prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from astropy.io import fits import pandas as pd import numpy as np from lightkurve import KeplerLightCurve def find_flares(flux, error, N1=4, N2=4, N3=3): ''' The algorithm for local changes due to flares defined by <NAME> et al. (2015), Eqn. 3a-d http://arxiv.org/abs/1510.01005 Note: these equations were originally in magnitude units, i.e. smaller values are increases in brightness. The signs have been changed, but coefficients have not been adjusted to change from log(flux) to flux. Parameters: ---------- flux : numpy array data to search over error : numpy array errors corresponding to data. N1 : int, optional Coefficient from original paper (Default is 3 in paper, 4 here) How many times above the stddev is required. N2 : int, optional Coefficient from original paper (Default is 1 in paper, 4 here) How many times above the stddev and uncertainty is required N3 : int, optional Coefficient from original paper (Default is 3) The number of consecutive points required to flag as a flare Return: ------------ isflare : numpy array of booleans datapoints are flagged with 1 if they belong to a flare candidate ''' median = np.nanmedian(flux) sigma = np.nanstd(flux) T0 = flux - median # excursion should be positive #"N0" T1 = np.abs(flux - median) / sigma #N1 T2 = np.abs(flux - median - error) / sigma #N2 # apply thresholds N0-N2: pass_thresholds = np.where((T0 > 0) & (T1 > N1) & (T2 > N2)) #array of indices where thresholds are exceeded: is_pass_thresholds = np.zeros_like(flux) is_pass_thresholds[pass_thresholds] = 1 # Need to find cumulative number of points that pass_thresholds # Counted in reverse! # Examples reverse_counts = [0 0 0 3 2 1 0 0 1 0 4 3 2 1 0 0 0 1 0 2 1 0] # isflare = [0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0] reverse_counts = np.zeros_like(flux, dtype='int') for k in range(2, len(flux)): reverse_counts[-k] = (is_pass_thresholds[-k] * (reverse_counts[-(k-1)] + is_pass_thresholds[-k])) # find flare start where values in reverse_counts switch from 0 to >=N3 istart_i = np.where((reverse_counts[1:] >= N3) & (reverse_counts[:-1] - reverse_counts[1:] < 0))[0] + 1 # use the value of reverse_counts to determine how many points away stop is istop_i = istart_i + (reverse_counts[istart_i]) isflare = np.zeros_like(flux, dtype='int') for (l,r) in list(zip(istart_i,istop_i)): isflare[l:r+1] = 1 return isflare def wrapper(lc, minsep=3): ''' Main wrapper to obtain and process a light curve. Parameters: ------------- lc : light curve FlareLightCurve object minsep : 1 or int minimum distance between two candidate start times in datapoints Return: ---------- numpy arrays of start and stop cadence numbers of flare candidates ''' #find continuous observing periods lc.find_gaps() istart = np.array([], dtype='int') istop =
np.array([], dtype='int')
numpy.array
""" Alternative method for estimating the canopy inertial properties. Very ugly and hacky, but still useful for checking the much improved mesh-based method. """ import numpy as np from scipy.integrate import simps import pfh.glidersim as gsim # Yanked from from `AirfoilGeometry` def airfoil_mass_properties(airfoil, r_upper=0, r_lower=0, N=200): """ Calculate the inertial properties for the curves and planar area. These unitless magnitudes, centroids, and inertia matrices can be scaled by the physical units of the target application in order to calculate the upper and lower surface areas, internal volume, and inertia matrix of a 3D wing. This procedure treats the 2D geometry as perfectly flat 3D objects, with a new `z` axis added according to the right-hand rule. See "Notes" for more details. Parameters ---------- r_upper, r_lower : float The starting coordinates of the upper and lower surfaces. Requires that `-1 <= r_lower <= r_upper, 1`. N : integer The number of chordwise sample points. Used to create the vertical strips for calculating the area, and for creating line segments of the parametric curves for the upper and lower surfaces. Returns ------- dictionary upper_length : float The total length of the upper surface curve upper_centroid : array of float, shape (2,) The centroid of the upper surface curve as (x, y) in acs upper_inertia : array of float, shape (3,3) The inertia matrix of the upper surface curve area : float The area of the airfoil area_centroid : array of float, shape (2,) The centroid of the area as (x, y) in acs area_inertia : array of float, shape (3,3) The inertia matrix of the area lower_length : float The total length of the lower surface curve lower_centroid : array of float, shape (2,) The centroid of the lower surface curve as (x, y) in acs lower_inertia : array of float, shape (3,3) The inertia matrix of the lower surface curve These are unitless quantities. The inertia matrices for each component are for rotations about that components' centroid. Notes ----- In traditional airfoil definitions, the positive x-axis lies along the chord, directed from the leading edge to the trailing edge, and the positive y-axis points towards the upper surface. Here, a z-axis that satisfies the right hand rule is added for the purpose of creating a well-defined inertia matrix. Let this set of axes be called the "airfoil coordinate system" (acs). Translating these acs coordinates into the front-right-down (frd) coordinate system requires reordering and reversing the direction of vector components. To convert acs -> frd: [x, y, z] -> [-x, -z, -y] In terms of code, to convert from acs to frd coordinates: >>> C = np.array([[-1, 0, 0], [0, 0, -1], [0, -1, 0]]) >>> centroid_frd = C @ [*centroid_acs, 0] # Augment with z_acs=0 >>> inertia_frd = C @ inertia_acs @ C """ if r_lower < -1: raise ValueError("Required: r_lower >= -1") if r_lower > r_upper: raise ValueError("Required: r_lower <= r_upper") if r_upper > 1: raise ValueError("Required: r_upper <= 1") # ------------------------------------------------------------------- # 1. Area calculations r = (1 - np.cos(np.linspace(0, np.pi, N))) / 2 # `0 <= r <= 1` top = airfoil.profile_curve(r).T # Top half (above r = 0) bottom = airfoil.profile_curve(-r).T # Bottom half (below r = 0) Tx, Ty = top[0], top[1] Bx, By = bottom[0], bottom[1] area = simps(Ty, Tx) - simps(By, Bx) xbar = (simps(Tx * Ty, Tx) - simps(Bx * By, Bx)) / area ybar = (simps(Ty**2 / 2, Tx) + simps(By**2 / 2, Bx)) / area area_centroid = np.array([xbar, ybar]) # Area moments of inertia about the origin # FIXME: verify, especially `Ixy_o`. Check airfoils where some `By > 0` Ixx_o = 1 / 3 * (simps(Ty**3, Tx) - simps(By**3, Bx)) Iyy_o = simps(Tx**2 * Ty, Tx) - simps(Bx**2 * By, Bx) Ixy_o = 1 / 2 * (simps(Tx * Ty**2, Tx) - simps(Bx * By**2, Bx)) # Use the parallel axis theorem to find the inertias about the centroid Ixx = Ixx_o - area * ybar**2 Iyy = Iyy_o - area * xbar**2 Ixy = Ixy_o - area * xbar * ybar Izz = Ixx + Iyy # Perpendicular axis theorem # Inertia matrix for the area about the origin # fmt: off area_inertia = np.array([ [ Ixx, -Ixy, 0], # noqa: E201, E241 [-Ixy, Iyy, 0], # noqa: E201, E241 [ 0, 0, Izz], # noqa: E201, E241 ]) # fmt: on # ------------------------------------------------------------------- # 2. Surface line calculations su = np.linspace(r_upper, 1, N) sl = np.linspace(r_lower, -1, N) upper = airfoil.profile_curve(su).T lower = airfoil.profile_curve(sl).T # Line segment lengths and midpoints norm_U = np.linalg.norm(np.diff(upper), axis=0) # Segment lengths norm_L = np.linalg.norm(np.diff(lower), axis=0) mid_U = (upper[:, :-1] + upper[:, 1:]) / 2 # Segment midpoints mid_L = (lower[:, :-1] + lower[:, 1:]) / 2 # Total line lengths and centroids upper_length = norm_U.sum() lower_length = norm_L.sum() upper_centroid = np.einsum("ij,j->i", mid_U, norm_U) / upper_length lower_centroid = np.einsum("ij,j->i", mid_L, norm_L) / lower_length # Surface line moments of inertia about their centroids # FIXME: not proper line integrals: treats segments as point masses cmUx, cmUy = upper_centroid mid_Ux, mid_Uy = mid_U[0], mid_U[1] Ixx_U = np.sum(mid_Uy**2 * norm_U) - upper_length * cmUy**2 Iyy_U = np.sum(mid_Ux**2 * norm_U) - upper_length * cmUx**2 Ixy_U = np.sum(mid_Ux * mid_Uy * norm_U) - upper_length * cmUx * cmUy Izz_U = Ixx_U + Iyy_U cmLx, cmLy = lower_centroid mid_Lx, mid_Ly = mid_L[0], mid_L[1] Ixx_L = np.sum(mid_Ly**2 * norm_L) - lower_length * cmLy**2 Iyy_L =
np.sum(mid_Lx**2 * norm_L)
numpy.sum
import numpy as np from rnmu.pme.proj_geom_utils import keep_finite, remove_repeated, normalize_2d class Fundamental(object): def __init__(self, data=None, weights=None): self.F = None if data is not None: self.fit(data, weights=weights) @property def min_sample_size(self): return 8 def fit(self, data, weights=None): mask1 = keep_finite(data) mask2 = remove_repeated(data) mask = np.logical_and(mask1, mask2) data = data[mask, :] if weights is not None: weights = weights[mask] if len(data) < self.min_sample_size: self.F = None return if (weights is not None and np.count_nonzero(weights) < self.min_sample_size): self.F = None return if data.shape[1] != 6: raise ValueError('Points must be 6D (2 x 3D)') pts1, trans1 = normalize_2d(data[:, :3], weights=weights) pts2, trans2 = normalize_2d(data[:, 3:], weights=weights) mat = np.zeros((9, 9)) for i in range(np.count_nonzero(mask)): row = np.hstack([pts1[i, :] * pts2[i, 0], pts1[i, :] * pts2[i, 1], pts1[i, :]]) if weights is not None: row *= weights[i] mat += np.outer(row, row) try: _, v = np.linalg.eigh(mat) u, s, vt = np.linalg.svd(v[:, 0].reshape((3, 3))) s[2] = 0 self.F = u.dot(np.diag(s)).dot(vt) self.F = trans1.dot(self.F.T.dot(trans2.T)) self.F /= self.F[2, 2] except np.linalg.LinAlgError: self.F = None def distances(self, data): if self.F is None: return np.ones((len(data),)) * np.inf pts1 = data[:, :3] pts2 = data[:, 3:] epi_lines1 = np.dot(pts1, self.F) epi_lines1 /=
np.linalg.norm(epi_lines1[:, :2], axis=1)
numpy.linalg.norm
#!/usr/bin/env python # -*- coding: utf-8 -*- # # sunpos.py is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors/Copyright(2012-2018): # -<NAME> (<EMAIL>) # -<NAME> (<EMAIL>) # -<NAME> (<EMAIL>) ''' sunpos.py is a library for calculation of the sun position, based on an algorithm from the Astronomical Alamanac. This algorithm was compared in Michalsky (1988a,1988b) with other popular approximate formulae and was found to be the most accurate. It is thus recommended by the WMO Guide to Meteorological Instruments and Methods of Observations for practical application. References ---------- .. [1] United States Naval Observatory, 1993: The Astronomical Almanac, Nautical Almanac Office, Washington DC. .. [2] <NAME>., 1988a: The Astronomical Almanac’s algorithm for approximate solar position (1950–2050). .. [3] <NAME>., 1988b: Errata. The astronomical almanac’s algorithm for approximate solar position (1950–2050). .. [4] World Meteorological Organization, 2014: Guide to Meteorological Instruments and Methods of Observation. Geneva, Switzerland, World Meteorological Organization, 1128p. (WMO-No.8, 2014). ''' import numpy as np from numpy import sin, cos from numpy import arcsin as asin, arccos as acos, arctan2 as atan2 from numpy import deg2rad, rad2deg import datetime, pytz #: Default epoch used for sun position calculation EPOCH_J2000_0 = np.datetime64("2000-01-01T12:00:00") #: UNIX standard epoch EPOCH_UNIX = np.datetime64("1970-01-01T00:00:00") def sincos(x): ''' Evaluate sin/cos simultaneously. Parameters ---------- x: float or ndarray of float Angle in radians. Returns ------- sin : float or ndarray of float the sine of x cos : float or ndarray of float the cosine of x ''' return sin(x),cos(x) def datetime2julday(dt, epoch=EPOCH_J2000_0): ''' Convert datetime to Julian day number. Parameters --------- Returns ------- jd: double or ndarray of double The ''' jd = (dt-epoch)/np.timedelta64(1,"D") return jd def julday2datetime(jd,epoch=EPOCH_J2000_0): ''' Convert Julian day to datetime. Parameters ---------- jd: double or ndarray of double: The Julian day, relative to the epoch epoch: datetime64 The epoch used as reference Returns ------- dt: datetime64 or ndarray of datetime64 The datetime64 ''' return epoch + np.timedelta64(1,'D')*jd def julday2gmst(jd): ''' Convert Julian day to Greenwich mean sideral time. Parameters ---------- jd: double or ndarray of double Returns ------- gmst : double or ndarray of double The Greenwich mean sideral time [in hours]. Examples -------- >>> import numpy as np, solpos >>> dt = np.datetime64('2012-07-01T12:00') >>> jd = sunpos.datetime2julday(dt) >>> gmst = sunpos.julday2gmst(jd) ''' hh = np.remainder(jd-0.5,1.0)*24.0 gmst = 6.697375 + 0.0657098242 *jd + hh return np.remainder(gmst,24.0) def mean_longitude(jd): ''' Mean solar longitude. Parameters ---------- jd(double): the Julian day. Returns ------- mnlon: double or ndarray The mean solar longitude (in degrees). ''' mnlon = 280.460 + 0.9856474*jd; return np.remainder(mnlon,360.0) def mean_anomaly(jd): ''' Mean solar anomaly. Args: jd(double): the Julian day. Returns: double: the mean solar anomaly [in degrees]. ''' mnanom = 357.528 + 0.9856003*jd return np.remainder(mnanom,360.0) def ecliptic_longitude(jd): ''' Calculate the ecliptic longitude of the sun. Parameters ---------- jd : double or ndarray The Julian day. Returns ------ eclon : double or ndarray The ecliptic longitude [in degrees]. ''' eclon = 280.460 + 0.9856474*jd mnanom = 357.528 + 0.9856003*jd mnanom = np.deg2rad(mnanom) eclon += 1.915*sin(mnanom)+ 0.020*sin(2.0*mnanom) return np.remainder(eclon,360.0) def oblq_ecliptic(jd): ''' Get obliquity of ecliptic. Parameters ---------- jd : double or ndarray The Julian day. Returns ------- ep: double or ndarray The obliquity of ecliptic [in degrees]. ''' oblqec = 23.439 - 0.0000004*jd; return oblqec def celestial_coords(jd): ''' Get celestial coordinates of sun. Parameters ---------- jd : double or ndarray The Julian day. Returns ------- (dec,ra): tuple of doubles or ndarrays The declination/right ascension of the sun [in radians]. ''' # get ecliptic longitude and obliquity of ecliptic # and convert to radians eclon = deg2rad(ecliptic_longitude(jd)) oblqec = deg2rad(oblq_ecliptic(jd)) # get trig. functions (sin_eclon,cos_eclon) = sincos(eclon) (sin_oblqec,cos_oblqec) = sincos(oblqec) # Calculate declination dec = asin(sin_oblqec*sin_eclon) # Calculate right ascension num = cos_oblqec*sin_eclon den = cos_eclon ra = atan2(num,den) ra = np.remainder(ra,2.0*np.pi) return (dec,ra) def zenith_azimuth(jd, lat, lon): ''' Get solar zenith/azimuth angle for a specific geographic location. Parameters ---------- jd: double or array_like The Julian day lat: double or array_like The latitude [in degrees] lon: double or array_like The longitude [in degrees] Returns ------- tuple of zenith/azimuth angle [in degrees]. ''' # Get celestial coordinates and # Greenwich mean sideral time (dec,ra) = celestial_coords(jd) (sin_dec,cos_dec) = sincos(dec) gmst = julday2gmst(jd) # Calculate Greenwich hour angle, trig. funcs. gha = deg2rad((gmst*15.0))-ra (sin_gha,cos_gha) = sincos(gha) # Calc. trig functions of lat/lon (sin_lat,cos_lat) = sincos(deg2rad(lat)) (sin_lon,cos_lon) = sincos(deg2rad(lon)) # Calculate trig. functions of hour angle sin_ha = sin_gha*cos_lon + cos_gha*sin_lon cos_ha = cos_gha*cos_lon - sin_gha*sin_lon # Calculate cos(sun zenith) mu0 = sin_dec*sin_lat + cos_dec*cos_lat*cos_ha # Calculate azimuth #azi = asin(-cos_dec*sin_ha/np.sqrt(1.0-mu0**2)) #if np.isscalar(azi): # if sin_dec > mu0*sin_lat: # if azi<0.0: # azi += 2.0*pi # else: # azi = pi-azi #else: # i = sin_dec<=mu0*sin_lat # azi[i]=pi-azi[i] # i = np.logical_and(azi<0.0,np.logical_not(i)) # azi[i]+=2.0*pi sin_azi = -cos_dec*sin_ha ## skip divide by cos_el cos_azi = (sin_dec-mu0*sin_lat)/cos_lat azi = atan2(sin_azi,cos_azi) azi = np.remainder(azi,2.0*np.pi) return (np.rad2deg(acos(mu0)),np.rad2deg(azi)) def earth_sun_distance(jd): ''' Calculate the sun-earth distance Args: jd(double): the Julian day. Returns: double the Earth-sun distance [in AE]. ''' g = deg2rad(mean_anomaly(jd)) esd = 1.00014-0.01671*cos(g)+0.00014*cos(2.0*g) return esd def hour_angle(jd,lon): ''' Calculate the sun hour angle. Args: jd(double): the Julian day. Returns: double the hour angle [in degree]. ''' gmst = julday2gmst(jd) (dec,ra) = celestial_coords(jd) ha = np.remainder(gmst*15.0+lon-rad2deg(ra),360.0)-180.0 return ha def noon(jd,lon): ''' Calculate the time of local noon. Args: jd(double): date given as Julian day. lon(double): the longitude of the location [in degrees]. Returns: double: the date and time of local noon. ''' # convergence limit, gives msec resolution eps = 1.0e-8 # first guess based on longitude noon = np.double(np.round(jd)) noon = noon-lon/360.0 # iterate noon till convergence for i in np.arange(0,10): prev = noon ha = hour_angle(noon,lon) noon = noon-ha/360.0 if np.fabs(prev-noon)<eps: break return noon def sunrise(jd,lat,lon,mu0=np.cos((90.0+34.0/60.0)*np.pi/180.0)): ''' Calculate the time of sunrise. Args: jd(double): date given as Julian day. lat(double): the latitude of the location [in degrees]. lon(double): the longitude of the location [in degrees]. Returns: double: the date and time of sunrise. ''' # get noon time jd_noon = noon(jd,lon) # get min/max mu0 (sin_lat,cos_lat) = sincos(np.pi/180.0*lat) (dec,ra_noon) = celestial_coords(jd_noon) (sin_dec,cos_dec) = sincos(dec) # Check if we do have a sunset ... mu0_min = sin_dec*sin_lat-cos_dec*cos_lat mu0_max = sin_dec*sin_lat+cos_dec*cos_lat if mu0_max<mu0 or mu0_min>mu0: return None # Iteratively adjust hour angle at sunset/sunset time dra = 0.0 for i in np.arange(0,5): # Calculate hour angle at sunset cos_ha = (mu0-(sin_dec*sin_lat))/(cos_dec*cos_lat) ha = -np.arccos(cos_ha)*12.0/np.pi # relation: dha = (1.0+0.0657098242/24.0)*delta - dra delta = (ha+dra)/(1.0+0.0657098242/24.0) (dec,ra) = celestial_coords(jd_noon+delta/24.0) (sin_dec,cos_dec) = sincos(dec) dra = (ra-ra_noon)*12.0/np.pi return jd_noon+delta/24.0 def sunset(jd,lat,lon,mu0=np.cos((90.0+34.0/60.0)*np.pi/180.0)): ''' Calculate the time of sunset. Args: jd(double): the date given as Julian day. lat(double): the latitude of the location [in degrees]. lon(double): the longitude of the location [in degrees]. Returns: double: the date and time of sunset. ''' # get noon time jd_noon = noon(jd,lon) # get min/max mu0 (sin_lat,cos_lat) = sincos(np.pi/180.0*lat) (dec,ra_noon) = celestial_coords(jd_noon) (sin_dec,cos_dec) = sincos(dec) # Check if we do have a sunset ... mu0_min = sin_dec*sin_lat-cos_dec*cos_lat mu0_max = sin_dec*sin_lat+cos_dec*cos_lat if mu0_max<mu0 or mu0_min>mu0: return None # Iteratively adjust hour angle at sunset/sunset time dra = 0.0 for i in
