = interp1[interp_idx] * ct1[interp_idx] + interp2[interp_idx] * ct2[interp_idx] #else if j >= jinterp_max ct[dynamic_idx] = ct2[dynamic_idx] outputs['thrust'] = ct * inputs['fltcond|rho'] * (inputs['rpm']/60.)**2 * inputs['diameter']**4 def compute_partials(self, inputs, J): #for advance ratio j between 0.10 and 0.20, linearly interpolate between the two surrogate models jinterp_min = 0.10 jinterp_max = 0.20 j = inputs['J'] cp = inputs['cp'] nn = self.options['num_nodes'] static_idx = np.where(j<=jinterp_min) dynamic_idx = np.where(j>=jinterp_max) tmp = np.logical_and(j>jinterp_min, j<jinterp_max) interp_idx = np.where(tmp) dctdcp = np.zeros(nn) ct1 = inputs['ct_over_cp'] * cp ct2 = cp * inputs['eta_prop'] / j dct1dcp = inputs['ct_over_cp'] dct2dcp = inputs['eta_prop'] / j #if j <= jinterp_min: dctdcp[static_idx] = dct1dcp[static_idx] #if j > jinterp_min and < jinterp_max: interv = np.ones(nn)*jinterp_max - np.ones(nn)*jinterp_min interp1 = (np.ones(nn)*jinterp_max - j) / interv interp2 = (j - np.ones(nn)*jinterp_min) / interv dctdcp[interp_idx] = interp1[interp_idx] * dct1dcp[interp_idx] + interp2[interp_idx] * dct2dcp[interp_idx] #else if j >= jinterp_max dctdcp[dynamic_idx] = dct2dcp[dynamic_idx] ct = cp * dctdcp j_thrust_ct_over_cp = np.zeros(nn) j_thrust_eta_prop = np.zeros(nn) j_thrust_j = np.zeros(nn) thrust_over_ct = inputs['fltcond|rho'] * (inputs['rpm']/60.)**2 * inputs['diameter']**4 thrust = ct * inputs['fltcond|rho'] * (inputs['rpm']/60.)**2 * inputs['diameter']**4 J['thrust','fltcond|rho'] = thrust / inputs['fltcond|rho'] J['thrust', 'rpm'] = 2 * thrust / inputs['rpm'] J['thrust', 'diameter'] = 4 * thrust / inputs['diameter'] J['thrust', 'cp'] = dctdcp * inputs['fltcond|rho'] * (inputs['rpm']/60.)**2 * inputs['diameter']**4 #if j <= jinterp_min: j_thrust_ct_over_cp[static_idx] = thrust[static_idx] / inputs['ct_over_cp'][static_idx] j_thrust_eta_prop[static_idx] = np.zeros(static_idx[0].shape) j_thrust_j[static_idx] = np.zeros(static_idx[0].shape) # j < jinterp_max: j_thrust_ct_over_cp[interp_idx] = thrust_over_ct[interp_idx] * interp1[interp_idx] * (ct1[interp_idx] / inputs['ct_over_cp'][interp_idx]) j_thrust_eta_prop[interp_idx] = thrust_over_ct[interp_idx] * interp2[interp_idx] * (ct2[interp_idx] / inputs['eta_prop'][interp_idx]) j_thrust_j[interp_idx] = thrust_over_ct[interp_idx] * (-ct1[interp_idx] / interv[interp_idx] + ct2[interp_idx] / interv[interp_idx] - interp2[interp_idx] * ct2[interp_idx] / j[interp_idx]) #else: j_thrust_ct_over_cp[dynamic_idx] = np.zeros(dynamic_idx[0].shape) j_thrust_eta_prop[dynamic_idx] = thrust[dynamic_idx] / inputs['eta_prop'][dynamic_idx] j_thrust_j[dynamic_idx] = - thrust[dynamic_idx] / j[dynamic_idx] J['thrust','ct_over_cp'] = j_thrust_ct_over_cp J['thrust','eta_prop'] = j_thrust_eta_prop J['thrust','J'] = j_thrust_j class PropCoefficients(ExplicitComponent): def initialize(self): self.options.declare('num_nodes', default=1, desc='Number of flight/control conditions') def setup(self): nn = self.options['num_nodes'] self.add_input('shaft_power_in', units='W', desc='Input shaft power',shape=(nn,), val=5*np.ones(nn)) self.add_input('diameter', units='m', val=2.5, desc='Prop diameter') self.add_input('rpm', units='rpm', val=2500*np.ones(nn), desc='Propeller shaft speed') self.add_input('fltcond|rho', units='kg / m ** 3',desc='Air density',shape=(nn,)) self.add_input('fltcond|Utrue', units='m/s', desc='Flight speed',shape=(nn,)) #outputs and partials self.add_output('cp', desc='Power coefficient', val=0.1*np.ones(nn), lower=np.zeros(nn),upper=
np.ones(nn)
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # SPDX-FileCopyrightText: 2022 Madureira, Brielen # SPDX-License-Identifier: MIT """ An object to load datasets and create the datapoints for each set. It loads probes from JSON files and representations from h5 files and then constructs datasets for the probing classifier task. """ import json import pickle from collections import Counter, defaultdict import h5py import numpy as np from torch.utils.data import Dataset from aux import (get_reps_path, get_probes_path, get_test_lens_path, get_embs_path) from tasks import get_task_labels # fixed number of turns in all train/valid dialogues VISDIAL_LEN = 11 class ProbingDataset(Dataset): """Build a dataset split.""" def __init__(self, params, split): """ Args: params (dataclass): All parameters of the experiment. split (str): Train, valid or test. """ self.params = params self.split = split self.labels, self.label_names = self._define_labels() self.representations = self._load_representations() self.label_counter = Counter() self.datapoints = {} self._create_datapoints() def __len__(self): """Return number of datapoints.""" return len(self.datapoints) def __getitem__(self, index): """Retrieve a datapoint given its index.""" dialogue_id, _, sent_id, turn, label = self.datapoints[index] sent_embedding = self.id2sent[sent_id] representation = self.representations[dialogue_id, turn] return (index, representation, sent_embedding, label) def _define_labels(self): """Get labels and their names according to main task.""" return get_task_labels(self.params.bot, self.params.task) def _load_lens(self): """Return dict of dialogue lens, which is constant if not test set.""" if self.split != 'test': return defaultdict(lambda: VISDIAL_LEN) path = get_test_lens_path() with open(path, 'r') as f: lens = {} for line in f.readlines(): idx, length = line.strip('\n').split('\t') lens[idx] = int(length) return lens def _load_representations(self): """Load dialogue representations.""" path = get_reps_path(self.params, self.split) name = f'{self.split}_dialogue_representations' representations = np.array(h5py.File(path, 'r').get(name)) # Define control task if self.params.control_task == 'rand-reps' and self.split == 'train': # replace representations by random vectors np.random.seed(self.params.random_seed) r_mean = np.mean(representations) r_std =
np.std(representations)
numpy.std
# Copyright 2022 The sunds Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils to encode the specs matching `sunds.specs`. Used during data construction to create the example `dict` yield by `_generate_examples`. Using typed dataclass with explicitly named argument guarantee a structure compatible with the corresponding `sunds.specs`. There should be a one-to-one matching between `sunds.specs` and `sunds.specs_utils`. (e.g. `sunds.specs.frame_spec()` <> `sunds.specs_utils.Frame`). """ import dataclasses import datetime from typing import Any, Dict, List, Optional, Tuple import numpy as np from sunds.core import np_geometry from sunds.core import specs_base Array = Any # numpy or any array-like Image = Any # str, np.array, file-object, pathlib object,... @dataclasses.dataclass class Scene(specs_base.SpecBase): """Top-level scene.""" scene_name: str scene_box: Dict[str, Any] nominal_time: datetime.datetime = dataclasses.field( default_factory=lambda: datetime.datetime.utcfromtimestamp(0)) frames: List['Frame'] = dataclasses.field(default_factory=list) @dataclasses.dataclass class Frame(specs_base.SpecBase): """Top-level frame.""" scene_name: str frame_name: str pose: 'Pose' cameras: Dict[str, 'Camera'] timestamp: float = 0.0 # TODO(epot): Remove pose to use Isometry directly @dataclasses.dataclass class Pose(specs_base.SpecBase): """Pose.""" R: Array # pylint: disable=invalid-name t: Array @classmethod def from_transform_matrix( cls, transform_matrix: Array, *, convension: str, ) -> 'Pose': """Construct the pose frame wrt the scene (frame to scene transform).""" assert convension == 'blender' transform_matrix = np.array(transform_matrix) scene_from_bcam = np_geometry.Isometry.from_matrix(transform_matrix) # Transformation between blender style camera (+x along left to right, # +y from bottom to top, +z looking back) to camera system with +x along # left to right, +y from top to bottom, +z looking forward. bcam_from_frame = np_geometry.Isometry( R=np.array([[1.0, 0.0, 0.0], [0, -1.0, 0.0], [0, 0, -1.0]]), t=np.zeros(3)) scene_from_frame = scene_from_bcam.compose(bcam_from_frame) return cls( R=scene_from_frame.R.astype(np.float32), t=scene_from_frame.t.astype(np.float32), ) @classmethod def identity(cls) -> 'Pose': """Returns the identity transformation.""" return cls( R=np.eye(3, dtype=np.float32), t=np.zeros(3, dtype=np.float32), ) @dataclasses.dataclass class Camera(specs_base.SpecBase): """Camera.""" intrinsics: 'CameraIntrinsics' extrinsics: Pose = dataclasses.field(default_factory=Pose.identity) color_image: Optional[Image] = None category_image: Optional[Image] = None @dataclasses.dataclass class CameraIntrinsics(specs_base.SpecBase): """CameraIntrinsics.""" image_width: int image_height: int K: Array # pylint: disable=invalid-name type: str distortion: Dict[str, Array] @classmethod def from_fov( cls, *, img_shape: Tuple[int, int], fov_in_degree: Tuple[int, int], type: str = 'PERSPECTIVE', # pylint: disable=redefined-builtin ) -> 'CameraIntrinsics': """Returns camera instrinsics data.""" if type != 'PERSPECTIVE': raise ValueError( f"Unknown camera type: {type!r}. Only 'PERSPECTIVE' supported") # Not sure if the height, width order is correct (shouldn't shape be (h, w) # instead ? camera_angle_x, camera_angle_y = fov_in_degree image_width, image_height = img_shape fx = .5 * image_width /
np.tan(.5 * camera_angle_x)
numpy.tan
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import pandas as pd import scipy.sparse as sp from typing import List, Dict from GridCal.Engine.basic_structures import Logger import GridCal.Engine.Core.topology as tp from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.basic_structures import BranchImpedanceMode from GridCal.Engine.basic_structures import BusMode from GridCal.Engine.Simulations.PowerFlow.jacobian_based_power_flow import Jacobian from GridCal.Engine.Core.common_functions import compile_types, find_different_states class OpfTimeCircuit: def __init__(self, nbus, nline, ntr, nvsc, nhvdc, nload, ngen, nbatt, nshunt, nstagen, ntime, sbase, time_array, apply_temperature=False, branch_tolerance_mode: BranchImpedanceMode = BranchImpedanceMode.Specified): """ :param nbus: number of buses :param nline: number of lines :param ntr: number of transformers :param nvsc: :param nhvdc: :param nload: :param ngen: :param nbatt: :param nshunt: """ self.nbus = nbus self.nline = nline self.ntr = ntr self.nvsc = nvsc self.nhvdc = nhvdc self.nload = nload self.ngen = ngen self.nbatt = nbatt self.nshunt = nshunt self.nstagen = nstagen self.ntime = ntime self.Sbase = sbase self.apply_temperature = apply_temperature self.branch_tolerance_mode = branch_tolerance_mode self.time_array = time_array # bus ---------------------------------------------------------------------------------------------------------- self.bus_names = np.empty(nbus, dtype=object) self.bus_types = np.empty(nbus, dtype=int) self.bus_installed_power = np.zeros(nbus, dtype=float) self.bus_active = np.ones((ntime, nbus), dtype=int) self.Vbus = np.ones((ntime, nbus), dtype=complex) # branch common ------------------------------------------------------------------------------------------------ self.nbr = nline + ntr + nvsc # exclude the HVDC model since it is not a real branch self.branch_names = np.empty(self.nbr, dtype=object) self.branch_active = np.zeros((ntime, self.nbr), dtype=int) self.F = np.zeros(self.nbr, dtype=int) # indices of the "from" buses self.T = np.zeros(self.nbr, dtype=int) # indices of the "to" buses self.branch_rates = np.zeros((ntime, self.nbr), dtype=float) self.branch_cost = np.zeros((ntime, self.nbr), dtype=float) self.branch_R = np.zeros(self.nbr, dtype=float) self.branch_X = np.zeros(self.nbr, dtype=float) self.C_branch_bus_f = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "from" bus self.C_branch_bus_t = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "to" bus # lines -------------------------------------------------------------------------------------------------------- self.line_names = np.zeros(nline, dtype=object) self.line_R = np.zeros(nline, dtype=float) self.line_X = np.zeros(nline, dtype=float) self.line_B = np.zeros(nline, dtype=float) self.line_temp_base = np.zeros(nline, dtype=float) self.line_temp_oper = np.zeros(nline, dtype=float) self.line_alpha = np.zeros(nline, dtype=float) self.line_impedance_tolerance = np.zeros(nline, dtype=float) self.C_line_bus = sp.lil_matrix((nline, nbus), dtype=int) # this ons is just for splitting islands # transformer 2W + 3W ------------------------------------------------------------------------------------------ self.tr_names = np.zeros(ntr, dtype=object) self.tr_R = np.zeros(ntr, dtype=float) self.tr_X = np.zeros(ntr, dtype=float) self.tr_G = np.zeros(ntr, dtype=float) self.tr_B = np.zeros(ntr) self.tr_tap_f = np.ones(ntr) # tap generated by the difference in nominal voltage at the form side self.tr_tap_t = np.ones(ntr) # tap generated by the difference in nominal voltage at the to side self.tr_tap_mod = np.ones(ntr) # normal tap module self.tr_tap_ang = np.zeros(ntr) # normal tap angle self.C_tr_bus = sp.lil_matrix((ntr, nbus), dtype=int) # this ons is just for splitting islands # hvdc line ---------------------------------------------------------------------------------------------------- self.hvdc_names = np.zeros(nhvdc, dtype=object) self.hvdc_active = np.zeros((ntime, nhvdc), dtype=bool) self.hvdc_rate = np.zeros((ntime, nhvdc), dtype=float) self.hvdc_Pf = np.zeros((ntime, nhvdc)) self.hvdc_Pt = np.zeros((ntime, nhvdc)) self.C_hvdc_bus_f = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands self.C_hvdc_bus_t = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands # vsc converter ------------------------------------------------------------------------------------------------ self.vsc_names = np.zeros(nvsc, dtype=object) self.vsc_R1 = np.zeros(nvsc) self.vsc_X1 = np.zeros(nvsc) self.vsc_Gsw = np.zeros(nvsc) self.vsc_Beq = np.zeros(nvsc) self.vsc_m = np.zeros(nvsc) self.vsc_theta = np.zeros(nvsc) self.C_vsc_bus = sp.lil_matrix((nvsc, nbus), dtype=int) # this ons is just for splitting islands # load --------------------------------------------------------------------------------------------------------- self.load_names = np.empty(nload, dtype=object) self.load_active = np.zeros((ntime, nload), dtype=bool) self.load_s = np.zeros((ntime, nload), dtype=complex) self.load_cost = np.zeros((ntime, nload)) self.C_bus_load = sp.lil_matrix((nbus, nload), dtype=int) # static generators -------------------------------------------------------------------------------------------- self.static_generator_names = np.empty(nstagen, dtype=object) self.static_generator_active = np.zeros((ntime, nstagen), dtype=bool) self.static_generator_s = np.zeros((ntime, nstagen), dtype=complex) self.C_bus_static_generator = sp.lil_matrix((nbus, nstagen), dtype=int) # battery ------------------------------------------------------------------------------------------------------ self.battery_names = np.empty(nbatt, dtype=object) self.battery_controllable = np.zeros(nbatt, dtype=bool) self.battery_dispatchable = np.zeros(nbatt, dtype=bool) self.battery_pmin = np.zeros(nbatt) self.battery_pmax = np.zeros(nbatt) self.battery_enom = np.zeros(nbatt) self.battery_min_soc = np.zeros(nbatt) self.battery_max_soc = np.zeros(nbatt) self.battery_soc_0 = np.zeros(nbatt) self.battery_charge_efficiency = np.zeros(nbatt) self.battery_discharge_efficiency = np.zeros(nbatt) self.battery_installed_p = np.zeros(nbatt) self.battery_active = np.zeros((ntime, nbatt), dtype=bool) self.battery_p = np.zeros((ntime, nbatt)) self.battery_pf = np.zeros((ntime, nbatt)) self.battery_v = np.zeros((ntime, nbatt)) self.battery_cost = np.zeros((ntime, nbatt)) self.C_bus_batt = sp.lil_matrix((nbus, nbatt), dtype=int) # generator ---------------------------------------------------------------------------------------------------- self.generator_names = np.empty(ngen, dtype=object) self.generator_controllable = np.zeros(ngen, dtype=bool) self.generator_dispatchable = np.zeros(ngen, dtype=bool) self.generator_installed_p = np.zeros(ngen) self.generator_pmin = np.zeros(ngen) self.generator_pmax = np.zeros(ngen) self.generator_active = np.zeros((ntime, ngen), dtype=bool) self.generator_p =
np.zeros((ntime, ngen))
numpy.zeros
from __future__ import print_function import glob import os import random import re from math import ceil import numpy as np import scipy.misc from PIL import Image import laspy def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [ atoi(c) for c in re.split('(\d+)', text) ] # Data providers for dbnet-2018 data class Provider: def __init__(self, train_dir='data/dbnet-2018/train/', val_dir='data/dbnet-2018/val/', test_dir="data/dbnet-2018/test/"): self.__initialize__(train_dir, val_dir, test_dir) self.read() self.transform() def __initialize__(self, train_dir, val_dir, test_dir): self.X_train1, self.X_train2 = [], [] self.Y_train1, self.Y_train2 = [], [] self.X_val1, self.X_val2 = [], [] self.Y_val1, self.Y_val2 = [], [] self.X_test1, self.X_test2 = [], [] self.x_train1, self.x_train2 = [], [] self.x_val1, self.x_val2 = [], [] self.x_test1, self.x_test2 = [], [] self.train_pointer = 0 self.val_pointer = 0 self.test_pointer = 0 self.train_dir = train_dir self.val_dir = val_dir self.test_dir = test_dir self.cache_train = False self.cache_val = False self.cache_test = False def read(self, filename="behavior.csv"): """ Read data and labels :param filename: filename of labels """ train_sub = glob.glob(os.path.join(self.train_dir, "*")) val_sub = glob.glob(os.path.join(self.val_dir, "*")) test_sub = glob.glob(os.path.join(self.test_dir, "*")) train_sub.sort(key=natural_keys) val_sub.sort(key=natural_keys) self.read_from(train_sub, filename, "train") self.read_from(val_sub, filename, "val") self.read_from(test_sub, filename, "test") def read_from(self, sub_folders, filename, description="train"): if description == "train": X_train1, X_train2 = self.X_train1, self.X_train2 Y_train1, Y_train2 = self.Y_train1, self.Y_train2 elif description == "val": X_train1, X_train2 = self.X_val1, self.X_val2 Y_train1, Y_train2 = self.Y_val1, self.Y_val2 elif description == "test": X_train1, X_train2 = self.X_test1, self.X_test2 else: raise NotImplementedError if not description == "test": for folder in sub_folders: with open(os.path.join(folder, filename)) as f: count = 0 for line in f: line = line.rstrip() X_train1.append(os.path.join(folder, "dvr_66x200/" + str(count) + ".jpg")) X_train2.append(os.path.join(folder, "points_16384/" + str(count) + ".las")) Y_train1.append((float(line.split(",")[1]) - 20) / 20) Y_train2.append(float(line.split(",")[0]) * scipy.pi / 180) count += 1 else: for folder in sub_folders: for count in range(len(glob.glob(os.path.join(folder, "dvr_66x200/*.jpg")))): X_train1.append(os.path.join(folder, "dvr_66x200/" + str(count) + ".jpg")) X_train2.append(os.path.join(folder, "points_16384/" + str(count) + ".las")) if not description == "test": c = list(zip(X_train1, X_train2, Y_train1, Y_train2)) else: c = list(zip(X_train1, X_train2)) random.shuffle(c) if description == "train": self.X_train1, self.X_train2, self.Y_train1, self.Y_train2 = zip(*c) elif description == "val": self.X_val1, self.X_val2, self.Y_val1, self.Y_val2 = zip(*c) elif description == "test": self.X_test1, self.X_test2 = zip(*c) else: raise NotImplementedError def transform(self): self.X_train1, self.X_train2 = np.asarray(self.X_train1), np.asarray(self.X_train2) self.Y_train = np.transpose(np.asarray((self.Y_train1, self.Y_train2))) self.X_val1, self.X_val2 = np.asarray(self.X_val1), np.asarray(self.X_val2) self.Y_val = np.transpose(np.asarray((self.Y_val1, self.Y_val2))) self.num_test = len(self.X_test1) self.X_test1, self.X_test2 = np.asarray(self.X_test1), np.asarray(self.X_test2) self.num_train = len(self.Y_train) self.num_val = len(self.Y_val) def load_one_batch(self, batch_size, description='train', shape=[66, 200], reader_type="pn"): x_out1 = [] x_out2 = [] y_out = [] if description == 'train': if not self.cache_train: print ("Loading training data ...") for i in range(self.num_train): with Image.open(self.X_train1[i]) as img: self.x_train1.append(scipy.misc.imresize(img, shape) / 255.0) # too many opened files """ self.x_train1.append(scipy.misc.imresize(scipy.misc.imread( self.X_train1[i]), shape) / 255.0) """ infile = laspy.file.File(self.X_train2[i]) data = np.vstack([infile.X, infile.Y, infile.Z]).transpose() infile.close() self.x_train2.append(data) self.cache_train = True print ("Finished loading!") for i in range(0, batch_size): index = (self.train_pointer + i) % len(self.X_train1) x_out1.append(self.x_train1[index]) x_out2.append(self.x_train2[index]) y_out.append(self.Y_train[index]) self.train_pointer += batch_size elif description == "val": if not self.cache_val: print ("Loading validation data ...") for i in range(0, self.num_val): with Image.open(self.X_val1[i]) as img: self.x_val1.append(scipy.misc.imresize(img, shape) / 255.0) # too many opened files """ self.x_val1.append(scipy.misc.imresize(scipy.misc.imread( self.X_val1[i]), shape) / 255.0) """ infile = laspy.file.File(self.X_val2[i]) data = np.vstack([infile.X, infile.Y, infile.Z]).transpose() infile.close() self.x_val2.append(data) self.cache_val = True print ("Finished loading!") for i in range(0, batch_size): index = (self.val_pointer + i) % len(self.X_val1) x_out1.append(self.x_val1[index]) x_out2.append(self.x_val2[index]) y_out.append(self.Y_val[index]) self.val_pointer += batch_size elif description == "test": if not self.cache_test: print ("Loading testing data ...") for i in range(0, self.num_test): with Image.open(self.X_test1[i]) as img: self.x_test1.append(scipy.misc.imresize(img, shape) / 255.0) """ self.x_test1.append(scipy.misc.imresize(scipy.misc.imread( self.X_test1[i]), shape) / 255.0) """ infile = laspy.file.File(self.X_test2[i]) data = np.vstack([infile.X, infile.Y, infile.Z]).transpose() infile.close() self.x_test2.append(data) self.cache_test = True print ("Finished loading!") for i in range(0, batch_size): index = (self.test_pointer + i) % len(self.X_test1) x_out1.append(self.x_test1[index]) x_out2.append(self.x_test2[index]) self.test_pointer += batch_size else: raise NotImplementedError if not description == "test": if reader_type == "io": return np.stack(x_out1), np.stack(y_out) else: return np.stack(x_out1), np.stack(x_out2), np.stack(y_out) else: if reader_type == "io": return np.stack(x_out1) else: return np.stack(x_out1), np.stack(x_out2) ## Data provider for test in server class Provider2: def __init__(self, test_dir="data/dbnet-2018/test/"): self.__initialize__(test_dir) self.read() self.transform() def __initialize__(self, test_dir): self.X_test1, self.X_test2 = [], [] self.Y_test1, self.Y_test2 = [], [] self.x_test1, self.x_test2 = [], [] self.test_pointer = 0 self.test_dir = test_dir self.cache_test = False def read(self, filename="behavior.csv"): """ Read data and labels :param filename: filename of labels """ test_sub = glob.glob(os.path.join(self.test_dir, "*")) test_sub.sort(key=natural_keys) self.read_from(test_sub, filename) def read_from(self, sub_folders, filename): X_test1, X_test2 = self.X_test1, self.X_test2 Y_test1, Y_test2 = self.Y_test1, self.Y_test2 for folder in sub_folders: with open(os.path.join(folder, filename)) as f: count = 0 for line in f: line = line.rstrip() X_test1.append(os.path.join(folder, "dvr_66x200/" + str(count) + ".jpg")) X_test2.append(os.path.join(folder, "points_16384/" + str(count) + ".las")) Y_test1.append((float(line.split(",")[1]) - 20) / 20) Y_test2.append(float(line.split(",")[0]) * scipy.pi / 180) count += 1 c = list(zip(X_test1, X_test2, Y_test1, Y_test2)) # random.shuffle(c) self.X_test1, self.X_test2, self.Y_test1, self.Y_test2 = zip(*c) def transform(self): self.num_test = len(self.X_test1) self.X_test1, self.X_test2 = np.asarray(self.X_test1), np.asarray(self.X_test2) self.Y_test = np.transpose(
np.asarray((self.Y_test1, self.Y_test2))
numpy.asarray
#!/usr/bin/env python # -*- coding: utf-8 -*- # Built-in imports import itertools # 3rd party imports import numpy as np from scipy import constants # Local imports from ..pyrf import resample, ts_scalar __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def calculate_epsilon(vdf, model_vdf, n_s, sc_pot, **kwargs): r"""Calculates epsilon parameter using model distribution. Parameters ---------- vdf : xarray.Dataset Observed particle distribution (skymap). model_vdf : xarray.Dataset Model particle distribution (skymap). n_s : xarray.DataArray Time series of the number density. sc_pot : xarray.DataArray Time series of the spacecraft potential. **kwargs : dict Keyword arguments. Returns ------- epsilon : xarray.DataArray Time series of the epsilon parameter. Other Parameters ---------------- en_channels : array_like Set energy channels to integrate over [min max]; min and max between must be between 1 and 32. Examples -------- >>> from pyrfu import mms >>> options = {"en_channel": [4, 32]} >>> eps = mms.calculate_epsilon(vdf, model_vdf, n_s, sc_pot, **options) """ # Default energy channels used to compute epsilon, lowest energy channel # should not be used. energy_range = kwargs.get("en_channels", [2, 32]) int_energies = np.arange(energy_range[0], energy_range[1] + 1) # Resample sc_pot sc_pot = resample(sc_pot, n_s) # Remove zero count points from final calculation # model_vdf.data.data[vdf.data.data <= 0] = 0 model_vdf /= 1e18 vdf /= 1e18 vdf_diff = np.abs(vdf.data.data - model_vdf.data.data) # Define constants q_e = constants.elementary_charge # Check whether particles are electrons or ions if vdf.attrs["specie"] == "e": m_s = constants.electron_mass print("notice : Particles are electrons") elif vdf.attrs["specie"] == "i": sc_pot.data *= -1 m_s = constants.proton_mass print("notice : Particles are electrons") else: raise ValueError("Invalid specie") # Define lengths of variables n_ph = len(vdf.phi.data[0, :]) # Define corrected energy levels using spacecraft potential energy_arr = vdf.energy.data v_s, delta_v = [np.zeros(energy_arr.shape) for _ in range(2)] for i in range(len(vdf.time)): energy_vec = energy_arr[i, :] energy_log = np.log10(energy_arr[i, :]) v_s[i, :] = np.real(
np.sqrt(2 * (energy_vec - sc_pot.data[i]) * q_e / m_s)
numpy.sqrt
# -*- coding: utf-8 -*- """ Created on Wed Oct 24 13:07:39 2018 @author: nvidia """ ############################################################################### import numpy as np ############################################################################### from pyro.dynamic import mechanical ############################################################################### ############################################################################### class SinglePendulum( mechanical.MechanicalSystem ): """ """ ############################ def __init__(self): """ """ # initialize standard params mechanical.MechanicalSystem.__init__(self, 1 ) # Name self.name = 'Single Pendulum' # params self.setparams() ############################# def setparams(self): """ Set model parameters here """ # kinematic self.l1 = 2 self.lc1 = 1 # dynamic self.m1 = 1 self.I1 = 1 self.gravity = 9.81 self.d1 = 0 ############################## def trig(self, q ): """ Compute cos and sin """ c1 = np.cos( q ) s1 = np.sin( q ) return [c1,s1] ########################################################################### def H(self, q ): """ Inertia matrix ---------------------------------- dim( H ) = ( dof , dof ) such that --> Kinetic Energy = 0.5 * dq^T * H(q) * dq """ H = np.zeros((self.dof,self.dof)) H[0,0] = self.m1 * self.lc1**2 + self.I1 return H ########################################################################### def C(self, q , dq ): """ Corriolis and Centrifugal Matrix ------------------------------------ dim( C ) = ( dof , dof ) such that --> d H / dt = C + C^T """ C = np.zeros((self.dof,self.dof)) return C ########################################################################### def B(self, q ): """ Actuator Matrix : dof x m """ B = np.diag( np.ones( self.dof ) ) # identity matrix return B ########################################################################### def g(self, q ): """ Gravitationnal forces vector : dof x 1 """ g = np.zeros( self.dof ) [c1,s1] = self.trig( q ) g[0] = self.m1 * self.gravity * self.lc1 * s1 return g ########################################################################### def d(self, q , dq ): """ State-dependent dissipative forces : dof x 1 """ d = np.zeros( self.dof ) d[0] = self.d1 * dq[0] return d ########################################################################### # Graphical output ########################################################################### ########################################################################### def forward_kinematic_domain(self, q ): """ """ l = 5 domain = [ (-l,l) , (-l,l) , (-l,l) ]# return domain ########################################################################### def forward_kinematic_lines(self, q ): """ Compute points p = [x;y;z] positions given config q ---------------------------------------------------- - points of interest for ploting Outpus: lines_pts = [] : a list of array (n_pts x 3) for each lines """ lines_pts = [] # list of array (n_pts x 3) for each lines # ground line pts = np.zeros(( 2 , 3 )) pts[0,:] = np.array([-10,0,0]) pts[1,:] = np.array([+10,0,0]) lines_pts.append( pts ) # pendulum pts = np.zeros(( 2 , 3 )) pts[0,:] = np.array([0,0,0]) [c1,s1] = self.trig( q ) pts[1,:] = np.array([ s1 * self.l1 , - c1 * self.l1 ,0]) lines_pts.append( pts ) return lines_pts ############################################################################## class DoublePendulum( mechanical.MechanicalSystem ): """ """ ############################ def __init__(self): """ """ # initialize standard params mechanical.MechanicalSystem.__init__(self, 2) # Name self.name = 'Double Pendulum' # params self.setparams() ############################# def setparams(self): """ Set model parameters here """ self.l1 = 1 self.l2 = 1 self.lc1 = 1 self.lc2 = 1 self.m1 = 1 self.I1 = 0 self.m2 = 1 self.I2 = 0 self.gravity = 9.81 self.d1 = 0 self.d2 = 0 ############################## def trig(self, q ): """ Compute cos and sin usefull in other computation ------------------------------------------------ """ c1 = np.cos( q[0] ) s1 = np.sin( q[0] ) c2 = np.cos( q[1] ) s2 = np.sin( q[1] ) c12 = np.cos( q[0] + q[1] ) s12 = np.sin( q[0] + q[1] ) return [c1,s1,c2,s2,c12,s12] ########################################################################### def H(self, q ): """ Inertia matrix ---------------------------------- dim( H ) = ( dof , dof ) such that --> Kinetic Energy = 0.5 * dq^T * H(q) * dq """ [c1,s1,c2,s2,c12,s12] = self.trig( q ) H = np.zeros((2,2)) H[0,0] = self.m1 * self.lc1**2 + self.I1 + self.m2 * ( self.l1**2 + self.lc2**2 + 2 * self.l1 * self.lc2 * c2 ) + self.I2 H[1,0] = self.m2 * self.lc2**2 + self.m2 * self.l1 * self.lc2 * c2 + self.I2 H[0,1] = H[1,0] H[1,1] = self.m2 * self.lc2 ** 2 + self.I2 return H ########################################################################### def C(self, q , dq ): """ Corriolis and Centrifugal Matrix ------------------------------------ dim( C ) = ( dof , dof ) such that --> d H / dt = C + C^T """ [c1,s1,c2,s2,c12,s12] = self.trig( q ) h = self.m2 * self.l1 * self.lc2 * s2 C = np.zeros((2,2)) C[0,0] = - h * dq[1] C[1,0] = h * dq[0] C[0,1] = - h * ( dq[0] + dq[1] ) C[1,1] = 0 return C ########################################################################### def B(self, q ): """ Actuator Matrix : dof x m """ B = np.diag( np.ones( self.dof ) ) # identity matrix return B ########################################################################### def g(self, q ): """ Gravitationnal forces vector : dof x 1 """ [c1,s1,c2,s2,c12,s12] = self.trig( q ) g1 = (self.m1 * self.lc1 + self.m2 * self.l1 ) * self.gravity g2 = self.m2 * self.lc2 * self.gravity G = np.zeros(2) G[0] = - g1 * s1 - g2 * s12 G[1] = - g2 * s12 return G ########################################################################### def d(self, q , dq ): """ State-dependent dissipative forces : dof x 1 """ D = np.zeros((2,2)) D[0,0] = self.d1 D[1,0] = 0 D[0,1] = 0 D[1,1] = self.d2 d = np.dot( D , dq ) return d ########################################################################### # Graphical output ########################################################################### ########################################################################### def forward_kinematic_domain(self, q ): """ """ l = 3 domain = [ (-l,l) , (-l,l) , (-l,l) ]# return domain ########################################################################### def forward_kinematic_lines(self, q ): """ Compute points p = [x;y;z] positions given config q ---------------------------------------------------- - points of interest for ploting Outpus: lines_pts = [] : a list of array (n_pts x 3) for each lines """ lines_pts = [] # list of array (n_pts x 3) for each lines ############################### # ground line ############################### pts = np.zeros(( 2 , 3 )) pts[0,:] =
np.array([-10,0,0])
numpy.array
import os import time import os.path as osp import numpy as np from PIL import Image import cv2 from torch.utils import data import pickle import torchvision.transforms.functional as TF import random Image.MAX_IMAGE_PIXELS = 2300000000 class MyTrainDataSet(data.Dataset): def __init__(self, root='', list_path='', max_iters=None, transform=None): self.root = root self.list_path = list_path self.img_ids = [i_id.strip() for i_id in open(list_path)] if not max_iters == None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) self.files = [] self.transform = transform for name in self.img_ids: img_name, label_name = name.split() img_file = osp.join(self.root, img_name) label_file = osp.join(self.root, label_name) self.files.append({ "img": img_file, "label": label_file, "name": name, }) print("length of train set: ", len(self.files)) def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] # print(datafiles) image = Image.open(datafiles["img"]).convert('RGB') label = Image.open(datafiles["label"]) # label = cv2.imread(datafiles["label"], -1) # label = convert_to_msk(label) size = image.size name = datafiles["name"] # image, label = co_transforms(image, label) if self.transform is not None: image = self.transform(image) label = np.array(label) print(image.shape) return image, label.copy(), np.array(size), name class MyValDataSet(data.Dataset): def __init__(self, root='', list_path='', transform=None): self.root = root self.list_path = list_path self.img_ids = [i_id.strip() for i_id in open(list_path)] self.files = [] self.transform = transform for name in self.img_ids: img_name, label_name = name.split() img_file = osp.join(self.root, img_name) label_file = osp.join(self.root, label_name) # print(label_file) self.files.append({ "img": img_file, "label": label_file, "name": name, }) print("length of Validation set: ", len(self.files)) def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = Image.open(datafiles["img"]).convert('RGB') label = Image.open(datafiles["label"]) size = image.size name = datafiles["name"] # image, label = co_transforms(image, label) if self.transform is not None: image = self.transform(image) label = np.array(label) return image, label.copy(), np.array(size), name class MyTestDataSet(data.Dataset): def __init__(self, root='', list_path='', transform=None): self.root = root self.list_path = list_path self.img_ids = [i_id.strip() for i_id in open(list_path)] self.files = [] self.transform = transform for name in self.img_ids: img_name = name.strip() # img_name, label_name = name.split() img_file = osp.join(self.root, img_name) # label_file = osp.join(self.root, label_name) self.files.append({ "img": img_file, # "label": label_file, "name": name.split('/')[1].replace('.jpg', ''), }) print("lenth of test set ", len(self.files)) def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = Image.open(datafiles["img"]).convert('RGB') size = image.size name = datafiles["name"] if self.transform is not None: image = self.transform(image) # return image.copy(), np.array(size), name return image, np.array(size), name class MyTrainInform: """ To get statistical information about the train set, such as mean, std, class distribution. The class is employed for tackle class imbalance. """ def __init__(self, data_dir='', classes=7, train_set_file="", inform_data_file="", normVal=1.10): """ Args: data_dir: directory where the dataset is kept classes: number of classes in the dataset inform_data_file: location where cached file has to be stored normVal: normalization value, as defined in ERFNet paper """ self.data_dir = data_dir self.classes = classes self.classWeights = np.ones(self.classes, dtype=np.float32) self.normVal = normVal self.mean = np.zeros(3, dtype=np.float32) self.std = np.zeros(3, dtype=np.float32) self.train_set_file = train_set_file self.inform_data_file = inform_data_file def compute_class_weights(self, histogram): """to compute the class weights Args: histogram: distribution of class samples """ normHist = histogram / np.sum(histogram) for i in range(self.classes): self.classWeights[i] = 1 / (
np.log(self.normVal + normHist[i])
numpy.log
# -*- coding: utf-8 -*- """ Created on Fri Nov 26 17:52:26 2021 @author: eng-Moshira """ import offtask import math import numpy as np #import csv from collections import deque from Cloud import Cloud from MEC import MEC #from generate_states import read_state_from_file, get_initial_state, get_next_state from UAV import UAV from systemparameters import parameter sconst=np.random.randint(1,5)*10**-3 ## Variables numOfUAV = 3 # Number of drones numofMEC=3 # Number of MECs numofUsers=10 # Number of users numoftasks=50 # Number of Tasks omega=.5 # mu = 5 # sigma = 0.15 * mu #B = sigma * np.random.randn(numOfUAV) + mu # Available bandwidth of each drone #T_max = np.random.randint(2, 10, size=numOfTask) # The maximum execution time allowed for each task no_epsoides=15000 # epsoides no(uav-assisted) ,we may try 140000 s = 1000 # The number of cpu cycles required for unit bit processing is 1000 uv=UAV() class multi_tier_env(): #U = 3 # UAV no. def __init__(self): self.ground_length = ground_width = 300 # The length and width of the site are both 300m, self.UAV_hieght=100 # self.battery = Energy() self.exe_delay = 0 self.trans_delay = 0 self.proc_energy = 0 self.trans_energy = 0 self.tot_off_cost = 0 self.total_cost = 0 self.count_wrong=0 self.waiting=deque() self.new_queue = 0 self.info=[self.exe_delay , self.proc_energy] self.done=False self.is_off=[0]*(numoftasks) self.progress=[0]*(numoftasks) self.T=400 # total Period 400s self.slot_num = int(self.T / 8) # 40 intervals self.alloc_resource = [0] * (numoftasks) # 分配的资源 self.numofresources=numOfUAV+numofMEC+1 self.rest_resource = [0] * self.numofresources #self.offtasks=self.gen_Task_List() self.offtasks=self.get_task_info() self.high=[1,1,1,1,1] self.low=[-1,-1,-1,-1,-1] self.uavs_locs=uv.uav_loc #################### UEs #################### # self.block_flag_list = np.random.randint(0, 2,numofUsers) # 4 ue, ue occlusion situation self.loc_ue_list = np.random.randint(0, 301, size=[numofUsers, 2]) # Location information: x is random at 0-100 # #self.task_list = np.random.randint(1572864, 2097153, M) # Random calculation task 1.5~2Mbits -> Corresponding total task size 60 # #self.task_list = np.random.randint(2097153, 2621440, M) # Random calculation task 2~2.5Mbits -> 80 # self.Task_list=self.get_task_info(numoftasks) #generate rondom task list self.action_bound = [-1, 1] # corresponds to tahn activation function self.action_dim=5 # 1st digit represent ue id of the task;the next two digit represent the offloading layer selected;the last two digits represent the selected server id #action_dim = 4 # The first digit represents the ue id of the service; the middle two digits represent the flight angle and distance; the last digit represents the current unloading rate serving the UE #self.state_dim = 7 + numoftasks * numofUsers # uav battery remain, uav loc, remaining sum task size, all ue loc, all ue task data, all ue block_flag,uav remaining capacity,mec remaining capacity self.state_dim = numoftasks*2+self.numofresources #+2*numofUsers+2*numOfUAV #################### MECs,UAVs,Cloud #################### self.mecs_info = [MEC() for i in range(numofMEC)] self.uavs_info = [UAV() for i in range(numOfUAV)] self.cloud_info = Cloud() self.user_inf=[User() for i in range(numofUsers)] # uav loc, all mec data, all ue loc, all ue task size, all ue block_flag #self.task_data=self.get_tasks_data(numoftasks, numofUsers) #print(task_data) def get_tasks_data(self,numoftasks,numofUsers): tasks_data=
np.zeros((numofUsers,numoftasks))
numpy.zeros
#!/usr/bin/env python #************************************************************************ # # Plot figures and output numbers for Fraction of Absorbed Photosynthetic Radiation (FPR) section. # For BAMS SotC 2016 # #************************************************************************ # SVN Info # $Rev:: 30 $: Revision of last commit # $Author:: rdunn $: Author of last commit # $Date:: 2021-06-15 10:41:02 +0100 (Tue, 15 Jun #$: Date of last commit #************************************************************************ # START #************************************************************************ import struct import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import utils # RJHD utilities import settings DATALOC = "{}/{}/data/FPR/".format(settings.ROOTLOC, settings.YEAR) LEGEND_LOC = 'lower left' LW = 2 DURATION = (int(settings.YEAR)-1998+1)*12 minor_tick_interval = 1 minorLocator = MultipleLocator(minor_tick_interval) print("faking time axis - monthly") times = np.arange(0, DURATION/12., 1/12.) + 1998 #************************************************************************ def read_binary(filename): ''' Read from binary file - using "struct" :param str filename: file to read :returns: np.array ''' with open(filename, "rb") as f: fileContent = f.read() data = struct.unpack("d" * (len(fileContent) // 8), fileContent) return np.array(data) # read_binary #************************************************************************ def read_binary_ts(filename): ''' Read from binary file - using "struct" :param str filename: file to read :returns: np.array ''' with open(filename, "rb") as f: fileContent = f.read() globe = np.array(struct.unpack("d" * (DURATION), fileContent[:DURATION*8])) north = np.array(struct.unpack("d" * (DURATION), fileContent[DURATION*8:DURATION*8*2])) south = np.array(struct.unpack("d" * (DURATION), fileContent[DURATION*8*2:DURATION*8*3])) aver = struct.unpack("f" * (DURATION*4), fileContent[DURATION*8*3:]) aver = np.array(aver).reshape(4, DURATION) globe = utils.Timeseries("Globe", times, globe) north = utils.Timeseries("N. Hemisphere", times, north) south = utils.Timeseries("S. Hemisphere", times, south) aver = np.ma.masked_where(aver == 0, aver) # remove first/last bits and line should span any inadvertent gaps globe_sm = utils.Timeseries("Globe Smoothed", times, aver[0, :]) north_sm = utils.Timeseries("N. Hemisphere Smoothed", times, aver[1, :]) south_sm = utils.Timeseries("S. Hemisphere Smoothed", times, aver[2, :]) return [globe, north, south, globe_sm, north_sm, south_sm] # read_binary_ts #************************************************************************ def run_all_plots(): #************************************************************************ # Timeseries data = read_binary_ts(DATALOC + "TimeSeries_faparanomaliesglobal_bams_v2018_C6_{}.bin".format(int(settings.YEAR)+1)) fig = plt.figure(figsize=(8, 6)) ax = plt.axes([0.16, 0.07, 0.82, 0.88]) COLOURS = settings.COLOURS["land_surface"] for dataset in data: print(dataset.name) ls = "-." lw = 1 if dataset.name.split(" ")[-1] == "Smoothed": ls = "-" lw = LW ax.plot(dataset.times, dataset.data, c=COLOURS[dataset.name], ls=ls, label=dataset.name, lw=lw) ax.axhline(0, c='0.5', ls='--') utils.thicken_panel_border(ax) ax.legend(loc=LEGEND_LOC, ncol=2, frameon=False, prop={'size':settings.LEGEND_FONTSIZE}, labelspacing=0.1, columnspacing=0.5) #******************* # prettify fig.text(0.01, 0.5, "Anomaly (FAPAR)", va='center', rotation='vertical', fontsize=settings.FONTSIZE) plt.xlim([1998-1, int(settings.YEAR)+2]) plt.ylim([-0.022, None]) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(settings.FONTSIZE) ax.xaxis.set_minor_locator(minorLocator) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(settings.FONTSIZE) plt.savefig(settings.IMAGELOC + "FPR_ts{}".format(settings.OUTFMT)) plt.close() #************************************************************************ # Hovmullers data = read_binary(DATALOC + "Hovmuller_Global_lat_fapar1998_2010_bams_trois_C6.eps_{}.bin".format(int(settings.YEAR)+1)) # reshape - from Readme data = data.reshape(360, DURATION) data = np.ma.masked_where(data == 0., data) lats =
np.arange(-90, 90, 0.5)
numpy.arange
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import copy from .image import transform_preds def get_pred_depth(depth): return depth def get_alpha(rot): # output: (B, 8) [bin1_cls[0], bin1_cls[1], bin1_sin, bin1_cos, # bin2_cls[0], bin2_cls[1], bin2_sin, bin2_cos] # return rot[:, 0] idx = rot[:, 1] > rot[:, 5] alpha1 = np.arctan(rot[:, 2] / rot[:, 3]) + (-0.5 * np.pi) alpha2 = np.arctan(rot[:, 6] / rot[:, 7]) + ( 0.5 * np.pi) return alpha1 * idx + alpha2 * (1 - idx) def dbmctdet_post_process(detections, c, s, h, w, scale, num_classes, ori_threshold): ret = [] for i in range(detections.shape[0]): top_preds = {} # Apply transformation to predicteed bbox detections[i, :, 0:2] = transform_preds( detections[i, :, 0:2], c[i], s[i], (w, h)) detections[i, :, 2:4] = transform_preds( detections[i, :, 2:4], c[i], s[i], (w, h)) detections[i, :, 0:4] /= scale # classes = detections[i, :, -1] # Dump bbox whose central region has no center point detections =
np.concatenate(detections, axis=1)
numpy.concatenate
# uncomment for training on AMD GPUs # import plaidml.keras # plaidml.keras.install_backend() from keras.callbacks import ModelCheckpoint from keras.models import Sequential from keras.layers import Cropping2D, Flatten, Dense, Dropout, Lambda from keras.layers.convolutional import Conv2D import matplotlib.pyplot as plt import numpy as np import csv import cv2 import random # Training data was generated for different scenarios for each track; # to make it easier to organize or re-record data, we split up data across multiple files training_data_files = [ './training-data-new/track-1-forwards/driving_log.csv', './training-data-new/track-1-reverse/driving_log.csv', './training-data-new/track-1-recovery/driving_log.csv', './training-data-new/track-1-curves/driving_log.csv', './training-data-new/track-2-forwards/driving_log.csv', './training-data-new/track-2-reverse/driving_log.csv', './training-data-new/track-2-recovery/driving_log.csv', './training-data-new/track-2-curves/driving_log.csv', ] lines = [] # Iterate through each file and combine all the training data lines together for i in range(len(training_data_files)): with open(training_data_files[i]) as csvfile: reader = csv.reader(csvfile) for line in reader: lines.append(line) # Output summary of what was just read into memory, for sanity check purposes print('Read {} lines'.format(len(lines))) # We add/subtract correction_factor from the steering angle measurement to generate new measurements # for the side camera images correction_factor = 0.2 # percentage of images we want to use for validation validation_fraction = 0.25 def validation_or_training(training, validation, data): """ Training, validation, and data are all tuples; at random we put data into the training or validation set """ is_validation = True if random.uniform(0, 1.0) < validation_fraction else False if is_validation: validation[0].append(data[0]) validation[1].append(data[1]) else: training[0].append(data[0]) training[1].append(data[1]) # Vars to collect the original + augumented images and measurements X_train, y_train = [], [] X_valid, y_valid = [], [] for line in lines: # Image 1 = center, image 2 = left camera, image 3 = right camera # From 3 images (center, left, right) we create 6 images (original/flipped versions for each) measurement = float(line[3]) # Center center_image = plt.imread(line[0]) validation_or_training((X_train, y_train), (X_valid, y_valid), (center_image, measurement)) validation_or_training((X_train, y_train), (X_valid, y_valid), (cv2.flip(center_image, 1), -measurement)) # Left left_image = plt.imread(line[1]) validation_or_training((X_train, y_train), (X_valid, y_valid), (left_image, measurement + correction_factor)) validation_or_training((X_train, y_train), (X_valid, y_valid), (cv2.flip(left_image, 1), -(measurement + correction_factor))) # Right right_image = plt.imread(line[2]) validation_or_training((X_train, y_train), (X_valid, y_valid), (right_image, measurement - correction_factor)) validation_or_training((X_train, y_train), (X_valid, y_valid), (cv2.flip(right_image, 1), -(measurement - correction_factor))) print('Training data size: {}'.format(len(X_train))) print('Validation data size: {}'.format(len(X_valid))) # Generate numpy arrays # The images are the source data, the steering measurements are the labels to train against X_train = np.array(X_train) y_train = np.array(y_train) X_valid =
np.array(X_valid)
numpy.array
import datetime from unittest import TestCase import numpy as np import pandas as pd from mlnext import pipeline class TestColumnSelector(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_select_columns(self): t = pipeline.ColumnSelector(keys=['a']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnDropper(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_drop_columns(self): t = pipeline.ColumnDropper(columns=['b']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop_columns_verbose(self): t = pipeline.ColumnDropper(columns=['b'], verbose=True) expected = self.df.loc[:, ['a']] result = t.transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop__missing_columns(self): t = pipeline.ColumnDropper(columns=['c']) with self.assertWarns(Warning): t.transform(self.df) class TestColumnRename(TestCase): def test_rename_columns(self): t = pipeline.ColumnRename(lambda x: x.split('.')[-1]) df = pd.DataFrame(columns=['a.b.c', 'd.e.f']) expected = pd.DataFrame(columns=['c', 'f']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestNaDropper(TestCase): def test_drop_na(self): t = pipeline.NaDropper() df = pd.DataFrame([1, 0, pd.NA]) expected = pd.DataFrame([1, 0], dtype=object) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestClip(TestCase): def test_clip(self): t = pipeline.Clip(lower=0.5, upper=1.5) df = pd.DataFrame([[0.1, 0.4, 0.6, 0.8, 1.2, 1.5]]) expected = pd.DataFrame([[0.5, 0.5, 0.6, 0.8, 1.2, 1.5]]) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestDatetimeTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_datetime(self): t = pipeline.DatetimeTransformer(columns=['time']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) expected = pd.DataFrame([[datetime.datetime(2021, 1, 4, 14, 12, 31)]], columns=['time']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_datetime_missing_cols(self): t = pipeline.DatetimeTransformer(columns=['t']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) with self.assertRaises(ValueError): t.fit_transform(df) class TestNumericTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_numeric(self): t = pipeline.NumericTransformer(columns=['1']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) expected = pd.DataFrame([0, 1], columns=['1'], dtype=np.int64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_missing_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) with self.assertRaises(ValueError): t.fit_transform(df) def test_numeric_additional_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected['2'] = expected['2'].apply(pd.to_numeric) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_multiple_column(self): t = pipeline.NumericTransformer(columns=['1', '2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_all_column(self): t = pipeline.NumericTransformer() df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestTimeframeExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 1, 10, 0, 0), datetime.datetime(2021, 10, 1, 11, 0, 0), datetime.datetime(2021, 10, 1, 12, 0, 0), datetime.datetime(2021, 10, 1, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['time', 'value']) def test_timeframe_extractor(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_timeframe_extractor_invert(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestDateExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 2, 10, 0, 0), datetime.datetime(2021, 10, 3, 11, 0, 0), datetime.datetime(2021, 10, 4, 12, 0, 0), datetime.datetime(2021, 10, 5, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['date', 'value']) def test_date_extractor(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_date_extractor_invert(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestValueMapper(TestCase): def test_value_mapper_one_column(self): t = pipeline.ValueMapper(columns=['b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(zip(np.ones((3, 1)) * 2, np.ones((3, 1))), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_all_columns(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_missing_value(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) with self.assertWarns(Warning): result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestSorter(TestCase): def setUp(self): self.df = pd.DataFrame({ 'a': [2, 3, 1, 4], 'b': ['A', 'D', 'C', 'B'] }) def test_sorter(self): t = pipeline.Sorter(columns=['a']) result = t.fit_transform(self.df) expected = self.df.copy().sort_values(by=['a']) pd.testing.assert_frame_equal(result, expected) def test_sorter_multi_col(self): t = pipeline.Sorter(columns=['a', 'b']) result = t.fit_transform(self.df) expected = self.df.copy().sort_values(by=['a', 'b']) pd.testing.assert_frame_equal(result, expected) class TestFill(TestCase): def setUp(self): self.df = pd.DataFrame([[0.0, 1.0, 0.2, pd.NA, 0.5]]) def test_fill(self): t = pipeline.Fill(value=1.0) expected = pd.DataFrame([[0.0, 1.0, 0.2, 1.0, 0.5]]) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestTimeOffsetTransformer(TestCase): def test_timeoffset(self): t = pipeline.TimeOffsetTransformer( time_columns=['t'], timedelta=pd.Timedelta(1, 'h')) df = pd.DataFrame({'t': [datetime.datetime(2020, 10, 1, 12, 3, 10)]}) expected = pd.DataFrame( {'t': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_timeoffset_multi_col(self): t = pipeline.TimeOffsetTransformer( time_columns=['t'], timedelta=pd.Timedelta(1, 'h')) df = pd.DataFrame({'t': [datetime.datetime(2020, 10, 1, 12, 3, 10)], 'tt': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) expected = pd.DataFrame( {'t': [datetime.datetime(2020, 10, 1, 13, 3, 10)], 'tt': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestConditionedDropper(TestCase): def setUp(self): self.data = [0.0, 0.5, 1.0, 1.2] self.df = pd.DataFrame({'a': self.data}) def test_dropper(self): t = pipeline.ConditionedDropper(column='a', threshold=1.0) expected = pd.DataFrame({'a': self.data[:-1]}) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_dropper_invert(self): t = pipeline.ConditionedDropper(column='a', threshold=1.0, invert=True) expected = pd.DataFrame({'a': self.data[-2:]}) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestZeroVarianceDropper(TestCase): def setUp(self): self.df = pd.DataFrame({'one': np.ones((4,)), 'zeros': np.zeros((4,)), 'mixed': np.arange(4)}) def test_dropper(self): t = pipeline.ZeroVarianceDropper(verbose=True) expected = pd.DataFrame({ 'mixed': np.arange(4) }) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_dropper_fit_higher_variance(self): t = pipeline.ZeroVarianceDropper() expected = pd.DataFrame({ 'mixed': np.arange(4) }) t.fit(self.df) df = self.df.copy() df.iloc[0, 0] = 0 with self.assertWarns(Warning): result = t.transform(df) pd.testing.assert_frame_equal(result, expected) class TestSignalSorter(TestCase): def setUp(self): self.df = pd.DataFrame({'one': np.ones((4,)), 'zeros': np.zeros((4,)), 'mixed': np.arange(4), 'binary': [0, 1, 0, 1], 'cont': [10, 11, 10, 11]}) def test_sorter(self): t = pipeline.SignalSorter(verbose=True) expected = self.df.loc[:, ['mixed', 'cont', 'one', 'zeros', 'binary']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnSorter(TestCase): def setUp(self): self.df = pd.DataFrame({'one': np.ones((2,)), 'zeros':
np.zeros((2,))
numpy.zeros
from __future__ import division import numpy as np import copy from pysph.base.nnps import LinkedListNNPS from pysph.base.utils import get_particle_array, get_particle_array_wcsph from cyarray.api import UIntArray from numpy.linalg import norm, matrix_power from pysph.sph.equation import Equation from pysph.tools.sph_evaluator import SPHEvaluator from pysph.base.particle_array import ParticleArray def distance(point1, point2=np.array([0.0, 0.0, 0.0])): return np.sqrt(sum((point1 - point2) * (point1 - point2))) def distance_2d(point1, point2=np.array([0.0, 0.0])): return np.sqrt(sum((point1 - point2) * (point1 - point2))) def matrix_exp(matrix): """ Exponential of a matrix. Finds the exponential of a square matrix of any order using the formula exp(A) = I + (A/1!) + (A**2/2!) + (A**3/3!) + ......... Parameters ---------- matrix : numpy matrix of order nxn (square) filled with numbers Returns ------- result : numpy matrix of the same order Examples -------- >>>A = np.matrix([[1, 2],[2, 3]]) >>>matrix_exp(A) matrix([[19.68002699, 30.56514746], [30.56514746, 50.24517445]]) >>>B = np.matrix([[0, 0],[0, 0]]) >>>matrix_exp(B) matrix([[1., 0.], [0., 1.]]) """ matrix = np.asarray(matrix) tol = 1.0e-16 result = matrix_power(matrix, 0) n = 1 condition = True while condition: adding = matrix_power(matrix, n) / (1.0 * np.math.factorial(n)) result += adding residue = np.sqrt(np.sum(np.square(adding)) / np.sum(np.square(result))) condition = (residue > tol) n += 1 return result def extrude(x, y, dx=0.01, extrude_dist=1.0, z_center=0.0): """ Extrudes a 2d geometry. Takes a 2d geometry with x, y values and extrudes it in z direction by the amount extrude_dist with z_center as center Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers dx : a number extrude_dist : a number z_center : a number x, y should be of the same length and no x, y pair should be the same Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with z values x_new, y_new, z_new are of the same length Examples -------- >>>x = np.array([0.0]) >>>y = np.array([0.0]) >>>extrude(x, y, 0.1, 0.2, 0.0) (array([ 0., 0., 0.]), array([ 0., 0., 0.]), array([-0.1, 0., 0.1])) """ z = np.arange(z_center - extrude_dist / 2., z_center + (extrude_dist + dx) / 2., dx) x_new = np.tile(np.asarray(x), len(z)) y_new = np.tile(np.asarray(y), len(z)) z_new = np.repeat(z, len(x)) return x_new, y_new, z_new def translate(x, y, z, x_translate=0.0, y_translate=0.0, z_translate=0.0): """ Translates set of points in 3d cartisean space. Takes set of points and translates each and every point by some mentioned amount in all the 3 directions. Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers z : 1d array object with numbers x_translate : a number y_translate : a number z_translate : a number Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with new z values Examples -------- >>>x = np.array([0.0, 1.0, 2.0]) >>>y = np.array([-1.0, 0.0, 1.5]) >>>z = np.array([0.5, -1.5, 0.0]) >>>translate(x, y, z, 1.0, -0.5, 2.0) (array([ 1., 2., 3.]), array([-1.5, -0.5, 1.]), array([2.5, 0.5, 2.])) """ x_new = np.asarray(x) + x_translate y_new = np.asarray(y) + y_translate z_new = np.asarray(z) + z_translate return x_new, y_new, z_new def rotate(x, y, z, axis=np.array([0.0, 0.0, 1.0]), angle=90.0): """ Rotates set of points in 3d cartisean space. Takes set of points and rotates each point with some angle w.r.t a mentioned axis. Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers z : 1d array object with numbers axis : 1d array with 3 numbers angle(in degrees) : number Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with new z values Examples -------- >>>x = np.array([0.0, 1.0, 2.0]) >>>y = np.array([-1.0, 0.0, 1.5]) >>>z = np.array([0.5, -1.5, 0.0]) >>>axis = np.array([0.0, 0.0, 1.0]) >>>rotate(x, y, z, axis, 90.0) (array([ 1.00000000e+00, 4.25628483e-17, -1.50000000e+00]), array([-4.25628483e-17, 1.00000000e+00, 2.00000000e+00]), array([ 0.5, -1.5, 0. ])) """ theta = angle * np.pi / 180.0 unit_vector = np.asarray(axis) / norm(np.asarray(axis)) matrix = np.cross(np.eye(3), unit_vector * theta) rotation_matrix = matrix_exp(matrix) new_points = [] for xi, yi, zi in zip(np.asarray(x), np.asarray(y), np.asarray(z)): point = np.array([xi, yi, zi]) new = np.dot(rotation_matrix, point) new_points.append(new) new_points = np.array(new_points) x_new = new_points[:, 0] y_new = new_points[:, 1] z_new = new_points[:, 2] return x_new, y_new, z_new def get_2d_wall(dx=0.01, center=np.array([0.0, 0.0]), length=1.0, num_layers=1, up=True): """ Generates a 2d wall which is parallel to x-axis. The wall can be rotated parallel to any axis using the rotate function. 3d wall can be also generated using the extrude function after generating particles using this function. ^ | | y|******************* | wall particles | |____________________> x Parameters ---------- dx : a number which is the spacing required center : 1d array like object which is the center of wall length : a number which is the length of the wall num_layers : Number of layers for the wall up : True if the layers have to created on top of base wall Returns ------- x : 1d numpy array with x coordinates of the wall y : 1d numpy array with y coordinates of the wall """ x = np.arange(-length / 2., length / 2. + dx, dx) + center[0] y = np.ones_like(x) * center[1] value = 1 if up else -1 for i in range(1, num_layers): y1 = np.ones_like(x) * center[1] + value * i * dx y = np.concatenate([y, y1]) return np.tile(x, num_layers), y def get_2d_tank(dx=0.05, base_center=np.array([0.0, 0.0]), length=1.0, height=1.0, num_layers=1, outside=True, staggered=False, top=False): """ Generates an open 2d tank with the base parallel to x-axis and the side walls parallel to y-axis. The tank can be rotated to any direction using rotate function. 3d tank can be generated using extrude function. ^ |* * |* 2d tank * y|* particles * |* * |* * * * * * * * * | base |____________________> x Parameters ---------- dx : a number which is the spacing required base_center : 1d array like object which is the center of base wall length : a number which is the length of the base height : a number which is the length of the side wall num_layers : Number of layers for the tank outside : A boolean value which decides if the layers are inside or outside staggered : A boolean value which decides if the layers are staggered or not top : A boolean value which decides if the top is present or not Returns ------- x : 1d numpy array with x coordinates of the tank y : 1d numpy array with y coordinates of the tank """ dy = dx fac = 1 if outside else 0 if staggered: dx = dx/2 start = fac*(1 - num_layers)*dx end = fac*num_layers*dx + (1 - fac) * dx x, y = np.mgrid[start:length+end:dx, start:height+end:dy] topset = 0 if top else 10*height if staggered: topset += dx y[1::2] += dx offset = 0 if outside else (num_layers-1)*dx cond = ~((x > offset) & (x < length-offset) & (y > offset) & (y < height+topset-offset)) return x[cond] + base_center[0] - length/2, y[cond] + base_center[1] def get_2d_circle(dx=0.01, r=0.5, center=np.array([0.0, 0.0])): """ Generates a completely filled 2d circular area. Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the circle center : 1d array like object which is the center of the circle Returns ------- x : 1d numpy array with x coordinates of the circle particles y : 1d numpy array with y coordinates of the circle particles """ N = int(2.0 * r / dx) + 1 x, y = np.mgrid[-r:r:N * 1j, -r:r:N * 1j] x, y = np.ravel(x), np.ravel(y) condition = (x * x + y * y <= r * r) x, y = x[condition], y[condition] return x + center[0], y + center[1] def get_2d_hollow_circle(dx=0.01, r=1.0, center=np.array([0.0, 0.0]), num_layers=2, inside=True): """ Generates a hollow 2d circle with some number of layers either on the inside or on the outside of the body which is taken as an argument Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the circle center : 1d array like object which is the center of the circle num_layers : a number (int) inside : boolean (True or False). If this is True then the layers are generated inside the circle Returns ------- x : 1d numpy array with x coordinates of the circle particles y : 1d numpy array with y coordinates of the circle particles """ r_grid = r + dx * num_layers N = int(2.0 * r_grid / dx) + 1 x, y = np.mgrid[-r_grid:r_grid:N * 1j, -r_grid:r_grid:N * 1j] x, y = np.ravel(x), np.ravel(y) if inside: cond1 = (x * x + y * y <= r * r) cond2 = (x * x + y * y >= (r - num_layers * dx)**2) else: cond1 = (x * x + y * y >= r * r) cond2 = (x * x + y * y <= (r + num_layers * dx)**2) cond = cond1 & cond2 x, y = x[cond], y[cond] return x + center[0], y + center[0] def get_3d_hollow_cylinder(dx=0.01, r=0.5, length=1.0, center=np.array([0.0, 0.0, 0.0]), num_layers=2, inside=True): """ Generates a 3d hollow cylinder which is a extruded geometry of the hollow circle with a closed base. Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the cylinder length : a number which is the length of the cylinder center : 1d array like object which is the center of the cylinder num_layers : a number (int) inside : boolean (True or False). If this is True then the layers are generated inside the cylinder Returns ------- x : 1d numpy array with x coordinates of the cylinder particles y : 1d numpy array with y coordinates of the cylinder particles z : 1d numpy array with z coordinates of the cylinder particles """ x_2d, y_2d = get_2d_hollow_circle(dx, r, center[:2], num_layers, inside) x, y, z = extrude(x_2d, y_2d, dx, length - dx, center[2] + dx / 2.) x_circle, y_circle = get_2d_circle(dx, r, center[:2]) z_circle = np.ones_like(x_circle) * (center[2] - length / 2.) x = np.concatenate([x, x_circle]) y = np.concatenate([y, y_circle]) z = np.concatenate([z, z_circle]) return x, y, z def get_2d_block(dx=0.01, length=1.0, height=1.0, center=np.array([0., 0.])): """ Generates a 2d rectangular block of particles with axes parallel to the coordinate axes. ^ | |h * * * * * * * |e * * * * * * * y|i * * * * * * * |g * * * * * * * |h * * * * * * * |t * * * * * * * | * * * * * * * | length |________________> x Parameters ---------- dx : a number which is the spacing required length : a number which is the length of the block height : a number which is the height of the block center : 1d array like object which is the center of the block Returns ------- x : 1d numpy array with x coordinates of the block particles y : 1d numpy array with y coordinates of the block particles """ n1 = int(length / dx) + 1 n2 = int(height / dx) + 1 x, y = np.mgrid[-length / 2.:length / 2.:n1 * 1j, -height / 2.:height / 2.:n2 * 1j] x, y = np.ravel(x), np.ravel(y) return x + center[0], y + center[1] def get_3d_sphere(dx=0.01, r=0.5, center=np.array([0.0, 0.0, 0.0])): """ Generates a 3d sphere. Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the sphere center : 1d array like object which is the center of the sphere Returns ------- x : 1d numpy array with x coordinates of the sphere particles y : 1d numpy array with y coordinates of the sphere particles z : 1d numpy array with z coordinates of the sphere particles """ N = int(2.0 * r / dx) + 1 x, y, z = np.mgrid[-r:r:N * 1j, -r:r:N * 1j, -r:r:N * 1j] x, y, z = np.ravel(x), np.ravel(y), np.ravel(z) cond = (x * x + y * y + z * z <= r * r) x, y, z = x[cond], y[cond], z[cond] return x + center[0], y + center[1], z + center[2] def get_3d_block(dx=0.01, length=1.0, height=1.0, depth=1.0, center=np.array([0., 0., 0.])): """ Generates a 3d block of particles with the length, height and depth parallel to x, y and z axis respectively. Paramters --------- dx : a number which is the spacing required length : a number which is the length of the block height : a number which is the height of the block depth : a number which is the depth of the block center : 1d array like object which is the center of the block Returns ------- x : 1d numpy array with x coordinates of the block particles y : 1d numpy array with y coordinates of the block particles z : 1d numpy array with z coordinates of the block particles """ n1 = int(length / dx) + 1 n2 = int(height / dx) + 1 n3 = int(depth / dx) + 1 x, y, z = np.mgrid[-length / 2.:length / 2.:n1 * 1j, -height / 2.:height / 2.:n2 * 1j, -depth / 2.:depth / 2.:n3 * 1j] x, y, z = np.ravel(x), np.ravel(y), np.ravel(z) return x + center[0], y + center[1], z + center[2] def get_4digit_naca_airfoil(dx=0.01, airfoil='0012', c=1.0): """ Generates a 4 digit series NACA airfoil. For a 4 digit series airfoil, the first digit is the (maximum camber / chord) * 100, second digit is (location of maximum camber / chord) * 10 and the third and fourth digits are the (maximum thickness / chord) * 100. The particles generated using this function will form a solid 2d airfoil. Parameters ---------- dx : a number which is the spacing required airfoil : a string of 4 characters which is the airfoil name c : a number which is the chord of the airfoil Returns ------- x : 1d numpy array with x coordinates of the airfoil particles y : 1d numpy array with y coordinates of the airfoil particles References ---------- https://en.wikipedia.org/wiki/NACA_airfoil """ n = int(c / dx) + 1 x, y = np.mgrid[0:c:n * 1j, -c / 2.:c / 2.:n * 1j] x = np.ravel(x) y = np.ravel(y) x_naca = [] y_naca = [] t = float(airfoil[2:]) * 0.01 * c if airfoil[:2] == '00': for xi, yi in zip(x, y): yt = 5.0 * t * (0.2969 * np.sqrt(xi / c) - 0.1260 * (xi / c) - 0.3516 * ((xi / c)**2.) + 0.2843 * ((xi / c)**3.) - 0.1015 * ((xi / c)**4.)) if abs(yi) <= yt: x_naca.append(xi) y_naca.append(yi) else: m = 0.01 * float(airfoil[0]) p = 0.1 * float(airfoil[1]) for xi, yi in zip(x, y): yt = 5.0 * t * (0.2969 * np.sqrt(xi / c) - 0.1260 * (xi / c) - 0.3516 * ((xi / c)**2.) + 0.2843 * ((xi / c)**3.) - 0.1015 * ((xi / c)**4.)) if xi <= p * c: yc = (m / (p * p)) * (2. * p * (xi / c) - (xi / c)**2.) dydx = (2. * m / (p * p)) * (p - xi / c) / c else: yc = (m / ((1. - p) * (1. - p))) * \ (1. - 2. * p + 2. * p * (xi / c) - (xi / c)**2.) dydx = (2. * m / ((1. - p) * (1. - p))) * (p - xi / c) / c theta = np.arctan(dydx) if yi >= 0.0: yu = yc + yt * np.cos(theta) if yi <= yu: xu = xi - yt * np.sin(theta) x_naca.append(xu) y_naca.append(yi) else: yl = yc - yt * np.cos(theta) if yi >= yl: xl = xi + yt * np.sin(theta) x_naca.append(xl) y_naca.append(yi) x_naca = np.array(x_naca) y_naca = np.array(y_naca) return x_naca, y_naca def _get_m_k(series): if series == '210': return 0.058, 361.4 elif series == '220': return 0.126, 51.64 elif series == '230': return 0.2025, 15.957 elif series == '240': return 0.290, 6.643 elif series == '250': return 0.391, 3.23 elif series == '221': return 0.130, 51.99 elif series == '231': return 0.217, 15.793 elif series == '241': return 0.318, 6.52 elif series == '251': return 0.441, 3.191 def get_5digit_naca_airfoil(dx=0.01, airfoil='23112', c=1.0): """ Generates a 5 digit series NACA airfoil. For a 5 digit series airfoil, the first digit is the design lift coefficient * 20 / 3, second digit is (location of maximum camber / chord) * 20, third digit indicates the reflexitivity of the camber and the fourth and fifth digits are the (maximum thickness / chord) * 100. The particles generated using this function will form a solid 2d airfoil. Parameters ---------- dx : a number which is the spacing required airfoil : a string of 5 characters which is the airfoil name c : a number which is the chord of the airfoil Returns ------- x : 1d numpy array with x coordinates of the airfoil particles y : 1d numpy array with y coordinates of the airfoil particles References ---------- https://en.wikipedia.org/wiki/NACA_airfoil http://www.aerospaceweb.org/question/airfoils/q0041.shtml """ n = int(c / dx) + 1 x, y = np.mgrid[0:c:n * 1j, -c / 2.:c / 2.:n * 1j] x = np.ravel(x) y = np.ravel(y) x_naca = [] y_naca = [] t = 0.01 * float(airfoil[3:]) series = airfoil[:3] m, k = _get_m_k(series) for xi, yi in zip(x, y): yt = 5.0 * t * (0.2969 * np.sqrt(xi / c) - 0.1260 * (xi / c) - 0.3516 * ((xi / c)**2.) + 0.2843 * ((xi / c)**3.) - 0.1015 * ((xi / c)**4.)) xn = xi / c if xn <= m: yc = c * (k / 6.) * (xn**3. - 3. * m * xn * xn + m * m * (3. - m) * xn) dydx = (k / 6.) * (3. * xn * xn - 6. * m * xn + m * m * (3. - m)) else: yc = c * (k * (m**3.) / 6.) * (1. - xn) dydx = -(k * (m**3.) / 6.) theta = np.arctan(dydx) if yi >= 0.0: yu = yc + yt *
np.cos(theta)
numpy.cos
import joblib import math import numba import numpy as np import pynndescent.sparse as sparse from pynndescent.utils import heap_push, make_heap, seed, tau_rand_int from pynndescent.threaded import ( new_rng_state, per_thread_rng_state, parallel_calls, effective_n_jobs_with_context, chunk_rows, shuffle_jit, init_rp_tree_reduce_jit, new_build_candidates, nn_decent_reduce_jit, deheap_sort_map_jit, ) # NNDescent algorithm INT32_MIN = np.iinfo(np.int32).min + 1 INT32_MAX = np.iinfo(np.int32).max - 1 # Map Reduce functions to be jitted @numba.njit(nogil=True) def sparse_current_graph_map_jit( heap, rows, n_neighbors, inds, indptr, data, rng_state, seed_per_row, sparse_dist, ): rng_state_local = rng_state.copy() for i in rows: if seed_per_row: seed(rng_state_local, i) if heap[0][i, 0] < 0.0: for j in range(n_neighbors -
np.sum(heap[0][i] >= 0.0)
numpy.sum
import os import matplotlib import multiprocessing import pandas as pd import numpy as np BACKEND = 'Agg' if matplotlib.get_backend().lower() != BACKEND.lower(): # If backend is not set properly a call to describe will hang matplotlib.use(BACKEND) from matplotlib import pyplot as plt #To plot for bi range of x axis such as 250M plt.rcParams['agg.path.chunksize'] = 10000 from SigProfilerTopography.source.commons.TopographyCommons import getChromSizesDict from SigProfilerTopography.source.commons.TopographyCommons import ONE_DIRECTORY_UP from SigProfilerTopography.source.commons.TopographyCommons import LIB from SigProfilerTopography.source.commons.TopographyCommons import NUCLEOSOME from SigProfilerTopography.source.commons.TopographyCommons import CHRBASED from SigProfilerTopography.source.commons.TopographyCommons import CHROM from SigProfilerTopography.source.commons.TopographyCommons import START from SigProfilerTopography.source.commons.TopographyCommons import END from SigProfilerTopography.source.commons.TopographyCommons import SIGNAL current_abs_path = os.path.dirname(os.path.realpath(__file__)) ###################################################################### #Used by plotting def readChromBasedNucleosomeDF(chrLong,nucleosomeFilename): chrBasedNucleosmeFilename = '%s_%s' %(chrLong,nucleosomeFilename) chrBasedNucleosmeFilePath = os.path.join(current_abs_path, ONE_DIRECTORY_UP, ONE_DIRECTORY_UP, LIB, NUCLEOSOME, CHRBASED, chrBasedNucleosmeFilename) if (os.path.exists(chrBasedNucleosmeFilePath)): column_names = [CHROM, START, END, SIGNAL] chrbased_nucleosome_df = pd.read_csv(chrBasedNucleosmeFilePath, sep='\t', header=None, comment='#',names=column_names, dtype={CHROM: 'category', START: np.int32, END: np.int32, SIGNAL: np.float32}) return chrbased_nucleosome_df else: return None ###################################################################### ###################################################################### # For plotting # main function parallel # parallel it does not end for big chromosomes def plotChrBasedNucleosomeOccupancyFigures(genome,nucleosomeFilename): #read chromnames for this nucleosome data nucleosomeFilenameWoExtension = nucleosomeFilename[0:-4] chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) #Start the pool numofProcesses = multiprocessing.cpu_count() pool = multiprocessing.Pool(numofProcesses) poolInputList = [] for chrLong in chromNamesList: chromBasedNucleosomeDF = readChromBasedNucleosomeDF(chrLong,nucleosomeFilename) if chromBasedNucleosomeDF is not None: inputList = [] inputList.append(chrLong) inputList.append(nucleosomeFilenameWoExtension) poolInputList.append(inputList) pool.map(plotNucleosomeOccupancySignalCountFiguresInParallel,poolInputList) ################################ pool.close() pool.join() ################################ ###################################################################### ###################################################################### #main function sequential def plotChrBasedNucleosomeOccupancyFiguresSequential(genome,nucleosomeFilename): #read chromnames for this nucleosome data nucleosomeFilenameWoExtension = nucleosomeFilename[0:-4] chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) for chrLong in chromNamesList: #Actually no need for such a check chromBasedNucleosomeDF = readChromBasedNucleosomeDF(chrLong,nucleosomeFilename) if chromBasedNucleosomeDF is not None: inputList = [] inputList.append(chrLong) inputList.append(nucleosomeFilenameWoExtension) plotNucleosomeOccupancySignalCountFiguresInParallel(inputList) ###################################################################### ###################################################################### #main function def plotChrBasedNucleosomeOccupancyFiguresFromText(genome,nucleosomeFilename): #read chromnames for this nucleosome data nucleosomeFilenameWoExtension = nucleosomeFilename[0:-4] chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) #Start the pool numofProcesses = multiprocessing.cpu_count() pool = multiprocessing.Pool(numofProcesses) poolInputList = [] for chrLong in chromNamesList: chromBasedNucleosomeDF = readChromBasedNucleosomeDF(chrLong,nucleosomeFilename) if chromBasedNucleosomeDF is not None: inputList = [] inputList.append(chrLong) inputList.append(nucleosomeFilenameWoExtension) poolInputList.append(inputList) pool.map(plotNucleosomeOccupancySignalCountFiguresInParallelFromTextFiles,poolInputList) ################################ pool.close() pool.join() ################################ ###################################################################### ##################################################################### # For plotting def plotNucleosomeOccupancySignalCountFiguresInParallel(inputList): chrLong = inputList[0] nucleosomeFilenameWoExtension = inputList[1] ############################################################## signalArrayFilename = '%s_signal_%s.npy' %(chrLong,nucleosomeFilenameWoExtension) countArrayFilename = '%s_count_%s.npy' % (chrLong, nucleosomeFilenameWoExtension) chrBasedSignalNucleosmeFile = os.path.join(current_abs_path,ONE_DIRECTORY_UP,ONE_DIRECTORY_UP,LIB,NUCLEOSOME,CHRBASED,signalArrayFilename) chrBasedCountNucleosmeFile = os.path.join(current_abs_path,ONE_DIRECTORY_UP,ONE_DIRECTORY_UP,LIB,NUCLEOSOME,CHRBASED,countArrayFilename) ################################################################################################################# if (os.path.exists(chrBasedSignalNucleosmeFile) and os.path.exists(chrBasedCountNucleosmeFile)): signal_array_npy = np.load(chrBasedSignalNucleosmeFile) count_array_npy = np.load(chrBasedCountNucleosmeFile) fig = plt.figure(figsize=(30, 10), facecolor=None) plt.style.use('ggplot') figureFilename = '%s_NucleosomeOccupancy_Signal_Count_from_npy_scatter_allChr.png' %(chrLong) figureFilepath = os.path.join(current_abs_path, ONE_DIRECTORY_UP, ONE_DIRECTORY_UP, LIB,NUCLEOSOME,CHRBASED,figureFilename) # This code makes the background white. ax = plt.gca() ax.set_facecolor('white') # This code puts the edge line for edge_i in ['left', 'bottom', 'right', 'top']: ax.spines[edge_i].set_edgecolor("black") ax.spines[edge_i].set_linewidth(3) #All Chrom chromSize = signal_array_npy.size x =
np.arange(0, chromSize, 1)
numpy.arange
import inspect import math import numpy as np import pytest import xarray as xr import windeval.processing as processing @pytest.fixture def accuracy(): return 1e-12 def test_BulkFormula(): BFC = processing.BulkFormula assert inspect.isclass(BFC) BFI = processing.BulkFormula() assert isinstance(BFI, BFC) def test_BulkFormula_YT96(accuracy): x = np.array([3, 5.9, 6, 12, 26, 27, 1]) X = xr.Dataset({"w": (("x"), x), "air_density": (("x"), np.full(x.shape, 1))}) y = np.array( [ 0.00217888888888889, 0.001036624533180121, 0.00102, 0.00144, 0.00242, np.nan, np.nan, ] ) tau = processing.BulkFormula("yelland_and_taylor_1996").calculate(X, "w") for i, _ in enumerate(X.w): if np.isnan(y[i]): assert np.isnan(tau[i]) else: assert math.isclose(tau[i] / np.power(X.w[i], 2), y[i], rel_tol=accuracy) assert tau.shape == X.w.shape def test_BulkFormula_LP81(accuracy): x = np.array([5, 12, 1, 26]) X = xr.Dataset({"w": (("x"), x), "air_density": (("x"), np.full(x.shape, 1))}) y = np.array([1.2e-3, 0.00127, np.nan, np.nan]) tau = processing.BulkFormula("large_and_pond_1981").calculate(X, "w") for i, _ in enumerate(X.w): if np.isnan(y[i]): assert np.isnan(tau[i]) else: assert math.isclose(tau[i] / np.power(X.w[i], 2), y[i], rel_tol=accuracy) assert tau.shape == X.w.shape def test_BulkFormula_KH07(accuracy): x = np.array([1, 10]) X = xr.Dataset({"w": (("x"), x), "air_density": (("x"), np.full(x.shape, 1))}) y = 1.3e-3 tau = processing.BulkFormula("ncep_ncar_2007").calculate(X, "w") for i, _ in enumerate(X.w): assert math.isclose(tau[i] / np.power(X.w[i], 2), y, rel_tol=accuracy) assert tau.shape == X.w.shape def test_BulkFormula_T90(accuracy): x = np.array([0.5, 1.5, 3 + 1e-10, 15]) X = xr.Dataset({"w": (("x"), x), "air_density": (("x"), np.full(x.shape, 1))}) y =
np.array([0.00218, 0.00166, 0.00114, 0.001465])
numpy.array
import pytest import torch import torch.nn.functional as F import numpy as np from cplxmodule import cplx def cplx_allclose(input, other): return torch.allclose(input.real, other.real) and \ torch.allclose(input.imag, other.imag) def cplx_allclose_numpy(input, other): other = np.asarray(other) return ( torch.allclose(input.real, torch.from_numpy(other.real)) and torch.allclose(input.imag, torch.from_numpy(other.imag)) ) @pytest.fixture def random_state(): return
np.random.RandomState(None)
numpy.random.RandomState
# python libs import numpy as np import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) global cymodels def initialize_models(): global cymodels # import cymodels # to be used with compiled models for improved performance def prediction(models, controls, history_array, prediction_horizon, history_length, initial_tick, number_of_controls, number_of_variables): predictions = [list() for i in range(number_of_controls)] for t in range(prediction_horizon): new_tick = history_array[-number_of_variables:].copy() history_array = np.concatenate([[0], history_array]) for i in range(number_of_controls): new_tick[i] = cymodels.eval(i, history_array) predictions[i].append(new_tick[i]) # replacing controls: # new_tick[desired_indexes] = controls[((number_of_controls - 1) * t):((number_of_controls - 1) * (t + 1))] # update history with current tick and remove oldest tick to enforce history length history_array =
np.concatenate([history_array[number_of_variables:], new_tick])
numpy.concatenate
import os import numpy as np import tensorflow as tf import gpflow from GPcounts import branchingKernel from GPcounts import NegativeBinomialLikelihood from sklearn.cluster import KMeans import scipy.stats as ss from pathlib import Path import pandas as pd from gpflow.utilities import set_trainable from tqdm import tqdm from scipy.signal import savgol_filter import random import scipy as sp from scipy import interpolate from robustgp import ConditionalVariance from pandas import DataFrame from scipy.special import logsumexp import warnings with warnings.catch_warnings(): warnings.simplefilter('ignore') # Get number of cores reserved by the batch system (NSLOTS is automatically set, or use 1 if not) NUMCORES=int(os.getenv("NSLOTS",1)) # print("Using", NUMCORES, "core(s)" ) # Create session properties config=tf.compat.v1.ConfigProto(inter_op_parallelism_threads=NUMCORES,intra_op_parallelism_threads=NUMCORES) tf.compat.v1.Session.intra_op_parallelism_threads = NUMCORES tf.compat.v1.Session.inter_op_parallelism_threads = NUMCORES class Fit_GPcounts(object): def __init__(self,X = None,Y= None,scale = None,sparse = False,M=0,nb_scaled=False,safe_mode = False): self.safe_mode = safe_mode self.folder_name = 'GPcounts_models/' self.transform = True # to use log(count+1) transformation self.sparse = sparse # use sparse or full inference self.nb_scaled = nb_scaled self.X = None # time points (cell,samples, spatial location) self.M = M # number of inducing points self.Z = None # inducing points self.ConditionalVariance = False # set inducing points using conditional variance from robustGP method self.Y = None # gene expression matrix self.Y_copy = None #copy of gene expression matrix self.D = None # number of genes self.N = None # number of cells self.scale = scale self.genes_name = None self.cells_name = None self.Scale = None self.kernel = None self.bic = None # statistical test information self.lik_name = None # the selected likelihood name self.models_number = None # Total number of models to fit for single gene for selected test self.model_index = None # index the current model self.hyper_parameters = {} # model paramaters initialization self.user_hyper_parameters = [None,None,None,None]# user model paramaters initialization self.model = None # GP model information self.var = None # GP variance of posterior predictive self.mean = None # GP mean of posterior predictive self.fix = False # fix hyper-parameters # save likelihood of hyper-parameters of dynamic model to initialize the constant model self.lik_alpha = None self.lik_km = None self.optimize = True # optimize or load model self.branching = None # DE kernel or RBF kernel self.xp = -1000. # Put branching time much earlier than zero time # single gene information self.y = None self.index = None self.global_seed = 0 self.seed_value = 0 # initialize seed self.count_fix = 0 # counter of number of trails to resolve either local optima or failure duo to numerical issues # check the X and Y are not missing if (X is None) or (Y is None): print('TypeError: GPcounts() missing 2 required positional arguments: X and Y') else: self.set_X_Y(X,Y) def set_X_Y(self,X,Y): self.seed_value = 0 np.random.seed(self.seed_value) if X.shape[0] == Y.shape[1]: self.X = X self.cells_name = list(map(str,list(X.index.values))) self.X = X.values.astype(float) if len(self.X.shape) > 1: self.X = self.X.reshape([-1,self.X.shape[1]]) else: self.X = self.X.reshape([-1, 1]) if self.sparse: if self.M == 0: self.M = int((5*(len(self.X)))/100) # number of inducing points is 5% of length of time points self.ConditionalVariance = True self.Y = Y self.genes_name = self.Y.index.values.tolist() # gene expression name self.Y = self.Y.values # gene expression matrix ''' if self.lik_name == 'Gaussian': self.Y = self.Y.values # gene expression matrix else: self.Y = self.Y.values.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y ''' self.Y_copy = self.Y self.D = Y.shape[0] # number of genes self.N = Y.shape[1] # number of cells else: print('InvalidArgumentError: Dimension 0 in X shape must be equal to Dimension 1 in Y, but shapes are %d and %d.' %(X.shape[0],Y.shape[1])) def Infer_trajectory(self,lik_name= 'Negative_binomial',transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,1,genes_index) return genes_results def One_sample_test(self,lik_name= 'Negative_binomial', transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,2,genes_index) return genes_results def Model_selection_test(self,lik_name = 'Negative_binomial',kernel = None,transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y # Run GP model for linear, periodic and rbf kernels and calculate BIC ker_list = ['Linear','Periodic','RBF'] genes_index = range(self.D) selection_results = pd.DataFrame() selection_results['Gene'] = 0 selection_results['Dynamic_model_log_likelihood'] = 0 selection_results['Constant_model_log_likelihood'] = 0 selection_results['log_likelihood_ratio'] = 0 selection_results['p_value'] = 0 selection_results['q_value'] = 0 selection_results['log_likelihood_ratio'] = 0 selection_results['Model'] = 0 selection_results['BIC'] = 0 for word in ker_list: self.kernel = word results = self.run_test(lik_name,2,genes_index) results['BIC'] = -2*results['Dynamic_model_log_likelihood'] + self.K*np.log(self.X.shape[0]) results['Gene'] = self.genes_name results['Model'] = word results['p_value'] = 1 - ss.chi2.cdf(2*results['log_likelihood_ratio'], df=1) results['q_value']= self.qvalue(results['p_value']) selection_results = selection_results.merge(results, how = 'outer') # Model probability estimation based on bic based on SpatialDE:identification of spatially variable genes: https://www.nature.com/articles/nmeth.4636 tr = selection_results.groupby(['Gene','Model'])['BIC'].transform(min) == selection_results['BIC'] # select bic values for each kernel and gene bic_values = -selection_results[tr].pivot_table(values='BIC', index='Gene', columns='Model') restore_these_settings = np.geterr() temp_settings = restore_these_settings.copy() temp_settings["over"] = "ignore" temp_settings["under"] = "ignore" np.seterr(**temp_settings) log_v = logsumexp(bic_values,1) log_model_prob= (bic_values.T - log_v).T model_prob = np.exp(log_model_prob).add_suffix('_probability') tr = selection_results.groupby('Gene')['BIC'].transform(min) == selection_results['BIC'] selection_results_prob = selection_results[tr] selection_results_prob = selection_results_prob.join(model_prob, on='Gene') transfer_columns = ['p_value', 'q_value'] np.seterr(**restore_these_settings) selection_results_prob = selection_results_prob.drop(transfer_columns,1)\ .merge(selection_results,how = 'inner') return selection_results_prob def Two_samples_test(self,lik_name= 'Negative_binomial',transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y genes_index = range(self.D) genes_results = self.run_test(lik_name,3,genes_index) return genes_results def Infer_branching_location(self, cell_labels, bins_num=50, lik_name='Negative_binomial', branching_point=-1000,transform = True): if transform == True: self.Y = self.Y.astype(int) self.Y = self.Y.astype(float) self.Y_copy = self.Y cell_labels =
np.array(cell_labels)
numpy.array
import numpy as np class ENV_net(): def __init__(self,SNR_mat, UE, BS, Bh): self.UE = UE self.BS = BS self.episode = 0 self.step = 0 self.max_level = 500 self.power_default = 37 self.renew_max = 60 self.renew_min = 37 self.tx_dBm = 30 self.tx_w = np.power(10, self.tx_dBm/10)/1000 self.delta = 2.6 self.grid_power_min = 200 self.grid_power_max = 200 self.QoS_pool = np.array([0.192,2.22,1.5,0.6,4.44]) ## Mbps [Audio, Video, Image, Web_bro, Email] self.SNR_mat = SNR_mat self.renew = (np.arange(self.BS) != self.BS-1).astype(int) #np.array([1,1,1,0]) self.grid_power = self.grid_power_min + (self.grid_power_max-self.grid_power_min)*np.random.uniform(size= [self.BS]) self.grid_power = self.grid_power * (1-self.renew) self.Backhaul_lim = Bh self.Backhaul = self.Backhaul_lim + (50-self.Backhaul_lim )*(1-self.renew) self.RB = 100 self.BW = 2e+7 self.action_size_PC = self.BS self.action_size_UA = 2*self.BS self.reward_size_PC = 2 * self.BS #3*self.BS self.reward_size_UA = 4*self.BS #+ 2*self.UE self.state_size_PC = self.UE*self.BS + 5*self.BS + self.UE self.state_size_UA = self.UE*self.BS + 2* self.BS + self.UE self.QoS_penalty = 4.0 self.Backhaul_penalty =100 def reset(self,is_test=False): if is_test: self.UA_set = np.arange(self.UE) self.H_mat = self.SNR_mat[self.episode, :, :,:].copy() else: self.UA_set = np.random.permutation(self.SNR_mat.shape[2])[0:self.UE] self.H_mat = self.SNR_mat[np.mod(self.episode+int(np.random.uniform(0,self.SNR_mat.shape[0])) ,self.SNR_mat.shape[0]), :, :,:].copy() self.H_mat = self.H_mat[:,self.UA_set,:].copy() H = self.H_mat[0,:,:].copy() UA = np.zeros([self.UE]).astype(int) for i in range(self.UE): BS_ind = np.mod(i, self.BS) UE_ind = np.argmax(H[:,BS_ind]) H[UE_ind,:] = -1.0 UA[BS_ind * int(self.UE/self.BS) + int(i/self.BS)] = UE_ind self.H_mat = self.H_mat[:,UA,:].copy() self.H = self.H_mat[0, :,:].copy() self.QoS = np.random.choice(self.QoS_pool.shape[0],[self.UE,1])+0.0 for i in range(self.QoS_pool.shape[0]): self.QoS[self.QoS == i] = self.QoS_pool[i] self.QoS[self.QoS==2.22] = (0.6 + (1.4-0.6)*np.random.uniform(size= [np.sum(self.QoS==2.22)]) ) self.QoS[self.QoS==4.44] = (2.0 + (6.0-2.0)*np.random.uniform(size= [np.sum(self.QoS==4.44)]) ) self.b_level = 100 * self.renew self.res_source =(self.renew_min+ (self.renew_max - self.renew_min)*np.random.uniform(size = [self.BS]))*self.renew self.state_PC = np.concatenate([(self.H*(self.b_level + self.grid_power - self.power_default)/260).reshape([1,-1])/2000.0, self.QoS.reshape([1,-1]), (np.maximum(self.b_level+self.grid_power - self.power_default,0.0).reshape([1,-1])/260.0), self.b_level.reshape([1,-1])/260, self.grid_power.reshape([1,-1])/260, (self.res_source).reshape([1,-1])/260,self.Backhaul.reshape([1,-1])/10.0], axis=1) def get_state_UA(self): self.P = np.clip( (self.renew * (0.01 + 0.69 * (self.action[0,0:self.BS]+1)/2) + (1-self.renew) * (0.01 + 0.99 * (self.action[0,0:self.BS]+1)/2))*(self.b_level + self.grid_power -self.power_default)/self.delta/self.RB, 0, 1).reshape([1,-1]) SNR = self.H * self.P SINR = SNR/ ( 1+ np.tile(np.sum(SNR,axis=1,keepdims=True),[1, self.BS]) - SNR) self.Rate = np.log2(1+SINR)*100*0.18 + 0.001 self.state_UA = np.concatenate([np.max(self.Rate,axis=0).reshape([1,-1]),-np.log(1+self.QoS/self.Rate).reshape([1,-1]),self.Backhaul.reshape([1,-1]), self.QoS.reshape([1,-1])],axis=1) def get_X(self, Rate, QoS, Backhaul, mu, rho, is_print=False): mu = np.expand_dims(mu,axis=1) rho = np.expand_dims(rho,axis=1) Backhaul = np.expand_dims(Backhaul,axis=1) X = (np.expand_dims(np.argmax(Rate,axis=2),2) == np.arange(self.BS).reshape([1,1,self.BS]))+0.0 lamb = np.max(Rate*X,axis=1,keepdims=True) count = 0 while 1: lamb_old = lamb.copy() if X.shape[0] > 0: UE_order = np.random.permutation(self.UE) else: UE_order = np.argsort(np.min(np.maximum(QoS/Rate, QoS/Backhaul)[0,:,:],axis=1)) for UE_ind in UE_order: X[:,UE_ind,:] = 0 lamb = np.max(Rate*X,axis=1,keepdims=True) UE_opt = -(1+mu)*QoS * lamb/Rate - rho * QoS ## Tie Break UE_select = np.argmax(UE_opt[:,UE_ind,:],axis=1)[0] BB= -UE_opt[0,UE_ind,:].copy() indices = np.argsort(BB,axis=0) R_remain = 1-np.sum(np.sum(QoS/Rate*X,axis=1),axis=0) B_remain = Backhaul[0,0,:] - np.sum(np.sum(QoS*X,axis=1),axis=0) if R_remain[UE_select] < QoS[0,UE_ind,0]/Rate[0,UE_ind,UE_select] or B_remain[UE_select] < QoS[0,UE_ind,0]: X[:,UE_ind,:] = 0.0 X[:,UE_ind,:] = (UE_select == np.arange(self.BS).reshape([1,self.BS]))+0.0 Y = self.get_Y(X[0,:,:],mu[0,:,:],rho[0,:,:]) reward_org = np.sum(self.Rate * X[0,:,:] * Y)/40 - np.sum(self.QoS > np.sum(self.Rate * X[0,:,:]*Y,axis=1,keepdims=True)+1e-7)/self.UE * 40 for B_ind in indices: if abs(np.log(abs(BB[UE_select] / BB[B_ind])))<0.5: X[:,UE_ind,:] = 0 X[:,UE_ind,:] = (B_ind == np.arange(self.BS).reshape([1,self.BS]))+0.0 Y=self.get_Y(X[0,:,:],mu[0,:,:],rho[0,:,:]) reward_new = np.sum(self.Rate * X[0,:,:] * Y)/40 - np.sum(self.QoS > np.sum(self.Rate * X[0,:,:]*Y,axis=1,keepdims=True)+1e-7)/self.UE * 40 if reward_new >reward_org: UE_select = B_ind break X[:,UE_ind,:] = 0.0 X[:,UE_ind,:] = (UE_select == np.arange(self.BS).reshape([1,self.BS]))+0.0 lamb = np.max(Rate*X,axis=1,keepdims=True) if np.sum(abs(lamb_old-lamb)>1e-7) == 0: count = count+1 if count > 1: break Y = QoS / Rate * X #[Batch, UE, BS] Y_opt = Y.copy() Y_opt[Y_opt==0] = 9999999.9 Y_s = np.sort(Y_opt,axis=1) QoS_tile = np.tile(QoS, [1,1,self.BS]) ind = np.argsort(Y_opt,axis=1) QoS_s = np.take_along_axis(QoS_tile, ind, axis=1) fail_rate = 1-np.sum((np.cumsum(Y_s,axis=1) < 1) * (np.cumsum(QoS_s,axis=1)<Backhaul) )/self.UE return X.copy(), fail_rate def get_Y(self,X,mu,rho): Z = (
np.argmax(self.Rate*X,axis=0)
numpy.argmax
# Copyright (c) 2019 ipychord3 authors # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """This module contains some of the old function with sf_ prefix """ import logging from copy import deepcopy from collections import namedtuple import matplotlib.pyplot as plt from matplotlib.figure import figaspect from matplotlib.font_manager import FontProperties from matplotlib.patches import Wedge from matplotlib.path import Path import skimage.draw as sidraw import skimage.transform as sitransform import numpy as np from scipy import ndimage from scipy.ndimage.filters import median_filter from . import cmaps # setup logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # we can't use TK backend, it will crash with python 3.4 on windows: # https://github.com/ipython/ipython/issues/8921#issuecomment-151046708 # matplotlib.use('TkAgg') # matplotlib.use('Qt4Agg') # ---------------------------------------------------------------------------- # Miscellaneous # ---------------------------------------------------------------------------- Circle = namedtuple('Circle', ['center', 'radius']) Rectangle = namedtuple('Rectangle', ['corner', 'width', 'height']) Polygon = namedtuple('Polygon', ['vertices']) RingSector = namedtuple('RingSector', ['theta1', 'theta2', 'radius', 'width', 'center']) def handle_close(event): """Handle the closing of a figure, it stops the event loop so the program can continue """ fig = event.canvas.figure logger.debug("stopping blocking event loop") fig.canvas.stop_event_loop() def prepare_patter_for_show(img, ulev=None, dlev=None, log=0, med=None, over=None, neg=False, mag=False, clip=True): """prepare pattern for show Scales the pattern and computes ``ulev`` and ``dlev`` A copy of the pattern is returned. :param img: the image dictionary :type img: dict :param ulev: show the image in certain interval, ulev defines the upper level. :type ulev: float :param dlev: defines the down level :type dlev: float :param log: show the image in log scale coordinate :log==0: show it in linear coordinate :log==1: show it in log() coordinate :log==2: show it in log(log()) coordinate :type log: int :param med: use median filter to estimate ulev, ``3 < med < 15`` otherwise ``med=5`` :type med: float :param over: overestimation of the scales :type over: float :param neg: show the negative side of the image :type neg: bool :param mag: show magnitude of image :type mag: bool :param clip: clip negative values :type clip: bool :return: scaled pattern, ulev, dlev :rtype: pattern dict, float, float """ img = deepcopy(img) if mag: img['map'] = np.absolute(img['map']) if neg: mask = img['map'] <= 0.0 img['map'] *= mask img['map'] *= -1.0 if clip: img['map'] = img['map'] * (img['map'] >= 0.0) if log == 0: logger.info("The image is shown in the linear coordinates") if ulev is None: if med is not None: if not 3 < med < 15: med = 5 ulev = ndimage.median_filter(img['map'], med).max() logger.debug("ulev is None: estimated with median %g linear as %g" %(med, ulev)) else: ulev = img['map'].max() logger.debug("ulev is None: estimated directly as %g" %ulev) logger.debug("linear ulev = %g" %ulev) else: logger.debug("ulev set by user as %g" %ulev) if dlev is None: dlev = img['map'].min() logger.debug("dlev is None: estimated as %g" %dlev) else: logger.debug("dlev set as: %g" %dlev) elif log == 1: img['map'] = np.log(img['map']+1.0) if ulev is None: logger.debug("estimating ulev") ulev = (img['map']+1.0).max() dlev = (img['map']+1.0).min() logger.debug("log scale used: dlev = %g, ulev = %g" % (dlev, ulev)) elif log == 2: img['map'] = np.log(np.log(img['map']+1.0)+1.0) if ulev is None: ulev = (img['map']+1.0).max() dlev = (img['map']+1.0).min() logger.debug("double log scale used: dlev = %g, ulev = %g" % (dlev, ulev)) if over is not None: ulev /= over logger.info("overestimated ulev corrected to %g" % ulev) return img, ulev, dlev # ---------------------------------------------------------------------------- # Interactive functions # ---------------------------------------------------------------------------- def show(img, ulev=None, dlev=None, log=0, med=None, win=None, block=False, show=True, cmap='viridis', over=None, neg=False, mag=False, clip=True, scalefig=1.2): """ show the image under different conditions .. note:: This function can not show the positive and negative value in one image except we use the absolute value to show all the values in one image. :param img: the image dictionary :type img: dict :param ulev: show the image in certain interval, ulev defines the upper level. :type ulev: float :param dlev: defines the down level :type dlev: float :param log: show the image in log scale coordinate :log==0: show it in linear coordinate :log==1: show it in log() coordinate :log==2: show it in log(log()) coordinate :type log: int :param med: use median filter to estimate ulev, ``3 < med < 15`` otherwise ``med=5`` :type med: float :param win: :type win: matplotlib window, int :param block: show the image in the interactive way and block the command line :type block: bool :param show: show the figure :type show: bool :param cmap: colormap to be passed to ``imshow``, delauft ``ipychord3.cmaps.lut05()`` :type cmap: matplotlib.colors.Colormap or string :param over: overestimation of the scales :type over: float :param neg: show the negative side of the image :type neg: bool :param mag: show magnitude of image :type mag: bool :param clip: clip negative values :type clip: bool :param float scalefig: scale the figure by factor :return: figure :rtype: matplotlib figure object """ # protect the virgin img kwargs_for_prepare = {'ulev': ulev, 'dlev': dlev, 'log': log, 'med': med, 'over': over, 'neg': neg, 'mag': mag, 'clip': clip} img, ulev, dlev = prepare_patter_for_show(img, **kwargs_for_prepare) # create figure w, h = figaspect(img['map']) if win is None: fig = plt.figure(figsize=(scalefig*w, scalefig*h)) else: fig = plt.figure(win, figsize=(scalefig*w, scalefig*h)) logger.info("dlev = %g ulev = %g" % (dlev, ulev)) # create the axis and show the image ax = plt.Axes(fig, [0., 0., 1., 1.]) fig.add_axes(ax) ax.imshow(img['map'], interpolation='nearest', vmin=dlev, vmax=ulev, cmap=cmap, origin='upper') ax.set_aspect('equal') ax.set_axis_off() if 'filename' in img: fig.canvas.set_window_title(img['filename']+'_sf_show') elif 'title' in img: fig.canvas.set_window_title(img['title']) else: fig.canvas.set_window_title('sf.show pattern') fig._sf_kwargs_for_prepare = kwargs_for_prepare if not show: return fig elif block: # now we start an extra event loop for this figure # it will block the program until fig.canvas.stop_event_loop() is called fig.canvas.mpl_connect('close_event', handle_close) fig.show() logger.debug("starting blocking event loop") fig.canvas.start_event_loop(timeout=-1) else: fig.show() logger.debug("show non-blocking figure: starting event loop to force drawing of figure") fig.canvas.start_event_loop(timeout=.01) # start extra event loop for a short time to # force drawing of the figure logger.debug("show non-blocking figure: event loop exited") return fig def killcircle(img, fig={}): """Select circles in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, circles :raises RuntimeError: if no circles have been drawn .. hint:: :Draw circle: left mouse button to set center, set radius by clicking left button again :Modify circle: use +/- keys to increase/decrease radius by 1 px use arrow-keys to move center :Delete circle: backspace :Select circle: use "ctrl+[0..6]" to select one of the first 7 circles """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectCircles(fig) circles = selector.circles imgmask, mask = mask_circles(img, circles) return imgmask, mask, circles def killbox(img, fig={}): """Select rectangles in figure and mask the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, rectangles :raises RuntimeError: if no rectangles have been drawn .. hint:: :Draw rectangle: left mouse button to set corner, set other corner by clicking left button again :Modify circle: use +/-/*/_ keys to increase/decrease x/y by 1 px use arrow-keys to first corner :Delete rectangle: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectRectangles(fig) rectangles = selector.rectangles imgmask, mask = mask_rectangles(img, rectangles) return imgmask, mask, rectangles def killpoly(img, fig={}): """Select polygons in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, polygons :raises RuntimeError: if no polygons have been drawn .. hint:: :Draw polygon: left mouse button to set vertices, set last vertex with right mouse button :Modify polygon: use `shift-backspace` to delete a vertex :Delete polygon: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectPolygons(fig) polygons = selector.polygons imgmask, mask = mask_polygons(img, polygons) return imgmask, mask, polygons def kill_ringsector(img, fig={}, center=None): """Select ring sectors in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, masks, sectors :raises RuntimeError: if no sectors have been drawn .. hint:: :Draw sector: left mouse button to set vertices, adjust position with keyboard (see ctrl-h), press space to draw new sector :Delete sector: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectRingSectors(fig, center=center) sectors = selector.sectors imgmask, mask, masks = mask_ring_sectors(img, sectors) return imgmask, mask, masks, sectors def create_peak_masks(img, fig={}, center=None): """Select ring sectors in figure to select peaks and a corresponding reference. This function returns a stacked list of masks [peak_mask, reference_mask] :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masks, sectors :raises RuntimeError: if no sectors have been drawn .. hint:: :Draw sector: left mouse button to set vertices, adjust position with keyboard (see ctrl-h), press space to draw new sector. :Delete sector: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectTwoRingSectors(fig, center=center) sectors = selector.sectors mask = make_peak_mask(img, sectors) return mask, sectors def rotate_pattern(img, fig={}, angle=None): """ Rotates the pattern by interactively by 0.3° / 1° or non-interactive by ``angle`` :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :param angle: if not ``None`` rotate pattern by ``angle`` without opening a figure window :returns: rotated pattern, angle .. hint:: :rotate clockwise: ``r``: 0.3° ``R``: 1° :rotate anticlockwise: ``a``: 0.3° ``A``: 1° """ img = deepcopy(img) if angle is not None: img['map'] = ndimage.rotate(img['map'], angle, mode='constant', cval=0.0) img['beam_position'] = midpnt(img) else: if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) rot = RotatePattern(fig, img) img = rot.img angle = rot.angle return img, angle def debye(img, fig, center=None): """Draw the Debye-Scherrer rings, calculates diameter and center of each and returns the mean center for mirroring :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :param center: set the beam position (x, y) :returns: ``[center x, center y, circles]`` :raises RuntimeError: if no circles have been drawn """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) print('Draw circles in Debye-Scherrer rings to calculate their diameter \ and center.') selector = SelectCirclesSameCenter(fig, center) centers = [] circles = selector.circles if not circles: raise RuntimeError("You have to create at least one circle") logger.debug("length of circles = %d" % len(circles)) for i, circle in enumerate(circles): d = 2 * circle.radius center = circle.center centers.append(center) print("Circle %d: (%.4f, %.4f)@%.4f" % (i + 1, center[0], center[1], d)) return circles[0].center[0], circles[0].center[1], circles # ---------------------------------------------------------------------------- # Modifier functions # ---------------------------------------------------------------------------- def mask_circles(img, circles): """mask ``circle`` in ``img`` :param img: pattern dict :param circles: list of ``sf.Circle``'s :returns: masked image, mask """ imgmask = deepcopy(img) mask = np.ones_like(imgmask['map'], dtype=np.uint8) for circle in circles: temp_mask = np.ones_like(imgmask['map'], dtype=np.uint8) x, y = circle.center rr, cc = sidraw.circle(y, x, circle.radius, shape=imgmask['map'].shape) temp_mask[rr, cc] = 0 mask *= temp_mask imgmask['map'] = mask * imgmask['map'] return imgmask, mask def mask_rectangles(img, rectangles): """mask ``rectangles`` in ``img`` :param img: pattern dict :param rectangles: list of ``sf.Rectangle``'s :returns: masked image, mask """ imgmask = deepcopy(img) mask = np.ones_like(imgmask['map'], dtype=np.uint8) for rectangle in rectangles: temp_mask = np.ones_like(imgmask['map'], dtype=np.uint8) corner = rectangle.corner width = rectangle.width height = rectangle.height c = np.array([corner[0], corner[0] + width, corner[0] + width, corner[0]]) r = np.array([corner[1], corner[1], corner[1] + height, corner[1] + height]) rr, cc = sidraw.polygon(r, c, shape=imgmask['map'].shape) temp_mask[rr, cc] = 0 mask *= temp_mask imgmask['map'] = imgmask['map'] * mask return imgmask, mask def mask_polygons(img, polygons): """mask ``polygons`` in ``img`` :param img: pattern dict :param polygons: list of ``sf.Polygon``'s :returns: masked image, mask """ imgmask = deepcopy(img) mask = np.ones_like(imgmask['map'], dtype=np.uint8) for polygon in polygons: temp_mask = np.ones_like(imgmask['map'], dtype=np.uint8) xy = polygon.vertices c = xy[:, 0] r = xy[:, 1] rr, cc = sidraw.polygon(r, c, shape=imgmask['map'].shape) temp_mask[rr, cc] = 0 mask *= temp_mask imgmask['map'] = imgmask['map'] * mask return imgmask, mask def mask_ring_sectors(img, sectors): """mask ``sectors`` in ``img`` :param img: pattern dict :param sectors: list of ``sf.RingSector``'s :returns: masked image, mask, masks """ imgmask = deepcopy(img) mask = np.ones_like(imgmask['map'], dtype=np.uint8) masks = [] for sector in sectors: temp_mask = np.ones_like(imgmask['map'], dtype=np.uint8) xy = SelectRingSectors.compute_path(sector) c = xy[:, 0] r = xy[:, 1] rr, cc = sidraw.polygon(r, c, shape=imgmask['map'].shape) temp_mask[rr, cc] = 0 mask *= temp_mask masks.append(temp_mask) imgmask['map'] = imgmask['map'] * mask return imgmask, mask, masks def make_peak_mask(img, peak_sectors): """mask ``peak_sectors`` in ``img`` ``peak_sectors`` is a stacked list of sectors for the peak and the reference. This function returns a stacked list of masks [peak_mask, reference_mask] :param img: pattern dict :param peak_sectors: stacked list of ``sf.RingSector``'s :returns: masks """ masks = [] for sectors in peak_sectors: mask0 = np.zeros_like(img['map'], dtype=np.uint8) xy = SelectRingSectors.compute_path(sectors[0]) c = xy[:, 0] r = xy[:, 1] rr, cc = sidraw.polygon(r, c, shape=img['map'].shape) mask0[rr, cc] = 1 mask1 = np.zeros_like(img['map'], dtype=np.uint8) xy = SelectRingSectors.compute_path(sectors[1]) c = xy[:, 0] r = xy[:, 1] rr, cc = sidraw.polygon(r, c, shape=img['map'].shape) mask1[rr, cc] = 1 masks.append([mask0, mask1]) return masks def midpnt(img): """ compute the midpoint pixel of an image The pixel coordinates in dimension (``dim``) are computed as :if ``dim`` is odd: ``(dim - 1)/2`` :if ``dim`` is even: ``dim/2`` :param img: pattern :return: midpoint pixel in image coordinates """ shape = np.asarray(img['map'].shape, dtype=np.int) midp = np.zeros_like(shape) for i, item in enumerate(shape): midp[i] = item - 1 if item % 2 else item midp = midp[::-1] return midp // 2 def extend_image(img, center): """extend the pattern such that the midpoint is the center of the image the shape of the extended image is always odd :param img: pattern :param center: center :return: extended pattern """ array_mid = np.asarray(list(reversed(center)), dtype=np.int) map_size = np.asarray(img['map'].shape, dtype=np.int) map_mid = midpnt(img)[::-1] delta_midp = map_mid - array_mid ext_y = np.abs(2*array_mid[0] + 1 - map_size[0]) if delta_midp[0] > 0: new_map = np.vstack((np.zeros((ext_y, map_size[1])), img['map'])) else: new_map = np.vstack((img['map'], np.zeros((ext_y, map_size[1])))) ext_x = np.abs(2*array_mid[1] + 1 - map_size[1]) if delta_midp[1] > 0: new_map = np.hstack((np.zeros((new_map.shape[0], ext_x)), new_map)) else: new_map = np.hstack((new_map, np.zeros((new_map.shape[0], ext_x)))) new_img = deepcopy(img) new_img['map'] = new_map return new_img def harmonize_image(img): """harmonize the image""" new_map = img['map'] map_size = np.asarray(img['map'].shape, dtype=np.int) if not any(map_size % 2): raise ValueError('The shape of the pattern must be odd.') map_mid = midpnt(img)[::-1] lower_left = new_map[0:map_mid[0]+1, 0:map_mid[1]+1] lower_right = new_map[0:map_mid[0]+1, map_mid[1]:] lower_right = np.fliplr(lower_right) upper_left = new_map[map_mid[0]:, 0:map_mid[1]+1] upper_left = np.flipud(upper_left) upper_right = new_map[map_mid[0]:, map_mid[1]:] upper_right = np.flipud(np.fliplr(upper_right)) all_sum = np.zeros_like(lower_left) count = np.zeros_like(lower_left) for i in [lower_left, lower_right, upper_left, upper_right]: all_sum += i count += i > 0 count[count == 0] = 1 final_map = all_sum / count # we have to crop the parts as the row and column containing # the midpoint would otherwise appear four times in the final pattern ll = final_map lr = np.fliplr(ll)[:, 1:] ul = np.flipud(ll)[1:, :] ur = np.flipud(np.fliplr(ll))[1:, 1:] l = np.hstack((ll, lr)) u = np.hstack((ul, ur)) f = np.vstack((l, u)) new_img = deepcopy(img) new_img['map'] = f return new_img def harmonize_image_2(img): """harmonize the pattern, assumeing 180° symmetry""" new_map = img['map'] map_size = np.asarray(img['map'].shape, dtype=np.int) if not any(map_size % 2): raise ValueError('The shape of the pattern must be odd.') map_mid = midpnt(img)[::-1] lower = new_map[0:map_mid[0]+1, :] lower = np.flipud(np.fliplr(lower)) upper = new_map[map_mid[0]:, :] all_sum = np.zeros_like(lower) count = np.zeros_like(lower) for i in [lower, upper]: all_sum += i count += i > 0 count[count == 0] = 1 final_map = all_sum / count # we have to crop the parts as the row containing # the midpoint would otherwise appear twice in the final pattern u = final_map[1:, :] l = np.flipud(np.fliplr(final_map)) f = np.vstack((l, u)) new_img = deepcopy(img) new_img['map'] = f return new_img def harmony(img, center, angle=None): """Harmonize the pattern by exploiting symmetry If the shape of the pattern is not anymore odd after the rotation has been performed the pattern is padded with zeros such that its shape is odd. :param img: pattern :param center: center coordinates in pattern :param angle: rotate image by angle, in degrees in counter-clockwise direction :return: harmonized pattern """ if angle is not None: ext_img = extend_image(img, center) new_center = midpnt(ext_img) ext_img['map'] = sitransform.rotate(ext_img['map'], angle, center=new_center, cval=0, resize=1, preserve_range=1) # after rotation the image shape may not be odd anymore so we append zeros if not ext_img['map'].shape[0] % 2: fill = np.zeros((1, ext_img['map'].shape[1])) ext_img['map'] =
np.vstack((fill, ext_img['map']))
numpy.vstack
""" Tests for the particle array module. """ # standard imports import unittest import numpy # local imports from pysph.base import particle_array from pysph.base import utils from pyzoltan.core.carray import LongArray, IntArray, DoubleArray import pickle import pytest from pysph.cpy.config import get_config def check_array(x, y): """Check if two arrays are equal with an absolute tolerance of 1e-16.""" return numpy.allclose(x, y, atol=1e-16, rtol=0) ############################################################################### # `ParticleArrayTest` class. ############################################################################### class ParticleArrayTest(object): """ Tests for the particle array class. """ def test_constructor(self): # Default constructor test. p = particle_array.ParticleArray(name='test_particle_array', backend=self.backend) self.assertEqual(p.name, 'test_particle_array') self.assertEqual('tag' in p.properties, True) self.assertEqual(p.properties['tag'].length, 0) # Constructor with some properties. x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] p = particle_array.ParticleArray(x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, backend=self.backend) self.assertEqual(p.name, '') self.assertEqual('x' in p.properties, True) self.assertEqual('y' in p.properties, True) self.assertEqual('z' in p.properties, True) self.assertEqual('m' in p.properties, True) self.assertEqual('h' in p.properties, True) # get the properties are check if they are the same xarr = p.properties['x'].get_npy_array() self.assertEqual(check_array(xarr, x), True) yarr = p.properties['y'].get_npy_array() self.assertEqual(check_array(yarr, y), True) zarr = p.properties['z'].get_npy_array() self.assertEqual(check_array(zarr, z), True) marr = p.properties['m'].get_npy_array() self.assertEqual(check_array(marr, m), True) harr = p.properties['h'].get_npy_array() self.assertEqual(check_array(harr, h), True) # check if the 'tag' array was added. self.assertEqual('tag' in p.properties, True) self.assertEqual(list(p.properties.values())[0].length == len(x), True) # Constructor with tags tags = [0, 1, 0, 1] p = particle_array.ParticleArray(x={'data': x}, y={'data': y}, z={'data': z}, tag={'data': tags, 'type': 'int'}, backend=self.backend) self.assertEqual(check_array(p.get('tag', only_real_particles=False), [0, 0, 1, 1]), True) self.assertEqual(check_array(p.get('x', only_real_particles=False), [1, 3, 2, 4]), True) self.assertEqual(check_array(p.get('y', only_real_particles=False), [0, 2, 1, 3]), True) self.assertEqual(check_array(p.get('z', only_real_particles=False), [0, 0, 0, 0]), True) # trying to create particle array without any values but some # properties. p = particle_array.ParticleArray(x={}, y={}, z={}, h={}, backend=self.backend) self.assertEqual(p.get_number_of_particles(), 0) self.assertEqual('x' in p.properties, True) self.assertEqual('y' in p.properties, True) self.assertEqual('z' in p.properties, True) self.assertEqual('tag' in p.properties, True) # now trying to supply some properties with values and others without p = particle_array.ParticleArray( x={'default': 10.0}, y={'data': [1.0, 2.0]}, z={}, h={'data': [0.1, 0.1]}, backend=self.backend ) self.assertEqual(p.get_number_of_particles(), 2) self.assertEqual(check_array(p.x, [10., 10.]), True) self.assertEqual(check_array(p.y, [1., 2.]), True) self.assertEqual(check_array(p.z, [0, 0]), True) self.assertEqual(check_array(p.h, [0.1, 0.1]), True) def test_constructor_works_with_strides(self): # Given x = [1, 2, 3, 4.] rho = 10.0 data = numpy.arange(8) # When p = particle_array.ParticleArray( x=x, rho=rho, data={'data': data, 'stride': 2}, name='fluid', backend=self.backend ) # Then self.assertEqual(p.name, 'fluid') self.assertEqual('x' in p.properties, True) self.assertEqual('rho' in p.properties, True) self.assertEqual('data' in p.properties, True) self.assertEqual('tag' in p.properties, True) self.assertEqual('pid' in p.properties, True) self.assertEqual('gid' in p.properties, True) # get the properties are check if they are the same self.assertEqual(check_array(p.x, x), True) self.assertEqual(check_array(p.rho, numpy.ones(4) * rho), True) self.assertEqual(check_array(p.data, numpy.ravel(data)), True) def test_constructor_works_with_simple_props(self): # Given x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] rho = 10.0 data = numpy.diag((2, 2)) # When p = particle_array.ParticleArray( x=x, y=y, rho=rho, data=data, name='fluid', backend=self.backend ) # Then self.assertEqual(p.name, 'fluid') self.assertEqual('x' in p.properties, True) self.assertEqual('y' in p.properties, True) self.assertEqual('rho' in p.properties, True) self.assertEqual('data' in p.properties, True) self.assertEqual('tag' in p.properties, True) self.assertEqual('pid' in p.properties, True) self.assertEqual('gid' in p.properties, True) # get the properties are check if they are the same self.assertEqual(check_array(p.x, x), True) self.assertEqual(check_array(p.y, y), True) self.assertEqual(check_array(p.rho, numpy.ones(4) * rho), True) self.assertEqual(check_array(p.data, numpy.ravel(data)), True) def test_get_number_of_particles(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A={'data': A, 'stride': 3}, backend=self.backend ) self.assertEqual(p.get_number_of_particles(), 4) def test_get(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A={'data': A, 'stride': 3}, backend=self.backend ) self.assertEqual(check_array(x, p.get('x')), True) self.assertEqual(check_array(y, p.get('y')), True) self.assertEqual(check_array(z, p.get('z')), True) self.assertEqual(check_array(m, p.get('m')), True) self.assertEqual(check_array(h, p.get('h')), True) self.assertEqual(check_array(A.ravel(), p.get('A')), True) def test_clear(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] p = particle_array.ParticleArray(x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, backend=self.backend) p.clear() self.assertEqual(len(p.properties), 3) self.assertEqual('tag' in p.properties, True) self.assertEqual(p.properties['tag'].length, 0) self.assertEqual('pid' in p.properties, True) self.assertEqual(p.properties['pid'].length, 0) self.assertEqual('gid' in p.properties, True) self.assertEqual(p.properties['gid'].length, 0) def test_getattr(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A={'data': A, 'stride': 3}, backend=self.backend ) self.assertEqual(check_array(x, p.x), True) self.assertEqual(check_array(y, p.y), True) self.assertEqual(check_array(z, p.z), True) self.assertEqual(check_array(m, p.m), True) self.assertEqual(check_array(h, p.h), True) self.assertEqual(check_array(A.ravel(), p.get('A')), True) # try getting an non-existant attribute self.assertRaises(AttributeError, p.__getattr__, 'a') def test_setattr(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A={'data': A, 'stride': 3}, backend=self.backend ) p.x = p.x * 2.0 self.assertEqual(check_array(p.get('x'), [2., 4, 6, 8]), True) p.x = p.x + 3.0 * p.x self.assertEqual(check_array(p.get('x'), [8., 16., 24., 32.]), True) p.A = p.A*2 self.assertEqual(check_array(p.get('A').ravel(), A*2), True) def test_remove_particles(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A={'data': A, 'stride': 3}, backend=self.backend ) remove_arr = LongArray(0) remove_arr.append(0) remove_arr.append(1) p.remove_particles(remove_arr) self.pull(p) self.assertEqual(p.get_number_of_particles(), 2) self.assertEqual(check_array(p.x, [3., 4.]), True) self.assertEqual(check_array(p.y, [2., 3.]), True) self.assertEqual(check_array(p.z, [0., 0.]), True) self.assertEqual(check_array(p.m, [1., 1.]), True) self.assertEqual(check_array(p.h, [.1, .1]), True) self.assertEqual(check_array(p.A, numpy.arange(6, 12)), True) # now try invalid operations to make sure errors are raised. remove_arr.resize(10) self.assertRaises(ValueError, p.remove_particles, remove_arr) # now try to remove a particle with index more that particle # length. remove_arr = [2] p.remove_particles(remove_arr) self.pull(p) # make sure no change occurred. self.assertEqual(p.get_number_of_particles(), 2) self.assertEqual(check_array(p.x, [3., 4.]), True) self.assertEqual(check_array(p.y, [2., 3.]), True) self.assertEqual(check_array(p.z, [0., 0.]), True) self.assertEqual(check_array(p.m, [1., 1.]), True) self.assertEqual(check_array(p.h, [.1, .1]), True) self.assertEqual(check_array(p.A, numpy.arange(6, 12)), True) def test_add_particles(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, A=dict(data=A, stride=3), backend=self.backend ) new_particles = {} new_particles['x'] = numpy.array([5., 6, 7], dtype=numpy.float32) new_particles['y'] = numpy.array([4., 5, 6], dtype=numpy.float32) new_particles['z'] = numpy.array([0., 0, 0], dtype=numpy.float32) p.add_particles(**new_particles) self.pull(p) self.assertEqual(p.get_number_of_particles(), 7) self.assertEqual(check_array(p.x, [1., 2, 3, 4, 5, 6, 7]), True) self.assertEqual(check_array(p.y, [0., 1, 2, 3, 4, 5, 6]), True) self.assertEqual(check_array(p.z, [0., 0, 0, 0, 0, 0, 0]), True) expect = numpy.zeros(21, dtype=A.dtype) expect[:12] = A numpy.testing.assert_array_equal(p.A, expect) # make sure the other arrays were resized self.assertEqual(len(p.h), 7) self.assertEqual(len(p.m), 7) # try adding an empty particle list p.add_particles(**{}) self.pull(p) self.assertEqual(p.get_number_of_particles(), 7) self.assertEqual(check_array(p.x, [1., 2, 3, 4, 5, 6, 7]), True) self.assertEqual(check_array(p.y, [0., 1, 2, 3, 4, 5, 6]), True) self.assertEqual(check_array(p.z, [0., 0, 0, 0, 0, 0, 0]), True) self.assertEqual(check_array(p.A, expect), True) # make sure the other arrays were resized self.assertEqual(len(p.h), 7) self.assertEqual(len(p.m), 7) # adding particles with tags p = particle_array.ParticleArray(x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, backend=self.backend) p.add_particles(x=[5, 6, 7, 8], tag=[1, 1, 0, 0]) self.pull(p) self.assertEqual(p.get_number_of_particles(), 8) self.assertEqual(check_array(p.x, [1, 2, 3, 4, 7, 8]), True) self.assertEqual(check_array(p.y, [0, 1, 2, 3, 0, 0]), True) self.assertEqual(check_array(p.z, [0, 0, 0, 0, 0, 0]), True) def test_remove_tagged_particles(self): x = [1, 2, 3, 4.] y = [0., 1., 2., 3.] z = [0., 0., 0., 0.] m = [1., 1., 1., 1.] h = [.1, .1, .1, .1] A = numpy.arange(12) tag = [1, 1, 1, 0] p = particle_array.ParticleArray( x={'data': x}, y={'data': y}, z={'data': z}, m={'data': m}, h={'data': h}, tag={'data': tag}, A={'data': A, 'stride': 3}, backend=self.backend ) numpy.testing.assert_array_equal( p.get('A'), numpy.arange(9, 12) ) p.remove_tagged_particles(0) self.pull(p) self.assertEqual(p.get_number_of_particles(), 3) self.assertEqual( check_array( numpy.sort(p.get('x', only_real_particles=False)), [1., 2., 3.]), True ) self.assertEqual( check_array( numpy.sort(p.get('y', only_real_particles=False)), [0., 1., 2.] ), True ) self.assertEqual( check_array( numpy.sort(p.get('z', only_real_particles=False)), [0., 0, 0] ), True ) self.assertEqual( check_array( numpy.sort(p.get('h', only_real_particles=False)), [0.1, 0.1, 0.1] ), True ) self.assertEqual( check_array(p.get('m', only_real_particles=False), [1., 1., 1.]), True ) if p.gpu is None: numpy.testing.assert_array_equal( p.get('A', only_real_particles=False),
numpy.arange(9)
numpy.arange
import numpy as np from astropy.io import fits import os import re import glob import copy from vorbin.voronoi_2d_binning import voronoi_2d_binning import matplotlib.pyplot as plt from scipy import interpolate, stats, optimize import gc from matplotlib import gridspec, animation try: import tqdm except: tqdm = None from joblib import Parallel, delayed plt.style.use('dark_background') def read_muse_ifu(fits_file,z=0): """ Read in a MUSE-formatted IFU cube :param fits_file: str File path to the FITS IFU cube :param z: float, optional The redshift of the spectrum, since MUSE cubes often do not provide this information :return nx: int x-dimension (horizontal axis) of the cube :return ny: int y-dimension (vertical axis) of the cube :return nz: int z-dimension (wavelength axis) of the cube :return ra: float Right ascension :return dec: float Declination :return museid: str The MUSE ID of the observation :return wave: array 1-D Wavelength array with dimension (nz,) :return flux: array 3-D flux array with dimensions (nz, ny, nx) :return ivar: array 3-D inverse variance array with dimensions (nz, ny, nx) :return specres: array 1-D spectral resolution ("R") array with dimension (nz,) :return mask: array 3-D mask array with dimensions (nz, ny, nx) :return object_name: str The name of the object, if provided in the FITS header """ # Load the file # https://www.eso.org/rm/api/v1/public/releaseDescriptions/78 with fits.open(fits_file) as hdu: # First axis is wavelength, then 2nd and 3rd are image x/y try: nx, ny, nz = hdu[1].header['NAXIS1'], hdu[1].header['NAXIS2'], hdu[1].header['NAXIS3'] ra = hdu[0].header['RA'] dec = hdu[0].header['DEC'] except: # ra = hdu[0].header['ESO ADA GUID RA'] # dec = hdu[0].header['ESO ADA GUID DEC'] nx, ny, nz = hdu[0].header['NAXIS1'], hdu[0].header['NAXIS2'], hdu[0].header['NAXIS3'] ra = hdu[0].header['CRVAL1'] dec = hdu[0].header['CRVAL2'] primary = hdu[0].header try: object_name = primary['OBJECT'] except: object_name = None i = 1 museid = [] while True: try: museid.append(primary['OBID'+str(i)]) i += 1 except: break # Get unit of flux, assuming 10^-x erg/s/cm2/Angstrom/spaxel # unit = hdu[0].header['BUNIT'] # power = int(re.search('10\*\*(\(?)(.+?)(\))?\s', unit).group(2)) # scale = 10**(-17) / 10**power try: # 3d rectified cube in units of 10(-20) erg/s/cm2/Angstrom/spaxel [NX x NY x NWAVE], convert to 10(-17) flux = hdu[1].data # Variance (sigma2) for the above [NX x NY x NWAVE], convert to 10(-17) var = hdu[2].data # Wavelength vector must be reconstructed, convert from nm to angstroms header = hdu[1].header wave = np.array(header['CRVAL3'] + header['CD3_3']*np.arange(header['NAXIS3'])) # wave = np.linspace(primary['WAVELMIN'], primary['WAVELMAX'], nz) * 10 # Median spectral resolution at (wavelmin + wavelmax)/2 # dlambda = cwave / primary['SPEC_RES'] # specres = wave / dlambda # Default behavior for MUSE data cubes using https://www.aanda.org/articles/aa/pdf/2017/12/aa30833-17.pdf equation 7 dlambda = 5.835e-8 * wave**2 - 9.080e-4 * wave + 5.983 specres = wave / dlambda # Scale by the measured spec_res at the central wavelength spec_cent = primary['SPEC_RES'] cwave = np.nanmedian(wave) c_dlambda = 5.835e-8 * cwave**2 - 9.080e-4 * cwave + 5.983 scale = 1 + (spec_cent - cwave/c_dlambda) / spec_cent specres *= scale except: flux = hdu[0].data var = (0.1 * flux)**2 wave = np.arange(primary['CRVAL3'], primary['CRVAL3']+primary['CDELT3']*(nz-1), primary['CDELT3']) # specres = wave / 2.6 dlambda = 5.835e-8 * wave**2 - 9.080e-4 * wave + 5.983 specres = wave / dlambda ivar = 1/var mask = np.zeros_like(flux) return nx,ny,nz,ra,dec,museid,wave,flux,ivar,specres,mask,object_name def read_manga_ifu(fits_file,z=0): """ Read in a MANGA-formatted IFU cube :param fits_file: str File path to the FITS IFU cube :param z: float, optional The redshift of the spectrum, this is unused. :return nx: int x-dimension (horizontal axis) of the cube :return ny: int y-dimension (vertical axis) of the cube :return nz: int z-dimension (wavelength axis) of the cube :return ra: float Right ascension :return dec: float Declination :return mangaid: str The MANGA ID of the observation :return wave: array 1-D Wavelength array with dimension (nz,) :return flux: array 3-D flux array with dimensions (nz, ny, nx) :return ivar: array 3-D inverse variance array with dimensions (nz, ny, nx) :return specres: array 1-D spectral resolution ("R") array with dimension (nz,) :return mask: array 3-D mask array with dimensions (nz, ny, nx) :return None: To mirror the output length of read_muse_ifu """ # Load the file # https://data.sdss.org/datamodel/files/MANGA_SPECTRO_REDUX/DRPVER/PLATE4/stack/manga-CUBE.html#hdu1 with fits.open(fits_file) as hdu: # First axis is wavelength, then 2nd and 3rd are image x/y nx, ny, nz = hdu[1].header['NAXIS1'], hdu[1].header['NAXIS2'], hdu[1].header['NAXIS3'] try: ra = hdu[0].header['OBJRA'] dec = hdu[0].header['OBJDEC'] except: ra = hdu[1].header['IFURA'] dec = hdu[1].header['IFUDEC'] primary = hdu[0].header ebv = primary['EBVGAL'] mangaid = primary['MANGAID'] # 3d rectified cube in units of 10(-17) erg/s/cm2/Angstrom/spaxel [NX x NY x NWAVE] flux = hdu[1].data # Inverse variance (1/sigma2) for the above [NX x NY x NWAVE] ivar = hdu[2].data # Pixel mask [NX x NY x NWAVE]. Defined values are set in sdssMaskbits.par mask = hdu[3].data # Wavelength vector [NWAVE] wave = hdu[6].data # Median spectral resolution as a function of wavelength for the fibers in this IFU [NWAVE] specres = hdu[7].data # ebv = hdu[0].header['EBVGAL'] return nx,ny,nz,ra,dec,mangaid,wave,flux,ivar,specres,mask,None def prepare_ifu(fits_file,z,format,aperture=None,voronoi_binning=True,fixed_binning=False,targetsn=None,cvt=True,voronoi_plot=True,quiet=True,wvt=False, maxbins=800,snr_threshold=0.5,fixed_bin_size=10,use_and_mask=True,nx=None,ny=None,nz=None,ra=None,dec=None,dataid=None,wave=None,flux=None,ivar=None, specres=None,mask=None,objname=None): """ Deconstruct an IFU cube into individual spaxel files for fitting with BADASS :param fits_file: str The file path to the IFU FITS file; if format == 'user', this field may be left as None, '', or any other filler value :param z: float The redshift of the spectrum :param aperture: array, optional The lower-left and upper-right corners of a square aperture, formatted as [y0, y1, x0, x1] :param voronoi_binning: bool Whether or not to bin spaxels using the voronoi method (grouping to read a certain SNR threshold). Default True. Mutually exclusive with fixed_binning. :param fixed_binning: bool Whether or not to bin spaxels using a fixed size. Default False. Mutually exclusive with voronoi_binning. :param targetsn: float, optional The target SNR to bin by, if using voronoi binning. :param cvt: bool Vorbin CVT option (see the vorbin package docs). Default True. :param voronoi_plot: bool Whether or not to plot the voronoi bin structure. Default True. :param quiet: bool Vorbin quiet option (see the vorbin package docs). Default True. :param wvt: bool Vorbin wvt option (see the vorbin package docs). Default False. :param maxbins: int If no target SNR is provided for voronoi binning, maxbins may be specified, which will automatically calculate the target SNR required to reach the number of bins desired. Default 800. :param snr_threshold: float Minimum SNR threshold, below which spaxel data will be removed and not fit. :param fixed_bin_size: int If using fixed binning, this is the side length of the square bins, in units of spaxels. :param use_and_mask: bool Whether or not to save the and_mask data. :param nx: int, optional x-dimension of the cube, only required if format == 'user' :param ny: int, optional y-dimension of the cube, only required if format == 'user' :param nz: int, optional z-dimension of the cube, only required if format == 'user' :param ra: float, optional Right ascension of the cube, only required if format == 'user' :param dec: float, optional Declination of the cube, only required if format == 'user' :param dataid: str, optional ID of the cube, only required if format == 'user' :param wave: array, optional 1-D wavelength array with shape (nz,), only required if format == 'user' :param flux: array, optional 3-D flux array with shape (nz, ny, nx), only required if format == 'user' :param ivar: array, optional 3-D inverse variance array with shape (nz, ny, nx), only required if format == 'user' :param specres: array, optional 1-D spectral resolution ("R") array with shape (nz,), only required if format == 'user' :param mask: array, optional 3-D mask array with shape (nz, ny, nx), only required if format == 'user' :param objname: str, optional The name of the object, only required if format == 'user' :return wave: array 1-D wavelength array with shape (nz,) :return flux: array 3-D masked flux array with shape (nz, ny, nx) :return ivar: array 3-D masked inverse variance array with shape (nz, ny, nx) :return mask: array 3-D mask array with shape (nz, ny, nx) :return fwhm_res: array 1-D FWHM resolution array with shape (nz,) :return binnum: array Bin number array that specifies which spaxels are in each bin (see the vorbin docs) :return npixels: array Number of spaxels in each bin (see the vorbin docs) :return xpixbin: array The x positions of spaxels in each bin :return ypixbin: array The y positions of spaxels in each bin :return z: float The redshift :return dataid: str The data ID :return objname: str The object name """ assert format in ('manga', 'muse', 'user'), "format must be either 'manga' or 'muse'; no others currently supported!" # Read the FITS file using the appropriate parsing function # no more eval 🥲 if format == 'manga': nx,ny,nz,ra,dec,dataid,wave,flux,ivar,specres,mask,objname = read_manga_ifu(fits_file,z) elif format == 'muse': nx,ny,nz,ra,dec,dataid,wave,flux,ivar,specres,mask,objname = read_muse_ifu(fits_file,z) else: # wave array shape = (nz,) # flux, ivar array shape = (nz, ny, nx) # specres can be a single value or an array of shape (nz,) # VALIDATE THAT USER INPUTS ARE IN THE CORRECT FORMAT for value in (nx, ny, nz, ra, dec, wave, flux, specres): assert value is not None, "For user spec, all of (nx, ny, nz, ra, dec, wave, flux, specres) must be specified!" if ivar is None: print("WARNING: No ivar was input. Defaulting to sqrt(flux).") ivar = np.sqrt(flux) if mask is None: mask = np.zeros(flux.shape, dtype=int) assert wave.shape == (nz,), "Wave array shape should be (nz,)" assert flux.shape == (nz, ny, nx), "Flux array shape should be (nz, ny, nx)" assert ivar.shape == (nz, ny, nx), "Ivar array shape should be (nz, ny, nx)" assert mask.shape == (nz, ny, nx), "Mask array shape should be (nz, ny, nx)" assert (type(specres) in (int, float, np.int_, np.float_)) or (specres.shape == (nz,)), "Specres should be a float or an array of shape (nz,)" loglam = np.log10(wave) # FWHM Resolution in angstroms: fwhm_res = wave / specres # dlambda = lambda / R; R = lambda / dlambda if not use_and_mask: mask = np.zeros(flux.shape, dtype=int) # Converting to wdisp -- so that 2.355*wdisp*dlam_gal = fwhm_res # if format == 'manga': # c = 299792.458 # speed of light in km/s # frac = wave[1]/wave[0] # Constant lambda fraction per pixel # dlam_gal = (frac-1)*wave # Size of every pixel in Angstrom # vdisp = c / (2.355*specres) # delta v = c / R in km/s # velscale = np.log(frac) * c # Constant velocity scale in km/s per pixel # wdisp = vdisp / velscale # Intrinsic dispersion of every pixel, in pixels units minx, maxx = 0, nx miny, maxy = 0, ny if aperture: miny, maxy, minx, maxx = aperture maxy += 1 maxx += 1 x = np.arange(minx, maxx, 1) y = np.arange(miny, maxy, 1) # Create x/y grid for the voronoi binning X, Y = np.meshgrid(x, y) _x, _y = X.ravel(), Y.ravel() if voronoi_binning: # Average along the wavelength axis so each spaxel has one s/n value # Note to self: Y AXIS IS ALWAYS FIRST ON NUMPY ARRAYS signal = np.nanmean(flux[:, miny:maxy, minx:maxx], axis=0) noise = np.sqrt(1 / np.nanmean(ivar[:, miny:maxy, minx:maxx], axis=0)) sr = signal.ravel() nr = noise.ravel() good = np.where(np.isfinite(sr) & np.isfinite(nr) & (sr > 0) & (nr > 0))[0] # Target S/N ratio to bin for. If none, defaults to value such that the highest pixel isnt binned # In general this isn't a great choice. Should want to maximize resolution without sacrificing too much # computation time. if not targetsn: # binnum = np.array([maxbins+1]) targetsn0 = np.max([np.sort((sr / nr)[good], kind='quicksort')[-1] / 16, 10]) def objective(targetsn, return_data=False): vplot = voronoi_plot if return_data else False qt = quiet if return_data else True try: binnum, xbin, ybin, xbar, ybar, sn, npixels, scale = voronoi_2d_binning(_x[good], _y[good], sr[good], nr[good], targetsn, cvt=cvt, pixelsize=1, plot=vplot, quiet=qt, wvt=wvt) except ValueError: return np.inf if return_data: return binnum, xbin, ybin, xbar, ybar, sn, npixels, scale return (np.max(binnum)+1 - maxbins)**2 print(f'Performing S/N optimization to reach {maxbins} bins. This may take a while...') soln = optimize.minimize(objective, [targetsn0], method='Nelder-Mead', bounds=[(1, X.size)]) targetsn = soln.x[0] binnum, xbin, ybin, xbar, ybar, SNR, npixels, scale = objective(targetsn, return_data=True) else: binnum, xbin, ybin, xbar, ybar, SNR, npixels, scale = voronoi_2d_binning(_x[good], _y[good], sr[good], nr[good], targetsn, cvt=cvt, pixelsize=1, plot=voronoi_plot, quiet=quiet, wvt=wvt) print(f'Voronoi binning successful with target S/N = {targetsn}! Created {np.max(binnum)+1} bins.') if voronoi_plot: # For some reason voronoi makes the plot but doesnt save it or anything filename = os.path.join(os.path.dirname(fits_file), 'voronoi_binning.pdf') plt.savefig(filename, bbox_inches='tight', dpi=300) plt.close() _x = _x[good] _y = _y[good] # Create output arrays for flux, ivar, mask out_flux = np.zeros((flux.shape[0], np.nanmax(binnum)+1)) out_ivar = np.zeros((ivar.shape[0], np.nanmax(binnum)+1)) out_mask = np.zeros((mask.shape[0], np.nanmax(binnum)+1)) xpixbin = np.full(np.nanmax(binnum)+1, fill_value=np.nan, dtype=object) ypixbin = np.full(np.nanmax(binnum)+1, fill_value=np.nan, dtype=object) for j in range(xpixbin.size): xpixbin[j] = [] ypixbin[j] = [] # Average flux/ivar in each bin for i, bin in enumerate(binnum): # there is probably a better way to do this, but I'm lazy xi, yi = _x[i], _y[i] out_flux[:, bin] += flux[:, yi, xi] out_ivar[:, bin] += ivar[:, yi, xi] out_mask[:, bin] += mask[:, yi, xi] xpixbin[bin].append(xi) ypixbin[bin].append(yi) out_flux /= npixels out_ivar /= npixels irange = np.nanmax(binnum)+1 for bin in binnum: if SNR[bin] < snr_threshold: flux[:,
np.asarray(ypixbin[bin])
numpy.asarray
# Copyright 2019 <NAME> & <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numba import numpy as np from sklearn.metrics import pairwise_distances SMOOTH_K_TOLERANCE = 1e-5 MIN_K_DIST_SCALE = 1e-3 NPY_INFINITY = np.inf @numba.njit(parallel=True, cache=True) def parallel_adaptive_knn_indices(X, n_neighbors): """This handles the case of multiple farthest neighbors that all have an equal distance to the center. Parameters ---------- X: array of shape (n_samples, n_samples) or tuple with shape. A pairwise distance matrix. n_neighbors: int The number of neighbors to compute distances for. Larger numbers induce more global estimates of the manifold that can miss finer detail, while smaller values will focus on fine manifold structure to the detriment of the larger picture. Returns ------- knn_indices: array of shape (X[0], n_neighbors + e) where `e` is either 0 or the number of identical farthest neighbors - 1. The indices of the k-nearest neighbors. knn_mask: array of shape (X[0], n_neighbors + e) where `e` is either 0 or the number of identical farthest neighbors - 1. A boolean mask that masks indices in knn_indices for points that do not have multiple farthest neighbors (for which `e=0`). """ # We do not know `e` yet, so we have to assume the full shape knn_indices = np.empty(X.shape, dtype=np.int64) knn_mask = np.zeros_like(X, dtype=np.bool_) # Per point farthest neighbor index max_knn_indices =
np.empty(X.shape[0], dtype=np.int64)
numpy.empty
"""Test distributed mulit-host device mesh.""" import os import unittest from flax import linen as nn from flax import optim import jax import jax.numpy as jnp from jax.interpreters import pxla import numpy as np import ray from alpa import DeviceCluster, parallelize, set_parallelize_options, testing, DistributedArray from alpa.testing import assert_allclose class DeviceMeshTest(unittest.TestCase): def setUp(self): os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" ray.init(address="auto", ignore_reinit_error=True) def tearDown(self): ray.shutdown() def test_add_one(self): # Launch a multi-host device mesh device_cluster = DeviceCluster(use_cpu_on_driver=False) physical_mesh = device_cluster.get_physical_mesh() num_devices = len( physical_mesh.host_ids) * physical_mesh.num_devices_per_host logical_mesh = physical_mesh.get_logical_mesh([1, num_devices]) set_parallelize_options(devices=logical_mesh) @parallelize def add_one(x): return x + 1 @parallelize def multiply_two(x): return x * 2 # Run computation a = jnp.ones((512, 512)) out = add_one(a) out = multiply_two(out) # Check results assert_allclose(out._value, (