np.arange(0,5)
numpy.arange
import cv2 import sys import math import numpy as np ROI_THRESHOLD=[10, 100, 200] def flatten(img): r, g, b = cv2.split(img) r_filter = (r == np.maximum(np.maximum(r, g), b)) & (r >= 120) & (g < 150) & (b < 150) g_filter = (g == np.maximum(np.maximum(r, g), b)) & (g >= 120) & (r < 150) & (b < 150) b_filter = (b == np.maximum(np.maximum(r, g), b)) & (b >= 120) & (r < 150) & (g < 150) y_filter = ((r >= 128) & (g >= 128) & (b < 100)) r[y_filter], g[y_filter] = 255, 255 b[np.invert(y_filter)] = 0 b[b_filter], b[np.invert(b_filter)] = 255, 0 r[r_filter], r[np.invert(r_filter)] = 255, 0 g[g_filter], g[np.invert(g_filter)] = 255, 0 flattened = cv2.merge((r, g, b)) return flattened def _mask(img): ga = cv2.GaussianBlur(img, (5,5), 0) rgb = flatten(img) b, g, r = cv2.split(rgb) mask = cv2.threshold(r, 200, 255, cv2.THRESH_BINARY)[1] blur = cv2.blur(mask, (5,5)) mask = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY)[1] # cv2.imshow("mask", mask) return mask def r_mask(img): color_low = np.array([10, 10, 120]) color_high =np.array([70, 60, 200]) ga = cv2.GaussianBlur(img, (5,5), 0) mask = cv2.inRange(ga, color_low, color_high) blur = cv2.blur(mask, (5,5)) mask = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY)[1] return mask def draw_box(img, locs): # print("draw box locs:", locs) max_x = locs[0][0] max_y = locs[0][1] min_x = locs[1][0] min_y = locs[1][1] if max_x < 0 or min_x < 0 or max_y < 0 or min_y < 0: return img = cv2.rectangle(img, (max_x, max_y), (min_x, min_y), (0, 255, 0), 1) cv2.imshow("box", img) # cv2.waitKey(1) def get_rectangle_locs(contour): h, w, l = contour.shape locs = contour.reshape((h, l)) x_locs = locs[0:h, 0] y_locs = locs[0:h, 1] max_x = np.max(x_locs) max_y = np.max(y_locs) min_x = np.min(x_locs) min_y = np.min(y_locs) return np.array([[max_x, max_y], [min_x, min_y]]) def locs_distance(loc1, loc2): d = loc1 - loc2 d = d * d d = math.sqrt(np.sum(d)) return d def locs_filter(mask, locs): h, w = mask.shape[:2] max_x = locs[0] max_y = locs[1] min_x = locs[2] min_y = locs[3] xd = locs[0] - locs[2] yd = locs[1] - locs[3] # print("height/3:", h/3, "weight/3:", h/3) # print("xd:", xd, "yd:", yd) if xd > h*2/3 or xd > w/3 or xd < 6 or yd < 6: return [-1, -1, -1, -1] ratio = 0.2 xd = max_x - min_x yd = max_y - min_y max_x = min(max_x + int(ratio*xd), h) if min_x - int(ratio*xd) > 0: min_x = min_x - int(ratio*xd) else: min_x = 0 max_y = min(max_y + int(ratio*yd), w) if min_y - int(ratio*yd) > 0: min_y = min_y - int(ratio*yd) else: min_y = 0 return locs def detect(img, sen = 0): mask = _mask(img) binary, contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) sum = 0 if len(contours) < 1: return False, mask for i in range(len(contours)): sum += cv2.contourArea(contours[i]) nums =
np.sum(mask != 0)
numpy.sum
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.2.3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # Lucas Asset Pricing Model # # ## A notebook by [<NAME>](http://www.econ2.jhu.edu/people/ccarroll/) and [<NAME>](https://mv77.github.io/) # ### Inspired by its [Quantecon counterpart](https://julia.quantecon.org/multi_agent_models/lucas_model.html) # # This notebook presents simple computational tools to solve Lucas' asset-pricing model when the logarithm of the asset's dividend follows an autoregressive process of order 1, # # \begin{equation*} # \ln d_{t+1} = \alpha \ln d_t + \varepsilon_{t+1}, \qquad \varepsilon \sim \mathcal{N}(\mu, \sigma). # \end{equation*} # # A presentation of this model can be found in [Christopher D. Carroll's lecture notes](http://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/AssetPricing/LucasAssetPrice/). # # Those notes [use the Bellman equation to derive](http://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/AssetPricing/LucasAssetPrice/#pofc) a relationship between the price of the asset in the current period $t$ and the next period $t+1$: # # \begin{equation*} # P_{t} = # \overbrace{\left(\frac{1}{1+\vartheta}\right)} # ^{\beta}\mathbb{E}_{t}\left[ \frac{u^{\prime}(d_{t+1})}{u^{\prime}(d_t)} (P_{t+1} + d_{t+1}) \right] # \end{equation*} # # The equilibrium pricing equation is a relationship between the price and the dividend (a "pricing kernel") $P^{*}(d)$ such that, if everyone _believes_ that to be the pricing kernel, everyone's Euler equation will be satisfied: # # \begin{equation*} # P^*(d_t) = \left(\frac{1}{1+\vartheta}\right)\mathbb{E}_{t}\left[ \frac{u^{\prime}(d_{t+1})}{u^{\prime}(d_t)} (P^*(d_{t+1}) + d_{t+1}) \right] # \end{equation*} # # As noted in the handout, there are some special circumstances in which it is possible to solve for $P^{*}$ analytically: # # | Shock Process | CRRA | Solution for Pricing Kernel | # | --- | --- | --- | # | bounded | 1 (log) | $P^*(d) = \frac{d}{\vartheta}$ | # | lognormal, mean 1 | $\rho$ | $P^*(d) = d_t^\rho\ e^{\rho(\rho-1)\sigma^2/2}\frac{\beta}{1-\beta}$ | # # However, under less special circumstances, the only way to obtain the pricing function $P^{*}$ is by solving for it numerically, as outlined below. # %% [markdown] # # Finding the equilibrium pricing function. # # We know that the equilibrium pricing function must satisfy the equation above. Let's define an operator that allows us to evaluate whether any candidate pricing function satisfies this requirement. # # Let $T$ be an operator which takes as argument a function and returns another function (these are usually called [functionals or higher-order functions](https://en.wikipedia.org/wiki/Functional_(mathematics))). For some function $f$, denote with $T[f]$ the function that results from applying $T$ to $f$. Then, for any real number $x$, $T[f](x)$ will be the real number that one obtains when the function $T[f]$ is given $x$ as an input. # # We define our particular operator as follows. For any function $g:\mathbb{R}\rightarrow\mathbb{R}$, $T[g]$ is obtained as # # \begin{equation*} # \forall~d_t \in \mathbb{R},\,\,\,\, T[g](d_t) := \beta~\mathbb{E}_{t}\left[ \frac{u^{\prime}(d_{t+1})}{u^{\prime}(d_t)} (f(d_{t+1}) + d_{t+1}) \right]. # \end{equation*} # # # We can use $T$ to re-express our pricing equation. If $P^*(\bullet)$ is our equilibrium pricing funtion, it must satisfy # # \begin{equation*} # \forall~d_t,\,\,\,\,P^*(d_t) = \beta\mathbb{E}_{t}\left[ \frac{u^{\prime}(d_{t+1})}{u^{\prime}(d_t)} (P^*(d_{t+1}) + d_{t+1}) \right] = T[P^*](d_t). # \end{equation*} # or, expressed differently, # \begin{equation*} # P^* = T[P^*]. # \end{equation*} # # Our equilibrium pricing function is therefore a *fixed point* of the operator $T$. # # It turns out that $T$ is a [contraction mapping](https://en.wikipedia.org/wiki/Contraction_mapping). This is useful because it implies, through [Banach's fixed-point theorem](https://en.wikipedia.org/wiki/Contraction_mapping), that: # - $T$ has **exactly one** fixed point. # - Starting from an arbitrary function $f$, the sequence $\{T^n[f]\}_{n=1}^{\infty}$ converges to such fixed point. # # For our purposes, this translates to: # - Our equilibrium pricing function not only exists, but it is unique. # - We can get arbitrarily close to the equilibrium pricing function by making some initial guess $f$ and applying the operator $T$ to it repeatedly. # # The code below creates a representation of our model and implements a solution routine to find $P^*$. The main components of this routine are: # # - `priceOnePeriod`: this is operator $T$ from above. It takes a function $f$, computes $\beta~\mathbb{E}_{t}\left[ \frac{u^{\prime}(d_{t+1})}{u^{\prime}(d_t)} (f(d_{t+1}) + d_{t+1}) \right]$ for a grid of $d_t$ values, and uses the result to construct a linear interpolator that approximates $T[f]$. # # - `solve`: this is our iterative solution procedure. It generates an initial guess $f$ and applies `priceOnePeriod` to it iteratively. At each application, it constructs a measure of how much the candidate pricing function changed. Once changes between successive iterations are small enough, it declares that the solution has converged. # %% [markdown] # # A computational representation of the problem and its solution. # %% [markdown] # `Uninteresting setup:` # %% Preamble {"code_folding": [0], "jupyter": {"source_hidden": true}, "tags": []} # Setup import numpy as np import matplotlib.pyplot as plt from copy import copy from HARK.utilities import CRRAutilityP from HARK.distribution import Normal, calc_expectation from HARK.interpolation import LinearInterp, ConstantFunction # %% Definitions {"code_folding": [0]} # A python class representing log-AR1 dividend processes. class DivProcess: def __init__(self, α, σ, μ = 0.0, nApprox = 7): self.α = α self.σ = σ self.μ = μ self.nApprox = nApprox # Create a discrete approximation to the random shock self.ShkAppDstn = Normal(mu = μ, sigma = σ).approx(N = nApprox) def getLogdGrid(self, n = 100): ''' A method for creating a reasonable grid for log-dividends. ''' uncond_sd = self.σ / np.sqrt(1 - self.α**2) uncond_mean = self.μ/(1-self.α) logDGrid = np.linspace(-5*uncond_sd, 5*uncond_sd, n) + uncond_mean return(logDGrid) # A class representing economies with Lucas' trees. class LucasEconomy: ''' A representation of an economy in which there are Lucas trees whose dividends' logarithm follows an AR1 process. ''' def __init__(self, CRRA, DiscFac, DivProcess): self.CRRA = CRRA self.DiscFac = DiscFac self.DivProcess = DivProcess self.uP = lambda c: CRRAutilityP(c, self.CRRA) def priceOnePeriod(self, Pfunc_next, logDGrid): # Create a function that, given current dividends # and the value of next period's shock, returns # the discounted value derived from the asset next period. def discounted_value(shock, log_d_now): # Find dividends d_now = np.exp(log_d_now) log_d_next = self.DivProcess.α * log_d_now + shock d_next =
np.exp(log_d_next)
numpy.exp
import logging import time import random import pickle import os from sys import maxsize from collections import OrderedDict import torch from tensorboardX import SummaryWriter from baselines.common.schedules import LinearSchedule import numpy as np from copy import deepcopy from abp.utils import clear_summary_path from abp.models import DQNModel # TODO: Generalize it from abp.examples.pysc2.tug_of_war.models_mb.transition_model import TransModel from abp.utils.search_tree import Node logger = logging.getLogger('root') use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor IntTensor = torch.cuda.IntTensor if use_cuda else torch.IntTensor ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor Tensor = FloatTensor building_types = { 'Marine': 0, 'Viking': 1, 'Colossus': 2, 'Pylon': 3 } class MBTSAdaptive(object): """Adaptive which uses the Model base Tree search algorithm""" def __init__(self, name, state_length, network_config, reinforce_config, models_path, env, player = 1): super(MBTSAdaptive, self).__init__() self.name = name #self.choices = choices self.network_config = network_config self.reinforce_config = reinforce_config self.explanation = False self.state_length = state_length\ # Global self.steps = 0 self.episode = 0 self.transition_model_HP = TransModel(state_length, 2) self.transition_model_unit = TransModel(state_length, 6) self.value_model = DQNModel(self.name + "_eval", self.network_config, use_cuda) self.load_model(models_path) self.env = env self.player = player self.index_hp = np.array([4, 9]) self.index_units = np.array(range(11, 17)) self.look_forward_step = 1 # Generalize it self.load_model(models_path) self.eval_mode() self.normalization_array = np.array([30, 30, 30, 30, 2000, 30, 30, 30, 30, 2000, 1500, 60, 60, 60, 60, 60, 60]) self.reset() def reward_func(self, state, next_states): # print("reward func") # print(state.shape, next_states.shape) # for n_s in next_states: # print("===================================") # print(state.tolist()) # print(n_s.tolist()) # # print(state, next_states) # print(next_states[:, self.index_hp] > 2000) next_states[next_states > 2000] = 2000 rewards = (next_states - state.reshape(-1,))[:, self.index_hp] rewards[rewards > 0] = 1 rewards[:, 1] *= -1 rewards = np.sum(rewards, axis = 1) # print(rewards) # input() return rewards def eval_mode(self): self.value_model.eval_mode() self.transition_model_HP.eval_mode() self.transition_model_unit.eval_mode() def load_model(self, models_path): HP_state_dict = torch.load(models_path + 'transition_model_HP.pt') unit_state_dict = torch.load(models_path + 'transition_model_unit.pt') # print(HP_state_dict.model) new_HP_state_dict = OrderedDict() new_unit_state_dict = OrderedDict() for old_key_value_hp, old_key_value_unit in zip(list(HP_state_dict.items()), list(unit_state_dict.items())): new_key_hp, new_value_hp = "module." + old_key_value_hp[0], old_key_value_hp[1] new_key_unit, new_value_unit = "module." + old_key_value_unit[0], old_key_value_unit[1] # print(new_key_hp, new_key_unit) # print(old_key_hp, old_key_unit) new_HP_state_dict[new_key_hp] = new_value_hp new_unit_state_dict[new_key_unit] = new_value_unit self.transition_model_HP.load_weight(new_HP_state_dict) # TODO: get unit transition model self.transition_model_unit.load_weight(new_unit_state_dict) self.value_model.load_weight(torch.load(models_path + 'value_model.pt')) def predict(self, state, minerals_enemy): # Get actions of self root = Node('root', state) parents = [root] if self.player == 1: fifo_self = self.env.fifo_player_1 fifo_enemy = self.env.fifo_player_2 else: fifo_self = self.env.fifo_player_2 fifo_enemy = self.env.fifo_player_1 leaf_node = [] leaf_node_states = [] leaf_fifo = [] for i in range(self.look_forward_step): for n in parents: next_states, next_fifo_self, length_enemy_action = self.expand_node(n, minerals_enemy, fifo_self, fifo_enemy) if i == (self.look_forward_step - 1): next_states = self.same_self_action_block(next_states, length_enemy_action) children = self.same_self_action_block(np.array(n.children), length_enemy_action) leaf_node_states.append(next_states) leaf_fifo.append(next_fifo_self) leaf_node.append(children) # print(len(leaf_node_states[0]), len(leaf_fifo[0]), len(leaf_node[0])) # input() if self.look_forward_step == 0: self.rollout_root([parents[0].state], parents, [fifo_self]) else: for lns, ln, ff in zip(leaf_node_states, leaf_node, leaf_fifo): self.rollout(lns, ln, ff) # print(root.best_reward) # action, _ = self.value_model.predict(state, 0, False) # print(root.best_action) return root.best_action def same_self_action_block(self, states_or_nodes, length_enemy_action): return np.array(
np.split(states_or_nodes, length_enemy_action)
numpy.split