np.ones_like(a)
numpy.ones_like
import numpy as np import os import time import pytest import ray from ray.cluster_utils import Cluster, cluster_not_supported from ray.internal.internal_api import memory_summary # RayConfig to enable recording call sites during ObjectRej creations. ray_config = {"record_ref_creation_sites": True} # Unique strings. DRIVER_PID = "Driver" WORKER_PID = "Worker" UNKNOWN_SIZE = " ? " # Reference status. PINNED_IN_MEMORY = "PINNED_IN_MEMORY" LOCAL_REF = "LOCAL_REFERENCE" USED_BY_PENDING_TASK = "USED_BY_PENDING_TASK" CAPTURED_IN_OBJECT = "CAPTURED_IN_OBJECT" ACTOR_HANDLE = "ACTOR_HANDLE" # Call sites. PUT_OBJ = "(put object)" TASK_CALL_OBJ = "(task call)" ACTOR_TASK_CALL_OBJ = "(actor call)" DESER_TASK_ARG = "(deserialize task arg)" # Only 22 characters can be matched because longer strings are wrapped around. DESER_ACTOR_TASK_ARG = "(deserialize actor tas" # Group by and sort by parameters. NODE_ADDRESS = "node address" STACK_TRACE = "stack trace" PID = "pid" OBJECT_SIZE = "object size" REFERENCE_TYPE = "reference type" def data_lines(memory_str): for line in memory_str.split("\n"): if ( PINNED_IN_MEMORY in line or LOCAL_REF in line or USED_BY_PENDING_TASK in line or CAPTURED_IN_OBJECT in line or ACTOR_HANDLE in line ): yield line else: continue def num_objects(memory_str): n = 0 for line in data_lines(memory_str): n += 1 return n def count(memory_str, substr): substr = substr[:42] n = 0 for line in memory_str.split("\n"): if substr in line: n += 1 return n @pytest.mark.parametrize( "ray_start_regular", [{"_system_config": ray_config}], indirect=True ) def test_driver_put_ref(ray_start_regular): address = ray_start_regular["address"] info = memory_summary(address) assert num_objects(info) == 0, info x_id = ray.put("HI") info = memory_summary(address) print(info) assert num_objects(info) == 1, info assert count(info, DRIVER_PID) == 1, info assert count(info, WORKER_PID) == 0, info del x_id info = memory_summary(address) assert num_objects(info) == 0, info @pytest.mark.parametrize( "ray_start_regular", [{"_system_config": ray_config}], indirect=True ) def test_worker_task_refs(ray_start_regular): address = ray_start_regular["address"] @ray.remote def f(y): from ray.internal.internal_api import memory_summary x_id = ray.put("HI") info = memory_summary(address) del x_id return info x_id = f.remote(np.zeros(100000)) info = ray.get(x_id) print(info) assert num_objects(info) == 4, info # Task argument plus task return ids. assert count(info, TASK_CALL_OBJ) == 2, info assert count(info, DRIVER_PID) == 2, info assert count(info, WORKER_PID) == 2, info assert count(info, LOCAL_REF) == 2, info assert count(info, PINNED_IN_MEMORY) == 1, info assert count(info, PUT_OBJ) == 1, info assert count(info, DESER_TASK_ARG) == 1, info assert count(info, UNKNOWN_SIZE) == 1, info print(ray_start_regular) info = memory_summary(address) print(info) assert num_objects(info) == 1, info assert count(info, DRIVER_PID) == 1, info assert count(info, TASK_CALL_OBJ) == 1, info assert count(info, UNKNOWN_SIZE) == 0, info assert count(info, x_id.hex()) == 1, info del x_id info = memory_summary(address) assert num_objects(info) == 0, info @pytest.mark.parametrize( "ray_start_regular", [{"_system_config": ray_config}], indirect=True ) def test_actor_task_refs(ray_start_regular): address = ray_start_regular["address"] @ray.remote class Actor: def __init__(self): self.refs = [] def f(self, x): from ray.internal.internal_api import memory_summary self.refs.append(x) return memory_summary(address) def make_actor(): return Actor.remote() actor = make_actor() x_id = actor.f.remote(np.zeros(100000)) info = ray.get(x_id) print(info) # Note, the actor will always hold a handle to the actor itself. assert num_objects(info) == 5, info # Actor handle, task argument id, task return id. assert count(info, ACTOR_TASK_CALL_OBJ) == 3, info assert count(info, DRIVER_PID) == 3, info assert count(info, WORKER_PID) == 2, info assert count(info, LOCAL_REF) == 1, info assert count(info, PINNED_IN_MEMORY) == 1, info assert count(info, USED_BY_PENDING_TASK) == 1, info assert count(info, ACTOR_HANDLE) == 2, info assert count(info, DESER_ACTOR_TASK_ARG) == 1, info del x_id # These should accumulate in the actor. for _ in range(5): ray.get(actor.f.remote([ray.put(np.zeros(100000))])) info = memory_summary(address) print(info) assert count(info, DESER_ACTOR_TASK_ARG) == 5, info assert count(info, ACTOR_TASK_CALL_OBJ) == 1, info # Cleanup. del actor time.sleep(1) info = memory_summary(address) assert num_objects(info) == 0, info @pytest.mark.parametrize( "ray_start_regular", [{"_system_config": ray_config}], indirect=True ) def test_nested_object_refs(ray_start_regular): address = ray_start_regular["address"] x_id = ray.put(np.zeros(100000)) y_id = ray.put([x_id]) z_id = ray.put([y_id]) del x_id, y_id info = memory_summary(address) print(info) assert num_objects(info) == 3, info assert count(info, LOCAL_REF) == 1, info assert count(info, CAPTURED_IN_OBJECT) == 2, info del z_id @pytest.mark.parametrize( "ray_start_regular", [{"_system_config": ray_config}], indirect=True ) def test_pinned_object_call_site(ray_start_regular): address = ray_start_regular["address"] # Local ref only. x_id = ray.put(
np.zeros(100000)
numpy.zeros
# This must be done BEFORE importing numpy or anything else. # Therefore it must be in your main script. import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" import sys import numpy as np import pyqmc.testwf as testwf def test_wfs(): """ Ensure that the wave function objects are consistent in several situations. """ from pyscf import lib, gto, scf from pyqmc.slateruhf import PySCFSlaterUHF from pyqmc.jastrowspin import JastrowSpin from pyqmc.multiplywf import MultiplyWF from pyqmc.coord import OpenConfigs from pyqmc.manybody_jastrow import J3 import pyqmc mol = gto.M(atom="Li 0. 0. 0.; H 0. 0. 1.5", basis="cc-pvtz", unit="bohr") mf = scf.RHF(mol).run() mf_rohf = scf.ROHF(mol).run() mf_uhf = scf.UHF(mol).run() epsilon = 1e-4 nconf = 10 epos = pyqmc.initial_guess(mol, nconf) for wf in [ J3(mol), #JastrowSpin(mol), #MultiplyWF(PySCFSlaterUHF(mol, mf), JastrowSpin(mol)), #PySCFSlaterUHF(mol, mf_uhf), #PySCFSlaterUHF(mol, mf), #PySCFSlaterUHF(mol, mf_rohf), ]: for k in wf.parameters: if k != "mo_coeff": wf.parameters[k] =
np.random.rand(*wf.parameters[k].shape)
numpy.random.rand
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import ubelt as ub # NOQA def argsubmax(ydata, xdata=None): """ Finds a single submaximum value to subindex accuracy. If xdata is not specified, submax_x is a fractional index. Otherwise, submax_x is sub-xdata (essentially doing the index interpolation for you) Example: >>> ydata = [ 0, 1, 2, 1.5, 0] >>> xdata = [00, 10, 20, 30, 40] >>> result1 = argsubmax(ydata, xdata=None) >>> result2 = argsubmax(ydata, xdata=xdata) >>> result = ub.repr2([result1, result2], precision=4, nl=1, nobr=True) >>> print(result) (2.1667, 2.0208), (21.6667, 2.0208), Example: >>> hist_ = np.array([0, 1, 2, 3, 4]) >>> centers = None >>> maxima_thresh=None >>> argsubmax(hist_) (4.0, 4.0) """ if len(ydata) == 0: raise IndexError('zero length array') ydata = np.asarray(ydata) xdata = None if xdata is None else np.asarray(xdata) submaxima_x, submaxima_y = argsubmaxima(ydata, centers=xdata) idx = submaxima_y.argmax() submax_y = submaxima_y[idx] submax_x = submaxima_x[idx] return submax_x, submax_y def argsubmaxima(hist, centers=None, maxima_thresh=None, _debug=False): r""" Determines approximate maxima values to subindex accuracy. Args: hist_ (ndarray): ydata, histogram frequencies centers (ndarray): xdata, histogram labels maxima_thresh (float): cutoff point for labeing a value as a maxima Returns: tuple: (submaxima_x, submaxima_y) Example: >>> maxima_thresh = .8 >>> hist = np.array([6.73, 8.69, 0.00, 0.00, 34.62, 29.16, 0.00, 0.00, 6.73, 8.69]) >>> centers = np.array([-0.39, 0.39, 1.18, 1.96, 2.75, 3.53, 4.32, 5.11, 5.89, 6.68]) >>> (submaxima_x, submaxima_y) = argsubmaxima(hist, centers, maxima_thresh) >>> result = str((submaxima_x, submaxima_y)) >>> print(result) >>> # xdoc: +REQUIRES(--show) >>> import plottool as pt >>> pt.draw_hist_subbin_maxima(hist, centers) >>> pt.show_if_requested() (array([ 3.0318792]), array([ 37.19208239])) """ maxima_x, maxima_y, argmaxima = _hist_argmaxima(hist, centers, maxima_thresh=maxima_thresh) argmaxima = np.asarray(argmaxima) if _debug: print('Argmaxima: ') print(' * maxima_x = %r' % (maxima_x)) print(' * maxima_y = %r' % (maxima_y)) print(' * argmaxima = %r' % (argmaxima)) flags = (argmaxima == 0) | (argmaxima == len(hist) - 1) argmaxima_ = argmaxima[~flags] submaxima_x_, submaxima_y_ = _interpolate_submaxima(argmaxima_, hist, centers) if np.any(flags): endpts = argmaxima[flags] submaxima_x = (np.hstack([submaxima_x_, centers[endpts]]) if centers is not None else np.hstack([submaxima_x_, endpts])) submaxima_y =
np.hstack([submaxima_y_, hist[endpts]])
numpy.hstack
# Copyright (c) 2018, Lehrstuhl für Angewandte Mechanik, Technische Universität München. # # Distributed under BSD-3-Clause License. See LICENSE-File for more information # # from unittest import TestCase import numpy as np from scipy.linalg import qr, lu_factor, lu_solve from scipy.sparse import csr_matrix from scipy.sparse.linalg import LinearOperator from numpy.testing import assert_allclose, assert_array_almost_equal from amfe.structural_dynamics import * class TestStructuralDynamicsToolsMAC(TestCase): def setUp(self): pass def tearDown(self): pass def test_mac_diag_ones(self): """ Test mac criterion for getting ones on the diagonal, if the same matrix is given. """ N = 100 n = 10 A =
np.random.rand(N, n)
numpy.random.rand
''' construct shading using sh basis ''' import numpy as np def SH_basis(normal): ''' get SH basis based on normal normal is a Nx3 matrix return a Nx9 matrix The order of SH here is: 1, Y, Z, X, YX, YZ, 3Z^2-1, XZ, X^2-y^2 ''' numElem = normal.shape[0] norm_X = normal[:,0] norm_Y = normal[:,1] norm_Z = normal[:,2] sh_basis = np.zeros((numElem, 9)) att= np.pi*np.array([1, 2.0/3.0, 1/4.0]) sh_basis[:,0] = 0.5/np.sqrt(np.pi)*att[0] sh_basis[:,1] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_Y*att[1] sh_basis[:,2] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_Z*att[1] sh_basis[:,3] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_X*att[1] sh_basis[:,4] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_Y*norm_X*att[2] sh_basis[:,5] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_Y*norm_Z*att[2] sh_basis[:,6] = np.sqrt(5)/4/np.sqrt(np.pi)*(3*norm_Z**2-1)*att[2] sh_basis[:,7] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_X*norm_Z*att[2] sh_basis[:,8] = np.sqrt(15)/4/np.sqrt(np.pi)*(norm_X**2-norm_Y**2)*att[2] return sh_basis def SH_basis_noAtt(normal): ''' get SH basis based on normal normal is a Nx3 matrix return a Nx9 matrix The order of SH here is: 1, Y, Z, X, YX, YZ, 3Z^2-1, XZ, X^2-y^2 ''' numElem = normal.shape[0] norm_X = normal[:,0] norm_Y = normal[:,1] norm_Z = normal[:,2] sh_basis = np.zeros((numElem, 9)) sh_basis[:,0] = 0.5/np.sqrt(np.pi) sh_basis[:,1] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_Y sh_basis[:,2] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_Z sh_basis[:,3] = np.sqrt(3)/2/np.sqrt(np.pi)*norm_X sh_basis[:,4] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_Y*norm_X sh_basis[:,5] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_Y*norm_Z sh_basis[:,6] = np.sqrt(5)/4/np.sqrt(np.pi)*(3*norm_Z**2-1) sh_basis[:,7] = np.sqrt(15)/2/np.sqrt(np.pi)*norm_X*norm_Z sh_basis[:,8] = np.sqrt(15)/4/
np.sqrt(np.pi)
numpy.sqrt
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # WikiGraphs is licensed under the terms of the Creative Commons # Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. # # WikiText-103 data (unchanged) is licensed by Salesforce.com, Inc. under the # terms of the Creative Commons Attribution-ShareAlike 4.0 International # (CC BY-SA 4.0) license. You can find details about CC BY-SA 4.0 at: # # https://creativecommons.org/licenses/by-sa/4.0/legalcode # # Freebase data is licensed by Google LLC under the terms of the Creative # Commons CC BY 4.0 license. You may obtain a copy of the License at: # # https://creativecommons.org/licenses/by/4.0/legalcode # # ============================================================================== """Tests for wikigraphs.model.transformer.""" from absl import logging from absl.testing import absltest import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np import optax from wikigraphs.model import embedding from wikigraphs.model import transformer as models def tree_size(nest): return sum(x.size for x in jax.tree_util.tree_leaves(nest)) class TransformerXlTest(absltest.TestCase): def test_transformer_param_count(self): seqs = np.array([[1, 2, 3, 0, 0], [3, 3, 5, 1, 2]], dtype=np.int32) x = seqs[:, :-1] y = seqs[:, 1:] vocab_size = 267_735 def forward(inputs, labels): input_mask = (labels != 0).astype(jnp.float32) model = models.TransformerXL( vocab_size=vocab_size, emb_dim=210, num_layers=2, num_heads=10, dropout_prob=0.0, dropout_attn_prob=0.0, self_att_init_scale=0.02, dense_init_scale=0.02, dense_dim=2100, cutoffs=(20000, 40000, 200000), # WikiText-103 relative_pos_clamp_len=None, ) return model.loss(inputs, labels, mask=input_mask, cache_steps=2) init_fn, apply_fn = hk.transform_with_state(forward) key = hk.PRNGSequence(8) params, state = init_fn(next(key), x, y) out, _ = apply_fn(params, state, next(key), x, y) loss, metrics = out logging.info('loss: %g', loss) logging.info('metrics: %r', metrics) param_count = tree_size(params) self.assertEqual(param_count, 58_704_438) def test_transformer_with_extra_runs(self): extra = np.array([[1, 1, 0, 0], [2, 2, 2, 2], [3, 3, 3, 0]], dtype=np.int32) seqs = np.array([[1, 2, 3, 0, 0], [2, 4, 5, 6, 0], [3, 3, 5, 1, 2]], dtype=np.int32) x = seqs[:, :-1] y = seqs[:, 1:] vocab_size = seqs.max() + 1 extra_vocab_size = extra.max() + 1 def forward(inputs, labels, extra): input_mask = (labels != 0).astype(jnp.float32) extra_mask = (extra != 0).astype(jnp.float32) extra = hk.Embed(vocab_size=extra_vocab_size, embed_dim=16)(extra) model = models.TransformerXL( vocab_size=vocab_size, emb_dim=16, num_layers=2, num_heads=4, cutoffs=[], ) return model.loss(inputs, labels, mask=input_mask, extra=extra, extra_mask=extra_mask) init_fn, apply_fn = hk.transform_with_state(forward) key = hk.PRNGSequence(8) params, state = init_fn(next(key), x, y, extra) out, _ = apply_fn(params, state, next(key), x, y, extra) loss, metrics = out logging.info('loss: %g', loss) logging.info('metrics: %r', metrics) def test_graph_embedding_model_runs(self): graph = jraph.GraphsTuple( nodes=np.array([[0, 1, 1], [1, 2, 0], [0, 3, 0], [0, 4, 4]], dtype=np.float32), edges=np.array([[1, 1], [2, 2], [3, 3]], dtype=np.float32), senders=np.array([0, 1, 2], dtype=np.int32), receivers=np.array([1, 2, 3], dtype=np.int32), n_node=np.array([4], dtype=np.int32), n_edge=np.array([3], dtype=np.int32), globals=None) embed_dim = 3 def forward(graph): return embedding.GraphEmbeddingModel(embed_dim=3, num_layers=2)(graph) init_fn, apply_fn = hk.without_apply_rng(hk.transform(forward)) key = hk.PRNGSequence(8) params = init_fn(next(key), graph) out = apply_fn(params, graph) self.assertEqual(out.nodes.shape, (graph.nodes.shape[0], embed_dim)) self.assertEqual(out.edges.shape, (graph.edges.shape[0], embed_dim)) np.testing.assert_array_equal(out.senders, graph.senders) np.testing.assert_array_equal(out.receivers, graph.receivers) np.testing.assert_array_equal(out.n_node, graph.n_node) def test_unpack_and_pad(self): x = np.array([1, 1, 2, 2, 2, 3, 4, 4], dtype=np.float32) s = np.array([2, 3, 1, 2], dtype=np.int32) tensors, mask = models.unpack_and_pad(x, s, pad_size=s.max(), pad_value=0) np.testing.assert_array_equal( tensors, [[1, 1, 0], [2, 2, 2], [3, 0, 0], [4, 4, 0]]) np.testing.assert_array_equal( mask, [[1, 1, 0], [1, 1, 1], [1, 0, 0], [1, 1, 0]]) # [n, 1] tensor x = np.array([1, 1, 2, 2, 2, 3, 4, 4], dtype=np.float32)[:, None] s =
np.array([2, 3, 1, 2], dtype=np.int32)
numpy.array
from joblib import Parallel, delayed from numba import jit import numpy as np import openturns as ot from anastruct.fem.system import SystemElements, Vertex from scipy.interpolate import CubicSpline N = ot.Normal(2, 1) pts_normal_reversed = np.arange(2, 0, -1*(2/50)) pts_normal = np.array(list(map(N.computeCDF, pts_normal_reversed))) l_0 = pts_normal.sum() pts_normal = (pts_normal/l_0) vertices_half = np.concatenate([np.array([0]), np.array(pts_normal*500)]) vertices = np.concatenate([vertices_half, vertices_half[::-1]]) for i in range(vertices.shape[0]-1): vertices[i+1] = vertices[i+1] + vertices[i] vertices = np.unique(vertices) vertex_list = [Vertex(vertices[i], 0) for i in range(101)] print('len vertices is:', len(vertex_list)) X = np.arange(0, 1000+1, 10) # to include also 1000 elem_coords = (X[1:]+X[:-1])/2 def experience_mod(young_modulus, diameter, position_force, norm_force, vertices=vertices, vertex_list=vertex_list, elem_coords=elem_coords): cs_young_modulus = CubicSpline(elem_coords, young_modulus) cs_diameter = CubicSpline(elem_coords, diameter) # now we calculate the value of the young modulus and diameter at each element young_modu_new = np.divide( np.add(cs_young_modulus(vertices[1:]), cs_young_modulus(vertices[:-1])), 2) diameter_new = np.divide(np.add(cs_diameter(vertices[1:]), cs_diameter(vertices[:-1])), 2) #Here we clip the values to not have negative young moduli or diameter young_modu_new = np.clip(a=young_modu_new, a_min=1000, a_max=None) diameter_new =
np.clip(a=diameter_new, a_min=.1, a_max=None)
numpy.clip
import os import os.path import argparse import logging import numpy as np from datetime import datetime from oncodrivefm import VERSION from bgcore import tsv from oncodrivefm.mapping import MatrixMapping _LOG_LEVELS = { "debug" : logging.DEBUG, "info" : logging.INFO, "warn" : logging.WARN, "error" : logging.ERROR, "critical" : logging.CRITICAL, "notset" : logging.NOTSET } class Command(object): def __init__(self, prog=None, desc=""): parser = argparse.ArgumentParser(prog=prog, description=desc) self._add_arguments(parser) parser.add_argument("-j", "--cores", dest="num_cores", type=int, metavar="CORES", help="Number of cores to use for calculations. Default is 0 that means all the available cores") parser.add_argument("-D", dest="defines", metavar="KEY=VALUE", action="append", help="Define external parameters to be saved in the results") parser.add_argument("-L", "--log-level", dest="log_level", metavar="LEVEL", default=None, choices=["debug", "info", "warn", "error", "critical", "notset"], help="Define log level: debug, info, warn, error, critical, notset") self.args = parser.parse_args() logging.basicConfig( format = "%(asctime)s %(name)s %(levelname)-5s : %(message)s", datefmt = "%Y-%m-%d %H:%M:%S") if self.args.log_level is None: self.args.log_level = "info" else: self.args.log_level = self.args.log_level.lower() logging.getLogger("oncodrivefm").setLevel(_LOG_LEVELS[self.args.log_level]) self.log = logging.getLogger("oncodrivefm") self._arg_errors = [] def _add_arguments(self, parser): parser.add_argument("-o", "--output-path", dest="output_path", metavar="PATH", help="Directory where output files will be written") parser.add_argument("-n", dest="analysis_name", metavar="NAME", help="Analysis name") parser.add_argument("--output-format", dest="output_format", metavar="FORMAT", choices=["tsv", "tsv.gz", "tsv.bz2"], default="tsv", help="The FORMAT for the output file") def _check_args(self): if self.args.output_path is None: self.args.output_path = os.getcwd() def _error(self, msg): self._arg_errors += [msg] def load_mapping(self, matrix, path, filt=None): map = {} if path is None: return map with open(path) as f: for line in f: line = line.rstrip() if len(line) == 0 or line.startswith("#"): continue fields = line.split('\t') if len(fields) < 2: continue gene, pathway = fields[0:2] if filt is None or filt.valid(gene): if pathway in map: map[pathway].add(gene) else: map[pathway] = set([gene]) for pathway, genes in map.items(): map[pathway] = sorted(genes) return MatrixMapping(matrix, map) def save_splited_results(self, output_path, analysis_name, output_format, matrix, mapping, method, results, slices, suffix=""): if len(suffix) > 0: suffix = "-{0}".format(suffix) for slice_results_index, slice in enumerate(slices): slice_name = matrix.slice_names[slice] path = os.path.join(output_path, "{0}{1}-{2}.{3}".format( analysis_name, suffix, slice_name, output_format)) self.log.debug(" > {0}".format(path)) with tsv.open(path, 'w') as f: tsv.write_line(f, "## version={0}".format(VERSION)) tsv.write_line(f, "## slice={0}".format(slice_name)) tsv.write_line(f, "## method={0}".format(method.name)) tsv.write_line(f, "## date={0}".format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) for key, value in self.parameters: tsv.write_line(f, "## {0}={1}".format(key, value)) tsv.write_line(f, "ID", *method.results_columns) for row_index, row_name in enumerate(mapping.group_names): value = results[slice_results_index, row_index] if not
np.isnan(value)
numpy.isnan
import numpy as np import pandas as pd from os.path import join import glob import tensorflow as tf import tensorflow_datasets as tfds from hps.common.Common import Common from hps.dataset.DatasetAbstract import DatasetAbstract class CICIDSDataset(DatasetAbstract): LOGGER = Common.LOGGER.getLogger() @classmethod def get_dataset(cls): data, label = cls.load_data() #cls.LOGGER.info("label_count : {}".format(label.value_counts())) balanced_data, balanced_label = cls.balancing_data(data, label) normalized_data = cls.normalize(balanced_data) cls.LOGGER.info("nan_count : {}".format(np.isnan(normalized_data).sum())) train, test,train_label, test_label = cls.split_data(normalized_data, balanced_label) ds_train, ds_test, label_train, label_test = cls.make_dataset(train,test, train_label, test_label) cls.LOGGER.info("spec of train:{}, test:{}, train_label:{}, test_label:{}".format(np.shape(ds_train),np.shape(ds_test),np.shape(label_train),np.shape(label_test))) return ds_train, label_train, ds_test, label_test @classmethod def load_data(cls)-> (pd.DataFrame, pd.DataFrame): filenames = [i for i in glob.glob(join("/../../../../cicids", "*.pcap_ISCX.csv"))] combined_csv = pd.concat([pd.read_csv(f,dtype=object,skipinitialspace=True) for f in filenames],sort=False,) data = combined_csv.rename(columns=lambda x: x.strip()) #strip() : delete \n & space #data.replace([np.inf, -np.inf], 0) cls.LOGGER.info("{}".format(data['Label'].value_counts())) #if data["Label"] == 1. : # data["Label"] = 1 #else : # data["Label"] = 0 label = data["Label"] #cls.LOGGER.info("label count: {}".format(label.value_counts())) # encoded_label = cls.encode_label(label.values) encoded_label, num = cls.label_encoder(data) data.replace('Infinity',0.0, inplace=True) data = data.astype(float).apply(pd.to_numeric) #encoded_label = cls.ont_hot_encoder(encoded_label, num) data.drop("Label", inplace=True, axis=1) #data = data.astype(float).apply(pd.to_numeric) data.fillna(0, inplace=True) cls.LOGGER.info("data : {}".format(data)) encoded_label = encoded_label.astype("float") #cls.LOGGER.info("label : {}".format(encoded_label)) # data["Label"]=encoded_label #cls.LOGGER.info("label : {}".format(encoded_label.unique())) data = data.values #encoded_label = cls.ont_hot_encoder(encoded_label, num) return data, encoded_label @classmethod def make_dataset(cls, train:np.ndarray, test:np.ndarray, train_label:np.ndarray, test_label:np.ndarray)->(list, list): cls.LOGGER.info("train :{}".format(train.shape)) cls.LOGGER.info("train_label :{}".format(train_label.shape)) ds_train_list = train.tolist() ds_test_list = test.tolist() label_train_list = train_label.tolist() label_test_list = test_label.tolist() return ds_train_list, ds_test_list, label_train_list, label_test_list @classmethod def split_data(cls, dataset:np.ndarray, label:np.ndarray) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): data_size = int(len(label)) train_size = int(0.65 * data_size) split_data= np.split(dataset,[train_size, data_size]) split_label= np.split(label, [train_size, data_size]) return split_data[0], split_data[1], split_label[0], split_label[1] @classmethod def encode_label(cls, y_str): labels_d = cls.make_lut(np.unique(y_str)) y = [labels_d[y_str_i] for y_str_i in y_str] return
np.array(y)
numpy.array
from unittest import TestCase import numpy as np from astropy.cosmology import Planck13 import astropy.units as u from physics_functions import comoving_distance class TestComovingDistance(TestCase): def test_fast_comoving_distance(self): z_params = {'z_start': 1.8, 'z_end': 3.7, 'z_step': 0.001} cd = comoving_distance.ComovingDistance(**z_params) ar_z = np.arange(1.952, 3.6, 0.132) ar_dist = cd.fast_comoving_distance(ar_z) ar_dist_reference = Planck13.comoving_transverse_distance(ar_z) / u.Mpc print(ar_dist - ar_dist_reference) self.assertTrue(
np.allclose(ar_dist, ar_dist_reference)
numpy.allclose
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from hyperemble.utils import corr, table_int, table_obj def test_corr(): a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) c = np.array([2, 3, 5]) d = corr(a, b) e = corr(a, c) assert type(d) is np.float64 assert type(e) is np.float64 assert np.isclose(d, 1.) assert np.isclose(e, 0.98198050606196585) def test_table_int(): x = np.array([1, 1, 1, 1, 2, 2, 2, 3]) res = table_int(x) assert type(res) is dict assert len(res) == 3 assert res == {1: 4, 2: 3, 3: 1} def test_table_obj(): x =
np.array(["a", "a", "b", "c"])
numpy.array
import warnings warnings.simplefilter("ignore", category=FutureWarning) from pmaf.biome.essentials._metakit import ( EssentialFeatureMetabase, EssentialSampleMetabase, ) from pmaf.biome.essentials._base import EssentialBackboneBase from collections import defaultdict from os import path import pandas as pd import numpy as np import biom from typing import Union, Sequence, Tuple, Callable, Any, Optional from pmaf.internal._typing import AnyGenericIdentifier, Mapper class FrequencyTable( EssentialBackboneBase, EssentialFeatureMetabase, EssentialSampleMetabase ): """An essential class for handling frequency data.""" def __init__( self, frequency: Union[pd.DataFrame, str], skipcols: Union[Sequence[Union[str, int]], str, int] = None, allow_nan: bool = False, **kwargs ): """Constructor for :class:`.FrequencyTable` Parameters ---------- frequency Data containing frequency data. skipcols Columns to skip when processing data. allow_nan Allow NA/NaN values or raise an error. kwargs Remaining parameters passed to :func:`~pandas.read_csv` or :mod:`biom` loader """ self.__internal_frequency = None tmp_skipcols = np.asarray([]) tmp_metadata = kwargs.pop("metadata", {}) if skipcols is not None: if isinstance(skipcols, (str, int)): tmp_skipcols = np.asarray([skipcols]) elif isinstance(skipcols, (list, tuple)): if not isinstance(skipcols[0], (str, int)): tmp_skipcols = np.asarray(skipcols) else: raise TypeError( "`skipcols` can be int/str or list-like of int/str." ) else: raise TypeError("`skipcols` can be int/str or list-like of int/str.") if isinstance(frequency, pd.DataFrame): if all(frequency.shape): tmp_frequency = frequency else: raise ValueError("Provided `frequency` Datafame is invalid.") elif isinstance(frequency, str): if not path.isfile(frequency): raise FileNotFoundError("Provided `frequency` file path is invalid.") file_extension = path.splitext(frequency)[-1].lower() if file_extension in [".csv", ".tsv"]: tmp_frequency = pd.read_csv(frequency, **kwargs) elif file_extension in [".biom", ".biome"]: tmp_frequency, new_metadata = self.__load_biom(frequency, **kwargs) tmp_metadata.update({"biom": new_metadata}) else: raise NotImplementedError("File type is not supported.") else: raise TypeError("Provided `frequency` has invalid type.") if skipcols is not None: if np.issubdtype(tmp_skipcols.dtype, np.number): if tmp_frequency.columns.isin(tmp_skipcols).any(): tmp_frequency.drop(columns=tmp_skipcols, inplace=True) else: tmp_frequency.drop( columns=tmp_frequency.columns[tmp_skipcols], inplace=True ) else: tmp_frequency.drop(columns=tmp_skipcols, inplace=True) tmp_dtypes = list(set(tmp_frequency.dtypes.values)) if len(tmp_dtypes) == 1 and pd.api.types.is_numeric_dtype(tmp_dtypes[0]): self.__init_frequency_table(tmp_frequency) else: if not allow_nan: raise ValueError( "Provided `frequency` must have numeric dtypes. " "Use `allow_nan` to allow missing values." ) if len(tmp_dtypes) == 1 and pd.api.types.is_numeric_dtype(tmp_dtypes[0]): self.__init_frequency_table(tmp_frequency) elif len(tmp_dtypes) == 2: tmp_dtypes_cond = [ (dt == object) or (pd.api.types.is_numeric_dtype(dt)) for dt in tmp_dtypes ] if all(tmp_dtypes_cond) and tmp_frequency.isnull().values.any(): self.__init_frequency_table(tmp_frequency) else: raise ValueError( "Provided `frequency` may contain numeric values or NAs." ) else: raise ValueError("Provided `frequency` has zero or too many dtypes.") super().__init__(metadata=tmp_metadata, **kwargs) @classmethod def from_biom(cls, filepath: str, **kwargs) -> "FrequencyTable": """Factory method to construct a :class:`.FrequencyTable` from :mod:`biom` file. Parameters ---------- filepath Path to :mod:`biom` file kwargs Compatibility Returns ------- Instance of class:`.FrequencyTable` """ frequency_frame, new_metadata = cls.__load_biom(filepath, **kwargs) tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"biom": new_metadata}) return cls(frequency=frequency_frame, metadata=tmp_metadata, **kwargs) @classmethod def from_csv(cls, filepath: str, **kwargs) -> "FrequencyTable": """Factory method to construct a :class:`.FrequencyTable` from CSV file. Parameters ---------- filepath Path to .csv file. kwargs Compatibility Returns ------- Instance of class:`.FrequencyTable` """ tmp_frequency = pd.read_csv(filepath, **kwargs) tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"filepath": path.abspath(filepath)}) return cls(frequency=tmp_frequency, metadata=tmp_metadata, **kwargs) @classmethod def __load_biom(cls, filepath: str, **kwargs) -> Tuple[pd.DataFrame, dict]: """Actual private method to process :mod:`biom` file. Parameters ---------- filepath :mod:`biom` file path. kwargs Compatibility """ biom_file = biom.load_table(filepath) return biom_file.to_dataframe(dense=True), {} def _rename_samples_by_map( self, map_like: Mapper, **kwargs ) -> Union[None, Mapper, dict]: """Rename sample names by map and ratify action. Parameters ---------- map_like Mapper to use for renaming kwargs Compatibility """ self.__internal_frequency.rename(mapper=map_like, axis=1, inplace=True) return self._ratify_action("_rename_samples_by_map", map_like, **kwargs) def _remove_features_by_id( self, ids: AnyGenericIdentifier, **kwargs ) -> Union[None, AnyGenericIdentifier, dict]: """Remove feature by id and ratify action. Parameters ---------- ids Feature identifiers. kwargs Compatibility """ tmp_ids = np.asarray(ids, dtype=self.__internal_frequency.index.dtype) if len(tmp_ids) > 0: self.__internal_frequency.drop(index=tmp_ids, inplace=True) return self._ratify_action("_remove_features_by_id", ids, **kwargs) def _merge_features_by_map( self, map_dict: Mapper, aggfunc: Union[str, Callable] = "sum", **kwargs ) -> Union[None, Mapper]: """Merge features by map with aggfunc and ratify action. Parameters ---------- map_dict Feature-wise map to use for merging aggfunc Aggregation function kwargs Compatibility """ tmp_agg_dict = defaultdict(list) for new_id, group in map_dict.items(): tmp_agg_dict[new_id] = ( self.__internal_frequency.loc[group, :].agg(func=aggfunc, axis=0).values ) tmp_freq_table = pd.DataFrame.from_dict( tmp_agg_dict, orient="index", columns=self.__internal_frequency.columns ) self.__init_frequency_table(tmp_freq_table) return self._ratify_action( "_merge_features_by_map", map_dict, aggfunc=aggfunc, **kwargs ) def _remove_samples_by_id( self, ids: AnyGenericIdentifier, **kwargs ) -> Union[None, AnyGenericIdentifier, dict]: """Remove samples by id and ratify action. Parameters ---------- ids Feature identifiers kwargs Compatibility """ tmp_ids = np.asarray(ids, dtype=self.__internal_frequency.columns.dtype) if len(tmp_ids) > 0: self.__internal_frequency.drop(columns=tmp_ids, inplace=True) return self._ratify_action("_remove_samples_by_id", ids, **kwargs) def _merge_samples_by_map( self, map_dict: Mapper, aggfunc: Union[str, Callable] = "mean", **kwargs ) -> Optional[Mapper]: """Merge samples by map with aggfunc and ratify action. Parameters ---------- map_dict Sample-wise map to use for merging aggfunc Aggregation function kwargs Compatibility """ tmp_agg_dict = defaultdict(list) for new_id, group in map_dict.items(): tmp_agg_dict[new_id] = ( self.__internal_frequency.loc[:, group] .agg(func=aggfunc, axis=1) .to_dict() ) tmp_freq_table = pd.DataFrame.from_dict(tmp_agg_dict, orient="columns") self.__init_frequency_table(tmp_freq_table) return self._ratify_action( "_merge_samples_by_map", map_dict, aggfunc=aggfunc, **kwargs ) def transform_to_relative_abundance(self): """Transform absolute counts to relative.""" self.__internal_frequency = self.__internal_frequency.div( self.__internal_frequency.sum(axis=0), axis=1 ) def replace_nan_with(self, value: Any) -> None: """Replace NaN values with `value`. Parameters ---------- value Value to replace NaN's """ self.__internal_frequency.fillna(value, inplace=True) def drop_features_by_id(self, ids: AnyGenericIdentifier) -> Union[None, np.ndarray]: """Drop features by `ids` Parameters ---------- ids Feature identifiers """ target_ids = np.asarray(ids) if self.__internal_frequency.index.isin(target_ids).sum() == len(target_ids): self._remove_features_by_id(target_ids) if self.is_buckled: return target_ids else: raise ValueError("Invalid _feature ids are provided.") def rename_samples(self, mapper: Mapper) -> None: """Rename sample names. Parameters ---------- mapper Rename samples by map """ if isinstance(mapper, dict) or callable(mapper): if isinstance(mapper, dict): if self.__internal_frequency.columns.isin( list(mapper.keys()) ).sum() == len(mapper): self._rename_samples_by_map(mapper) else: raise ValueError("Invalid sample ids are provided.") else: self._rename_samples_by_map(mapper) else: raise TypeError("Invalid `mapper` type.") def drop_features_without_counts(self) -> Optional[np.ndarray]: """Drop features that has no counts. Typically required after dropping samples. """ target_ids = self.__internal_frequency.index[ self.__internal_frequency.sum(axis=1) == 0 ].values self._remove_features_by_id(target_ids) if self.is_buckled: return target_ids def drop_samples_by_id(self, ids: AnyGenericIdentifier) -> Optional[np.ndarray]: """Drop samples by `ids` Parameters ---------- ids Sample identifiers """ target_ids = np.asarray(ids) if self.__internal_frequency.columns.isin(target_ids).sum() == len(target_ids): self._remove_samples_by_id(target_ids) if self.is_buckled: return target_ids else: raise ValueError("Invalid _sample ids are provided.") def __init_frequency_table(self, freq_table: pd.DataFrame) -> None: """Initiate the frequency table.""" self.__internal_frequency = freq_table def merge_features_by_map( self, mapping: Mapper, aggfunc: Union[str, Callable] = "sum", **kwargs ) -> Optional[Mapper]: """Merge features by `mapping` Parameters ---------- mapping Map with values as feature identifiers to be aggregated. aggfunc Aggregation function to apply kwargs Compatibility """ if isinstance(mapping, (dict, pd.Series)): tmp_ids = sorted( {x for _, v in mapping.items() for x in v} ) # FIXME: Uncool behavior make it better and follow the usage. if self.__internal_frequency.index.isin(tmp_ids).sum() == len(tmp_ids): return self._merge_features_by_map(mapping, aggfunc, **kwargs) else: raise ValueError("Invalid feature ids were found.") else: raise TypeError("`mapping` can be `dict` or `pd.Series`") def merge_samples_by_map( self, mapping: Mapper, aggfunc: Union[str, Callable] = "mean", **kwargs ) -> Optional[Mapper]: """Merge samples by `mapping` Parameters ---------- mapping Map with values as sample identifiers to be aggregated. aggfunc Aggregation function to apply kwargs Compatibility """ if isinstance(mapping, (dict, pd.Series)): tmp_ids = sorted( {x for _, v in mapping.items() for x in v} ) # FIXME: Uncool. See above. if self.__internal_frequency.columns.isin(tmp_ids).sum() == len(tmp_ids): return self._merge_samples_by_map(mapping, aggfunc, **kwargs) else: raise ValueError("Invalid sample ids were found.") else: raise TypeError("`mapping` can be `dict` or `pd.Series`") def copy(self) -> "FrequencyTable": """Copy of the instance.""" return type(self)( frequency=self.__internal_frequency.copy(), metadata=self.metadata, name=self.name ) def get_subset( self, rids: Optional[AnyGenericIdentifier] = None, sids: Optional[AnyGenericIdentifier] = None, *args, **kwargs ) -> "FrequencyTable": """Get subset of the :class:`.FrequencyTable`. Parameters ---------- rids Feature Identifiers sids Sample Identifiers args Compatibility kwargs Compatibility Returns ------- Instance of class:`.FrequencyTable`. """ if rids is None: target_rids = self.xrid else: target_rids =
np.asarray(rids)
numpy.asarray
from __future__ import print_function import os import shutil import warnings import tempfile import pickle import numpy import scipy.linalg as linalg from galpy.util.config import __config__ _SHOW_WARNINGS= __config__.getboolean('warnings','verbose') class galpyWarning(Warning): pass # galpy warnings only shown if verbose = True in the configuration class galpyWarningVerbose(galpyWarning): pass def _warning( message, category=galpyWarning, filename='', lineno=-1, file=None, line=None): if issubclass(category,galpyWarning): if not issubclass(category,galpyWarningVerbose) or _SHOW_WARNINGS: print("galpyWarning: "+str(message)) else: print(warnings.formatwarning(message,category,filename,lineno)) warnings.showwarning = _warning def save_pickles(savefilename,*args,**kwargs): """ NAME: save_pickles PURPOSE: relatively safely save things to a pickle INPUT: savefilename - name of the file to save to; actual save operation will be performed on a temporary file and then that file will be shell mv'ed to savefilename +things to pickle (as many as you want!) OUTPUT: none HISTORY: 2010-? - Written - Bovy (NYU) 2011-08-23 - generalized and added to galpy.util - Bovy (NYU) """ saving= True interrupted= False file, tmp_savefilename= tempfile.mkstemp() #savefilename+'.tmp' os.close(file) #Easier this way while saving: try: savefile= open(tmp_savefilename,'wb') file_open= True if kwargs.get('testKeyboardInterrupt',False) and not interrupted: raise KeyboardInterrupt for f in args: pickle.dump(f,savefile,pickle.HIGHEST_PROTOCOL) savefile.close() file_open= False shutil.move(tmp_savefilename,savefilename) saving= False if interrupted: raise KeyboardInterrupt except KeyboardInterrupt: if not saving: raise print("KeyboardInterrupt ignored while saving pickle ...") interrupted= True finally: if file_open: savefile.close() def logsumexp(arr,axis=0): """Faster logsumexp?""" minarr= numpy.amax(arr,axis=axis) if axis == 1: minarr= numpy.reshape(minarr,(arr.shape[0],1)) if axis == 0: minminarr= numpy.tile(minarr,(arr.shape[0],1)) elif axis == 1: minminarr= numpy.tile(minarr,(1,arr.shape[1])) elif axis == None: minminarr=
numpy.tile(minarr,arr.shape)
numpy.tile
# -*- coding: utf-8 -*- """ Created on Wed Dec 4 22:45:19 2019 @author: Pavan """ import numpy as np import scipy.stats as sc import math ################################################################################################ # Helper Functions def column_wise(fun,*args): return np.apply_along_axis(fun,0,*args) def rolling_window(a, shape): # rolling window for 2D array s = (a.shape[0] - shape[0] + 1,) + (a.shape[1] - shape[1] + 1,) + shape strides = a.strides + a.strides return np.lib.stride_tricks.as_strided(a, shape=s, strides=strides) def fisher_helper_ema(array,alpha,window): def numpy_ewma(a, alpha, windowSize): # a=a.flatten() wghts = (1-alpha)**np.arange(windowSize) # wghts /= wghts.sum() out = np.convolve(a,wghts) out[:windowSize-1] = np.nan return out[:a.size] return column_wise(numpy_ewma,array,alpha,window) ################################################################################################ # A. Mathematical Functions # Rolling Median def median(a,window): me = np.empty_like(a) me[:window-1,:]=np.nan me[window-1:,:]= np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return me # Rolling Mean def mean(a,window): me = np.empty_like(a) me[:window-1,:]=np.nan me[window-1:,:]= np.squeeze(np.mean(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return me #Rolling Standard Deviation def stdev(a,window): std = np.empty_like(a) std[:window-1,:]=np.nan std[window-1:,:]= np.squeeze(np.std(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return std #Rolling Product def product(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.prod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling Summation def summation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.sum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling Nan Product. Treats nan values as 1 def nanprod(a,window): nanprod = np.empty_like(a) nanprod[:window-1,:]=np.nan nanprod[window-1:,:]= np.squeeze(np.nanprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return nanprod #Rolling Nan Summation. Treats nan values as 0 def nansum(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.nansum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling Cummulative Product def cumproduct(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.cumprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling Summation def cumsummation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.cumsum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling nan Cummulative Product. Treats nan as 1 def nancumproduct(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.nancumprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling nan Cummulative Summation. Treats nan as 0 def nancumsummation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.nancumsum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #backward difference: a[n]=b[n]-b[n-(window-1)] def back_diff(a,window): back= np.empty_like(a) back[:window-1,:]=np.nan back[window-1:,:]=a[window-1:,:]-a[:-(window-1),:] return back # rolling integration def integrate(a,window): inte= np.empty_like(a) inte[:window-1,:]=np.nan inte[window-1:,:]=np.squeeze(np.trapz(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return inte # rolling integration def integrate_along_x(y,x,window): inte= np.empty_like(y) inte[:window-1,:]=np.nan inte[window-1:,:]=np.squeeze(np.trapz(rolling_window(y,(window,y.shape[1])),rolling_window(x,(window,x.shape[1])),axis=2),axis=1) return inte #Centers Value by subtracting its median over the TimePeriod. #Using the median instead of the mean reduces the effect of outliers. def center(a,window): cen = np.empty_like(a) cen[:window-1,:]=np.nan cen[window-1:,:]= a[window-1:,:]-np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return cen #Compresses Value to the -100...+100 range. For this, Value is divided by its interquartile range # - the difference of the 75th and 25th percentile - taken over TimePeriod, and # then compressed by a cdf function. Works best when Value is an oscillator that crosses # the zero line. Formula: 200 * cdf(0.25*Value/(P75-P25)) - 100. def compress(a,window): from scipy.stats import norm com = np.empty_like(a) com[:window-1,:]=np.nan value = a[window-1:,:] q25 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.25,axis=2),axis=1) q75 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.75,axis=2),axis=1) com[window-1:,:] = 200*(norm.cdf((0.25*value/(q75-q25))))-100 return com #Centers and compresses Value to the -100...+100 scale. #The deviation of Value from its median is divided by its interquartile range and then #compressed by a cdf function. Formula: 200 * cdf(0.5*(Value-Median)/(P75-P25)) - 100. def scale(a,window): from scipy.stats import norm scale = np.empty_like(a) scale[:window-1,:]=np.nan value = a[window-1:,:] median = np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) q25 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.25,axis=2),axis=1) q75 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.75,axis=2),axis=1) scale[window-1:,:] = 200*(norm.cdf((0.25*(value-median)/(q75-q25))))-100 return scale #Normalizes Value to the -100...+100 range through subtracting its minimum and dividing #by its range over TimePeriod. Formula: 200 * (Value-Min)/(Max-Min) - 100 . #For a 0..100 oscillator, multiply the returned value with 0.5 and add 50. def normalize(a,window): norm = np.empty_like(a) norm[:window-1,:]=np.nan value = a[window-1:,:] minimum = np.squeeze(rolling_window(a,(window,a.shape[1])).min(axis=2),axis=1) maximum = np.squeeze(rolling_window(a,(window,a.shape[1])).max(axis=2),axis=1) norm[window-1:,:] = 200*((value-minimum)/(maximum-minimum))-100 return norm def normalize_o(a,window): norm = np.empty_like(a) norm[:window-1,:]=np.nan value = a[window-1:,:] minimum = np.squeeze(rolling_window(a,(window,a.shape[1])).min(axis=2),axis=1) maximum = np.squeeze(rolling_window(a,(window,a.shape[1])).max(axis=2),axis=1) norm[window-1:,:] = 2*((value-minimum)/(maximum-minimum))-1 return norm #Calculates the Z-score of the Value. The Z-score is the deviation from # the mean over the TimePeriod, divided by the standard deviation. # Formula: (Value-Mean)/StdDev. def zscore(a,window): z = np.empty_like(a) z[:window-1,:]=np.nan value = a[window-1:,:] mean =np.squeeze(np.mean(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) stddev = np.squeeze(np.std(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) z[window-1:,:] = (value-mean)/stddev return z #### Mathematical functions def absolute(a): return np.absolute(a) def sin(a): return np.sin(a) def cos(a): return np.cos(a) def tan(a): return np.tan(a) def asin(a): return np.arcsin(a) def acos(a): return np.arccos(a) def atan(a): return np.arctan(a) def sinh(a): return np.sinh(a) def cosh(a): return np.cosh(a) def tanh(a): return np.tanh(a) def asinh(a): return np.arcsinh(a) def acosh(a): return np.arccosh(a) def atanh(a): return np.arctanh(a) def floor(a): return np.floor(a) def ceil(a): return np.ceil(a) def clamp(a,minimum,maximum): return np.clip(a,minimum,maximum) def around(a,decimals=0): return np.around(a,decimals) def round_(a,decimals=0): return np.round_(a,decimals) def rint(a): return np.rint(a) def fix(a): return np.fix(a) def trunc(a): return np.trunc(a) def pdf(a): from scipy.stats import norm return norm.pdf(a) def logpdf(a): from scipy.stats import norm return norm.logpdf(a) def cdf(a): from scipy.stats import norm return norm.cdf(a) def logcdf(a): from scipy.stats import norm return norm.logcdf(a) def qnorm(a): from scipy.stats import norm return norm.ppf(a) def survival(a): from scipy.stats import norm return norm.sf(a) def inv_survival(a): from scipy.stats import norm return norm.isf(a) def errorf(a): from scipy.special import erf return erf(a) def errorfc(a): from scipy.special import erfc return erfc(a) def exp(a): return np.exp(a) def exp1(a): return np.exp1(a) def exp2(a): return np.exp2(a) def log(a): return np.log(a) def log10(a): return np.log10(a) def log2(a): return np.log2(a) def log1p(a): return np.log1p(a) def add(a,b): return np.add(a,b) def receiprocal(a): return np.reciprocal(a) def negative(a): return np.negative(a) def multiply(a,b): return np.multiply(a,b) def divide(a,b): return np.divide(a,b) def power(a,b): return np.power(a,b) def subtract(a,b): return np.subtract(a,b) def true_divide(a,b): return np.true_divide(a,b) def remainder(a,b): return np.remainder(a,b) def sqrt(a): return np.sqrt(a) def square(a): return np.square(a) def sign(a): return np.sign(a) def maximum(a,b): return np.maximum(a,b) def minimum(a,b): return np.minimum(a,b) def nan_to_num(a): return np.nan_to_num(a) ############################################################################################ ### Time Series properties, transformations and statistics #Rolling Pearson Correlation def corr(a,b,window): from skimage.util import view_as_windows A = view_as_windows(a,(window,1))[...,0] B = view_as_windows(b,(window,1))[...,0] A_mA = A - A.mean(-1, keepdims=True) B_mB = B - B.mean(-1, keepdims=True) # ## Sum of squares across rows # ssA = (A_mA**2).sum(-1) # or better : np.einsum('ijk,ijk->ij',A_mA,A_mA) # ssB = (B_mB**2).sum(-1) # or better : np.einsum('ijk,ijk->ij',B_mB,B_mB) ssA = np.einsum('ijk,ijk->ij',A_mA,A_mA) ssB = np.einsum('ijk,ijk->ij',B_mB,B_mB) ## Finally get corr coeff out = np.full(a.shape, np.nan) out[window-1:] = np.einsum('ijk,ijk->ij',A_mA,B_mB)/np.sqrt(ssA*ssB) return out # Rolling Covariance def covariance(a,b,window): from skimage.util import view_as_windows A = view_as_windows(a,(window,1))[...,0] B = view_as_windows(b,(window,1))[...,0] A_mA = A - A.mean(-1, keepdims=True) B_mB = B - B.mean(-1, keepdims=True) out = np.full(a.shape, np.nan) out[window-1:] = np.einsum('ijk,ijk->ij',A_mA,B_mB) return out ## Fisher transformation #Fisher Transform; transforms a normalized Data series to a normal distributed range. # The return value has no theoretical limit, but most values are between -1 .. +1. # All Data values must be in the -1 .. +1 range f.i. by normalizing with # the AGC, Normalize, or cdf function. The minimum Data length is 1. def fisher(a): tran = np.clip(a,-0.998,0.998) return 0.5*np.log((1+tran)/(1-tran)) def invfisher(a): return (np.exp(2*a)-1)/(np.exp(2*a)+1) # Simple Moving average def sma(array,window): def sma_array(array,window): weights = np.ones(window)/window ma = np.full_like(array,np.nan) ma[window-1:] = np.convolve(array, weights, 'valid') return ma return column_wise(sma_array,array,window) def ema_v1(array,alpha,window): def numpy_ewma(a, alpha, windowSize): wghts = (1-alpha)**np.arange(windowSize) wghts /= wghts.sum() out = np.convolve(a,wghts) out[:windowSize-1] = np.nan return out[:a.size] return column_wise(numpy_ewma,array,alpha,window) def ema(array,window): def ExpMovingAverage(values, window): alpha = 2/(1.0+window) weights = (1-alpha)**np.arange(window) weights /= weights.sum() a = np.convolve(values, weights, mode='full')[:len(values)] a[:window-1] = np.nan return a return column_wise(ExpMovingAverage,array,window) ### Check this AGAIN. this involves ema with 0.67 and 0.33 as weights def fisher_norm(a,window): return fisher_helper_ema(fisher(ema(normalize_o(a,window),2)),2/3,2) #Highest value over a specified period. def maxval(a,window): z = np.full_like(a,np.nan) z[window-1:,:] = np.squeeze(rolling_window(a,(window,a.shape[1]))).max(axis=1) return z #Lowest value over a specified period. def minval(a,window): z = np.full_like(a,np.nan) z[window-1:,:] = np.squeeze(rolling_window(a,(window,a.shape[1]))).min(axis=1) return z #Index of highest value over a specified period. 0 = highest value is at #current bar, 1 = at one bar ago, and so on. def max_index(a,window): z = np.full_like(a,np.nan) z[window-1:,:] = window-np.argmax(np.squeeze(rolling_window(a,(window,a.shape[1]))),axis=1) return z #Index of lowest value over a specified period. 0 = lowest value is at #current bar, 1 = at one bar ago, and so on. def min_index(a,window): z = np.full_like(a,np.nan) z[window-1:,:] = window-np.argmin(np.squeeze(rolling_window(a,(window,a.shape[1]))),axis=1) return z #Fractal dimension of the Data series; normally 1..2. #Smaller values mean more 'jaggies'. Can be used to detect the current market regime or #to adapt moving averages to the fluctuations of a price series. #Requires a lookback period of twice the TimePeriod. def fractal_d(a,window): def fractal_d_helper_max(a,window): first = np.full_like(a,np.nan) second = np.full_like(a,np.nan) br = int(max(1,window/2)) strides = np.squeeze(rolling_window(a,(window,a.shape[1]))) first_half = strides[:,:br,:] second_half = strides[:,br:,:] first[window-1:,:]= first_half.max(axis=1) second[window-1:,:]= second_half.max(axis=1) return first,second def fractal_d_helper_min(a,window): first = np.full_like(a,np.nan) second = np.full_like(a,np.nan) br = int(max(1,window/2)) strides = np.squeeze(rolling_window(a,(window,a.shape[1]))) first_half = strides[:,:br,:] second_half = strides[:,br:,:] first[window-1:,:]= first_half.min(axis=1) second[window-1:,:]= second_half.min(axis=1) return first,second if window%2==0: period1 = int(max(1,window/2)) period2 = int(max(1,window-period1)) max_first,max_second = fractal_d_helper_max(a,window) min_first,min_second = fractal_d_helper_min(a,window) N1 = (max_first - min_first)/period1 N2 = (max_second - min_second)/period2 N3 = (maxval(a,window)-minval(a,window))/window nu = N1+N2 nu[nu<=0]=1 N3[N3<=0]=1 return (log(N1+N2)-log(N3))/log(2) else: print('Time Period for fractional dimension should be an even number') #4 pole Gauss Filter, returns a weighted average of the data within the given #time period, with the weight curve equal to the Gauss Normal Distribution. #Useful for removing noise by smoothing raw data. # The minimum length of the Data series is equal to TimePeriod, # the lag is half the TimePeriod. def gauss_filter(array,window): def gauss(a0,window): # a0=a0.flatten() N = len(a0) a0=a0[~np.isnan(a0)] to_fill = N-len(a0) poles = 4 PI = math.pi beta = (1 - math.cos(2 * PI / window)) / (math.pow(2, 1 / poles) - 1) alpha = -beta + math.sqrt(math.pow(beta, 2) + 2 * beta) fil = np.zeros(4+len(a0)) coeff = np.array([alpha**4,4*(1-alpha),-6*(1-alpha)**2,4*(1-alpha)**3,-(1-alpha)**4]) for i in range(len(a0)): val = np.array([np.asscalar(a0[i]),fil[3+i],fil[2+i],fil[1+i],fil[i]]) fil[4+i]=np.dot(coeff,val) if to_fill!=0: out = np.insert(fil[4:],0,np.repeat(np.nan,to_fill)) else: out = fil[4:] return out return column_wise(gauss,array,window) # Ehlers' smoothing filter, 2-pole Butterworth * SMA def smooth(array,cutoff=10): def smooth_helper(a0,cutoff=10): a0=a0.flatten() N = len(a0) a0=a0[~np.isnan(a0)] to_fill = N-len(a0) PI = math.pi f = (math.sqrt(2)*PI)/cutoff a = math.exp(-f) c2 = 2*a*math.cos(f) c3 = -a*a c1 = 1-c2-c3 src = np.insert(a0,0,0) coeff = np.array([0.5*c1,0.5*c1,c2,c3]) fil = np.zeros(2+len(a0)) for i in range(len(a0)): val = np.array([np.asscalar(src[i,]),np.asscalar(src[i+1,]),fil[i+1],fil[i]]) fil[2+i]=np.dot(coeff,val) if to_fill!=0: out = np.insert(fil[2:],0,np.repeat(np.nan,to_fill)) else: out = fil[2:] return out return column_wise(smooth_helper,array,cutoff) def hurst_exp(array,window): window = max(window,20) hurst = (2.0-fractal_d(array,window)) return clamp(smooth(hurst,int(window/10)),0,1) #Linear Regression, also known as the "least squares moving average" (LSMA). #Linear Regression attempts to fit a straight trendline between several data points # in such a way that the distance between each data point and the trendline # is minimized. For each point, the straight line over the specified # previous bar period is determined in terms of y = b + m*x, where # y is the price and x the bar number starting at TimePeriod bars ago. # The formula for calculating b and m is then # #m = (nΣxy - ΣxΣy) / (nΣx² - (Σx)²) #b = (Σy - bΣx) / n # #where n is the number of data points (TimePeriod) and Σ is the summation operator. # The LinearReg function returns b+m*(TimePeriod-1), i.e. the y of the current bar. def linear_reg(a,window): res = np.full_like(a,np.nan) Y = np.squeeze(rolling_window(a,(window,a.shape[1]))) X = np.tile(np.linspace(1,window,window)[:,np.newaxis],(Y.shape[0],1,a.shape[1])) XY = np.multiply(X,Y) s_XY = np.sum(XY,axis=1) s_Y = np.sum(Y,axis=1) s_X = np.sum(X,axis=1) s_X2 = np.sum(X**2,axis=1) m = (window*(s_XY)-(s_X*s_Y))/(window*s_X2-(s_X)**2) b = (s_Y-m*s_X)/window projected = m*(window+1)+b res[window-1:,:]=projected return res #Forecast of bth bar after window def linear_reg_forecast(a,window,bar): res = np.full_like(a,np.nan) Y = np.squeeze(rolling_window(a,(window,a.shape[1]))) X = np.tile(np.linspace(1,window,window)[:,np.newaxis],(Y.shape[0],1,a.shape[1])) XY = np.multiply(X,Y) s_XY = np.sum(XY,axis=1) s_Y = np.sum(Y,axis=1) s_X = np.sum(X,axis=1) s_X2 = np.sum(X**2,axis=1) m = (window*(s_XY)-(s_X*s_Y))/(window*s_X2-(s_X)**2) b = (s_Y-m*s_X)/window projected = m*(window+bar)+b res[window-1:,:]=projected return res def linear_reg_angle(a,window): res = np.full_like(a,np.nan) Y = np.squeeze(rolling_window(a,(window,a.shape[1]))) X = np.tile(np.linspace(1,window,window)[:,np.newaxis],(Y.shape[0],1,a.shape[1])) XY = np.multiply(X,Y) s_XY = np.sum(XY,axis=1) s_Y = np.sum(Y,axis=1) s_X = np.sum(X,axis=1) s_X2 = np.sum(X**2,axis=1) m = (window*(s_XY)-(s_X*s_Y))/(window*s_X2-(s_X)**2) # b = (s_Y-m*s_X)/window # projected = m*(window+1)+b res[window-1:,:]=atan(m) return res def linear_reg_slope(a,window): res = np.full_like(a,np.nan) Y = np.squeeze(rolling_window(a,(window,a.shape[1]))) X = np.tile(np.linspace(1,window,window)[:,np.newaxis],(Y.shape[0],1,a.shape[1])) XY = np.multiply(X,Y) s_XY = np.sum(XY,axis=1) s_Y =
np.sum(Y,axis=1)
numpy.sum
import numpy as np from numpy.linalg import eig, norm, pinv import pinocchio from crocoddyl import (ActionModelNumDiff, ActuationModelFreeFloating, CallbackDDPLogger, ContactModel3D, ContactModel6D, ContactModelMultiple, CostModelControl, CostModelForce, CostModelForceLinearCone, CostModelFrameTranslation, CostModelState, CostModelSum, DifferentialActionModelFloatingInContact, DifferentialActionModelNumDiff, IntegratedActionModelEuler, ShootingProblem, SolverDDP, SolverKKT, StatePinocchio, a2m, absmax, loadTalosArm, m2a) from crocoddyl.utils import EPS from pinocchio.utils import rand, zero from testutils import NUMDIFF_MODIFIER, assertNumDiff, df_dq, df_dx pinocchio.switchToNumpyMatrix() # Loading Talos arm with FF TODO use a bided or quadruped # ----------------------------------------------------------------------------- robot = loadTalosArm(freeFloating=True) robot.model.armature[6:] = 1. qmin = robot.model.lowerPositionLimit qmin[:7] = -1 robot.model.lowerPositionLimit = qmin qmax = robot.model.upperPositionLimit qmax[:7] = 1 robot.model.upperPositionLimit = qmax rmodel = robot.model rdata = rmodel.createData() np.set_printoptions(linewidth=400, suppress=True) contactModel = ContactModel6D(rmodel, rmodel.getFrameId('gripper_left_fingertip_2_link'), ref=pinocchio.SE3.Random(), gains=[4., 4.]) contactData = contactModel.createData(rdata) q = pinocchio.randomConfiguration(rmodel) v = rand(rmodel.nv) x = m2a(np.concatenate([q, v])) u = m2a(rand(rmodel.nv - 6)) pinocchio.forwardKinematics(rmodel, rdata, q, v, zero(rmodel.nv)) pinocchio.computeJointJacobians(rmodel, rdata) pinocchio.updateFramePlacements(rmodel, rdata) pinocchio.computeForwardKinematicsDerivatives(rmodel, rdata, q, v, zero(rmodel.nv)) contactModel.calc(contactData, x) contactModel.calcDiff(contactData, x) rdata2 = rmodel.createData() pinocchio.computeAllTerms(rmodel, rdata2, q, v) pinocchio.updateFramePlacements(rmodel, rdata2) contactData2 = contactModel.createData(rdata2) contactModel.calc(contactData2, x) assert (norm(contactData.a0 - contactData2.a0) < 1e-9) assert (norm(contactData.J - contactData2.J) < 1e-9) def returna_at0(q, v): x = np.vstack([q, v]).flat pinocchio.computeAllTerms(rmodel, rdata2, q, v) pinocchio.updateFramePlacements(rmodel, rdata2) contactModel.calc(contactData2, x) return a2m(contactData2.a0) # .copy() Aq_numdiff = df_dq(rmodel, lambda _q: returna_at0(_q, v), q) Av_numdiff = df_dx(lambda _v: returna_at0(q, _v), v) assertNumDiff(contactData.Aq, Aq_numdiff, NUMDIFF_MODIFIER * np.sqrt(2 * EPS)) # threshold was 1e-4, is now 2.11e-4 (see assertNumDiff.__doc__) assertNumDiff(contactData.Av, Av_numdiff, NUMDIFF_MODIFIER * np.sqrt(2 * EPS)) # threshold was 1e-4, is now 2.11e-4 (see assertNumDiff.__doc__) eps = 1e-8 Aq_numdiff = df_dq(rmodel, lambda _q: returna_at0(_q, v), q, h=eps) Av_numdiff = df_dx(lambda _v: returna_at0(q, _v), v, h=eps) assert (np.isclose(contactData.Aq, Aq_numdiff, atol=np.sqrt(eps)).all()) assert (np.isclose(contactData.Av, Av_numdiff, atol=np.sqrt(eps)).all()) contactModel = ContactModel3D(rmodel, rmodel.getFrameId('gripper_left_fingertip_2_link'), ref=np.random.rand(3), gains=[4., 4.]) contactData = contactModel.createData(rdata) q = pinocchio.randomConfiguration(rmodel) v = rand(rmodel.nv) x = m2a(np.concatenate([q, v])) u = m2a(rand(rmodel.nv - 6)) pinocchio.forwardKinematics(rmodel, rdata, q, v, zero(rmodel.nv)) pinocchio.computeJointJacobians(rmodel, rdata) pinocchio.updateFramePlacements(rmodel, rdata) pinocchio.computeForwardKinematicsDerivatives(rmodel, rdata, q, v, zero(rmodel.nv)) contactModel.calc(contactData, x) contactModel.calcDiff(contactData, x) rdata2 = rmodel.createData() pinocchio.computeAllTerms(rmodel, rdata2, q, v) pinocchio.updateFramePlacements(rmodel, rdata2) contactData2 = contactModel.createData(rdata2) contactModel.calc(contactData2, x) assert (norm(contactData.a0 - contactData2.a0) < 1e-9) assert (norm(contactData.J - contactData2.J) < 1e-9) def returna0(q, v): x = np.vstack([q, v]).flat pinocchio.computeAllTerms(rmodel, rdata2, q, v) pinocchio.updateFramePlacements(rmodel, rdata2) contactModel.calc(contactData2, x) return a2m(contactData2.a0) # .copy() Aq_numdiff = df_dq(rmodel, lambda _q: returna0(_q, v), q) Av_numdiff = df_dx(lambda _v: returna0(q, _v), v) assertNumDiff(contactData.Aq, Aq_numdiff, NUMDIFF_MODIFIER * np.sqrt(2 * EPS)) # threshold was 1e-4, is now 2.11e-4 (see assertNumDiff.__doc__) assertNumDiff(contactData.Av, Av_numdiff, NUMDIFF_MODIFIER * np.sqrt(2 * EPS)) # threshold was 1e-4, is now 2.11e-4 (see assertNumDiff.__doc__) Aq_numdiff = df_dq(rmodel, lambda _q: returna0(_q, v), q, h=eps) Av_numdiff = df_dx(lambda _v: returna0(q, _v), v, h=eps) assert (np.isclose(contactData.Aq, Aq_numdiff, atol=np.sqrt(eps)).all()) assert (np.isclose(contactData.Av, Av_numdiff, atol=np.sqrt(eps)).all()) q = pinocchio.randomConfiguration(rmodel) v = rand(rmodel.nv) * 2 - 1 pinocchio.computeJointJacobians(rmodel, rdata, q) J6 = pinocchio.getJointJacobian(rmodel, rdata, rmodel.joints[-1].id, pinocchio.ReferenceFrame.LOCAL).copy() J = J6[:3, :] v -= pinv(J) * J * v x = np.concatenate([m2a(q), m2a(v)]) u = np.random.rand(rmodel.nv - 6) * 2 - 1 actModel = ActuationModelFreeFloating(rmodel) contactModel3 = ContactModel3D(rmodel, rmodel.getFrameId('gripper_left_fingertip_2_link'), ref=
np.random.rand(3)
numpy.random.rand
import numpy as np from active_tester.query_strategy.base import BaseQueryStrategy from active_tester.query_strategy.random import Random from active_tester.label_estimation.methods import oracle_one_label, oracle_multiple_labels from active_tester.util import estimate_expectation, estimate_expectation_fixed, draw_samples import unittest from sklearn.metrics import accuracy_score def compute_uncertainty_distribution(p_classifier, y_noisy, num_classes, unlabeled): label_probs = np.zeros((len(y_noisy), num_classes)) for i in range(len(y_noisy)): label_probs[i, y_noisy[i]] = 1.0 measure = np.sum(np.abs(label_probs[unlabeled, :] - p_classifier[unlabeled, :]), axis=1) measure = measure / np.sum(measure) return measure class MCM(BaseQueryStrategy): def __init__(self, estimation_method, X=None, y_noisy=None, p_classifier=None, option='smoothed'): """ Choose items related to the difference between the classifier predictions and the current ground truth estimates :param estimation_method: pass None when using the naive estimator :param X: matrix of features :param y_noisy: noisy labels :param p_classifier: classifier predicted probabilities :param option: Can be greedy, sample, or otherwise defaults to smoothed. Greedy items with the largest probability. Sample chooses according to the distribution defined by the entropy of the classifier predicted probabilities. Smoothed combines the above distribution with a uniform distribution. """ super().__init__(X, y_noisy, p_classifier) self.X = X if X is not None: sizes = [] for i in range(1, np.ndim(self.X)): sizes.append(
np.size(self.X, axis=i)
numpy.size
# Dual annealing unit tests implementation. # Copyright (c) 2018 <NAME> <<EMAIL>>, # <NAME> <<EMAIL>> # Author: <NAME>, PMP S.A. """ Unit tests for the dual annealing global optimizer """ from scipy.optimize import dual_annealing from scipy.optimize._dual_annealing import VisitingDistribution from scipy.optimize._dual_annealing import ObjectiveFunWrapper from scipy.optimize._dual_annealing import EnergyState from scipy.optimize._dual_annealing import LocalSearchWrapper from scipy.optimize import rosen, rosen_der import numpy as np from numpy.testing import (assert_equal, TestCase, assert_allclose, assert_array_less) from pytest import raises as assert_raises from scipy._lib._util import check_random_state class TestDualAnnealing(TestCase): def setUp(self): # A function that returns always infinity for initialization tests self.weirdfunc = lambda x: np.inf # 2-D bounds for testing function self.ld_bounds = [(-5.12, 5.12)] * 2 # 4-D bounds for testing function self.hd_bounds = self.ld_bounds * 4 # Number of values to be generated for testing visit function self.nbtestvalues = 5000 self.high_temperature = 5230 self.low_temperature = 0.1 self.qv = 2.62 self.seed = 1234 self.rs = check_random_state(self.seed) self.nb_fun_call = 0 self.ngev = 0 def tearDown(self): pass def callback(self, x, f, context): # For testing callback mechanism. Should stop for e <= 1 as # the callback function returns True if f <= 1.0: return True def func(self, x, args=()): # Using Rastrigin function for performing tests if args: shift = args else: shift = 0 y = np.sum((x - shift) ** 2 - 10 * np.cos(2 * np.pi * ( x - shift))) + 10 * np.size(x) + shift self.nb_fun_call += 1 return y def rosen_der_wrapper(self, x, args=()): self.ngev += 1 return rosen_der(x, *args) def test_visiting_stepping(self): lu = list(zip(*self.ld_bounds)) lower = np.array(lu[0]) upper = np.array(lu[1]) dim = lower.size vd = VisitingDistribution(lower, upper, self.qv, self.rs) values = np.zeros(dim) x_step_low = vd.visiting(values, 0, self.high_temperature) # Make sure that only the first component is changed assert_equal(np.not_equal(x_step_low, 0), True) values = np.zeros(dim) x_step_high = vd.visiting(values, dim, self.high_temperature) # Make sure that component other than at dim has changed assert_equal(np.not_equal(x_step_high[0], 0), True) def test_visiting_dist_high_temperature(self): lu = list(zip(*self.ld_bounds)) lower = np.array(lu[0]) upper = np.array(lu[1]) vd = VisitingDistribution(lower, upper, self.qv, self.rs) # values = np.zeros(self.nbtestvalues) # for i in np.arange(self.nbtestvalues): # values[i] = vd.visit_fn(self.high_temperature) values = vd.visit_fn(self.high_temperature, self.nbtestvalues) # Visiting distribution is a distorted version of Cauchy-Lorentz # distribution, and as no 1st and higher moments (no mean defined, # no variance defined). # Check that big tails values are generated assert_array_less(np.min(values), 1e-10) assert_array_less(1e+10, np.max(values)) def test_reset(self): owf = ObjectiveFunWrapper(self.weirdfunc) lu = list(zip(*self.ld_bounds)) lower =
np.array(lu[0])
numpy.array