import matplotlib.pyplot as plt from matplotlib.patches import RegularPolygon, Polygon import numpy as np from typing import NamedTuple import time import math import libhex, hex_pieces ## Settings SIZE_MAP = 4 # Map size # Hex_Grid class. Contains hex position, and grid status. # Grid val: # 0 - not occupied # 1 - occupied class Hex_Grid(NamedTuple): hex: libhex.Hex val: int # Generate hex map def Hex_generate_map(map_size): Map = [] for x in range(-map_size, map_size+1): for y in range(max(-map_size, -x-map_size), min(+map_size, -x+map_size)+1): z = -x-y this_grid = Hex_Grid(libhex.Hex(x, y, z), 0) Map.append(this_grid) return Map # Toggle grid value if found def Hex_find_and_set_grid_conditional(Map, q, r, s, new_val): val_set_success = False found_match = False for i in range(len(Map)): grid = Map[i] hex = grid.hex if hex.q == q and hex.r == r and hex.s == s: found_match = True if grid.val != new_val: val_set_success = True Map[i] = grid._replace(val=new_val) break return found_match, val_set_success def Hex_reachable(Map, hex_start, movement): t0 = time.time() # add start to visited fringes = [] # array of arrays of hexes Hex_find_and_set_grid_conditional(Map, hex_start.q, hex_start.r, hex_start.s, 1) fringes.append([hex_start]) cavity_num = 1 # hex start is the first cavity for k in range(1, movement): fringes.append([]) for hex in fringes[k-1]: for dir in range(6): hex_neighbor = libhex.hex_neighbor(hex, dir) found_match, val_set_success = Hex_find_and_set_grid_conditional(Map, hex_neighbor.q, hex_neighbor.r, hex_neighbor.s, 1) if found_match and val_set_success: # if neighbor not in visited and not blocked: #add neighbor to visited fringes[k].append(hex_neighbor) cavity_num = cavity_num + 1 # print("Time elapsed - Hex_reachable:", time.time()-t0) return fringes, cavity_num def Hex_check_if_all_remaining_hex_good(Map): t0 = time.time() Map_copy = Map.copy() for grid in Map_copy: if grid.val == 0: fringes, cavity_num = Hex_reachable(Map_copy, grid.hex, 30) # print(fringes, cavity_num) if cavity_num % 5 != 0: return False # print("Time elapsed - Hex_check_if_all_remaininng_hex_good:", time.time()-t0) return True _hex_global_ctr = 0 def Hex_verify_candi_with_level(Map_copy, Puzzle_pieces, Candi): if Candi: level = len(Candi) else: level = 0 # check if next level has a solution (recursively) for j in range(3): for grid in Map_copy: # skip grids that are occupied if (grid.val == 1): continue q_offset = grid.hex.q r_offset = grid.hex.r s_offset = grid.hex.s Candi_next = [level, j, q_offset, r_offset, s_offset] result, Map_out, Candi_out = Hex_verify_candi_with_next_level(Map_copy, Puzzle_pieces, Candi, Candi_next) if result: if len(Candi_out) != hex_pieces.NUM_OF_PIECES: # if the current solution is bad with impossible vacant grids to fill, skip and continue if not Hex_check_if_all_remaining_hex_good(Map_out): continue global _hex_global_ctr _hex_global_ctr = _hex_global_ctr + 1 if _hex_global_ctr % 20 == 0: # print(_hex_global_ctr) Hex_plot_current_candi(Hex_Map_Original_Copy, pin_hex, Candi_out) Hex_verify_candi_with_level(Map_out, Puzzle_pieces, Candi_out) else: # Found a solution! Return it print("Found a solution:", Candi_out) Hex_plot_current_candi(Hex_Map_Original_Copy, pin_hex, Candi_out) return Candi_out # Verify whether a new piece (defined by Candi_next) can fit in a map status # Return success/fail with updated map and candi def Hex_verify_candi_with_next_level(Map_copy, Puzzle_pieces, Candi_old, Candi_next): t0 = time.time() Map_test = Map_copy.copy() this_piece = Puzzle_pieces[Candi_next[0]] this_piece_form = this_piece.form(Candi_next[1]) q_offset = Candi_next[2] r_offset = Candi_next[3] s_offset = Candi_next[4] for k in range(5): this_hex = this_piece_form[k] q_in = this_hex.q + q_offset r_in = this_hex.r + r_offset s_in = this_hex.s + s_offset found_match, success = Hex_find_and_set_grid_conditional(Map_test, q_in, r_in, s_in, 1) # print(found_match, success) if not found_match or not success: return False, Map_copy, Candi_old # if there is a fit if Candi_old: Candi_new = Candi_old.copy() Candi_new.append(Candi_next) else: Candi_new = [Candi_next] # print("Time elapsed - Hex_verify_candi_with_next_level:", time.time()-t0) return True, Map_test, Candi_new def Hex_plot_cube_edges(x, y): plt.plot(x + 0.75*np.array([0, 0]), y + 0.75*np.array([0, -1]), 'k', alpha=0.3) plt.plot(x + 0.75*np.array([0, math.sqrt(3)/2]), y + 0.75*np.array([0, 0.5]), 'k', alpha=0.3) plt.plot(x + 0.75*np.array([0, -math.sqrt(3)/2]), y + 0.75*np.array([0, 0.5]), 'k', alpha=0.3) def Hex_plot_current_candi(Hex_Map, pin_hex, Sol_candi): t0 = time.time() if not Sol_candi: return flag_show_number = False plt.close() fig, ax = plt.subplots(1) ax.set_aspect('equal') cube_array = 0.75 * np.array([[-math.sqrt(3)/2, 0], [-math.sqrt(3)/2, 0.5], [-math.sqrt(3)/4, 0.75], [0, 0.5], [math.sqrt(3)/4, 0.75], [math.sqrt(3)/2, 0.5], [math.sqrt(3)/2, 0], [math.sqrt(3)/4, -0.25], [math.sqrt(3)/4, -0.75], [0, -1], [-math.sqrt(3)/4, -0.75], [-math.sqrt(3)/4, -0.25]]) for grid in Hex_Map: hex = grid.hex x = hex.q y = 2. * np.sin(np.radians(60)) * (hex.r - hex.s) /3. cube = Polygon([x, y] + cube_array, closed=True, facecolor='orange', alpha=0.2, edgecolor='None') ax.add_patch(cube) # Plot pin hex x = pin_hex.q y = 2. * np.sin(
np.radians(60)
numpy.radians
import collections import matplotlib.pyplot as plt import numpy as np from environment.random_walk_1000_states import RandomWalk1000 def constant_factory(n): probability_list = np.ones(n) return lambda: probability_list / np.sum(probability_list) class StateAggregation: def __init__(self, min_state, max_state, aggregation_size): self.min_state = min_state self.max_state = max_state self.aggregation_size = aggregation_size self.aggregation_num = int((max_state - min_state) / aggregation_size) + 1 if (max_state - min_state) % aggregation_size == 0: self.aggregation_num -= 1 self.weight = np.zeros(self.aggregation_num) def __call__(self, x): current_position = int(x / self.aggregation_size) return self.weight[current_position] def derivation(self, x): derivative = np.zeros(self.aggregation_num) current_position = int(x / self.aggregation_size) derivative[current_position] = 1.0 return derivative class Agent: def __init__(self, env, n, min_state, max_state, aggregation_size): self.env = env self.n = n self.value_state = StateAggregation(min_state, max_state, aggregation_size) self.policies = collections.defaultdict(constant_factory(env.action_space.n)) def select_action(self, state): probability_distribution = self.policies[state] action = np.random.choice(self.env.action_space.n, 1, p=probability_distribution) return action[0] def SGTD_n_app(self, number_of_episodes, learning_rate, state_num=1000, gamma=1.): mu = np.zeros(state_num) for _ in range(number_of_episodes): n_queue = collections.deque() state = self.env.reset() action = self.select_action(state) mu[state] += 1.0 new_state, reward, is_done, _ = self.env.step(action) while True: mu[new_state] += 1.0 n_queue.append([new_state, reward, is_done]) if is_done: while len(n_queue) != 0: state_updated, _, _ = n_queue.popleft() if state_updated is None: break gamma_temp = 1.0 g_value = 0.0 for iter_n in n_queue: g_value += gamma_temp * iter_n[1] gamma_temp *= gamma if new_state is not None: self.value_state.weight += learning_rate * (reward + gamma * self.value_state(new_state) - self.value_state(state_updated)) * delta_value else: self.value_state.weight += learning_rate * ( reward - self.value_state(state_updated)) * delta_value break else: if len(n_queue) == self.n + 1: state_updated, _, _ = n_queue.popleft() gamma_temp = 1.0 g_value = 0.0 for iter_n in n_queue: g_value += gamma_temp * iter_n[1] gamma_temp *= gamma action_next = self.select_action(new_state) new_state, reward, is_done, _ = env.step(action_next) if new_state is not None: g_value += (reward * gamma_temp + self.value_state(new_state)) else: g_value += reward * gamma_temp delta_value = self.value_state.derivation(state_updated) if new_state is not None: self.value_state.weight += learning_rate * (reward + gamma * self.value_state(new_state) - self.value_state(state_updated)) * delta_value else: self.value_state.weight += learning_rate * ( reward - self.value_state(state_updated)) * delta_value else: action_next = self.select_action(new_state) new_state, reward, is_done, _ = env.step(action_next) return mu if __name__ == '__main__': env = RandomWalk1000() agent = Agent(env, 0, 0, 1000, 100) mu = agent.SGTD_n_app(10000, 1e-2, gamma=0.99) mu = mu /
np.sum(mu)
numpy.sum
# Import both skimage and cv from skimage import transform as tf from skimage import io import cv2 import numpy as np from scipy import optimize import matplotlib.pyplot as plt # Could use either skimage or cv to read the image # img = cv2.imread('label.png') img = cv2.imread('./picture/mask.jpg') img = cv2.resize(img, (img.shape[1]//2, img.shape[0]//2)) gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY) edges = cv2.Canny(thresh, 0, 200) cv2.imshow("edges", edges) cv2.waitKey(0) # Find largest contour (should be the label) _, contours, hierarchy = cv2.findContours(edges, 0, 1) areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cnt = contours[max_index] # Create a mask of the label mask =
np.zeros(img.shape, np.uint8)
numpy.zeros
"""Test gates defined in `qibo/core/gates.py`.""" import pytest import numpy as np from qibo import gates, K from qibo.config import raise_error from qibo.tests.utils import random_state, random_density_matrix def apply_gates(gatelist, nqubits=None, initial_state=None): if initial_state is None: state = K.qnp.zeros(2 ** nqubits) state[0] = 1 elif isinstance(initial_state, np.ndarray): state = np.copy(initial_state) if nqubits is None: nqubits = int(np.log2(len(state))) else: # pragma: no cover assert nqubits == int(np.log2(len(state))) else: # pragma: no cover raise_error(TypeError, "Invalid initial state type {}." "".format(type(initial_state))) state = K.cast(state) for gate in gatelist: state = gate(state) return state def test__control_unitary(backend): matrix = K.cast(np.random.random((2, 2))) gate = gates.Unitary(matrix, 0) unitary = gate._control_unitary(matrix) target_unitary = np.eye(4, dtype=K._dtypes.get('DTYPECPX')) target_unitary[2:, 2:] = K.to_numpy(matrix) K.assert_allclose(unitary, target_unitary) with pytest.raises(ValueError): unitary = gate._control_unitary(np.random.random((16, 16))) def test_h(backend): final_state = apply_gates([gates.H(0), gates.H(1)], nqubits=2) target_state = np.ones_like(final_state) / 2 K.assert_allclose(final_state, target_state) def test_x(backend): final_state = apply_gates([gates.X(0)], nqubits=2) target_state = np.zeros_like(final_state) target_state[2] = 1.0 K.assert_allclose(final_state, target_state) def test_y(backend): final_state = apply_gates([gates.Y(1)], nqubits=2) target_state = np.zeros_like(final_state) target_state[1] = 1j K.assert_allclose(final_state, target_state) def test_z(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.Z(0)], nqubits=2) target_state = np.ones_like(final_state) / 2.0 target_state[2] *= -1.0 target_state[3] *= -1.0 K.assert_allclose(final_state, target_state) def test_s(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.S(1)], nqubits=2) target_state = np.array([0.5, 0.5j, 0.5, 0.5j]) K.assert_allclose(final_state, target_state) def test_sdg(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.SDG(1)], nqubits=2) target_state = np.array([0.5, -0.5j, 0.5, -0.5j]) K.assert_allclose(final_state, target_state) def test_t(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.T(1)], nqubits=2) target_state = np.array([0.5, (1 + 1j) / np.sqrt(8), 0.5, (1 + 1j) / np.sqrt(8)]) K.assert_allclose(final_state, target_state) def test_tdg(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.TDG(1)], nqubits=2) target_state = np.array([0.5, (1 - 1j) / np.sqrt(8), 0.5, (1 - 1j) / np.sqrt(8)]) K.assert_allclose(final_state, target_state) def test_identity(backend): gatelist = [gates.H(0), gates.H(1), gates.I(0), gates.I(1)] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(final_state) / 2.0 K.assert_allclose(final_state, target_state) gatelist = [gates.H(0), gates.H(1), gates.I(0, 1)] final_state = apply_gates(gatelist, nqubits=2) K.assert_allclose(final_state, target_state) def test_align(backend): gate = gates.Align(0, 1) gatelist = [gates.H(0), gates.H(1), gate] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(final_state) / 2.0 K.assert_allclose(final_state, target_state) gate_matrix = gate._construct_unitary() K.assert_allclose(gate_matrix, np.eye(4)) # :class:`qibo.core.cgates.M` is tested seperately in `test_measurement_gate.py` def test_rx(backend): theta = 0.1234 final_state = apply_gates([gates.H(0), gates.RX(0, theta=theta)], nqubits=1) phase = np.exp(1j * theta / 2.0) gate = np.array([[phase.real, -1j * phase.imag], [-1j * phase.imag, phase.real]]) target_state = gate.dot(np.ones(2)) / np.sqrt(2) K.assert_allclose(final_state, target_state) def test_ry(backend): theta = 0.1234 final_state = apply_gates([gates.H(0), gates.RY(0, theta=theta)], nqubits=1) phase = np.exp(1j * theta / 2.0) gate = np.array([[phase.real, -phase.imag], [phase.imag, phase.real]]) target_state = gate.dot(np.ones(2)) / np.sqrt(2) K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("applyx", [True, False]) def test_rz(backend, applyx): theta = 0.1234 if applyx: gatelist = [gates.X(0)] else: gatelist = [] gatelist.append(gates.RZ(0, theta)) final_state = apply_gates(gatelist, nqubits=1) target_state = np.zeros_like(final_state) p = int(applyx) target_state[p] = np.exp((2 * p - 1) * 1j * theta / 2.0) K.assert_allclose(final_state, target_state) def test_u1(backend): theta = 0.1234 final_state = apply_gates([gates.X(0), gates.U1(0, theta)], nqubits=1) target_state = np.zeros_like(final_state) target_state[1] = np.exp(1j * theta) K.assert_allclose(final_state, target_state) def test_u2(backend): phi = 0.1234 lam = 0.4321 initial_state = random_state(1) final_state = apply_gates([gates.U2(0, phi, lam)], initial_state=initial_state) matrix = np.array([[np.exp(-1j * (phi + lam) / 2), -np.exp(-1j * (phi - lam) / 2)], [np.exp(1j * (phi - lam) / 2), np.exp(1j * (phi + lam) / 2)]]) target_state = matrix.dot(initial_state) / np.sqrt(2) K.assert_allclose(final_state, target_state) def test_u3(backend): theta = 0.1111 phi = 0.1234 lam = 0.4321 initial_state = random_state(1) final_state = apply_gates([gates.U3(0, theta, phi, lam)], initial_state=initial_state) cost, sint = np.cos(theta / 2), np.sin(theta / 2) ep = np.exp(1j * (phi + lam) / 2) em = np.exp(1j * (phi - lam) / 2) matrix = np.array([[ep.conj() * cost, - em.conj() * sint], [em * sint, ep * cost]]) target_state = matrix.dot(initial_state) K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("applyx", [False, True]) def test_cnot(backend, applyx): if applyx: gatelist = [gates.X(0)] else: gatelist = [] gatelist.append(gates.CNOT(0, 1)) final_state = apply_gates(gatelist, nqubits=2) target_state = np.zeros_like(final_state) target_state[3 * int(applyx)] = 1.0 K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("controlled_by", [False, True]) def test_cz(backend, controlled_by): initial_state = random_state(2) matrix = np.eye(4) matrix[3, 3] = -1 target_state = matrix.dot(initial_state) if controlled_by: gate = gates.Z(1).controlled_by(0) else: gate = gates.CZ(0, 1) final_state = apply_gates([gate], initial_state=initial_state) assert gate.name == "cz" K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("name,params", [("CRX", {"theta": 0.1}), ("CRY", {"theta": 0.2}), ("CRZ", {"theta": 0.3}), ("CU1", {"theta": 0.1}), ("CU2", {"phi": 0.1, "lam": 0.2}), ("CU3", {"theta": 0.1, "phi": 0.2, "lam": 0.3})]) def test_cun(backend, name, params): initial_state = random_state(2) gate = getattr(gates, name)(0, 1, **params) final_state = apply_gates([gate], initial_state=initial_state) target_state = np.dot(K.to_numpy(gate.matrix), initial_state) K.assert_allclose(final_state, target_state) def test_swap(backend): final_state = apply_gates([gates.X(1), gates.SWAP(0, 1)], nqubits=2) target_state = np.zeros_like(final_state) target_state[2] = 1.0 K.assert_allclose(final_state, target_state) def test_multiple_swap(backend): gatelist = [gates.X(0), gates.X(2), gates.SWAP(0, 1), gates.SWAP(2, 3)] final_state = apply_gates(gatelist, nqubits=4) gatelist = [gates.X(1), gates.X(3)] target_state = apply_gates(gatelist, nqubits=4) K.assert_allclose(final_state, target_state) def test_fsim(backend): theta = 0.1234 phi = 0.4321 gatelist = [gates.H(0), gates.H(1), gates.fSim(0, 1, theta, phi)] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(K.to_numpy(final_state)) / 2.0 rotation = np.array([[np.cos(theta), -1j * np.sin(theta)], [-1j * np.sin(theta), np.cos(theta)]]) matrix = np.eye(4, dtype=target_state.dtype) matrix[1:3, 1:3] = rotation matrix[3, 3] = np.exp(-1j * phi) target_state = matrix.dot(target_state) K.assert_allclose(final_state, target_state) def test_generalized_fsim(backend): phi = np.random.random() rotation = np.random.random((2, 2)) + 1j * np.random.random((2, 2)) gatelist = [gates.H(0), gates.H(1), gates.H(2)] gatelist.append(gates.GeneralizedfSim(1, 2, rotation, phi)) final_state = apply_gates(gatelist, nqubits=3) target_state = np.ones_like(K.to_numpy(final_state)) / np.sqrt(8) matrix = np.eye(4, dtype=target_state.dtype) matrix[1:3, 1:3] = rotation matrix[3, 3] = np.exp(-1j * phi) target_state[:4] = matrix.dot(target_state[:4]) target_state[4:] = matrix.dot(target_state[4:]) K.assert_allclose(final_state, target_state) def test_generalized_fsim_parameter_setter(backend): phi = np.random.random() matrix = np.random.random((2, 2)) gate = gates.GeneralizedfSim(0, 1, matrix, phi) K.assert_allclose(gate.parameters[0], matrix) assert gate.parameters[1] == phi matrix = np.random.random((4, 4)) with pytest.raises(ValueError): gate = gates.GeneralizedfSim(0, 1, matrix, phi) @pytest.mark.parametrize("applyx", [False, True]) def test_toffoli(backend, applyx): if applyx: gatelist = [gates.X(0), gates.X(1), gates.TOFFOLI(0, 1, 2)] else: gatelist = [gates.X(1), gates.TOFFOLI(0, 1, 2)] final_state = apply_gates(gatelist, nqubits=3) target_state = np.zeros_like(final_state) if applyx: target_state[-1] = 1 else: target_state[2] = 1 K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("nqubits", [2, 3]) def test_unitary(backend, nqubits): initial_state = np.ones(2 ** nqubits) / np.sqrt(2 ** nqubits) matrix = np.random.random(2 * (2 ** (nqubits - 1),)) target_state = np.kron(np.eye(2), matrix).dot(initial_state) gatelist = [gates.H(i) for i in range(nqubits)] gatelist.append(gates.Unitary(matrix, *range(1, nqubits), name="random")) final_state = apply_gates(gatelist, nqubits=nqubits) K.assert_allclose(final_state, target_state) def test_unitary_initialization(backend): matrix = np.random.random((4, 4)) gate = gates.Unitary(matrix, 0, 1) K.assert_allclose(gate.parameters, matrix) matrix = np.random.random((8, 8)) with pytest.raises(ValueError): gate = gates.Unitary(matrix, 0, 1) with pytest.raises(TypeError): gate = gates.Unitary("abc", 0, 1) def test_unitary_common_gates(backend): target_state = apply_gates([gates.X(0), gates.H(1)], nqubits=2) gatelist = [gates.Unitary(np.array([[0, 1], [1, 0]]), 0), gates.Unitary(np.array([[1, 1], [1, -1]]) / np.sqrt(2), 1)] final_state = apply_gates(gatelist, nqubits=2) K.assert_allclose(final_state, target_state) thetax = 0.1234 thetay = 0.4321 gatelist = [gates.RX(0, theta=thetax), gates.RY(1, theta=thetay), gates.CNOT(0, 1)] target_state = apply_gates(gatelist, nqubits=2) rx = np.array([[np.cos(thetax / 2), -1j * np.sin(thetax / 2)], [-1j * np.sin(thetax / 2), np.cos(thetax / 2)]]) ry = np.array([[np.cos(thetay / 2), -np.sin(thetay / 2)], [np.sin(thetay / 2), np.cos(thetay / 2)]]) cnot = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) gatelist = [gates.Unitary(rx, 0), gates.Unitary(ry, 1), gates.Unitary(cnot, 0, 1)] final_state = apply_gates(gatelist, nqubits=2) K.assert_allclose(final_state, target_state) def test_unitary_multiqubit(backend): gatelist = [gates.H(i) for i in range(4)] gatelist.append(gates.CNOT(0, 1)) gatelist.append(gates.CNOT(2, 3)) gatelist.extend(gates.X(i) for i in range(4)) h = np.array([[1, 1], [1, -1]]) / np.sqrt(2) x = np.array([[0, 1], [1, 0]]) cnot = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) matrix = np.kron(np.kron(x, x), np.kron(x, x)) matrix = matrix @ np.kron(cnot, cnot) matrix = matrix @ np.kron(np.kron(h, h), np.kron(h, h)) unitary = gates.Unitary(matrix, 0, 1, 2, 3) if K.name == "qibotf": with pytest.raises(NotImplementedError): final_state = apply_gates([unitary], nqubits=4) else: final_state = apply_gates([unitary], nqubits=4) target_state = apply_gates(gatelist, nqubits=4) K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("nqubits", [5, 6]) def test_variational_layer(backend, nqubits): theta = 2 * np.pi * np.random.random(nqubits) gatelist = [gates.RY(i, t) for i, t in enumerate(theta)] gatelist.extend(gates.CZ(i, i + 1) for i in range(0, nqubits - 1, 2)) target_state = apply_gates(gatelist, nqubits=nqubits) pairs = list((i, i + 1) for i in range(0, nqubits - 1, 2)) gate = gates.VariationalLayer(range(nqubits), pairs, gates.RY, gates.CZ, theta) final_state = apply_gates([gate], nqubits=nqubits) K.assert_allclose(target_state, final_state) def test_variational_layer__construct_unitary(backend): pairs = list((i, i + 1) for i in range(0, 5, 2)) theta = 2 * np.pi * np.random.random(6) gate = gates.VariationalLayer(range(6), pairs, gates.RY, gates.CZ, theta) with pytest.raises(ValueError): gate._construct_unitary() def test_flatten(backend): target_state = np.ones(4) / 2.0 final_state = apply_gates([gates.Flatten(target_state)], nqubits=2) K.assert_allclose(final_state, target_state) target_state = np.ones(4) / 2.0 gate = gates.Flatten(target_state) with pytest.raises(ValueError): gate._construct_unitary() def test_callback_gate_errors(): from qibo import callbacks entropy = callbacks.EntanglementEntropy([0]) gate = gates.CallbackGate(entropy) with pytest.raises(ValueError): gate._construct_unitary() def test_general_channel(backend): a1 = np.sqrt(0.4) * np.array([[0, 1], [1, 0]]) a2 = np.sqrt(0.6) * np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) a1, a2 = K.cast(a1), K.cast(a2) initial_rho = random_density_matrix(2) gate = gates.KrausChannel([((1,), a1), ((0, 1), a2)]) assert gate.target_qubits == (0, 1) final_rho = gate(np.copy(initial_rho)) m1 = np.kron(np.eye(2), K.to_numpy(a1)) m2 = K.to_numpy(a2) target_rho = (m1.dot(initial_rho).dot(m1.conj().T) + m2.dot(initial_rho).dot(m2.conj().T)) K.assert_allclose(final_rho, target_rho) def test_krauss_channel_errors(backend): # bad Kraus matrix shape a1 = np.sqrt(0.4) * np.array([[0, 1], [1, 0]]) with pytest.raises(ValueError): gate = gates.KrausChannel([((0, 1), a1)]) # Using KrausChannel on state vectors channel = gates.KrausChannel([((0,), np.eye(2))]) with pytest.raises(ValueError): channel._state_vector_call(np.random.random(4)) # Attempt to construct unitary for KrausChannel with pytest.raises(ValueError): channel._construct_unitary() def test_controlled_by_channel_error(): with pytest.raises(ValueError): gates.PauliNoiseChannel(0, px=0.5).controlled_by(1) a1 = np.sqrt(0.4) * np.array([[0, 1], [1, 0]]) a2 = np.sqrt(0.6) * np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) config = [((1,), a1), ((0, 1), a2)] with pytest.raises(ValueError): gates.KrausChannel(config).controlled_by(1) def test_unitary_channel(backend): a1 = np.array([[0, 1], [1, 0]]) a2 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) probs = [0.4, 0.3] matrices = [((0,), a1), ((2, 3), a2)] initial_state = random_density_matrix(4) gate = gates.UnitaryChannel(probs, matrices) gate.density_matrix = True final_state = gate(K.cast(np.copy(initial_state))) eye = np.eye(2) ma1 = np.kron(np.kron(a1, eye), np.kron(eye, eye)) ma2 = np.kron(np.kron(eye, eye), a2) target_state = (0.3 * initial_state + 0.4 * ma1.dot(initial_state.dot(ma1)) + 0.3 * ma2.dot(initial_state.dot(ma2))) K.assert_allclose(final_state, target_state) def test_unitary_channel_errors(): """Check errors raised by ``gates.UnitaryChannel``.""" a1 = np.array([[0, 1], [1, 0]]) a2 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) probs = [0.4, 0.3] matrices = [((0,), a1), ((2, 3), a2)] # Invalid probability length with pytest.raises(ValueError): gate = gates.UnitaryChannel([0.1, 0.3, 0.2], matrices) # Probability > 1 with pytest.raises(ValueError): gate = gates.UnitaryChannel([1.1, 0.2], matrices) # Probability sum = 0 with pytest.raises(ValueError): gate = gates.UnitaryChannel([0.0, 0.0], matrices) def test_pauli_noise_channel(backend): initial_rho = random_density_matrix(2) gate = gates.PauliNoiseChannel(1, px=0.3) gate.density_matrix = True final_rho = gate(K.cast(np.copy(initial_rho))) gate = gates.X(1) gate.density_matrix = True initial_rho = K.cast(initial_rho) target_rho = 0.3 * gate(K.copy(initial_rho)) target_rho += 0.7 * initial_rho K.assert_allclose(final_rho, target_rho) def test_reset_channel(backend): initial_rho = random_density_matrix(3) gate = gates.ResetChannel(0, p0=0.2, p1=0.2) gate.density_matrix = True final_rho = gate(K.cast(np.copy(initial_rho))) dtype = initial_rho.dtype collapsed_rho = np.copy(initial_rho).reshape(6 * (2,)) collapsed_rho[0, :, :, 1, :, :] = np.zeros(4 * (2,), dtype=dtype) collapsed_rho[1, :, :, 0, :, :] = np.zeros(4 * (2,), dtype=dtype) collapsed_rho[1, :, :, 1, :, :] =
np.zeros(4 * (2,), dtype=dtype)
numpy.zeros
""" Created on Tue Jan 26 16:41:35 2021 @author: mark """ import numpy as np import torch import torch.nn as nn from aircraft_detector.utils.utils import print_verbose import aircraft_detector.utils.pytorch_earlystopping as es """ conv1d: in shape = (N, C_in, L_in) -> out shape = (N, C_out, L_out) conv2d: in shape = (N, C_in, H_in, W_in) -> out_shape = (N, C_out, H_out, W_out) linear: in_shape = (N, L_in) -> out shape = (N, L_out) Gru/Lstm: in_shape = L_in, out_shape = L_out batchnorm1d: num_features = L_out batchnorm2d: num_features = C_out all dropout """ class Net(nn.Module): # assumes conv->fc, rec->fc, fc or conv+fc2->fc def __init__( self, config, input_shape, output_size, device=None, input_2_size=None ): super().__init__() # get number of layers per type n_conv_layers = 0 n_rec_layers = 0 n_fc_layers = 0 n_fc2_layers = 0 for layer in config: if "Conv" in layer["layer_type"]: n_conv_layers += 1 elif layer["layer_type"] == "Linear": n_fc_layers += 1 elif layer["layer_type"] == "Linear_2": n_fc2_layers += 1 else: n_rec_layers += 1 # set network type and generate empty network if n_conv_layers > 0: self._net_type = "CNN" self._modules_conv, in_features = self._generate_conv_modules( config, input_shape ) if n_fc2_layers > 0: self._modules_lin2, in_features_2 = self._generate_linear_modules( config, input_2_size, layer_name="Linear_2" ) in_features += in_features_2 self._modules_lin, in_features = self._generate_linear_modules( config, in_features ) elif n_rec_layers > 0: self._net_type = "RNN" self._rnn_type = config[0]["layer_type"] self._device = device ( self._modules_rec, in_features, self._hidden_sizes, ) = self._generate_recurrent_modules(config, input_shape) self._modules_lin, in_features = self._generate_linear_modules( config, in_features, ) else: self._net_type = "MLP" self._modules_lin, in_features = self._generate_linear_modules( config, np.prod(input_shape) ) # use a linear output layer self._out = nn.Linear(in_features, output_size) def _generate_conv_modules(self, config, input_shape, modules=None): # empty module list if modules is None: modules = nn.ModuleList() in_channels = input_shape[0] input_sizes = input_shape[1:] # HxW # go over all type conv layers in config i = 0 while i < len(config): # empty module, to be filled with 'layers' from the config layers_in_module = [] # current layer settings layer_dict = config[i].copy() layer_type = layer_dict.pop("layer_type") # stop as soon as a fully-connected layer is found if layer_type == "Linear" or layer_type == "Linear_2": break # set up layer and its parameters layer = getattr(nn, layer_type) # i.e. nn.Conv2d layer = layer(in_channels, **layer_dict) # add to module layers_in_module.append(layer) i += 1 # set new 'in_channels' to current 'out_channels' in_channels = layer_dict["out_channels"] # calculate new 'input_sizes' (height, width) input_sizes = _calc_conv_layer_output_shape( layer_type, layer_dict, input_sizes ) # apply batch normalization if in config and before relu if i < len(config): if ( "BatchNorm" in config[i]["layer_type"] and config[i].get("location", None) == "before" ): bn_dict = config[i].copy() _ = bn_dict.pop("location") bn_type = bn_dict.pop("layer_type") bn = getattr(nn, bn_type) # supply new 'in_channels' and eps, along with layer parameters bn = bn(in_channels, eps=1e-8, **bn_dict) layers_in_module.append(bn) i += 1 # apply pooling if in config if i < len(config): if "MaxPool" in config[i]["layer_type"]: pool_dict = config[i].copy() pool_type = pool_dict.pop("layer_type") pool = getattr(nn, pool_type) # supply parameters pool = pool(**pool_dict) layers_in_module.append(pool) i += 1 # calculate new 'input_sizes' (height, width) input_sizes = _calc_conv_layer_output_shape( pool_type, pool_dict, input_sizes ) # add ReLU layers_in_module.append(nn.ReLU()) # apply dropout if in config if i < len(config): if "Dropout" in config[i]["layer_type"]: dropout_dict = config[i].copy() _ = dropout_dict.pop("layer_type") # supply parameters in dict dropout = nn.Dropout(**dropout_dict) layers_in_module.append(dropout) i += 1 # apply batch normalization if in config and after relu (default) if i < len(config): if ( "BatchNorm" in config[i]["layer_type"] and config[i].get("location", None) != "before" ): bn_dict = config[i].copy() _ = bn_dict.pop("location") bn_type = bn_dict.pop("layer_type") bn = getattr(nn, bn_type) # supply new 'in_channels' and eps, along with layer parameters bn = bn(in_channels, eps=1e-8, **bn_dict) layers_in_module.append(bn) i += 1 # add module to module list module = nn.Sequential(*layers_in_module) modules.append(module) # calculate number of output units (required for FC layers) output_units = in_channels * np.prod(input_sizes) return modules, output_units def _generate_recurrent_modules(self, config, input_shape, modules=None): # empty module list if modules is None: modules = nn.ModuleList() # hidden sizes are used in forward() to init. hidden states with 0s hidden_sizes = [] input_size = input_shape[-1] # no. of input features (freq. bins) # go over all recurrent layers in config i = 0 while i < len(config): # current layer settings layer_dict = config[i].copy() layer_type = layer_dict.pop("layer_type") # stop as soon as a fully-connected layer is found if layer_type == "Linear": break # set up layer and its parameters layer = getattr(nn, layer_type) # i.e. nn.Conv2d layer = layer(input_size, **layer_dict, batch_first=True) # add to module list modules.append(layer) i += 1 # set new 'input_size' to current 'hidden_size' input_size = layer_dict["hidden_size"] hidden_sizes.append(input_size) return modules, input_size, hidden_sizes def _generate_linear_modules( self, config, in_features, modules=None, layer_name="Linear" ): # empty module list if modules is None: modules = nn.ModuleList() # skip layers until the first fully-connected layer is found i = 0 while config[i]["layer_type"] != layer_name: i += 1 if i >= len(config): # in case no linear layers in config (not recommended) return modules, in_features # search remaining layers while i < len(config): # check for interference with second linear module if (config[i]["layer_type"] == "Linear" and layer_name == "Linear_2") or ( config[i]["layer_type"] == "Linear_2" and layer_name == "Linear" ): break # empty module, to be filled with 'layers' from the config layers_in_module = [] # current layer settings layer_dict = config[i].copy() layer_type = layer_dict.pop("layer_type").split("_")[0] # set up layer and its parameters layer = getattr(nn, layer_type) # i.e. nn.Conv2d layer = layer(in_features, **layer_dict) # add to module layers_in_module.append(layer) i += 1 # set new 'in_features' to current 'out_features' in_features = layer_dict["out_features"] # add ReLU layers_in_module.append(nn.ReLU()) # apply dropout if in config if i < len(config): if "Dropout" in config[i]["layer_type"]: dropout_dict = config[i].copy() _ = dropout_dict.pop("layer_type") # supply parameters in dict dropout = nn.Dropout(**dropout_dict) layers_in_module.append(dropout) i += 1 # add module to module list module = nn.Sequential(*layers_in_module) modules.append(module) return modules, in_features def forward(self, x, x2=None): # add support for double input net!!! if self._net_type == "CNN": x = self._forward_convolutional(x) elif self._net_type == "RNN": x = self._forward_recurrent(x) else: pass # reshape output for fully-connected layer x = x.reshape(x.size(0), -1) if x2 is not None: for module in self._modules_lin2: x2 = module(x2) x = torch.cat((x, x2), dim=1) # forward pass: FC layers for module in self._modules_lin: x = module(x) # linear output layer x = self._out(x) return x def _forward_convolutional(self, x): for module in self._modules_conv: x = module(x) return x def _forward_recurrent(self, x): for i, module in enumerate(self._modules_rec): # initialize hidden state with zeros hidden_size = self._hidden_sizes[i] h0 = ( torch.zeros(1, x.size(0), hidden_size).requires_grad_().to(self._device) ) # initialize hidden cell state with zeros if lstm is used if self._rnn_type == "LSTM": # or check type in module?? c0 = ( torch.zeros(1, x.size(0), hidden_size) .requires_grad_() .to(self._device) ) # detach h0, c0 to avoid BPTT through previous batches x, _ = module(x, (h0.detach(), c0.detach())) else: # detach h0 to avoid BPTT through previous batches x, _ = module(x, h0.detach()) # extract output from last timestep x = x[:, -1, :] return x def _calc_conv_layer_output_shape(layer_type, layer_dict, input_shape): assert layer_type in ["Conv1d", "Conv2d", "MaxPool1d", "MaxPool2d"] if "1d" in layer_type: in_shape = input_shape[0] # get layer params or default kernel = layer_dict["kernel_size"] if layer_type == "Conv1d": stride = layer_dict.get("stride", 1) else: stride = layer_dict.get("stride", 2) padding = layer_dict.get("padding", 0) dilation = layer_dict.get("dilation", 1) # compute output length out_shape = int( (in_shape + 2 * padding - dilation * (kernel - 1) - 1) / stride + 1 ) else: in_height = input_shape[0] in_width = input_shape[1] # get layer params or default kernel = layer_dict["kernel_size"] if layer_type == "Conv2d": stride = layer_dict.get("stride", (1, 1)) else: stride = layer_dict.get("stride", (2, 2)) padding = layer_dict.get("padding", (0, 0)) dilation = layer_dict.get("dilation", (1, 1)) # compute output shape out_height = int( (in_height + 2 * padding[0] - dilation[0] * (kernel[0] - 1) - 1) / stride[0] + 1 ) out_width = int( (in_width + 2 * padding[1] - dilation[1] * (kernel[1] - 1) - 1) / stride[1] + 1 ) out_shape = [out_height, out_width] return out_shape # network configuration def set_net_configuration(layers, test_set): # fetch input shape and output size from test set input_shape = list(test_set.tensors[0].size()[1:]) output_size = int(np.prod(test_set.tensors[-1].size()[1:])) # cast to int for json # set device if torch.cuda.is_available(): device = "cuda" else: device = "cpu" # set network configuration net_config = { "layers": layers, "input_shape": input_shape, "output_size": output_size, "device": device, } if len(test_set.tensors) > 2: net_config["input_2_size"] = np.prod(test_set.tensors[1].size()[1:]) return net_config def train_network( train_settings, train_set, val_set, net_config, loss_fn, verbose=True, super_verbose=False, ): # reset the seed torch.manual_seed(42) # create network from config network = _create_network(net_config) # copy optimizer settings to avoid modifying train_settings dict_optimizer = train_settings["optimizer"].copy() # select the optimizer in torch.optim from settings optimizer = getattr(torch.optim, dict_optimizer.pop("optimizer")) # bind network, unpack optimizer settings optimizer = optimizer(network.parameters(), **dict_optimizer) if "lr_scheduler" in train_settings: # copy scheduler settings to avoid modifying train_settings dict_scheduler = train_settings["lr_scheduler"].copy() # select the lr scheduler in torch.optim from settings lr_scheduler = getattr( torch.optim.lr_scheduler, dict_scheduler.pop("scheduler") ) # bind optimizer, unpack scheduler settings lr_scheduler = lr_scheduler(optimizer, **dict_scheduler) # create train dataloader train_loader = torch.utils.data.DataLoader( dataset=train_set, batch_size=train_settings["batch_size"], shuffle=True, drop_last=False, ) # create validation dataloader if len(val_set) > 2048: val_batch_size = 2048 # cap batch size to avoid memory issues else: val_batch_size = len(val_set) val_loader = torch.utils.data.DataLoader( dataset=val_set, batch_size=val_batch_size, drop_last=False ) if "es_patience" in train_settings: # set up early stopping checkpoint fp_checkpoint = "checkpoint-es.pt" early_stopping = es.EarlyStopping( patience=train_settings["es_patience"], delta=1e-7, verbose=super_verbose, output_fp=fp_checkpoint, ) training_loss_history = [] validation_loss_history = [] # loop over epochs for epoch in range(train_settings["epochs"]): train_losses = [] # set in training mode network.train() for data in train_loader: # to device (gpu/cpu) x_train = data[0].to(net_config["device"]) if len(data) > 2: x2_train = data[1].to(net_config["device"]) y_train = data[-1].to(net_config["device"]) # clear gradient of optimizer optimizer.zero_grad() # forward pass if len(data) == 2: yhat = network(x_train) else: yhat = network(x_train, x2_train) # compute loss loss = loss_fn(yhat, y_train) # backward pass loss.backward() # record loss train_losses.append(loss.item()) # update parameters optimizer.step() # record loss and update loss history training_loss = np.mean(train_losses) training_loss_history.append(training_loss) # validation loss with torch.no_grad(): val_losses = [] # set in eval mode network.eval() for data in val_loader: # to device (gpu/cpu) x_val = data[0].to(net_config["device"]) if len(data) > 2: x2_val = data[1].to(net_config["device"]) y_val = data[-1].to(net_config["device"]) # forward pass if len(data) == 2: yhat = network(x_val) else: yhat = network(x_val, x2_val) # compute loss val_loss = loss_fn(yhat, y_val) # record loss val_losses.append(val_loss.item()) # record loss and update loss history validation_loss =
np.mean(val_losses)
numpy.mean
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import io import logging import contextlib import os import datetime import json import numpy as np import cv2 import math import torch from PIL import Image from fvcore.common.timer import Timer from detectron2.structures import BoxMode, PolygonMasks, Boxes from fvcore.common.file_io import PathManager, file_lock from detectron2.data.catalog import MetadataCatalog, DatasetCatalog """ This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format". """ DOTA_CATEGORIES = [ {"color": [220, 20, 60], "isthing": 1, "id": 0, "name": "small-vehicle"}, {"color": [119, 11, 32], "isthing": 1, "id": 1, "name": 'large-vehicle'}, {"color": [0, 0, 142], "isthing": 1, "id": 2, "name": 'ship'}, {"color": [0, 0, 230], "isthing": 1, "id": 3, "name": 'container-crane'}, {"color": [106, 0, 228], "isthing": 1, "id": 4, "name": 'storage-tank'}, {"color": [0, 60, 100], "isthing": 1, "id": 5, "name": 'plane'}, {"color": [0, 80, 100], "isthing": 1, "id": 6, "name": 'tennis-court'}, {"color": [0, 0, 70], "isthing": 1, "id": 7, "name": 'harbor'}, {"color": [0, 0, 192], "isthing": 1, "id": 8, "name": 'bridge'}, {"color": [250, 170, 30], "isthing": 1, "id": 9, "name": 'baseball-diamond'}, {"color": [100, 170, 30], "isthing": 1, "id": 10, "name": 'roundabout'}, {"color": [220, 220, 0], "isthing": 1, "id": 11, "name": 'basketball-court'}, {"color": [175, 116, 175], "isthing": 1, "id": 12, "name": 'swimming-pool'}, {"color": [250, 0, 30], "isthing": 1, "id": 13, "name": 'soccer-ball-field'}, {"color": [165, 42, 42], "isthing": 1, "id": 14, "name": 'ground-track-field'}, {"color": [0, 82, 0], "isthing": 1, "id": 15, "name": "helicopter"}, ] class DotaAPI: def __init__(self, json_file): with open(json_file) as f: data = json.load(f) self.features = data['features'] @staticmethod def cvt_dota_to_detectron(dota_bbox: list, patch_size: tuple) -> list: """ Processes a coordinate array from a geojson into (cy, cx, height, width, theta) format :param (list) coords: an array of shape (N, 8) with 4 corner points of boxes :return: (numpy.ndarray) an array of shape (N, 5) with coordinates in proper format """ coord = np.asarray(dota_bbox) pts =
np.reshape(coord, (-1, 5))
numpy.reshape
import numpy as np from skimage.exposure import equalize_adapthist import torch from scipy.ndimage import gaussian_filter import scipy import random import torch as th from PIL import Image from scipy.interpolate import RectBivariateSpline class MyRandomImageContrastTransform(object): def __init__(self, random_state=None, is_labelmap=[False, True], clip_limit_range=[0.01, 1], nbins=256, enable=False): """ Perform Contrast Limited Adaptive Histogram Equalization (CLAHE) . An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image. Based on https://scikit-image.org/docs/dev/api/skimage.exposure.html?highlight=equalize_adapthist#skimage .exposure.equalize_adapthist Arguments --------- """ self.random_state = random_state self.clip_limit_range = clip_limit_range # [0,1] The larger the value, the higher the contrast self.nbins = nbins self.is_label_map = is_labelmap self.enable = enable def __call__(self, *inputs): if self.enable: outputs = [] assert len(self.is_label_map) == len( inputs), 'for each input, must clarify whether this is a label map or not.' clip_limit = np.random.uniform(low=self.clip_limit_range[0], high=self.clip_limit_range[1]) for idx, _input in enumerate(inputs): _input = _input.numpy() flag = self.is_label_map[idx] if flag: result = _input else: print(_input.shape) result = np.zeros(_input.shape, dtype=_input.dtype) for i in range(_input.shape[0]): temp = _input[i] print('temp shape', temp.shape) _input_min = temp.min() _input_max = temp.max() ## clahe requires intensity to be Uint16 temp = intensity_normalise(temp, perc_threshold=(0., 100.0), min_val=0, max_val=255) temp = np.int16(temp) clahe_output = equalize_adapthist(temp, clip_limit=clip_limit, nbins=self.nbins) ## recover intensity range result[i] = intensity_normalise(clahe_output, perc_threshold=(0., 100.0), min_val=_input_min, max_val=_input_max) tensorresult = torch.from_numpy(result).float() outputs.append(tensorresult) return outputs if idx >= 1 else outputs[0] else: outputs = inputs return outputs class RandomGamma(object): ''' Perform Random Gamma Contrast Adjusting support 2D and 3D ''' def __init__(self, p_thresh=0.5, gamma_range=[0.8, 1.4], gamma_flag=True, preserve_range=True): """ Randomly do gamma to a torch tensor Arguments -------- :param gamma_flag: [bool] list of flags for gamma aug """ self.gamma_range = gamma_range self.p_thresh = p_thresh self.gamma_flag = gamma_flag self.preserve_range = preserve_range ## if preserve the range to be in [min,max] def __call__(self, *inputs): outputs = [] if np.random.rand() < self.p_thresh: gamma = random.random() * (self.gamma_range[1] - self.gamma_range[0]) + self.gamma_range[0] # # print ('gamma: %f',gamma) for idx, _input in enumerate(inputs): assert inputs[0].size() == _input.size() if (self.gamma_flag[idx]): assert gamma > 0 if self.preserve_range: self.c_min = _input.min() self.c_max = _input.max() _input = _input ** (1.0 / gamma) if self.preserve_range: _input[_input < self.c_min] = self.c_min _input[_input > self.c_max] = self.c_max outputs.append(_input) else: idx = len(inputs) outputs = inputs return outputs if idx >= 1 else outputs[0] class RandomBrightnessFluctuation(object): ''' Perform image contrast and brightness augmentation. support 2D and 3D ''' def __init__(self, p=0.5, contrast_range=[0.8, 1.2], brightness_range=[-0.1, 0.1], flag=True, preserve_range=True): """ Arguments -------- :param flag: [bool] list of flags for aug """ self.contrast_range = contrast_range self.brightness_range = brightness_range self.p_thresh = p self.flag = flag self.preserve_range = preserve_range ## if preserve the range to be in [min,max] def __call__(self, *inputs): outputs = [] if
np.random.rand()
numpy.random.rand
from __future__ import division import numpy as np from data_tools import get_inputFileParameter import matplotlib matplotlib.use('PDF') # or Agg (for png), SVG, PS import matplotlib.pyplot as plt from data_tools import commentHdr #-------------------------------------------------------------------------------------------- def uvel(DI, profName="uvel") : mfile = DI['pdir']+"means_" + profName + ".dat" sfile = DI['pdir']+"sig_" + profName + ".dat" data = np.loadtxt(mfile, comments=commentHdr) y = data[:,1:] data = np.loadtxt(sfile, comments=commentHdr) ys = data[:,1:] npts, ntimes = np.shape(data) ntimes = ntimes - 1 cLine = np.zeros(ntimes) scLine = np.zeros(ntimes) imid = int(npts/2) + 1 for it in range(ntimes) : print("uvel: time %i of %i" %(it+1, ntimes)) cLine[it] = y[imid,it] scLine[it] = ys[imid,it] times = get_inputFileParameter(DI, ("dumpTimes",)) D = get_inputFileParameter(DI, ("initParams","djeti")) times = np.array(times) if len(times) != ntimes : raise ValueError("uvel.py: wrong number of times in data file and in input file.") data = np.vstack([times/D, cLine, scLine]).T head = " x/D, centerline, rms_cL" fname = DI['pdir']+ profName + "_cl.dat" np.savetxt(fname, data, header=head, fmt="%15.8e ", comments=commentHdr) #-------------------------------------------------------------------------------------------- def plot_uvel(DI, profName='uvel') : fname = DI['pdir']+"uvel_cl.dat" odt = np.loadtxt(fname, comments=commentHdr) U0 = get_inputFileParameter(DI, ("initParams","vel_max")) fit = 1.0/5.8*(odt[:,0]-4.0) Exp = np.loadtxt("exp_u_cl.dat") ua = get_inputFileParameter(DI, ("initParams","vel_min")) matplotlib.rcParams.update({'font.size':20, 'figure.autolayout': True}) #, 'font.weight':'bold'}) fig, axL = plt.subplots() #axL.plot(odt[:,0],(U0-ua)/(odt[:,1]-ua),'ko-') axL.plot(odt[:,0],(U0-ua)/(odt[:,1]-ua),'k-') axL.plot(Exp[:,0],Exp[:,1],'^') axL.plot(odt[:,0],fit,'k--') axL.set_ylabel(r'$v_0/v_{cL}$', fontsize=22) axL.set_xlabel("y/D", fontsize=22) axL.legend(("ODT", "EXP", "Fit"), loc='upper right', frameon=False, fontsize=16) axL.set_ylim([0,25]) plt.savefig(DI['pdir']+"uvel_cl_" + DI['cn'].replace(".","o")) #----------------------------------------------- D = get_inputFileParameter(DI, ("initParams","djeti")) Exp =
np.loadtxt("exp_u_rad.dat")
numpy.loadtxt
import gym from gym.utils import seeding import numpy as np from gym import spaces from os import path import sys def return_classes(): unwanted = ["EzPickle", "circleShape", "contactListener", "edgeShape", "fixtureDef", "polygonShape", "revoluteJointDef", "FrictionDetector", "ContactDetector", "Car"] current_module = sys.modules[__name__] class_names = [] for key in dir(current_module): if key in unwanted: continue if isinstance(getattr(current_module, key), type): class_names.append(key) return class_names DEBUG = False class Pendulum(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30 } def __init__(self, reward=None): self.max_speed = 8 self.max_torque = 2. self.dt = .05 self.g = 10.0 self.m = 1. self.l = 1. self.reward_fn = reward self.viewer = None high = np.array([1., 1., self.max_speed], dtype=np.float32) self.action_space = spaces.Box( low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=np.float32 ) self.observation_space = spaces.Box( low=-high, high=high, dtype=np.float32 ) self.seed() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): th, thdot = self.state # th := theta g = self.g m = self.m l = self.l dt = self.dt u = np.clip(u, -self.max_torque, self.max_torque)[0] self.last_u = u # for rendering costs = self.reward_fn.calculateReward(th, thdot, u) newthdot = thdot + (-3 * g / (2 * l) * np.sin(th + np.pi) + 3. / (m * l ** 2) * u) * dt newth = th + newthdot * dt newthdot = np.clip(newthdot, -self.max_speed, self.max_speed) if DEBUG: print("Inside step 1") self.state = np.array([newth, newthdot]) return self._get_obs(), -costs, False, {} def reset(self): high = np.array([np.pi, 1]) print("Reset 1") self.state = self.np_random.uniform(low=-high, high=high) print("Reset 2") self.last_u = None print(self.state) return self._get_obs() def _get_obs(self): theta, thetadot = self.state print("Get obs 1") return np.array([np.cos(theta), np.sin(theta), thetadot]) def render(self, mode='human'): if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(500, 500) self.viewer.set_bounds(-2.2, 2.2, -2.2, 2.2) rod = rendering.make_capsule(1, .2) rod.set_color(.8, .3, .3) self.pole_transform = rendering.Transform() rod.add_attr(self.pole_transform) self.viewer.add_geom(rod) axle = rendering.make_circle(.05) axle.set_color(0, 0, 0) self.viewer.add_geom(axle) if DEBUG: print("Inside render 1") try: fname = path.join(path.dirname(__file__), "../assets/clockwise.png") if DEBUG: print("Inside render 2") self.img = rendering.Image(fname, 1., 1.) except Exception as e: print(e) if DEBUG: print("Inside render 3") self.imgtrans = rendering.Transform() if DEBUG: print("Inside render 4") self.img.add_attr(self.imgtrans) if DEBUG: print("Inside render 5") self.viewer.add_onetime(self.img) if DEBUG: print("Inside render 6") self.pole_transform.set_rotation(self.state[0] + np.pi / 2) if DEBUG: print("Inside render 7") if self.last_u: if DEBUG: print("Inside render 8") self.imgtrans.scale = (-self.last_u / 2, np.abs(self.last_u) / 2) if DEBUG: print("Inside render 9") return self.viewer.render(return_rgb_array=mode == 'rgb_array') def close(self): if self.viewer: self.viewer.close() self.viewer = None """ http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp permalink: https://perma.cc/6Z2N-PFWC """ import math import numpy as np import gym from gym import spaces from gym.utils import seeding class MountainCarEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30 } def __init__(self, goal_velocity=0, reward=None): self.min_position = -1.2 self.max_position = 0.6 self.max_speed = 0.07 self.goal_position = 0.5 self.goal_velocity = goal_velocity self.force = 0.001 self.gravity = 0.0025 self.reward_fn = reward self.low = np.array( [self.min_position, -self.max_speed], dtype=np.float32 ) self.high = np.array( [self.max_position, self.max_speed], dtype=np.float32 ) self.viewer = None self.action_space = spaces.Discrete(3) self.observation_space = spaces.Box( self.low, self.high, dtype=np.float32 ) self.seed() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action)) position, velocity = self.state velocity += (action - 1) * self.force + math.cos(3 * position) * (-self.gravity) velocity = np.clip(velocity, -self.max_speed, self.max_speed) position += velocity position = np.clip(position, self.min_position, self.max_position) if (position == self.min_position and velocity < 0): velocity = 0 done = bool( position >= self.goal_position and velocity >= self.goal_velocity ) reward = self.reward_fn.calculateReward() self.state = (position, velocity) return np.array(self.state), reward, done, {} def reset(self): self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0]) return np.array(self.state) def _height(self, xs): return