import argparse from pathlib import Path import numpy as np import tensorflow as tf import gym from tqdm import tqdm import matplotlib matplotlib.use('agg') from matplotlib import pyplot as plt from imgcat import imgcat import rospy from openai_ros.task_envs.turtlebot2 import turtlebot2_maze # Import my own libraries import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/learner/baselines/') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Only show ERROR log from tf_commons.ops import * class PPO2Agent(object): def __init__(self, env, env_type, path, stochastic=False, gpu=True): from baselines.common.policies import build_policy from baselines.ppo2.model import Model self.graph = tf.Graph() if gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True else: config = tf.ConfigProto(device_count = {'GPU': 0}) self.sess = tf.Session(graph=self.graph,config=config) with self.graph.as_default(): with self.sess.as_default(): ob_space = env.observation_space ac_space = env.action_space if env_type == 'atari': policy = build_policy(env,'cnn') elif env_type == 'mujoco': policy = build_policy(env,'mlp') elif env_type == 'gazebo': policy = build_policy(env, 'mlp') else: assert False,' not supported env_type' make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=1, nbatch_train=1, nsteps=1, ent_coef=0., vf_coef=0., max_grad_norm=0.) self.model = make_model() self.model_path = path self.model.load(path) if env_type == 'mujoco': with open(path+'.env_stat.pkl', 'rb') as f : import pickle s = pickle.load(f) self.ob_rms = s['ob_rms'] self.ret_rms = s['ret_rms'] self.clipob = 10. self.epsilon = 1e-8 elif env_type == 'gazebo': with open(path + '.env_stat.pkl', 'rb') as f: import pickle s = pickle.load(f) self.ob_rms = s['ob_rms'] self.ret_rms = s['ret_rms'] self.clipob = 10. self.epsilon = 1e-8 else: self.ob_rms = None self.stochastic = stochastic def act(self, obs, reward, done): if self.ob_rms: obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) with self.graph.as_default(): with self.sess.as_default(): if self.stochastic: a,v,state,neglogp = self.model.step(obs) else: a = self.model.act_model.act(obs) return a class RandomAgent(object): """The world's simplest agent!""" def __init__(self, action_space): self.action_space = action_space self.model_path = 'random_agent' def act(self, observation, reward, done): return self.action_space.sample()[None] class Model(object): def __init__(self,include_action,ob_dim,ac_dim,batch_size=64,num_layers=2,embedding_dims=256,steps=None): self.include_action = include_action in_dims = ob_dim+ac_dim if include_action else ob_dim self.inp = tf.placeholder(tf.float32,[None,in_dims]) self.x = tf.placeholder(tf.float32,[None,in_dims]) #[B*steps,in_dim] self.y = tf.placeholder(tf.float32,[None,in_dims]) self.x_split = tf.placeholder(tf.int32,[batch_size]) # B-lengthed vector indicating the size of each steps self.y_split = tf.placeholder(tf.int32,[batch_size]) # B-lengthed vector indicating the size of each steps self.l = tf.placeholder(tf.int32,[batch_size]) # [0 when x is better 1 when y is better] self.l2_reg = tf.placeholder(tf.float32,[]) # [0 when x is better 1 when y is better] with tf.variable_scope('weights') as param_scope: self.fcs = [] last_dims = in_dims for l in range(num_layers): self.fcs.append(Linear('fc%d'%(l+1),last_dims,embedding_dims)) #(l+1) is gross, but for backward compatibility last_dims = embedding_dims self.fcs.append(Linear('fc%d'%(num_layers+1),last_dims,1)) self.param_scope = param_scope # build graph def _reward(x): for fc in self.fcs[:-1]: x = tf.nn.relu(fc(x)) r = tf.squeeze(self.fcs[-1](x),axis=1) return x, r self.fv, self.r = _reward(self.inp) _, rs_xs = _reward(self.x) self.v_x = tf.stack([tf.reduce_sum(rs_x) for rs_x in tf.split(rs_xs,self.x_split,axis=0)],axis=0) _, rs_ys = _reward(self.y) self.v_y = tf.stack([tf.reduce_sum(rs_y) for rs_y in tf.split(rs_ys,self.y_split,axis=0)],axis=0) logits = tf.stack([self.v_x,self.v_y],axis=1) #[None,2] loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=self.l) self.loss = tf.reduce_mean(loss,axis=0) weight_decay = 0. for fc in self.fcs: weight_decay += tf.reduce_sum(fc.w**2) self.l2_loss = self.l2_reg * weight_decay pred = tf.cast(tf.greater(self.v_y,self.v_x),tf.int32) self.acc = tf.reduce_mean(tf.cast(tf.equal(pred,self.l),tf.float32)) self.optim = tf.train.AdamOptimizer(1e-4) self.update_op = self.optim.minimize(self.loss+self.l2_loss,var_list=self.parameters(train=True)) self.saver = tf.train.Saver(var_list=self.parameters(train=False),max_to_keep=0) def parameters(self,train=False): if train: return tf.trainable_variables(self.param_scope.name) else: return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,self.param_scope.name) def train(self,D,batch_size=64,iter=10000,l2_reg=0.01,noise_level=0.1,debug=False): """ Training will be early-terminate when validation accuracy becomes large enough..? args: D: list of triplets (\sigma^1,\sigma^2,\mu) while sigma^{1,2}: shape of [steps,in_dims] mu : 0 or 1 """ sess = tf.get_default_session() idxes = np.random.permutation(len(D)) train_idxes = idxes[:int(len(D)*0.8)] valid_idxes = idxes[int(len(D)*0.8):] def _batch(idx_list,add_noise): batch = [] if len(idx_list) > batch_size: idxes = np.random.choice(idx_list,batch_size,replace=False) else: idxes = idx_list for i in idxes: batch.append(D[i]) b_x,b_y,b_l = zip(*batch) x_split = np.array([len(x) for x in b_x]) y_split = np.array([len(y) for y in b_y]) b_x,b_y,b_l = np.concatenate(b_x,axis=0),np.concatenate(b_y,axis=0),np.array(b_l) if add_noise: b_l = (b_l + np.random.binomial(1,noise_level,batch_size)) % 2 #Flip it with probability 0.1 return b_x,b_y,x_split,y_split,b_l for it in tqdm(range(iter),dynamic_ncols=True): b_x,b_y,x_split,y_split,b_l = _batch(train_idxes,add_noise=True) loss,l2_loss,acc,_ = sess.run([self.loss,self.l2_loss,self.acc,self.update_op],feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l, self.l2_reg:l2_reg, }) if debug: if it % 100 == 0 or it < 10: b_x,b_y,x_split,y_split,b_l = _batch(valid_idxes,add_noise=False) valid_acc = sess.run(self.acc,feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l }) tqdm.write(('loss: %f (l2_loss: %f), acc: %f, valid_acc: %f'%(loss,l2_loss,acc,valid_acc))) #if valid_acc >= 0.95: # print('loss: %f (l2_loss: %f), acc: %f, valid_acc: %f'%(loss,l2_loss,acc,valid_acc)) # print('early termination@%08d'%it) # break def train_with_dataset(self,dataset,batch_size,include_action=False,iter=10000,l2_reg=0.01,debug=False): sess = tf.get_default_session() for it in tqdm(range(iter),dynamic_ncols=True): b_x,b_y,x_split,y_split,b_l = dataset.batch(batch_size=batch_size,include_action=include_action) loss,l2_loss,acc,_ = sess.run([self.loss,self.l2_loss,self.acc,self.update_op],feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l, self.l2_reg:l2_reg, }) if debug: if it % 100 == 0 or it < 10: tqdm.write(('loss: %f (l2_loss: %f), acc: %f'%(loss,l2_loss,acc))) def eval(self,D,batch_size=64): sess = tf.get_default_session() b_x,b_y,b_l = zip(*D) b_x,b_y,b_l = np.array(b_x),np.array(b_y),np.array(b_l) b_r_x, b_acc = [], 0. for i in range(0,len(b_x),batch_size): sum_r_x, acc = sess.run([self.sum_r_x,self.acc],feed_dict={ self.x:b_x[i:i+batch_size], self.y:b_y[i:i+batch_size], self.l:b_l[i:i+batch_size] }) b_r_x.append(sum_r_x) b_acc += len(sum_r_x)*acc return np.concatenate(b_r_x,axis=0), b_acc/len(b_x) def get_reward(self,obs,acs,batch_size=1024): sess = tf.get_default_session() if self.include_action: inp = np.concatenate((obs,acs),axis=1) else: inp = obs b_r = [] for i in range(0,len(obs),batch_size): r = sess.run(self.r,feed_dict={ self.inp:inp[i:i+batch_size] }) b_r.append(r) return np.concatenate(b_r,axis=0) class GTDataset(object): def __init__(self,env): self.env = env self.unwrapped = env while hasattr(self.unwrapped,'env'): self.unwrapped = self.unwrapped.env def gen_traj(self,agent,min_length): max_x_pos = -99999 obs, actions, rewards = [self.env.reset()], [], [] while True: action = agent.act(obs[-1], None, None) ob, reward, done, _ = self.env.step(action) if self.unwrapped.sim.data.qpos[0] > max_x_pos: max_x_pos = self.unwrapped.sim.data.qpos[0] obs.append(ob) actions.append(action) rewards.append(reward) if done: if len(obs) < min_length: obs.pop() obs.append(self.env.reset()) else: obs.pop() break return (np.stack(obs,axis=0), np.concatenate(actions,axis=0), np.array(rewards)), max_x_pos def prebuilt(self,agents,min_length): assert len(agents)>0, 'no agent given' trajs = [] for agent in tqdm(agents): traj, max_x_pos = self.gen_traj(agent,min_length) trajs.append(traj) tqdm.write('model: %s avg reward: %f max_x_pos: %f'%(agent.model_path,np.sum(traj[2]),max_x_pos)) obs,actions,rewards = zip(*trajs) self.trajs = (np.concatenate(obs,axis=0),np.concatenate(actions,axis=0),np.concatenate(rewards,axis=0)) print(self.trajs[0].shape,self.trajs[1].shape,self.trajs[2].shape) def sample(self,num_samples,steps=40,include_action=False): obs, actions, rewards = self.trajs D = [] for _ in range(num_samples): x_ptr = np.random.randint(len(obs)-steps) y_ptr = np.random.randint(len(obs)-steps) if include_action: D.append((np.concatenate((obs[x_ptr:x_ptr+steps],actions[x_ptr:x_ptr+steps]),axis=1), np.concatenate((obs[y_ptr:y_ptr+steps],actions[y_ptr:y_ptr+steps]),axis=1), 0 if np.sum(rewards[x_ptr:x_ptr+steps]) > np.sum(rewards[y_ptr:y_ptr+steps]) else 1) ) else: D.append((obs[x_ptr:x_ptr+steps], obs[y_ptr:y_ptr+steps], 0 if np.sum(rewards[x_ptr:x_ptr+steps]) > np.sum(rewards[y_ptr:y_ptr+steps]) else 1) ) return D class GTTrajLevelDataset(GTDataset): def __init__(self,env): super().__init__(env) def prebuilt(self,agents,min_length): assert len(agents)>0, 'no agent is given' trajs = [] for agent_idx,agent in enumerate(tqdm(agents)): (obs,actions,rewards),_ = self.gen_traj(agent,min_length) trajs.append((agent_idx,obs,actions,rewards)) self.trajs = trajs _idxes = np.argsort([np.sum(rewards) for _,_,_,rewards in self.trajs]) # rank 0 is the most bad demo. self.trajs_rank = np.empty_like(_idxes) self.trajs_rank[_idxes] = np.arange(len(_idxes)) def sample(self,num_samples,steps=40,include_action=False): D = [] GT_preference = [] for _ in tqdm(range(num_samples)): x_idx,y_idx = np.random.choice(len(self.trajs),2,replace=False) x_traj = self.trajs[x_idx] y_traj = self.trajs[y_idx] x_ptr = np.random.randint(len(x_traj[1])-steps) y_ptr = np.random.randint(len(y_traj[1])-steps) if include_action: D.append((np.concatenate((x_traj[1][x_ptr:x_ptr+steps],x_traj[2][x_ptr:x_ptr+steps]),axis=1), np.concatenate((y_traj[1][y_ptr:y_ptr+steps],y_traj[2][y_ptr:y_ptr+steps]),axis=1), 0 if self.trajs_rank[x_idx] > self.trajs_rank[y_idx] else 1) ) else: D.append((x_traj[1][x_ptr:x_ptr+steps], y_traj[1][y_ptr:y_ptr+steps], 0 if self.trajs_rank[x_idx] > self.trajs_rank[y_idx] else 1) ) GT_preference.append(0 if np.sum(x_traj[3][x_ptr:x_ptr+steps]) > np.sum(y_traj[3][y_ptr:y_ptr+steps]) else 1) print('------------------') _,_,preference = zip(*D) preference = np.array(preference).astype(np.bool) GT_preference = np.array(GT_preference).astype(np.bool) print('Quality of time-indexed preference (0-1):', np.count_nonzero(preference == GT_preference) / len(preference)) print('------------------') return D class GTTrajLevelNoStepsDataset(GTTrajLevelDataset): def __init__(self,env,max_steps): super().__init__(env) self.max_steps = max_steps def prebuilt(self,agents,min_length): assert len(agents)>0, 'no agent is given' trajs = [] for agent_idx,agent in enumerate(tqdm(agents)): agent_trajs = [] while np.sum([len(obs) for obs,_,_ in agent_trajs]) < min_length: (obs,actions,rewards),_ = self.gen_traj(agent,-1) agent_trajs.append((obs,actions,rewards)) trajs.append(agent_trajs) agent_rewards = [np.mean([np.sum(rewards) for _,_,rewards in agent_trajs]) for agent_trajs in trajs] self.trajs = trajs _idxes = np.argsort(agent_rewards) # rank 0 is the most bad demo. self.trajs_rank = np.empty_like(_idxes) self.trajs_rank[_idxes] = np.arange(len(_idxes)) def sample(self,num_samples,steps=None,include_action=False): assert steps == None D = [] GT_preference = [] for _ in tqdm(range(num_samples)): x_idx,y_idx = np.random.choice(len(self.trajs),2,replace=False) x_traj = self.trajs[x_idx][np.random.choice(len(self.trajs[x_idx]))] y_traj = self.trajs[y_idx][np.random.choice(len(self.trajs[y_idx]))] if len(x_traj[0]) > self.max_steps: ptr = np.random.randint(len(x_traj[0])-self.max_steps) x_slice = slice(ptr,ptr+self.max_steps) else: x_slice = slice(len(x_traj[1])) if len(y_traj[0]) > self.max_steps: ptr = np.random.randint(len(y_traj[0])-self.max_steps) y_slice = slice(ptr,ptr+self.max_steps) else: y_slice = slice(len(y_traj[0])) if include_action: D.append((np.concatenate((x_traj[0][x_slice],x_traj[1][x_slice]),axis=1), np.concatenate((y_traj[0][y_slice],y_traj[1][y_slice]),axis=1), 0 if self.trajs_rank[x_idx] > self.trajs_rank[y_idx] else 1) ) else: D.append((x_traj[0][x_slice], y_traj[0][y_slice], 0 if self.trajs_rank[x_idx] > self.trajs_rank[y_idx] else 1) ) GT_preference.append(0 if np.sum(x_traj[2][x_slice]) > np.sum(y_traj[2][y_slice]) else 1) print('------------------') _,_,preference = zip(*D) preference = np.array(preference).astype(np.bool) GT_preference = np.array(GT_preference).astype(np.bool) print('Quality of time-indexed preference (0-1):', np.count_nonzero(preference == GT_preference) / len(preference)) print('------------------') return D class GTTrajLevelNoSteps_Noise_Dataset(GTTrajLevelNoStepsDataset): def __init__(self,env,max_steps,ranking_noise=0): super().__init__(env,max_steps) self.ranking_noise = ranking_noise def prebuilt(self,agents,min_length): super().prebuilt(agents,min_length) original_trajs_rank = self.trajs_rank.copy() for _ in range(self.ranking_noise): x = np.random.randint(len(self.trajs)-1) x_ptr = np.where(self.trajs_rank==x) y_ptr = np.where(self.trajs_rank==x+1) self.trajs_rank[x_ptr], self.trajs_rank[y_ptr] = x+1, x from itertools import combinations order_correctness = [ (self.trajs_rank[x] < self.trajs_rank[y]) == (original_trajs_rank[x] < original_trajs_rank[y]) for x,y in combinations(range(len(self.trajs)),2)] print('Total Order Correctness: %f'%(np.count_nonzero(order_correctness)/len(order_correctness))) class GTTrajLevelNoSteps_N_Mix_Dataset(GTTrajLevelNoStepsDataset): def __init__(self,env,N,max_steps): super().__init__(env,max_steps) self.N = N self.max_steps = max_steps def sample(self,*kargs,**kwargs): return None def batch(self,batch_size,include_action): #self.trajs = trajs #self.trajs_rank = np.argsort([np.sum(rewards) for _,_,_,rewards in self.trajs]) # rank 0 is the most bad demo. xs = [] ys = [] for _ in range(batch_size): idxes = np.random.choice(len(self.trajs),2*self.N) ranks = self.trajs_rank[idxes] bad_idxes = [idxes[i] for i in np.argsort(ranks)[:self.N]] good_idxes = [idxes[i] for i in np.argsort(ranks)[self.N:]] def _pick_and_merge(idxes): inp = [] for idx in idxes: obs, acs, rewards = self.trajs[idx][np.random.choice(len(self.trajs[idx]))] if len(obs) > self.max_steps: ptr = np.random.randint(len(obs)-self.max_steps) slc = slice(ptr,ptr+self.max_steps) else: slc = slice(len(obs)) if include_action: inp.append(np.concatenate([obs[slc],acs[slc]],axis=1)) else: inp.append(obs[slc]) return np.concatenate(inp,axis=0) x = _pick_and_merge(bad_idxes) y = _pick_and_merge(good_idxes) xs.append(x) ys.append(y) x_split = np.array([len(x) for x in xs]) y_split = np.array([len(y) for y in ys]) xs = np.concatenate(xs,axis=0) ys = np.concatenate(ys,axis=0) return xs, ys, x_split, y_split, np.ones((batch_size,)).astype(np.int32) class LearnerDataset(GTTrajLevelDataset): def __init__(self,env,min_margin): super().__init__(env) self.min_margin = min_margin def sample(self,num_samples,steps=40,include_action=False): D = [] GT_preference = [] for _ in tqdm(range(num_samples)): x_idx,y_idx = np.random.choice(len(self.trajs),2,replace=False) while abs(self.trajs[x_idx][0] - self.trajs[y_idx][0]) < self.min_margin: x_idx,y_idx = np.random.choice(len(self.trajs),2,replace=False) x_traj = self.trajs[x_idx] y_traj = self.trajs[y_idx] x_ptr = np.random.randint(len(x_traj[1])-steps) y_ptr = np.random.randint(len(y_traj[1])-steps) if include_action: D.append((np.concatenate((x_traj[1][x_ptr:x_ptr+steps],x_traj[2][x_ptr:x_ptr+steps]),axis=1), np.concatenate((y_traj[1][y_ptr:y_ptr+steps],y_traj[2][y_ptr:y_ptr+steps]),axis=1), 0 if x_traj[0] > y_traj[0] else 1) ) else: D.append((x_traj[1][x_ptr:x_ptr+steps], y_traj[1][y_ptr:y_ptr+steps], 0 if x_traj[0] > y_traj[0] else 1) ) GT_preference.append(0 if np.sum(x_traj[3][x_ptr:x_ptr+steps]) > np.sum(y_traj[3][y_ptr:y_ptr+steps]) else 1) print('------------------') _,_,preference = zip(*D) preference = np.array(preference).astype(np.bool) GT_preference = np.array(GT_preference).astype(np.bool) print('Quality of time-indexed preference (0-1):', np.count_nonzero(preference == GT_preference) / len(preference)) print('------------------') return D def train(args): logdir = Path(args.log_dir) if logdir.exists() : c = input('log dir is already exist. continue to train a preference model? [Y/etc]? ') if c in ['YES','yes','Y']: import shutil shutil.rmtree(str(logdir)) else: print('good bye') return logdir.mkdir(parents=True) with open(str(logdir/'args.txt'),'w') as f: f.write( str(args) ) logdir = str(logdir) rospy.init_node('turtlebot2_maze',anonymous=True,log_level=rospy.FATAL) env = gym.make(args.env_id) train_agents = [RandomAgent(env.action_space)] if args.random_agent else [] models = sorted([p for p in Path(args.learners_path).glob('?????') if int(p.name) <= args.max_chkpt]) for path in models: agent = PPO2Agent(env,args.env_type,str(path),stochastic=args.stochastic) train_agents.append(agent) if args.preference_type == 'gt': dataset = GTDataset(env) elif args.preference_type == 'gt_traj': dataset = GTTrajLevelDataset(env) elif args.preference_type == 'gt_traj_no_steps': dataset = GTTrajLevelNoStepsDataset(env,args.max_steps) elif args.preference_type == 'gt_traj_no_steps_noise': dataset = GTTrajLevelNoSteps_Noise_Dataset(env,args.max_steps,args.traj_noise) elif args.preference_type == 'gt_traj_no_steps_n_mix': dataset = GTTrajLevelNoSteps_N_Mix_Dataset(env,args.N,args.max_steps) elif args.preference_type == 'time': dataset = LearnerDataset(env,args.min_margin) else: assert False, 'specify prefernce type' dataset.prebuilt(train_agents,args.min_length) models = [] for i in range(args.num_models): with tf.variable_scope('model_%d'%i): models.append(Model(args.include_action,env.observation_space.shape[0],env.action_space.shape[0],steps=args.steps,num_layers=args.num_layers,embedding_dims=args.embedding_dims)) ### Initialize Parameters init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) # Training configuration config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.InteractiveSession() sess.run(init_op) for i,model in enumerate(models): D = dataset.sample(args.D,args.steps,include_action=args.include_action) if D is None: model.train_with_dataset(dataset,64,include_action=args.include_action,debug=True) else: model.train(D,l2_reg=args.l2_reg,noise_level=args.noise,debug=True) model.saver.save(sess,logdir+'/model_%d.ckpt'%(i),write_meta_graph=False) def eval(args): logdir = str(Path(args.logbase_path) / args.env_id) env = gym.make(args.env_id) valid_agents = [] models = sorted(Path(args.learners_path).glob('?????')) for path in models: if path.name > args.max_chkpt: continue agent = PPO2Agent(env,args.env_type,str(path),stochastic=args.stochastic) valid_agents.append(agent) test_agents = [] for i,path in enumerate(models): if i % 10 == 0: agent = PPO2Agent(env,args.env_type,str(path),stochastic=args.stochastic) test_agents.append(agent) gt_dataset= GTDataset(env) gt_dataset.prebuilt(valid_agents,-1) gt_dataset_test = GTDataset(env) gt_dataset_test.prebuilt(test_agents,-1) models = [] for i in range(args.num_models): with tf.variable_scope('model_%d'%i): models.append(Model(args.include_action,env.observation_space.shape[0],env.action_space.shape[0],steps=args.steps)) ### Initialize Parameters init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) # Training configuration config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.InteractiveSession() sess.run(init_op) for i,model in enumerate(models): model.saver.restore(sess,logdir+'/model_%d.ckpt'%(i)) print('model %d'%i) obs, acs, r = gt_dataset.trajs r_hat = model.get_reward(obs, acs) obs, acs, r_test = gt_dataset_test.trajs r_hat_test = model.get_reward(obs, acs) fig,axes = plt.subplots(1,2) axes[0].plot(r,r_hat,'o') axes[1].plot(r_test,r_hat_test,'o') fig.savefig('model_%d.png'%i) imgcat(fig) plt.close(fig) np.savez('model_%d.npz'%i,r=r,r_hat=r_hat,r_test=r_test,r_hat_test=r_hat_test) if __name__ == "__main__": # Required Args (target envs & learners) parser = argparse.ArgumentParser(description=None) parser.add_argument('--env_id', default='', help='Select the environment to run') parser.add_argument('--env_type', default='', help='gazebo') parser.add_argument('--learners_path', default='', help='path of learning agents') parser.add_argument('--max_chkpt', default=240, type=int, help='decide upto what learner stage you want to give') parser.add_argument('--steps', default=None, type=int, help='length of snippets') parser.add_argument('--max_steps', default=None, type=int, help='length of max snippets (gt_traj_no_steps only)') parser.add_argument('--traj_noise', default=None, type=int, help='number of adjacent swaps (gt_traj_no_steps_noise only)') parser.add_argument('--min_length', default=1000,type=int, help='minimum length of trajectory generated by each agent') parser.add_argument('--num_layers', default=2, type=int, help='number layers of the reward network') parser.add_argument('--embedding_dims', default=256, type=int, help='embedding dims') parser.add_argument('--num_models', default=3, type=int, help='number of models to ensemble') parser.add_argument('--l2_reg', default=0.01, type=float, help='l2 regularization size') parser.add_argument('--noise', default=0.1, type=float, help='noise level to add on training label') parser.add_argument('--D', default=1000, type=int, help='|D| in the preference paper') parser.add_argument('--N', default=10, type=int, help='number of trajactory mix (gt_traj_no_steps_n_mix only)') parser.add_argument('--log_dir', required=True) parser.add_argument('--preference_type', help='gt or gt_traj or time or gt_traj_no_steps, gt_traj_no_steps_n_mix; if gt then preference will be given as a GT reward, otherwise, it is given as a time index') parser.add_argument('--min_margin', default=1, type=int, help='when prefernce type is "time", the minimum margin that we can assure there exist a margin') parser.add_argument('--include_action', action='store_true', help='whether to include action for the model or not') parser.add_argument('--stochastic', action='store_true', help='whether want to use stochastic agent or not') parser.add_argument('--random_agent', action='store_true', help='whether to use default random agent') parser.add_argument('--eval', action='store_true', help='path to log base (env_id will be concatenated at the end)') # Args for PPO parser.add_argument('--rl_runs', default=1, type=int) parser.add_argument('--ppo_log_path', default='ppo2') parser.add_argument('--custom_reward', required=True, help='preference or preference_normalized') parser.add_argument('--ctrl_coeff', default=0.0, type=float) parser.add_argument('--alive_bonus', default=0.0, type=float) parser.add_argument('--gamma', default=0.99, type=float) args = parser.parse_args() if not args.eval : # Train a Preference Model train(args) # Train an agent import os, subprocess openai_logdir = Path(os.path.abspath(os.path.join(args.log_dir,args.ppo_log_path))) if openai_logdir.exists(): print('openai_logdir is already exist.') exit() template = 'python -m baselines.run --alg=ppo2 --env={env} --num_timesteps=1e6 --save_interval=10 --custom_reward {custom_reward} --custom_reward_kwargs="{kwargs}" --gamma {gamma}' kwargs = { "num_models":args.num_models, "include_action":args.include_action, "model_dir":os.path.abspath(args.log_dir), "num_layers":args.num_layers, "embedding_dims":args.embedding_dims, "ctrl_coeff":args.ctrl_coeff, "alive_bonus":args.alive_bonus } # Write down some log openai_logdir.mkdir(parents=True) with open(str(openai_logdir/'args.txt'),'w') as f: f.write( args.custom_reward + '/') f.write( str(kwargs) ) cmd = template.format( env=args.env_id, custom_reward=args.custom_reward, gamma=args.gamma, kwargs=str(kwargs)) procs = [] for i in range(args.rl_runs): env = os.environ.copy() env["OPENAI_LOGDIR"] = str(openai_logdir/('run_%d'%i)) if i == 0: env["OPENAI_LOG_FORMAT"] = 'stdout,log,csv,tensorboard' p = subprocess.Popen(cmd, cwd='./learner/baselines', stdout=subprocess.PIPE, env=env, shell=True) else: env["OPENAI_LOG_FORMAT"] = 'log,csv,tensorboard' p = subprocess.Popen(cmd, cwd='./learner/baselines', env=env, shell=True) procs.append(p) for line in procs[0].stdout: print(line.decode(),end='') for p in procs[1:]: p.wait() else: # eval(args) import os from performance_checker import gen_traj_dist as get_perf #from performance_checker import gen_traj_return as get_perf env = gym.make(args.env_id) agents_dir = Path(os.path.abspath(os.path.join(args.log_dir,args.ppo_log_path))) trained_steps = sorted(list(set([path.name for path in agents_dir.glob('run_*/checkpoints/?????')]))) print(trained_steps) print(str(agents_dir)) for step in trained_steps[::-1]: perfs = [] for i in range(args.rl_runs): path = agents_dir/('run_%d'%i)/'checkpoints'/step if path.exists() == False: continue agent = PPO2Agent(env,args.env_type,str(path),stochastic=args.stochastic) perfs += [ get_perf(env,agent) for _ in range(5) ] print('[%s-%d] %f %f'%(step,i,np.mean(perfs[-5:]),np.std(perfs[-5:]))) print('[%s] %f %f %f %f'%(step,np.mean(perfs),np.std(perfs),np.max(perfs),
np.min(perfs)
numpy.min
import math import numpy as np import pybullet as p from gym_pybullet_drones.control.BaseControl import BaseControl from gym_pybullet_drones.envs.BaseAviary import DroneModel, BaseAviary from gym_pybullet_drones.utils.utils import nnlsRPM class SimplePIDControl(BaseControl): """Generic PID control class without yaw control. Based on https://github.com/prfraanje/quadcopter_sim. """ ################################################################################ def __init__(self, drone_model: DroneModel, g: float=9.8 ): """Common control classes __init__ method. Parameters ---------- drone_model : DroneModel The type of drone to control (detailed in an .urdf file in folder `assets`). g : float, optional The gravitational acceleration in m/s^2. """ super().__init__(drone_model=drone_model, g=g) if self.DRONE_MODEL not in [DroneModel.HB, DroneModel.ARDRONE2]: print("[ERROR] in SimplePIDControl.__init__(), SimplePIDControl requires DroneModel.HB") exit() self.P_COEFF_FOR = np.array([1, 1, 2]) self.I_COEFF_FOR = np.array([.001, .001, .001]) self.D_COEFF_FOR = np.array([3, 3, 4]) self.P_COEFF_TOR = np.array([3, 3, .5]) self.I_COEFF_TOR = np.array([.001, .001, .001]) self.D_COEFF_TOR = np.array([3, 3, 5]) self.MAX_ROLL_PITCH = np.pi/6 self.L = self._getURDFParameter('arm') self.THRUST2WEIGHT_RATIO = self._getURDFParameter('thrust2weight') self.MAX_RPM = np.sqrt((self.THRUST2WEIGHT_RATIO*self.GRAVITY) / (4*self.KF)) self.MAX_THRUST = (4*self.KF*self.MAX_RPM**2) self.MAX_XY_TORQUE = (self.L*self.KF*self.MAX_RPM**2) self.MAX_Z_TORQUE = (2*self.KM*self.MAX_RPM**2) self.A = np.array([ [1, 1, 1, 1], [0, 1, 0, -1], [-1, 0, 1, 0], [-1, 1, -1, 1] ]) self.INV_A = np.linalg.inv(self.A) self.B_COEFF = np.array([1/self.KF, 1/(self.KF*self.L), 1/(self.KF*self.L), 1/self.KM]) if(self.DRONE_MODEL == DroneModel.ARDRONE2): sqr2 = np.sqrt(2) self.A = np.array([ [1, 1, 1, 1], [1/sqr2, 1/sqr2, -1/sqr2, -1/sqr2], [-1/sqr2, 1/sqr2, 1/sqr2, -1/sqr2], [-1, 1, -1, 1]]) self.MAX_XY_TORQUE = (self.L*self.KF*self.MAX_RPM**2 * np.sqrt(2)) self.reset() ################################################################################ def reset(self): """Resets the control classes. The previous step's and integral errors for both position and attitude are set to zero. """ super().reset() #### Initialized PID control variables ##################### self.last_pos_e = np.zeros(3) self.integral_pos_e = np.zeros(3) self.last_rpy_e = np.zeros(3) self.integral_rpy_e = np.zeros(3) ################################################################################ def computeControl(self, control_timestep, cur_pos, cur_quat, cur_vel, cur_ang_vel, target_pos, target_rpy=np.zeros(3), target_vel=np.zeros(3), target_rpy_rates=np.zeros(3) ): """Computes the PID control action (as RPMs) for a single drone. This methods sequentially calls `_simplePIDPositionControl()` and `_simplePIDAttitudeControl()`. Parameters `cur_ang_vel`, `target_rpy`, `target_vel`, and `target_rpy_rates` are unused. Parameters ---------- control_timestep : float The time step at which control is computed. cur_pos : ndarray (3,1)-shaped array of floats containing the current position. cur_quat : ndarray (4,1)-shaped array of floats containing the current orientation as a quaternion. cur_vel : ndarray (3,1)-shaped array of floats containing the current velocity. cur_ang_vel : ndarray (3,1)-shaped array of floats containing the current angular velocity. target_pos : ndarray (3,1)-shaped array of floats containing the desired position. target_rpy : ndarray, optional (3,1)-shaped array of floats containing the desired orientation as roll, pitch, yaw. target_vel : ndarray, optional (3,1)-shaped array of floats containing the desired velocity. target_rpy_rates : ndarray, optional (3,1)-shaped array of floats containing the the desired roll, pitch, and yaw rates. Returns ------- ndarray (4,1)-shaped array of integers containing the RPMs to apply to each of the 4 motors. ndarray (3,1)-shaped array of floats containing the current XYZ position error. float The current yaw error. """ self.control_counter += 1 if target_rpy[2]!=0: print("\n[WARNING] ctrl it", self.control_counter, "in SimplePIDControl.computeControl(), desired yaw={:.0f}deg but locked to 0. for DroneModel.HB".format(target_rpy[2]*(180/np.pi))) thrust, computed_target_rpy, pos_e = self._simplePIDPositionControl(control_timestep, cur_pos, cur_quat, target_pos ) rpm = self._simplePIDAttitudeControl(control_timestep, thrust, cur_quat, computed_target_rpy ) cur_rpy = p.getEulerFromQuaternion(cur_quat) return rpm, pos_e, computed_target_rpy[2] - cur_rpy[2] ################################################################################ def _simplePIDPositionControl(self, control_timestep, cur_pos, cur_quat, target_pos ): """Simple PID position control (with yaw fixed to 0). Parameters ---------- control_timestep : float The time step at which control is computed. cur_pos : ndarray (3,1)-shaped array of floats containing the current position. cur_quat : ndarray (4,1)-shaped array of floats containing the current orientation as a quaternion. target_pos : ndarray (3,1)-shaped array of floats containing the desired position. Returns ------- float The target thrust along the drone z-axis. ndarray (3,1)-shaped array of floats containing the target roll, pitch, and yaw. float The current position error. """ pos_e = target_pos - np.array(cur_pos).reshape(3) d_pos_e = (pos_e - self.last_pos_e) / control_timestep self.last_pos_e = pos_e self.integral_pos_e = self.integral_pos_e + pos_e*control_timestep #### PID target thrust ##################################### target_force = np.array([0, 0, self.GRAVITY]) \ + np.multiply(self.P_COEFF_FOR, pos_e) \ + np.multiply(self.I_COEFF_FOR, self.integral_pos_e) \ + np.multiply(self.D_COEFF_FOR, d_pos_e) target_rpy = np.zeros(3) sign_z = np.sign(target_force[2]) if sign_z == 0: sign_z = 1 #### Target rotation ####################################### target_rpy[0] = np.arcsin(-sign_z*target_force[1] / np.linalg.norm(target_force)) target_rpy[1] = np.arctan2(sign_z*target_force[0], sign_z*target_force[2]) target_rpy[2] = 0. target_rpy[0] = np.clip(target_rpy[0], -self.MAX_ROLL_PITCH, self.MAX_ROLL_PITCH) target_rpy[1] = np.clip(target_rpy[1], -self.MAX_ROLL_PITCH, self.MAX_ROLL_PITCH) cur_rotation = np.array(p.getMatrixFromQuaternion(cur_quat)).reshape(3, 3) thrust = np.dot(cur_rotation, target_force) return thrust[2], target_rpy, pos_e ################################################################################ def _simplePIDAttitudeControl(self, control_timestep, thrust, cur_quat, target_rpy ): """Simple PID attitude control (with yaw fixed to 0). Parameters ---------- control_timestep : float The time step at which control is computed. thrust : float The target thrust along the drone z-axis. cur_quat : ndarray (4,1)-shaped array of floats containing the current orientation as a quaternion. target_rpy : ndarray (3,1)-shaped array of floats containing the computed the target roll, pitch, and yaw. Returns ------- ndarray (4,1)-shaped array of integers containing the RPMs to apply to each of the 4 motors. """ cur_rpy = p.getEulerFromQuaternion(cur_quat) rpy_e = target_rpy - np.array(cur_rpy).reshape(3,) if rpy_e[2] > np.pi: rpy_e[2] = rpy_e[2] - 2*np.pi if rpy_e[2] < -np.pi: rpy_e[2] = rpy_e[2] + 2*np.pi d_rpy_e = (rpy_e - self.last_rpy_e) / control_timestep self.last_rpy_e = rpy_e self.integral_rpy_e = self.integral_rpy_e + rpy_e*control_timestep #### PID target torques #################################### target_torques = np.multiply(self.P_COEFF_TOR, rpy_e) \ +
np.multiply(self.I_COEFF_TOR, self.integral_rpy_e)
numpy.multiply
import numpy as np import pytest from muzero.sample_batch import SampleBatch from muzero.structure_list import ArraySpec @pytest.fixture(scope='module') def atari_tensor_spec(): n_channels = 4 frame_shape = (96, 96) loss_steps = 6 action_count = 4 tensor_spec = ( ArraySpec(frame_shape + (n_channels,), np.float32, SampleBatch.CUR_OBS), ArraySpec((1,), np.int32, SampleBatch.EPS_ID), ArraySpec((1,), np.int32, SampleBatch.UNROLL_ID), ArraySpec((loss_steps,), np.int32, SampleBatch.ACTIONS), ArraySpec((action_count,), np.float32, 'action_dist_probs'), ArraySpec((1,), np.float32, SampleBatch.ACTION_PROB), ArraySpec((1,), np.float32, SampleBatch.ACTION_LOGP), ArraySpec((1,), np.bool, SampleBatch.DONES), ArraySpec((1,), np.float32, SampleBatch.REWARDS), ArraySpec((loss_steps, action_count), np.float32, 'rollout_policies'), ArraySpec((loss_steps,), np.float32, 'rollout_rewards'), ArraySpec((loss_steps,), np.float32, 'rollout_values'), ) return tensor_spec def random_tensor(spec): if spec.dtype == np.float32: return np.random.uniform(size=spec.shape) elif spec.dtype == np.int32: return np.random.randint(0, 1 << 24, size=spec.shape) elif spec.dtype == np.bool: return np.random.choice(a=[False, True], size=spec.shape) else: raise NotImplementedError(f"tensor spec dtype {spec.dtype} not supported") def random_struct(tensor_spec): struct = [] for spec in tensor_spec: struct.append(random_tensor(spec)) return tuple(struct) def random_batch(tensor_spec, batch_size): structs = [] for _ in range(batch_size): structs.append(random_struct(tensor_spec)) batch = [] for i in range(len(tensor_spec)): batch_tensor = [] for j in range(len(structs)): batch_tensor.append(structs[j][i]) batch.append(np.array(batch_tensor)) return tuple(batch) def random_sample_batch(tensor_spec, batch_size): tensor_batch = random_batch(tensor_spec, batch_size) batch = {} for spec, tensor in zip(tensor_spec, tensor_batch): if spec.name == SampleBatch.EPS_ID: eps_ids = [np.zeros(batch_size // 2, dtype=np.int32),
np.ones(batch_size // 2, dtype=np.int32)
numpy.ones
# procedure for existing halos, after the first snapshot was initiated : import sys # only input parameter is the numbering of the snapshot. These have to be #processed in sequence, cannot be done in parallel ... First 1, 2, 3, ... #ii = int(sys.argv[1]) #print('snapshot' ii) import time t0 = time.time() from multiprocessing import Pool #p=Pool(12) import h5py import os import glob import numpy as n import EmergeStellarMass as sm model = sm.StellarMass() import pandas as pd from astropy.cosmology import FlatLambdaCDM import astropy.units as u cosmoMD = FlatLambdaCDM(H0=67.77*u.km/u.s/u.Mpc, Om0=0.307115)#, Ob0=0.048206) import astropy.constants as constants # generic functions # ================= f_loss = lambda t : 0.05*n.log( 1 + t / (1.4*10**6)) t_dyn = lambda rvir, mvir : (rvir**3./(9.797465327217671e-24*mvir))**0.5 def tau_quenching( m_star, tdyn, tau_0=4.282, tau_s=0.363): out = n.zeros_like(m_star) case_1 = (m_star < 1e10 ) out[case_1] = tdyn[case_1] * tau_0 case_2 = (case_1==False) out[case_2] = tdyn[case_2] * tau_0 * (m_star[case_2] * 10.**(-10.))**(tau_s) return out def compute_qtys_new_halos_pk(mvir, rvir, redshift, age_yr): """ Creates a new galaxy along with the new halo. Integrates since the start of the Universe. Updates the initiated quantities with the values of interest. :param mvir: list of mvir [Msun], length = n. :param rvir: list of rvir [kpc] , length = n. :param redshift: redshift of the snapshot replicated n times. :param age_yr: age of the Universe for the snapshot replicated n times. Typically inputs should be : * mvir=self.f1['/halo_properties/mvir'].value[self.mask_f1_new_halos], * rvir=self.f1['/halo_properties/rvir'].value[self.mask_f1_new_halos], * age_yr=self.f1.attrs['age_yr'] returns mvir_dot, rvir_dot, dMdt, dmdt_star, star_formation_rate, stellar_mass """ f_b=model.f_b epsilon = model.epsilon(mvir, redshift ) f_lost = f_loss(age_yr) # evaluate equation (4) mvir_dot = mvir / age_yr # no pseudo evolution correction dMdt = mvir_dot # evaluate equation (1) dmdt_star = f_b * dMdt * epsilon # evaluate accretion: 0 in this first step # self.dmdt_star_accretion = n.zeros_like(self.dmdt_star) # evaluate equation (11) # equation (12) # evaluate stellar mass star_formation_rate = dmdt_star * (1. - f_lost) return mvir_dot, rvir / age_yr, dMdt, dmdt_star, star_formation_rate, star_formation_rate * age_yr def compute_qtys_evolving_halos_pk(mvir_f0, mvir_f1, age_f0, age_f1, rvir_f0, rvir_f1, redshift, t_dynamical, rs_f1, mpeak_f1, mpeak_scale_f1, f1_scale, m_icm_f0, stellar_mass_f0, star_formation_rate_f0 ): """ update the quantities for evolving halos, present in f0 and f1. inputs mvir_f0 [Msun] : self.f0['/halo_properties/mvir'].value[self.mask_f0_evolving_11_halos] mvir_f1 [Msun] : self.f1['/halo_properties/mvir'].value[self.mask_f1_evolving_11_halos] age_f0 [yr] : self.f0.attrs['age_yr'] * n.ones_like(self.f1['/halo_properties/mvir'].value[self.mask_f1_evolving_11_halos]) age_f1 [yr] : self.f1.attrs['age_yr'] * n.ones_like(self.f1['/halo_properties/mvir'].value[self.mask_f1_evolving_11_halos]) mvir_f0 [Msun] : self.f0['/halo_properties/rvir'].value[self.mask_f0_evolving_11_halos] mvir_f1 [Msun] : self.f1['/halo_properties/rvir'].value[self.mask_f1_evolving_11_halos] redshift : self.f1.attrs['redshift'] * n.ones_like(self.f1['/halo_properties/mvir'].value[self.mask_f1_evolving_11_halos]) t_dynamical : self.t_dynamical[self.mask_f1_evolving_11_halos] rs_f1 [kpc] : self.f1['/halo_properties/rs'].value[self.mask_f1_evolving_11_halos] mpeak_f1 [Msun] : self.f1['/halo_properties/Mpeak'].value[self.mask_f1_evolving_11_halos] mpeak_scale_f1 : self.f1['/halo_properties/Mpeak_scale'].value[self.mask_f1_evolving_11_halos] f1_scale : float(self.f1_scale) m_icm_f0 [Msun] : self.f0['/emerge_data/m_icm'].value[self.mask_f0_evolving_11_halos] stellar_mass_f0 [Msun] : self.f0['/emerge_data/stellar_mass'].value[self.mask_f0_evolving_11_halos] star_formation_rate_f0 [Msun/yr] : self.f0['/halo_properties/star_formation_rate'].value[self.mask_f0_evolving_11_halos] masks : * mask_f1_evolving_11_halos * mask_f0_evolving_11_halos subcases : * quenching : (mvir < Mpeak) & (Mpeak_scale < f1_scale) * case 1. ( age >= t_mpeak ) & ( age_yr < t_mpeak + t_quench) * case 2. (age_yr >= t_mpeak + t_quench) * stripping, case 1 : (dMdt < 0), then all mass goes to ICM, m=0, mdot=0 * stripping, case 2 : after reaching its peak mass, if M < 0.122 * Mpeak, then all mass goes to ICM, m=0, mdot=0 """ # computing dMdt for the halo dt = age_f1 - age_f0 mvir_dot = (mvir_f1-mvir_f0) / (dt) rvir_dot = (rvir_f1-rvir_f0) / (dt) c = rvir_f1 / rs_f1 rho_nfw = mvir_f1 / (rs_f1**3. * 4. * n.pi * c * (1+c)**2. * (n.log(1.+c)-c/(1.+c))) pseudo_evolution_correction = 4. * n.pi * rvir_f1 * rvir_f1 * rvir_dot * rho_nfw dMdt = mvir_dot - pseudo_evolution_correction # initialize the ICM mass to the previous value m_icm = m_icm_f0 # Direct estimates of stellar mass and SFR dmdt_star = model.f_b * dMdt * model.epsilon(mvir_f1, redshift) # evaluate accretion: 0 in this first step # dmdt_star_accretion = n.zeros_like(dmdt_star) # evaluate equation (11) f_lost = f_loss(dt) # evaluate stellar mass star_formation_rate = dmdt_star * (1. - f_lost) stellar_mass = star_formation_rate * dt + stellar_mass_f0 # Variations due to stripping, merging and quenching # quenching quenching = (mvir_f1 < mpeak_f1) & (mpeak_scale_f1 < f1_scale) #t_quench = tau_quenching( stellar_mass_f0, t_dynamical ) if stellar_mass_f0 < 1e10 : t_quench = t_dynamical * 4.282 else : t_quench = t_dynamical * 4.282 * (stellar_mass_f0 * 10.**(-10.))**(0.363) t_mpeak = cosmoMD.age( 1. / mpeak_scale_f1 - 1. ).to(u.yr).value # case 1. mdot = mdot at tpeak quench_1 = (quenching) & (age_f1 >= t_mpeak ) & ( age_f1 < t_mpeak + t_quench) if quench_1 : star_formation_rate = n.ones_like(star_formation_rate)*star_formation_rate_f0 stellar_mass = star_formation_rate * dt + stellar_mass_f0 # case 2. m dot =0 quench_2 = (quenching) &(age_f1 >= t_mpeak + t_quench ) if quench_2: star_formation_rate = n.zeros_like(star_formation_rate) stellar_mass = stellar_mass_f0 # stripping, case 1 # negative growth value self.dMdt => 0 stripping_1 = (dMdt < 0) # stripping, case 2 # after reaching its peak mass, # if M < 0.122 * Mpeak, all mass goes to ICM, m=0, mdot=0 stripping_2 = (mvir_f1 < 0.122*mpeak_f1) & (mpeak_scale_f1 < f1_scale) # both cases together stripping = (stripping_1) | (stripping_1) if stripping : m_icm += stellar_mass_f0 stellar_mass = n.zeros_like(stellar_mass) star_formation_rate = n.zeros_like(star_formation_rate) return mvir_dot, rvir_dot, dMdt, dmdt_star, star_formation_rate, stellar_mass, m_icm def merge_system(mvir_f0, mvir_f1, age_f0, age_f1, rvir_f0, rvir_f1, redshift, t_dynamical, rs_f1, mpeak_f1, mpeak_scale_f1, f1_scale, m_icm_f0, stellar_mass_f0, star_formation_rate_f0, sum_stellar_mass_guests): """ given f1_host, f0_host and f0 guests, creates the right quantities, stellar mass and so on... # m_star_sat x f_esc => m_host_ICM # m_star_sat x (1-f_esc) => m_star_host # f_esc = 0.388 #Time_to_future_merger: Time (in Gyr) until the given halo merges into a larger halo. (-1 if no future merger happens) #Future_merger_MMP_ID: most-massive progenitor of the halo into which the given halo merges. (-1 if the main progenitor of the future merger halo does not exist at the given scale factor.) """ # evolution of the host dt = age_f1 - age_f0 mvir_dot = (mvir_f1-mvir_f0) / (dt) rvir_dot = (rvir_f1-rvir_f0) / (dt) c = rvir_f1 / rs_f1 rho_nfw = mvir_f1 / (rs_f1**3. * 4. * n.pi * c * (1+c)**2. * (n.log(1.+c)-c/(1.+c))) pseudo_evolution_correction = 4. * n.pi * rvir_f1 * rvir_f1 * rvir_dot * rho_nfw dMdt = mvir_dot - pseudo_evolution_correction m_icm = m_icm_f0 dmdt_star = model.f_b * dMdt * model.epsilon(mvir_f1, redshift) f_lost = f_loss(dt) star_formation_rate = dmdt_star * (1. - f_lost) stellar_mass = star_formation_rate * dt + stellar_mass_f0 # merging the sub systems, i.e. adding stellar mass stellar_mass += (1.-0.388)*sum_stellar_mass_guests m_icm += 0.388*sum_stellar_mass_guests return mvir_dot, rvir_dot, dMdt, dmdt_star, stellar_mass, star_formation_rate, m_icm class EmergeIterate(): """ Loads iterates one step with the Emerge model. :param ii: index of the snapshot of interest :param env: environment variable of the box. In this dir must be a sub dir 'h5' with the 'hlist_?.?????_emerge.hdf5' data files in it :param L_box: length of the box in Mpc/h Running the iteration --------------------- ipython3 import EmergeIterate iterate = EmergeIterate.EmergeIterate(12, 'MD10') iterate.open_snapshots() iterate.map_halos_between_snapshots() iterate.init_new_quantities() if len((iterate.mask_f1_new_halos).nonzero()[0]) > 0 : iterate.compute_qtys_new_halos() if len((iterate.mask_f0_evolving_11_halos).nonzero()[0]) > 0 : iterate.compute_qtys_evolving_halos() if len(self.mask_f1_in_a_merging.nonzero()[0]) > 0 : iterate.compute_qtys_merging_halos() self.write_results() """ def __init__(self, ii, env, L_box=1000.0 ): self.ii = ii self.env = env self.L_box = L_box # box length def open_snapshots(self): """ Opens the files into the class as f0 and f1 """ h5_dir = os.path.join(os.environ[self.env], 'h5' ) input_list = n.array(glob.glob(os.path.join(h5_dir, "hlist_?.?????_emerge.hdf5"))) input_list.sort() file_0 = input_list[self.ii-1] file_1 = input_list[self.ii] self.f0 = h5py.File(file_0, "r") self.f0_scale = os.path.basename(file_0).split('_')[1] self.positions_f0 = n.arange(len(self.f0['/halo_properties/id'].value)) self.f1 = h5py.File(file_1, "r+") self.f1_scale = os.path.basename(file_1).split('_')[1] self.positions_f1 = n.arange(len(self.f1['/halo_properties/id'].value)) def map_halos_between_snapshots(self): """ id mapping for halos present in the previous snapshot Creates 6 arrays to do the mapping in the different cases * mask_f1_new_halos * mask_f0_evolving_11_halos * mask_f1_evolving_11_halos * f1_id_with_multiple_progenitors * mask_f1_in_a_merging * mask_f0_in_a_merging """ #f0_desc_id_unique_list_all_descendents = n.unique(self.f0['/halo_properties/desc_id'].value) f1_id_unique_list_descendents_detected_at_next_scale = n.intersect1d(n.unique(self.f0['/halo_properties/desc_id'].value), self.f1['/halo_properties/id'].value) mask_f0_to_propagate = n.in1d(self.f0['/halo_properties/desc_id'].value, f1_id_unique_list_descendents_detected_at_next_scale) # mask_f0_lost = (mask_f0_to_propagate == False ) # evolving halos are given after applying this boolean mask to a f1 quantity : mask_f1_evolved_from_previous = n.in1d( self.f1['/halo_properties/id'].value, f1_id_unique_list_descendents_detected_at_next_scale ) # new halos are given after applying this boolean mask to a f1 quantity # new halos in f1, not present in f0 self.mask_f1_new_halos = (mask_f1_evolved_from_previous==False) print('new halos', len(self.mask_f1_new_halos.nonzero()[0])) # halos descending : # mask_f0_to_propagate # mask_f1_evolved_from_previous s = pd.Series(self.f0['/halo_properties/desc_id'].value[mask_f0_to_propagate]) self.f1_id_with_multiple_progenitors = s[s.duplicated()].get_values() # also = f0_desc_id merging into 1 halo in f1 # merging systems [many halos in f0 into a single f1 halo] self.mask_f1_in_a_merging = n.in1d( self.f1['/halo_properties/id'].value, self.f1_id_with_multiple_progenitors ) self.mask_f0_in_a_merging = n.in1d( self.f0['/halo_properties/desc_id'].value, self.f1_id_with_multiple_progenitors ) # halos mapped fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b between snapshots self.mask_f0_evolving_11_halos = ( mask_f0_to_propagate ) & ( self.mask_f0_in_a_merging == False ) self.mask_f1_evolving_11_halos = ( mask_f1_evolved_from_previous ) & ( self.mask_f1_in_a_merging == False ) print('11 mapping', len(self.mask_f0_evolving_11_halos.nonzero()[0]), len(self.mask_f1_evolving_11_halos.nonzero()[0])) print('merging systems', len(self.f1_id_with_multiple_progenitors)) #for dede in self.f1_id_with_multiple_progenitors : #sel = self.f0['/halo_properties/desc_id'].value == dede #print( dede ) #print('desc id', self.f0['/halo_properties/desc_id'].value[sel]) #print('id', self.f0['/halo_properties/id'].value[sel]) #print('pid', self.f0['/halo_properties/pid'].value[sel]) #print('mvir', self.f0['/halo_properties/mvir'].value[sel]) #print('futur merger mmpid', self.f0['/halo_properties/Future_merger_MMP_ID'].value[sel]) #print('time to future merger', self.f0['/halo_properties/Time_to_future_merger'].value[sel]) #print('Ms', self.f0['/emerge_data/stellar_mass'].value[sel]) #print('SFR',self.f0['/emerge_data/star_formation_rate'].value[sel]) #print('mCIM',self.f0['/emerge_data/m_icm'].value[sel]) #print('=================================') def init_new_quantities(self): """ Quantities computed for every halos are initialized to 0 * mvir_dot * rvir_dot * dMdt * dmdt_star * dmdt_star_accretion * stellar_mass * star_formation_rate * m_icm * t_dynamical [in years] Along with the iteration, these quantities will be updated accordingly """ self.mvir_dot = n.zeros_like(self.f1['/halo_properties/mvir'].value) self.rvir_dot =
n.zeros_like(self.f1['/halo_properties/mvir'].value)
numpy.zeros_like
import os import json from copy import copy from subprocess import call, Popen, PIPE, STDOUT import time import numpy as np import pandas as pd from pyproj import Transformer import rasterio import fiona from affine import Affine from shapely.geometry import shape from scipy.ndimage.morphology import binary_erosion from pandas.plotting import register_matplotlib_converters import matplotlib import matplotlib.pyplot as plt import flopy from flopy.utils import GridIntersect import richdem as rd from gsflow.builder import GenerateFishnet, FlowAccumulation, PrmsBuilder, ControlFileBuilder from gsflow.builder.builder_defaults import ControlFileDefaults from gsflow.builder import builder_utils as bu from gsflow.prms.prms_parameter import ParameterRecord from gsflow.prms import PrmsData, PrmsParameters from gsflow.control import ControlFile from gsflow.output import StatVar from model_config import PRMSConfig from gsflow_prep import PRMS_NOT_REQ from datafile import write_basin_datafile register_matplotlib_converters() pd.options.mode.chained_assignment = None # RichDEM flow-direction coordinate system: # 234 # 105 # 876 d8_map = {5: 1, 6: 2, 7: 4, 8: 8, 1: 16, 2: 32, 3: 64, 4: 128} class StandardPrmsBuild(object): def __init__(self, config): self.cfg = PRMSConfig(config) self.res = float(self.cfg.hru_cellsize) self.proj_name_res = '{}_{}'.format(self.cfg.project_name, self.cfg.hru_cellsize) for folder in ['hru_folder', 'parameter_folder', 'control_folder', 'data_folder', 'output_folder']: folder_path = os.path.join(self.cfg.project_folder, self.proj_name_res, getattr(self.cfg, folder)) setattr(self.cfg, folder, folder_path) if not os.path.isdir(folder_path): os.makedirs(folder_path, exist_ok=True) self.parameters = None self.control = None self.data = None self.zeros = None with fiona.open(self.cfg.study_area_path, 'r') as src: self.raster_meta = src.meta self.basin_geo = [shape(f['geometry']) for f in src][0] self.prj = self.cfg.study_area_path.replace('.shp', '.prj') self.control_file = os.path.join(self.cfg.control_folder, '{}.control'.format(self.proj_name_res)) self.parameter_file = os.path.join(self.cfg.parameter_folder, '{}.params'.format(self.proj_name_res)) self.data_file = os.path.join(self.cfg.data_folder, '{}.data'.format(self.proj_name_res)) def write_parameter_file(self): builder = PrmsBuilder( self.streams, self.cascades, self.modelgrid, self.dem.ravel(), hru_type=self.hru_lakeless.ravel(), hru_subbasin=self.hru_lakeless.ravel()) self.parameters = builder.build() self.parameters.hru_lat = self.lat self.parameters.hru_lon = self.lon self.parameters.add_record_object(ParameterRecord('hru_x', np.array(self.modelgrid.xcellcenters.ravel(), dtype=float).ravel(), dimensions=[['nhru', len(self.lon)]], datatype=2)) self.parameters.add_record_object(ParameterRecord('hru_y', np.array(self.modelgrid.ycellcenters.ravel(), dtype=float).ravel(), dimensions=[['nhru', len(self.lat)]], datatype=2)) areas = np.ones_like(self.lat) * self.hru_area self.parameters.add_record_object(ParameterRecord('hru_area', np.array(areas, dtype=float).ravel(), dimensions=[['nhru', len(self.lat)]], datatype=2)) # self.build_lakes() self._build_veg_params() self._build_soil_params() [self.parameters.add_record_object(rec) for rec in self.data_params] [self.parameters.remove_record(rec) for rec in PRMS_NOT_REQ] self.parameters.write(self.parameter_file) def write_control_file(self): controlbuild = ControlFileBuilder(ControlFileDefaults()) self.control = controlbuild.build(name='{}.control'.format(self.proj_name_res), parameter_obj=self.parameters) self.control.model_mode = ['PRMS'] self.control.executable_desc = ['PRMS Model'] self.control.executable_model = [self.cfg.prms_exe] self.control.cascadegw_flag = [0] self.control.et_module = ['potet_jh'] self.control.precip_module = ['xyz_dist'] self.control.temp_module = ['xyz_dist'] self.control.solrad_module = ['ccsolrad'] self.control.rpt_days = [7] self.control.snarea_curve_flag = [0] self.control.soilzone_aet_flag = [0] self.control.srunoff_module = ['srunoff_smidx'] # 0: standard; 1: SI/metric units = 0 self.control.add_record('elev_units', [units]) self.control.add_record('precip_units', [units]) self.control.add_record('temp_units', [units]) self.control.add_record('runoff_units', [units]) self.control.start_time = [int(d) for d in self.cfg.start_time.split(',')] + [0, 0, 0] self.control.subbasin_flag = [0] self.control.transp_module = ['transp_tindex'] self.control.csv_output_file = [os.path.join(self.cfg.output_folder, 'output.csv')] self.control.param_file = [self.parameter_file] self.control.subbasin_flag = [0, ] self.control.parameter_check_flag = [0, ] self.control.add_record('end_time', [int(d) for d in self.cfg.end_time.split(',')] + [0, 0, 0]) self.control.add_record('model_output_file', [os.path.join(self.cfg.output_folder, 'output.model')], datatype=4) self.control.add_record('var_init_file', [os.path.join(self.cfg.output_folder, 'init.csv')], datatype=4) self.control.add_record('data_file', [self.data_file], datatype=4) stat_vars = ['runoff', 'basin_tmin', 'basin_tmax', 'basin_ppt', 'basin_rain', 'basin_snow', 'basin_potsw', 'basin_potet', 'basin_net_ppt', 'basin_intcp_stor', 'basin_pweqv', 'basin_snowmelt', 'basin_snowcov', 'basin_sroff', 'basin_hortonian', 'basin_infil', 'basin_soil_moist', 'basin_recharge', 'basin_actet', 'basin_gwstor', 'basin_gwflow', 'basin_gwsink', 'basin_cfs', 'basin_ssflow', 'basin_imperv_stor', 'basin_lake_stor', 'basin_ssstor'] self.control.add_record('statsON_OFF', values=[1], datatype=1) self.control.add_record('nstatVars', values=[len(stat_vars)], datatype=1) self.control.add_record('statVar_element', values=['1' for _ in stat_vars], datatype=4) self.control.add_record('statVar_names', values=stat_vars, datatype=4) self.control.add_record('stat_var_file', [os.path.join(self.cfg.output_folder, 'statvar.out')], datatype=4) disp_vars = [('basin_cfs', '1'), ('runoff', '1'), ('basin_gwflow', '2'), ('basin_sroff', '2'), ('basin_ssflow', '2'), ('basin_actet', '3'), ('basin_potet', '3'), ('basin_perv_et', '3'), ('basin_pweqv', '4'), ('basin_snow', '4'), ('basin_snowdepth', '4'), ('basin_snowmelt', '4')] self.control.add_record('dispVar_plot', values=[e[1] for e in disp_vars], datatype=4) self.control.add_record('statVar_names', values=stat_vars, datatype=4) self.control.add_record('dispVar_element', values=['1' for _ in disp_vars], datatype=4) self.control.add_record('gwr_swale_flag', [1]) # remove gsflow control objects self.control.remove_record('gsflow_output_file') self.control.write(self.control_file) def write_datafile(self, units='metric'): self.nmonths = 12 ghcn = self.cfg.prms_data_ghcn stations = self.cfg.prms_data_stations gages = self.cfg.prms_data_gages with open(stations, 'r') as js: sta_meta = json.load(js) sta_iter = sorted([(v['zone'], v) for k, v in sta_meta.items()], key=lambda x: x[0]) tsta_elev, tsta_nuse, tsta_x, tsta_y, psta_elev = [], [], [], [], [] for _, val in sta_iter: if units != 'metric': elev = val['elev'] / 0.3048 else: elev = val['elev'] tsta_elev.append(elev) tsta_nuse.append(1) tsta_x.append(val['proj_coords'][1]) tsta_y.append(val['proj_coords'][0]) psta_elev.append(elev) self.data_params = [ParameterRecord('nrain', values=[len(tsta_x)], datatype=1), ParameterRecord('ntemp', values=[len(tsta_x)], datatype=1), ParameterRecord('psta_elev', np.array(psta_elev, dtype=float).ravel(), dimensions=[['nrain', len(psta_elev)]], datatype=2), ParameterRecord('psta_nuse', np.array(tsta_nuse, dtype=int).ravel(), dimensions=[['nrain', len(tsta_nuse)]], datatype=1), ParameterRecord(name='ndist_psta', values=[len(tsta_nuse), ], datatype=1), ParameterRecord('psta_x', np.array(tsta_x, dtype=float).ravel(), dimensions=[['nrain', len(tsta_x)]], datatype=2), ParameterRecord('psta_y', np.array(tsta_y, dtype=float).ravel(), dimensions=[['nrain', len(tsta_y)]], datatype=2), ParameterRecord('tsta_elev', np.array(tsta_elev, dtype=float).ravel(), dimensions=[['ntemp', len(tsta_elev)]], datatype=2), ParameterRecord('tsta_nuse',
np.array(tsta_nuse, dtype=int)
numpy.array
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import trimesh from multiprocessing.pool import Pool from shapely.geometry import MultiPoint, Polygon, MultiPolygon, Point from shapely.ops import triangulate, unary_union from time import time from ..log import PCG_ROOT_LOGGER from ..visualization import create_scene from ..simulation import SimulationModel, ModelGroup from time import time def _get_model_limits(model, mesh_type='collision'): x_limits = None y_limits = None z_limits = None meshes = list() if isinstance(model, SimulationModel) or isinstance(model, ModelGroup): PCG_ROOT_LOGGER.info('Processing the bounds of simulation model={}'.format(model.name)) meshes = model.get_meshes(mesh_type) elif isinstance(model, trimesh.Trimesh): meshes = [model] else: msg = 'Input is neither of SimulationModel or Trimesh type, provided={}'.format() PCG_ROOT_LOGGER.error(msg) raise ValueError(msg) for mesh in meshes: bounds = mesh.bounds if x_limits is None: x_limits = bounds[:, 0].flatten() else: x_limits[0] = min(x_limits[0], bounds[0, 0]) x_limits[1] = max(x_limits[1], bounds[1, 0]) if y_limits is None: y_limits = bounds[:, 1].flatten() else: y_limits[0] = min(y_limits[0], bounds[0, 1]) y_limits[1] = max(y_limits[1], bounds[1, 1]) if z_limits is None: z_limits = bounds[:, 2].flatten() else: z_limits[0] = min(z_limits[0], bounds[0, 2]) z_limits[1] = max(z_limits[1], bounds[1, 2]) return x_limits, y_limits, z_limits def get_footprint(model, step_x=0.001, step_y=0.001, x_limits=None, y_limits=None, z_limits=None, mesh_type='collision'): if x_limits is None or y_limits is None or z_limits is None: model_x_limits, model_y_limits, model_z_limits = _get_model_limits(model) if x_limits is None: x_limits = model_x_limits else: x_limits = np.array(x_limits).flatten() if x_limits.size != 2: PCG_ROOT_LOGGER.error('Input x_limits must have two elements, provided={}'.format(x_limits.size)) return None if x_limits[0] >= x_limits[1]: PCG_ROOT_LOGGER.error('Input x_limits[0] must be smaller than x_limits[1], provided={}'.format(z_limits)) return None if y_limits is None: y_limits = model_y_limits else: y_limits = np.array(y_limits).flatten() if y_limits.size != 2: PCG_ROOT_LOGGER.error('Input y_limits must have two elements, provided={}'.format(x_limits.size)) return None if y_limits[0] >= y_limits[1]: PCG_ROOT_LOGGER.error('Input y_limits[0] must be smaller than y_limits[1], provided={}'.format(z_limits)) return None if z_limits is None: z_limits = model_z_limits else: z_limits = np.array(z_limits).flatten() if z_limits.size != 2: PCG_ROOT_LOGGER.error('Input z_limits must have two elements, provided={}'.format(z_limits.size)) return None if z_limits[0] >= z_limits[1]: PCG_ROOT_LOGGER.error('Input z_limits[0] must be smaller than z_limits[1], provided={}'.format(z_limits)) return None x_samples = np.arange(x_limits[0] - step_x, x_limits[1] + step_x, step_x) y_samples = np.arange(y_limits[0] - step_y, y_limits[1] + step_y, step_y) x, y = np.meshgrid(x_samples, y_samples) ray_origins = np.vstack(( x.flatten(), y.flatten(),
np.max(z_limits)
numpy.max
import os import sys import csv import pickle import numpy as np import argparse import colorsys from tqdm import tqdm import gdal import matplotlib matplotlib.use('tkagg') import h5py from monte_carlo_simulation import monte_carlo_simulation, monte_carlo_ml import block_surface_fraction as bsf import rosel_alg sys.path.append('/Users/nicholas/Documents/Dartmouth/Github/OSSP') import preprocess as pp from hist_test import plot_histograms sys.path.append('/Users/nicholas/Documents/Dartmouth/Projects/modis_unmixing/ANN/artificial_tds/') from load_data import load_tds_file def block_albedo(optic_img, clsf_image, factor, pmean=None): # Given an input image, this function divides it into blocks based on factor, # and calculates the average surface color within each block nbands, ydim, xdim = np.shape(optic_img) ice_albedo = np.zeros((nbands, int(ydim / factor), int(xdim / factor))) pnd_albedo = np.zeros((nbands, int(ydim / factor), int(xdim / factor))) ocn_albedo = np.zeros((nbands, int(ydim / factor), int(xdim / factor))) pratio_list = [] total_albedo = np.zeros((nbands, int(ydim / factor), int(xdim / factor))) for y in range(0, ydim, factor): for x in range(0, xdim, factor): for b in range(nbands): ice_sum, pnd_sum, ocn_sum = 0, 0, 0 num_light_ponds, num_dark_ponds = 0, 0 # Slice the input data block and calculate the surface histogram ih, ph, oh = bsf.surface_histograms(optic_img[b, y:y + factor, x:x + factor], clsf_image[y:y + factor, x:x + factor], factor, factor) # Find Average from histogram # Multiply bin number (i:pixel value) times the bin count (hist[i]) # and sum these to get the total sum from that category for i in range(len(ih)): ice_sum += ih[i] * i pnd_sum += ph[i] * i ocn_sum += oh[i] * i # Count the total number of pond pixels that are above and below the image mean if pmean is not None and b == 2: if i > pmean: num_light_ponds += ph[i] else: # i < pmean num_dark_ponds += ph[i] if pmean is not None and b == 2: pratio = num_light_ponds / (num_dark_ponds + 1) pratio_list.append(pratio) if (np.sum(ih) + np.sum(ph) + np.sum(oh)) < factor*factor*.25: continue else: total_albedo[b, int(y / factor), int(x / factor)] = ((ice_sum + pnd_sum + ocn_sum) / (np.sum(ih) + np.sum(ph) + np.sum(oh))) # Divide the sum by the total number of pixels (sum of bin counts) if np.sum(ih) > factor*factor*.05: ice_average = ice_sum / (np.sum(ih)) else: ice_average = find_default('ice', b) * 255 if np.sum(ph) > factor*factor*.05: pnd_average = pnd_sum / (np.sum(ph)) else: pnd_average = find_default('pnd', b) * 255 if np.sum(oh) > factor*factor*.05: ocn_average = ocn_sum / (np.sum(oh)) else: ocn_average = find_default('ocn', b) * 255 # Convert to float from uint8 ice_albedo[b, int(y / factor), int(x / factor)] = ice_average / 255. pnd_albedo[b, int(y / factor), int(x / factor)] = pnd_average / 255. ocn_albedo[b, int(y / factor), int(x / factor)] = ocn_average / 255. # if b == 2: # print(ice_average, pnd_average, ocn_average) # print(pmean) # avgs = [ice_average, pmean, ocn_average] # plot_histograms(range(256), ih, ph, oh, avgs) # a = input("Cont?") # if str(a) == 'n': # quit() return ice_albedo, pnd_albedo, ocn_albedo, total_albedo, pratio_list def block_classification(clsf_image, factor): ydim, xdim = np.shape(clsf_image) blk_fractions = np.zeros((int(ydim/factor), int(xdim/factor), 3)) for y in range(0, ydim, factor): for x in range(0, xdim, factor): fs, fp, fo = bsf.block_surface_fraction(clsf_image[y:y+factor, x:x+factor], factor, factor) blk_fractions[int(y/factor), int(x/factor), :] = [fs, fp, fo] return blk_fractions def find_image_pmean(src_ds, clsf_ds, dark_ref, white_pt): y_dim = src_ds.RasterYSize x_dim = src_ds.RasterXSize block_size = 2500 y_blocks = range(0, y_dim, block_size) x_blocks = range(0, x_dim, block_size) ice_sum = [0 for _ in range(8)] pnd_sum = [0 for _ in range(8)] ocn_sum = [0 for _ in range(8)] ice_count = [0 for _ in range(8)] pnd_count = [0 for _ in range(8)] ocn_count = [0 for _ in range(8)] pbar = tqdm(total=len(y_blocks)*len(x_blocks), unit='blocks') for y in y_blocks: for x in x_blocks: read_size_y = check_read_size(y, block_size, y_dim) read_size_x = check_read_size(x, block_size, x_dim) if read_size_y != block_size or read_size_x != block_size: continue optic_data = src_ds.ReadAsArray(x, y, read_size_x, read_size_y) clsf_data = clsf_ds.ReadAsArray(x, y, read_size_x, read_size_y) for b in range(8): if not valid_block(optic_data): continue # Apply a dark point reference based on the image histogram (skip band 8) if b != 7: optic_data[b, :, :] = pp.rescale_band(optic_data[b, :, :], dark_ref[b], white_pt) ih, ph, oh = bsf.surface_histograms(optic_data[b, :, :], clsf_data, block_size, block_size) # Find Average from histogram # Multiply bin number (i:pixel value) times the bin count (hist[i]) # and sum these to get the total sum from that category for i in range(len(ih)): ice_sum[b] += ih[i] * i pnd_sum[b] += ph[i] * i ocn_sum[b] += oh[i] * i # Record the total number of pixels in the pond category ice_count[b] += np.sum(ih) pnd_count[b] += np.sum(ph) ocn_count[b] += np.sum(oh) pbar.update() pbar.close() ice_albedo = np.divide(ice_sum, ice_count) pnd_albedo = np.divide(pnd_sum, pnd_count) ocn_albedo = np.divide(ocn_sum, ocn_count) # quit() srm = [[ocn_albedo[4]/255, pnd_albedo[4]/255, ice_albedo[4]/255], [ocn_albedo[6]/255, pnd_albedo[6]/255, ice_albedo[6]/255], [ocn_albedo[1]/255, pnd_albedo[1]/255, ice_albedo[1]/255], [1, 1, 1]] # Divide the sum by the count to get mean return (pnd_sum[2] / pnd_count[2]), np.array(srm) def analyze_imagery(optic_image, clsf_image, ds_clsf_data, f, pmean=None): ''' Reads through the input imagery to extract the variables needed for later processing ''' # Output variables srm_list = [] refl_list = [] pond_hsv_list = [] ocean_hsv_list = [] true_fraction_list = [] pond_ocean_diff_list = [] # Find the average reflectance of each surface within the chosen block size. ice_albedo, pnd_albedo, ocn_albedo, total_albedo, pratio = block_albedo(optic_image, clsf_image, f, pmean=pmean) # Change all of the nan values back to 0 ice_albedo = np.nan_to_num(ice_albedo) pnd_albedo = np.nan_to_num(pnd_albedo) ocn_albedo = np.nan_to_num(ocn_albedo) # Loop through each pseudo_modis pixel for i in range(np.shape(total_albedo)[1]): for j in range(np.shape(total_albedo)[2]): # Store the true fraction for this pseudo modis pixel if np.sum(ds_clsf_data[i, j]) == 0: continue true_fraction_list.append(ds_clsf_data[i, j]) ## Calculate the best spectral reflectance matrix for the current pixel srm = [[ocn_albedo[4, i, j], pnd_albedo[4, i, j], ice_albedo[4, i, j]], [ocn_albedo[6, i, j], pnd_albedo[6, i, j], ice_albedo[6, i, j]], [ocn_albedo[1, i, j], pnd_albedo[1, i, j], ice_albedo[1, i, j]], [1, 1, 1]] # srm = assert_defaults(srm) ## Find the reflectance of the current pixel # refl = [total_albedo[4, i, j], total_albedo[6, i, j], total_albedo[1, i, j]] refl = total_albedo[:, i, j] # ML needs the full array refl = np.divide(refl, 255.) # Store the srm and reflectance for output srm_list.append(srm) refl_list.append(refl) ## Save the color of ponds and ocean as HSV pond_hsv = colorsys.rgb_to_hsv(pnd_albedo[6, i, j], pnd_albedo[4, i, j], pnd_albedo[2, i, j]) ocean_hsv = colorsys.rgb_to_hsv(ocn_albedo[6, i, j], ocn_albedo[4, i, j], ocn_albedo[2, i, j]) pond_ocean_diff = np.sqrt((pnd_albedo[6, i, j] - ocn_albedo[6, i, j]) ** 2 + (pnd_albedo[4, i, j] - ocn_albedo[4, i, j]) ** 2 + (pnd_albedo[2, i, j] - ocn_albedo[2, i, j]) ** 2) pond_hsv_list.append(pond_hsv) ocean_hsv_list.append(ocean_hsv) pond_ocean_diff_list.append(pond_ocean_diff) # Convert these lists to numpy arrays srm_list = np.array(srm_list) refl_list = np.array(refl_list) pond_hsv_list = np.array(pond_hsv_list) ocean_hsv_list = np.array(ocean_hsv_list) true_fraction_list = np.array(true_fraction_list) return srm_list, refl_list, pond_hsv_list, ocean_hsv_list, true_fraction_list, pond_ocean_diff_list, pratio def stage_one_unmixing(refl_list, srm_list, true_list): ''' Perform stage 1 unmixing, where each entry in reflectance list is unmixed by a unique spectral reflectance matrix :param refl_list: List of pixel reflectance triplets :param srm_list: SRM for each associated reflectance triplet :return unmix_fraction: Unmixed fraction for each entry in refl_list :return unmix_error: Montecarlo error approx for each unmix attempt ''' # Output data unmix_fraction = [] unmix_error = [] num_obs = len(refl_list) # Unmix each reflectance value with its associated srm for i in range(num_obs): refl = refl_list[i] srm = srm_list[i] # refl might be more than 3 entries if we stored extras for the ML process if len(refl) != 3: refl = [refl[4], refl[6], refl[1]] ## Approximate the surface distribution with unmixing unmix_fraction_i = rosel_alg.spec_unmix(refl, 1, srm) unmix_fraction_i = np.flip(unmix_fraction_i) unmix_fraction.append(np.divide(unmix_fraction_i, 1000.)) # Apply a MonteCarlo error propagation mc_errors = monte_carlo_simulation(refl, srm) unmix_error.append(np.mean(mc_errors)) return np.array(unmix_fraction), np.array(unmix_error) def stage_two_unmixing(refl_list, srm): ''' Perform stage 2 unmixing, where each entry in reflectance list is unmixed by the same spectral reflectance matrix :param refl_list: List of pixel reflectance triplets :param srm_list: Single (average) SRM :return unmix_fraction: Unmixed fraction for each entry in refl_list :return unmix_error: Montecarlo error approx for each unmix attempt ''' # Output data unmix_fraction = [] unmix_error = [] i = 0 # Unmix each reflectance value with its associated srm for refl in refl_list: # refl might be more than 3 entries if we stored extras for the ML process if len(refl) != 3: refl = [refl[4], refl[6], refl[1]] ## Approximate the surface distribution with unmixing unmix_fraction_i = rosel_alg.spec_unmix(refl, 1, srm) unmix_fraction_i = np.flip(unmix_fraction_i) unmix_fraction.append(np.divide(unmix_fraction_i, 1000.)) if i == 0: print("Stage2 SRM:") print_srm(srm) i+=1 # Apply a MonteCarlo error propagation mc_errors = monte_carlo_simulation(refl, srm) unmix_error.append(np.mean(mc_errors)) return np.array(unmix_fraction), np.array(unmix_error) def stage_three_unmixing(refl_list, srm): # Output data unmix_fraction = [] unmix_error = [] # Unmix each reflectance value with its associated srm for refl in refl_list: # refl might be more than 3 entries if we stored extras for the ML process if len(refl) != 3: refl = [refl[4], refl[6], refl[1]] ## Approximate the surface distribution with unmixing unmix_fraction_i = rosel_alg.spec_unmix(refl, 1, srm) unmix_fraction_i = np.flip(unmix_fraction_i) unmix_fraction.append(np.divide(unmix_fraction_i, 1000.)) # Apply a MonteCarlo error propagation mc_errors = monte_carlo_simulation(refl, srm) unmix_error.append(np.mean(mc_errors)) return np.array(unmix_fraction),
np.array(unmix_error)
numpy.array
""" Module to construct pseudo-Stokes (I,Q,U,V) visibilities from miriad files or UVData objects """ import numpy as np, os import pyuvdata import copy from collections import OrderedDict as odict import argparse from . import version # Weights used in forming Stokes visibilities. # See pyuvdata.utils.polstr2num for conversion between polarization string # and polarization integer. Ex. {'XX': -5, ...} pol_weights = { 1: odict([(-5, 1.), (-6, 1.)]), 2: odict([(-5, 1.), (-6, -1.)]), 3: odict([(-7, 1.), (-8, 1.)]), 4: odict([(-7, -1.j), (-8, 1.j)]) } def miriad2pyuvdata(dset, antenna_nums=None, bls=None, polarizations=None, ant_str=None, time_range=None): """ Reads-in a Miriad filepath to a UVData object Parameters ---------- dset : str Miriad file to convert to UVData object containing visibilities and corresponding metadata antenna_nums: integer list The antennas numbers to read into the object. bls: list of tuples A list of antenna number tuples (e.g. [(0,1), (3,2)]) specifying baselines to read into the object. Ordering of the numbers within the tuple does not matter. A single antenna iterable e.g. (1,) is interpreted as all visibilities with that antenna. ant_str: str A string containing information about what kinds of visibility data to read-in. Can be 'auto', 'cross', 'all'. Cannot provide ant_str if antenna_nums and/or bls is not None. polarizations: integer or string list List of polarization integers or strings to read-in. Ex: ['xx', 'yy', ...] time_range: float list len-2 list containing min and max range of times (Julian Date) to read-in. Ex: [2458115.20, 2458115.40] Returns ------- uvd : pyuvdata.UVData object """ uvd = pyuvdata.UVData() uvd.read_miriad(dset, antenna_nums=antenna_nums, bls=bls, polarizations=polarizations, ant_str=ant_str, time_range=time_range) return uvd def _combine_pol(uvd1, uvd2, pol1, pol2, pstokes='pI', x_orientation=None): """ Combines UVData visibilities to form the desired pseudo-stokes visibilities. It returns UVData object containing the pseudo-stokes visibilities Parameters ---------- uvd1 : UVData object First UVData object containing data that is used to form Stokes visibilities uvd2 : UVData oject Second UVData objects containing data that is used to form Stokes visibilities pol1 : Polarization, type: str Polarization of the first UVData object to use in constructing pStokes visibility. pol2 : Polarization, type: str Polarization of the second UVData object to use in constructing pStokes visibility. pstokes: Pseudo-stokes polarization to form, type: str Pseudo stokes polarization to form, can be 'pI' or 'pQ' or 'pU' or 'pV'. Default: pI x_orientation: str, optional Orientation in cardinal direction east or north of X dipole. Default keeps polarization in X and Y basis. Returns ------- uvdS : UVData object """ assert isinstance(uvd1, pyuvdata.UVData), \ "uvd1 must be a pyuvdata.UVData instance" assert isinstance(uvd2, pyuvdata.UVData), \ "uvd2 must be a pyuvdata.UVData instance" # convert pol1 and/or pol2 to integer if fed as a string if isinstance(pol1, (str, np.str)): pol1 = pyuvdata.utils.polstr2num(pol1, x_orientation=x_orientation) if isinstance(pol2, (str, np.str)): pol2 = pyuvdata.utils.polstr2num(pol2, x_orientation=x_orientation) # extracting data array from the UVData objects data1 = uvd1.data_array data2 = uvd2.data_array # extracting flag array from the UVdata objects flag1 = uvd1.flag_array flag2 = uvd2.flag_array # constructing flags (boolean) flag = np.logical_or(flag1, flag2) # convert pStokes to polarization integer if a string if isinstance(pstokes, (str, np.str)): pstokes = pyuvdata.utils.polstr2num(pstokes, x_orientation=x_orientation) # get string form of polarizations pol1_str = pyuvdata.utils.polnum2str(pol1) pol2_str = pyuvdata.utils.polnum2str(pol2) pstokes_str = pyuvdata.utils.polnum2str(pstokes) # assert pstokes in pol_weights, and pol1 and pol2 in pol_weights[pstokes] assert pstokes in pol_weights, \ "unrecognized pstokes parameter {}".format(pstokes_str) assert pol1 in pol_weights[pstokes], \ "pol1 {} not used in constructing pstokes {}".format(pol1_str, pstokes_str) assert pol2 in pol_weights[pstokes], \ "pol2 {} not used in constructing pstokes {}".format(pol2_str, pstokes_str) # constructing Stokes visibilities stdata = 0.5 * (pol_weights[pstokes][pol1]*data1 + pol_weights[pstokes][pol2]*data2) # assigning and writing data, flags and metadata to UVData object uvdS = copy.deepcopy(uvd1) uvdS.data_array = stdata # pseudo-stokes data uvdS.flag_array = flag # flag array uvdS.polarization_array = np.array([pstokes], dtype=np.int) # polarization number uvdS.nsample_array = uvd1.nsample_array + uvd2.nsample_array # nsamples uvdS.history = "Merged into pseudo-stokes vis with hera_pspec version {} Git hash {}\n{}" \ "{}{}{}{}\n".format(version.version, version.git_hash, "-"*20+'\n', 'dset1 history:\n', uvd1.history, '\n'+'-'*20+'\ndset2 history:\n', uvd2.history) return uvdS def construct_pstokes(dset1, dset2, pstokes='pI', run_check=True, antenna_nums=None, bls=None, polarizations=None, ant_str=None, time_range=None, history=''): """ Validates datasets required to construct desired visibilities and constructs desired pseudo-Stokes visibilities. These are formed via the following expression ( V_pI ) ( 1 0 0 1 ) ( V_XX ) | V_pQ | | 1 0 0 -1 | | V_XY | | V_pU | = 0.5 * | 0 1 1 0 | * | V_YX | ( V_pV ) ( 0 -i i 0 ) ( V_YY ) In constructing a given pseudo-Stokes visibilities, the XX or XY polarization is taken from dset1, and the YX or YY pol is taken from dset2. Parameters ---------- dset1 : UVData object or Miriad file First UVData object or Miriad file containing data that is used to form Stokes visibilities dset2 : UVData oject or Miriad file Second UVData object or Miriad file containing data that is used to form Stokes visibilities pstokes: Stokes polarization, type: str Pseudo stokes polarization to form, can be 'pI' or 'pQ' or 'pU' or 'pV'. Default: pI run_check: boolean Option to check for the existence and proper shapes of parameters after downselecting data on this object. Default is True. antenna_nums: integer list The antennas numbers to read into the object. bls: list of tuples A list of antenna number tuples (e.g. [(0,1), (3,2)]) specifying baselines to read into the object. Ordering of the numbers within the tuple does not matter. A single antenna iterable e.g. (1,) is interpreted as all visibilities with that antenna. ant_str: str A string containing information about what kinds of visibility data to read-in. Can be 'auto', 'cross', 'all'. Cannot provide ant_str if antenna_nums and/or bls is not None. polarizations: integer or string list List of polarization integers or strings to read-in. Ex: ['xx', 'yy', ...] time_range: float list len-2 list containing min and max range of times (Julian Date) to read-in. Ex: [2458115.20, 2458115.40] history : str Extra history string to add to concatenated pseudo-Stokes visibility. Returns ------- uvdS : UVData object with pseudo-Stokes visibility """ # convert dset1 and dset2 to UVData objects if they are miriad files if isinstance(dset1, pyuvdata.UVData) == False: assert isinstance(dset1, (str, np.str)), \ "dset1 must be fed as a string or UVData object" uvd1 = miriad2pyuvdata(dset1, antenna_nums=antenna_nums, bls=bls, polarizations=polarizations, ant_str=ant_str, time_range=time_range) else: uvd1 = dset1 if isinstance(dset2, pyuvdata.UVData) == False: assert isinstance(dset2, (str, np.str)), \ "dset2 must be fed as a string or UVData object" uvd2 = miriad2pyuvdata(dset2, antenna_nums=antenna_nums, bls=bls, polarizations=polarizations, ant_str=ant_str, time_range=time_range) else: uvd2 = dset2 # convert pstokes to integer if fed as a string if isinstance(pstokes, (str, np.str)): pstokes = pyuvdata.utils.polstr2num(pstokes, x_orientation=dset1.x_orientation) # check if dset1 and dset2 habe the same spectral window spw1 = uvd1.spw_array spw2 = uvd2.spw_array assert (spw1 == spw2), "dset1 and dset2 must have the same spectral windows." # check if dset1 and dset2 have the same frequencies freqs1 = uvd1.freq_array freqs2 = uvd2.freq_array if
np.array_equal(freqs1, freqs2)
numpy.array_equal
from __future__ import print_function ''' This module should be organized as follows: Main function: chi_estimate() = returns chi_n, chi_b - calls: wealth.get_wealth_data() - returns data moments on wealth distribution labor.labor_data_moments() - returns data moments on labor supply minstat() - returns min of statistical objective function model_moments() - returns model moments SS.run_SS() - return SS distributions ''' ''' ------------------------------------------------------------------------ Last updated: 7/27/2016 Uses a simulated method of moments to calibrate the chi_n adn chi_b parameters of OG-USA. This py-file calls the following other file(s): wealth.get_wealth_data() labor.labor_data_moments() SS.run_SS This py-file creates the following other file(s): None ------------------------------------------------------------------------ ''' import numpy as np import scipy.optimize as opt import pandas as pd import os try: import cPickle as pickle except ImportError: import pickle from . import wealth from . import labor from . import SS from . import utils from ogusa import aggregates as aggr from ogusa import SS def chi_n_func(s, a0, a1, a2, a3, a4): chi_n = a0 + a1 * s + a2 * s ** 2 + a3 * s ** 3 + a4 * s ** 4 return chi_n def chebyshev_func(x, a0, a1, a2, a3, a4): func = np.polynomial.chebyshev.chebval(x, [a0, a1, a2, a3, a4]) return func def chi_estimate(p, client=None): ''' -------------------------------------------------------------------- This function calls others to obtain the data momements and then runs the simulated method of moments estimation by calling the minimization routine. INPUTS: income_tax_parameters = length 4 tuple, (analytical_mtrs, etr_params, mtrx_params, mtry_params) ss_parameters = length 21 tuple, (J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_ss, tau_payroll, retire, mean_income_data,\ h_wealth, p_wealth, m_wealth, b_ellipse, upsilon) iterative_params = [2,] vector, vector with max iterations and tolerance for SS solution chi_guesses = [J+S,] vector, initial guesses of chi_b and chi_n stacked together baseline_dir = string, path where baseline results located OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: wealth.compute_wealth_moments() labor.labor_data_moments() minstat() OBJECTS CREATED WITHIN FUNCTION: wealth_moments = [J+2,] array, wealth moments from data labor_moments = [S,] array, labor moments from data data_moments = [J+2+S,] array, wealth and labor moments stacked bnds = [S+J,] array, bounds for parameter estimates chi_guesses_flat = [J+S,] vector, initial guesses of chi_b and chi_n stacked min_arg = length 6 tuple, variables needed for minimizer est_output = dictionary, output from minimizer chi_params = [J+S,] vector, parameters estimates for chi_b and chi_n stacked objective_func_min = scalar, minimum of statistical objective function OUTPUT: ./baseline_dir/Calibration/chi_estimation.pkl RETURNS: chi_params -------------------------------------------------------------------- ''' baseline_dir="./OUTPUT" #chi_b_guess = np.ones(80) # a0 = 5.38312524e+01 # a1 = -1.55746248e+00 # a2 = 1.77689237e-02 # a3 = -8.04751667e-06 # a4 = 5.65432019e-08 """ Kei's Vals a0 = 170 a1 = -2.19154735e+00 a2 = -2.22817460e-02 a3 = 4.49993507e-04 a4 = -1.34197054e-06 """ """ Adam's Vals 1 a0 = 2.59572155e+02 a1 = -2.35122641e+01 a2 = 4.27581467e-01 a3 = -3.40808933e-03 a4 = 1.00404321e-05 """ a0 = 1.10807470e+03#5.19144310e+02 #a0 = 1.10807470e+03#5.19144310e+02 a1 = -1.05805189e+02#-4.70245283e+01 a2 = 1.92411660e+00#8.55162933e-01 a3 = -1.53364020e-02#-6.81617866e-03 a4 = 4.51819445e-05#2.00808642e-05 # a0 = 2.07381e+02 # a1 = -1.03143105e+01 # a2 = 1.42760562e-01 # a3 = -8.41089078e-04 # a4 = 1.85173227e-06 # sixty_plus_chi = 300 params_init = np.array([a0, a1, a2, a3, a4]) # Generate labor data moments labor_hours = np.array([167, 165, 165, 165, 165, 166, 165, 165, 164])#, 166, 164]) labor_part_rate = np.array([0.69, 0.849, 0.849, 0.847, 0.847, 0.859, 0.859, 0.709, 0.709])#, 0.212, 0.212]) employ_rate = np.array([0.937, 0.954, 0.954, 0.966, 0.966, 0.97, 0.97, 0.968, 0.968])#, 0.978, 0.978]) labor_hours_adj = labor_hours * labor_part_rate * employ_rate # get fraction of time endowment worked (assume time # endowment is 24 hours minus required time to sleep 6.5 hours) labor_moments = labor_hours_adj * 12 / (365 * 17.5) #labor_moments[9] = 0.1 #labor_moments[10] = 0.1 # combine moments data_moments = np.array(list(labor_moments.flatten())) # weighting matrix W = np.identity(p.J+2+p.S) W = np.identity(9) ages = np.linspace(20, 65, p.S // 2 + 5) #ages = np.linspace(20, 100, p.S) est_output = opt.minimize(minstat_init_calibrate, params_init,\ args=(p, client, data_moments, W, ages),\ method="L-BFGS-B",\ tol=1e-15, options={'eps': 0.1}) a0, a1, a2, a3, a4 = est_output.x #chi_n = chebyshev_func(ages, a0, a1, a2, a3, a4) chi_n = np.ones(p.S) #ages_full = np.linspace(20, 100, p.S) #chi_n = chebyshev_func(ages_full, a0, a1, a2, a3, a4) chi_n[:p.S // 2 + 5] = chebyshev_func(ages, a0, a1, a2, a3, a4) slope = 1500#chi_n[p.S // 2 + 5 - 1] - chi_n[p.S // 2 + 5 - 2] chi_n[p.S // 2 + 5 - 1:] = (np.linspace(65, 100, 36) - 65) * slope + chi_n[p.S // 2 + 5 - 1] chi_n[chi_n < 0.5] = 0.5 p.chi_n = chi_n print('PARAMS for Chebyshev:', est_output.x) with open("output.txt", "a") as text_file: text_file.write('\nPARAMS for Chebyshev: ' + str(est_output.x) + '\n') pickle.dump(chi_n, open("chi_n.p", "wb")) ss_output = SS.run_SS(p) return ss_output def minstat_init_calibrate(params, *args): a0, a1, a2, a3, a4 = params p, client, data_moments, W, ages = args chi_n = np.ones(p.S) chi_n[:p.S // 2 + 5] = chebyshev_func(ages, a0, a1, a2, a3, a4) slope = chi_n[p.S // 2 + 5 - 1] - chi_n[p.S // 2 + 5 - 2] chi_n[p.S // 2 + 5 - 1:] = (np.linspace(65, 100, 36) - 65) * slope + chi_n[p.S // 2 + 5 - 1] chi_n[chi_n < 0.5] = 0.5 p.chi_n = chi_n print("-----------------------------------------------------") print('PARAMS AT START' + str(params)) print("-----------------------------------------------------") b_guess = np.ones((p.S, p.J)) * 0.07 n_guess = np.ones((p.S, p.J)) * .4 * p.ltilde rguess = 0.09 T_Hguess = 0.12 factorguess = 7.7 #70000 # Modified BQguess = aggr.get_BQ(rguess, b_guess, None, p, 'SS', False) exit_early = [0, 2] # 2nd value gives number of valid labor moments to consider before exiting SS_fsolve ss_params_baseline = (b_guess, n_guess, None, None, p, client, exit_early) guesses = [rguess] + list(BQguess) + [T_Hguess, factorguess] [solutions_fsolve, infodict, ier, message] =\ opt.fsolve(SS.SS_fsolve, guesses, args=ss_params_baseline, xtol=p.mindist_SS, full_output=True) rss = solutions_fsolve[0] BQss = solutions_fsolve[1:-2] T_Hss = solutions_fsolve[-2] factor_ss = solutions_fsolve[-1] Yss = T_Hss/p.alpha_T[-1] fsolve_flag = True try: output = SS.SS_solver(b_guess, n_guess, rss, BQss, T_Hss, factor_ss, Yss, p, client, fsolve_flag) except: print('RuntimeError: Steady state aggregate resource constraint not satisfied') print('Luckily we caught the error, so minstat_init_calibrate will continue') return 1e10 model_moments = calc_moments(output, p.omega_SS, p.lambdas, p.S, p.J) print('Model moments:', model_moments) print("-----------------------------------------------------") distance = np.dot(np.dot((np.array(model_moments[:9]) - np.array(data_moments)).T,W), np.array(model_moments[:9]) - np.array(data_moments)) print('DATA and MODEL DISTANCE: ', distance) return distance def minstat(params, *args): ''' -------------------------------------------------------------------- This function generates the weighted sum of squared differences between the model and data moments. INPUTS: chi_guesses = [J+S,] vector, initial guesses of chi_b and chi_n stacked together arg = length 6 tuple, variables needed for minimizer OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: SS.run_SS() calc_moments() OBJECTS CREATED WITHIN FUNCTION: ss_output = dictionary, variables from SS of model model_moments = [J+2+S,] array, moments from the model solution distance = scalar, weighted, squared deviation between data and model moments RETURNS: distance -------------------------------------------------------------------- ''' a0, a1, a2, a3, a4 = params p, client, data_moments, W, ages = args chi_n = np.ones(p.S) #chi_n = chebyshev_func(ages, a0, a1, a2, a3, a4) chi_n[:p.S // 2 + 5] = chebyshev_func(ages, a0, a1, a2, a3, a4) #chi_n[p.S // 2 + 5:] = sixty_plus_chi slope = chi_n[p.S // 2 + 5 - 1] - chi_n[p.S // 2 + 5 - 2] chi_n[p.S // 2 + 5 - 1:] = (np.linspace(65, 100, 36) - 65) * slope + chi_n[p.S // 2 + 5 - 1] chi_n[chi_n < 0.5] = 0.5 p.chi_n = chi_n #print(chi_n) #with open("output.txt", "a") as text_file: # text_file.write('\nPARAMS AT START\n' + str(params) + '\n') print("-----------------------------------------------------") print('PARAMS AT START' + str(params)) print("-----------------------------------------------------") try: ss_output = SS.run_SS(p, client) except: #with open("output.txt", "a") as text_file: # text_file.write('\nSteady state not found\n' + str(params) + '\n') print("-----------------------------------------------------") print("Steady state not found") print("-----------------------------------------------------") return 1e100 #with open("output.txt", "a") as text_file: # text_file.write('\nPARAMS AT END\n' + str(params) + '\n') print("-----------------------------------------------------") print('PARAMS AT END', params) print("-----------------------------------------------------") model_moments = calc_moments(ss_output, p.omega_SS, p.lambdas, p.S, p.J) #with open("output.txt", "a") as text_file: # text_file.write('\nModel moments:\n' + str(model_moments) + '\n') print('Model moments:', model_moments) print("-----------------------------------------------------") # distance with levels distance = np.dot(np.dot((np.array(model_moments[:9]) -
np.array(data_moments)
numpy.array
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import time, re import pandas as pd import csv, math from matplotlib import rc import matplotlib.ticker as ticker import matplotlib.pyplot as plt from astropy.io import ascii from scipy.optimize import curve_fit from scipy.optimize import least_squares from astropy.modeling import models, fitting from astropy.stats import sigma_clip from astropy.io import fits from astropy.convolution import convolve, Gaussian1DKernel, Box1DKernel from astropy.stats import LombScargle from scipy.signal import savgol_filter as savgol import matplotlib.gridspec as gridspec from astropy.stats import mad_std from scipy.stats import gaussian_kde from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable sample='astero' if sample=='astero': start=6135 if sample=='pande': start=0 whitenoise=np.loadtxt('/Users/maryumsayeed/Desktop/HuberNess/mlearning/hrdmachine/whitenoisevalues.txt',skiprows=1,delimiter=',') kpfile ='/Users/maryumsayeed/Desktop/HuberNess/mlearning/hrdmachine/KIC_Kepmag_Berger2018.csv' df =pd.read_csv(kpfile,usecols=['KIC','kic_kepmag']) kp_kics =list(df['KIC']) allkps =list(df['kic_kepmag']) def sigclip(x,y,subs,sig): keep = np.zeros_like(x) start=0 end=subs nsubs=int((len(x)/subs)+1) for i in range(0,nsubs): me=np.mean(y[start:end]) sd=np.std(y[start:end]) good=np.where((y[start:end] > me-sig*sd) & (y[start:end] < me+sig*sd))[0] keep[start:end][good]=1 start=start+subs end=end+subs return keep def getclosest(num,collection): '''Given a number and a list, get closest number in the list to number given.''' return min(collection,key=lambda x:abs(x-num)) def getkp(file): kic=re.search('kplr(.*)-', file).group(1) kic=int(kic.lstrip('0')) kp=allkps[kp_kics.index(kic)] if kp in whitenoise[:,0]: idx=np.where(whitenoise[:,0]==kp)[0] closestkp=whitenoise[idx,0][0] wnoise=whitenoise[idx,1][0] #print(closestkp,wnoise) else: closestkp=getclosest(kp,whitenoise[:,0]) idx=np.where(whitenoise[:,0]==closestkp)[0] wnoise=whitenoise[idx,1][0] #print(closestkp,wnoise) return wnoise def getps(file,day): data=fits.open(file) head=data[0].data dat=data[1].data time=dat['TIME'] qual=dat['SAP_QUALITY'] flux=dat['PDCSAP_FLUX'] good=np.where(qual == 0)[0] time=time[good] flux=flux[good] ndays=(time[-1]-time[0])/1. time_1=time flux_1=flux #third=time[0]+ndays #idx=np.where(time<third)[0] #time=time[idx] #flux=flux[idx] #time_1=time #flux_1=flux # Duty cycle: total_obs_time=ndays*24.*60 #mins cadence =30. #mins expected_points=total_obs_time/cadence observed_points=len(flux) # Only analyze stars with light curve duty cycle > 60%: # if observed_points/expected_points<0.5: # continue res =sigclip(time,flux,50,3) good=np.where(res == 1)[0] time=time[good] flux=flux[good] time_2=time flux_2=flux width=day boxsize=width/(30./60./24.) box_kernel = Box1DKernel(boxsize) smoothed_flux = savgol(flux,int(boxsize)-1,1,mode='mirror') flux=flux/(smoothed_flux) time_3=time flux_3=smoothed_flux # Remove data points > 3*sigma: std=mad_std(flux,ignore_nan=True) med=np.median(flux) #idx =np.where(abs(flux-med)<3.*std)[0] #time=time[idx] #flux=flux[idx] # now let's calculate the fourier transform. the nyquist frequency is: nyq=1./(30./60./24.) fres=1./90./0.0864 fres_cd=0.001 fres_mhz=fres_cd/0.0864 freq = np.arange(0.001, 24., 0.001) #pdb.set_trace() # FT magic #freq, amp = LombScargle(time,flux).autopower(method='fast',samples_per_peak=10,maximum_frequency=nyq) amp = LombScargle(time,flux).power(freq) # unit conversions freq = 1000.*freq/86.4 bin = freq[1]-freq[0] amp = 2.*amp*np.var(flux*1e6)/(np.sum(amp)*bin) # White noise correction: wnoise=getkp(file) amp1=np.zeros(len(amp)) for p in range(0,len(amp)): a=amp[p] if a-wnoise < 0.: amp1[p]=amp[p] if a-wnoise > 0.: amp1[p]=a-wnoise # smooth by 2 muHz n=np.int(2./fres_mhz) n_wnoise=np.int(2./fres_mhz) gauss_kernel = Gaussian1DKernel(n) gk_wnoise=Gaussian1DKernel(n_wnoise) pssm = convolve(amp, gauss_kernel) pssm_wnoise = convolve(amp1, gk_wnoise) timeseries=[time_1,flux_1,time_2,flux_2,time_3,flux_3] return timeseries,time,flux,freq,amp1,pssm,pssm_wnoise,wnoise def gettraindata(text_files,pickle_files): trainlabels=[] alldata=[] allpickledata=[] allfiles=[] star_count=0 data_lengths=[] for i in range(0,len(text_files)): print(i,'getting data from:',pickle_files[i]) labels=np.loadtxt(text_files[i],delimiter=' ',usecols=[1]) files=np.loadtxt(text_files[i],delimiter=' ',usecols=[0],dtype=str) stars= len(labels) data = np.memmap(pickle_files[i],dtype=np.float32,mode='r',shape=(21000,stars,3)) trainlabels.append(labels) traindata=data[:,:,1].transpose() alldata.append(traindata) allfiles.append(files) # data_lengths.append(stars) star_count+=stars print('Concatenating data...') s1=time.time() alldata=list(alldata[0])+list(alldata[1])+list(alldata[2])+list(alldata[3])+list(alldata[4])+list(alldata[5])+list(alldata[6]) labels=np.concatenate((trainlabels),axis=0) allfiles=np.concatenate((allfiles),axis=0) print(' ',time.time()-s1) total_stars=star_count return labels,alldata,total_stars,allfiles def get_idx(files): if sample=='astero': fname='Astero_Catalogue.txt' if sample=='pande': fname='Pande_Catalogue.txt' df=pd.read_csv(fname,index_col=False,delimiter=';') df=df[df['Outlier']==0] kics=np.array(df['KICID']) true=np.array(df['True_Logg']) pred=np.array(df['Inferred_Logg']) rad=np.array(df['Radius']) teff=np.array(df['Teff']) # Get index of good stars using catalogue KICIDs: good_index=[] for i in range(len(files)): file=files[i] kic=re.search('kplr(.*)-', file).group(1) kic=int(kic.lstrip('0')) if kic in kics: # if kic in catalogue: good_index.append(i) print(len(kics),len(good_index)) return good_index dirr='/Users/maryumsayeed/Desktop/HuberNess/mlearning/powerspectrum/jan2020_{}_sample/'.format(sample) average=np.load(dirr+'average.npy') end=len(average) testlabels=np.load(dirr+'testlabels.npy')[start:] print(len(testlabels)) labels_m1 =np.load(dirr+'labels_m1.npy') labels_m2 =np.load(dirr+'labels_m2.npy') spectra_m1=np.load(dirr+'spectra_m1.npy') chi2_vals =np.load(dirr+'min_chi2.npy') print('Size of saved data:',len(testlabels),len(average),len(labels_m1),len(labels_m2),len(spectra_m1)) dp='jan2020_pande_sample/' da='jan2020_astero_sample/' train_file_names =[dp+'pande_pickle_1',dp+'pande_pickle_2',dp+'pande_pickle_3',da+'astero_final_sample_1',da+'astero_final_sample_2',da+'astero_final_sample_3',da+'astero_final_sample_4'] train_file_pickle=[i+'_memmap.pickle' for i in train_file_names] train_file_txt =[i+'.txt' for i in train_file_names] print('Getting training data...') all_labels,all_data,total_stars,all_files=gettraindata(train_file_txt,train_file_pickle) all_labels,all_data,all_files=all_labels[start:start+end],all_data[start:start+end],all_files[start:start+end] keep=get_idx(all_files) true,labelm1,models,alldata,allfiles=testlabels,labels_m1,spectra_m1,all_data,all_files print('Loading in data...') alldata=np.array(alldata)[keep] models=models[keep] savedir='/Users/maryumsayeed/LLR_updates/Aug3/stars_with_high_radii/' check_kics=pd.read_csv(savedir+'kics_with_high_radii.txt',names=['KIC'],skiprows=1) check_kics=np.array(check_kics['KIC']) if sample=='astero': fname='Astero_Catalogue.txt' if sample=='pande': fname='Pande_Catalogue.txt' df=pd.read_csv(fname,index_col=False,delimiter=';') #df=df[df['Outlier']==0] raw_kics=[] raw_kics_idx=[] for i in range(0,len(keep)): file=allfiles[keep][i][0:-3] kic=file.split('/')[-1].split('-')[0].split('kplr')[-1] kic=int(kic.lstrip('0')) if kic in check_kics: raw_kics.append(kic) raw_kics_idx.append(i) print(len(raw_kics)) print(len(raw_kics_idx)) print(len(keep)) all_teffs=np.array(df['Teff']) all_rads=np.array(df['Radius']) all_lums=all_rads**2.*(all_teffs/5777.)**4. wnoise_values=np.loadtxt('/Users/maryumsayeed/Desktop/HuberNess/mlearning/hrdmachine/whitenoisevalues.txt',skiprows=1,delimiter=',') wnoise_kics=np.array(wnoise_values[:,0]) wnoise_values for star in raw_kics_idx[0:200]: file=allfiles[keep][star][0:-3] timeseries,time,flux,f,amp,pssm,pssm_wnoise,wn=getps(file,1) time_1,flux_1,time_2,flux_2,time_3,flux_3=timeseries kic=file.split('/')[-1].split('-')[0].split('kplr')[-1] kic=int(kic.lstrip('0')) print(star,kic) idx=np.where(df['KICID']==kic)[0] t =np.array(df['Teff'])[idx][0] r =np.array(df['Radius'])[idx][0] l =r**2.*(t/5777.)**4. kp=
np.array(df['Kp'])
numpy.array
import pickle import os import numpy as np import pandas as pd from matplotlib import pyplot as plt import math from scipy import signal objectRep = open("C:\\Users\\asus\\OneDrive\\BSC_brain_math\\year_c\\Yearly\\BCI\\bci4als\\recordings\\adi\\9\\trials.pickle", "rb") file = pickle.load(objectRep) all_data = np.zeros([len(file), 1230, 13]) sampling_rate = 125 fig, ax = plt.subplots(2,1, figsize=(16,4), sharey=True) eeg = file[0]['C3'] time = np.arange(len(file[0]['C3']))/ sampling_rate ax[0].plot(time, eeg, lw=1) ax[0].set_xlabel('Time (sec)'), ax[0].set_ylabel('Voltage ($\mu$Volts)') ax[0].set_xticks(np.arange(0, 10, 0.5)) ax[1].plot(time, eeg, lw=1, color='k') ax[1].set_xlim(4.25,4.5) #ax[1].set_xlim(12,14.5) ax[1].set_xticks(np.arange(4.3,4.5,0.1)) ax[1].set_xlabel('Time (sec)') FourierCoeff =
np.fft.fft(eeg)
numpy.fft.fft
import math import numpy as np class Transform: """This class represents an 2D rotation, scaling, and translation.""" def __init__(self): self.set_rotation(0.0) self.set_translation(0.0, 0.0) self.set_scale(1.0) def set_rotation(self, rotation): """Calculate rotation matrix""" self.rotation = rotation cr = math.cos(self.rotation) sr = math.sin(self.rotation) self.rot_mat = np.array([[cr, -sr], [sr, cr]]) def set_translation(self, tx, ty): self.translation = (tx, ty) self.t_vec = np.array([[self.translation[0]], [self.translation[1]]]) def set_scale(self, scale): self.scale = scale def transform_point(self, p): vec = np.array([[p[0]], [p[1]]]) transformed = (self.rot_mat @ vec) * self.scale + self.t_vec return (
np.asscalar(transformed[0])
numpy.asscalar
""" Unit tests for meta/train/env.py. """ from itertools import product from typing import Dict, List, Any, Tuple import numpy as np import torch from meta.utils.storage import RolloutStorage from meta.train.env import ( get_env, get_base_env, get_metaworld_ml_benchmark_names, get_metaworld_benchmark_names, ) from tests.helpers import get_policy, DEFAULT_SETTINGS METAWORLD_OBS_GOAL_POS = 39 ROLLOUT_LENGTH = 128 TIME_LIMIT = 4 PROCESS_EPISODES = 5 TASK_EPISODES = 3 ENOUGH_THRESHOLD = 0.5 SINGLE_ENV_NAME = "reach-v2" def test_collect_rollout_MT1_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT1 benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT1_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT1_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT1 benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT1_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT1_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT1 benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT1_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT1_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT1 benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT1_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT10_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT10 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT10" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT10_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT10 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT10" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT10_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT10 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT10" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT10_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT10 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT10" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT10_multi_save_memory() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT10 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, when running a multi-process environment with the `save_memory` option enabled. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT10" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = True check_metaworld_rollout(settings) def test_collect_rollout_MT50_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT50 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT50" settings["num_processes"] = 4 settings["rollout_length"] = 8 * ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_MT50_multi_save_memory() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld MT50 benchmark, to ensure that the task indices are returned correctly and tasks/goals are resampled correctly, when running a multi-process environment with the `save_memory` option enabled. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "MT50" settings["num_processes"] = 4 settings["rollout_length"] = 8 * ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = True settings["save_memory"] = True check_metaworld_rollout(settings) def test_collect_rollout_ML1_train_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_train_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_train_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_train_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_train_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_train_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_train_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_train_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_test_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_test_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_test_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_test_%s" % SINGLE_ENV_NAME settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_test_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_test_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML1_test_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML1_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML1_test_%s" % SINGLE_ENV_NAME settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_train_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_train" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_train_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_train" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_train_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_train" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_train_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_train" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_test_single() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_test" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_test_single_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, with a single process and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_test" settings["num_processes"] = 1 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_test_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_test" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML10_test_multi_normalize() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML10_test benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and observation normalization. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML10_test" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = True settings["normalize_first_n"] = METAWORLD_OBS_GOAL_POS settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML45_train_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML45_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML45_train" settings["num_processes"] = 4 settings["rollout_length"] = 8 * ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML45_train_multi_save_memory() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML45_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and with the `save_memory` option enabled. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML45_train" settings["num_processes"] = 4 settings["rollout_length"] = 8 * ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = True check_metaworld_rollout(settings) def test_collect_rollout_ML45_test_multi() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML45_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML45_test" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = False check_metaworld_rollout(settings) def test_collect_rollout_ML45_test_multi_save_memory() -> None: """ Test the values of the returned RolloutStorage objects collected from a rollout on the MetaWorld ML45_train benchmark, to ensure that the task indices are returned correctly and goals are resampled correctly, when running a multi-process environment and with the `save_memory` option enabled. """ settings = dict(DEFAULT_SETTINGS) settings["env_name"] = "ML45_test" settings["num_processes"] = 4 settings["rollout_length"] = ROLLOUT_LENGTH settings["time_limit"] = TIME_LIMIT settings["normalize_transition"] = False settings["normalize_first_n"] = None settings["same_np_seed"] = False settings["save_memory"] = True check_metaworld_rollout(settings) def check_metaworld_rollout(settings: Dict[str, Any]) -> None: """ Verify that rollouts on MetaWorld benchmarks satisfy a few assumptions: - If running a multi-task benchmark, each observation is a vector with length at least 39, and the elements after 39 form a one-hot vector with length equal to the number of tasks denoting the task index. The task denoted by the one-hot vector changes when we encounter a done=True, and only then. Also, each process should resample tasks each episode, and the sequence of tasks sampled by each process should be different. - Goals for a single task are fixed within episodes and either resampled each episode (meta learning benchmarks) or fixed across episodes (multi task learning benchmarks). Also, the initial placement of objects is fixed across episodes (multi task learning benchmarks) or resampled each episode (meta learning benchmarks). - Initial hand positions are identical between episodes from the same task. """ # Check if we are running a multi-task benchmark. mt_benchmarks = get_metaworld_benchmark_names() multitask = settings["env_name"] in mt_benchmarks # Determine whether or not goals should be resampled. ml_benchmarks = get_metaworld_ml_benchmark_names() resample_goals = settings["env_name"] in ml_benchmarks or settings[ "env_name" ].startswith("ML1_") settings["add_observability"] = resample_goals # Perform rollout. rollout = get_metaworld_rollout(settings) # Check task indices and task resampling, if necessary. if multitask: task_check(rollout) # Check goal resampling and initial observations, if necessary. We don't check this # in the case that observations are normalized, because in this case the same # goal/observation will look different on separate transitions due to varying # normalization statistics. check_goals = not settings["normalize_transition"] if check_goals: goal_check(rollout, resample_goals, multitask) initial_hand_check(rollout, multitask) def get_metaworld_rollout( settings: Dict[str, Any] ) -> Tuple[RolloutStorage, np.ndarray]: """ Execute and return a single rollout over a MetaWorld environment using configuration in `settings`. """ # Construct environment and policy. env = get_env( settings["env_name"], num_processes=settings["num_processes"], seed=settings["seed"], time_limit=settings["time_limit"], normalize_transition=settings["normalize_transition"], normalize_first_n=settings["normalize_first_n"], allow_early_resets=True, same_np_seed=settings["same_np_seed"], add_observability=settings["add_observability"], save_memory=settings["save_memory"], ) policy = get_policy(env, settings) rollout = RolloutStorage( rollout_length=settings["rollout_length"], observation_space=env.observation_space, action_space=env.action_space, num_processes=settings["num_processes"], hidden_state_size=1, device=settings["device"], ) rollout.set_initial_obs(env.reset()) # Collect rollout. for rollout_step in range(rollout.rollout_length): # Sample actions. with torch.no_grad(): values, actions, action_log_probs, hidden_states = policy.act( rollout.obs[rollout_step], rollout.hidden_states[rollout_step], rollout.dones[rollout_step], ) # Perform step and record in ``rollout``. obs, rewards, dones, infos = env.step(actions) rollout.add_step( obs, actions, dones, action_log_probs, values, rewards, hidden_states ) env.close() return rollout def task_check(rollout: RolloutStorage) -> None: """ Given a rollout, checks that task indices are returned from observations correctly and that tasks are resampled correctly within and between processes. """ # Get initial task indices. task_indices = get_task_indices(rollout.obs[0]) episode_tasks = { process: [task_indices[process]] for process in range(rollout.num_processes) } # Check if rollout satisfies conditions at each step. for step in range(rollout.rollout_step): # Get information from step. obs = rollout.obs[step] dones = rollout.dones[step] assert len(obs) == len(dones) new_task_indices = get_task_indices(obs) # Make sure that task indices are the same if we haven't reached a done, # otherwise set new task indices. Also track tasks attempted for each process. for process in range(len(obs)): done = dones[process] if done: task_indices[process] = new_task_indices[process] episode_tasks[process].append(task_indices[process]) else: assert task_indices[process] == new_task_indices[process] # Check that each process is resampling tasks. enough_ratio = sum( len(tasks) >= PROCESS_EPISODES for tasks in episode_tasks.values() ) / len(episode_tasks) if enough_ratio < ENOUGH_THRESHOLD: raise ValueError( "Less than %d episodes ran for more than half of processes, which is the" " minimum amount needed for testing. Try increasing rollout length." % (PROCESS_EPISODES) ) for process, tasks in episode_tasks.items(): if len(tasks) >= PROCESS_EPISODES: num_unique_tasks = len(set(tasks)) assert num_unique_tasks > 1 # Check that each process has distinct sequences of tasks. for p1, p2 in product(range(rollout.num_processes), range(rollout.num_processes)): if p1 == p2: continue assert episode_tasks[p1] != episode_tasks[p2] print("\nTasks for each process: %s" % episode_tasks) def goal_check(rollout: RolloutStorage, resample_goals: bool, multitask: bool) -> None: """ Given a rollout, checks that goals and initial object positions are resampled correctly within and between processes. """ # Get initial goals. task_indices = ( get_task_indices(rollout.obs[0]) if multitask else [0] * rollout.num_processes ) goals = get_goals(rollout.obs[0]) episode_goals = { task_indices[process]: [goals[process]] for process in range(rollout.num_processes) } # Get initial object placements. object_pos = get_object_pos(rollout.obs[0]) episode_object_pos = { task_indices[process]: [object_pos[process]] for process in range(rollout.num_processes) } # Check if rollout satisfies conditions at each step. for step in range(rollout.rollout_step): # Get information from step. obs = rollout.obs[step] dones = rollout.dones[step] assert len(obs) == len(dones) task_indices = ( get_task_indices(obs) if multitask else [0] * rollout.num_processes ) new_goals = get_goals(obs) new_object_pos = get_object_pos(obs) # Make sure that goal is the same if we haven't reached a done or if goal should # remain fixed across episodes, otherwise set new goal. for process in range(len(obs)): done = dones[process] if done and (resample_goals or multitask): goals[process] = new_goals[process] else: assert (goals[process] == new_goals[process]).all() # Track goals and initial object positions from each task. if done: task = task_indices[process] if task not in episode_goals: episode_goals[task] = [] episode_goals[task].append(goals[process]) if task not in episode_object_pos: episode_object_pos[task] = [] episode_object_pos[task].append(new_object_pos[process]) # Check that each task is resampling goals and initial object positions, if # necessary. enough_ratio = sum( len(task_goals) >= TASK_EPISODES for task_goals in episode_goals.values() ) / len(episode_goals) if enough_ratio < ENOUGH_THRESHOLD: raise ValueError( "Less than %d episodes ran for more than half of tasks, which is the" "minimum amount needed for testing. Try increasing rollout length." % (TASK_EPISODES) ) for task, task_goals in episode_goals.items(): if len(task_goals) >= TASK_EPISODES: goals_arr = np.array([g.numpy() for g in task_goals]) num_unique_goals = len(np.unique(goals_arr, axis=0)) if resample_goals: assert num_unique_goals > 1 else: assert num_unique_goals == 1 for task, task_object_pos in episode_object_pos.items(): if len(task_object_pos) >= TASK_EPISODES: object_pos_arr = np.array([p.numpy() for p in task_object_pos]) num_unique_pos = len(
np.unique(object_pos_arr, axis=0)
numpy.unique
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
#!/usr/bin/python ######################################################################################################################## # # Copyright (c) 2014, Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ######################################################################################################################## """ADC library """ import laygo import numpy as np from math import log import yaml import os import laygo.GridLayoutGeneratorHelper as laygenhelper #utility functions #import logging;logging.basicConfig(level=logging.DEBUG) def generate_boundary(laygen, objectname_pfix, placement_grid, devname_bottom, devname_top, devname_left, devname_right, shape_bottom=None, shape_top=None, shape_left=None, shape_right=None, transform_bottom=None, transform_top=None, transform_left=None, transform_right=None, origin=np.array([0, 0])): # generate a boundary structure to resolve boundary design rules pg = placement_grid # parameters if shape_bottom == None: shape_bottom = [np.array([1, 1]) for d in devname_bottom] if shape_top == None: shape_top = [np.array([1, 1]) for d in devname_top] if shape_left == None: shape_left = [np.array([1, 1]) for d in devname_left] if shape_right == None: shape_right = [np.array([1, 1]) for d in devname_right] if transform_bottom == None: transform_bottom = ['R0' for d in devname_bottom] if transform_top == None: transform_top = ['R0' for d in devname_top] if transform_left == None: transform_left = ['R0' for d in devname_left] if transform_right == None: transform_right = ['R0' for d in devname_right] # bottom dev_bottom = [] dev_bottom.append(laygen.place("I" + objectname_pfix + 'BNDBTM0', devname_bottom[0], pg, xy=origin, shape=shape_bottom[0], transform=transform_bottom[0])) for i, d in enumerate(devname_bottom[1:]): dev_bottom.append( laygen.relplace(name="I" + objectname_pfix + 'BNDBTM' + str(i + 1), templatename=d, gridname=pg, refinstname=dev_bottom[-1].name, shape=shape_bottom[i + 1], transform=transform_bottom[i + 1])) dev_left = [] dev_left.append(laygen.relplace(name="I" + objectname_pfix + 'BNDLFT0', templatename=devname_left[0], gridname=pg, refinstname=dev_bottom[0].name, direction='top', shape=shape_left[0], transform=transform_left[0])) for i, d in enumerate(devname_left[1:]): dev_left.append(laygen.relplace(name="I" + objectname_pfix + 'BNDLFT' + str(i + 1), templatename=d, gridname=pg, refinstname=dev_left[-1].name, direction='top', shape=shape_left[i + 1], transform=transform_left[i + 1])) dev_right = [] dev_right.append(laygen.relplace(name="I" + objectname_pfix + 'BNDRHT0', templatename=devname_right[0], gridname=pg, refinstname=dev_bottom[-1].name, direction='top', shape=shape_right[0], transform=transform_right[0])) for i, d in enumerate(devname_right[1:]): dev_right.append( laygen.relplace(name="I" + objectname_pfix + 'BNDRHT' + str(i + 1), templatename=d, gridname=pg, refinstname=dev_right[-1].name, direction='top', shape=shape_right[i + 1], transform=transform_right[i + 1])) dev_top = [] dev_top.append(laygen.relplace(name="I" + objectname_pfix + 'BNDTOP0', templatename=devname_top[0], gridname=pg, refinstname=dev_left[-1].name, direction='top', shape=shape_top[0], transform=transform_top[0])) for i, d in enumerate(devname_top[1:]): dev_top.append(laygen.relplace(name="I" + objectname_pfix + 'BNDTOP' + str(i + 1), templatename=d, gridname=pg, refinstname=dev_top[-1].name, shape=shape_top[i + 1], transform=transform_top[i + 1])) dev_right = [] return [dev_bottom, dev_top, dev_left, dev_right] def create_power_pin_from_inst(laygen, layer, gridname, inst_left, inst_right): """create power pin""" rvdd0_pin_xy = laygen.get_inst_pin_xy(inst_left.name, 'VDD', gridname, sort=True) rvdd1_pin_xy = laygen.get_inst_pin_xy(inst_right.name, 'VDD', gridname, sort=True) rvss0_pin_xy = laygen.get_inst_pin_xy(inst_left.name, 'VSS', gridname, sort=True) rvss1_pin_xy = laygen.get_inst_pin_xy(inst_right.name, 'VSS', gridname, sort=True) laygen.pin(name='VDD', layer=layer, xy=np.vstack((rvdd0_pin_xy[0], rvdd1_pin_xy[1])), gridname=gridname) laygen.pin(name='VSS', layer=layer, xy=np.vstack((rvss0_pin_xy[0], rvss1_pin_xy[1])), gridname=gridname) def generate_latch_ckb(laygen, objectname_pfix, templib_logic, placement_grid, routing_grid_m3m4, m=2, origin=np.array([0, 0])): """generate clock delay """ pg = placement_grid rg_m3m4 = routing_grid_m3m4 inv_name = 'inv_1x' latch_name = 'latch_2ck_' + str(m) + 'x' # placement iinv0 = laygen.place(name="I" + objectname_pfix + 'IINV0', templatename=inv_name, gridname=pg, xy=origin, template_libname=templib_logic) ilatch0 = laygen.relplace(name="I" + objectname_pfix + 'ILATCH0', templatename=latch_name, gridname=pg, refinstname=iinv0.name, template_libname=templib_logic) # internal pins pdict = laygen.get_inst_pin_xy(None, None, rg_m3m4) # internal routes x0 = laygen.get_inst_xy(name=iinv0.name, gridname=rg_m3m4)[0] + 1 y0 = pdict[iinv0.name]['I'][0][1] + 0 # route-clk rv0, rclk0 = laygen.route_vh(laygen.layers['metal'][3], laygen.layers['metal'][4], pdict[iinv0.name]['O'][0], pdict[ilatch0.name]['CLK'][0], rg_m3m4) # np.array([x0, y0 + 3]), rg_m3m4) # route-clkb rv0, rclkb0 = laygen.route_vh(laygen.layers['metal'][3], laygen.layers['metal'][4], pdict[iinv0.name]['I'][0], pdict[ilatch0.name]['CLKB'][0], rg_m3m4) print('test:', pdict[iinv0.name]['I'][0]) # pins x1 = laygen.get_inst_pin_xy(ilatch0.name, 'O', rg_m3m4)[1][0] rh0, rout0 = laygen.route_hv(laygen.layers['metal'][4], laygen.layers['metal'][3], pdict[ilatch0.name]['O'][0], np.array([x1, y0 + 4]), rg_m3m4) laygen.boundary_pin_from_rect(rout0, rg_m3m4, "O", laygen.layers['pin'][3], size=4, direction='top') in_xy = laygen.get_inst_pin_xy(ilatch0.name, 'I', rg_m3m4) laygen.pin(name='I', layer=laygen.layers['pin'][3], xy=in_xy, gridname=rg_m3m4) laygen.pin_from_rect('CLKB', laygen.layers['pin'][4], rclkb0, rg_m3m4) # power pin create_power_pin_from_inst(laygen, layer=laygen.layers['pin'][2], gridname=rg_m1m2, inst_left=iinv0, inst_right=ilatch0) def generate_retimer_slice(laygen, objectname_pfix, templib_logic, placement_grid, routing_grid_m3m4, rg_m3m4_basic_thick, rg_m4m5_thick, num_bits=9, origin=np.array([0, 0])): """generate clock delay """ pg = placement_grid rg_m3m4 = routing_grid_m3m4 tap_name='tap' #Calculate layout size x0=laygen.templates.get_template('sar_wsamp_bb_doubleSA', workinglib).xy[1][0] tap_origin = origin array_origin = origin + np.array([laygen.get_template_xy(name=tap_name, gridname=pg, libname=templib_logic)[0], 0]) tapr_origin = np.array([laygen.get_template_xy(name='sar_wsamp_bb_doubleSA', gridname=pg, libname=workinglib)[0], 0]) \ - np.array([laygen.get_template_xy(name=tap_name, gridname=pg, libname=templib_logic)[0], 0]) #Space calculation inv_name = 'inv_1x' latch_name = 'latch_ckb' space_name = 'space_1x' space4x_name = 'space_4x' space_width = laygen.get_template_xy(name = space_name, gridname = pg, libname = templib_logic)[0] space4_width = laygen.get_template_xy(name = space4x_name, gridname = pg, libname = templib_logic)[0] latch_array_width = num_bits*laygen.get_template_xy(name = latch_name, gridname = pg, libname = workinglib)[0] blank_width = tapr_origin[0] - array_origin[0] - latch_array_width m_space4 = int(blank_width / space4_width) m_space1 = int((blank_width-m_space4*space4_width)/space_width) # placement: first row # iinv0 = laygen.place(name="I" + objectname_pfix + 'IINV0', templatename=inv_name, # gridname=pg, xy=origin, template_libname=templib_logic) itapl2 = laygen.relplace(name="I" + objectname_pfix + 'ITAPL2', templatename=tap_name, gridname=pg, refinstname=None, xy=tap_origin, template_libname=templib_logic) itapr2 = laygen.relplace(name="I" + objectname_pfix + 'ITAPR2', templatename=tap_name, gridname = pg, refinstname = None, xy = tapr_origin, template_libname = templib_logic) ilatch2 = laygen.relplace(name="I" + objectname_pfix + 'ILATCH2', templatename=latch_name, shape=[num_bits,1], gridname=pg, refinstname=itapl2.name, template_libname=workinglib) ispace4x2 = laygen.relplace(name="I" + objectname_pfix + 'ISP4x2', templatename=space4x_name, shape=[m_space4,1], gridname=pg, refinstname=ilatch2.name, template_libname=templib_logic) if m_space4 == 0: ispace1x2 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x2', templatename=space_name, shape=[m_space1, 1], gridname=pg, refinstname=ilatch2.name, template_libname=templib_logic) else: ispace1x2 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x2', templatename=space_name, shape=[m_space1,1], gridname=pg, refinstname=ispace4x2.name, template_libname=templib_logic) #second row itapl1 = laygen.relplace(name="I" + objectname_pfix + 'ITAPL1', templatename=tap_name, transform='MX', gridname=pg, refinstname=itapl2.name, direction='top', template_libname=templib_logic) itapr1 = laygen.relplace(name="I" + objectname_pfix + 'ITAPR1', templatename=tap_name, transform='MX', gridname=pg, refinstname=itapr2.name, direction='top', template_libname=templib_logic) ilatch1 = laygen.relplace(name="I" + objectname_pfix + 'ILATCH1', templatename=latch_name, shape=[num_bits, 1], transform='MX', gridname=pg, refinstname=itapl1.name, template_libname=workinglib) ispace4x1 = laygen.relplace(name="I" + objectname_pfix + 'ISP4x1', templatename=space4x_name, shape=[m_space4, 1], transform='MX', gridname=pg, refinstname=ilatch1.name, template_libname=templib_logic) if m_space4 == 0: ispace1x1 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x1', templatename=space_name, shape=[m_space1, 1], transform='MX', gridname=pg, refinstname=ilatch1.name, template_libname=templib_logic) else: ispace1x1 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x1', templatename=space_name, shape=[m_space1, 1], transform='MX', gridname=pg, refinstname=ispace4x1.name, template_libname=templib_logic) # second row itapl0 = laygen.relplace(name="I" + objectname_pfix + 'ITAPL0', templatename=tap_name, gridname=pg, refinstname=itapl1.name, direction='top', template_libname=templib_logic) itapr0 = laygen.relplace(name="I" + objectname_pfix + 'ITAPR0', templatename=tap_name, gridname=pg, refinstname=itapr1.name, direction='top', template_libname=templib_logic) ilatch0 = laygen.relplace(name="I" + objectname_pfix + 'ILATCH0', templatename=latch_name, shape=[num_bits, 1], gridname=pg, refinstname=itapl0.name, template_libname=workinglib) ispace4x0 = laygen.relplace(name="I" + objectname_pfix + 'ISP4x0', templatename=space4x_name, shape=[m_space4, 1], gridname=pg, refinstname=ilatch0.name, template_libname=templib_logic) if m_space4 == 0: ispace1x0 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x0', templatename=space_name, shape=[m_space1, 1], gridname=pg, refinstname=ilatch0.name, template_libname=templib_logic) else: ispace1x0 = laygen.relplace(name="I" + objectname_pfix + 'ISP1x0', templatename=space_name, shape=[m_space1, 1], gridname=pg, refinstname=ispace4x0.name, template_libname=templib_logic) # internal pins pdict = laygen.get_inst_pin_xy(None, None, rg_m3m4) # # internal routes # x0 = laygen.get_inst_xy(name=iinv0.name, gridname=rg_m3m4)[0] + 1 # y0 = pdict[iinv0.name]['I'][0][1] + 0 # # route-clkb rclkb0 = laygen.route(None, laygen.layers['metal'][4], xy0=laygen.get_inst_pin_xy(ilatch0.name, 'CLKB', rg_m3m4, index=[0, 0])[0], xy1=laygen.get_inst_pin_xy(ilatch0.name, 'CLKB', rg_m3m4, index=[num_bits-1, 0])[0], gridname0=rg_m3m4) rclkb1 = laygen.route(None, laygen.layers['metal'][4], xy0=laygen.get_inst_pin_xy(ilatch1.name, 'CLKB', rg_m3m4, index=[0, 0])[0], xy1=laygen.get_inst_pin_xy(ilatch1.name, 'CLKB', rg_m3m4, index=[num_bits-1, 0])[0], gridname0=rg_m3m4) rclkb2 = laygen.route(None, laygen.layers['metal'][4], xy0=laygen.get_inst_pin_xy(ilatch2.name, 'CLKB', rg_m3m4, index=[0, 0])[0], xy1=laygen.get_inst_pin_xy(ilatch2.name, 'CLKB', rg_m3m4, index=[num_bits-1, 0])[0], gridname0=rg_m3m4) # route-internal signals for i in range(num_bits): [rv0, rh0, rv1] = laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], laygen.get_inst_pin_xy(ilatch0.name, 'O', rg_m3m4, index=[i, 0])[0], laygen.get_inst_pin_xy(ilatch1.name, 'I', rg_m3m4, index=[i, 0])[0], laygen.get_inst_pin_xy(ilatch0.name, 'O', rg_m3m4, index=[i, 0])[0][1] - 4, rg_m3m4) [rv0, rh0, rv1] = laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], laygen.get_inst_pin_xy(ilatch1.name, 'O', rg_m3m4, index=[i, 0])[0], laygen.get_inst_pin_xy(ilatch2.name, 'I', rg_m3m4, index=[i, 0])[0], laygen.get_inst_pin_xy(ilatch1.name, 'O', rg_m3m4, index=[i, 0])[0][1] - 5, rg_m3m4) # pins laygen.pin_from_rect('clkb0', laygen.layers['pin'][4], rclkb0, rg_m3m4) laygen.pin_from_rect('clkb1', laygen.layers['pin'][4], rclkb1, rg_m3m4) laygen.pin_from_rect('clkb2', laygen.layers['pin'][4], rclkb2, rg_m3m4) for i in range(num_bits): in_xy = laygen.get_inst_pin_xy(ilatch0.name, 'I', rg_m3m4, index=[i,0]) laygen.pin(name='in<%d>'%i, layer=laygen.layers['pin'][3], xy=in_xy, gridname=rg_m3m4) out_xy = laygen.get_inst_pin_xy(ilatch2.name, 'O', rg_m3m4, index=[i,0]) laygen.pin(name='out<%d>'%i, layer=laygen.layers['pin'][3], xy=out_xy, gridname=rg_m3m4) # power pin pwr_dim=laygen.get_template_xy(name=itapl0.cellname, gridname=rg_m2m3, libname=itapl0.libname) rvddl = [] rvssl = [] rvddr = [] rvssr = [] for i in range(0, int(pwr_dim[0]/2)): rvddl.append(laygen.route(None, laygen.layers['metal'][3], xy0=np.array([2*i+1, 0]), xy1=np.array([2*i+1, 0]), gridname0=rg_m2m3, refinstname0=itapl2.name, refpinname0='VSS', refinstindex0=np.array([0, 0]), refinstname1=itapl0.name, refpinname1='VDD', refinstindex1=np.array([0, 0]))) rvssl.append(laygen.route(None, laygen.layers['metal'][3], xy0=np.array([2*i+2, 0]), xy1=np.array([2*i+2, 0]), gridname0=rg_m2m3, refinstname0=itapl2.name, refpinname0='VSS', refinstindex0=np.array([0, 0]), refinstname1=itapl0.name, refpinname1='VDD', refinstindex1=np.array([0, 0]))) laygen.via(None, xy=np.array([2*i+1, 0]), gridname=rg_m2m3, refinstname=itapl0.name, refpinname='VDD') laygen.via(None, xy=np.array([2*i+1, 0]), gridname=rg_m2m3, refinstname=itapl1.name, refpinname='VDD') laygen.via(None, xy=np.array([2*i+1, 0]), gridname=rg_m2m3, refinstname=itapl2.name, refpinname='VDD') laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapl0.name, refpinname='VSS') laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapl1.name, refpinname='VSS') laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapl2.name, refpinname='VSS') laygen.pin(name = 'VDDL'+str(i), layer = laygen.layers['pin'][3], refobj = rvddl[-1], gridname=rg_m2m3, netname='VDD') laygen.pin(name = 'VSSL'+str(i), layer = laygen.layers['pin'][3], refobj = rvssl[-1], gridname=rg_m2m3, netname='VSS') rvddr.append(laygen.route(None, laygen.layers['metal'][3], xy0=np.array([2*i+2, 0]), xy1=np.array([2*i+2, 0]), gridname0=rg_m2m3, refinstname0=itapr2.name, refpinname0='VSS', refinstindex0=np.array([0, 0]), refinstname1=itapr0.name, refpinname1='VDD', refinstindex1=np.array([0, 0]))) rvssr.append(laygen.route(None, laygen.layers['metal'][3], xy0=np.array([2*i+1, 0]), xy1=np.array([2*i+1, 0]), gridname0=rg_m2m3, refinstname0=itapr2.name, refpinname0='VSS', refinstindex0=np.array([0, 0]), refinstname1=itapr0.name, refpinname1='VDD', refinstindex1=np.array([0, 0]))) laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapr0.name, refpinname='VDD') laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapr1.name, refpinname='VDD') laygen.via(None, xy=np.array([2 * i + 2, 0]), gridname=rg_m2m3, refinstname=itapr2.name, refpinname='VDD') laygen.via(None, xy=np.array([2 * i + 1, 0]), gridname=rg_m2m3, refinstname=itapr0.name, refpinname='VSS') laygen.via(None, xy=
np.array([2 * i + 1, 0])
numpy.array
import numpy as np import matplotlib.pyplot as plt class jFoil: """ Joukowsky foil creator. Parameters: a - Radius of the pre-transformation cilinder. Approximately 1/4 of the final chord length. relThickness - Proportional to the thickness of the airfoil. Must be between 0 and 1. For airfoils, it is generally close to 0.9. beta - Curvature of the foil in degrees. [n] - number of samples that make the foil. Default 100. """ def __init__(self, a, relThickness, beta, n=100): if relThickness < 0 or relThickness > 1: raise ValueError( "Bad value of airfoil thickness (relative thickness must be between 0 and 1)") self.a = a self.relThickness = relThickness self.beta = np.deg2rad(beta) self._theta =
np.linspace(0, 2*np.pi, n)
numpy.linspace
#!/usr/bin/env python import math import numpy as np import signal import scipy.ndimage as ndimage import pdb """ This file contains scripts to filter ALOS data. """ def enhanced_lee_filter(img, window_size = 5, n_looks = 16): ''' Filters a masked array with the enhanced lee filter. Based on formulation here: http://www.pcigeomatics.com/geomatica-help/concepts/orthoengine_c/Chapter_825.html Args: img: A masked array window_size: Must be an odd number. Defaults to 7, which appears to give the best results. n_looks: Equivalent number of looks. Defaults to 16, equivalent to native ENL of ALOS mosaic data. Returns: A masked array with a filtered verison of img ''' assert type(window_size == int), "Window size must be an integer. You input the value: %s"%str(window_size) assert (window_size % 2) == 1, "Window size must be an odd number. You input the value: %s"%str(window_size) assert window_size >= 3, "Window size must be at least 3. You input the value: %s"%str(window_size) # Inner function to calculate mean with a moving window and a masked array def _window_mean(img, window_size = 3): ''' Based on https://stackoverflow.com/questions/18419871/improving-code-efficiency-standard-deviation-on-sliding-windows ''' from scipy import signal c1 = signal.convolve2d(img, np.ones((window_size, window_size)) / (window_size ** 2), boundary = 'symm') border = math.floor(window_size / 2) return c1[border:-border, border:-border] # Inner function to calculate standard deviation with a moving window and a masked array def _window_stdev(img, window_size = 3): ''' Based on https://stackoverflow.com/questions/18419871/improving-code-efficiency-standard-deviation-on-sliding-windows and http://nickc1.github.io/python,/matlab/2016/05/17/Standard-Deviation-(Filters)-in-Matlab-and-Python.html ''' from scipy import signal c1 = signal.convolve2d(img, np.ones((window_size, window_size)) / (window_size ** 2), boundary = 'symm') c2 = signal.convolve2d(img*img, np.ones((window_size, window_size)) / (window_size ** 2), boundary = 'symm') border = math.floor(window_size / 2) variance = c2 - c1 * c1 variance[variance < 0] += 0.01 # Prevents divide by zero errors. return np.sqrt(variance)[border:-border, border:-border] # Damping factor, set to 1 which is adequate for most SAR images k = 1 cu = (1./n_looks) ** 0.5 cmax = (1 + (2./n_looks)) ** 0.5 # Interpolate across nodata areas. No standard Python filters understand nodata values; this is a simplification indices = ndimage.distance_transform_edt(img.mask, return_distances = False, return_indices = True) data = img.data[tuple(indices)] img_mean = _window_mean(data, window_size = window_size) img_std = _window_stdev(data, window_size = window_size) ci = img_std / img_mean ci[np.isfinite(ci) == False] = 0. W = np.zeros_like(ci) # There are three conditions in the enhanced lee filter W[ci <= cu] = 1. W[ci >= cmax] = 0. sel = np.logical_and(ci > cu, ci < cmax) W[sel] = np.exp((-k * (ci[sel] - cu)) / (cmax - ci[sel])) img_filtered = (img_mean * W) + (data * (1. - W)) img_filtered = np.ma.array(img_filtered, mask = np.logical_or(
np.isnan(img_filtered)
numpy.isnan
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use('ggplot') from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.ticker as mtick import BS import bootstrapping ######################################################################### Training loss #Plot loss for each epoch def plotEpochLoss(lossSerie): fig = plt.figure(figsize=(20,10)) ax = fig.gca() ax.plot(lossSerie , "-", color="black") ax.set_xlabel("Epoch number", fontsize=18, labelpad=20) ax.set_ylabel("Logarithmic Loss", fontsize=18, labelpad=20) ax.set_title("Training Loss evolution", fontsize=24) ax.tick_params(labelsize=16) ax.set_facecolor('white') plt.show() return ######################################################################### Plotting smiles #Plot a surface as a superposition of curves def plotMultipleCurve(data, Title = 'True Price Surface', yMin = 0, yMax = 1, zAsPercent = False): dataCurve = data[(data.index.get_level_values("Strike") <= yMax) * (data.index.get_level_values("Strike") >= yMin)] fig = plt.figure(figsize=(20,10)) ax = fig.gca() for t in np.linspace(0,0.8,9) : k = dataCurve[dataCurve.index.get_level_values("Maturity") >= t].index.get_level_values("Maturity").unique().min() curveK = dataCurve[dataCurve.index.get_level_values("Maturity")==k] dataSerie = pd.Series(curveK.values * (100 if zAsPercent else 1) , index = curveK.index.get_level_values("Strike")) ax.plot(dataSerie , "--+", label=str(k)) ax.legend() ax.set_xlabel(data.index.names[0], fontsize=18, labelpad=20) ax.set_ylabel(data.name, fontsize=18, labelpad=20) if zAsPercent : ax.yaxis.set_major_formatter(mtick.PercentFormatter()) ax.set_title(Title, fontsize=24) ax.tick_params(labelsize=16) ax.set_facecolor('white') plt.show() return ######################################################################### Plot surface #Plotting function for surface #xTitle : title for x axis #yTitle : title for y axis #zTitle : title for z axis #Title : plot title #az : azimuth i.e. angle of view for surface #yMin : minimum value for y axis #yMax : maximum value for y axis #zAsPercent : boolean, if true format zaxis as percentage def plot2GridCustom(coordinates, zValue, coordinates2, zValue2, xTitle = "Maturity", yTitle = "Strike", zTitle = "Price", Title = 'True Price Surface', az=320, yMin = 0, yMax = 1, zAsPercent = False): y = coordinates[:,0] filteredValue = (y > yMin) & (y < yMax) x = coordinates[:,1][filteredValue] y = coordinates[:,0][filteredValue] z = zValue[filteredValue].flatten() y2 = coordinates2[:,0] filteredValue2 = (y2 > yMin) & (y2 < yMax) x2 = coordinates2[:,1][filteredValue2] y2 = coordinates2[:,0][filteredValue2] z2 = zValue2[filteredValue2].flatten() fig = plt.figure(figsize=(20,10)) ax = fig.gca(projection='3d') ax.set_xlabel(xTitle, fontsize=18, labelpad=20) ax.set_ylabel(yTitle, fontsize=18, labelpad=20) ax.set_zlabel(zTitle, fontsize=18, labelpad=10) cmap=plt.get_cmap("inferno") colors=cmap(z * 100 if zAsPercent else z)[np.newaxis, :, :3] ax.scatter(x2, y2, z2, marker='o', color="r", alpha=1, s=40) ax.scatter(x, y, z, marker='o', color="b", alpha=1, s=40) #surf = ax.plot_trisurf(x, y, # z * 100 if zAsPercent else z , # linewidth=1.0, # antialiased=True, # cmap = cmap, # color=(0,0,0,0)) #scaleEdgeValue = surf.to_rgba(surf.get_array()) #surf.set_edgecolors(scaleEdgeValue) #surf.set_alpha(0) if zAsPercent : ax.zaxis.set_major_formatter(mtick.PercentFormatter()) ax.view_init(elev=10., azim=az) #ax.set_title(Title, fontsize=24) ax.set_facecolor('white') plt.tick_params(labelsize=16) plt.show() return #Plotting function from a pandas series def plot2Series(data, data2, Title = 'True Price Surface', az=320, yMin = 0, yMax = 1, zAsPercent = False): plot2GridCustom(data.index.to_frame().values, data.values, data2.index.to_frame().values, data2.values, xTitle = data.index.names[1], yTitle = data.index.names[0], zTitle = data.name, Title = Title, az=az, yMin = yMin, yMax = yMax, zAsPercent = zAsPercent) return def convertToLogMoneyness(formerSerie, S0): maturity = formerSerie.index.get_level_values("Maturity") logMoneyness = np.log(S0 / formerSerie.index.get_level_values("Strike")) newIndex = pd.MultiIndex.from_arrays([np.array(logMoneyness.values), np.array(maturity.values)], names=('LogMoneyness', 'Maturity')) if type(formerSerie) == type(pd.Series()) : return pd.Series(formerSerie.values , index=newIndex) return pd.DataFrame(formerSerie.values, index = newIndex, columns= formerSerie.columns) #Plotting function for surface #xTitle : title for x axis #yTitle : title for y axis #zTitle : title for z axis #Title : plot title #az : azimuth i.e. angle of view for surface #yMin : minimum value for y axis #yMax : maximum value for y axis #zAsPercent : boolean, if true format zaxis as percentage def plotGridCustom(coordinates, zValue, xTitle = "Maturity", yTitle = "Strike", zTitle = "Price", Title = 'True Price Surface', az=320, yMin = 0, yMax = 1, zAsPercent = False): y = coordinates[:,0] filteredValue = (y > yMin) & (y < yMax) x = coordinates[:,1][filteredValue] y = coordinates[:,0][filteredValue] z = zValue[filteredValue].flatten() fig = plt.figure(figsize=(15,9)) ax = fig.gca(projection='3d') fontsize = 15 pad = 20 ax.set_xlabel(xTitle, color = "k", fontsize=fontsize, labelpad=pad * 1.0) ax.set_ylabel(yTitle, color = "k", fontsize=fontsize, labelpad=pad * 1.0) ax.set_zlabel(zTitle, color = "k", fontsize=fontsize, labelpad=pad * 1.0) cmap=plt.get_cmap("jet")#("inferno") colors=cmap(z * 100 if zAsPercent else z)[np.newaxis, :, :3] surf = ax.plot_trisurf(x, y, z * 100 if zAsPercent else z , linewidth=1.0, antialiased=True, cmap = cmap, color=(0,0,0,0)) scaleEdgeValue = surf.to_rgba(surf.get_array()) surf.set_edgecolors(scaleEdgeValue) surf.set_alpha(0) if zAsPercent : ax.zaxis.set_major_formatter(mtick.PercentFormatter()) ax.view_init(elev=40., azim=az) ax.set_ylim(np.amax(y), np.amin(y)) ax.set_title(Title, fontsize=fontsize * 1.2)#, rotation='vertical', x=0.1, y=0.8) ax.set_facecolor('white') plt.tick_params(axis = "y", labelsize=fontsize * 0.9, pad = pad * 0.4, color = [1,0,0,1]) plt.tick_params(axis = "z", labelsize=fontsize * 0.9, pad = pad * 0.5, color = [1,0,0,1]) plt.tick_params(axis = "x", labelsize=fontsize * 0.9, pad = pad * 0.05, color = [1,0,0,1]) plt.tight_layout() plt.show() return #Plotting function from a dataframe def plotSurface(data, zName, Title = 'True Price Surface', az=320, yMin = 0, yMax = 1, zAsPercent = False): plotGridCustom(dataSet.index.to_frame().values, data[zName].values, xTitle = dataSet.index.names[1], yTitle = dataSet.index.names[0], zTitle = zName, Title = Title, az=az, yMin = yMin, yMax = yMax, zAsPercent=zAsPercent) return #Plotting function from a pandas series def plotSerie(data, Title = 'True Price Surface', az=320, yMin = 0, yMax = 1, zAsPercent = False): plotGridCustom(data.index.to_frame().values, data.values, xTitle = data.index.names[1], yTitle = data.index.names[0], zTitle = data.name, Title = Title, az=az, yMin = yMin, yMax = yMax, zAsPercent = zAsPercent) return ######################################################################### Training Diagnostic def selectIndex(df, indexToKeep): return df.loc[indexToKeep][ ~df.loc[indexToKeep].index.duplicated(keep='first') ] #Plot predicted value, benchmark value, absoluate error and relative error #It also compute RMSE between predValue and refValue #predValue : approximated value #refValue : benchamrk value #quantityName : name for approximated quantity #az : azimuth i.e. angle of view for surface #yMin : minimum value for y axis #yMax : maximum value for y axis def predictionDiagnosis(predValue, refValue, quantityName, az=320, yMin = 0, yMax = 1, threshold = None): if threshold is not None : filterIndex = refValue[refValue >= threshold].index predictionDiagnosis(selectIndex(predValue, filterIndex), selectIndex(refValue, filterIndex), quantityName, az=az, yMin = yMin, yMax = yMax, threshold = None) return predValueFiltered = predValue[predValue.index.get_level_values("Maturity") > 0.001] refValueFiltered = refValue[refValue.index.get_level_values("Maturity") > 0.001] title = "Predicted " + quantityName + " surface" plotSerie(predValueFiltered.rename(quantityName), Title = title, az=az, yMin = yMin, yMax = yMax) title = "True " + quantityName + " surface" plotSerie(refValueFiltered.rename(quantityName), Title = title, az=az, yMin = yMin, yMax = yMax) title = quantityName + " surface error" absoluteError = np.abs(predValueFiltered - refValueFiltered) plotSerie(absoluteError.rename(quantityName + " Absolute Error"), Title = title, az=az, yMin = yMin, yMax = yMax) title = quantityName + " surface error" relativeError = np.abs(predValueFiltered - refValueFiltered) / refValueFiltered plotSerie(relativeError.rename(quantityName + " Relative Error (%)"), Title = title, az=az, yMin = yMin, yMax = yMax, zAsPercent = True) print("RMSE : ", np.sqrt(np.mean(np.square(absoluteError))) ) print("RMSE Relative: ", np.sqrt(np.mean(
np.square(relativeError)
numpy.square
# Distributed under the MIT License. # See LICENSE.txt for details. import numpy as np def strain_curved(deriv_displacement, metric, deriv_metric, christoffel_first_kind, displacement): deriv_displacement_lo = ( np.einsum('jk,ik->ij', metric, deriv_displacement) +
np.einsum('k,ijk->ij', displacement, deriv_metric)
numpy.einsum
import cv2 as cv import re import numpy as np from time import time import os import pickle import image_utils as imutils from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.externals import joblib import logging from skimage.exposure import rescale_intensity from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float model_dir = "model/" #model_dir = "." covs_path = model_dir+"conv_em.dat" means_path = model_dir+"mean_em.dat" class EMsegmentation: def __init__(self): self.means = pickle.load( open( means_path, "rb" ) ) self.covs = pickle.load( open( covs_path, "rb" ) ) #self.kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,(3,3)) self.kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3)) self.no_of_clusters = 2 def segment(self, img): hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) output = hsv.copy() colors = np.array([[255, 255, 255], [0, 0, 0]]) x, y, z = img.shape distance = [0] * self.no_of_clusters t0 = time() for i in range(x): for j in range(y): for k in range(self.no_of_clusters): diff = hsv[i, j] - self.means[k] distance[k] = abs(np.dot(np.dot(diff, self.covs[k]), diff.T)) output[i][j] = colors[distance.index(max(distance))] #print("Segmentation done in %0.3fs" % (time() - t0)) output = cv.cvtColor(output, cv.COLOR_BGR2GRAY) output = cv.morphologyEx(output, cv.MORPH_OPEN, self.kernel) output = cv.morphologyEx(output, cv.MORPH_CLOSE, self.kernel) output = cv.dilate(output,self.kernel,iterations = 1) roi = cv.cvtColor(output,cv.COLOR_GRAY2BGR) return roi class BackPropagationSegmentation: def __init__(self): #self.disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5)) self.kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3)) #initialize the kernel to use in the morphological operations self.kernel = np.ones((5,5),np.uint8) def segment(self, roi): #get roi dimensions roi_height, roi_width, roi_channels = roi.shape #print(roi_width,roi_height) #get center point centerx = int(roi_width/2) centery = int(roi_height/2) #print(centerx,centery) #get a square of 50x50 centered in the center point #square roi points sqrt_x = centerx - 25 sqrt_y = centery - 25 sqrt_w = 50 sqrt_h = 50 #get the square roi from the image sqrt_roi = roi[sqrt_y:sqrt_y+sqrt_h, sqrt_x:sqrt_x+sqrt_w] #cv.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2) #cv.imshow("square_roi", sqrt_roi) hsv = cv.cvtColor(sqrt_roi,cv.COLOR_BGR2HSV) hsvt = cv.cvtColor(roi,cv.COLOR_BGR2HSV) # calculating object histogram roihist = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] ) # normalize histogram and apply backprojection cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX) disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5)) kernel = np.ones((5,5),np.uint8) dst = cv.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1) cv.filter2D(dst,-1,disc,dst) # threshold and binary AND ret,thresh = cv.threshold(dst,50,255,0) thresh = cv.merge((thresh,thresh,thresh)) res = cv.bitwise_and(roi,thresh) #res = np.vstack((target,thresh,res)) #res = cv.morphologyEx(res, cv.MORPH_OPEN, kernel) #res = cv.morphologyEx(res, cv.MORPH_CLOSE, kernel) #res = cv.morphologyEx(res, cv.MORPH_CLOSE, kernel) #drawCross(res,[centerx,centery],(255, 0, 255), 2) #cv.rectangle(res,(sqrt_x,sqrt_y),(sqrt_x+sqrt_w,sqrt_y+sqrt_h),(0,0,255),2) thresh = cv.cvtColor(thresh, cv.COLOR_BGR2GRAY) thresh = cv.morphologyEx(thresh, cv.MORPH_OPEN, self.kernel) thresh = cv.morphologyEx(thresh, cv.MORPH_CLOSE, self.kernel) thresh = cv.dilate(thresh,self.kernel,iterations = 1) thresh = cv.cvtColor(thresh,cv.COLOR_GRAY2BGR) thresh = cv.blur(thresh,(5,5)) return thresh class StaticColorSegmentation: def __init__(self): # Constants for finding range of skin color in YCrCb self.min_YCrCb = np.array([0,133,77],np.uint8) self.max_YCrCb = np.array([255,173,127],np.uint8) self.kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3)) def segment(self, roi): t0 = time() # Convert image to YCrCb imageYCrCb = cv.cvtColor(roi,cv.COLOR_BGR2YCR_CB) # Find region with skin tone in YCrCb image skinRegion = cv.inRange(imageYCrCb,self.min_YCrCb,self.max_YCrCb) #area,roi,x,y,w,h = imutils.FindBiggestContour(skinRegion) t1 = (time())-t0 fps = 1/t1 skinRegion = cv.morphologyEx(skinRegion, cv.MORPH_OPEN, self.kernel) skinRegion = cv.morphologyEx(skinRegion, cv.MORPH_CLOSE, self.kernel) #skinRegion = cv.blur(skinRegion,(3,3)) roi = cv.cvtColor(skinRegion,cv.COLOR_GRAY2BGR) #print("roi processed in: ", t1, "s") #print("Theoretical fps: ", fps) return roi class BGSegmentation: def __init__(self): self.bgSubThreshold = 50 self.learningRate = 0 self.kernel = np.ones((3, 3), np.uint8) self.bgModel = cv.createBackgroundSubtractorMOG2(0, self.bgSubThreshold) def segment(self, frame): fgmask = self.bgModel.apply(frame,learningRate=self.learningRate) fgmask = cv.erode(fgmask, self.kernel, iterations=1) res = cv.bitwise_and(frame, frame, mask=fgmask) return res class TreeSegmentation: def __init__(self): self.model_path = "models/tree_skin.mod" self.clf = joblib.load(self.model_path) def ReadData(self): #Data in format [B G R Label] from data = np.genfromtxt('skin_nskin.txt', dtype=np.int32) labels= data[:,3] data= data[:,0:3] return data, labels def BGR2HSV(self, bgr): bgr= np.reshape(bgr,(bgr.shape[0],1,3)) hsv= cv.cvtColor(
np.uint8(bgr)
numpy.uint8