np.sin(3 * xs)
numpy.sin
import numpy as np import pandas as pd from keras.layers import Dense, CuDNNGRU from keras.models import Sequential from keras.utils import to_categorical from keras_preprocessing.sequence import TimeseriesGenerator from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split window_size = 3 batch_size = 128 epochs_num = 32 split = 0.8 df = pd.read_csv('./data/processed/GloVe.csv') print('Number of samples:', len(df)) X = df.loc[:, df.columns != 'Class'].values y = to_categorical(df.loc[:, 'Class']) X =
np.concatenate((X[1:], y[:-1]), axis=1)
numpy.concatenate
"""a module that houses TOV solvers in the "standard" formulation """ __author__ = "<NAME> (<EMAIL>)" #------------------------------------------------- import numpy as np from scipy.integrate import odeint from scipy.special import hyp2f1 from universality.utils.units import (G, c2, Msun) #------------------------------------------------- #DEFAULT_MAX_DR = 1e5 ### maximum step size allowed within the integrator (in standard units, which should be in cm) DEFAULT_MAX_DR = 1e6 DEFAULT_MIN_DR = 1.0 ### the smallest step size we allow (in standard units, which should be cm) DEFAULT_GUESS_FRAC = 0.1 ### how much of the way to the vanishing pressure we guess via Newton's method DEFAULT_INITIAL_FRAC = 1e-3 ### the initial change in pressure we allow when setting the intial conditions DEFAULT_RTOL = 1e-4 DEFAULT_MXSTEP = 10000 #------------------------ TWOPI = 2*np.pi FOURPI = 2*TWOPI Gc2 = G/c2 #------------------------------------------------- ### Standard formulation of the TOV equations #------------------------------------------------- ### basic evolutionary equations def dmdr(r, epsc2): return FOURPI * r**2 * epsc2 def dmbdr(r, rho, m): return dmdr(r, rho) * (1 - 2*Gc2*m/r)**-0.5 def dpc2dr(r, pc2, m, epsc2): return - Gc2 * (epsc2 + pc2)*(m + FOURPI * r**3 * pc2)/(r * (r - 2*Gc2*m)) def detadr(r, pc2, m, eta, epsc2, cs2c2): invf = (1. - 2.*Gc2*m/r)**-1 A = 2. * invf * (1. - 3.*Gc2*m/r - TWOPI*Gc2*r**2 * (epsc2 + 3.*pc2)) B = invf * (6. - FOURPI*Gc2*r**2 * (epsc2 + pc2)*(3. + 1./cs2c2)) return -1.*(eta*(eta - 1.) + A*eta - B)/r def domegadr(r, pc2, m, omega, epsc2): P = FOURPI * Gc2 * r**3 * (epsc2 + pc2)/ (r - 2.*Gc2*m) return (P*(omega + 4.) - omega*(omega + 3.))/r #------------------------------------------------- # functions for values at the stellar surface #------------------------------------------------- def eta2lambda(r, m, eta): ### dimensionless tidal deformability C = Gc2*m/r # compactness fR = 1.-2.*C F = hyp2f1(3., 5., 6., 2.*C) # a hypergeometric function z = 2.*C dFdz = (5./(2.*z**6.)) * (z*(z*(z*(3.*z*(5. + z) - 110.) + 150.) - 60.) / (z - 1.)**3 + 60.*np.log(1. - z)) RdFdr = -2.*C*dFdz # log derivative of hypergeometric function k2el = 0.5*(eta - 2. - 4.*C/fR) / (RdFdr -F*(eta + 3. - 4.*C/fR)) # gravitoelectric quadrupole Love number return (2./3.)*(k2el/C**5) def omega2i(r, omega): ### moment of inertia return (omega/(3. + omega)) * r**3/(2.*Gc2) #------------------------------------------------- # initial conditions #------------------------------------------------- def initial_pc2(pc2i, frac): return (1. - frac)*pc2i ### assume a constant slope over a small change in the pressure def initial_r(pc2i, ec2i, frac): return (frac*pc2i / ( G * (ec2i + pc2i) * (ec2i/3. + pc2i) * TWOPI ) )**0.5 ### solve for the radius that corresponds to that small change def initial_m(r, ec2i): return FOURPI * r**3 * ec2i / 3. # gravitational mass def initial_mb(r, rhoi): return FOURPI * r**3 * rhoi / 3. # gravitational mass def initial_eta(r, pc2i, ec2i, cs2c2i): return 2. + FOURPI * Gc2 * r**2 * (9.*pc2i + 13.*ec2i + 3.*(pc2i+ec2i)/cs2c2i)/21. # intial perturbation for dimensionless tidal deformability def initial_omega(r, pc2i, ec2i): return 16.*np.pi * Gc2 * r**2 * (pc2i + ec2i)/5. # initial frame-dgragging function #------------------------------------------------- # central loop that solves the TOV equations given a set of coupled ODEs #------------------------------------------------- def engine( r, vec, eos, dvecdr_func, min_dr=DEFAULT_MIN_DR, max_dr=DEFAULT_MAX_DR, guess_frac=DEFAULT_GUESS_FRAC, initial_frac=DEFAULT_INITIAL_FRAC, rtol=DEFAULT_RTOL, mxstp=DEFAULT_MXSTEP, ): """integrate the TOV equations with central pressure "pc" and equation of state described by energy density "eps" and pressure "p" expects eos = (pressure, energy_density) """ vec = np.array(vec, dtype=float) while vec[0] > 0: ### continue until pressure vanishes vec0 = vec[:] # store the current location as the old location r0 = r ### estimate the radius at which this p will vanish via Newton's method r = r0 + max(min_dr, min(max_dr, guess_frac * abs(vec[0]/dvecdr_func(vec, r, eos)[0]))) ### integrate out until we hit that estimate vec[:] = odeint(dvecdr_func, vec0, (r0, r), args=(eos,), rtol=rtol, hmax=max_dr, mxstep=mxstep)[-1,:] ### retain only the last point ### return to client, who will then interpolate to find the surface ### interpolate to find stellar surface p = [vec0[0], vec[0]] # radius r =
np.interp(0, p, [r0, r])
numpy.interp
import numpy as np import iminuit as minuit import time import functools import logging from scipy.special import ndtri, erf from collections import OrderedDict from copy import deepcopy import numpy as np # --- Helper functions ------------------------------------- # def set_default(func = None, passed_kwargs = {}): """ Read in default keywords of the simulation and pass to function """ if func is None: return functools.partial(set_default, passed_kwargs = passed_kwargs) @functools.wraps(func) def init(*args, **kwargs): for k in passed_kwargs.keys(): kwargs.setdefault(k,passed_kwargs[k]) return func(*args, **kwargs) return init # ---------------------------------------------------------- # # --- minuit defaults ------------------------------------- # # The default tolerance is 0.1. # Minimization will stop when the estimated vertical distance to the minimum (EDM) # is less than 0.001*tolerance*UP (see SET ERR). minuit_def = { 'verbosity': 0, 'int_steps': 1e-4, 'strategy': 2, 'tol': 1e-3, 'up': 1., 'max_tol_increase': 3000., 'tol_increase': 1000., 'ncall': 5000, 'pedantic': True, 'precision': None, 'pinit': {'norm' : -10., 'index': -3., 'alphac': 1., 'r': 17.}, 'fix': {'norm' : False, 'index': False, 'alphac': False, 'r': False }, 'limits': {'norm' : [-20,-5], 'index': [-5,5], 'alphac': [0.1,10.], 'r': [16.,18.]}, 'islog': {'norm' : True, 'index': False, 'alphac': False, 'r': True}, } # ---------------------------------------------------------- # class FitCrab(object): def __init__(self, crab_ssc, crab_data, fit_sync=False, fit_ic=False, dsys=0.): self._parnames = None self._par_islog = None self._ssc = crab_ssc self._data = crab_data self._fit_sync = fit_sync self._fit_ic = fit_ic self._x = None self._y = None self._dy = None self._y_theo = None self._dsys = dsys self._minimize_f = None self._m = None self._fitarg = None self._n_pars = 0 # save the initial electron spectrum parameters # and magnetic field for the IC fit self._p0 = deepcopy(self._ssc.params_n_el) self._p0['B'] = deepcopy(self._ssc.B) pass @property def ssc(self): return self._ssc @property def data(self): return self._data @property def fit_sync(self): return self._fit_sync @fit_sync.setter def fit_sync(self, fit_sync): self._fit_sync = fit_sync @property def fit_ic(self): return self._fit_ic @fit_ic.setter def fit_ic(self, fit_ic): self._fit_ic = fit_ic @property def dsys(self): return self._dsys @property def m(self): return self._m @property def x(self): return self._x @property def y(self): return self._y @property def dy(self): return self._dy @property def y_theo(self): return self._y_theo @property def n_pars(self): return self._n_pars @dsys.setter def dsys(self, dsys): self._dsys= dsys def init_values_crab_meyer(self, islog_keys=('Nradio', 'gmin', 'gmax', 'gradio_min', 'gradio_max', 'Nwind', 'gwind_min', 'gwind_max', 'gwind_b', 'dust_norm'), fix_keys=('dust_extension', 'gmin', 'gmax'), exclude=('ic_dust', 'ic_sync', 'ic_cmb') ): """ Generate initial guess dictionaries needed for fitting from current SSC model. Tuned to the fit parameters of Meyer et al. const B-field model. Returns ------- dict with four sub dictionaries: - pinit: initial guesses for parameters - limits: limits for the parameters - fix: whether parameters are fixed or not - islog: whether parameters are fitted in log10 space """ pinit, limits, islog, fix = {}, {}, {}, {} for d in [self._ssc.params_n_seed, self._ssc.params_n_el]: for k, v in d.items(): if k in exclude: continue if k in islog_keys: pinit[k] = np.log10(v) limits[k] = [pinit[k] - 2., pinit[k] + 2.] islog[k] = True else: pinit[k] = v limits[k] = np.sort([pinit[k] * 0.3, pinit[k] * 3.]) islog[k] = False if k in fix_keys: fix[k] = True else: fix[k] = False pinit['B'] = self._ssc.B limits['B'] = [pinit['B'] * 0.1, pinit['B'] * 10.] islog['B'] = False fix['B'] = self._fit_sync result = dict(pinit=pinit, islog=islog, fix=fix, limits=limits) return result def _fill_chisq(self, *args): """ likelihood function passed to iMinuit """ params = {} for i, p in enumerate(self._parnames): if self._par_islog[p]: params[p] = np.power(10., args[i]) else: params[p] = args[i] return self.chisq(params) def chisq(self, params): """Calculate the chi^2 sq""" chi_sq = 0 # update the model parameters # in the ssc module for k, v in params.items(): if k in self._ssc.params_n_el.keys(): self._ssc.params_n_el[k] = v elif k in self._ssc.params_n_seed.keys(): self._ssc.params_n_seed[k] = v elif k == 'B': self._ssc.B = v # perform fit to synchrotron data only if self._fit_sync and not self._fit_ic: self._y_theo = self._x * (self._ssc.sync(self._x, g_steps=50) + self._ssc.grey_body(self._x)) # perform fit to IC data only elif self._fit_ic and not self._fit_sync: self._ssc.FSyncInterp = None # init new synchrotron interpolation upon each call # rescale gamma factors to keep synchrotron part constant self._ssc.params_n_el['gradio_min'] = self._p0['gradio_min'] * np.sqrt(self._p0['B']/ self._ssc.B) self._ssc.params_n_el['gradio_max'] = self._p0['gradio_max'] * np.sqrt(self._p0['B']/ self._ssc.B) # rescale normalization to keep synchrotron part constant self._ssc.params_n_el['Nradio'] = self._p0['Nradio'] * \ (self._p0['B'] / self._ssc.B) ** \ ((-self._ssc.params_n_el['Sradio'] + 1.)/2.) # see Blumenthal & Gould (1970), Eq. 4.59 self._ssc.params_n_el['gwind_min'] = self._p0['gwind_min'] * np.sqrt(self._p0['B']/ self._ssc.B) self._ssc.params_n_el['gwind_max'] = self._p0['gwind_max'] * np.sqrt(self._p0['B']/ self._ssc.B) # divide since it's the inverse we are fitting self._ssc.params_n_el['gwind_b'] = self._p0['gwind_b'] / np.sqrt(self._p0['B']/ self._ssc.B) # rescale normalization to keep synchrotron part constant # #ssc._ssc.params_n_el['Nwind'] = self._p0['Nwind'] * (self._p0['B']/ self._ssc.B) \ # ** ((-self._ssc.params_n_el['Swind']+ 1.)/2.) # why like this and not as above??? self._ssc.params_n_el['Nwind'] = self._p0['Nwind'] * (self._p0['B']/ self._ssc.B) ** 0.5 self._y_theo = self._ssc.ic(self._x, g_steps=100, e_steps=50) * self._x # perform fit over both IC and sync else: self._ssc.FSyncInterp = None # init new synchrotron interpolation upon each call m_sync = self._x < 1e22 self._y_theo = np.zeros_like(self._x) self._y_theo[m_sync] = self._x[m_sync] * (self._ssc.sync(self._x[m_sync], g_steps=50) + self._ssc.grey_body(self._x[m_sync])) self._y_theo[~m_sync] = self._x[~m_sync] * (self._ssc.sync(self._x[~m_sync], g_steps=50) + self._ssc.ic(self._x[~m_sync], g_steps=100, e_steps=50)) chi_sq = np.sum((self._y_theo - self._y)**2. / (np.sqrt(self._dy ** 2. + self._dsys**2. * self._y**2.))**2.) return chi_sq @set_default(passed_kwargs = minuit_def) def fill_fitarg(self, **kwargs): """ Helper function to fill the dictionary for minuit fitting """ # set the fit arguments fitarg = {} fitarg.update(kwargs['pinit']) for k in kwargs['limits'].keys(): fitarg['limit_{0:s}'.format(k)] = kwargs['limits'][k] fitarg['fix_{0:s}'.format(k)] = kwargs['fix'][k] fitarg['error_{0:s}'.format(k)] = kwargs['pinit'][k] * kwargs['int_steps'] fitarg = OrderedDict(sorted(fitarg.items())) # get the names of the parameters self._parnames = kwargs['pinit'].keys() self._par_islog = kwargs['islog'] return fitarg @set_default(passed_kwargs=minuit_def) def run_migrad(self, fitarg, **kwargs): """ Helper function to initialize migrad and run the fit. Initial parameters are estimated with scipy fit. """ self._fitarg = fitarg values, bounds = [],[] for k in self._parnames: values.append(fitarg[k]) bounds.append(fitarg['limit_{0:s}'.format(k)]) logging.info(self._parnames) logging.info(values) logging.info(self._fill_chisq(*values)) cmd_string = "lambda {0}: self.__fill_chisq({0})".format( (", ".join(self._parnames), ", ".join(self._parnames))) string_args = ", ".join(self._parnames) global f # needs to be global for eval to find it f = lambda *args: self._fill_chisq(*args) cmd_string = "lambda %s: f(%s)" % (string_args, string_args) logging.debug(cmd_string) # work around so that the parameters get names for minuit self._minimize_f = eval(cmd_string, globals(), locals()) self._m = minuit.Minuit(self._minimize_f, print_level =kwargs['verbosity'], errordef = kwargs['up'], pedantic = kwargs['pedantic'], **fitarg) self._m.tol = kwargs['tol'] self._m.strategy = kwargs['strategy'] logging.debug("tol {0:.2e}, strategy: {1:n}".format( self._m.tol, self._m.strategy)) self._m.migrad(ncall=kwargs['ncall']) #, precision = kwargs['precision']) return def __print_failed_fit(self): """print output if migrad failed""" if not self._m.migrad_ok(): fmin = self._m.get_fmin() logging.warning( '*** migrad minimum not ok! Printing output of get_fmin' ) logging.warning('{0:s}:\t{1}'.format('*** has_accurate_covar', fmin.has_accurate_covar)) logging.warning('{0:s}:\t{1}'.format('*** has_covariance', fmin.has_covariance)) logging.warning('{0:s}:\t{1}'.format('*** has_made_posdef_covar', fmin.has_made_posdef_covar)) logging.warning('{0:s}:\t{1}'.format('*** has_posdef_covar', fmin.has_posdef_covar)) logging.warning('{0:s}:\t{1}'.format('*** has_reached_call_limit', fmin.has_reached_call_limit)) logging.warning('{0:s}:\t{1}'.format('*** has_valid_parameters', fmin.has_valid_parameters)) logging.warning('{0:s}:\t{1}'.format('*** hesse_failed', fmin.hesse_failed)) logging.warning('{0:s}:\t{1}'.format('*** is_above_max_edm', fmin.is_above_max_edm)) logging.warning('{0:s}:\t{1}'.format('*** is_valid', fmin.is_valid)) return def __repeat_migrad(self, **kwargs): """Repeat fit if fit was above edm""" fmin = self._m.get_fmin() if not self._m.migrad_ok() and fmin['is_above_max_edm']: logging.warning( 'Migrad did not converge, is above max edm. Increasing tol.' ) tol = self._m.tol self._m.tol *= self._m.edm / (self._m.tol * self._m.errordef) * kwargs['tol_increase'] logging.info('New tolerance : {0}'.format(self._m.tol)) if self._m.tol >= kwargs['max_tol_increase']: logging.warning( 'New tolerance to large for required precision' ) else: self._m.migrad( ncall=kwargs['ncall'])#, #precision = kwargs['precision'] #) logging.info( 'Migrad status after second try: {0}'.format( self._m.migrad_ok() ) ) self._m.tol = tol return @set_default(passed_kwargs = minuit_def) def fit(self, nu_min, nu_max, fit_sync=True, minos=0., exclude=(), **kwargs): """ Fit the SSC model Parameters ---------- exclude: list list with data set names that should be excluded nu_min: float minimum considered frequency of data points in Hz nu_max: float maximum considered frequency of data points in Hz fit_sync: bool only fit synchrotron part. If false, only fit IC part kwargs ------ pinit: dict initial guess for intrinsic spectral parameters fix: dict booleans for freezing parameters bounds: dict dict with list for each parameter with min and max value Returns ------- tuple with likelihood profile for distance of gamma-ray emitting region """ self._fit_sync = fit_sync self._x, self._y, self._dy = self._data.build_data_set_for_fitting(exclude=exclude, nu_min=nu_min, nu_max=nu_max, log=False, yunit='flux') fitarg = self.fill_fitarg(**kwargs) t1 = time.time() self.run_migrad(fitarg, **kwargs) try: self._m.hesse() logging.debug("Hesse matrix calculation finished") except RuntimeError as e: logging.warning( "*** Hesse matrix calculation failed: {0}".format(e) ) logging.debug(self._m.fval) self.__repeat_migrad(**kwargs) logging.debug(self._m.fval) fmin = self._m.get_fmin() if not fmin.hesse_failed: try: self._corr = self._m.np_matrix(correlation=True) except: self._corr = -1 logging.debug(self._m.values) if self._m.migrad_ok(): if minos: for k in self.m.values.keys(): if kwargs['fix'][k]: continue self.m.minos(k,minos) logging.debug("Minos finished") else: self.__print_failed_fit() logging.info('fit took: {0}s'.format(time.time() - t1)) self._npars = 0 for k in self._m.values.keys(): if kwargs['fix'][k]: err = np.nan else: err = self._m.errors[k] self._npars += 1 logging.info('best fit {0:s}: {1:.5e} +/- {2:.5e}'.format(k, self._m.values[k], err)) def write_best_fit(self): """ Return the current best-fit parameters as a dictionary with which a new CrabSSC module can be initialized """ config = dict(params_n_el={}, params_n_seed={}) for k, v in self._m.values.items(): if self._par_islog[k]: x = 10.**v else: x = v if k in self._ssc.params_n_el.keys(): config['params_n_el'][k] = x elif k in self._ssc.params_n_seed.keys(): config['params_n_seed'][k] = x elif k == 'B': config['B'] = x for k in ['ic_sync', 'ic_cmb', 'ic_dust']: config['params_n_seed'][k] = self._ssc.params_n_seed[k] config['d'] = self._ssc.d return config def llhscan(self, parname, bounds, steps, log = False): """ Perform a manual scan of the likelihood for one parameter (inspired by mnprofile) Parameters ---------- parname: str parameter that is scanned bounds: list or tuple scan bounds for parameter steps: int number of scanning steps {options} log: bool if true, use logarithmic scale Returns ------- tuple of 4 lists containing the scan values, likelihood values, best fit values at each scanning step, migrad_ok status """ llh, pars, ok = [], [], [] if log: values = np.logscape(