""" Module for loading PypeIt files """ import os import warnings import numpy as np from astropy import units from astropy.time import Time from astropy.io import fits from astropy.table import Table from linetools.spectra.xspectrum1d import XSpectrum1D from linetools.spectra.utils import collate import linetools.utils from pypeit import msgs from IPython import embed from pypeit.core import parse # TODO I don't think we need this routine def load_ext_to_array(hdulist, ext_id, ex_value='OPT', flux_value=True, nmaskedge=None): ''' It will be called by load_1dspec_to_array. Load one-d spectra from ext_id in the hdulist Args: hdulist: FITS HDU list ext_id: extension name, i.e., 'SPAT1073-SLIT0001-DET03', 'OBJID0001-ORDER0003', 'OBJID0001-ORDER0002-DET01' ex_value: 'OPT' or 'BOX' flux_value: if True load fluxed data, else load unfluxed data Returns: tuple: Returns wave, flux, ivar, mask ''' if (ex_value != 'OPT') and (ex_value != 'BOX'): msgs.error('{:} is not recognized. Please change to either BOX or OPT.'.format(ex_value)) # get the order/slit information ntrace0 = np.size(hdulist)-1 idx_names = [] for ii in range(ntrace0): idx_names.append(hdulist[ii+1].name) # idx name # Initialize ext ext = None for indx in (idx_names): if ext_id in indx: ext = indx if ext is None: msgs.error('Can not find extension {:}.'.format(ext_id)) else: hdu_iexp = hdulist[ext] wave = hdu_iexp.data['{:}_WAVE'.format(ex_value)] mask = hdu_iexp.data['{:}_MASK'.format(ex_value)] # Mask Edges if nmaskedge is not None: mask[:int(nmaskedge)] = False mask[-int(nmaskedge):] = False if flux_value: flux = hdu_iexp.data['{:}_FLAM'.format(ex_value)] ivar = hdu_iexp.data['{:}_FLAM_IVAR'.format(ex_value)] else: msgs.warn('Loading unfluxed spectra') flux = hdu_iexp.data['{:}_COUNTS'.format(ex_value)] ivar = hdu_iexp.data['{:}_COUNTS_IVAR'.format(ex_value)] return wave, flux, ivar, mask # TODO merge this with unpack orders def load_1dspec_to_array(fnames, gdobj=None, order=None, ex_value='OPT', flux_value=True, nmaskedge=None): ''' Load the spectra from the 1d fits file into arrays. If Echelle, you need to specify which order you want to load. It can NOT load all orders for Echelle data. Args: fnames (list): 1D spectra fits file(s) gdobj (list): extension name (longslit/multislit) or objID (Echelle) order (None or int): order number ex_value (str): 'OPT' or 'BOX' flux_value (bool): if True it will load fluxed spectra, otherwise load counts Returns: tuple: Returns the following: - waves (ndarray): wavelength array of your spectra, see below for the shape information of this array. - fluxes (ndarray): flux array of your spectra - ivars (ndarray): ivars of your spectra - masks (ndarray, bool): mask array of your spectra The shapes of all returns are exactly the same. - Case 1: np.size(fnames)=np.size(gdobj)=1, order=None for Longslit or order=N (an int number) for Echelle Longslit/single order for a single fits file, they are 1D arrays with the size equal to Nspec - Case 2: np.size(fnames)=np.size(gdobj)>1, order=None for Longslit or order=N (an int number) for Echelle Longslit/single order for a list of fits files, 2D array, the shapes are Nspec by Nexp - Case 3: np.size(fnames)=np.size(gdobj)=1, order=None All Echelle orders for a single fits file, 2D array, the shapes are Nspec by Norders - Case 4: np.size(fnames)=np.size(gdobj)>1, order=None All Echelle orders for a list of fits files, 3D array, the shapres are Nspec by Norders by Nexp ''' # read in the first fits file if isinstance(fnames, (list, np.ndarray)): nexp = np.size(fnames) fname0 = fnames[0] elif isinstance(fnames, str): nexp = 1 fname0 = fnames hdulist = fits.open(fname0) header = hdulist[0].header npix = header['NPIX'] pypeline = header['PYPELINE'] # get the order/slit information ntrace0 = np.size(hdulist)-1 idx_orders = [] for ii in range(ntrace0): idx_orders.append(int(hdulist[ii+1].name.split('-')[1][5:])) # slit ID or order ID if pypeline == "Echelle": ## np.unique automatically sort the returned array which is not what I want!!! ## order_vec = np.unique(idx_orders) dum, order_vec_idx = np.unique(idx_orders, return_index=True) order_vec = np.array(idx_orders)[np.sort(order_vec_idx)] norder = np.size(order_vec) else: norder = 1 #TODO This is unneccessarily complicated. The nexp=1 case does the same operations as the nexp > 1 case. Refactor # this so that it just does the same set of operations once and then reshapes the array at the end to give you what # you want. Let's merge this with unpack orders ## Loading data from a single fits file if nexp == 1: # initialize arrays if (order is None) and (pypeline == "Echelle"): waves = np.zeros((npix, norder,nexp)) fluxes = np.zeros_like(waves) ivars = np.zeros_like(waves) masks = np.zeros_like(waves, dtype=bool) for ii, iord in enumerate(order_vec): ext_id = gdobj[0]+'-ORDER{:04d}'.format(iord) wave_iord, flux_iord, ivar_iord, mask_iord = load_ext_to_array(hdulist, ext_id, ex_value=ex_value, flux_value=flux_value, nmaskedge=nmaskedge) waves[:,ii,0] = wave_iord fluxes[:,ii,0] = flux_iord ivars[:,ii,0] = ivar_iord masks[:,ii,0] = mask_iord else: if pypeline == "Echelle": ext_id = gdobj[0]+'-ORDER{:04d}'.format(order) else: ext_id = gdobj[0] waves, fluxes, ivars, masks = load_ext_to_array(hdulist, ext_id, ex_value=ex_value, flux_value=flux_value, nmaskedge=nmaskedge) ## Loading data from a list of fits files else: # initialize arrays if (order is None) and (pypeline == "Echelle"): # store all orders into one single array waves = np.zeros((npix, norder, nexp)) else: # store a specific order or longslit waves =
np.zeros((npix, nexp))
numpy.zeros
import os import numpy as np import cv2 import math import argparse def DCmakedir(path): if os.path.exists(path): return else: os.mkdir(path) def imageRotate(img,theta): rows,cols = img.shape[0:2] angle = -theta*math.pi/180 a = math.sin(angle) b = math.cos(angle) width = int(cols * math.fabs(b) + rows * math.fabs(a)) heigth = int(rows * math.fabs(b) + cols * math.fabs(a)) M = cv2.getRotationMatrix2D((width/2,heigth/2),theta,1) rot_move = np.dot(M,np.array([(width-cols)*0.5,(heigth-rows)*0.5,0])) M[0,2] += rot_move[0] M[1, 2] += rot_move[1] imgout_xuanzhuan = cv2.warpAffine(img,M,(width,heigth),2,0,0) return imgout_xuanzhuan def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[:2] (cX, cY) = (w // 2, h // 2) # grab the rotation matrix (applying the negative of the # angle to rotate clockwise), then grab the sine and cosine # (i.e., the rotation components of the matrix) M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the image nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translation M[0, 2] += (nW / 2) - cX M[1, 2] += (nH / 2) - cY # perform the actual rotation and return the image return cv2.warpAffine(image, M, (nW, nH)) #图像透视 def perspective_trans(img): y1,x1 = img.shape[0:2] pts1 = np.float32([[0,0],[x1,0],[0,y1],[x1,y1]]) x2_1 = np.random.randint(0, int(x1 / 6)) y2_1 = np.random.randint(0, int(y1 / 6)) x2_2 = np.random.randint(0, int(x1 / 6)) y2_2 = np.random.randint(0, int(y1 / 6)) x2_3 = np.random.randint(0, int(x1 / 6)) y2_3 = np.random.randint(0, int(y1 / 6)) x2_4 = np.random.randint(0, int(x1 / 6)) y2_4 = np.random.randint(0, int(y1 / 6)) pts2 = np.float32([[x2_1, y2_1], [x1-x2_2, y2_2], [x2_3, y1-y2_3], [x1-x2_4, y1-y2_4]]) MM = cv2.getPerspectiveTransform(pts1,pts2) imgout_p = cv2.warpPerspective(img,MM,(x1,y1),cv2.INTER_LINEAR,0,0) imgout = imgout_p[min(y2_1,y2_2):y1 -min(y2_3,y2_4),min(x2_1,x2_3):x1-min(x2_2,x2_4)] imgout = cv2.resize(imgout,(y1,x1)) return imgout def main(args): fgpath = args.fgpath bgpath = args.bgpath creatNum = args.num saveImgpath = args.saveImgpath saveEdgepath = args.saveEdgepath DCmakedir(saveImgpath) DCmakedir(saveEdgepath) fgImglist = os.listdir(fgpath) bgImglist = os.listdir(bgpath) fgImgNum = len(fgImglist) bgImgNum = len(bgImglist) for index in range(creatNum): randomfgIndex = np.random.randint(0,fgImgNum) randombgIndex = np.random.randint(0,bgImgNum) fgImg = cv2.imread(os.path.join(fgpath,fgImglist[randomfgIndex]),cv2.IMREAD_COLOR) bgImg = cv2.imread(os.path.join(bgpath,bgImglist[randombgIndex]),cv2.IMREAD_COLOR) try: fgImg.shape bgImg.shape except: continue if (bgImg.shape[0]<520 or bgImg.shape[1]<520): if(bgImg.shape[0]< bgImg.shape[1]) : bgImg = cv2.resize(bgImg,(0, 0), fx=800/bgImg.shape[0], fy=800/bgImg.shape[0]) else: bgImg = cv2.resize(bgImg,(0, 0), fx=800/bgImg.shape[1], fy=800/bgImg.shape[1]) bg_cut_r = np.random.randint(0,int(bgImg.shape[1]-512)) bg_cut_c = np.random.randint(0,int(bgImg.shape[0]-512)) bgImg = bgImg[bg_cut_c:bg_cut_c+512,bg_cut_r:bg_cut_r+512,:] M = np.ones(fgImg.shape,dtype="uint8")*5 fgImg = cv2.add(fgImg,M) need_per = np.random.randint(1,5) if need_per%2==0: img = perspective_trans(fgImg) else: img = fgImg need_rotata =
np.random.randint(1,5)
numpy.random.randint
import numpy as np arr =
np.ones((5,5))
numpy.ones
#!/python # https://github.com/timestocome # Simple GRU in Python using numpy, theano # starter code # http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/ # # updated to python 3.5 from python 2.x # updated to Theano version 0.8.0 # adapted to read in 'Alice In Wonderland' and 'Through the Looking Glass' and generate text in same style # improved comments and variable names # added regularization, then removed it. Seems to hurt more than help here # removed sentence start/stop tokens so can more easily adapt to other types of input sequences # lots of streamlining to make code clearer and faster # used ReLU instead of sigmoid/tanh as activation function (much faster convergence, accuracy seems slightly better) # removed one gru layer, the extra layer didn't help # to do ########################################################################## # stop after x examples randomly trained or some loss threshold met # adjust learning rate while training, simple or new self adjusting method? # track loss, only overwrite saved model if loss is less than previous loss ######################################## # 256 hidden, length=12, ~69 error import numpy as np import theano as theano import theano.tensor as T from theano.gradient import grad_clip import pickle import operator import timeit from datetime import datetime import sys import random ############################################################################### # constants unique_words = 4924 + 1 # unique words in our dictionary, get this from the output after running ReadDataIntoWords.py rng = np.random.RandomState(42) # set up random stream not_zero = 1e-6 # avoid divide by zero errors # network settings to tweak n_hidden = 256 # hidden layer number of nodes ( hidden layer width ) n_epoch = 4 # number of times to loop through full data set learning_rate = 1e-4 # limits swing in gradients adjust_learning_rate = 0.99 # decrease learning rate in regular steps frequency_adjust_learning_rate = 2000 # how often to decrease learning rate decay = 0.95 # weight for prior information length_of_text = 4 # size of string to feed into RNN n_bptt_truncate = -1 # threshold back propagation through time, -1 means no early cut off # misc settings for outputing info to user and saving data number_of_words_to_generate = 12 # max number of words when generating sentences dump_output = 1000 save_model = 10000 ############################################################################### # Alice in Wonderland, Through the Looking Glass # Note: this is a small dataset to train a recursive network with # might do better with a larger text source # Also might do better with a more mainstream text source, lots of made up words and # poems and nonsense in the text # # Text read in, parsed and tokenized using ReadDataIntoWords.py # this should be broken into proper sentences but for testing I'm splitting # it into 8 word strings, no punctuation # tokenized data is tokenized_text = np.load('tokenized_document.npy') # break into x, y train_x = tokenized_text[0:-1] train_y = tokenized_text[1:] n_train = len(train_x) print("Training examples ", n_train) # 56,206 # break into training vectors index = 0 x = [] y = [] for i in range(n_train): x.append(train_x[i : i+length_of_text]) # create a training example y.append(train_y[i: i+length_of_text]) # shift training by one for targets x_t = np.array(x) y_t = np.array(y) def randomize_data(): training_range = np.arange(len(y)) training_range = np.random.permutation(training_range) x_train = [] y_train = [] for i in training_range: x_train.append(x_t[i]) y_train.append(y_t[i]) return x_train, y_train index_dictionary = pickle.load(open('index_dictionary.pkl', "rb")) word_dictionary = pickle.load(open('word_dictionary.pkl', "rb")) def index_to_word(w): z = index_dictionary.get(w) if z is None: return -1 else: return z[0] def word_to_index(i): z = word_dictionary.get(i) if z is None: return -1 else: return z[0] # vectorized versions of dictionary lookups so I can easily send arrays to functions v_index_to_word = np.vectorize(index_to_word) v_word_to_index = np.vectorize(word_to_index) ############################################################################# # useful things random_loss = np.log(unique_words) * length_of_text print("Expected loss for random predictions: %f" % (random_loss) ) ############################################################################# # build GRU network # input (unique_words) # output (unique_words) # s (hidden) # output from hidden fed into hidden in next cycle # U (hidden, unique_words) # input to hidden # V (unique_words, hidden) # hidden to output # W (hidden, hidden) # hidden to hidden class GRU: def __init__(self, n_words=unique_words, n_hidden=n_hidden, bptt_truncate=n_bptt_truncate): # init constants self.n_words = n_words self.n_hidden = n_hidden self.bptt_truncate = bptt_truncate n_gates = 3 # (Z: update gate, R: reset gate, C: previous hidden output) n_layers = 1 # Initialize the network parameters # input to hidden weights E = np.random.uniform(-np.sqrt(1./n_words), np.sqrt(1./n_words), (n_hidden, n_words)) # weights for GRU ( U:inputs, W:previousHidden, V:outputs) U = np.random.uniform(-np.sqrt(1./n_hidden), np.sqrt(1./n_hidden), (n_gates * n_layers, n_hidden, n_hidden)) W = np.random.uniform(-np.sqrt(1./n_hidden), np.sqrt(1./n_hidden), (n_gates * n_layers, n_hidden, n_hidden)) V = np.random.uniform(-np.sqrt(1./n_hidden), np.sqrt(1./n_hidden), (n_words, n_hidden)) # biases ( Z, R, C ) b = np.zeros((n_gates * n_layers, n_hidden)) # store hidden output ( memory ) c = np.zeros(n_words) # Theano: Created shared variables self.E = theano.shared(name='E', value=E.astype(theano.config.floatX)) self.U = theano.shared(name='U', value=U.astype(theano.config.floatX)) self.W = theano.shared(name='W', value=W.astype(theano.config.floatX)) self.V = theano.shared(name='V', value=V.astype(theano.config.floatX)) self.b = theano.shared(name='b', value=b.astype(theano.config.floatX)) self.c = theano.shared(name='c', value=c.astype(theano.config.floatX)) # SGD / rmsprop: Initialize parameters for derivatives self.mE = theano.shared(name='mE', value=np.zeros(E.shape).astype(theano.config.floatX)) self.mU = theano.shared(name='mU', value=np.zeros(U.shape).astype(theano.config.floatX)) self.mV = theano.shared(name='mV', value=np.zeros(V.shape).astype(theano.config.floatX)) self.mW = theano.shared(name='mW', value=np.zeros(W.shape).astype(theano.config.floatX)) self.mb = theano.shared(name='mb', value=np.zeros(b.shape).astype(theano.config.floatX)) self.mc = theano.shared(name='mc', value=np.zeros(c.shape).astype(theano.config.floatX)) # We store the Theano graph here self.theano = {} self.__theano_build__() def __theano_build__(self): # setup E, V, U, W, b, c = self.E, self.V, self.U, self.W, self.b, self.c x = T.ivector('x') y = T.ivector('y') # input, previous hidden layer 1, previous hidden layer 2 # Z = activation(X.U + ST.W + b) # R = activation(X.U + ST.W + b) # H = activation(X.U + (ST*R).W + b) # ST = (1-Z) * H + Z*ST def forward_propagation(x_t, s_t1_prev): x_e = E[:, x_t] # input layer # GRU layer # 1 z_t1 = T.nnet.relu(U[0].dot(x_e) + W[0].dot(s_t1_prev) + b[0]) r_t1 = T.nnet.relu(U[1].dot(x_e) + W[1].dot(s_t1_prev) + b[1]) c_t1 = T.tanh(U[2].dot(x_e) + W[2].dot(s_t1_prev * r_t1) + b[2]) s_t1 = (T.ones_like(z_t1) - z_t1) * c_t1 + z_t1 * s_t1_prev # Final output calculation # Theano's softmax returns a matrix with one row, we only need the row # changing softmax temp (scale) from 1 to lower (0.5) increases network's confidence o_t = T.nnet.softmax(V.dot(s_t1) + c)[0] return [o_t, s_t1] # recurse through GRU layers [o, s1], updates = theano.scan( forward_propagation, sequences = x, truncate_gradient = self.bptt_truncate, outputs_info = [None, dict(initial=T.zeros(self.n_hidden))]) prediction = T.argmax(o, axis=1) o_error = T.sum(T.nnet.categorical_crossentropy(o, y)) # Total cost cost = o_error # Gradients dE = T.grad(cost, E) dU = T.grad(cost, U) dW = T.grad(cost, W) db = T.grad(cost, b) dV = T.grad(cost, V) dc = T.grad(cost, c) # Assign functions self.predict = theano.function([x], o, allow_input_downcast=True) self.predict_class = theano.function([x], prediction, allow_input_downcast=True) self.ce_error = theano.function([x, y], cost, allow_input_downcast=True) # cost to show user self.bptt = theano.function([x, y], [dE, dU, dW, db, dV, dc], allow_input_downcast=True) # backwards propagation learning_rate = T.scalar('learning_rate') decay = T.scalar('decay') # rmsprop cache updates # rms frequent features get small changes, rare ones get large changes mE = decay * self.mE + (1 - decay) * dE **2 mU = decay * self.mU + (1 - decay) * dU **2 mW = decay * self.mW + (1 - decay) * dW **2 mV = decay * self.mV + (1 - decay) * dV **2 mb = decay * self.mb + (1 - decay) * db **2 mc = decay * self.mc + (1 - decay) * dc **2 # loop backwards self.sgd_step = theano.function( [x, y, learning_rate, theano.In(decay, value=0.9)], [], updates=[(E, E - learning_rate * dE / T.sqrt(mE + not_zero)), (U, U - learning_rate * dU / T.sqrt(mU + not_zero)), (W, W - learning_rate * dW / T.sqrt(mW + not_zero)), (V, V - learning_rate * dV / T.sqrt(mV + not_zero)), (b, b - learning_rate * db / T.sqrt(mb + not_zero)), (c, c - learning_rate * dc / T.sqrt(mc + not_zero)), (self.mE, mE), (self.mU, mU), (self.mW, mW), (self.mV, mV), (self.mb, mb), (self.mc, mc) ], allow_input_downcast=True) ################################################################################################### # user info functions def sum_weights(self): v = self.V.sum() w = self.W.sum() e = self.E.sum() u = self.U.sum() return v.eval(), w.eval(), e.eval(), u.eval() def abs_sum_weights(self): v = (np.abs(self.V)).sum() w = (np.abs(self.W)).sum() e = (
np.abs(self.E)
numpy.abs
import re import pickle as pickle from collections import namedtuple import numpy as np import skimage.transform from scipy.fftpack import fftn, ifftn from skimage.feature import peak_local_max, canny from skimage.transform import hough_circle import skimage.draw from configuration import config import utils import skimage.exposure, skimage.filters def read_labels(file_path): id2labels = {} train_csv = open(file_path) lines = train_csv.readlines() i = 0 for item in lines: if i == 0: i = 1 continue id, systole, diastole = item.replace('\n', '').split(',') id2labels[int(id)] = [float(systole), float(diastole)] return id2labels def read_slice(path): return pickle.load(open(path))['data'] def read_fft_slice(path): d = pickle.load(open(path))['data'] ff1 = fftn(d) fh = np.absolute(ifftn(ff1[1, :, :])) fh[fh < 0.1 * np.max(fh)] = 0.0 d = 1. * fh / np.max(fh) d = np.expand_dims(d, axis=0) return d def read_metadata(path): d = pickle.load(open(path))['metadata'][0] metadata = {k: d[k] for k in ['PixelSpacing', 'ImageOrientationPatient', 'ImagePositionPatient', 'SliceLocation', 'PatientSex', 'PatientAge', 'Rows', 'Columns']} metadata['PixelSpacing'] = np.float32(metadata['PixelSpacing']) metadata['ImageOrientationPatient'] = np.float32(metadata['ImageOrientationPatient']) metadata['SliceLocation'] = np.float32(metadata['SliceLocation']) metadata['ImagePositionPatient'] = np.float32(metadata['ImagePositionPatient']) metadata['PatientSex'] = 1 if metadata['PatientSex'] == 'F' else -1 metadata['PatientAge'] = utils.get_patient_age(metadata['PatientAge']) metadata['Rows'] = int(metadata['Rows']) metadata['Columns'] = int(metadata['Columns']) return metadata def sample_augmentation_parameters(transformation): # TODO: bad thing to mix fixed and random params!!! if set(transformation.keys()) == {'patch_size', 'mm_patch_size'} or \ set(transformation.keys()) == {'patch_size', 'mm_patch_size', 'mask_roi'}: return None shift_x = config().rng.uniform(*transformation.get('translation_range_x', [0., 0.])) shift_y = config().rng.uniform(*transformation.get('translation_range_y', [0., 0.])) translation = (shift_x, shift_y) rotation = config().rng.uniform(*transformation.get('rotation_range', [0., 0.])) shear = config().rng.uniform(*transformation.get('shear_range', [0., 0.])) roi_scale = config().rng.uniform(*transformation.get('roi_scale_range', [1., 1.])) z = config().rng.uniform(*transformation.get('zoom_range', [1., 1.])) zoom = (z, z) if 'do_flip' in transformation: if type(transformation['do_flip']) == tuple: flip_x = config().rng.randint(2) > 0 if transformation['do_flip'][0] else False flip_y = config().rng.randint(2) > 0 if transformation['do_flip'][1] else False else: flip_x = config().rng.randint(2) > 0 if transformation['do_flip'] else False flip_y = False else: flip_x, flip_y = False, False sequence_shift = config().rng.randint(30) if transformation.get('sequence_shift', False) else 0 return namedtuple('Params', ['translation', 'rotation', 'shear', 'zoom', 'roi_scale', 'flip_x', 'flip_y', 'sequence_shift'])(translation, rotation, shear, zoom, roi_scale, flip_x, flip_y, sequence_shift) def transform_norm_rescale(data, metadata, transformation, roi=None, random_augmentation_params=None, mm_center_location=(.5, .4), mm_patch_size=(128, 128), mask_roi=True): patch_size = transformation['patch_size'] mm_patch_size = transformation.get('mm_patch_size', mm_patch_size) mask_roi = transformation.get('mask_roi', mask_roi) out_shape = (30,) + patch_size out_data = np.zeros(out_shape, dtype='float32') roi_center = roi['roi_center'] if roi else None roi_radii = roi['roi_radii'] if roi else None # correct orientation data, roi_center, roi_radii = correct_orientation(data, metadata, roi_center, roi_radii) # if random_augmentation_params=None -> sample new params # if the transformation implies no augmentations then random_augmentation_params remains None if not random_augmentation_params: random_augmentation_params = sample_augmentation_parameters(transformation) # build scaling transformation pixel_spacing = metadata['PixelSpacing'] assert pixel_spacing[0] == pixel_spacing[1] current_shape = data.shape[-2:] # scale ROI radii and find ROI center in normalized patch if roi_center: mm_center_location = tuple(int(r * ps) for r, ps in zip(roi_center, pixel_spacing)) # scale the images such that they all have the same scale norm_rescaling = 1. / pixel_spacing[0] mm_shape = tuple(int(float(d) * ps) for d, ps in zip(current_shape, pixel_spacing)) tform_normscale = build_rescale_transform(downscale_factor=norm_rescaling, image_shape=current_shape, target_shape=mm_shape) tform_shift_center, tform_shift_uncenter = build_shift_center_transform(image_shape=mm_shape, center_location=mm_center_location, patch_size=mm_patch_size) patch_scale = max(1. * mm_patch_size[0] / patch_size[0], 1. * mm_patch_size[1] / patch_size[1]) tform_patch_scale = build_rescale_transform(patch_scale, mm_patch_size, target_shape=patch_size) total_tform = tform_patch_scale + tform_shift_uncenter + tform_shift_center + tform_normscale # build random augmentation if random_augmentation_params: augment_tform = build_augmentation_transform(rotation=random_augmentation_params.rotation, shear=random_augmentation_params.shear, translation=random_augmentation_params.translation, flip_x=random_augmentation_params.flip_x, flip_y=random_augmentation_params.flip_y, zoom=random_augmentation_params.zoom) total_tform = tform_patch_scale + tform_shift_uncenter + augment_tform + tform_shift_center + tform_normscale # apply transformation per image for i in range(data.shape[0]): out_data[i] = fast_warp(data[i], total_tform, output_shape=patch_size) normalize_contrast_zmuv(out_data) # apply transformation to ROI and mask the images if roi_center and roi_radii and mask_roi: roi_scale = random_augmentation_params.roi_scale if random_augmentation_params else 1 # augmentation roi_zoom = random_augmentation_params.zoom if random_augmentation_params else (1., 1.) rescaled_roi_radii = (roi_scale * roi_radii[0], roi_scale * roi_radii[1]) out_roi_radii = (int(roi_zoom[0] * rescaled_roi_radii[0] * pixel_spacing[0] / patch_scale), int(roi_zoom[1] * rescaled_roi_radii[1] * pixel_spacing[1] / patch_scale)) roi_mask = make_circular_roi_mask(patch_size, (patch_size[0] / 2, patch_size[1] / 2), out_roi_radii) out_data *= roi_mask # if the sequence is < 30 timesteps, copy last image if data.shape[0] < out_shape[0]: for j in range(data.shape[0], out_shape[0]): out_data[j] = out_data[j - 1] # if > 30, remove images if data.shape[0] > out_shape[0]: out_data = out_data[:30] # shift the sequence for a number of time steps if random_augmentation_params: out_data = np.roll(out_data, random_augmentation_params.sequence_shift, axis=0) if random_augmentation_params: targets_zoom_factor = random_augmentation_params.zoom[0] * random_augmentation_params.zoom[1] else: targets_zoom_factor = 1. return out_data, targets_zoom_factor def transform_norm_rescale_after(data, metadata, transformation, roi=None, random_augmentation_params=None, mm_center_location=(.5, .4), mm_patch_size=(128, 128), mask_roi=True): patch_size = transformation['patch_size'] mm_patch_size = transformation.get('mm_patch_size', mm_patch_size) mask_roi = transformation.get('mask_roi', mask_roi) out_shape = (30,) + patch_size out_data = np.zeros(out_shape, dtype='float32') roi_center = roi['roi_center'] if roi else None roi_radii = roi['roi_radii'] if roi else None # correct orientation data, roi_center, roi_radii = correct_orientation(data, metadata, roi_center, roi_radii) # if random_augmentation_params=None -> sample new params # if the transformation implies no augmentations then random_augmentation_params remains None if not random_augmentation_params: random_augmentation_params = sample_augmentation_parameters(transformation) # build scaling transformation pixel_spacing = metadata['PixelSpacing'] assert pixel_spacing[0] == pixel_spacing[1] current_shape = data.shape[-2:] # scale ROI radii and find ROI center in normalized patch if roi_center: mm_center_location = tuple(int(r * ps) for r, ps in zip(roi_center, pixel_spacing)) # scale the images such that they all have the same scale norm_rescaling = 1. / pixel_spacing[0] mm_shape = tuple(int(float(d) * ps) for d, ps in zip(current_shape, pixel_spacing)) tform_normscale = build_rescale_transform(downscale_factor=norm_rescaling, image_shape=current_shape, target_shape=mm_shape) tform_shift_center, tform_shift_uncenter = build_shift_center_transform(image_shape=mm_shape, center_location=mm_center_location, patch_size=mm_patch_size) patch_scale = max(1. * mm_patch_size[0] / patch_size[0], 1. * mm_patch_size[1] / patch_size[1]) tform_patch_scale = build_rescale_transform(patch_scale, mm_patch_size, target_shape=patch_size) total_tform = tform_patch_scale + tform_shift_uncenter + tform_shift_center + tform_normscale # build random augmentation if random_augmentation_params: augment_tform = build_augmentation_transform(rotation=random_augmentation_params.rotation, shear=random_augmentation_params.shear, translation=random_augmentation_params.translation, flip_x=random_augmentation_params.flip_x, flip_y=random_augmentation_params.flip_y, zoom=random_augmentation_params.zoom) total_tform = tform_patch_scale + tform_shift_uncenter + augment_tform + tform_shift_center + tform_normscale # apply transformation per image for i in range(data.shape[0]): out_data[i] = fast_warp(data[i], total_tform, output_shape=patch_size) # apply transformation to ROI and mask the images if roi_center and roi_radii and mask_roi: roi_scale = random_augmentation_params.roi_scale if random_augmentation_params else 1 # augmentation roi_zoom = random_augmentation_params.zoom if random_augmentation_params else (1., 1.) rescaled_roi_radii = (roi_scale * roi_radii[0], roi_scale * roi_radii[1]) out_roi_radii = (int(roi_zoom[0] * rescaled_roi_radii[0] * pixel_spacing[0] / patch_scale), int(roi_zoom[1] * rescaled_roi_radii[1] * pixel_spacing[1] / patch_scale)) roi_mask = make_circular_roi_mask(patch_size, (patch_size[0] / 2, patch_size[1] / 2), out_roi_radii) out_data *= roi_mask normalize_contrast_zmuv(out_data) # if the sequence is < 30 timesteps, copy last image if data.shape[0] < out_shape[0]: for j in range(data.shape[0], out_shape[0]): out_data[j] = out_data[j - 1] # if > 30, remove images if data.shape[0] > out_shape[0]: out_data = out_data[:30] # shift the sequence for a number of time steps if random_augmentation_params: out_data = np.roll(out_data, random_augmentation_params.sequence_shift, axis=0) if random_augmentation_params: targets_zoom_factor = random_augmentation_params.zoom[0] * random_augmentation_params.zoom[1] else: targets_zoom_factor = 1. return out_data, targets_zoom_factor def make_roi_mask(img_shape, roi_center, roi_radii): """ Makes 2D ROI mask for one slice :param data: :param roi: :return: """ mask = np.zeros(img_shape) mask[max(0, roi_center[0] - roi_radii[0]):min(roi_center[0] + roi_radii[0], img_shape[0]), max(0, roi_center[1] - roi_radii[1]):min(roi_center[1] + roi_radii[1], img_shape[1])] = 1 return mask def make_circular_roi_mask(img_shape, roi_center, roi_radii): mask = np.zeros(img_shape) rr, cc = skimage.draw.ellipse(roi_center[0], roi_center[1], roi_radii[0], roi_radii[1], img_shape) mask[rr, cc] = 1. return mask tform_identity = skimage.transform.AffineTransform() def fast_warp(img, tf, output_shape, mode='constant', order=1): """ This wrapper function is faster than skimage.transform.warp """ m = tf.params # tf._matrix is return skimage.transform._warps_cy._warp_fast(img, m, output_shape=output_shape, mode=mode, order=order) def build_centering_transform(image_shape, target_shape=(50, 50)): rows, cols = image_shape trows, tcols = target_shape shift_x = (cols - tcols) / 2.0 shift_y = (rows - trows) / 2.0 return skimage.transform.SimilarityTransform(translation=(shift_x, shift_y)) def build_rescale_transform(downscale_factor, image_shape, target_shape): """ estimating the correct rescaling transform is slow, so just use the downscale_factor to define a transform directly. This probably isn't 100% correct, but it shouldn't matter much in practice. """ rows, cols = image_shape trows, tcols = target_shape tform_ds = skimage.transform.AffineTransform(scale=(downscale_factor, downscale_factor)) # centering shift_x = cols / (2.0 * downscale_factor) - tcols / 2.0 shift_y = rows / (2.0 * downscale_factor) - trows / 2.0 tform_shift_ds = skimage.transform.SimilarityTransform(translation=(shift_x, shift_y)) return tform_shift_ds + tform_ds def build_center_uncenter_transforms(image_shape): """ These are used to ensure that zooming and rotation happens around the center of the image. Use these transforms to center and uncenter the image around such a transform. """ center_shift = np.array( [image_shape[1], image_shape[0]]) / 2.0 - 0.5 # need to swap rows and cols here apparently! confusing! tform_uncenter = skimage.transform.SimilarityTransform(translation=-center_shift) tform_center = skimage.transform.SimilarityTransform(translation=center_shift) return tform_center, tform_uncenter def build_augmentation_transform(rotation=0, shear=0, translation=(0, 0), flip_x=False, flip_y=False, zoom=(1.0, 1.0)): if flip_x: shear += 180 # shear by 180 degrees is equivalent to flip along the X-axis if flip_y: shear += 180 rotation += 180 tform_augment = skimage.transform.AffineTransform(scale=(1. / zoom[0], 1. / zoom[1]), rotation=np.deg2rad(rotation), shear=np.deg2rad(shear), translation=translation) return tform_augment def correct_orientation(data, metadata, roi_center, roi_radii): F = metadata["ImageOrientationPatient"].reshape((2, 3)) f_1 = F[1, :] f_2 = F[0, :] y_e =
np.array([0, 1, 0])
numpy.array
# This source code file is a part of SigProfilerTopography # SigProfilerTopography is a tool included as part of the SigProfiler # computational framework for comprehensive analysis of mutational # signatures from next-generation sequencing of cancer genomes. # SigProfilerTopography provides the downstream data analysis of # mutations and extracted mutational signatures w.r.t. # nucleosome occupancy, replication time, strand bias and processivity. # Copyright (C) 2018-2020 <NAME> # ############################################################# # import sys # import os # current_abs_path = os.path.dirname(os.path.realpath(__file__)) # commonsPath = os.path.join(current_abs_path,'commons') # sys.path.append(commonsPath) # ############################################################# import math import time import numpy as np import pandas as pd import scipy import statsmodels import matplotlib as plt import shutil import platform import multiprocessing import SigProfilerMatrixGenerator as matrix_generator MATRIX_GENERATOR_PATH = matrix_generator.__path__[0] from SigProfilerMatrixGenerator import version as matrix_generator_version from SigProfilerSimulator import version as simulator_version from SigProfilerMatrixGenerator.scripts import SigProfilerMatrixGeneratorFunc as matGen from SigProfilerSimulator import SigProfilerSimulator as simulator from SigProfilerTopography import version as topography_version from SigProfilerTopography.source.commons.TopographyCommons import readProbabilities from SigProfilerTopography.source.commons.TopographyCommons import readChrBasedMutationsMergeWithProbabilitiesAndWrite from SigProfilerTopography.source.commons.TopographyCommons import DATA from SigProfilerTopography.source.commons.TopographyCommons import FIGURE from SigProfilerTopography.source.commons.TopographyCommons import SAMPLE from SigProfilerTopography.source.commons.TopographyCommons import K562 from SigProfilerTopography.source.commons.TopographyCommons import MCF7 from SigProfilerTopography.source.commons.TopographyCommons import MEF from SigProfilerTopography.source.commons.TopographyCommons import MM10 from SigProfilerTopography.source.commons.TopographyCommons import GRCh37 from SigProfilerTopography.source.commons.TopographyCommons import SIGPROFILERTOPOGRAPHY_DEFAULT_FILES from SigProfilerTopography.source.commons.TopographyCommons import getNucleosomeFile from SigProfilerTopography.source.commons.TopographyCommons import getReplicationTimeFiles from SigProfilerTopography.source.commons.TopographyCommons import available_nucleosome_biosamples from SigProfilerTopography.source.commons.TopographyCommons import available_replication_time_biosamples from SigProfilerTopography.source.commons.TopographyCommons import EPIGENOMICSOCCUPANCY from SigProfilerTopography.source.commons.TopographyCommons import NUCLEOSOMEOCCUPANCY from SigProfilerTopography.source.commons.TopographyCommons import REPLICATIONTIME from SigProfilerTopography.source.commons.TopographyCommons import REPLICATIONSTRANDBIAS from SigProfilerTopography.source.commons.TopographyCommons import TRANSCRIPTIONSTRANDBIAS from SigProfilerTopography.source.commons.TopographyCommons import PROCESSIVITY from SigProfilerTopography.source.commons.TopographyCommons import EPIGENOMICS from SigProfilerTopography.source.commons.TopographyCommons import STRANDBIAS from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K27ME3_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K36ME3_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K9ME3_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K27AC_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K4ME1_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_H3K4ME3_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_CTCF_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_ATAC_SEQ_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import MM10_MEF_NUCLEOSOME_FILE from SigProfilerTopography.source.commons.TopographyCommons import GM12878_NUCLEOSOME_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import K562_NUCLEOSOME_OCCUPANCY_FILE from SigProfilerTopography.source.commons.TopographyCommons import ENCFF575PMI_mm10_embryonic_facial_prominence_ATAC_seq from SigProfilerTopography.source.commons.TopographyCommons import ENCFF993SRY_mm10_embryonic_fibroblast_H3K4me1 from SigProfilerTopography.source.commons.TopographyCommons import ENCFF912DNP_mm10_embryonic_fibroblast_H3K4me3 from SigProfilerTopography.source.commons.TopographyCommons import ENCFF611HDQ_mm10_embryonic_fibroblast_CTCF from SigProfilerTopography.source.commons.TopographyCommons import ENCFF152DUV_mm10_embryonic_fibroblast_POLR2A from SigProfilerTopography.source.commons.TopographyCommons import ENCFF114VLZ_mm10_embryonic_fibroblast_H3K27ac from SigProfilerTopography.source.commons.TopographyCommons import SBS from SigProfilerTopography.source.commons.TopographyCommons import DBS from SigProfilerTopography.source.commons.TopographyCommons import ID from SigProfilerTopography.source.commons.TopographyCommons import UNDECLARED from SigProfilerTopography.source.commons.TopographyCommons import USING_APPLY_ASYNC from SigProfilerTopography.source.commons.TopographyCommons import USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM from SigProfilerTopography.source.commons.TopographyCommons import USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT from SigProfilerTopography.source.commons.TopographyCommons import STRINGENT from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_AVERAGE_PROBABILITY from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_NUM_OF_SBS_REQUIRED from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_NUM_OF_DBS_REQUIRED from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_NUM_OF_ID_REQUIRED from SigProfilerTopography.source.commons.TopographyCommons import DEFAULT_NUM_OF_REAL_DATA_OVERLAP_REQUIRED from SigProfilerTopography.source.commons.TopographyCommons import CONSIDER_COUNT from SigProfilerTopography.source.commons.TopographyCommons import CONSIDER_DISTANCE from SigProfilerTopography.source.commons.TopographyCommons import CONSIDER_DISTANCE_ALL_SAMPLES_TOGETHER from SigProfilerTopography.source.commons.TopographyCommons import MISSING_SIGNAL from SigProfilerTopography.source.commons.TopographyCommons import NO_SIGNAL from SigProfilerTopography.source.commons.TopographyCommons import SBS96 from SigProfilerTopography.source.commons.TopographyCommons import ID from SigProfilerTopography.source.commons.TopographyCommons import DBS from SigProfilerTopography.source.commons.TopographyCommons import SUBS from SigProfilerTopography.source.commons.TopographyCommons import INDELS from SigProfilerTopography.source.commons.TopographyCommons import DINUCS from SigProfilerTopography.source.commons.TopographyCommons import SBS_CONTEXTS from SigProfilerTopography.source.commons.TopographyCommons import SNV from SigProfilerTopography.source.commons.TopographyCommons import CHRBASED from SigProfilerTopography.source.commons.TopographyCommons import LIB from SigProfilerTopography.source.commons.TopographyCommons import getChromSizesDict from SigProfilerTopography.source.commons.TopographyCommons import getShortNames from SigProfilerTopography.source.commons.TopographyCommons import copyMafFiles from SigProfilerTopography.source.commons.TopographyCommons import fillCutoff2Signature2PropertiesListDictionary from SigProfilerTopography.source.commons.TopographyCommons import fill_signature_number_of_mutations_df from SigProfilerTopography.source.commons.TopographyCommons import fill_mutations_dictionaries_write from SigProfilerTopography.source.commons.TopographyCommons import get_mutation_type_context_for_probabilities_file from SigProfilerTopography.source.commons.TopographyCommons import Table_MutationType_NumberofMutations_NumberofSamples_SamplesList_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_ChrLong_NumberofMutations_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_SBS_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_DBS_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_ID_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_SBS_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_DBS_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import Table_ID_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename from SigProfilerTopography.source.commons.TopographyCommons import NUMBER_OF_MUTATIONS_IN_EACH_SPLIT from SigProfilerTopography.source.occupancy.OccupancyAnalysis import occupancyAnalysis from SigProfilerTopography.source.replicationtime.ReplicationTimeAnalysis import replicationTimeAnalysis from SigProfilerTopography.source.replicationstrandbias.ReplicationStrandBiasAnalysis import replicationStrandBiasAnalysis from SigProfilerTopography.source.transcriptionstrandbias.TranscriptionStrandBiasAnalysis import transcriptionStrandBiasAnalysis from SigProfilerTopography.source.processivity.ProcessivityAnalysis import processivityAnalysis from SigProfilerTopography.source.plotting.OccupancyAverageSignalFigures import occupancyAverageSignalFigures from SigProfilerTopography.source.plotting.OccupancyAverageSignalFigures import compute_fold_change_with_p_values_plot_heatmaps from SigProfilerTopography.source.plotting.ReplicationTimeNormalizedMutationDensityFigures import replicationTimeNormalizedMutationDensityFigures from SigProfilerTopography.source.plotting.TranscriptionReplicationStrandBiasFigures import transcriptionReplicationStrandBiasFiguresUsingDataframes from SigProfilerTopography.source.plotting.ProcessivityFigures import processivityFigures from SigProfilerTopography.source.commons.TopographyCommons import TRANSCRIBED_VERSUS_UNTRANSCRIBED from SigProfilerTopography.source.commons.TopographyCommons import GENIC_VERSUS_INTERGENIC from SigProfilerTopography.source.commons.TopographyCommons import LAGGING_VERSUS_LEADING from SigProfilerTopography.source.commons.TopographyCommons import PLOTTING_FOR_SIGPROFILERTOPOGRAPHY_TOOL from SigProfilerTopography.source.commons.TopographyCommons import COMBINE_P_VALUES_METHOD_FISHER from SigProfilerTopography.source.commons.TopographyCommons import WEIGHTED_AVERAGE_METHOD from SigProfilerTopography.source.commons.TopographyCommons import COLORBAR_SEISMIC from SigProfilerTopography.source.commons.TopographyCommons import natural_key ############################################################ #Can be move to DataPreparationCommons under /source/commons #read chr based dinucs (provided by SigProfilerMatrixGenerator) and merge with probabilities (provided by SigProfilerTopography) def prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList, inputDir, outputDir, jobname, mutation_type_context, mutations_probabilities_file_path, mutation_type_context_for_probabilities, startSimNum, endSimNum, partialDirname, PCAWG, verbose): ########################################################################################### #original matrix generator chrbased data will be under inputDir/output/vcf_files/SNV #original matrix generator chrbased data will be under inputDir/output/vcf_files/DBS #original matrix generator chrbased data will be under inputDir/output/vcf_files/ID #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/96/output/vcf_files/SNV #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/ID/output/vcf_files/ID #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/DBS/output/vcf_files/DBS df_columns_contain_ordered_signatures = None os.makedirs(os.path.join(outputDir,jobname,DATA,CHRBASED),exist_ok=True) for simNum in range(1,endSimNum+1): simName = 'sim%d' % (simNum) os.makedirs(os.path.join(outputDir,jobname,DATA,CHRBASED,simName), exist_ok=True) ########################################################################################### ########################################################################################### if ((mutations_probabilities_file_path is not None) and (os.path.exists(mutations_probabilities_file_path))): ########################################################################################## mutations_probabilities_df = readProbabilities(mutations_probabilities_file_path, verbose) df_columns_contain_ordered_signatures = mutations_probabilities_df.columns.values ########################################################################################## if verbose: print('\tVerbose mutations_probabilities_df.head()') print('\tVerbose %s' %(mutations_probabilities_df.head())) print('\tVerbose mutations_probabilities_df.columns.values') print('\tVerbose %s' %(mutations_probabilities_df.columns.values)) ########################################################################################## #Step1 SigProfilerTopography Python Package #For Release we will use SAMPLE as it is, no change in SAMPLE column is needed. # For PCAWG_Matlab # This statement below is customized for PCAWG_Matlab # To get rid of inconsistent cancer type names in sample column of chrbased mutation files and probabilities files # Breast-LobularCA_SP124191 if PCAWG: mutations_probabilities_df[SAMPLE] = mutations_probabilities_df[SAMPLE].str.split('_',expand=True)[1] ########################################################################################## ############################################################################################ ############################## pool.apply_async starts #################################### ############################################################################################ ################################ numofProcesses = multiprocessing.cpu_count() pool = multiprocessing.Pool(processes=numofProcesses) ################################ ################################ jobs = [] ################################ sim_nums = range(startSimNum,endSimNum+1) sim_num_chr_tuples = ((sim_num, chrShort) for sim_num in sim_nums for chrShort in chromShortNamesList) for simNum, chrShort in sim_num_chr_tuples: simName = 'sim%d' % (simNum) chr_based_mutation_filename = '%s_seqinfo.txt' % (chrShort) if (simNum == 0): matrix_generator_output_dir_path = os.path.join(inputDir, 'output', 'vcf_files', partialDirname) else: matrix_generator_output_dir_path = os.path.join(inputDir, 'output', 'simulations', simName,mutation_type_context, 'output', 'vcf_files',partialDirname) if (os.path.exists(matrix_generator_output_dir_path)): chr_based_mutation_filepath = os.path.join(matrix_generator_output_dir_path,chr_based_mutation_filename) inputList = [] inputList.append(chrShort) inputList.append(outputDir) inputList.append(jobname) inputList.append(chr_based_mutation_filepath) inputList.append(mutations_probabilities_df) inputList.append(mutation_type_context_for_probabilities) inputList.append(mutation_type_context) inputList.append(simNum) inputList.append(PCAWG) jobs.append(pool.apply_async(readChrBasedMutationsMergeWithProbabilitiesAndWrite,args=(inputList,))) ################################################################################ ############################################################################## # wait for all jobs to finish for job in jobs: if verbose: print('\tVerbose Transcription Strand Bias Worker pid %s job.get():%s ' % (str(os.getpid()), job.get())) ############################################################################## ################################ pool.close() pool.join() ################################ ############################################################################################ ############################## pool.apply_async ends ###################################### ############################################################################################ ########################################################################################### ########################################################################################### elif ((mutations_probabilities_file_path is None) or (not (os.path.exists(mutations_probabilities_file_path)))): #For Information print('--- There is a situation/problem: mutations_probabilities_file_path:%s is None or does not exist.' %(mutations_probabilities_file_path)) ############################################################################################ ############################## pool.apply_async starts #################################### ############################################################################################ ################################ numofProcesses = multiprocessing.cpu_count() pool = multiprocessing.Pool(processes=numofProcesses) ################################ ################################ jobs = [] ################################ sim_nums = range(startSimNum,endSimNum+1) sim_num_chr_tuples = ((sim_num, chrShort) for sim_num in sim_nums for chrShort in chromShortNamesList) for simNum, chrShort in sim_num_chr_tuples: simName = 'sim%d' % (simNum) chr_based_mutation_filename = '%s_seqinfo.txt' % (chrShort) if (simNum == 0): matrix_generator_output_dir_path = os.path.join(inputDir, 'output', 'vcf_files', partialDirname) else: matrix_generator_output_dir_path = os.path.join(inputDir, 'output', 'simulations', simName,mutation_type_context, 'output', 'vcf_files',partialDirname) if (os.path.exists(matrix_generator_output_dir_path)): chr_based_mutation_filepath = os.path.join(matrix_generator_output_dir_path,chr_based_mutation_filename) inputList = [] inputList.append(chrShort) inputList.append(outputDir) inputList.append(jobname) inputList.append(chr_based_mutation_filepath) inputList.append(None) inputList.append(mutation_type_context_for_probabilities) inputList.append(mutation_type_context) inputList.append(simNum) inputList.append(PCAWG) jobs.append(pool.apply_async(readChrBasedMutationsMergeWithProbabilitiesAndWrite,args=(inputList,))) ################################################################################ ############################################################################## # wait for all jobs to finish for job in jobs: if verbose: print('\tVerbose Transcription Strand Bias Worker pid %s job.get():%s ' % (str(os.getpid()), job.get())) ############################################################################## ################################ pool.close() pool.join() ################################ ############################################################################################ ############################## pool.apply_async ends ###################################### ############################################################################################ return df_columns_contain_ordered_signatures ########################################################################################### ############################################################ ####################################################### #JAN 9, 2020 def check_download_replication_time_files(replication_time_signal_file,replication_time_valley_file,replication_time_peak_file): current_abs_path = os.path.dirname(os.path.abspath(__file__)) # print(current_abs_path) #These are currently full path, therefore convert them to filename replication_time_signal_file=os.path.basename(replication_time_signal_file) replication_time_valley_file=os.path.basename(replication_time_valley_file) replication_time_peak_file=os.path.basename(replication_time_peak_file) os.makedirs(os.path.join(current_abs_path,'lib','replication'),exist_ok=True) lib_replication_path = os.path.join(current_abs_path,'lib','replication') if os.path.isabs(lib_replication_path): # print('%s an absolute path.' %(lib_replication_path)) os.chdir(lib_replication_path) replication_time_signal_file_path= os.path.join(lib_replication_path,replication_time_signal_file) replication_time_valley_file_path= os.path.join(lib_replication_path,replication_time_valley_file) replication_time_peak_file_path= os.path.join(lib_replication_path,replication_time_peak_file) if not os.path.exists(replication_time_signal_file_path): print('Does not exists: %s' %(replication_time_signal_file_path)) try: # print('Downloading %s_signal_wgEncodeSydhNsome_%sSig.npy under %s' %(chrLong,cell_line,chrbased_npy_array_path)) print('Downloading %s under %s' % (replication_time_signal_file, lib_replication_path)) #wget -c Continue getting a partially-downloaded file #wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/replication/' + replication_time_signal_file + "'" # print(cmd) os.system(cmd) except: # print("The UCSD ftp site is not responding...pulling from sanger ftp now.") print("The ftp://alexandrovlab-ftp.ucsd.edu site is not responding...") if not os.path.exists(replication_time_valley_file_path): print('Does not exists: %s' %(replication_time_valley_file_path)) try: # print('Downloading %s_signal_wgEncodeSydhNsome_%sSig.npy under %s' %(chrLong,cell_line,chrbased_npy_array_path)) print('Downloading %s under %s' % (replication_time_valley_file, lib_replication_path)) #wget -c Continue getting a partially-downloaded file #wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/replication/' + replication_time_valley_file + "'" # print(cmd) os.system(cmd) except: # print("The UCSD ftp site is not responding...pulling from sanger ftp now.") print("The ftp://alexandrovlab-ftp.ucsd.edu site is not responding...") if not os.path.exists(replication_time_peak_file_path): print('Does not exists: %s' %(replication_time_peak_file_path)) try: # print('Downloading %s_signal_wgEncodeSydhNsome_%sSig.npy under %s' %(chrLong,cell_line,chrbased_npy_array_path)) print('Downloading %s under %s' % (replication_time_peak_file, lib_replication_path)) #wget -c Continue getting a partially-downloaded file #wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/replication/' + replication_time_peak_file + "'" # print(cmd) os.system(cmd) except: # print("The UCSD ftp site is not responding...pulling from sanger ftp now.") print("The ftp://alexandrovlab-ftp.ucsd.edu site is not responding...") else: #It has to be an absolute path print('%s is not an absolute path.' %(lib_replication_path)) #go back os.chdir(current_abs_path) ####################################################### def check_download_sample_probability_files(): current_path = os.getcwd() os.makedirs(os.path.join(current_path, 'sample_probabilities'), exist_ok=True) sample_probability_files_path = os.path.join(current_path, 'sample_probabilities') probability_files = ['COSMIC_DBS78_Decomposed_Mutation_Probabilities.txt', 'COSMIC_SBS96_Decomposed_Mutation_Probabilities.txt'] if os.path.isabs(sample_probability_files_path): os.chdir(sample_probability_files_path) for probability_filename in probability_files: probability_file_path = os.path.join(sample_probability_files_path, probability_filename) if not os.path.exists(probability_file_path): print('Does not exists: %s' % (probability_file_path)) try: print('Downloading %s under %s' % (probability_filename, sample_probability_files_path)) # wget -c Continue getting a partially-downloaded file # wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" # -r When included, the wget will recursively traverse subdirectories in order to obtain all content. # -l1 Limit recursion depth to a specific number of levels, by setting the <#> variable to the desired number. # -c option to resume a download # -nc, --no-clobber If a file is downloaded more than once in the same directory, Wget's behavior depends on a few options, including -nc. In certain cases, the local file will be clobbered, or overwritten, upon repeated download. In other cases it will be preserved. # -np, --no-parent Do not ever ascend to the parent directory when retrieving recursively. This is a useful option, since it guarantees that only the files below a certain hierarchy will be downloaded. # -nd, --no-directories When included, directories will not be created. All files captured in the wget will be copied directly in to the active directory cmd = "bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/sample_probability_files/' + probability_filename + "'" print("cmd: %s" % cmd) os.system(cmd) except: print("The UCSD ftp site is not responding...") else: # It has to be an absolute path print('%s is not an absolute path.' % (sample_probability_files_path)) # go back os.chdir(current_path) def check_download_sample_vcf_files(): current_path = os.getcwd() os.makedirs(os.path.join(current_path, 'sample_vcfs'), exist_ok=True) sample_vcf_files_path = os.path.join(current_path, 'sample_vcfs') vcf_files = ['PD4248a.vcf', 'PD4199a.vcf', 'PD4198a.vcf', 'PD4194a.vcf', 'PD4192a.vcf', 'PD4120a.vcf', 'PD4116a.vcf', 'PD4115a.vcf', 'PD4109a.vcf', 'PD4107a.vcf', 'PD4103a.vcf', 'PD4088a.vcf', 'PD4086a.vcf', 'PD4085a.vcf', 'PD4006a.vcf', 'PD4005a.vcf', 'PD3945a.vcf', 'PD3905a.vcf', 'PD3904a.vcf', 'PD3890a.vcf', 'PD3851a.vcf'] if os.path.isabs(sample_vcf_files_path): os.chdir(sample_vcf_files_path) for vcf_filename in vcf_files: vcf_file_path = os.path.join(sample_vcf_files_path, vcf_filename) if not os.path.exists(vcf_file_path): print('Does not exists: %s' % (vcf_file_path)) try: print('Downloading %s under %s' % (vcf_filename, sample_vcf_files_path)) # wget -c Continue getting a partially-downloaded file # wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" # -r When included, the wget will recursively traverse subdirectories in order to obtain all content. # -l1 Limit recursion depth to a specific number of levels, by setting the <#> variable to the desired number. # -c option to resume a download # -nc, --no-clobber If a file is downloaded more than once in the same directory, Wget's behavior depends on a few options, including -nc. In certain cases, the local file will be clobbered, or overwritten, upon repeated download. In other cases it will be preserved. # -np, --no-parent Do not ever ascend to the parent directory when retrieving recursively. This is a useful option, since it guarantees that only the files below a certain hierarchy will be downloaded. # -nd, --no-directories When included, directories will not be created. All files captured in the wget will be copied directly in to the active directory cmd = "bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/sample_vcf_files/' + vcf_filename + "'" print("cmd: %s" % cmd) os.system(cmd) except: print("The UCSD ftp site is not responding...") else: # It has to be an absolute path print('%s is not an absolute path.' % (sample_vcf_files_path)) # go back os.chdir(current_path) def check_download_chrbased_npy_atac_seq_files(atac_seq_file,chromNamesList): current_abs_path = os.path.dirname(os.path.abspath(__file__)) # print(current_abs_path) os.makedirs(os.path.join(current_abs_path,'lib','epigenomics','chrbased'),exist_ok=True) chrombased_npy_path = os.path.join(current_abs_path,'lib','epigenomics','chrbased') # print(chrombased_npy_path) if os.path.isabs(chrombased_npy_path): # print('%s an absolute path.' %(chrombased_npy_path)) os.chdir(chrombased_npy_path) atac_seq_filename_wo_extension = os.path.splitext(os.path.basename(atac_seq_file))[0] for chrLong in chromNamesList: filename = '%s_signal_%s.npy' % (chrLong, atac_seq_filename_wo_extension) chrbased_npy_array_path = os.path.join(chrombased_npy_path, filename) if not os.path.exists(chrbased_npy_array_path): print('Does not exists: %s' % (chrbased_npy_array_path)) try: print('Downloading %s under %s' % (filename, chrbased_npy_array_path)) # wget -c Continue getting a partially-downloaded file # wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" # -r When included, the wget will recursively traverse subdirectories in order to obtain all content. # -l1 Limit recursion depth to a specific number of levels, by setting the <#> variable to the desired number. # -c option to resume a download # -nc, --no-clobber If a file is downloaded more than once in the same directory, Wget's behavior depends on a few options, including -nc. In certain cases, the local file will be clobbered, or overwritten, upon repeated download. In other cases it will be preserved. # -np, --no-parent Do not ever ascend to the parent directory when retrieving recursively. This is a useful option, since it guarantees that only the files below a certain hierarchy will be downloaded. # -nd, --no-directories When included, directories will not be created. All files captured in the wget will be copied directly in to the active directory cmd = "bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/epigenomics/chrbased/' + filename + "'" print("cmd: %s" %cmd) os.system(cmd) except: # print("The UCSD ftp site is not responding...pulling from sanger ftp now.") print("The UCSD ftp site is not responding...") else: #It has to be an absolute path print('%s is not an absolute path.' %(chrombased_npy_path)) #go back os.chdir(current_abs_path) ####################################################### #Nov25, 2019 # Download nucleosome occupancy chr based npy files from ftp alexandrovlab if they do not exists # We are using this function if user is using our available nucleosome data for GM12878 adnd K562 cell lines def check_download_chrbased_npy_nuclesome_files(nucleosome_file,chromNamesList): current_abs_path = os.path.dirname(os.path.abspath(__file__)) # print(current_abs_path) os.makedirs(os.path.join(current_abs_path,'lib','nucleosome','chrbased'),exist_ok=True) chrombased_npy_path = os.path.join(current_abs_path,'lib','nucleosome','chrbased') # print(chrombased_npy_path) if os.path.isabs(chrombased_npy_path): # print('%s an absolute path.' %(chrombased_npy_path)) os.chdir(chrombased_npy_path) nucleosome_filename_wo_extension = os.path.splitext(os.path.basename(nucleosome_file))[0] for chrLong in chromNamesList: # GM12878 and K562 comes from woman samples therefore there is no chrY if chrLong != 'chrY': # filename = '%s_signal_wgEncodeSydhNsome%sSig.npy' %(chrLong,cell_line) filename = '%s_signal_%s.npy' % (chrLong, nucleosome_filename_wo_extension) chrbased_npy_array_path = os.path.join(chrombased_npy_path, filename) if not os.path.exists(chrbased_npy_array_path): print('Does not exists: %s' % (chrbased_npy_array_path)) try: # print('Downloading %s_signal_wgEncodeSydhNsome_%sSig.npy under %s' %(chrLong,cell_line,chrbased_npy_array_path)) print('Downloading %s_signal_%s.npy under %s' % ( chrLong, nucleosome_filename_wo_extension, chrbased_npy_array_path)) # wget -c Continue getting a partially-downloaded file # wget -nc If a file is downloaded more than once in the same directory, the local file will be clobbered, or overwritten # cmd="bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd -P ' + chrombased_npy_path + ' ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" cmd = "bash -c '" + 'wget -r -l1 -c -nc --no-parent -nd ftp://alexandrovlab-ftp.ucsd.edu/pub/tools/SigProfilerTopography/lib/nucleosome/chrbased/' + filename + "'" # print(cmd) os.system(cmd) except: # print("The UCSD ftp site is not responding...pulling from sanger ftp now.") print("The UCSD ftp site is not responding...") else: #It has to be an absolute path print('%s is not an absolute path.' %(chrombased_npy_path)) #go back os.chdir(current_abs_path) ####################################################### def install_default_nucleosome(genome): chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) if genome==MM10: #Case1: File is not set, Biosample is not set nucleosome_biosample = MEF nucleosome_file = MM10_MEF_NUCLEOSOME_FILE check_download_chrbased_npy_nuclesome_files(nucleosome_file, chromNamesList) elif genome == GRCh37: # Case1: File is not set, Biosample is not set nucleosome_biosample = K562 nucleosome_file = K562_NUCLEOSOME_OCCUPANCY_FILE # nucleosome_biosample = GM12878 # nucleosome_file = GM12878_NUCLEOSOME_OCCUPANCY_FILE check_download_chrbased_npy_nuclesome_files(nucleosome_file, chromNamesList) def install_default_atac_seq(genome): chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) if genome==GRCh37: atac_seq_file = DEFAULT_ATAC_SEQ_OCCUPANCY_FILE check_download_chrbased_npy_atac_seq_files(atac_seq_file,chromNamesList) def install_sample_vcf_files(): # Download to where the SigProfilerTopography is run check_download_sample_vcf_files() def install_sample_probability_files(): # Download to where the SigProfilerTopography is run check_download_sample_probability_files() ####################################################### #For Skin-Melanoma USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT is better #For others USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM is better def runOccupancyAnalyses(genome, outputDir, jobname, numofSimulations, job_tuples, sample_based, library_file_with_path, library_file_memo, chromSizesDict, chromNamesList, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures_with_cutoffs_array, ordered_dbs_signatures_with_cutoffs_array, ordered_id_signatures_with_cutoffs_array, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, computation_type, occupancy_type, occupancy_calculation_type, plusorMinus, remove_outliers, quantileValue, is_discreet, verbose): ####################################################################### if (os.path.basename(library_file_with_path) not in SIGPROFILERTOPOGRAPHY_DEFAULT_FILES) and (not os.path.exists(library_file_with_path)): print('There is no such file under %s' %(library_file_with_path)) ####################################################################### # computation_type = USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM # computation_type =USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT occupancyAnalysis(genome, computation_type, occupancy_type, occupancy_calculation_type, sample_based, plusorMinus, chromSizesDict, chromNamesList, outputDir, jobname, numofSimulations, job_tuples, library_file_with_path, library_file_memo, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures_with_cutoffs_array, ordered_dbs_signatures_with_cutoffs_array, ordered_id_signatures_with_cutoffs_array, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, remove_outliers, quantileValue, is_discreet, verbose) ####################################################### ####################################################### def runReplicationTimeAnalysis(genome, outputDir, jobname, numofSimulations, job_tuples, sample_based, replicationTimeFilename, chromSizesDict, chromNamesList, computation_type, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures_with_cutoffs, ordered_dbs_signatures_with_cutoffs, ordered_id_signatures_with_cutoffs, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose, matrix_generator_path): # Fill np array during runtime managed by replication_time_np_arrays_fill_runtime=True # Supported computation types # computation_type= USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM # computation_type =USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT replicationTimeAnalysis(computation_type, sample_based, genome, chromSizesDict, chromNamesList, outputDir, jobname, numofSimulations, job_tuples, replicationTimeFilename, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures_with_cutoffs, ordered_dbs_signatures_with_cutoffs, ordered_id_signatures_with_cutoffs, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose, matrix_generator_path) ############################################### ####################################################### ####################################################### def runReplicationStrandBiasAnalysis(outputDir, jobname, numofSimulations, job_tuples, sample_based, all_samples_np_array, replicationTimeFilename, replicationTimeValleyFilename, replicationTimePeakFilename, chromSizesDict, chromNamesList, computation_type, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures, ordered_dbs_signatures, ordered_id_signatures, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose): os.makedirs(os.path.join(outputDir,jobname,DATA,REPLICATIONSTRANDBIAS),exist_ok=True) smoothedWaveletRepliseqDataFilename = replicationTimeFilename valleysBEDFilename = replicationTimeValleyFilename peaksBEDFilename = replicationTimePeakFilename # Supported computation types # computation_type= USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM # computation_type =USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT replicationStrandBiasAnalysis(outputDir, jobname, numofSimulations, job_tuples, sample_based, all_samples_np_array, chromSizesDict, chromNamesList, computation_type, smoothedWaveletRepliseqDataFilename, valleysBEDFilename, peaksBEDFilename, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures, ordered_dbs_signatures, ordered_id_signatures, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose) ############################################### ####################################################### ####################################################### def runTranscriptionStradBiasAnalysis(outputDir, jobname, numofSimulations, job_tuples, sample_based, all_samples_np_array, chromNamesList, computation_type, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures, ordered_dbs_signatures, ordered_id_signatures, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose): os.makedirs(os.path.join(outputDir,jobname,DATA,TRANSCRIPTIONSTRANDBIAS),exist_ok=True) # Supported computation types # computation_type= USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM # computation_type =USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM_SPLIT transcriptionStrandBiasAnalysis(outputDir, jobname, numofSimulations, job_tuples, sample_based, all_samples_np_array, computation_type, chromNamesList, ordered_all_sbs_signatures_array, ordered_all_dbs_signatures_array, ordered_all_id_signatures_array, ordered_sbs_signatures, ordered_dbs_signatures, ordered_id_signatures, ordered_sbs_signatures_cutoffs, ordered_dbs_signatures_cutoffs, ordered_id_signatures_cutoffs, is_discreet, verbose) ############################################### ####################################################### ####################################################### def runProcessivityAnalysis(mutation_types_contexts, outputDir, jobname, numofSimulations, chromNamesList, processivity_calculation_type, inter_mutational_distance_for_processivity, subsSignature_cutoff_numberofmutations_averageprobability_df, verbose): os.makedirs(os.path.join(outputDir,jobname,DATA,PROCESSIVITY),exist_ok=True) #Internally Set considerProbabilityInProcessivityAnalysis = True processivityAnalysis(mutation_types_contexts, chromNamesList, processivity_calculation_type, inter_mutational_distance_for_processivity, outputDir, jobname, numofSimulations, considerProbabilityInProcessivityAnalysis, subsSignature_cutoff_numberofmutations_averageprobability_df, verbose) ############################################### ####################################################### ####################################################### def deleteOldData(outputDir,jobname,occupancy_type): ############################################# # Delete the output/jobname/DATA/occupancy_type if exists jobnamePath = os.path.join(outputDir,jobname,DATA,occupancy_type) ################################################ if (os.path.exists(jobnamePath)): try: shutil.rmtree(jobnamePath) except OSError as e: print('Error: %s - %s.' % (e.filename, e.strerror)) ################################################ ####################################################### ####################################################### def deleteOldFigures(outputDir, jobname, occupancy_type): jobnamePath = os.path.join(outputDir, jobname, FIGURE, occupancy_type) print('Topography.py jobnamePath:%s ' %jobnamePath) ############################################################ if (os.path.exists(jobnamePath)): try: shutil.rmtree(jobnamePath) except OSError as e: print('Error: %s - %s.' % (e.filename, e.strerror)) ############################################################ ####################################################### # Depreceated. # We assume that simulated data will have the same number_of_splits as the real data def get_job_tuples(chrlong_numberofmutations_df,numofSimulations): job_tuples = [] sim_nums = range(0, numofSimulations + 1) for chrLong in chrlong_numberofmutations_df['chrLong'].unique(): number_of_mutations=int(chrlong_numberofmutations_df[chrlong_numberofmutations_df['chrLong']==chrLong]['number_of_mutations'].values[0]) number_of_splits = math.ceil(number_of_mutations / NUMBER_OF_MUTATIONS_IN_EACH_SPLIT) split_indexes = range(0, number_of_splits) ############################################################### for sim_num in sim_nums: for split_index in split_indexes: job_tuples.append((chrLong, sim_num, split_index)) ############################################################### return job_tuples def get_all_signatures_array(ordered_all_sbs_signatures_wrt_probabilities_file_array, signature_starts_with): ordered_all_sbs_signatures = [] if ordered_all_sbs_signatures_wrt_probabilities_file_array is not None: for i in ordered_all_sbs_signatures_wrt_probabilities_file_array: if i.startswith(signature_starts_with): ordered_all_sbs_signatures.append(i) return np.array(ordered_all_sbs_signatures) ####################################################### # inputDir ='/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/input_for_matgen/BreastCancer560_subs_indels_dinucs' # outputDir = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/output_test/' # jobname = 'BreastCancer560' #Run SigProfilerTopography Analyses #Former full path now only the filename with extension # nucleosomeOccupancy = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/lib/nucleosome/wgEncodeSydhNsomeGm12878Sig.wig' # replicationSignal = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/lib/replication/GSM923442_hg19_wgEncodeUwRepliSeqMcf7WaveSignalRep1.wig' # replicationValley = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/lib/replication/GSM923442_hg19_wgEncodeUwRepliSeqMcf7ValleysRep1.bed' # replicationPeak = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/lib/replication/GSM923442_hg19_wgEncodeUwRepliSeqMcf7PkRep1.bed' # subs_probabilities_file_path = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/output/560_BRCA_WGS_DINUCS/SBS96/Suggested_Solution/Decomposed_Solution/Mutation_Probabilities.txt' # indels_probabilities_file_path = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/output/560_BRCA_WGS_DINUCS/ID83/Suggested_Solution/Decomposed_Solution/Mutation_Probabilities.txt' # dinucs_probabilities_file_path = '/oasis/tscc/scratch/burcak/developer/python/SigProfilerTopography/SigProfilerTopography/output/560_BRCA_WGS_DINUCS/DBS78/Suggested_Solution/Decomposed_Solution/Mutation_Probabilities.txt' def runAnalyses(genome, inputDir, outputDir, jobname, numofSimulations, sbs_probabilities = None, dbs_probabilities = None, id_probabilities = None, mutation_types_contexts = None, mutation_types_contexts_for_signature_probabilities = None, epigenomics_files = None, epigenomics_files_memos = None, epigenomics_biosamples = None, epigenomics_dna_elements = None, epigenomics_dir_name = None, nucleosome_biosample = None, nucleosome_file = None, replication_time_biosample = None, replication_time_signal_file = None, replication_time_valley_file = None, replication_time_peak_file = None, computation_type = USING_APPLY_ASYNC_FOR_EACH_CHROM_AND_SIM, epigenomics = False, nucleosome = False, replication_time = False, strand_bias = False, replication_strand_bias = False, transcription_strand_bias = False, processivity = False, sample_based = False, plot_figures = True, step1_sim_data = True, step2_matgen_data = True, step3_prob_merged_data = True, step4_tables = True, is_discreet = True, average_probability = DEFAULT_AVERAGE_PROBABILITY, num_of_sbs_required = DEFAULT_NUM_OF_SBS_REQUIRED, num_of_dbs_required = DEFAULT_NUM_OF_DBS_REQUIRED, num_of_id_required = DEFAULT_NUM_OF_ID_REQUIRED, plusorMinus_epigenomics = 1000, plusorMinus_nucleosome = 1000, epigenomics_heatmap_significance_level = 0.01, verbose = False, matrix_generator_path = MATRIX_GENERATOR_PATH, PCAWG = False, plot_epigenomics = False, plot_nucleosome = False, plot_replication_time = False, plot_strand_bias = False, plot_replication_strand_bias = False, plot_transcription_strand_bias = False, plot_processivity = False, remove_outliers = False, quantileValue = 0.97, delete_old = False, plot_mode = PLOTTING_FOR_SIGPROFILERTOPOGRAPHY_TOOL, occupancy_calculation_type = MISSING_SIGNAL, processivity_calculation_type = CONSIDER_DISTANCE, inter_mutational_distance_for_processivity = 10000, combine_p_values_method = COMBINE_P_VALUES_METHOD_FISHER, fold_change_window_size = 100, num_of_real_data_avg_overlap = DEFAULT_NUM_OF_REAL_DATA_OVERLAP_REQUIRED): current_abs_path = os.path.dirname(os.path.realpath(__file__)) chromSizesDict = getChromSizesDict(genome) chromNamesList = list(chromSizesDict.keys()) chromShortNamesList=getShortNames(chromNamesList) # Filled in Step3 # contains all the columns in order w.r.t. probabilities file ordered_all_sbs_signatures_wrt_probabilities_file_array = None ordered_all_dbs_signatures_wrt_probabilities_file_array = None ordered_all_id_signatures_wrt_probabilities_file_array = None ################################################### if mutation_types_contexts is None: mutation_types_contexts=[] if (sbs_probabilities is not None): mutation_types_contexts.append(SBS96) if (id_probabilities is not None): mutation_types_contexts.append(ID) if (dbs_probabilities is not None): mutation_types_contexts.append(DBS) # If still None if mutation_types_contexts is None: print('--- There is a situation/problem: mutation_types_contexts is None.') print('--- mutation_types_contexts has to be set before SigProfilerTopography run.') if mutation_types_contexts_for_signature_probabilities is None: mutation_types_contexts_for_signature_probabilities=mutation_types_contexts ################################################### ################################################### if step1_sim_data: step2_matgen_data = True step3_prob_merged_data = True step4_tables = True elif step2_matgen_data: step3_prob_merged_data = True step4_tables = True elif step3_prob_merged_data: step4_tables = True ################################################### ################################################### if (average_probability!=DEFAULT_AVERAGE_PROBABILITY) or \ (num_of_sbs_required!=DEFAULT_NUM_OF_SBS_REQUIRED) or \ (num_of_dbs_required!=DEFAULT_NUM_OF_DBS_REQUIRED) or \ (num_of_id_required!=DEFAULT_NUM_OF_ID_REQUIRED): step4_tables = True ################################################### ################################################################################# ################################## Setting starts ############################### ################## Set full path library files starts ########################### ################################################################################# if genome is None: print('Parameter genome:%s must be set for SigProfilerTopography Analysis.' %(genome)) ############################################### if strand_bias: replication_strand_bias=True transcription_strand_bias=True if plot_strand_bias: plot_replication_strand_bias=True plot_transcription_strand_bias=True ############################################### ############################################### # We need full path of the library files if (genome==GRCh37) and (epigenomics_files==None): epigenomics_files = [DEFAULT_ATAC_SEQ_OCCUPANCY_FILE, DEFAULT_H3K27ME3_OCCUPANCY_FILE, DEFAULT_H3K36ME3_OCCUPANCY_FILE, DEFAULT_H3K9ME3_OCCUPANCY_FILE, DEFAULT_H3K27AC_OCCUPANCY_FILE, DEFAULT_H3K4ME1_OCCUPANCY_FILE, DEFAULT_H3K4ME3_OCCUPANCY_FILE, DEFAULT_CTCF_OCCUPANCY_FILE] epigenomics_files_memos=[] for epigenomics_file in epigenomics_files: epigenomics_files_memos.append(os.path.splitext(os.path.basename(epigenomics_file))[0]) # Defines columns in the heatmap # These strings must be within filenames (without file extension) # Order is not important epigenomics_dna_elements = ['H3K27me3', 'H3K36me3', 'H3K9me3', 'H3K27ac', 'H3K4me1', 'H3K4me3', 'CTCF', 'ATAC'] # Defines rows in the detailed heatmap # These strings must be within filenames (without file extension) # Order is not important epigenomics_biosamples = ['breast_epithelium'] for file_index, filename in enumerate(epigenomics_files): epigenomics_files[file_index] = os.path.join(current_abs_path, LIB, EPIGENOMICS, filename) # These must be under epigenomics under installed SigPofilerTopography elif (genome == MM10) and (epigenomics_files == None): epigenomics_files = [ENCFF575PMI_mm10_embryonic_facial_prominence_ATAC_seq, ENCFF993SRY_mm10_embryonic_fibroblast_H3K4me1, ENCFF912DNP_mm10_embryonic_fibroblast_H3K4me3, ENCFF611HDQ_mm10_embryonic_fibroblast_CTCF, ENCFF152DUV_mm10_embryonic_fibroblast_POLR2A, ENCFF114VLZ_mm10_embryonic_fibroblast_H3K27ac] epigenomics_files_memos = [] for epigenomics_file in epigenomics_files: epigenomics_files_memos.append(os.path.splitext(os.path.basename(epigenomics_file))[0]) # Defines columns in the heatmap # These strings must be within filenames (without file extension) # Order is not important epigenomics_dna_elements = ['ATAC', 'H3K4me1', 'H3K4me3', 'CTCF', 'POLR2A', 'H3K27ac'] # Defines rows in the detailed heatmap # These strings must be within filenames (without file extension) # Order is not important epigenomics_biosamples = ['embryonic_fibroblast'] for file_index, filename in enumerate(epigenomics_files): epigenomics_files[file_index] = os.path.join(current_abs_path, LIB, EPIGENOMICS, filename) ############################################### ############################################### if genome==MM10: #Case1: File is not set, Biosample is not set if (nucleosome_file is None) and (nucleosome_biosample is None): nucleosome_biosample = MEF nucleosome_file = getNucleosomeFile(nucleosome_biosample) #Case2: File is not set, Biosample is set elif (nucleosome_file is None) and (nucleosome_biosample is not None): if (nucleosome_biosample in available_nucleosome_biosamples): #Sets the filename without the full path nucleosome_file = getNucleosomeFile(nucleosome_biosample) #Case3: nucleosome_file is a filename with fullpath (User provided) , biosample is not set elif ((nucleosome_file is not None) and (nucleosome_biosample is None)): # We expect that user has provided nucleosome file with full path nucleosome_biosample = UNDECLARED #Case4: nucleosome_file is a filename with fullpath (User provided), biosample is set #Do nothing use as it is elif genome==GRCh37: #Case1: File is not set, Biosample is not set if (nucleosome_file is None) and (nucleosome_biosample is None): nucleosome_biosample = K562 nucleosome_file = getNucleosomeFile(nucleosome_biosample) #Case2: File is not set, Biosample is set elif (nucleosome_file is None) and (nucleosome_biosample is not None): if (nucleosome_biosample in available_nucleosome_biosamples): #Sets the filename without the full path nucleosome_file = getNucleosomeFile(nucleosome_biosample) #Case3: nucleosome_file is a filename with fullpath (User provided) , biosample is not set elif ((nucleosome_file is not None) and (nucleosome_biosample is None)): # We expect that user has provided nucleosome file with full path nucleosome_biosample = UNDECLARED #Case4: nucleosome_file is a filename with fullpath (User provided), biosample is set #Do nothing use as it is ############################################### ############################################### if genome==MM10: # Case1: Files are not set, Biosample is not set if (replication_time_signal_file is None) and (replication_time_valley_file is None) and (replication_time_peak_file is None) and (replication_time_biosample is None): replication_time_biosample=MEF #We only set replication_time_signal_file # replication_time_valley_file is None # replication_time_peak_file is None replication_time_signal_file, replication_time_valley_file,replication_time_peak_file=getReplicationTimeFiles(replication_time_biosample) elif genome==GRCh37: # We need full path of the library files # By default replication_time_biosample=MCF7 and signal, valley, peak files are None # Case1: Files are not set, Biosample is not set if (replication_time_signal_file is None) and (replication_time_valley_file is None) and (replication_time_peak_file is None) and (replication_time_biosample is None): replication_time_biosample=MCF7 replication_time_signal_file, replication_time_valley_file,replication_time_peak_file=getReplicationTimeFiles(replication_time_biosample) if (replication_time or replication_strand_bias): # For using SigProfilerTopography Provided Replication Time Files check_download_replication_time_files(replication_time_signal_file, replication_time_valley_file,replication_time_peak_file) #Case2: Files are not set, Biosample is set elif (replication_time_signal_file is None) and (replication_time_valley_file is None) and (replication_time_peak_file is None) and (replication_time_biosample is not None): if (replication_time_biosample in available_replication_time_biosamples): replication_time_signal_file, replication_time_valley_file, replication_time_peak_file = getReplicationTimeFiles(replication_time_biosample) if (replication_time or replication_strand_bias): # For using SigProfilerTopography Provided Replication Time Files check_download_replication_time_files(replication_time_signal_file, replication_time_valley_file,replication_time_peak_file) #Case3: nucleosome_file is a filename with fullpath (User provided) , biosample is not set elif ((replication_time_signal_file is not None) or (replication_time_valley_file is not None) or (replication_time_peak_file is not None)) and (replication_time_biosample is None): replication_time_biosample = UNDECLARED #Case4: Files are set. Biosample is set. Use as it is. Do nothing. ############################################### ############################################### # data files are named using user provided epigenomics_files_memos or using epigenomics_file_memos_created epigenomics_file_memos_created = [] # Run for each epigenomics file if (epigenomics_files_memos is None) or (len(epigenomics_files_memos) != len(epigenomics_files)): for idx, epigenomics_file in enumerate(epigenomics_files): epigenomics_file_memo = os.path.splitext(os.path.basename(epigenomics_file))[0] epigenomics_file_memos_created.append(epigenomics_file_memo) # Used for plotting if (epigenomics_files_memos is None) or (len(epigenomics_files_memos) != len(epigenomics_files)): epigenomics_files_memos = epigenomics_file_memos_created if (epigenomics_biosamples is None) or (len(epigenomics_biosamples) == 0): epigenomics_biosamples = [UNDECLARED] ############################################### ################################################################################# ################## Set full path library files ends ############################# ################################## Setting ends ################################# ################################################################################# print('#################################################################################') # print('--- %s' %platform.platform()) # print('--- %s' %platform.system()) #print("--- Operating System: %s" %(platform.uname()[0])) print("--- SigProfilerTopography starts") print('#################################################################################') print('#################################################################################') print("--- Operating System: %s" %(platform.platform())) print("--- Release: %s" %platform.uname()[2]) print("--- Version: %s" %platform.uname()[3]) print("--- Nodename: %s" %platform.uname()[1]) print('#################################################################################') print('#################################################################################') print("--- Python and Package Versions") print("--- Python Version: %s" %(str(platform.sys.version_info.major) + "." + str(platform.sys.version_info.minor) + "." + str(platform.sys.version_info.micro))) print('--- SigProfilerTopography Version:%s' % topography_version.version) print("--- SigProfilerMatrixGenerator Version: %s" %matrix_generator_version.version) print("--- SigProfilerSimulator version: %s" %simulator_version.version) print("--- pandas version: %s" %pd.__version__) print("--- numpy version: %s" %np.__version__) print("--- statsmodels version: %s" %statsmodels.__version__) print("--- scipy version: %s" %scipy.__version__) print("--- matplotlib version: %s" %plt.__version__) print('#################################################################################\n') print('#################################################################################') print('--- SigProfilerTopography parameters') print('--- Genome: %s' %(genome)) print('--- inputDir:%s' %inputDir) print('--- outputDir:%s' %outputDir) print('--- jobname:%s' %jobname) if (sbs_probabilities is not None): print('--- sbs_probabilities:%s' %sbs_probabilities) if (dbs_probabilities is not None): print('--- dbs_probabilities:%s' %dbs_probabilities) if (id_probabilities is not None): print('--- id_probabilities:%s' %id_probabilities) print('--- numofSimulations:%d' %numofSimulations) print('\n--- epigenomics_files:%s' %epigenomics_files) print('--- epigenomics_files_memos:%s' %epigenomics_files_memos) print('--- epigenomics_biosamples:%s' %epigenomics_biosamples) print('--- epigenomics_dna_elements:%s' %epigenomics_dna_elements) print('--- number of epigenomics_files:%d' %len(epigenomics_files)) print('\n--- nucleosome_biosample:%s' %nucleosome_biosample) print('--- nucleosome_file:%s' % nucleosome_file) print('\n--- replication_time_biosample:%s' % replication_time_biosample) print('--- replication_time_signal_file:%s' % replication_time_signal_file) print('--- replication_time_valley_file:%s' % replication_time_valley_file) print('--- replication_time_peak_file:%s' % replication_time_peak_file) print('\n--- mutation_types_contexts:%s' %mutation_types_contexts) print('--- mutation_types_contexts_for_signature_probabilities:%s' %mutation_types_contexts_for_signature_probabilities) print('--- computation_type:%s' %computation_type) print('--- mutation contribution is_discreet:%s\n' %is_discreet) if sample_based: print('--- Sample Based Analysis.') if epigenomics: print('--- Epigenomics Analysis.') if nucleosome: print('--- Nucleosome Analysis.') if replication_time: print('--- Replication Time Analysis.') if (strand_bias or replication_strand_bias): print('--- Replication Strand Bias Analysis.') if (strand_bias or transcription_strand_bias): print('--- Transcription Strand Bias Analysis.') if processivity: print('--- Processivity Analysis.') print('--- step1_sim_data:%s' %step1_sim_data) print('--- step2_matgen_data:%s' %step2_matgen_data) print('--- step3_prob_merged_data:%s' %step3_prob_merged_data) print('--- step4_tables:%s' %step4_tables) print('--- plot_figures:%s' %plot_figures) print('--- average mutation probability required %0.2f' %average_probability) print('--- minimum number of sbs mutations required: %d' %num_of_sbs_required) print('--- minimum number of id mutations required: %d' %num_of_id_required) print('--- minimum number of dbs mutations required: %d' %num_of_dbs_required) if epigenomics: print('--- number of bases considered before and after mutation start for epigenomics analysis: %d' %plusorMinus_epigenomics) if nucleosome: print('--- number of bases considered before and after mutation start for nucleosome occupancy analysis: %d' %plusorMinus_nucleosome) print('#################################################################################\n') print('#################################################################################') numofProcesses = multiprocessing.cpu_count() print('--- numofProcesses for multiprocessing: %d' %numofProcesses) print('#################################################################################\n') ################################################################################# print('#################################################################################') print('--- For Genome: %s' %(genome)) print('--- Chromosome names: %s' %(chromNamesList)) print('--- Chromosome short names: %s' % (chromShortNamesList)) print('--- current_abs_path: %s ' % current_abs_path) print('#################################################################################\n') ################################################################################# ################################################################################################################### ################################################# All Steps starts ################################################ ################################################################################################################### ################################################################################################### ######################### SigProfilerMatrixGenerator for original data starts ##################### ################################################################################################### if (step2_matgen_data): # Run MatrixGenerator for original data: this call prepares chrBased input files for original data with mutation contexts print('#################################################################################') print('--- SigProfilerMatrixGenerator for original data') start_time = time.time() print('For original data inputDir:%s' % (inputDir)) matrices = matGen.SigProfilerMatrixGeneratorFunc(jobname, genome, inputDir, plot=False, seqInfo=True) # print('matrices') # print(matrices) # original matrix generator chrbased data will be under inputDir/output/vcf_files/SNV # original matrix generator chrbased data will be under inputDir/output/vcf_files/DBS # original matrix generator chrbased data will be under inputDir/output/vcf_files/ID print("--- SigProfilerMatrixGenerator for original data: %s seconds ---" % (time.time() - start_time)) print("--- SigProfilerMatrixGenerator for original data: %f minutess ---" % float((time.time() - start_time) / 60)) print('#################################################################################\n') ################################################################################################### ######################### SigProfilerMatrixGenerator for original data ends ####################### ################################################################################################### ################################################################################################################### ################################## Step1 Simulations if any starts ################################################ ################################################################################################################### if ((numofSimulations > 0) and (step1_sim_data)): ################################################################################################### ############################ SigProfilerSimulator for n simulations starts ####################### ################################################################################################### print('#################################################################################') print('--- SigProfilerSimulator for %d simulations starts' %(numofSimulations)) start_time = time.time() #Call SigProfilerSimulator separately for each mutation type context otherwise it counts DBS mutations also in SBS mutations # Topography uses same mutation types with Simulator # Acceptable contexts for Simulator include {'96', '384', '1536', '6144', 'DBS', 'ID', 'ID415'}. # '96' or '384' for single base substitutions (Simulator 1536, or 3072) # 'DBS' for double base substitutions # 'ID' for indels for mutation_type_context in mutation_types_contexts: mutation_type_context_for_simulator = [] mutation_type_context_for_simulator.append(mutation_type_context) # Please notice that Simulator reverse the given input mutationTypes_for_simulator print('--- SigProfilerSimulator is running for %s' %(mutation_type_context)) simulator.SigProfilerSimulator(jobname, inputDir, genome, mutation_type_context_for_simulator,simulations=numofSimulations,chrom_based=True, gender='male') print("--- SigProfilerSimulator for %d simulations: %s seconds" %(numofSimulations,(time.time() - start_time))) print("--- SigProfilerSimulator for %d simulations: %f minutes" %(numofSimulations,float((time.time()-start_time)/60))) print('--- SigProfilerSimulator for %d simulations ends' %(numofSimulations)) print('#################################################################################\n') ################################################################################################### ############################ SigProfilerSimulator for n simulations ends ######################### ################################################################################################### ################################################################################################################### ################################## Step1 Simulations if any ends ################################################## ################################################################################################################### ################################################################################################################### ################################## Step2 Matrix Generator for n simulations starts ################################ ################################################################################################################### if (step2_matgen_data): if (numofSimulations > 0): ################################################################################################### ########################### Create simN directories for MatrixGenerator starts #################### ################################################################################################### print('#################################################################################') print('--- Create directories for %d simulations under %s/output/simulations/' %(numofSimulations,inputDir)) start_time = time.time() #Create directories sim1 to SimN under inputDir/output/simulations/ access_rights = 0o755 for simNum in range(1,numofSimulations+1): try: simName = 'sim%d' %(simNum) simDir = os.path.join(inputDir,'output','simulations',simName) if (not os.path.exists(simDir)): os.mkdir(simDir, access_rights) for mutation_type_context in mutation_types_contexts: simDir = os.path.join(inputDir,'output','simulations',simName,mutation_type_context) if (not os.path.exists(simDir)): os.mkdir(simDir, access_rights) except OSError: print("Creation of the directory %s failed" %simDir) # else: # print("Successfully created the directory %s" %simDir) for mutation_type_context in mutation_types_contexts: # Simulator creates one maf file for each simulation for each mutation context # Simulator creates maf files under inputDir/output/simulations/jobname_simulations_GRCh37_96 # Simulator creates maf files under inputDir/output/simulations/jobname_simulations_GRCh37_ID # Simulator creates maf files under inputDir/output/simulations/jobname_simulations_GRCh37_DBS dirName = '%s_simulations_%s_%s' %(jobname, genome,mutation_type_context) copyFromDir = os.path.join(inputDir,'output','simulations',dirName) copyToMainDir= os.path.join(inputDir,'output','simulations') # Topography copies these maf files to inputDir/output/simulations/simX/mutation_type_context/X.maf # So that, in the next step MatrixGenerator can create chrom based seqinfo text files for each X.maf file copyMafFiles(copyFromDir,copyToMainDir,mutation_type_context,numofSimulations) print("--- Create directories and copy files: %s seconds ---" %(time.time()-start_time)) print("--- Create directories and copy files: %f minutes ---" %(float((time.time()-start_time)/60))) print('#################################################################################\n') ################################################################################################### ########################### Create simN directories for MatrixGenerator ends ###################### ################################################################################################### ################################################################################################### #Important note: Separate directory creation is necessary for Matrix Generator #inputDir/output/simulations/simX/96/X.maf #inputDir/output/simulations/simX/ID/X.maf #inputDir/output/simulations/simX/DBS/X.maf #enables MatrixGenerator to create chr based simulated data files under #sim1 matrix generator chrbased data will be under inputDir/output/simulations/simX/96/output/vcf_files/SNV #sim1 matrix generator chrbased data will be under inputDir/output/simulations/simX/ID/output/vcf_files/ID #sim1 matrix generator chrbased data will be under inputDir/output/simulations/simX/DBS/output/vcf_files/DBS #otherwise all simulations maf files will be under #inputDir/output/simulations/Skin-Melanoma_simulations_GRCh37_96 #inputDir/output/simulations/Skin-Melanoma_simulations_GRCh37_DBS #inputDir/output/simulations/Skin-Melanoma_simulations_GRCh37_ID #Then running MatrixGenerator for each simulation will not be possible. ################################################################################################### ################################################################################################### ####################### Run MatrixGenerator for each simulation starts ############################ ################################################################################################### print('#################################################################################') print('--- Run SigProfilerMatrixGenerator for each simulation starts') start_time = time.time() for simNum in range(1,numofSimulations+1): simName = 'sim%d' %(simNum) #For each simulation we are calling matrix generator separately for each mutation type context print('--- SigProfilerMatrixGenerator is run for %s starts' %(simName)) for mutation_type_context in mutation_types_contexts: simInputDir= os.path.join(inputDir,'output','simulations',simName,mutation_type_context) print('For %s: %s simInputDir:%s' %(mutation_type_context,simName,simInputDir)) matrices = matGen.SigProfilerMatrixGeneratorFunc(jobname,genome,simInputDir,plot=False, seqInfo=True) # print('matrices') # print(matrices) print('#####################################') print('--- SigProfilerMatrixGenerator is run for %s ends\n' % (simName)) #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/96/output/vcf_files/SNV #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/ID/output/vcf_files/ID #sim1 matrix generator chrbased data will be under inputDir/output/simulations/sim1/DBS/output/vcf_files/DBS #simN matrix generator chrbased data will be under inputDir/output/simulations/simN/96/output/vcf_files/SNV #simN matrix generator chrbased data will be under inputDir/output/simulations/simN/ID/output/vcf_files/ID #simN matrix generator chrbased data will be under inputDir/output/simulations/simN/DBS/output/vcf_files/DBS print("--- Run MatrixGenerator for each simulation: %s seconds" %(time.time()-start_time)) print("--- Run MatrixGenerator for each simulation: %f minutes" %(float((time.time()-start_time)/60))) print('--- Run SigProfilerMatrixGenerator for each simulation ends') print('#################################################################################\n') ################################################################################################### ####################### Run MatrixGenerator for each simulation ends ############################## ################################################################################################### ################################################################################################################### ################################## Step2 Matrix Generator for n simulations ends ################################## ################################################################################################################### ################################################################################################################### ########### Step3 Merge chrom based matrix generator generated files with probabilities starts #################### ################################################################################################################### if (step3_prob_merged_data): #################################################################################################################### ################## Merge original chr based files with Mutation Probabilities starts ############################## #################################################################################################################### print('#################################################################################') print('--- Merge original chr based files with Mutation Probabilities starts') print('#################################################################################') startSimNum = 0 endSimNum = 0 start_time = time.time() # SBS for mutation_type_context in mutation_types_contexts: # if (mutation_type_context in SBS_CONTEXTS) and (sbs_probabilities is not None): if (mutation_type_context in SBS_CONTEXTS): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities,SUBS) print('--- Merge %s context mutations with probabilities for %s' % (mutation_type_context, sbs_probabilities)) ordered_all_sbs_signatures_wrt_probabilities_file_array = prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList, inputDir, outputDir, jobname, mutation_type_context, sbs_probabilities, mutation_type_context_for_probabilities, startSimNum, endSimNum, SNV, PCAWG, verbose) # ID # if ((ID in mutation_types_contexts) and (id_probabilities is not None)): if (ID in mutation_types_contexts): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities, INDELS) print('--- Merge %s mutations with probabilities for %s' % (ID, id_probabilities)) ordered_all_id_signatures_wrt_probabilities_file_array = prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList, inputDir, outputDir, jobname, ID, id_probabilities, mutation_type_context_for_probabilities, startSimNum, endSimNum, ID, PCAWG, verbose) # DBS # if ((DBS in mutation_types_contexts) and (dbs_probabilities is not None)): if (DBS in mutation_types_contexts): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities, DINUCS) print('--- Merge %s mutations with probabilities for %s' % (DBS, dbs_probabilities)) ordered_all_dbs_signatures_wrt_probabilities_file_array = prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList, inputDir, outputDir, jobname, DBS, dbs_probabilities, mutation_type_context_for_probabilities, startSimNum, endSimNum, DBS, PCAWG, verbose) print("--- Merge original chr based files with Mutation Probabilities: %s seconds" % (time.time() - start_time)) print("--- Merge original chr based files with Mutation Probabilities: %f minutes" % (float((time.time() - start_time) / 60))) print('--- Merge original chr based files with Mutation Probabilities ends') print('#################################################################################\n') #################################################################################################################### ################## Merge original chr based files with Mutation Probabilities ends ################################ #################################################################################################################### #################################################################################################################### ################## Merge simulations chr based files with Mutation Probabilities starts ########################### #################################################################################################################### if (numofSimulations > 0): print('#################################################################################') print('--- Merge simulations chr based files with Mutation Probabilities starts') print('#################################################################################') startSimNum=1 endSimNum=numofSimulations start_time = time.time() # SBS for mutation_type_context in mutation_types_contexts: # if (mutation_type_context in SBS_CONTEXTS) and (sbs_probabilities is not None): if (mutation_type_context in SBS_CONTEXTS): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities, SUBS) print('--- Merge %s mutations with probabilities for %s' %(mutation_type_context,sbs_probabilities)) prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList,inputDir,outputDir,jobname,mutation_type_context,sbs_probabilities,mutation_type_context_for_probabilities,startSimNum,endSimNum,'SNV',PCAWG,verbose) # ID # if ((ID in mutation_types_contexts) and (id_probabilities is not None)): if (ID in mutation_types_contexts): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities, ID) print('--- Merge %s mutations with probabilities for %s' % (ID, id_probabilities)) prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList,inputDir,outputDir,jobname,'ID',id_probabilities,mutation_type_context_for_probabilities,startSimNum,endSimNum,'ID',PCAWG,verbose) # DBS # if ((DBS in mutation_types_contexts) and (dbs_probabilities is not None)): if (DBS in mutation_types_contexts): mutation_type_context_for_probabilities = get_mutation_type_context_for_probabilities_file(mutation_types_contexts_for_signature_probabilities, DBS) print('--- Merge %s mutations with probabilities for %s' % (DBS,dbs_probabilities)) prepareMutationsDataAfterMatrixGenerationAndExtractorForTopography(chromShortNamesList,inputDir,outputDir,jobname,'DBS',dbs_probabilities,mutation_type_context_for_probabilities,startSimNum,endSimNum,'DBS',PCAWG,verbose) print("--- Merge simulations chr based files with Mutation Probabilities: %s seconds" %(time.time()-start_time)) print("--- Merge simulations chr based files with Mutation Probabilities: %f minutes" %(float((time.time()-start_time)/60))) print('--- Merge simulations chr based files with Mutation Probabilities ends') print('#################################################################################\n') #################################################################################################################### ################## Merge simulations chr based files with Mutation Probabilities ends ############################# #################################################################################################################### else: for mutation_type_context in mutation_types_contexts: if (mutation_type_context in SBS_CONTEXTS): if ((sbs_probabilities is not None) and (os.path.exists(sbs_probabilities))): ordered_all_sbs_signatures_wrt_probabilities_file_array = pd.read_csv(sbs_probabilities, sep='\t', nrows=0).columns.values else: filename = '%s_%s_for_topography.txt' % ('chr1', SUBS) chrBasedMutationDFFilePath = os.path.join(outputDir, jobname, DATA, CHRBASED, filename) if os.path.exists(chrBasedMutationDFFilePath): ordered_all_sbs_signatures_wrt_probabilities_file_array = pd.read_csv(chrBasedMutationDFFilePath,sep='\t', nrows=0).columns.values print('ordered_all_sbs_signatures_wrt_probabilities_file_array:%s' %(ordered_all_sbs_signatures_wrt_probabilities_file_array)) else: print('There is a problem: ordered_all_sbs_signatures_wrt_probabilities_file_array is not filled.') if (DBS in mutation_types_contexts): if ((dbs_probabilities is not None) and (os.path.exists(dbs_probabilities))): ordered_all_dbs_signatures_wrt_probabilities_file_array = pd.read_csv(dbs_probabilities, sep='\t', nrows=0).columns.values else: filename = '%s_%s_for_topography.txt' % ('chr1', DINUCS) chrBasedMutationDFFilePath = os.path.join(outputDir, jobname, DATA, CHRBASED, filename) if os.path.exists(chrBasedMutationDFFilePath): ordered_all_dbs_signatures_wrt_probabilities_file_array = pd.read_csv(chrBasedMutationDFFilePath, sep='\t', nrows=0).columns.values print('ordered_all_dbs_signatures_wrt_probabilities_file_array:%s' %(ordered_all_dbs_signatures_wrt_probabilities_file_array)) else: print('There is a problem: ordered_all_dbs_signatures_wrt_probabilities_file_array is not filled.') if (ID in mutation_types_contexts): if ((id_probabilities is not None) and (os.path.exists(id_probabilities))): ordered_all_id_signatures_wrt_probabilities_file_array = pd.read_csv(id_probabilities,sep='\t', nrows=0).columns.values else: filename = '%s_%s_for_topography.txt' % ('chr1', INDELS) chrBasedMutationDFFilePath = os.path.join(outputDir, jobname, DATA, CHRBASED, filename) if os.path.exists(chrBasedMutationDFFilePath): ordered_all_id_signatures_wrt_probabilities_file_array = pd.read_csv(chrBasedMutationDFFilePath, sep='\t', nrows=0).columns.values print('ordered_all_id_signatures_wrt_probabilities_file_array:%s' %(ordered_all_id_signatures_wrt_probabilities_file_array)) else: print('There is a problem: ordered_all_id_signatures_wrt_probabilities_file_array is not filled.') ################################################################################################################### ########### Step# Merge chrom based matrix generator generated files with probabilities ends ###################### ################################################################################################################### ####################################################################################################### ################################### Step4 Fill Table Starts ########################################### ####################################################################################################### # Step4 Initialize these dataframes as empty dataframe # Step4 We will fill these dataframes if there is the corresponding data subsSignature_cutoff_numberofmutations_averageprobability_df = pd.DataFrame() dinucsSignature_cutoff_numberofmutations_averageprobability_df = pd.DataFrame() indelsSignature_cutoff_numberofmutations_averageprobability_df = pd.DataFrame() # Fill these pandas dataframes # cancer_type signature number_of_mutations average_probability samples_list len(samples_list) len(all_samples_list) percentage_of_samples sbs_signature_number_of_mutations_df = pd.DataFrame() dbs_signature_number_of_mutations_df = pd.DataFrame() id_signature_number_of_mutations_df = pd.DataFrame() mutationtype_numberofmutations_numberofsamples_sampleslist_df = pd.DataFrame() chrlong_numberofmutations_df = pd.DataFrame() if (step4_tables): ################################################################################# print('#################################################################################') print('--- Fill tables/dictionaries using original data starts') start_time = time.time() ################################################################################## # For each signature we will find a cutoff value for mutations with average probability >=0.9 # Our aim is to have at most 10% false positive rate in mutations # number of mutations >= 5K for subs signatures # number of mutations >= 1K for indels signatures # number of mutations >= 200 for dinuc signatures # If we can not satisfy this condition we will discard the signature cutoffs = [] for cufoff in np.arange(0.5, 0.91, 0.01): cutoffs.append("%.2f" % (cufoff)) # Initialize # mutationType2PropertiesListDict: PropertiesList consists of [NumberofMutations NumberofSamples SamplesList] mutationType2PropertiesDict = {} chrLong2NumberofMutationsDict = {} for mutation_type_context in mutation_types_contexts: if (mutation_type_context in SBS_CONTEXTS): sbs_signature_number_of_mutations_df = fill_signature_number_of_mutations_df(outputDir, jobname, chromNamesList, SUBS) sbs_signature_number_of_mutations_df.to_csv(os.path.join(outputDir, jobname, DATA, Table_SBS_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename), sep='\t', header=True, index=False) # We are reading original data to fill the signature2PropertiesListDict # We are writing all samples_mutations_cutoffs_tables and signature based decided samples_mutations_cutoffs_tables in table format. subsSignature_cutoff_numberofmutations_averageprobability_df = fillCutoff2Signature2PropertiesListDictionary( outputDir, jobname, chromNamesList, SUBS, cutoffs, average_probability, num_of_sbs_required, num_of_id_required, num_of_dbs_required, mutationType2PropertiesDict, chrLong2NumberofMutationsDict) if (DBS in mutation_types_contexts): dbs_signature_number_of_mutations_df = fill_signature_number_of_mutations_df(outputDir, jobname, chromNamesList, DINUCS) dbs_signature_number_of_mutations_df.to_csv(os.path.join(outputDir, jobname, DATA, Table_DBS_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename), sep='\t', header=True, index=False) # We are reading original data to fill the signature2PropertiesListDict # We are writing all samples_mutations_cutoffs_tables and signature based decided samples_mutations_cutoffs_tables in table format. dinucsSignature_cutoff_numberofmutations_averageprobability_df = fillCutoff2Signature2PropertiesListDictionary( outputDir, jobname, chromNamesList, DINUCS, cutoffs, average_probability, num_of_sbs_required, num_of_id_required, num_of_dbs_required, mutationType2PropertiesDict, chrLong2NumberofMutationsDict) if (ID in mutation_types_contexts): id_signature_number_of_mutations_df = fill_signature_number_of_mutations_df(outputDir, jobname, chromNamesList, INDELS) id_signature_number_of_mutations_df.to_csv(os.path.join(outputDir, jobname, DATA, Table_ID_Signature_Probability_Mode_NumberofMutations_AverageProbability_Filename), sep='\t', header=True, index=False) # We are reading original data to fill the signature2PropertiesListDict # We are writing all samples_mutations_cutoffs_tables and signature based decided samples_mutations_cutoffs_tables in table format. indelsSignature_cutoff_numberofmutations_averageprobability_df = fillCutoff2Signature2PropertiesListDictionary( outputDir, jobname, chromNamesList, INDELS, cutoffs, average_probability, num_of_sbs_required, num_of_id_required, num_of_dbs_required, mutationType2PropertiesDict, chrLong2NumberofMutationsDict) #################################################################### # Add the last row numberofMutations = 0 all_samples = set() for mutation_type in mutationType2PropertiesDict: numberofMutations += mutationType2PropertiesDict[mutation_type]['number_of_mutations'] samples_list = mutationType2PropertiesDict[mutation_type]['samples_list'] all_samples = all_samples.union(samples_list) all_samples_list=list(all_samples) all_samples_list = sorted(all_samples_list, key=natural_key) print("--- Number of samples: %d" %len(all_samples_list)) print("--- Samples: %s" %(all_samples_list)) all_samples_np_array=np.array(all_samples_list) mutationType2PropertiesDict['All']={} mutationType2PropertiesDict['All']['number_of_mutations'] = numberofMutations mutationType2PropertiesDict['All']['number_of_samples'] = len(all_samples) mutationType2PropertiesDict['All']['samples_list'] = all_samples_list # Write mutationType2PropertiesListDict dictionary as a dataframe starts filePath = os.path.join(outputDir, jobname, DATA, Table_MutationType_NumberofMutations_NumberofSamples_SamplesList_Filename) L = sorted([(mutation_type, a['number_of_mutations'], a['number_of_samples'], a['samples_list']) for mutation_type, a in mutationType2PropertiesDict.items()]) if L: mutationtype_numberofmutations_numberofsamples_sampleslist_df = pd.DataFrame(L, columns=['mutation_type', 'number_of_mutations', 'number_of_samples', 'samples_list']) # write this dataframe mutationtype_numberofmutations_numberofsamples_sampleslist_df.to_csv(filePath, sep='\t', header=True, index=False) # Write dictionary as a dataframe ends #################################################################### # Write chrLong2NumberofMutationsDict dictionary as a dataframe starts filePath = os.path.join(outputDir, jobname, DATA, Table_ChrLong_NumberofMutations_Filename) L = sorted([(chrLong, number_of_mutations) for chrLong, number_of_mutations in chrLong2NumberofMutationsDict.items()]) if L: chrlong_numberofmutations_df = pd.DataFrame(L, columns=['chrLong', 'number_of_mutations']) # write this dataframe chrlong_numberofmutations_df.to_csv(filePath, sep='\t', header=True, index=False) # Write dictionary as a dataframe ends ################################################################################## # We are reading original data again to fill the mutationType based, sample based and signature based dictionaries # This part is deprecated if sample_based: # Using original data for mutation_type_context in mutation_types_contexts: if (mutation_type_context in SBS_CONTEXTS): fill_mutations_dictionaries_write(outputDir, jobname, chromNamesList, SUBS, subsSignature_cutoff_numberofmutations_averageprobability_df, num_of_sbs_required, num_of_id_required, num_of_dbs_required) if (DBS in mutation_types_contexts): fill_mutations_dictionaries_write(outputDir, jobname, chromNamesList, DINUCS, dinucsSignature_cutoff_numberofmutations_averageprobability_df, num_of_sbs_required, num_of_id_required, num_of_dbs_required) if (ID in mutation_types_contexts): fill_mutations_dictionaries_write(outputDir, jobname, chromNamesList, INDELS, indelsSignature_cutoff_numberofmutations_averageprobability_df, num_of_sbs_required, num_of_id_required, num_of_dbs_required) ################################################################################## print("--- Fill tables/dictionaries using original data: %s seconds" % (time.time() - start_time)) print("--- Fill tables/dictionaries using original data: %f minutes" % (float((time.time() - start_time) / 60))) print('--- Fill tables/dictionaries using original data ends') print('#################################################################################\n') ################################################################################# else: mutationtype_numberofmutations_numberofsamples_sampleslist_df=pd.read_csv(os.path.join(outputDir,jobname,DATA,Table_MutationType_NumberofMutations_NumberofSamples_SamplesList_Filename),sep='\t', header=0, dtype={'mutation_type':str, 'number_of_mutations':np.int32}) all_samples_string=mutationtype_numberofmutations_numberofsamples_sampleslist_df[mutationtype_numberofmutations_numberofsamples_sampleslist_df['mutation_type']=='All']['samples_list'].values[0] all_samples_list=eval(all_samples_string) all_samples_list = sorted(all_samples_list, key=natural_key) all_samples_np_array=np.array(all_samples_list) print('sample_based:%s --- len(all_samples_list):%d --- all_samples_list:%s' %(sample_based,len(all_samples_list), all_samples_list)) chrlong_numberofmutations_df = pd.read_csv(os.path.join(outputDir, jobname, DATA, Table_ChrLong_NumberofMutations_Filename), sep='\t',header=0, dtype={'chrLong': str, 'number_of_mutations': np.int32}) for mutation_type_context in mutation_types_contexts: if (mutation_type_context in SBS_CONTEXTS): subsSignature_cutoff_numberofmutations_averageprobability_df = pd.read_csv(os.path.join(outputDir, jobname, DATA, Table_SBS_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename),sep='\t', header=0, dtype={'cutoff':np.float32,'signature':str, 'number_of_mutations':np.int32,'average_probability':np.float32}) if (DBS in mutation_types_contexts): dinucsSignature_cutoff_numberofmutations_averageprobability_df = pd.read_csv(os.path.join(outputDir, jobname, DATA, Table_DBS_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename), sep='\t',header=0, dtype={'cutoff': np.float32, 'signature': str, 'number_of_mutations': np.int32,'average_probability': np.float32}) if (ID in mutation_types_contexts): indelsSignature_cutoff_numberofmutations_averageprobability_df= pd.read_csv(os.path.join(outputDir,jobname,DATA, Table_ID_Signature_Discreet_Mode_Cutoff_NumberofMutations_AverageProbability_Filename),sep='\t', header=0, dtype={'cutoff':np.float32,'signature':str, 'number_of_mutations':np.int32,'average_probability':np.float32}) ####################################################################################################### ################################### Step4 Fill Table ends ############################################# ####################################################################################################### ################################################################################################################### ################################################# All Steps ends ################################################## ################################################################################################################### #################################################################################################################### # Fill numpy arrays with the signatures in cutoff files sbs_signatures_with_cutoffs = np.array([]) dbs_signatures_with_cutoffs = np.array([]) id_signatures_with_cutoffs = np.array([]) # Fill ordered_signatures arrays w.r.t the order in probabilities file # cutoffs_df (e.g.: subsSignature_cutoff_numberofmutations_averageprobability_df) are filled in (Step4=True or False but full_mode=True) or full_mode=False # ordered_signatures_wrt_probabilities_file are filled in (Step3=True or False but full_mode=True) or full_mode=False # We are interested in the signatures in cutoffs_df # But user might have changed the order of lines in cutoffs_df # Therefore we are setting the order in signatures_array and signatures_cutoff_arrays w.r.t. probabilities file ordered_sbs_signatures_with_cutoffs = np.array([]) ordered_dbs_signatures_with_cutoffs = np.array([]) ordered_id_signatures_with_cutoffs = np.array([]) # Fill the list with the cutoff values # Fill ordered_signatures_cutoffs ordered_sbs_signatures_cutoffs = [] ordered_dbs_signatures_cutoffs = [] ordered_id_signatures_cutoffs = [] if not subsSignature_cutoff_numberofmutations_averageprobability_df.empty: sbs_signatures_with_cutoffs = subsSignature_cutoff_numberofmutations_averageprobability_df['signature'].values if not dinucsSignature_cutoff_numberofmutations_averageprobability_df.empty: dbs_signatures_with_cutoffs = dinucsSignature_cutoff_numberofmutations_averageprobability_df['signature'].values if not indelsSignature_cutoff_numberofmutations_averageprobability_df.empty: id_signatures_with_cutoffs = indelsSignature_cutoff_numberofmutations_averageprobability_df['signature'].values if ordered_all_sbs_signatures_wrt_probabilities_file_array is not None: df_columns_subs_signatures_mask_array = np.isin(ordered_all_sbs_signatures_wrt_probabilities_file_array, sbs_signatures_with_cutoffs) ordered_sbs_signatures_with_cutoffs = ordered_all_sbs_signatures_wrt_probabilities_file_array[df_columns_subs_signatures_mask_array] for signature in ordered_sbs_signatures_with_cutoffs: cutoff = subsSignature_cutoff_numberofmutations_averageprobability_df[subsSignature_cutoff_numberofmutations_averageprobability_df['signature'] == signature]['cutoff'].values[0] ordered_sbs_signatures_cutoffs.append(cutoff) if ordered_all_dbs_signatures_wrt_probabilities_file_array is not None: df_columns_dbs_signatures_mask_array =
np.isin(ordered_all_dbs_signatures_wrt_probabilities_file_array, dbs_signatures_with_cutoffs)
numpy.isin
from numpy import array import numpy as np import time import torch import ray from src.push_rollout_env import PushRolloutEnv from src.nn_push import PolicyNet def main(): import argparse def collect_as(coll_type): class Collect_as(argparse.Action): def __call__(self, parser, namespace, values, options_string=None): setattr(namespace, self.dest, coll_type(values)) return Collect_as parser = argparse.ArgumentParser(description='PAC-Bayes Opt') parser.add_argument('--obj_folder', type=str) # '/home/ubuntu/Box_v4/' parser.add_argument('--posterior_path', type=str, default=None) arg_con = parser.parse_args() obj_folder = arg_con.obj_folder training_details_dic_path = arg_con.posterior_path # 'push_result/push_pac_easy/train_details' # Load decoder policy z_total_dim = 5 actor = PolicyNet( input_num_chann=1, dim_mlp_append=10, num_mlp_output=2, # x/y only out_cnn_dim=40, z_conv_dim=1, z_mlp_dim=4, img_size=150).to('cpu') actor.load_state_dict(torch.load('pretrained/push_pretrained_decoder.pt')) # Load posterior if specified path; load prior otherwise if training_details_dic_path is not None: training_details_dic = torch.load(training_details_dic_path) mu = training_details_dic['best_bound_data'][3] logvar_ps = training_details_dic['best_bound_data'][4] sigma = (0.5*logvar_ps).exp() else: mu = torch.zeros((1, z_total_dim)) sigma = torch.ones((1, z_total_dim)) print('mu:', mu) print('sigma:', sigma) # Run with torch.no_grad(): # Initialize rollout env rollout_env = PushRolloutEnv( actor=actor, z_total_dim=z_total_dim, num_cpus=10, y_target_range=0.15) #* Run single zs = torch.normal(mean=mu.repeat(5,1), std=sigma.repeat(5,1)) for ind in range(5): info = rollout_env.roll_single( zs=zs[ind], objPos=array([0.51, -0.09, 0.035]), objOrn=array([0., 0., -0.6]), objPath=obj_folder+'2010.urdf', mu=0.3, sigma=0.01) info = rollout_env.roll_single( zs=zs[ind], objPos=array([0.58, 0.012, 0.035]), objOrn=array([0., 0., -0.5]), objPath=obj_folder+'2020.urdf', mu=0.3, sigma=0.01) info = rollout_env.roll_single( zs=zs[ind], objPos=
array([0.62, -0.08, 0.035])
numpy.array
import tensorflow as tf from sklearn.metrics import roc_curve, precision_recall_curve from tqdm import tqdm from utils.loss_utils import cross_entropy import os import numpy as np from utils.plot_utils import plot_, add_augment class BaseModel(object): def __init__(self, sess, conf): self.sess = sess self.conf = conf self.input_shape = [None, self.conf.height, self.conf.width, self.conf.channel] self.output_shape = [None, self.conf.num_cls] self.create_placeholders() def create_placeholders(self): with tf.name_scope('Input'): self.inputs_pl = tf.placeholder(tf.float32, self.input_shape, name='input') self.labels_pl = tf.placeholder(tf.int64, self.output_shape, name='annotation') self.keep_prob_pl = tf.placeholder(tf.float32) def loss_func(self): with tf.name_scope('Loss'): self.y_prob = tf.nn.softmax(self.logits, axis=-1) with tf.name_scope('cross_entropy'): loss = cross_entropy(self.labels_pl, self.logits) with tf.name_scope('total'): if self.conf.use_reg: with tf.name_scope('L2_loss'): l2_loss = tf.reduce_sum( self.conf.lmbda * tf.stack([tf.nn.l2_loss(v) for v in tf.get_collection('weights')])) self.total_loss = loss + l2_loss else: self.total_loss = loss self.mean_loss, self.mean_loss_op = tf.metrics.mean(self.total_loss) def accuracy_func(self): with tf.name_scope('Accuracy'): self.y_pred = tf.argmax(self.logits, axis=1, name='y_pred') self.y_prob = tf.nn.softmax(self.logits, axis=1) self.y_pred_ohe = tf.one_hot(self.y_pred, depth=self.conf.num_cls) correct_prediction = tf.equal(tf.argmax(self.labels_pl, axis=1), self.y_pred, name='correct_pred') accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy_op') self.mean_accuracy, self.mean_accuracy_op = tf.metrics.mean(accuracy) def configure_network(self): self.loss_func() self.accuracy_func() global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) learning_rate = tf.train.exponential_decay(self.conf.init_lr, global_step, decay_steps=2000, decay_rate=0.97, staircase=True) self.learning_rate = tf.maximum(learning_rate, self.conf.lr_min) with tf.name_scope('Optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.train_op = optimizer.minimize(self.total_loss, global_step=global_step) self.sess.run(tf.global_variables_initializer()) trainable_vars = tf.trainable_variables() self.saver = tf.train.Saver(var_list=trainable_vars, max_to_keep=1000) self.train_writer = tf.summary.FileWriter(self.conf.logdir + self.conf.run_name + '/train/', self.sess.graph) self.valid_writer = tf.summary.FileWriter(self.conf.logdir + self.conf.run_name + '/valid/') self.configure_summary() print('*' * 50) print('Total number of trainable parameters: {}'. format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) print('*' * 50) def configure_summary(self): summary_list = [tf.summary.scalar('learning_rate', self.learning_rate), tf.summary.scalar('loss', self.mean_loss), tf.summary.scalar('accuracy', self.mean_accuracy)] self.merged_summary = tf.summary.merge(summary_list) def save_summary(self, summary, step, mode): # print('----> Summarizing at step {}'.format(step)) if mode == 'train': self.train_writer.add_summary(summary, step) elif mode == 'valid': self.valid_writer.add_summary(summary, step) self.sess.run(tf.local_variables_initializer()) def train(self): self.sess.run(tf.local_variables_initializer()) if self.conf.reload_step > 0: self.reload(self.conf.reload_step) print('----> Continue Training from step #{}'.format(self.conf.reload_step)) self.best_validation_loss = input('Enter the approximate best validation loss you got last time') self.best_accuracy = input('Enter the approximate best validation accuracy (in range [0, 1])') else: self.best_validation_loss = 100 self.best_accuracy = 0 print('----> Start Training') if self.conf.data == 'mnist': from DataLoaders.mnist_loader import DataLoader elif self.conf.data == 'cifar': from DataLoaders.CIFARLoader import DataLoader else: print('wrong data name') self.data_reader = DataLoader(self.conf) self.data_reader.get_data(mode='train') self.data_reader.get_data(mode='valid') self.num_train_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode='train') self.num_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode='valid') for epoch in range(self.conf.max_epoch): self.data_reader.randomize() for train_step in range(self.num_train_batch): glob_step = epoch * self.num_train_batch + train_step start = train_step * self.conf.batch_size end = (train_step + 1) * self.conf.batch_size x_batch, y_batch = self.data_reader.next_batch(start, end, mode='train') feed_dict = {self.inputs_pl: x_batch, self.labels_pl: y_batch, self.keep_prob_pl: self.conf.keep_prob} if train_step % self.conf.SUMMARY_FREQ == 0 and train_step != 0: _, _, _, summary = self.sess.run([self.train_op, self.mean_loss_op, self.mean_accuracy_op, self.merged_summary], feed_dict=feed_dict) loss, acc = self.sess.run([self.mean_loss, self.mean_accuracy]) self.save_summary(summary, glob_step + self.conf.reload_step, mode='train') print('epoch {0}/{1}, step: {2:<6}, train_loss= {3:.4f}, train_acc={4:.01%}'. format(epoch, self.conf.max_epoch, glob_step, loss, acc)) else: self.sess.run([self.train_op, self.mean_loss_op, self.mean_accuracy_op], feed_dict=feed_dict) if glob_step % self.conf.VAL_FREQ == 0 and glob_step != 0: self.evaluate(train_step=glob_step, dataset='valid') def test(self, step_num, dataset='test'): self.sess.run(tf.local_variables_initializer()) print('loading the model.......') self.reload(step_num) if self.conf.data == 'mnist': from DataLoaders.mnist_loader import DataLoader elif self.conf.data == 'mnist_bg': from DataLoaders.bg_mnist_loader import DataLoader elif self.conf.data == 'cifar': from DataLoaders.CIFARLoader import DataLoader else: print('wrong data name') self.data_reader = DataLoader(self.conf) self.data_reader.get_data(mode=dataset) self.num_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode=dataset) print('-' * 25 + 'Test' + '-' * 25) if not self.conf.bayes: self.evaluate(dataset=dataset, train_step=step_num) else: self.MC_evaluate(dataset=dataset, train_step=step_num) def save(self, step): print('----> Saving the model at step #{0}'.format(step)) checkpoint_path = os.path.join(self.conf.modeldir + self.conf.run_name, self.conf.model_name) self.saver.save(self.sess, checkpoint_path, global_step=step) def reload(self, step): checkpoint_path = os.path.join(self.conf.modeldir + self.conf.run_name, self.conf.model_name) model_path = checkpoint_path + '-' + str(step) if not os.path.exists(model_path + '.meta'): print('----> No such checkpoint found', model_path) return print('----> Restoring the model...') self.saver.restore(self.sess, model_path) print('----> Model successfully restored') def evaluate(self, dataset='valid', train_step=None): self.sess.run(tf.local_variables_initializer()) for step in range(self.num_batch): start = self.conf.val_batch_size * step end = self.conf.val_batch_size * (step + 1) data_x, data_y = self.data_reader.next_batch(start=start, end=end, mode=dataset) feed_dict = {self.inputs_pl: data_x, self.labels_pl: data_y, self.keep_prob_pl: 1} self.sess.run([self.mean_loss_op, self.mean_accuracy_op], feed_dict=feed_dict) loss, acc = self.sess.run([self.mean_loss, self.mean_accuracy]) if dataset == "valid": # save the summaries and improved model in validation mode print('-' * 30) print('valid_loss = {0:.4f}, val_acc = {1:.01%}'.format(loss, acc)) summary_valid = self.sess.run(self.merged_summary, feed_dict=feed_dict) self.save_summary(summary_valid, train_step, mode='valid') if loss < self.best_validation_loss: self.best_validation_loss = loss if acc > self.best_accuracy: self.best_accuracy = acc print('>>>>>>>> Both model validation loss and accuracy improved; saving the model......') else: print('>>>>>>>> model validation loss improved; saving the model......') self.save(train_step) elif acc > self.best_accuracy: self.best_accuracy = acc print('>>>>>>>> model accuracy improved; saving the model......') self.save(train_step) print('-' * 30) elif dataset == 'test': print('test_loss = {0:.4f}, test_acc = {1:.02%}'.format(loss, acc)) def MC_evaluate(self, dataset='test', train_step=None): num_rounds = 10 self.sess.run(tf.local_variables_initializer()) all_std, all_error = np.array([]), np.array([]) mean_tpr, std_tpr = np.array([]), np.array([]) mean_npv, std_npv = np.array([]), np.array([]) mean_acc, std_acc = np.array([]),
np.array([])
numpy.array
from kamodo import Kamodo, kamodofy import pandas as pd import numpy as np import scipy import time import datetime from datetime import timezone import urllib, json import plotly.express as px import plotly.graph_objects as go import pandas as pd from pandas import DatetimeIndex from collections.abc import Iterable def ror_get_info(runID): '''Query run information for given runID''' server = "https://ccmc.gsfc.nasa.gov/RoR_WWW/VMR/" query = '{}/files.php?id={}'.format(server, runID) response = urllib.request.urlopen(query) data = json.loads(response.read()) return data def ror_show_info(runID): '''Display run information for a given runID.''' result=ror_get_info(runID) print("Run information for runID =",runID,"from the CCMC RoR system.") for item in result['info']: for k in item: print(k.rjust(25),':',item[k]) sats = [] for sat in result['satellites']: satname = sat['name'] sats.append(satname) k='Satellite extractions' print(k.rjust(25),':',sats) def ror_return_satellites(runID): '''Display list of satellites as python array for given runID.''' result=ror_get_info(runID) sats = [] for sat in result['satellites']: satname = sat['name'] sats.append(satname) return sats def ror_get_extraction(runID, coord, satellite): '''Query for file contents from server''' server = "https://ccmc.gsfc.nasa.gov/RoR_WWW/VMR/" query = '{}/{}/{}/{}_{}.txt'.format(server, runID, satellite, coord, satellite) print(query) response = urllib.request.urlopen(query) file = response.read() return file class SATEXTRACT(Kamodo): def __init__(self, runID, # ccmc runs-on-request run id coord, # coordinate system satellite, # satellite debug=1, server="https://ccmc.gsfc.nasa.gov/RoR_WWW/VMR/", **kwargs): super(SATEXTRACT, self).__init__(**kwargs) self.verbose=False # overrides kwarg # self.symbol_registry=dict() # wipes any user-defined symbols # self.signatures=dict() # wipes any user-defined signatures self.RE=6.3781E3 self.server = server # should be set by keyword self.runID = runID self.coordinates = coord self.satellite = satellite self.debug = debug if self.debug > 0: print(' -server: CCMC RoR') print(' -runID: ',runID) print(' -coordinate system: ',coord) print(' -satellite: ',satellite) self.variables=dict() self.file = ror_get_extraction(runID, coord, satellite).decode('ascii') self.parse_file() ts=self.tsarray[0] self.start = datetime.datetime.fromtimestamp(ts,tz=timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") ts=self.tsarray[-1] self.stop = datetime.datetime.fromtimestamp(ts,tz=timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if self.debug > 0: print(" ") print(" -date start: ",self.start) print(" end: ",self.stop) for varname in self.variables: if varname == "N": continue units = self.variables[varname]['units'] if self.debug > 0: print('... registering ',varname,units) self.register_variable(varname, units) # classification of position into coordinates to assist visualizion self.possible_coords=('TOD','J2K','GEO','GM','GSM','GSE','SM') self.possible_directions=('x','y','z') self.coords=dict() for varname in self.variables: size = self.variables[varname]['size'] if size == 1: # Look for position values direction = varname.lower() key = self.coordinates if key in self.possible_coords and direction in self.possible_directions: if key not in self.coords: self.coords[key] = dict(coord=key) self.coords[key]['size'] = size self.coords[key][direction] = varname # Change 'fill' values in data to NaNs self.fill2nan() def parse_file(self): import re vars=[] units=[] times=[] arrays = [] if self.debug > 0: print("===> Printing File Header ...") for line in self.file.splitlines(False): A = re.match('^# ', line) B = re.match('# Run', line) C = re.match('# Coordinate', line) D = re.match('# Satellite', line) E = re.match('# Year', line) F = re.match('# \[year\]', line) G = re.match('# Data type', line) if A or B or C or D or E or F or G: if A: if self.debug > 0: print("-> ",line) if B: # Find runname and fill value parts=re.sub(' +', ' ', line).split(' ') self.runname = parts[3] self.fillvalue = parts[6] if C: # Check that coordinate system matches parts=re.sub(' +', ' ', line).split(' ') if self.coordinates != parts[3]: print("ERROR: Coordinate system does not match.",self.coordinates,parts[3]) if D: # Check that satellite name matches parts=re.sub(' +', ' ', line).split(' ') if self.satellite != parts[3]: print("ERROR: Satellite does not match.",self.satellite,parts[3]) if E: # Variable names, remove . and change N and B_1 parts=re.sub(' +', ' ', line).strip().split(' ') for p in parts[7:]: p=re.sub("\.","",p) p=re.sub("B_1","B1",p) p=re.sub("^N$","rho",p) vars.append(p) if self.debug > 1: print(len(vars), vars) if F: # Variable units, remove [] and fix exponents parts=re.sub(' +', ' ', line).strip().split(' ') if self.modelname == "GUMICS": # missing x,y,z --put before other units units.append('R_E') units.append('R_E') units.append('R_E') for p in parts[7:]: if self.modelname == "BATSRUS": # need a unit applied for status variable, currently missing if vars[len(units)] == "status": units.append('') p=re.sub("cm\^-3","1/cm^3",p) p=re.sub("m2","m^2",p) p=re.sub("m3","m^3",p) p=re.sub("\[","",p) p=re.sub("\]","",p) p=re.sub("Vm/A","V/A",p) # This is wrong but use it for now p=re.sub("nJ/m","J/m",p) # This is wrong but use it for now units.append(p) if self.modelname == "LFM" and p == "nPa": # missing X,Y,Z,Vol --unknown Vol units units.append('R_E') units.append('R_E') units.append('R_E') units.append('') if self.modelname == "OpenGGCM" and p == "V/A": # missing eflx,efly,eflz --units are unknown units.append('') units.append('') units.append('') if self.debug > 1: print(len(units), units) if G: # Pull out the model name parts=re.sub(' +', ' ', line).split(' ') self.modelname = parts[3] else: parts=re.sub(' +', ' ', line).strip().split(' ') year=parts[0] month=parts[1] day=parts[2] hour=parts[3] minute=parts[4] second=parts[5] ms=0 if '.' in second: (second,ms)=second.split('.') dd=datetime.datetime(int(year),int(month),int(day), hour=int(hour),minute=int(minute),second=int(second), microsecond=int(ms)*1000,tzinfo=datetime.timezone.utc) times.append(dd) for s in parts[6:]: arrays.append(float(s)) # self.dtarray=np.array([dd for dd in times]) self.dtarray = pd.to_datetime(times) self.tsarray = np.array([d.timestamp() for d in self.dtarray]) self.dtarrayclean = np.array([datetime.datetime.fromtimestamp(d,tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S") for d in self.tsarray]) nvar=len(vars) nval=len(arrays) npos=int(nval/nvar) arrays=np.array(arrays) arrays=arrays.reshape((npos,nvar)) i=0 for var in vars: self.variables[var] = dict(units=units[i], data=arrays[:,i], size=1, fill=self.fillvalue) i+=1 return def register_variable(self, varname, units): """register variables into Kamodo for this service, CCMC ROR satellite extractions""" data = self.variables[varname]['data'] times = self.dtarray ser = pd.Series(data, index=pd.DatetimeIndex(times)) @kamodofy(units = units, citation = "De Zeeuw 2020", data = None) def interpolate(t=times): ts = t isiterable = isinstance(t, Iterable) if isinstance(ts, DatetimeIndex): pass elif isinstance(ts, float): ts = pd.to_datetime([ts], utc=True, unit='s') elif isiterable: if isinstance(ts[0], float): ts = pd.to_datetime(ts, utc=True, unit='s') ts = DatetimeIndex(ts) else: raise NotImplementedError(ts) ser_ = ser.reindex(ser.index.union(ts)) ser_interpolated = ser_.interpolate(method='time') result = ser_interpolated.reindex(ts) if isiterable: return result.values else: return result.values[0] # store the interpolator self.variables[varname]['interpolator'] = interpolate # update docstring for this variable interpolate.__doc__ = "A function that returns {} in [{}].".format(varname,units) var_reg = '{}__{}'.format(varname, self.coordinates) self[var_reg] = interpolate def fill2nan(self): ''' Replaces fill value in data with NaN. Not Yet called by default. Call as needed. ''' for varname in self.variables: data = self.variables[varname]['data'] fill = self.variables[varname]['fill'] if fill is not None: mask = data==float(fill) nbad = np.count_nonzero(mask) if nbad > 0: if self.debug > 0: print("Found",nbad,"fill values, replacing with NaN for variable", varname,"of size",data.size) data[mask]=np.nan self.variables[varname]['data'] = data def get_plot(self, type="1Dpos", scale="R_E", var="", groupby="all", quiver=False, quiverscale="5.", quiverskip="0"): ''' Return a plotly figure object. type = 1Dvar => 1D plot of variable value vs Time (also all variables option) 1Dpos (default) => 1D location x,y,z vs Time 3Dpos => 3D location colored by altitude 3Dvar => View variable on 3D position (also quiver and groupby options) scale = km, R_E (default) var = variable name for variable value plots groupby = day, hour, all (default) => groupings for 3Dvar plots quiver = True, False (default) => if var is a vector value and 3Dvar plot, then turn on quivers and color by vector magnitude quiverscale = 5. (default) => length of quivers in units of RE quiverskip = (default) => now many quivers to skip displaying ''' quiverscale=float(quiverscale) if scale == "km": quiverscale=quiverscale*self.RE quiverskip=int(quiverskip) coord=self.coordinates # Set plot title for plots txttop=self.satellite + " position extracted from run " + self.runname + "<br>"\ + self.start + " to " + self.stop + "<br>" + coord if type == '1Dvar': if var == "": print("No plot variable passed in.") return fig=go.Figure() if var == "all": # Create menu pulldown for each variable steps = [] i=0 for varname in self.variables: ytitle=varname+" ["+self.variables[varname]['units']+"]" step = dict( label=ytitle, method="update", args=[{"visible": [False] * len(self.variables)}], ) step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible" steps.append(step) if self.variables[varname]['size'] == 1: x=self.variables[varname]['data'] fig.add_trace(go.Scatter(x=self.dtarray, y=x, mode='lines+markers', name=varname, visible=False)) elif self.variables[varname]['size'] == 3: x=self.variables[varname]['data'][:,0] y=self.variables[varname]['data'][:,1] z=self.variables[varname]['data'][:,2] fig.add_trace(go.Scatter(x=self.dtarray, y=x, mode='lines+markers', name=varname, visible=False)) fig.add_trace(go.Scatter(x=self.dtarray, y=y, mode='lines+markers', name=varname, visible=False)) fig.add_trace(go.Scatter(x=self.dtarray, y=z, mode='lines+markers', name=varname, visible=False)) i+=1 fig.data[0].visible=True fig.update_layout(updatemenus=list([dict(buttons=steps)])) fig.update_xaxes(title_text="Time") fig.update_layout(hovermode="x") fig.update_layout(title_text=txttop) else: # Standard single/vector variable plot if self.variables[var]['size'] == 1: x=self.variables[var]['data'] fig.add_trace(go.Scatter(x=self.dtarray, y=x, mode='lines+markers', name=var)) elif self.variables[var]['size'] == 3: x=self.variables[var]['data'][:,0] y=self.variables[var]['data'][:,1] z=self.variables[var]['data'][:,2] fig.add_trace(go.Scatter(x=self.dtarray, y=x, mode='lines+markers', name=var)) fig.add_trace(go.Scatter(x=self.dtarray, y=y, mode='lines+markers', name=var)) fig.add_trace(go.Scatter(x=self.dtarray, y=z, mode='lines+markers', name=var)) ytitle=var+" ["+self.variables[var]['units']+"]" fig.update_xaxes(title_text="Time") fig.update_yaxes(title_text=ytitle) fig.update_layout(hovermode="x") fig.update_layout(title_text=txttop) return fig if type == '1Dpos': fig=go.Figure() xvarname = self.coords[coord]['x'] if self.coords[coord]['size'] == 1: x=self.variables[self.coords[coord]['x']]['data'] y=self.variables[self.coords[coord]['y']]['data'] z=self.variables[self.coords[coord]['z']]['data'] elif self.coords[coord]['size'] == 3: x=self.variables[self.coords[coord]['x']]['data'][:,0] y=self.variables[self.coords[coord]['y']]['data'][:,1] z=self.variables[self.coords[coord]['z']]['data'][:,2] if scale == "km": if self.variables[xvarname]['units'] == "R_E": x=x*self.RE y=y*self.RE z=z*self.RE ytitle="Position [km]" else: if self.variables[xvarname]['units'] == "km": x=x/self.RE y=y/self.RE z=z/self.RE ytitle="Position [R_E]" fig.add_trace(go.Scatter(x=self.dtarray, y=x, mode='lines+markers', name=self.coords[coord]['x'])) fig.add_trace(go.Scatter(x=self.dtarray, y=y, mode='lines+markers', name=self.coords[coord]['y'])) fig.add_trace(go.Scatter(x=self.dtarray, y=z, mode='lines+markers', name=self.coords[coord]['z'])) fig.update_xaxes(title_text="Time") fig.update_yaxes(title_text=ytitle) fig.update_layout(hovermode="x") fig.update_layout(title_text=txttop) return fig if type == "3Dpos": xvarname = self.coords[coord]['x'] if self.coords[coord]['size'] == 1: x=self.variables[self.coords[coord]['x']]['data'] y=self.variables[self.coords[coord]['y']]['data'] z=self.variables[self.coords[coord]['z']]['data'] elif self.coords[coord]['size'] == 3: x=self.variables[self.coords[coord]['x']]['data'][:,0] y=self.variables[self.coords[coord]['y']]['data'][:,1] z=self.variables[self.coords[coord]['z']]['data'][:,2] if scale == "km": if self.variables[xvarname]['units'] == "R_E": x=x*self.RE y=y*self.RE z=z*self.RE r=(np.sqrt(x**2 + y**2 + z**2))-self.RE else: if self.variables[xvarname]['units'] == "km": x=x/self.RE y=y/self.RE z=z/self.RE r=(np.sqrt(x**2 + y**2 + z**2))-1. fig=px.scatter_3d( x=x, y=y, z=z, color=r) bartitle = "Altitude [" + scale + "]" fig.update_layout(coloraxis=dict(colorbar=dict(title=bartitle))) fig.update_layout(scene=dict(xaxis=dict(title=dict(text="X ["+scale+"]")), yaxis=dict(title=dict(text="Y ["+scale+"]")), zaxis=dict(title=dict(text="Z ["+scale+"]")))) fig.update_layout(title_text=txttop) return fig if type == "3Dvar": if var == "": print("No plot variable passed in.") return xvarname = self.coords[coord]['x'] vard=self.variables[var]['data'] varu=self.variables[var]['units'] if quiver: if "_x" in var or "_y" in var or"_z" in var: var=var.split('_')[0] qxvar=var+"_x" qyvar=var+"_y" qzvar=var+"_z" qxvard=self.variables[qxvar]['data'] qyvard=self.variables[qyvar]['data'] qzvard=self.variables[qzvar]['data'] vard = np.sqrt(np.square(qxvard) +\ np.square(qyvard) +\
np.square(qzvard)
numpy.square
# -*- coding: utf-8 -*- # Copyright 2018-2022 the orix developers # # This file is part of orix. # # orix is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # orix is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with orix. If not, see <http://www.gnu.org/licenses/>. from diffpy.structure import Lattice, Structure import numpy as np import pytest from orix.crystal_map import Phase from orix.quaternion import Orientation, symmetry from orix.vector import Miller from orix.vector.miller import _round_indices, _transform_space, _UVTW2uvw, _uvw2UVTW TRIGONAL_PHASE = Phase( point_group="321", structure=Structure(lattice=Lattice(4.9, 4.9, 5.4, 90, 90, 120)) ) TETRAGONAL_LATTICE = Lattice(0.5, 0.5, 1, 90, 90, 90) TETRAGONAL_PHASE = Phase( point_group="4", structure=Structure(lattice=TETRAGONAL_LATTICE) ) CUBIC_PHASE = Phase(point_group="m-3m") class TestMiller: def test_init_raises(self): with pytest.raises(ValueError, match="Exactly *"): _ = Miller(phase=Phase(point_group="m-3m")) with pytest.raises(ValueError, match="Exactly *"): _ = Miller(xyz=[0, 1, 2], hkl=[3, 4, 5], phase=Phase(point_group="m-3m")) with pytest.raises(ValueError, match="A phase with a crystal lattice and "): _ = Miller(hkl=[1, 1, 1]) def test_repr(self): m = Miller(hkil=[1, 1, -2, 0], phase=TRIGONAL_PHASE) assert repr(m) == "Miller (1,), point group 321, hkil\n" "[[ 1. 1. -2. 0.]]" def test_coordinate_format_raises(self): m = Miller(hkl=[1, 1, 1], phase=TETRAGONAL_PHASE) with pytest.raises(ValueError, match="Available coordinate formats are "): m.coordinate_format = "abc" def test_set_coordinates(self): m = Miller(xyz=[1, 2, 0], phase=TETRAGONAL_PHASE) assert np.allclose(m.data, m.coordinates) def test_get_item(self): v = [[1, 1, 1], [2, 0, 0]] m = Miller(hkl=v, phase=TETRAGONAL_PHASE) assert not np.may_share_memory(m.data, m[0].data) assert not np.may_share_memory(m.data, m[:].data) m2 = m[0] m2.hkl = [1, 1, 2] assert np.allclose(m.hkl, v) def test_set_hkl_hkil(self): m1 = Miller(hkl=[[1, 1, 1], [2, 0, 0]], phase=TETRAGONAL_PHASE) assert np.allclose(m1.data, [[2, 2, 1], [4, 0, 0]]) assert np.allclose([m1.h, m1.k, m1.l], [[1, 2], [1, 0], [1, 0]]) m1.hkl = [[1, 2, 0], [1, 1, 0]] assert np.allclose(m1.data, [[2, 4, 0], [2, 2, 0]]) assert np.allclose([m1.h, m1.k, m1.l], [[1, 1], [2, 1], [0, 0]]) m2 = Miller(hkil=[[1, 1, -2, 1], [2, 0, -2, 0]], phase=TRIGONAL_PHASE) assert np.allclose(m2.data, [[0.20, 0.35, 0.19], [0.41, 0.24, 0]], atol=0.01) assert np.allclose([m2.h, m2.k, m2.i, m2.l], [[1, 2], [1, 0], [-2, -2], [1, 0]]) m2.hkil = [[1, 2, -3, 1], [2, 1, -3, 1]] assert np.allclose(m2.data, [[0.20, 0.59, 0.19], [0.41, 0.47, 0.19]], atol=0.01) assert np.allclose([m2.h, m2.k, m2.i, m2.l], [[1, 2], [2, 1], [-3, -3], [1, 1]]) def test_set_uvw_UVTW(self): m1 = Miller(uvw=[[1, 1, 1], [2, 0, 0]], phase=TETRAGONAL_PHASE) assert np.allclose(m1.data, [[0.5, 0.5, 1], [1, 0, 0]]) assert np.allclose([m1.u, m1.v, m1.w], [[1, 2], [1, 0], [1, 0]]) m1.uvw = [[1, 2, 0], [1, 1, 0]] assert np.allclose(m1.data, [[0.5, 1, 0], [0.5, 0.5, 0]]) assert np.allclose([m1.u, m1.v, m1.w], [[1, 1], [2, 1], [0, 0]]) m2 = Miller(UVTW=[[1, 1, -2, 1], [2, 0, -2, 0]], phase=TRIGONAL_PHASE) assert np.allclose(m2.data, [[7.35, 12.73, 5.4], [14.7, 8.49, 0]], atol=0.01) assert np.allclose([m2.U, m2.V, m2.T, m2.W], [[1, 2], [1, 0], [-2, -2], [1, 0]]) m2.UVTW = [[1, 2, -3, 1], [2, 1, -3, 1]] assert np.allclose(m2.data, [[7.35, 21.22, 5.4], [14.7, 16.97, 5.4]], atol=0.01) assert np.allclose([m2.U, m2.V, m2.T, m2.W], [[1, 2], [2, 1], [-3, -3], [1, 1]]) def test_length(self): # Direct lattice vectors m1 = Miller(uvw=[0, -0.5, 0.5], phase=TETRAGONAL_PHASE) assert np.allclose(m1.length, 0.559, atol=1e-3) # Reciprocal lattice vectors m2 = Miller(hkl=[[1, 2, 0], [3, 1, 1]], phase=TETRAGONAL_PHASE) assert np.allclose(m2.length, [4.472, 6.403], atol=1e-3) assert np.allclose(1 / m2.length, [0.224, 0.156], atol=1e-3) # Vectors m3 = Miller(xyz=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], phase=TETRAGONAL_PHASE) assert np.allclose(m3.length, [1, 1, 1]) def test_init_from_highest_indices(self): m1 = Miller.from_highest_indices(phase=TETRAGONAL_PHASE, hkl=[3, 2, 1]) assert np.allclose(np.max(m1.hkl, axis=0), [3, 2, 1]) m2 = Miller.from_highest_indices(phase=TETRAGONAL_PHASE, uvw=[1, 2, 3]) assert np.allclose(np.max(m2.uvw, axis=0), [1, 2, 3]) with pytest.raises(ValueError, match="Either highest `hkl` or `uvw` indices "): _ = Miller.from_highest_indices(phase=TETRAGONAL_PHASE) with pytest.raises(ValueError, match="All indices*"): _ = Miller.from_highest_indices(phase=TETRAGONAL_PHASE, hkl=[3, 2, -1]) def test_init_from_min_dspacing(self): # Tested against EMsoft v5.0 m1 = Miller.from_min_dspacing(phase=TETRAGONAL_PHASE, min_dspacing=0.05) assert m1.coordinate_format == "hkl" assert m1.size == 14078 assert np.allclose(np.max(m1.hkl, axis=0), [9, 9, 19]) assert np.allclose(np.min(1 / m1.length), 0.0315, atol=1e-4) m2 = Miller.from_min_dspacing(phase=TRIGONAL_PHASE, min_dspacing=0.5) assert m2.size == 6068 assert np.allclose(np.max(m2.hkl, axis=0), [8, 8, 10]) assert np.allclose(np.min(1 / m2.length), 0.2664, atol=1e-4) def test_deepcopy(self): m = Miller(hkl=[1, 1, 0], phase=TETRAGONAL_PHASE) m2 = m.deepcopy() m2.coordinate_format = "uvw" assert m2.coordinate_format == "uvw" assert m.coordinate_format == "hkl" def test_get_nearest(self): assert ( Miller(uvw=[1, 0, 0], phase=TETRAGONAL_PHASE).get_nearest() == NotImplemented ) def test_mean(self): # Tested against MTEX v5.6.0 m1 = Miller(hkl=[[1, 2, 0], [3, 1, 1]], phase=TETRAGONAL_PHASE) m1_mean = m1.mean() assert isinstance(m1_mean, Miller) assert m1_mean.coordinate_format == "hkl" assert np.allclose(m1_mean.hkl, [2, 1.5, 0.5]) m2 = Miller(UVTW=[[1, 2, -3, 0], [3, 1, -4, 1]], phase=TRIGONAL_PHASE) m2_mean = m2.mean() assert m2_mean.coordinate_format == "UVTW" assert np.allclose(m2_mean.UVTW, [2, 1.5, -3.5, 0.5]) assert m2.mean(use_symmetry=True) == NotImplemented def test_round(self): # Tested against MTEX v5.6.0 m1 = Miller(uvw=[[1, 1, 0], [1, 1, 1]], phase=TETRAGONAL_PHASE) m1perp = m1[0].cross(m1[1]) m1round = m1perp.round() assert isinstance(m1round, Miller) assert m1round.coordinate_format == "hkl" assert np.allclose(m1round.hkl, [1, -1, 0]) m2 = Miller(hkil=[1, 1, -2, 3], phase=TRIGONAL_PHASE) m2.coordinate_format = "UVTW" m2round = m2.round() assert np.allclose(m2round.UVTW, [3, 3, -6, 11]) m3 = Miller(xyz=[[0.1, 0.2, 0.3], [1, 0.5, 1]], phase=TRIGONAL_PHASE) assert m3.coordinate_format == "xyz" m3round = m3.round() assert np.allclose(m3.data, m3round.data) assert not np.may_share_memory(m3.data, m3round.data) def test_symmetrise_raises(self): m = Miller(uvw=[1, 0, 0], phase=TETRAGONAL_PHASE) with pytest.raises(ValueError, match="`unique` must be True when"): _ = m.symmetrise(return_multiplicity=True) with pytest.raises(ValueError, match="`unique` must be True when"): _ = m.symmetrise(return_index=True) def test_symmetrise(self): # Also thoroughly tested in the TestMillerPointGroup* classes # Test from MTEX' v5.6.0 documentation m = Miller(UVTW=[1, -2, 1, 3], phase=TRIGONAL_PHASE) _, mult = m.symmetrise(return_multiplicity=True, unique=True) assert mult == 6 m2 = Miller(uvw=[[1, 0, 0], [1, 1, 0], [1, 1, 1]], phase=CUBIC_PHASE) _, idx = m2.symmetrise(unique=True, return_index=True) assert np.allclose(idx, np.array([0] * 6 + [1] * 12 + [2] * 8)) _, mult2, _ = m2.symmetrise( unique=True, return_multiplicity=True, return_index=True ) assert np.allclose(mult2, [6, 12, 8]) def test_unique(self): # From the "Crystal geometry" notebook diamond = Phase(space_group=227) m = Miller.from_highest_indices(phase=diamond, uvw=[10, 10, 10]) assert m.size == 9260 m2 = m.unique(use_symmetry=True) assert m2.size == 285 m3, idx = m2.unit.unique(return_index=True) assert m3.size == 205 assert isinstance(m3, Miller) assert np.allclose(idx[:10], [65, 283, 278, 269, 255, 235, 208, 282, 272, 276]) def test_multiply_orientation(self): o = Orientation.from_euler(np.deg2rad([45, 0, 0])) o.symmetry = CUBIC_PHASE.point_group m = Miller(hkl=[[1, 1, 1], [2, 0, 0]], phase=CUBIC_PHASE) m2 = o * m assert isinstance(m2, Miller) assert m2.coordinate_format == "hkl" assert np.allclose(m2.data, [[np.sqrt(2), 0, 1], [np.sqrt(2), -np.sqrt(2), 0]]) def test_overwritten_vector3d_methods(self): lattice = Lattice(1, 1, 1, 90, 90, 90) phase1 = Phase(point_group="m-3m", structure=Structure(lattice=lattice)) phase2 = Phase(point_group="432", structure=Structure(lattice=lattice)) m1 = Miller(hkl=[[1, 1, 1], [2, 0, 0]], phase=phase1) m2 = Miller(hkil=[[1, 1, -2, 0], [2, 1, -3, 1]], phase=phase2) assert not m1._compatible_with(m2) with pytest.raises(ValueError, match="The crystal lattices and symmetries"): _ = m1.angle_with(m2) with pytest.raises(ValueError, match="The crystal lattices and symmetries"): _ = m1.cross(m2) with pytest.raises(ValueError, match="The crystal lattices and symmetries"): _ = m1.dot(m2) with pytest.raises(ValueError, match="The crystal lattices and symmetries"): _ = m1.dot_outer(m2) m3 = Miller(hkl=[[2, 0, 0], [1, 1, 1]], phase=phase1) assert m1._compatible_with(m3) def test_is_hexagonal(self): assert Miller(hkil=[1, 1, -2, 1], phase=TRIGONAL_PHASE).is_hexagonal assert not Miller(hkil=[1, 1, -2, 1], phase=TETRAGONAL_PHASE).is_hexagonal def test_various_shapes(self): v = np.array([[1, 2, 0], [3, 1, 1], [1, 1, 1], [2, 0, 0], [1, 2, 3], [2, 2, 2]]) # Initialization of vectors work as expected shape1 = (2, 3) m1 = Miller(hkl=v.reshape(shape1 + (3,)), phase=TETRAGONAL_PHASE) assert m1.shape == shape1 assert np.allclose(m1.hkl, v.reshape(shape1 + (3,))) shape2 = (2, 3)[::-1] m2 = Miller(uvw=v.reshape(shape2 + (3,)), phase=TETRAGONAL_PHASE) assert m2.shape == shape2 assert np.allclose(m2.uvw, v.reshape(shape2 + (3,))) # Vector length and multiplicity assert m1.length.shape == m1.shape assert m1.multiplicity.shape == m1.shape # Symmetrically equivalent vectors m3, mult, idx = m1.symmetrise( unique=True, return_multiplicity=True, return_index=True ) assert m3.shape == (24,) assert np.allclose(mult, [4] * m1.size) assert np.allclose( idx, [0] * 4 + [1] * 4 + [2] * 4 + [3] * 4 + [4] * 4 + [5] * 4 ) # Unit vectors m4 = m1.unit assert m4.shape == shape1 # Overwritten Vector3d methods assert m1.angle_with(m1).shape == shape1 assert m1.cross(m1).shape == shape1 assert m1.dot(m1).shape == shape1 assert m1.dot_outer(m1).shape == shape1 + shape1 assert m1.mean().shape == (1,) # Round m5 = m1.round() assert m5.shape == shape1 # Unique vectors assert m5.unique(use_symmetry=True).shape == (5,) assert m5.unique().shape == (5,) # Reshape m6 = m1.reshape(*shape2) assert np.allclose(m6.hkl, v.reshape(shape2 + (3,))) assert m1._compatible_with(m6) # Phase carries over def test_transpose(self): # test 2d shape = (11, 5) v = np.random.randint(-5, 5, shape + (3,)) m1 = Miller(hkl=v, phase=TETRAGONAL_PHASE) m2 = m1.transpose() assert m1.shape == m2.shape[::-1] assert m1.phase == m2.phase # test 2d shape = (11, 5, 4) v = np.random.randint(-5, 5, shape + (3,)) m1 = Miller(hkl=v, phase=TETRAGONAL_PHASE) m2 = m1.transpose(0, 2, 1) assert m2.shape == (11, 4, 5) assert m1.phase == m2.phase m2 = m1.transpose(1, 0, 2) assert m2.shape == (5, 11, 4) assert m1.phase == m2.phase def test_in_fundamental_sector(self): """Ensure projecting Miller indices to a fundamental sector retains type and coordinate format, gives the correct indices, and that it's possible to project to a different point group's sector. """ h = Miller(uvw=(-1, 1, 0), phase=Phase()) with pytest.raises(ValueError, match="`symmetry` must be passed or "): _ = h.in_fundamental_sector() h.phase = CUBIC_PHASE h2 = h.in_fundamental_sector() assert isinstance(h2, Miller) assert np.allclose(h2.phase.point_group.data, h.phase.point_group.data) assert h2.coordinate_format == h.coordinate_format h3 = h.in_fundamental_sector(CUBIC_PHASE.point_group) assert np.allclose((h2.data, h3.data), (1, 0, 1)) assert h2 <= h.phase.point_group.fundamental_sector h4 = h.in_fundamental_sector(symmetry.D6h) assert np.allclose(h4.phase.point_group.data, h.phase.point_group.data) assert np.allclose(h4.data, (1.366, 0.366, 0), atol=1e-3) def test_transform_space(self): """Cover all lines in private function.""" lattice = TETRAGONAL_LATTICE # Don't share memory v1 = np.array([1, 1, 1]) v2 = _transform_space(v1, "d", "d", lattice) assert not np.may_share_memory(v1, v2) # Incorrect space with pytest.raises(ValueError, match="`space_in` and `space_out` must be one "): _transform_space(v1, "direct", "cartesian", lattice) # uvw -> hkl -> uvw v3 = np.array([1, 0, 1]) v4 = _transform_space(v3, "d", "r", lattice) v5 = _transform_space(v4, "r", "d", lattice) assert np.allclose(v4, [0.25, 0, 1]) assert np.allclose(v5, v3) class TestMillerBravais: def test_uvw2UVTW(self): """Indices taken from Table 1.1 in 'Introduction to Conventional Transmission Electron Microscopy (DeGraef, 2003)'. """ # fmt: off uvw = [ [ 1, 0, 0], [ 1, 1, 0], [ 0, 0, 1], [ 0, 1, 1], [ 2, 1, 0], [ 2, 1, 1], [ 0, 1, 0], [-1, 1, 0], [ 1, 0, 1], [ 1, 1, 1], [ 1, 2, 0], [ 1, 1, 2], ] UVTW = [ [ 2, -1, -1, 0], [ 1, 1, -2, 0], [ 0, 0, 0, 1], [-1, 2, -1, 3], [ 1, 0, -1, 0], [ 1, 0, -1, 1], [-1, 2, -1, 0], [-1, 1, 0, 0], [ 2, -1, -1, 3], [ 1, 1, -2, 3], [ 0, 1, -1, 0], [ 1, 1, -2, 6], ] # fmt: on assert np.allclose(_round_indices(_uvw2UVTW(uvw)), UVTW) assert np.allclose(_round_indices(_UVTW2uvw(UVTW)), uvw) assert np.allclose(_round_indices(_uvw2UVTW(_UVTW2uvw(UVTW))), UVTW) assert np.allclose(_round_indices(_UVTW2uvw(_uvw2UVTW(uvw))), uvw) m1 = Miller(uvw=uvw, phase=TETRAGONAL_PHASE) assert np.allclose(m1.uvw, uvw) m2 = Miller(UVTW=UVTW, phase=TETRAGONAL_PHASE) assert np.allclose(m2.UVTW, UVTW) assert np.allclose(m1.unit.data, m2.unit.data) # MTEX convention assert np.allclose(_uvw2UVTW(uvw, convention="mtex") / 3, _uvw2UVTW(uvw)) assert np.allclose(_UVTW2uvw(UVTW, convention="mtex") * 3, _UVTW2uvw(UVTW)) def test_mtex_convention(self): # Same result without convention="mtex" because of rounding... UVTW = [2, 1, -3, 1] uvw = _UVTW2uvw(UVTW, convention="mtex") assert np.allclose(_round_indices(uvw), [5, 4, 1]) def test_trigonal_crystal(self): # Examples from MTEX' documentation: # https://mtex-toolbox.github.io/CrystalDirections.html m = Miller(UVTW=[2, 1, -3, 1], phase=TRIGONAL_PHASE) assert np.allclose(m.U + m.V + m.T, 0) n = Miller(hkil=[1, 1, -2, 3], phase=TRIGONAL_PHASE) assert np.allclose(n.h + n.k + n.i, 0) m.coordinate_format = "uvw" mround = m.round() assert np.allclose(mround.uvw, [5, 4, 1]) assert np.allclose([mround.u[0], mround.v[0], mround.w[0]], [5, 4, 1]) n.coordinate_format = "UVTW" nround = n.round() assert np.allclose(nround.UVTW, [3, 3, -6, 11]) assert np.allclose( [nround.U[0], nround.V[0], nround.T[0], nround.W[0]], [3, 3, -6, 11] ) # Examples from MTEX' documentation: # https://mtex-toolbox.github.io/CrystalOperations.html m1 = Miller(hkil=[1, -1, 0, 0], phase=TRIGONAL_PHASE) m2 = Miller(hkil=[1, 0, -1, 0], phase=TRIGONAL_PHASE) assert np.allclose(m1.cross(m2).round().UVTW, [0, 0, 0, 1]) m3 = Miller(UVTW=[0, 0, 0, 1], phase=TRIGONAL_PHASE) m4 = Miller(UVTW=[1, -2, 1, 3], phase=TRIGONAL_PHASE) assert np.allclose(m3.cross(m4).round().hkil, [1, 0, -1, 0]) m5 = m4.symmetrise(unique=True) assert m5.size == 6 # fmt: off assert np.allclose( m5.coordinates, [ [ 1, -2, 1, 3], [ 1, 1, -2, 3], [-2, 1, 1, 3], [ 1, 1, -2, -3], [-2, 1, 1, -3], [ 1, -2, 1, -3], ] ) # fmt: on m6 = Miller(hkil=[1, 1, -2, 0], phase=TRIGONAL_PHASE) m7 = Miller(hkil=[-1, -1, 2, 0], phase=TRIGONAL_PHASE) assert np.allclose(np.rad2deg(m6.angle_with(m7)[0]), 180) assert np.allclose(np.rad2deg(m6.angle_with(m7, use_symmetry=True)[0]), 60) def test_convention_not_met(self): with pytest.raises(ValueError, match="The Miller-Bravais indices convention"): _ = Miller(hkil=[1, 1, -1, 0], phase=TETRAGONAL_PHASE) with pytest.raises(ValueError, match="The Miller-Bravais indices convention"): _ = Miller(UVTW=[1, 1, -1, 0], phase=TETRAGONAL_PHASE) class TestDeGraefExamples: # Tests from examples in chapter 1 in Introduction to Conventional # Transmission Electron Microscopy (DeGraef, 2003) def test_tetragonal_crystal(self): # a = b = 0.5 nm, c = 1 nm lattice = TETRAGONAL_LATTICE # Example 1.1: Direct metric tensor assert np.allclose(lattice.metrics, [[0.25, 0, 0], [0, 0.25, 0], [0, 0, 1]]) # Example 1.2: Distance between two points (length of a vector) answer = np.sqrt(5) / 4 # nm p1 = np.array([0.5, 0, 0.5]) p2 = np.array([0.5, 0.5, 0]) assert np.allclose(lattice.dist(p1, p2), answer) m1 = Miller(uvw=p1 - p2, phase=TETRAGONAL_PHASE) assert np.allclose(m1.length, answer) # Example 1.3, 1.4: Dot product and angle between two directions m2 = Miller(uvw=[1, 2, 0], phase=TETRAGONAL_PHASE) m3 = Miller(uvw=[3, 1, 1], phase=TETRAGONAL_PHASE) assert np.allclose(m2.dot(m3), 5 / 4) # nm^2 assert np.allclose(np.rad2deg(m2.angle_with(m3)[0]), 53.30, atol=0.01) # Example 1.5: Reciprocal metric tensor lattice_recip = lattice.reciprocal() assert np.allclose(lattice_recip.metrics, [[4, 0, 0], [0, 4, 0], [0, 0, 1]]) # Example 1.6, 1.7: Angle between two plane normals m4 = Miller(hkl=[1, 2, 0], phase=TETRAGONAL_PHASE) m5 = Miller(hkl=[3, 1, 1], phase=TETRAGONAL_PHASE) assert np.allclose(np.rad2deg(m4.angle_with(m5)[0]), 45.7, atol=0.1) # Example 1.8: Reciprocal components of a lattice vector m6 = Miller(uvw=[1, 1, 4], phase=TETRAGONAL_PHASE) assert np.allclose(m6.hkl, [0.25, 0.25, 4]) m7 = Miller(hkl=m6.hkl, phase=TETRAGONAL_PHASE) assert np.allclose(m7.round().hkl, [1, 1, 16]) # Example 1.9: Reciprocal lattice parameters assert np.allclose(lattice_recip.abcABG(), [2, 2, 1, 90, 90, 90]) # Example 1.10, 1.11: Cross product of two directions m8 = Miller(uvw=[1, 1, 0], phase=TETRAGONAL_PHASE) m9 = Miller(uvw=[1, 1, 1], phase=TETRAGONAL_PHASE) m10 = m8.cross(m9) assert m10.coordinate_format == "hkl" assert np.allclose(m10.coordinates, [0.25, -0.25, 0]) assert np.allclose(m10.uvw, [1, -1, 0]) assert np.allclose(m10.round().coordinates, [1, -1, 0]) # Example 1.12: Cross product of two reciprocal lattice vectors m11 = Miller(hkl=[1, 1, 0], phase=TETRAGONAL_PHASE) m12 = Miller(hkl=[1, 1, 1], phase=TETRAGONAL_PHASE) m13 = m11.cross(m12) assert m13.coordinate_format == "uvw" assert np.allclose(m13.coordinates, [4, -4, 0]) assert np.allclose(m13.hkl, [1, -1, 0]) assert np.allclose(m13.round().coordinates, [1, -1, 0]) # Run tests for all systems: $ pytest -k TestMillerPointGroups # Run tests for one system: $ pytest -k TestMillerPointGroupsMonoclinic class TestMillerPointGroups: hkl = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] phase = Phase(structure=Structure(lattice=Lattice(1, 1, 1, 90, 90, 90))) class TestMillerPointGroupsTriclinic(TestMillerPointGroups): # Triclinic: 1, -1 def test_group_1(self): self.phase.point_group = "1" m = Miller(hkl=self.hkl, phase=self.phase) assert np.allclose(m.symmetrise(unique=False).hkl, self.hkl) m_unique = m.symmetrise(unique=True) assert np.allclose(m_unique.hkl, self.hkl) mult = m.multiplicity assert np.allclose(mult, [1, 1, 1]) assert np.sum(mult) == m_unique.size def test_group_bar1(self): self.phase.point_group = "-1" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, -1], [ 1, 1, 1], [-1, -1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, -1], [ 1, 1, 1], [-1, -1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 2, 2]) assert np.sum(mult) == m_unique.size class TestMillerPointGroupsMonoclinic(TestMillerPointGroups): # Monoclinic: 2 (121), m (1m1), 2/m def test_group_121(self): self.phase.point_group = "121" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, 1, -1], [ 1, 1, 1], [-1, 1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, 1, -1], [ 1, 1, 1], [-1, 1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 2, 2]) assert np.sum(mult) == m_unique.size def test_group_1m1(self): self.phase.point_group = "1m1" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 1, 1], [ 0, -1, 1], [ 1, 1, 1], [ 1, -1, 1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 1, 1], [ 0, -1, 1], [ 1, 1, 1], [ 1, -1, 1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [1, 2, 2]) assert np.sum(mult) == m_unique.size def test_group_2overm(self): self.phase.point_group = "2/m" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, 1], [ 0, 1, -1], [ 0, -1, -1], [ 1, 1, 1], [-1, -1, 1], [ 1, 1, -1], [-1, -1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, 1], [ 0, 1, -1], [ 0, -1, -1], [ 1, 1, 1], [-1, -1, 1], [ 1, 1, -1], [-1, -1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 4, 4]) assert np.sum(mult) == m_unique.size class TestMillerPointGroupsOrthorhombic(TestMillerPointGroups): # Orthorhombic: 222, mm2, 2/m 2/m 2/m (mmm) def test_group_222(self): self.phase.point_group = "222" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, 1], [ 0, -1, -1], [ 0, 1, -1], [ 1, 1, 1], [-1, -1, 1], [ 1, -1, -1], [-1, 1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, 1], [ 0, -1, -1], [ 0, 1, -1], [ 1, 1, 1], [-1, -1, 1], [ 1, -1, -1], [-1, 1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 4, 4]) assert np.sum(mult) == m_unique.size def test_group_mm2(self): self.phase.point_group = "mm2" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 0, 1], [ 0, 1, 1], [ 0, -1, -1], [ 0, 1, -1], [ 0, -1, 1], [ 1, 1, 1], [ 1, -1, -1], [ 1, 1, -1], [ 1, -1, 1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, -1, -1], [ 0, 1, -1], [ 0, -1, 1], [ 1, 1, 1], [ 1, -1, -1], [ 1, 1, -1], [ 1, -1, 1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 4, 4]) assert np.sum(mult) == m_unique.size def test_group_2overm_2overm_2overm(self): self.phase.point_group = "mmm" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, 1, -1], [ 0, 1, 1], [ 0, 1, -1], [ 0, -1, 1], [ 0, -1, -1], [ 0, -1, 1], [ 0, -1, -1], [ 1, 1, 1], [ 1, 1, -1], [-1, 1, 1], [-1, 1, -1], [ 1, -1, 1], [ 1, -1, -1], [-1, -1, 1], [-1, -1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 0, 1, -1], [ 0, -1, 1], [ 0, -1, -1], [ 1, 1, 1], [ 1, 1, -1], [-1, 1, 1], [-1, 1, -1], [ 1, -1, 1], [ 1, -1, -1], [-1, -1, 1], [-1, -1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 4, 8]) assert np.sum(mult) == m_unique.size class TestMillerPointGroupsTetragonal(TestMillerPointGroups): # Tetragonal: 4, -4, 4/m, 422, 4mm, -42m, 4/m 2/m 2/m def test_group_4(self): self.phase.point_group = "4" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [1, 4, 4]) assert np.sum(mult) == m_unique.size def test_group_bar4(self): self.phase.point_group = "-4" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 1, 0, -1], [ 0, -1, 1], [-1, 0, -1], [ 1, 1, 1], [ 1, -1, -1], [-1, -1, 1], [-1, 1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [ 1, 0, -1], [ 0, -1, 1], [-1, 0, -1], [ 1, 1, 1], [ 1, -1, -1], [-1, -1, 1], [-1, 1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 4, 4]) assert np.sum(mult) == m_unique.size def test_group_4overm(self): self.phase.point_group = "4/m" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 0, 1, -1], [-1, 0, -1], [ 0, -1, -1], [ 1, 0, -1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], [ 1, 1, -1], [-1, 1, -1], [-1, -1, -1], [ 1, -1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 0, 1, -1], [-1, 0, -1], [ 0, -1, -1], [ 1, 0, -1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], [ 1, 1, -1], [-1, 1, -1], [-1, -1, -1], [ 1, -1, -1], ], ) # fmt: on mult = m.multiplicity assert np.allclose(mult, [2, 8, 8]) assert np.sum(mult) == m_unique.size def test_group_422(self): self.phase.point_group = "422" m = Miller(hkl=self.hkl, phase=self.phase) # fmt: off assert np.allclose( m.symmetrise(unique=False).hkl, [ [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, 1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 0, -1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 0, -1, -1], [ 1, 0, -1], [ 0, 1, -1], [-1, 0, -1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], [ 1, -1, -1], [ 1, 1, -1], [-1, 1, -1], [-1, -1, -1], ], ) m_unique = m.symmetrise(unique=True) assert np.allclose( m_unique.hkl, [ [ 0, 0, 1], [ 0, 0, -1], [ 0, 1, 1], [-1, 0, 1], [ 0, -1, 1], [ 1, 0, 1], [ 0, -1, -1], [ 1, 0, -1], [ 0, 1, -1], [-1, 0, -1], [ 1, 1, 1], [-1, 1, 1], [-1, -1, 1], [ 1, -1, 1], [ 1, -1, -1], [ 1, 1, -1], [-1, 1, -1], [-1, -1, -1], ], ) # fmt: on mult = m.multiplicity assert
np.allclose(mult, [2, 8, 8])
numpy.allclose
from IPython.core.display import display, HTML import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import pickle import cv2 import glob import time import os from feature_extraction import extractFeatures, configParams, extract_hog_features, extract_color_features def search_windows(img, windows, classifier, X_scaler): hog_feat = configParams['use_hog_feat'] spatial_feat = configParams['use_spatial_feat'] hist_feat = configParams['use_hist_feat'] # Create an empty list to receive positive detection windows on_windows = [] count_window = 0 count_car_window = 0 # Iterate over all windows in the list for window in windows: # Extract the test window from original image window_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64)) # Extract features for that window img_features = extractFeatures(window_img, verbose=False, hog_feat=hog_feat, spatial_feat=spatial_feat, hist_feat=hist_feat) # Scale extracted features to be fed to classifier test_features = X_scaler.transform(np.array(img_features).reshape(1, -1)) # Predict using your classifier prediction = classifier.predict(test_features) # If positive (prediction == 1) then save the window count_window += 1 if prediction == 1: count_car_window += 1 on_windows.append(window) # Return windows for positive detections return on_windows def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5)): # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] == None: x_start_stop[0] = 0 if x_start_stop[1] == None: x_start_stop[1] = img.shape[1] if y_start_stop[0] == None: y_start_stop[0] = 0 if y_start_stop[1] == None: y_start_stop[1] = img.shape[0] # Compute the span of the region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Compute the number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1])) # Compute the number of windows in x/y nx_buffer = np.int(xy_window[0]*(xy_overlap[0])) ny_buffer = np.int(xy_window[1]*(xy_overlap[1])) nx_windows = np.int((xspan-nx_buffer)/nx_pix_per_step) ny_windows = np.int((yspan-ny_buffer)/ny_pix_per_step) # Initialize a list to append window positions to window_list = [] # Loop through finding x and y window positions # Note: you could vectorize this step, but in practice # you'll be considering windows one by one with your # classifier, so looping makes sense for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = xs*nx_pix_per_step + x_start_stop[0] endx = startx + xy_window[0] starty = ys*ny_pix_per_step + y_start_stop[0] endy = starty + xy_window[1] # Append window position to list window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list # Define a function to draw bounding boxes def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6): imcopy = np.copy(img) for bbox in bboxes: # Draw a rectangle cv2.rectangle(imcopy, (bbox[0][0], bbox[0][1]), (bbox[1][0], bbox[1][1]), color, thick) return imcopy def findCars(img, y_start_stop, svc, X_scaler, scale=1): hog_feat = configParams['use_hog_feat'] spatial_feat = configParams['use_spatial_feat'] hist_feat = configParams['use_hist_feat'] car_windows = [] all_windows = [] draw_img = np.copy(img) img_cropped = img[y_start_stop[0]:y_start_stop[1], :, :] if scale != 1: imshape = img_cropped.shape img_cropped = cv2.resize(img_cropped, (np.int(imshape[1]/scale), np.int(imshape[0]/scale))) ch1 = img_cropped[:,:,0] ch2 = img_cropped[:,:,1] ch3 = img_cropped[:,:,2] orient = configParams['hog_n_orientations'] pix_per_cell = configParams['hog_pixels_per_cell'] cells_per_block = configParams['hog_cells_per_block'] # Define blocks and steps as above nxblocks = (ch1.shape[1] // pix_per_cell) - cells_per_block + 1 nyblocks = (ch1.shape[0] // pix_per_cell) - cells_per_block + 1 nfeat_per_block = orient * cells_per_block**2 # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell window = 64 nblocks_per_window = (window // pix_per_cell) - cells_per_block + 1 cells_per_step = 2 # Instead of overlap, define how many cells to step nxsteps = (nxblocks - nblocks_per_window) // cells_per_step nysteps = (nyblocks - nblocks_per_window) // cells_per_step # Compute HOG features for the entire image hogg, _ = extract_hog_features(img_cropped, hog_feat=hog_feat, visualize=False) # sprint ("hogg.shape = {}".format(hogg.shape)) hog1 = hogg[0] hog2 = hogg[1] hog3 = hogg[2] count_window = 0 count_car_window = 0 for xb in range(nxsteps): for yb in range(nysteps): ypos = yb*cells_per_step xpos = xb*cells_per_step # Extract HOG for this patch hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) if configParams['use_gray_img'] is True: hog_features = hogg[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() xleft = xpos * pix_per_cell ytop = ypos * pix_per_cell # Extract the image patch subimg = cv2.resize(img_cropped[ytop:ytop+window, xleft:xleft+window], (64,64)) # Get color features color_features = extract_color_features(subimg, spatial_feat=spatial_feat, hist_feat=hist_feat) # Combine HOG and color features img_features = np.hstack((hog_features, color_features)) # Scale features and make a prediction test_features = X_scaler.transform(img_features.reshape(1, -1)) test_prediction = svc.predict(test_features) xbox_left = np.int(xleft * scale) ytop_draw = np.int(ytop * scale) win_draw =
np.int(window * scale)
numpy.int
from __future__ import print_function import numpy as np import itertools from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, suppress_warnings) import pytest from pytest import raises as assert_raises from pytest import warns as assert_warns from scipy.spatial import SphericalVoronoi, distance from scipy.spatial import _spherical_voronoi as spherical_voronoi from scipy.spatial.transform import Rotation from scipy.optimize import linear_sum_assignment TOL = 1E-10 class TestSphericalVoronoi(object): def setup_method(self): self.points = np.array([ [-0.78928481, -0.16341094, 0.59188373], [-0.66839141, 0.73309634, 0.12578818], [0.32535778, -0.92476944, -0.19734181], [-0.90177102, -0.03785291, -0.43055335], [0.71781344, 0.68428936, 0.12842096], [-0.96064876, 0.23492353, -0.14820556], [0.73181537, -0.22025898, -0.6449281], [0.79979205, 0.54555747, 0.25039913]] ) # Issue #9386 self.hemisphere_points = np.array([ [0.88610999, -0.42383021, 0.18755541], [0.51980039, -0.72622668, 0.4498915], [0.56540011, -0.81629197, -0.11827989], [0.69659682, -0.69972598, 0.15854467]]) # Issue #8859 phi = np.linspace(0, 2 * np.pi, 10, endpoint=False) # azimuth angle theta = np.linspace(0.001, np.pi * 0.4, 5) # polar angle theta = theta[np.newaxis, :].T phiv, thetav = np.meshgrid(phi, theta) phiv = np.reshape(phiv, (50, 1)) thetav = np.reshape(thetav, (50, 1)) x = np.cos(phiv) * np.sin(thetav) y = np.sin(phiv) * np.sin(thetav) z = np.cos(thetav) self.hemisphere_points2 = np.concatenate([x, y, z], axis=1) def test_constructor(self): center = np.array([1, 2, 3]) radius = 2 s1 = SphericalVoronoi(self.points) # user input checks in SphericalVoronoi now require # the radius / center to match the generators so adjust # accordingly here s2 = SphericalVoronoi(self.points * radius, radius) s3 = SphericalVoronoi(self.points + center, center=center) s4 = SphericalVoronoi(self.points * radius + center, radius, center) assert_array_equal(s1.center, np.array([0, 0, 0])) assert_equal(s1.radius, 1) assert_array_equal(s2.center, np.array([0, 0, 0])) assert_equal(s2.radius, 2) assert_array_equal(s3.center, center) assert_equal(s3.radius, 1) assert_array_equal(s4.center, center) assert_equal(s4.radius, radius) def test_vertices_regions_translation_invariance(self): sv_origin = SphericalVoronoi(self.points) center = np.array([1, 1, 1]) sv_translated = SphericalVoronoi(self.points + center, center=center)
assert_equal(sv_origin.regions, sv_translated.regions)
numpy.testing.assert_equal
import cea import os import pandas as pd import numpy as np import pickle from scipy.stats import triang from scipy.stats import norm from scipy.stats import uniform from pyDOE import lhs from cea.demand import demand_main from geopandas import GeoDataFrame as Gdf import cea.inputlocator as inputlocator from cea.demand.calibration.settings import subset_samples from keras.layers import Input, Dense from keras.models import Model import scipy.io from keras.models import Sequential from keras.callbacks import EarlyStopping from sklearn.preprocessing import MinMaxScaler import cea.config __author__ = "<NAME>" __copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>","<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Testing" all_results=[] def simulate_demand_sample(locator, building_name, output_parameters): """ This script runs the cea demand tool in series and returns a single value of cvrmse and rmse. :param locator: pointer to location of files in CEA :param building_name: name of building :param output_parameters: building load to consider in the anlysis :return: """ # force simulation to be sequential and to only do one building gv = cea.globalvar.GlobalVariables() gv.multiprocessing = False gv.print_totals = False gv.simulate_building_list = [building_name] gv.testing = True #import weather and measured data weather_path = locator.get_default_weather() #weather_path = 'C:\CEAforArcGIS\cea\databases\weather\Zurich.epw' #calculate demand timeseries for buidling an calculate cvrms demand_main.demand_calculation(locator, weather_path, gv) output_folder=locator.get_demand_results_folder() file_path=os.path.join(output_folder, "%(building_name)s.xls" % locals()) #file_path=locator.get_demand_results_file(building_name) new_calcs = pd.read_excel(file_path) #cv_rmse, rmse = calc_cv_rmse(time_series_simulation[output_parameters].values, time_series_measured[output_parameters].values) return new_calcs #cv_rmse, rmse def latin_sampler(locator, num_samples, variables, region): """ This script creates a matrix of m x n samples using the latin hypercube sampler. for this, it uses the database of probability distribtutions stored in locator.get_uncertainty_db() :param locator: pointer to locator of files of CEA :param num_samples: number of samples to do :param variables: list of variables to sample :return: 1. design: a matrix m x n with the samples 2. pdf_list: a dataframe with properties of the probability density functions used in the excercise. """ # get probability density function PDF of variables of interest variable_groups = ('ENVELOPE', 'INDOOR_COMFORT', 'INTERNAL_LOADS') database = pd.concat([pd.read_excel(locator.get_uncertainty_db(region), group, axis=1) for group in variable_groups]) pdf_list = database[database['name'].isin(variables)].set_index('name') # get number of variables num_vars = pdf_list.shape[0] #alternatively use len(variables) # get design of experiments design = lhs(num_vars, samples=num_samples) for i, variable in enumerate(variables): distribution = pdf_list.loc[variable, 'distribution'] min = pdf_list.loc[variable,'min'] max = pdf_list.loc[variable,'max'] mu = pdf_list.loc[variable,'mu'] stdv = pdf_list.loc[variable,'stdv'] if distribution == 'triangular': loc = min scale = max - min c = (mu - min) / (max - min) design[:, i] = triang(loc=loc, c=c, scale=scale).ppf(design[:, i]) elif distribution == 'normal': design[:, i] = norm(loc=mu, scale=stdv).ppf(design[:, i]) else: # assume it is uniform design[:, i] = uniform(loc=min, scale=max).ppf(design[:, i]) return design, pdf_list def prep_NN_inputs(NN_input,NN_target,NN_delays): #NN_input.to_csv('TEMP.csv', index=False, header=False, float_format='%.3f', decimal='.') #file_path_temp = 'C:\CEAforArcGIS\cea\surrogate\Temp.csv' #input1 = pd.read_csv(file_path_temp) input1=NN_input target1=NN_target nS, nF = input1.shape nSS, nT = target1.shape nD=NN_delays aD=nD+1 input_matrix_features=np.zeros((nS+nD, aD*nF)) rowsF, colsF=input_matrix_features.shape input_matrix_targets=np.zeros((nS+nD, aD*nT)) rowsFF, ColsFF = input_matrix_targets.shape i=1 while i<aD+1: j=i-1 aS=nS+j m1=(i*nF)-(nF) m2=(i*nF) n1=(i*nT)-(nT) n2=(i*nT) input_matrix_features[j:aS, m1:m2]=input1 input_matrix_targets[j:aS, n1:n2]=target1 i=i+1 trimmed_inputn = input_matrix_features[nD:nS,:] trimmed_inputt = input_matrix_targets[nD:nS, 2:] NN_input_ready=np.concatenate([trimmed_inputn, trimmed_inputt], axis=1) NN_target_ready=target1[nD:nS,:] return NN_input_ready, NN_target_ready def sampling_main(locator, variables, building_name, building_load, region): """ This script creates samples using a lating Hypercube sample of 5 variables of interest. then runs the demand calculation of CEA for all the samples. It delivers a json file storing the results of cv_rmse and rmse for each sample. for more details on the work behind this please check: <NAME>., <NAME>., <NAME>. Bayesian calibration of Dynamic building Energy Models. Applied Energy 2017. :param locator: pointer to location of CEA files :param variables: input variables of CEA to sample. They must be 5! :param building_name: name of building to calibrate :param building_load: name of building load to calibrate :return: 1. a file storing values of cv_rmse and rmse for all samples. the file is sotred in file(locator.get_calibration_cvrmse_file(building_name) 2 a file storing information about variables, the building_load and the probability distribtuions used in the excercise. the file is stored in locator.get_calibration_problem(building_name) :rtype: .json and .pkl """ # create list of samples with a LHC sampler and save to disk samples, pdf_list = latin_sampler(locator, subset_samples, variables, region) np.save(locator.get_calibration_samples(building_name), samples) # create problem and save to disk as json problem = {'variables':variables, 'building_load':building_load, 'probabiltiy_vars':pdf_list} pickle.dump(problem, file(locator.get_calibration_problem(building_name), 'w')) nn_X_ht = [] nn_X_cl = [] nn_T_ht = [] nn_T_cl = [] nn_X_ht = np.array(nn_X_ht) nn_X_cl = np.array(nn_X_cl) nn_T_ht = np.array(nn_T_ht) nn_T_cl = np.array(nn_T_cl) for i in range(subset_samples): #create list of tubles with variables and sample sample = zip(variables,samples[i,:]) #create overrides and return pointer to files apply_sample_parameters(locator, sample) simulate_demand_sample(locator, building_name, building_load) # define the inputs intended_parameters=['people','Eaf','Elf','Qwwf','I_rad','I_sol','T_ext','rh_ext', 'ta_hs_set','ta_cs_set','theta_a','Qhsf', 'Qcsf'] # collect the simulation results file_path = os.path.join(locator.get_demand_results_folder(), "%(building_name)s.xls" % locals()) calcs_outputs_xls = pd.read_excel(file_path) temp_file=os.path.join(locator.get_temporary_folder(), "%(building_name)s.csv" % locals()) calcs_outputs_xls.to_csv(temp_file, index=False, header=True, float_format='%.3f', decimal='.') calcs_trimmed_csv=pd.read_csv(temp_file, usecols=intended_parameters) calcs_trimmed_csv['I_real'] = calcs_trimmed_csv['I_rad'] + calcs_trimmed_csv['I_sol'] calcs_trimmed_csv['ta_hs_set'].fillna(0, inplace=True) calcs_trimmed_csv['ta_cs_set'].fillna(50, inplace=True) NN_input=calcs_trimmed_csv input_drops = ['I_rad', 'I_sol', 'theta_a', 'Qhsf', 'Qcsf'] NN_input = NN_input.drop(input_drops, 1) NN_input=np.array(NN_input) target1=calcs_trimmed_csv['Qhsf'] target2=calcs_trimmed_csv['Qcsf'] target3=calcs_trimmed_csv['theta_a'] NN_target_ht = pd.concat([target1, target3], axis=1) NN_target_cl = pd.concat([target2, target3], axis=1) NN_target_ht=np.array(NN_target_ht) NN_target_cl=np.array(NN_target_cl) #return NN_input, NN_target_ht, NN_target_cl NN_delays=1 NN_input_ready_ht, NN_target_ready_ht=prep_NN_inputs(NN_input, NN_target_ht, NN_delays) NN_input_ready_cl, NN_target_ready_cl = prep_NN_inputs(NN_input, NN_target_cl, NN_delays) one_array_override=np.array(pd.read_csv(locator.get_building_overrides(),skiprows=1,nrows=1)) one_array_override1=np.delete(one_array_override,0,1) rows_override, cols_override=one_array_override1.shape rows_NN_input, cols_NN_input=NN_input_ready_ht.shape random_variables_matrix=[] random_variables_matrix=np.array(random_variables_matrix) vector_of_ones =
np.ones((rows_NN_input, 1))
numpy.ones
''' Below code is borrowed from <NAME> ''' import torch import numpy as np import cv2 from scipy.optimize import linear_sum_assignment from shapely.geometry import Polygon from homography import Homography, load_i24_csv import utils from utils_data_association import count_overlaps import numpy.linalg as LA import matplotlib.pyplot as plt import utils_vis as vis import pickle class MOT_Evaluator(): def __init__(self,gt_path,rec_path,tf_path, camera_name, homography,params = None): """ gt_path - string, path to i24 csv file for ground truth tracks rec_path - string, path to i24 csv for rectified tracks homography - Homography object containing relevant scene information params - dict of parameter values to change """ self.gtmode = "" self.recmode = "" self.match_iou = 0 self.cutoff_frame = 10000 # store homography self.hg = homography self.tf_path = tf_path self.camera_name = camera_name # data is stored as a groupby object. get frame f_idx by "self.gt.get_group(f_idx)" # load ground truth data # start with meter cols_to_convert = ["speed","x","y","width","length","height"] pts = ["fbr_x","fbr_y","fbl_x","fbl_y","bbr_x","bbr_y","bbl_x","bbl_y"] self.gt = utils.read_data(gt_path) if np.mean(self.gt.y.values) > 40: self.gt[cols_to_convert] = self.gt[cols_to_convert] / 3.281 if "bbr_x" not in self.gt or np.mean(self.gt.bbr_y.values) > 40 or "Manual" in self.gt["Generation method"].unique(): self.gt = utils.img_to_road(self.gt, tf_path, camera_name) # calculate GT velocities TODO:assume freeflow constant velocity # self.gt = utils.calc_dynamics(self.gt) # finite difference self.gt = self.gt.groupby("ID").apply(self.estimate_speed).reset_index(drop=True) # load rec data self.rec = utils.read_data(rec_path) if "veh rear x" in self.rec: self.rec = self.rec.rename(columns={"veh rear x": "x", "veh center y":"y", "Object ID": "ID"}) if np.mean(self.rec.y.values) > 40: self.rec[cols_to_convert] = self.rec[cols_to_convert] / 3.281 if "bbr_x" not in self.rec or np.mean(self.rec.bbr_y.values) > 40: self.rec = utils.img_to_road(self.rec, tf_path, camera_name) if params is not None: if "match_iou" in params.keys(): self.match_iou = params["match_iou"] if "cutoff_frame" in params.keys(): self.cutoff_frame = params["cutoff_frame"] if "sequence" in params.keys(): self.sequence = params["sequence"] if "gtmode" in params.keys(): self.gtmode = params["gtmode"] if "recmode" in params.keys(): self.recmode = params["recmode"] if "score_threshold" in params.keys(): self.score_threshold = params["score_threshold"] if self.recmode != "rec": self.rec = self.rec.groupby("ID").apply(utils.calc_dynamics_car).reset_index(drop=True) # select under cut-off frames if self.cutoff_frame: self.gt = self.gt[self.gt["Frame #"]<=self.cutoff_frame] self.rec = self.rec[self.rec["Frame #"]<=self.cutoff_frame] # create dict for storing metrics n_classes = len(self.hg.class_heights.keys()) class_confusion_matrix = np.zeros([n_classes,n_classes]) self.m = { "FP":0, "FP edge-case":0, "FP @ 0.2":0, "FN @ 0.2":0, "FN":0, "TP":0, "pre_thresh_IOU":[], "match_IOU":[], "state_err":[], "im_bot_err":[], "im_top_err":[], "cls":class_confusion_matrix, "ids":{}, # key: gt_id, value: matched rec_id "ids_rec":{}, # key: rec_id, value: matched gt_id "gt_ids":[], "rec_ids":[], "Changed ID pair":[], "trajectory_score": {}, # key: gt_id, value: score of the matched rec_id "ids > score":[], "overlap_gt": 0, "overlap_rec": 0, "space_gap_gt":[], "space_gap_rec":[], "overlap_rec_ids": set() } units = {} units["Match IOU"] = "" units["Pre-threshold IOU"] = "" units["Trajectory score"] = "" units["Spacing before"] = "" units["Spacing after"] = "" units["Width precision"] = "ft" units["Height precision"] = "ft" units["Length precision"] = "ft" units["Velocity precision"] = "ft/s" units["X precision"] = "ft" units["Y precision"] = "ft" units["df"] = "m" self.units = units if self.sequence is not None: self.cap = cv2.VideoCapture(self.sequence) def estimate_speed(self, car): temp = car[~car["bbr_x"].isna()] if len(temp)<2: return None v_bbr = (max(temp.bbr_x.values)-min(temp.bbr_x.values))/(max(temp.Timestamp.values)-min(temp.Timestamp.values)) v_fbr = (max(temp.fbr_x.values)-min(temp.fbr_x.values))/(max(temp.Timestamp.values)-min(temp.Timestamp.values)) avgv = (v_bbr+v_fbr)/2 car["speed"] = avgv if avgv<50 else np.nan return car def iou(self,a,b): """ Description ----------- Calculates intersection over union for all sets of boxes in a and b Parameters ---------- a : tensor of size [8,3] bounding boxes in relative coords b : array of size [8,3] bounding boxes in relative coords Returns ------- iou - float between [0,1] if a, b are valid boxes, -1 otherwise average iou for a and b """ # if has invalid measurements if torch.isnan(a).any() or torch.isnan(b).any(): return 0 # ignore the top area_a = (a[2]-a[0]) * (a[3]-a[1]) area_b = (b[2]-b[0]) * (b[3]-b[1]) minx = max(a[0], b[0]) maxx = min(a[2], b[2]) miny = max(a[1], b[1]) maxy = min(a[3], b[3]) intersection = max(0, maxx-minx) * max(0,maxy-miny) union = area_a + area_b - intersection + 1e-06 iou = intersection/union return iou def score_trajectory(self): ''' compute euclidean distance between GT trajectories and rec trajectories ''' # convert back to meter if self.units["df"] == "ft": cols_to_convert = ["fbr_x", "fbr_y","fbl_x" ,"fbl_y","bbr_x","bbr_y","bbl_x","bbl_y", "speed","x","y","width","length","height"] self.rec[cols_to_convert] = self.rec[cols_to_convert] / 3.281 self.gt[cols_to_convert] = self.gt[cols_to_convert] / 3.281 self.units["df"] = "m" gt_groups = self.gt.groupby('ID') rec_groups = self.rec.groupby('ID') if self.metrics['Matched IDs rec']: for rec_id in self.metrics['Matched IDs rec']: gt_id = self.metrics['Matched IDs rec'][rec_id][0] gt_car = gt_groups.get_group(gt_id) rec_car = rec_groups.get_group(rec_id) start = max(gt_car['Frame #'].iloc[0],rec_car['Frame #'].iloc[0]) end = min(gt_car['Frame #'].iloc[-1],rec_car['Frame #'].iloc[-1]) gt_car = gt_car.loc[(gt_car['Frame #'] >= start) & (gt_car['Frame #'] <= end)] rec_car = rec_car.loc[(rec_car['Frame #'] >= start) & (rec_car['Frame #'] <= end)] Y1 = np.array(gt_car[['bbr_x','bbr_y', 'fbr_x','fbr_y','fbl_x','fbl_y','bbl_x', 'bbl_y']]) Yre = np.array(rec_car[['bbr_x','bbr_y', 'fbr_x','fbr_y','fbl_x','fbl_y','bbl_x', 'bbl_y']]) try: diff = Y1-Yre score = np.nanmean(LA.norm(diff,axis=1)) if score > self.score_threshold: self.m["ids > score"].append(rec_id) self.m["trajectory_score"][rec_id] = score except ValueError: print("Encounter unmatched dimension when computing trajectory score") else: print('Run evaluate first.') scores = list(self.m["trajectory_score"].values()) scores = [x for x in scores if np.isnan(x) == False] scores_mean_std = np.nanmean(scores),np.nanstd(scores) metrics = {} metrics["Trajectory score"] = scores_mean_std metrics["IDs > score threshold"] = self.m["ids > score"] if hasattr(self, "metrics"): self.metrics = dict(list(self.metrics.items()) + list(metrics.items())) else: self.metrics = metrics return def iou_ts(self,a,b): """ Description ----------- Calculates intersection over union for track a and b in time-space diagram Parameters ---------- a : 1x8 b : 1x8 Returns ------- iou - float between [0,1] """ a,b = np.reshape(a,(1,-1)), np.reshape(b,(1,-1)) p = Polygon([(a[0,2*i],a[0,2*i+1]) for i in range(4)]) q = Polygon([(b[0,2*i],b[0,2*i+1]) for i in range(4)]) intersection_area = p.intersection(q).area union_area = min(p.area, q.area) iou = float(intersection_area/union_area) return iou def get_invalid(self, df): ''' valid: length covers more than 50% of the FOV invalid: length covers less than 10% of FOV, or crashes with any valid tracks undetermined: tracks that are short but not overlaps with any valid tracks ''' # convert units if np.mean(df.y.values) > 40: cols_to_convert = ["fbr_x", "fbr_y","fbl_x" ,"fbl_y","bbr_x","bbr_y","bbl_x","bbl_y", "speed","x","y","width","length","height"] df[cols_to_convert] = df[cols_to_convert] / 3.281 xmin, xmax = min(df["x"].values),max(df["x"].values) groups = df.groupby("ID") groupList = list(groups.groups) pts = ['bbr_x','bbr_y','fbr_x','fbr_y','fbl_x','fbl_y','bbl_x', 'bbl_y'] valid = {} invalid = set() for carid, group in groups: if (max(group.x.values)-min(group.x.values)>0.4*(xmax-xmin)): # long tracks frames = group["Frame #"].values first = group.head(1) last = group.tail(1) x0, x1 = max(first.bbr_x.values[0],first.fbr_x.values[0]),min(first.bbr_x.values[0],first.fbr_x.values[0]) x2, x3 = min(last.bbr_x.values[0],last.fbr_x.values[0]),max(last.bbr_x.values[0],last.fbr_x.values[0]) y0, y1 = max(first.bbr_y.values[0],first.bbl_y.values[0]),min(first.bbr_y.values[0],first.bbl_y.values[0]) y2, y3 = min(last.bbr_y.values[0],last.bbl_y.values[0]),max(last.bbr_y.values[0],last.bbl_y.values[0]) t0,t1 = min(frames), max(frames) valid[carid] = [np.array([t0,x0,t0,x1,t1,x2,t1,x3]),np.array([t0,y0,t0,y1,t1,y2,t1,y3])] # check crash within valid valid_list = list(valid.keys()) for i,car1 in enumerate(valid_list): bx,by = valid[car1] for car2 in valid_list[i+1:]: ax,ay = valid[car2] ioux = self.iou_ts(ax,bx) iouy = self.iou_ts(ay,by) if ioux > 0 and iouy > 0: # trajectory overlaps with a valid track if bx[4]-bx[0] > ax[4]-ax[0]: # keep the longer track invalid.add(car2) else: invalid.add(car1) valid = set(valid.keys()) valid = valid-invalid print("Valid tracklets: {}/{}".format(len(valid),len(groupList))) return valid def evaluate_tracks(self): ''' Compute: # valid and invalid tracks - valid if x covers the range of camera FOV - invalid if otherwise or the ratio of missing data is > threshold # collisions ** IN SPACE ** Returns ------- None. ''' valid = self.get_invalid(self.rec) groups = self.rec.groupby("ID") self.metrics["Valid tracklets/total"] = "{} / {}".format(len(valid),groups.ngroups) # invalid_gt, valid_gt, invalid_rec, valid_rec = [],[],[],[] # xmin, xmax, _, _ = utils.get_camera_range(self.gt['camera'].dropna().unique()) # xrange = xmax-xmin # alpha = 0.5 # xmin, xmax = xmin + alpha*xrange, xmax-alpha*xrange # buffered 1-2*alpha% # # invalid if tracks don't cover xmin to xmax, or tracks has < 5 valid measurements # print("Evaluating tracks...") # gt_groups = self.gt.groupby("ID") # for gt_id, gt in gt_groups: # x_df = gt[["bbr_x","bbl_x","fbr_x","fbl_x"]] # xleft = x_df.min().min() # xright = x_df.max().max() # # missing_rate = x_df[["bbr_x"]].isna().sum().values[0]/len(x_df) # valid_meas = gt.count().bbr_x # if xleft > xmin or xright < xmax or valid_meas < 5: # invalid_gt.append(gt_id) # else: # valid_gt.append(gt_id) # # do the same for rec # rec_groups = self.rec.groupby("ID") # for rec_id, rec in rec_groups: # x_df = rec[["bbr_x","bbl_x","fbr_x","fbl_x"]] # xleft = x_df.min().min() # xright = x_df.max().max() # valid_meas = rec.count().bbr_x # if xleft > xmin or xright < xmax or valid_meas < 5: # invalid_rec.append(rec_id) # else: # valid_rec.append(rec_id) # summarize # metrics = {} # metrics["# Invalid IDs/total (before)"] = "{} / {}".format(len(invalid_gt),gt_groups.ngroups) # metrics["# Invalid IDs/total (after)"] = "{} / {}".format(len(invalid_rec),rec_groups.ngroups) # metrics["Invalid rec IDs"] = invalid_rec # # metrics["Occurances of collision in rec"] = len(overlaps_rec) # if hasattr(self, "metrics"): # self.metrics = dict(list(self.metrics.items()) + list(metrics.items())) # else: # self.metrics = metrics # plot some invalid tracks # for rec_id in invalid_rec[:5]: # car = rec_groups.get_group(rec_id) # vis.plot_track_df(car, title=str(rec_id)) return def evaluate(self): # TODO: convert gt and rec unit from m to ft cols_to_convert = ["fbr_x", "fbr_y","fbl_x","fbl_y","bbr_x","bbr_y","bbl_x","bbl_y", "speed","x","y","width","length","height"] if "height" not in self.gt: self.gt["height"] = 0 if "height" not in self.rec: self.rec["height"] = 0 if self.units["df"] == "m": self.gt[cols_to_convert] = self.gt[cols_to_convert] * 3.281 self.rec[cols_to_convert] = self.rec[cols_to_convert] * 3.281 self.units["df"] = "ft" # for each frame: gt_frames = self.gt.groupby('Frame #') rec_frames = self.rec.groupby('Frame #') for f_idx in range(self.cutoff_frame): print("\rAggregating metrics for frame {}/{}".format(f_idx,self.cutoff_frame),end = "\r",flush = True) if self.sequence: _,im = self.cap.read() try: gt = gt_frames.get_group(f_idx) except KeyError: if f_idx in rec_frames.groups.keys(): frame = rec_frames.get_group(f_idx) self.m["FP"] += len(frame) ids = frame['ID'].values for id in ids: if id not in self.m["rec_ids"]: self.m["rec_ids"].append(id) continue try: rec = rec_frames.get_group(f_idx) except KeyError: if f_idx in gt_frames.groups.keys(): frame = gt_frames.get_group(f_idx) self.m["FN"] += len(frame) ids = frame['ID'].values for id in ids: if id not in self.m["gt_ids"]: self.m["gt_ids"].append(id) continue # store ground truth as tensors gt_ids = gt['ID'].values gt_classes = gt["Object class"].values if self.gtmode == "gt": # start from image # TODO: fill nan as 0 for velocity gt_im = np.array(gt[["fbrx","fbry", "fblx", "fbly", "bbrx", "bbry", "bblx", "bbly", "ftrx", "ftry", "ftlx", "ftly", "btrx", "btry", "btlx", "btly"]]) gt_im = torch.from_numpy(np.stack(gt_im)).reshape(-1,8,2) # two pass estimate of object heights heights = self.hg.guess_heights(gt_classes) gt_state = self.hg.im_to_state(gt_im,heights = heights) repro_boxes = self.hg.state_to_im(gt_state) refined_heights = self.hg.height_from_template(repro_boxes,heights,gt_im) # get other formulations for boxes gt_state = self.hg.im_to_state(gt_im,heights = refined_heights) gt_space = self.hg.state_to_space(gt_state) gt_velocities = gt["speed"].values gt_velocities = torch.tensor(gt_velocities).float() gt_state = torch.cat((gt_state,gt_velocities.unsqueeze(1)),dim = 1) else: # start from space (raw, DA) gt_space = np.array(gt[['fbr_x','fbr_y', 'fbl_x','fbl_y','bbr_x','bbr_y','bbl_x', 'bbl_y']]) gt_space = torch.from_numpy(np.stack(gt_space)).reshape(-1,4,2) gt_space = torch.cat((gt_space,gt_space),dim = 1) d = gt_space.size()[0] zero_heights = torch.zeros((d,8,1)) gt_space = torch.cat([gt_space,zero_heights],dim=2) gt_im = self.hg.space_to_im(gt_space) # store pred as tensors (we start from state) rec_ids = rec['ID'].values rec_classes = rec["Object class"].values if self.recmode == "da": # rec_space = np.array(rec[['bbr_x','bbr_y', 'fbr_x','fbr_y','fbl_x','fbl_y','bbl_x', 'bbl_y']]) rec_space = np.array(rec[['fbr_x','fbr_y', 'fbl_x','fbl_y','bbr_x','bbr_y','bbl_x', 'bbl_y']]) rec_space = torch.from_numpy(np.stack(rec_space)).reshape(-1,4,2) rec_space = torch.cat((rec_space,rec_space),dim = 1) d = rec_space.size()[0] zero_heights = torch.zeros((d,8,1)) rec_space = torch.cat([rec_space,zero_heights],dim=2) rec_im = self.hg.space_to_im(rec_space) heights = self.hg.guess_heights(rec_classes) rec_state = self.hg.im_to_state(rec_im,heights = heights) # TODO: estimate speed from space rec_velocities = rec["speed"].values rec_velocities = torch.tensor(rec_velocities).float() rec_state = torch.cat((rec_state,rec_velocities.unsqueeze(1)),dim = 1) elif self.recmode == "rec": # start from states rec_state = np.array(rec[["x","y","length","width","height","direction","speed"]]) rec_state = torch.from_numpy(np.stack(rec_state)).reshape(-1,7).float() rec_space = self.hg.state_to_space(rec_state) rec_im = self.hg.state_to_im(rec_state) else: # start from image rec_im = np.array(rec[["fbrx","fbry","fblx", "fbly", "bbrx", "bbry", "bblx", "bbly", "ftrx", "ftry", "ftlx", "ftly", "btrx", "btry", "btlx", "btly"]]) rec_im = torch.from_numpy(np.stack(rec_im)).reshape(-1,8,2) # two pass estimate of object heights heights = self.hg.guess_heights(rec_classes) rec_state = self.hg.im_to_state(rec_im,heights = heights) repro_boxes = self.hg.state_to_im(rec_state) refined_heights = self.hg.height_from_template(repro_boxes,heights,rec_im) # get other formulations for boxes rec_state = self.hg.im_to_state(rec_im,heights = refined_heights) rec_space = self.hg.state_to_space(rec_state) rec_velocities = rec["speed"].values rec_velocities = torch.tensor(rec_velocities).float() rec_state = torch.cat((rec_state,rec_velocities.unsqueeze(1)),dim = 1) # compute matches based on space location ious first = gt_space.clone() # xmin,ymin,xmax,ymax boxes_new = torch.zeros([first.shape[0],4]) boxes_new[:,0] = torch.min(first[:,0:4,0],dim = 1)[0] boxes_new[:,2] = torch.max(first[:,0:4,0],dim = 1)[0] boxes_new[:,1] = torch.min(first[:,0:4,1],dim = 1)[0] boxes_new[:,3] = torch.max(first[:,0:4,1],dim = 1)[0] first = boxes_new second = rec_space.clone() boxes_new = torch.zeros([second.shape[0],4]) boxes_new[:,0] = torch.min(second[:,0:4,0],dim = 1)[0] boxes_new[:,2] = torch.max(second[:,0:4,0],dim = 1)[0] boxes_new[:,1] = torch.min(second[:,0:4,1],dim = 1)[0] boxes_new[:,3] = torch.max(second[:,0:4,1],dim = 1)[0] second = boxes_new # find distances between first and second ious = np.zeros([len(first),len(second)]) for i in range(0,len(first)): for j in range(0,len(second)): ious[i,j] = self.iou(first[i],second[j]) # get matches and keep those above threshold a, b = linear_sum_assignment(ious,maximize = True) # a,b are row,col: matched idx pair of the matrix ious matches = [] gt_im_matched_idxs = [] rec_im_matched_idxs = [] for i in range(len(a)): iou = ious[a[i],b[i]] self.m["pre_thresh_IOU"].append(iou) if iou >= self.match_iou: matches.append([a[i],b[i]]) gt_im_matched_idxs.append(a[i]) rec_im_matched_idxs.append(b[i]) self.m["match_IOU"].append(iou) # find relative distance, overlaps (crashes) and spacing in first and second d = len(first) dx,dy = torch.ones((d,d))*(999), torch.ones((d,d))*(-1) # upper triangle matrices for i in range(0,d): for j in range(i+1,d): dx[i][j] = abs(first[i][0]-first[j][0]) dy[i][j] = abs(first[i][1]-first[j][1]) if self.iou(first[i],first[j]) > 0: self.m["overlap_gt"] += 1 # extract leader and spacing information dy[dy<0] = float('nan') for i in range(d): js = torch.where((dy[i]>=0)&(dy[i]<0.3)) # all potential leaders of i if len(dx[i][js])> 0: # j = torch.argmin(dx[i][js]) # immediate leader self.m["space_gap_gt"].append(min(dx[i][js])) d = len(second) dx,dy = torch.ones((d,d))*(999), torch.ones((d,d))*(-1) # upper triangle matrices for i in range(0,d): for j in range(i+1,d): dx[i][j] = abs(second[i][0]-second[j][0]) dy[i][j] = abs(second[i][1]-second[j][1]) if self.iou(second[i],second[j]) > 0: self.m["overlap_rec"] += 1 self.m["overlap_rec_ids"].add((rec_ids[i],rec_ids[j])) # extract leader and spacing information dy[dy<0] = float('nan') for i in range(d): js = torch.where((dy[i]>=0)&(dy[i]<0.3)) # all potential leaders of i if len(dx[i][js])> 0: # j = torch.argmin(dx[i][js]) # immediate leader self.m["space_gap_rec"].append(min(dx[i][js])) # plot if True and self.sequence: # gt unmatched_idxs = [] for i in range(len(gt_im)): if i not in gt_im_matched_idxs: unmatched_idxs.append(i) gt_im_unmatched = gt_im[unmatched_idxs] # preds unmatched_idxs = [] for i in range(len(rec_im)): if i not in rec_im_matched_idxs: unmatched_idxs.append(i) rec_im_unmatched = rec_im[unmatched_idxs] rec_im_matched = rec_im[rec_im_matched_idxs] gt_im_matched = gt_im[gt_im_matched_idxs] self.hg.plot_boxes(im,rec_im_matched, color = (255,0,0)) # blue self.hg.plot_boxes(im,gt_im_matched,color = (0,255,0)) # green self.hg.plot_boxes(im, gt_im_unmatched,color = (0,0,255),thickness =2) # red, FN self.hg.plot_boxes(im, rec_im_unmatched,color = (0,100,255),thickness =2) # orange, FP cv2.imshow("frame",im) key = cv2.waitKey(1) if key == ord("p"): cv2.waitKey(0) if key == ord("q"): self.cap.release() cv2.destroyAllWindows() return # store the ID associated with each ground truth object for match in matches: gt_id = gt_ids[match[0]] rec_id = rec_ids[match[1]] if gt_id != rec_id and (gt_id, rec_id) not in self.m['Changed ID pair']: self.m['Changed ID pair'].append((gt_id, rec_id)) try: if rec_id != self.m["ids"][gt_id][-1]: self.m["ids"][gt_id].append(rec_id) except KeyError: self.m["ids"][gt_id] = [rec_id] try: if gt_id != self.m["ids_rec"][rec_id][-1]: self.m["ids_rec"][rec_id].append(gt_id) except KeyError: self.m["ids_rec"][rec_id] = [gt_id] if rec_id not in self.m["rec_ids"]: self.m["rec_ids"].append(rec_id) if gt_id not in self.m["gt_ids"]: self.m["gt_ids"].append(gt_id) # of the pred objects not in b, dont count as FP those that fall outside of frame for i in range(len(rec_ids)): if i not in b: # no match obj = rec_im[i] if obj[0,0] < 0 or obj[2,0] < 0 or obj[0,0] > 1920 or obj[2,0] > 1920: self.m["FP edge-case"] += 1 continue if obj[0,1] < 0 or obj[2,1] < 0 or obj[0,1] > 1080 or obj[2,1] > 1080: self.m["FP edge-case"] += 1 self.m["TP"] += len(matches) invalid_rec = torch.sum(torch.sum(torch.isnan(rec_space), dim=1),dim=1)>0 invalid_gt = torch.sum(torch.sum(torch.isnan(gt_space), dim=1),dim=1)>0 self.m["FP"] += max(0,(len(rec_space)-sum(invalid_rec) - len(matches))) self.m["FN"] += max(0,(len(gt_space)-sum(invalid_gt) - len(matches))) # self.m["FP @ 0.2"] += max(0,len(rec_space)-sum(invalid_rec) - len(a)) # self.m["FN @ 0.2"] += max(0,len(gt_space)-sum(invalid_gt) - len(a)) # if self.recmode == "state": for match in matches: # for each match, store error in L,W,H,x,y,velocity state_err = torch.clamp(torch.abs(rec_state[match[1]] - gt_state[match[0]]),0,500) self.m["state_err"].append(state_err) # for each match, store absolute 3D bbox pixel error for top and bottom bot_err = torch.clamp(torch.mean(torch.sqrt(torch.sum(torch.pow(rec_im[match[1],0:4,:] - gt_im[match[0],0:4,:],2),dim = 1))),0,500) top_err = torch.clamp(torch.mean(torch.sqrt(torch.sum(torch.pow(rec_im[match[1],4:8,:] - gt_im[match[0],4:8,:],2),dim = 1))),0,500) self.m["im_bot_err"].append(bot_err) self.m["im_top_err"].append(top_err) if self.sequence: self.cap.release() cv2.destroyAllWindows() # at the end: metrics = {} metrics["TP"] = self.m["TP"] metrics["FP"] = self.m["FP"] metrics["FN"] = self.m["FN"] # metrics["FP @ 0.2"] = self.m["FP @ 0.2"] # metrics["FN @ 0.2"] = self.m["FN @ 0.2"] # metrics["iou_threshold"] = self.match_iou metrics["True unique objects"] = len(self.m["gt_ids"]) metrics["recicted unique objects"] = len(self.m["rec_ids"]) metrics["FP edge-case"] = self.m["FP edge-case"] # Compute detection recall, detection precision, detection False alarm rate metrics["Recall"] = self.m["TP"]/(self.m["TP"]+self.m["FN"]) metrics["Precision"] = self.m["TP"]/(self.m["TP"]+self.m["FP"]) metrics["False Alarm Rate"] = self.m["FP"]/self.m["TP"] # Compute fragmentations - # of IDs assocated with each GT metrics["Fragmentations"] = sum([len(self.m["ids"][key])-1 for key in self.m["ids"]]) metrics["Fragments"] = [self.m["ids"][key] for key in self.m["ids"] if len(self.m["ids"][key])>1] metrics["Matched IDs"] = self.m["ids"] metrics["Matched IDs rec"] = self.m["ids_rec"] # Count ID switches - any time a rec ID appears in two GT object sets count = 0 switched_ids = [] for rec_id in self.m["rec_ids"]: rec_id_count = 0 for gt_id in self.m["ids"]: if rec_id in self.m["ids"][gt_id]: rec_id_count += 1 if rec_id_count > 1: switched_ids.append(rec_id) count += (rec_id_count -1) # penalize for more than one gt being matched to the same rec_id metrics["ID switches"] = (count, switched_ids) # metrics["Changed ID pair"] = self.m["Changed ID pair"] # Compute MOTA metrics["MOTA"] = 1 - (self.m["FN"] + metrics["ID switches"][0] + self.m["FP"] + metrics["Fragmentations"])/(self.m["TP"]) metrics["MOTA edge-case"] = 1 - (self.m["FN"] + metrics["ID switches"][0] + self.m["FP"]- self.m["FP edge-case"]+ metrics["Fragmentations"])/(self.m["TP"]) # metrics["MOTA @ 0.2"] = 1 - (self.m["FN @ 0.2"] + metrics["ID switches"][0] + self.m["FP @ 0.2"])/(self.m["TP"]) ious = np.array(self.m["match_IOU"]) iou_mean_stddev = np.mean(ious),np.std(ious) pre_ious = np.array(self.m["pre_thresh_IOU"]) pre_iou_mean_stddev = np.mean(pre_ious),np.std(pre_ious) spacing_gt =
np.array(self.m["space_gap_gt"])
numpy.array