np.log10(bounds[0])
numpy.log10
""" Homework4. Replace 'pass' by your implementation. """ import numpy as np import helper # Insert your package here from sympy import * from scipy.ndimage.filters import gaussian_filter from scipy.optimize import leastsq, minimize ''' Q2.1: Eight Point Algorithm Input: pts1, Nx2 Matrix pts2, Nx2 Matrix M, a scalar parameter computed as max (imwidth, imheight) Output: F, the fundamental matrix ''' def eightpoint(pts1, pts2, M): # Replace pass by your implementation T = np.eye(3) / M T[2, 2] = 1; pts1 = pts1.astype('float')/M pts2 = pts2.astype('float')/M A = np.vstack([ pts1[:, 0]*pts2[:, 0],pts1[:, 0]*pts2[:, 1], pts1[:, 0], pts1[:, 1]*pts2[:, 0],pts1[:, 1]*pts2[:, 1], pts1[:, 1], pts2[:, 0],pts2[:, 1], np.ones(pts1.shape[0]) ]).T [U, S, V] = np.linalg.svd(A) F = np.reshape(V[-1,:], (3,3)) F = helper.refineF(F, pts1, pts2) F = T.T @ F @ T return F ''' Q2.2: Seven Point Algorithm Input: pts1, Nx2 Matrix pts2, Nx2 Matrix M, a scalar parameter computed as max (imwidth, imheight) Output: Farray, a list of estimated fundamental matrix. ''' def sevenpoint(pts1, pts2, M): T = np.eye(3) / M T[2, 2] = 1; pts1 = pts1.astype('float')/M pts2 = pts2.astype('float')/M Fs = [] A = np.vstack([ pts1[:, 0]*pts2[:, 0],pts1[:, 0]*pts2[:, 1], pts1[:, 0], pts1[:, 1]*pts2[:, 0],pts1[:, 1]*pts2[:, 1], pts1[:, 1], pts2[:, 0],pts2[:, 1], np.ones(pts1.shape[0]) ]).T [U, S, V] = np.linalg.svd(A) F1 = np.reshape(V[-1,:], (3,3)) F2 = np.reshape(V[-2,:], (3,3)) alpha = Symbol('alpha') eqn = Matrix(F1 + alpha*F2).det() solns = roots(eqn) for i, sol in enumerate(solns): if re(sol)==sol: sol = float(sol) F = F1 + sol*F2 F = helper.refineF(F, pts1, pts2) Fs.append(T.T @ F @ T) return Fs ''' Q3.1: Compute the essential matrix E. Input: F, fundamental matrix K1, internal camera calibration matrix of camera 1 K2, internal camera calibration matrix of camera 2 Output: E, the essential matrix ''' def essentialMatrix(F, K1, K2): return K2.T @ F @ K1 ''' Q3.2: Triangulate a set of 2D coordinates in the image to a set of 3D points. Input: C1, the 3x4 camera matrix pts1, the Nx2 matrix with the 2D image coordinates per row C2, the 3x4 camera matrix pts2, the Nx2 matrix with the 2D image coordinates per row Output: P, the Nx3 matrix with the corresponding 3D points per row err, the reprojection error. ''' def triangulate(C1, pts1, C2, pts2): P = [] error = 0 for pt1, pt2 in zip(pts1, pts2): x1, y1, x2, y2 = pt1[0], pt1[1], pt2[0], pt2[1] A = np.vstack([(x1*C1[2, :]-C1[0, :]), (y1*C1[2, :]-C1[1, :]), (x2*C2[2, :]-C2[0, :]), (y2*C2[2, :]-C2[1, :])]) [U, S, V] = np.linalg.svd(A) w = V[-1,:]/V[-1,-1] p1_reproj = C1 @ w p2_reproj = C2 @ w p1_reproj = p1_reproj/p1_reproj[-1] p2_reproj = p2_reproj/p2_reproj[-1] error += (np.linalg.norm(p1_reproj[:2]- pt1)**2 + np.linalg.norm(p2_reproj[:2]- pt2)**2) P.append(w[:3]) P = np.vstack(P) return P, error ''' Q4.1: 3D visualization of the temple images. Input: im1, the first image im2, the second image F, the fundamental matrix x1, x-coordinates of a pixel on im1 y1, y-coordinates of a pixel on im1 Output: x2, x-coordinates of the pixel on im2 y2, y-coordinates of the pixel on im2 ''' def epipolarCorrespondence(im1, im2, F, x1, y1): sy, sx, _ = im2.shape v = np.array([x1, y1, 1]) l = F.dot(v) s = np.sqrt(l[0]**2+l[1]**2) if s==0: error('Zero line vector in displayEpipolar') l = l/s if l[0] != 0: ye = sy-1; ys = 0 Y = np.arange(np.ceil(min(ys,ye)), np.ceil(max(ys,ye))) X =
np.round(-(l[1]*Y + l[2])/l[0])
numpy.round
"""CM3 algorithm for Checkers environment. Same algorithm as alg_credit.py, except that Checkers global state is defined by three parts (s_env, s^n, s^{-n}) instead of just (s^n, s^{-n}) """ import numpy as np import tensorflow.compat.v1 as tf import sys import networks class Alg(object): def __init__(self, experiment, dimensions, stage=1, n_agents=1, tau=0.01, lr_V=0.001, lr_Q=0.001, lr_actor=0.0001, gamma=0.99, use_Q_credit=1, use_V=0, nn={}): """ Same as alg_credit. Checkers global state has two parts Inputs: experiment - string dimensions - dictionary containing tensor dimensions (h,w,c) for tensor l for 1D vector stage - 1: Q_global and actor, does not use Q_credit 2: Q_global, actor and Q_credit tau - target variable update rate lr_V, lr_Q, lr_actor - learning rates for optimizer gamma - discount factor use_Q_credit - if 1, activates Q_credit network for use in policy gradient use_V - if 1, uses V_n(s) as the baseline in the policy gradient (this is an ablation) nn : neural net architecture parameters """ self.experiment = experiment if self.experiment == "checkers": # Global state self.rows_state = dimensions['rows_state'] self.columns_state = dimensions['columns_state'] self.channels_state = dimensions['channels_state'] self.l_state = n_agents * dimensions['l_state_one'] self.l_state_one_agent = dimensions['l_state_one'] self.l_state_other_agents = (n_agents-1) * dimensions['l_state_one'] # Agent observations self.l_obs_others = dimensions['l_obs_others'] self.l_obs_self = dimensions['l_obs_self'] # Dimensions for image input self.rows_obs = dimensions['rows_obs'] self.columns_obs = dimensions['columns_obs'] self.channels_obs = dimensions['channels_obs'] # Dimension of agent's observation of itself self.l_action = dimensions['l_action'] self.l_goal = dimensions['l_goal'] self.n_agents = n_agents self.tau = tau self.lr_V = lr_V self.lr_Q = lr_Q self.lr_actor = lr_actor self.gamma = gamma self.use_V = use_V self.use_Q_credit = use_Q_credit self.nn = nn self.agent_labels = np.eye(self.n_agents) self.actions = np.eye(self.l_action) # Initialize computational graph self.create_networks(stage) self.list_initialize_target_ops, self.list_update_target_ops = self.get_assign_target_ops(tf.trainable_variables()) # Use Q_global when n_agents == 1 (the choice is arbitrary, # since both networks share the same Stage 1 architecture) self.create_Q_global_train_op() if self.n_agents > 1 and self.use_Q_credit: self.list_initialize_credit_ops = self.get_assign_global_to_credit_ops() self.create_Q_credit_train_op() elif self.n_agents > 1 and self.use_V: self.create_V_train_op() self.create_policy_gradient_op() # TF summaries self.create_summary() def create_networks(self, stage): # Placeholders self.state_env = tf.placeholder(tf.float32, [None, self.rows_state, self.columns_state, self.channels_state], 'state_env') self.v_state_one_agent = tf.placeholder(tf.float32, [None, self.l_state_one_agent], 'v_state_one_agent') self.v_state_m = tf.placeholder(tf.float32, [None, self.l_state_one_agent], 'v_state_m') self.v_state_other_agents = tf.placeholder(tf.float32, [None, self.l_state_other_agents], 'v_state_other_agents') self.v_goal = tf.placeholder(tf.float32, [None, self.l_goal], 'v_goal') self.v_goal_others = tf.placeholder(tf.float32, [None, (self.n_agents-1)*self.l_goal], 'v_goal_others') self.v_labels = tf.placeholder(tf.float32, [None, self.n_agents]) self.action_others = tf.placeholder(tf.float32, [None, self.n_agents-1, self.l_action], 'action_others') self.action_one = tf.placeholder(tf.float32, [None, self.l_action], 'action_one') if self.experiment == "checkers": self.obs_self_t = tf.placeholder(tf.float32, [None, self.rows_obs, self.columns_obs, self.channels_obs], 'obs_self_t') self.obs_self_v = tf.placeholder(tf.float32, [None, self.l_obs_self], 'obs_self_v') self.obs_others = tf.placeholder(tf.float32, [None, self.l_obs_others], 'obs_others') self.actions_prev = tf.placeholder(tf.float32, [None, self.l_action], 'action_prev') # Actor network self.epsilon = tf.placeholder(tf.float32, None, 'epsilon') with tf.variable_scope("Policy_main"): if self.experiment == 'checkers': probs = networks.actor_checkers(self.actions_prev, self.obs_self_t, self.obs_self_v, self.obs_others, self.v_goal, f1=self.nn['A_conv_f'], k1=self.nn['A_conv_k'], n_h1=self.nn['A_n_h1'], n_h2=self.nn['A_n_h2'], n_actions=self.l_action, stage=stage) # probs is normalized self.probs = (1-self.epsilon) * probs + self.epsilon/float(self.l_action) self.action_samples = tf.multinomial(tf.log(self.probs), 1) with tf.variable_scope("Policy_target"): if self.experiment == 'checkers': probs_target = networks.actor_checkers(self.actions_prev, self.obs_self_t, self.obs_self_v, self.obs_others, self.v_goal, f1=self.nn['A_conv_f'], k1=self.nn['A_conv_k'], n_h1=self.nn['A_n_h1'], n_h2=self.nn['A_n_h2'], n_actions=self.l_action, stage=stage) self.action_samples_target = tf.multinomial(tf.log( (1-self.epsilon)*probs_target + self.epsilon/float(self.l_action) ), 1) # Q_n(s,\abf) with tf.variable_scope("Q_global_main"): if self.experiment == 'checkers': self.Q_global = networks.Q_global_checkers(self.state_env, self.v_state_one_agent, self.v_goal, self.action_one, self.v_state_other_agents, self.action_others, self.obs_self_t, self.obs_self_v, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'], n_h1_1=self.nn['Q_n_h1_1'], n_h1_2=self.nn['Q_n_h1_2'], n_h2=self.nn['Q_n_h2'], stage=stage) with tf.variable_scope("Q_global_target"): if self.experiment == 'checkers': self.Q_global_target = networks.Q_global_checkers(self.state_env, self.v_state_one_agent, self.v_goal, self.action_one, self.v_state_other_agents, self.action_others, self.obs_self_t, self.obs_self_v, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'], n_h1_1=self.nn['Q_n_h1_1'], n_h1_2=self.nn['Q_n_h1_2'], n_h2=self.nn['Q_n_h2'], stage=stage) # Q_n(s,a^m) if self.n_agents > 1 and self.use_Q_credit: with tf.variable_scope("Q_credit_main"): if self.experiment == 'checkers': self.Q_credit = networks.Q_credit_checkers(self.state_env, self.v_state_one_agent, self.v_goal, self.action_one, self.v_state_m, self.v_state_other_agents, self.obs_self_t, self.obs_self_v, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'], n_h1_1=self.nn['Q_n_h1_1'], n_h1_2=self.nn['Q_n_h1_2'], n_h2=self.nn['Q_n_h2'], stage=stage) with tf.variable_scope("Q_credit_target"): if self.experiment == 'checkers': self.Q_credit_target = networks.Q_credit_checkers(self.state_env, self.v_state_one_agent, self.v_goal, self.action_one, self.v_state_m, self.v_state_other_agents, self.obs_self_t, self.obs_self_v, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'], n_h1_1=self.nn['Q_n_h1_1'], n_h1_2=self.nn['Q_n_h1_2'], n_h2=self.nn['Q_n_h2'], stage=stage) # V(s,g^n), used as ablation at stage 2 if self.n_agents > 1 and self.use_V: with tf.variable_scope("V_main"): self.V = networks.V_checkers_ablation(self.state_env, self.v_state_one_agent, self.v_goal, self.v_state_other_agents) with tf.variable_scope("V_target"): self.V_target = networks.V_checkers_ablation(self.state_env, self.v_state_one_agent, self.v_goal, self.v_state_other_agents) def get_assign_target_ops(self, list_vars): # ops for equating main and target list_initial_ops = [] # ops for slow update of target toward main list_update_ops = [] list_Q_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_global_main') map_name_Q_main = {v.name.split('main')[1] : v for v in list_Q_main} list_Q_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_global_target') map_name_Q_target = {v.name.split('target')[1] : v for v in list_Q_target} if len(list_Q_main) != len(list_Q_target): raise ValueError("get_initialize_target_ops : lengths of Q_main and Q_target do not match") for name, var in map_name_Q_main.items(): # create op that assigns value of main variable to target variable of the same name list_initial_ops.append( map_name_Q_target[name].assign(var) ) for name, var in map_name_Q_main.items(): # incremental update of target towards main list_update_ops.append( map_name_Q_target[name].assign( self.tau*var + (1-self.tau)*map_name_Q_target[name] ) ) # For policy list_P_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Policy_main') map_name_P_main = {v.name.split('main')[1] : v for v in list_P_main} list_P_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Policy_target') map_name_P_target = {v.name.split('target')[1] : v for v in list_P_target} if len(list_P_main) != len(list_P_target): raise ValueError("get_initialize_target_ops : lengths of P_main and P_target do not match") for name, var in map_name_P_main.items(): # op that assigns value of main variable to target variable list_initial_ops.append( map_name_P_target[name].assign(var) ) for name, var in map_name_P_main.items(): # incremental update of target towards main list_update_ops.append( map_name_P_target[name].assign( self.tau*var + (1-self.tau)*map_name_P_target[name] ) ) # Repeat for Q_credit if self.n_agents > 1 and self.use_Q_credit: list_Qc_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_credit_main') map_name_Qc_main = {v.name.split('main')[1] : v for v in list_Qc_main} list_Qc_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_credit_target') map_name_Qc_target = {v.name.split('target')[1] : v for v in list_Qc_target} if len(list_Qc_main) != len(list_Qc_target): raise ValueError("get_initialize_target_ops : lengths of Q_credit_main and Q_credit_target do not match") for name, var in map_name_Qc_main.items(): # create op that assigns value of main variable to target variable of the same name list_initial_ops.append( map_name_Qc_target[name].assign(var) ) for name, var in map_name_Qc_main.items(): # incremental update of target towards main list_update_ops.append( map_name_Qc_target[name].assign( self.tau*var + (1-self.tau)*map_name_Qc_target[name] ) ) if self.n_agents > 1 and self.use_V: list_V_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'V_main') map_name_V_main = {v.name.split('main')[1] : v for v in list_V_main} list_V_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'V_target') map_name_V_target = {v.name.split('target')[1] : v for v in list_V_target} if len(list_V_main) != len(list_V_target): raise ValueError("get_initialize_target_ops : lengths of V_main and V_target do not match") for name, var in map_name_V_main.items(): # create op that assigns value of main variable to target variable of the same name list_initial_ops.append( map_name_V_target[name].assign(var) ) for name, var in map_name_V_main.items(): # incremental update of target towards main list_update_ops.append( map_name_V_target[name].assign( self.tau*var + (1-self.tau)*map_name_V_target[name] ) ) return list_initial_ops, list_update_ops def get_assign_global_to_credit_ops(self): """Get ops that assign value of Q_global network to Q_credit network. To be used at the start of Stage 2, after Q_global network has been initialized with the Stage 1 weights """ list_update_ops = [] list_Q_global = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_global_main') map_name_Q_global = {v.name.split('main')[1] : v for v in list_Q_global} list_Q_credit = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_credit_main') map_name_Q_credit = {v.name.split('main')[1] : v for v in list_Q_credit} if len(list_Q_global) != len(list_Q_credit): raise ValueError("get_assign_global_to_credit_ops : lengths of Q_global and Q_credit do not match") for name, var in map_name_Q_global.items(): list_split = name.split('/') if ('stage-2' not in list_split): # op that assigns value of Q_global variable to Q_credit variable of the same name list_update_ops.append( map_name_Q_credit[name].assign(var) ) return list_update_ops def run_actor(self, actions_prev, obs_others, obs_self_t, obs_self_v, goals, epsilon, sess): """Get actions for all agents as a batch Args: actions_prev: list of integers obs_others: list of vector or tensor describing other agents obs_self_t: list of observation grid centered on self obs_self_v: list of 1D observation vectors goals: [n_agents, n_lanes] epsilon: float sess: TF session """ # convert to batch obs_others = np.array(obs_others) obs_self_t = np.array(obs_self_t) obs_self_v = np.array(obs_self_v) actions_prev_1hot = np.zeros([self.n_agents, self.l_action]) actions_prev_1hot[np.arange(self.n_agents), actions_prev] = 1 feed = {self.obs_others:obs_others, self.obs_self_t:obs_self_t, self.obs_self_v:obs_self_v, self.v_goal:goals, self.actions_prev: actions_prev_1hot, self.epsilon:epsilon} action_samples_res = sess.run(self.action_samples, feed_dict=feed) return np.reshape(action_samples_res, action_samples_res.shape[0]) def run_actor_target(self, actions_prev, obs_others, obs_self_t, obs_self_v, goals, epsilon, sess): """Gets actions from the slowly-updating policy.""" feed = {self.obs_others:obs_others, self.obs_self_t:obs_self_t, self.obs_self_v:obs_self_v, self.v_goal:goals, self.actions_prev: actions_prev, self.epsilon:epsilon} action_samples_res = sess.run(self.action_samples_target, feed_dict=feed) return np.reshape(action_samples_res, action_samples_res.shape[0]) def create_Q_credit_train_op(self): # TD target calculated in train_step() using V_target self.Q_credit_td_target= tf.placeholder(tf.float32, [None], 'Q_credit_td_target') # Q_credit network has only one output self.loss_Q_credit = tf.reduce_mean(tf.square(self.Q_credit_td_target - tf.squeeze(self.Q_credit))) self.Q_credit_opt = tf.train.AdamOptimizer(self.lr_Q) self.Q_credit_op = self.Q_credit_opt.minimize(self.loss_Q_credit) def create_Q_global_train_op(self): # TD target calculated in train_step() using Q_target self.Q_global_td_target = tf.placeholder(tf.float32, [None], 'Q_global_td_target') # Q_global network has only one output self.loss_Q_global = tf.reduce_mean(tf.square(self.Q_global_td_target - tf.squeeze(self.Q_global))) self.Q_global_opt = tf.train.AdamOptimizer(self.lr_Q) self.Q_global_op = self.Q_global_opt.minimize(self.loss_Q_global) def create_V_train_op(self): self.V_td_target = tf.placeholder(tf.float32, [None], 'V_td_target') self.loss_V = tf.reduce_mean(tf.square(self.V_td_target - tf.squeeze(self.V))) self.V_opt = tf.train.AdamOptimizer(self.lr_V) self.V_op = self.V_opt.minimize(self.loss_V) def create_policy_gradient_op(self): # batch of 1-hot action vectors self.action_taken = tf.placeholder(tf.float32, [None, self.l_action], 'action_taken') # self.probs has shape [batch, l_action] log_probs = tf.log(tf.reduce_sum(tf.multiply(self.probs, self.action_taken), axis=1)+1e-15) # if stage==2, must be [batch*n_agents, n_agents], consecutive <n_agents> rows are same self.Q_actual = tf.placeholder(tf.float32, [None, self.n_agents], 'Q_actual') # First dim is n_agents^2 * batch; # If n_agents=1, first dim is batch; second dim is l_action # For <n_agents> > 1, the rows are Q_1(s,a^1),...,Q_N(s,a^1),Q_1(s,a^2),...,Q_N(s,a^2), ... , Q_1(s,a^N),...,Q_N(s,a^N) # where each row contains <l_action> Q-values, one for each possible action # Note that all Q networks have only one output, and the <l_action> dimension is due to evaluating all possible actions before feeding in feed_dict self.Q_cf = tf.placeholder(tf.float32, [None, self.l_action], 'Q_cf') # First dim is n_agents^2 * batch; # If n_agents=1, first dim is batch; second dim is l_action self.probs_evaluated = tf.placeholder(tf.float32, [None, self.l_action]) if self.n_agents == 1: advantage2 = tf.reduce_sum(tf.multiply(self.Q_cf, self.probs_evaluated), axis=1) advantage = tf.subtract(tf.squeeze(self.Q_actual), advantage2) self.policy_loss = -tf.reduce_mean( tf.multiply(log_probs, advantage) ) else: if self.use_Q_credit: # For the general case of any number of agents (covers n_agents==1) pi_mult_Q = tf.multiply( self.probs_evaluated, self.Q_cf ) # [batch*n_agents, n_agents] counterfactuals = tf.reshape( tf.reduce_sum(pi_mult_Q, axis=1), [-1,self.n_agents] ) # [batch*n_agents, n_agents], each block of nxn is matrix A_{mn} at one time step advantages = tf.subtract(self.Q_actual, counterfactuals) # [batch, n_agents] sum_n_A = tf.reshape( tf.reduce_sum(advantages, axis=1), [-1, self.n_agents] ) elif self.use_V: self.V_evaluated = tf.placeholder(tf.float32, [None, self.n_agents], 'V_evaluated') advantages = tf.subtract(self.Q_actual, self.V_evaluated) sum_n_A = tf.reshape( tf.reduce_sum(advantages, axis=1), [-1, self.n_agents] ) else: sum_n_A = tf.reshape( tf.reduce_sum(self.Q_actual, axis=1), [-1, self.n_agents] ) log_probs_shaped = tf.reshape(log_probs, [-1, self.n_agents]) # [batch, n_agents] m_terms = tf.multiply( log_probs_shaped, sum_n_A ) # [batch, n_agents] self.policy_loss = -tf.reduce_mean( tf.reduce_sum(m_terms, axis=1) ) self.policy_opt = tf.train.AdamOptimizer(self.lr_actor) self.policy_op = self.policy_opt.minimize(self.policy_loss) def create_summary(self): summaries_Q_global = [tf.summary.scalar('loss_Q_global', self.loss_Q_global)] Q_global_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_global_main') for v in Q_global_variables: summaries_Q_global.append( tf.summary.histogram(v.op.name, v) ) grads = self.Q_global_opt.compute_gradients(self.loss_Q_global, Q_global_variables) for grad, var in grads: if grad is not None: summaries_Q_global.append( tf.summary.histogram(var.op.name+'/gradient', grad) ) self.summary_op_Q_global = tf.summary.merge(summaries_Q_global) if self.n_agents > 1 and self.use_Q_credit: summaries_Q_credit = [tf.summary.scalar('loss_Q_credit', self.loss_Q_credit)] Q_credit_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Q_credit_main') for v in Q_credit_variables: summaries_Q_credit.append( tf.summary.histogram(v.op.name, v) ) grads = self.Q_credit_opt.compute_gradients(self.loss_Q_credit, Q_credit_variables) for grad, var in grads: if grad is not None: summaries_Q_credit.append( tf.summary.histogram(var.op.name+'/gradient', grad) ) self.summary_op_Q_credit = tf.summary.merge(summaries_Q_credit) elif self.n_agents > 1 and self.use_V: summaries_V = [tf.summary.scalar('loss_V', self.loss_V)] V_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'V_main') for v in V_variables: summaries_V.append( tf.summary.histogram(v.op.name, v) ) grads = self.V_opt.compute_gradients(self.loss_V, V_variables) for grad, var in grads: if grad is not None: summaries_V.append( tf.summary.histogram(var.op.name+'/gradient', grad) ) self.summary_op_V = tf.summary.merge(summaries_V) summaries_policy = [tf.summary.scalar('policy_loss', self.policy_loss)] policy_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Policy_main') for v in policy_variables: summaries_policy.append(tf.summary.histogram(v.op.name, v)) grads = self.policy_opt.compute_gradients(self.policy_loss, policy_variables) for grad, var in grads: if grad is not None: summaries_policy.append( tf.summary.histogram(var.op.name+'/gradient', grad) ) self.summary_op_policy = tf.summary.merge(summaries_policy) def process_actions(self, n_steps, actions): """Reformats actions for better matrix computation. Args: n_steps: int actions: np.array shape [time, agents], values are action indices Returns 1. actions_1hot [n_agents * n_steps, l_action] : each row is action taken by one agent at one time step 2. actions_others_1hot [n_agents * n_steps, n_agents-1, l_action] : each row is for one agent at one time step, containing all (n-1) other agents' actions """ # Each row of actions is one time step, # row contains action indices for all agents # Convert to [time, agents, l_action] # so each agent gets its own 1-hot row vector actions_1hot = np.zeros([n_steps, self.n_agents, self.l_action], dtype=int) grid = np.indices((n_steps, self.n_agents)) actions_1hot[grid[0], grid[1], actions] = 1 # Convert to format [time*agents, agents-1, l_action] # so that the set of <n_agent> actions at each time step # is duplicated <n_agent> times, and each duplicate # now contains all <n_agent>-1 actions representing # the OTHER agents actions list_to_interleave = [] for n in range(self.n_agents): # extract all actions except agent n's action list_to_interleave.append( actions_1hot[:, np.arange(self.n_agents)!=n, :] ) # interleave actions_others_1hot =
np.zeros([self.n_agents*n_steps, self.n_agents-1, self.l_action])
numpy.zeros
''' @FileName : init_guess.py @EditTime : 2021-12-13 13:37:50 @Author : <NAME> @Email : <EMAIL> @Description : ''' from core.utils.recompute3D import recompute3D import torch import numpy as np from core.utils.umeyama import umeyama import cv2 from core.utils.visualization3d import Visualization from core.affinity.affinity import ComposedAffinity from core.assignment.associate import simple_associate from scipy import signal def joint_interpolation(poses, n_joints): """ Interpolate poses to a complete motion, the empty frame is None """ start = 0 # If the first frame is None if poses[start] is None: poses[start] = np.zeros((n_joints, 3)) for n, joint in enumerate(poses): if joint is not None: if n >= len(poses)-1: break if poses[start+1] is not None: start += 1 if n != start: j1 = poses[start] start_t = start det = (joint - j1) / (n - start_t) for i in range(n - start_t): poses[start] = j1 + det * i start += 1 t = poses[start] # If the last frame is None while(start<n+1): poses[start] = t start += 1 return poses def rec_3D_joints(keypoints, extris, intris, idx, filter_joints_idx, first_frame=False): keypoints = np.array(keypoints, dtype=np.float32) keypoints = keypoints[:,:,idx,filter_joints_idx] n_views, n_frames, n_joints = keypoints.shape[:3] joints = [] for f in range(n_frames): if first_frame and f > 0: break # Filter out unreliable detection pack = [[keypoints[v][f], extris[v], intris[v]] for v in range(n_views) if keypoints[v][f][:,2].max() > 0.2] if len(pack) < 2: # Do not process single view case joints.append(None) continue keps = np.array([p[0] for p in pack]) cam_extris = np.array([p[1] for p in pack]) cam_intris = np.array([p[2] for p in pack]) rec_joints3d = recompute3D(cam_extris, cam_intris, keps.copy()) joints.append(rec_joints3d) # Interpolation joints = joint_interpolation(joints, n_joints) return joints def physics_geometry_filter(keypoints, extris, intris, frames_seq, flags, img_paths, dataset_obj, filter_joints_idx): """ Filter out the noisy detection and recompute 3D joints using the filtered keypoints """ # Calculate the joints in first frame last_js = [] for idx in range(dataset_obj.num_people): rec_joints3d = rec_3D_joints(keypoints, extris, intris, idx, filter_joints_idx, first_frame=True) last_js.append(rec_joints3d[0]) joints = [] affinity_model = ComposedAffinity(cameras=[extris, intris]) n_views = len(extris) n_people = dataset_obj.num_people n_joints = len(filter_joints_idx) total_n_joints = dataset_obj.num_joints Pall = np.array([intri @ extri[:3] for extri, intri in zip(extris, intris)]) # Container to save filtered results filterd_keypoints = [[[np.zeros((total_n_joints,3)) for n in range(n_people)] for f in range(frames_seq)] for v in range(n_views)] last_2d = [[keypoints[v][0][idx] for v in range(n_views)] for idx in range(n_people)] total_joints = [] for i in range(frames_seq): keyps = [keypoints[v][i] for v in range(n_views)] joint = [] for idx, last_j in enumerate(last_js): # Filter affinity, dimGroups = affinity_model(keyps, None, last_2d[idx], last_j, images=img_paths) keyps, output = simple_associate(keyps, affinity, dimGroups, Pall, idx) # Recompute 3D joints from the filtered keypoints and the initial cameras pack = [[k, extris[i], intris[i]] for i, k in enumerate(output) if k is not None] if len(pack) < 2: # do not process single view case joint.append(None) continue keps = np.array([p[0][filter_joints_idx] for p in pack]) cam_extris =
np.array([p[1] for p in pack])
numpy.array
import numpy as np import tensorflow as tf from tensorflow.keras import layers import matplotlib.pyplot as plt from glob import glob """Prevent error while using GPU""" physical_devices = tf.config.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) print('TensorFlow version:',tf.__version__) IMG_PATH ='./pokemonGen7Sprite/' # Reshape to (64,64,3) IMG_DIM = (64,64,3) BATCH_SIZE = 128 BATCH_PER_EPOCH = np.floor(1076 / BATCH_SIZE).astype(int) EPOCHS = 10000 LEARNING_RATE_DISC = 0.00001 LEARNING_RATE_GEN = 0.0005 random_normal_dimensions = 128 KERNEL_SIZE = (4,4) n_critic = 5 # Network layers of discriminator and generator PARAMETERS_DISC = [64,128,256] PARAMETERS_GEN = [256,128,64] gen_activation = 'tanh' AUTOTUNE = tf.data.AUTOTUNE data_augmentation = tf.keras.Sequential([ layers.experimental.preprocessing.Rescaling(scale=1./127.5, offset=-1), layers.experimental.preprocessing.RandomFlip("horizontal"), layers.experimental.preprocessing.RandomRotation(0.2), layers.experimental.preprocessing.RandomContrast(0.2), ]) # Use @tf.function def make_dataset(path, batch_size): def parse_image(filename): image = tf.io.read_file(filename) image = tf.image.decode_png(image, channels=IMG_DIM[-1]) image = tf.image.resize(image, [IMG_DIM[0], IMG_DIM[1]]) return image def configure_for_performance(ds): ds = ds.shuffle(buffer_size=100) ds = ds.batch(BATCH_SIZE, drop_remainder=True) ds = ds.map(data_augmentation, num_parallel_calls=AUTOTUNE) ds = ds.repeat() ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return ds filenames = glob(path + '/*/*') np.random.shuffle(filenames) filenames_ds = tf.data.Dataset.from_tensor_slices(filenames) ds = filenames_ds.map(parse_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds = configure_for_performance(ds) return ds train_ds = make_dataset(IMG_PATH,BATCH_SIZE) # clip model weights to a given hypercube class ClipConstraint(tf.keras.constraints.Constraint): # set clip value when initialized def __init__(self, clip_value): self.clip_value = clip_value # clip model weights to hypercube def __call__(self, weights): return tf.keras.backend.clip(weights, -self.clip_value, self.clip_value) # get the config def get_config(self): return {'clip_value': self.clip_value} def discriminator(): model = tf.keras.Sequential() activation = layers.LeakyReLU(0.2) # weight initialization init = tf.keras.initializers.RandomNormal(stddev=0.02) # weight constraint const = ClipConstraint(0.01) firstLayer = True for PARAMETER in PARAMETERS_DISC: if firstLayer: model.add(layers.Conv2D(PARAMETER,KERNEL_SIZE, strides=(2, 2),padding='same', kernel_initializer=init, kernel_constraint=const, input_shape=(64, 64, 3))) model.add(activation) firstLayer=False else: model.add(layers.Conv2D(PARAMETER,KERNEL_SIZE, strides=(2, 2),padding='same', kernel_initializer=init, kernel_constraint=const)) model.add(activation) model.add(layers.Flatten()) model.add(layers.Dropout(0.2)) model.add(layers.Dense(1)) model.add(layers.Activation('linear')) return model discriminator = discriminator() discriminator.summary() def generator(): model = tf.keras.Sequential() activation = layers.LeakyReLU(0.2) # weight initialization init = tf.keras.initializers.RandomNormal(stddev=0.02) BOTTLE_DIM = IMG_DIM[0]//(2**len(PARAMETERS_GEN)) BOTTLENECK = (BOTTLE_DIM)**2*256 model.add(layers.Dense(BOTTLENECK,input_shape=(random_normal_dimensions,))) model.add(activation) model.add(layers.Reshape((BOTTLE_DIM, BOTTLE_DIM, 256))) for PARAMETER in PARAMETERS_GEN: model.add(layers.Conv2DTranspose(PARAMETER,KERNEL_SIZE, strides=(2, 2),padding='same', kernel_initializer=init)) model.add(activation) model.add(layers.Conv2D(IMG_DIM[-1],(7,7),padding='same')) model.add(layers.Activation(gen_activation)) return model generator = generator() generator.summary() # wasserstein loss def wasserstein_loss(y_true, y_pred): return tf.keras.backend.mean(y_true * y_pred) gan = tf.keras.models.Sequential([generator, discriminator]) discriminator.compile(loss=wasserstein_loss, optimizer=tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE_DISC)) discriminator.trainable = False gan.compile(loss=wasserstein_loss, optimizer=tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE_GEN)) def plot_results(images, n_cols=None): '''visualizes fake images''' n_cols = n_cols or len(images) n_rows = (len(images) - 1) // n_cols + 1 if images.shape[-1] == 1: images = np.squeeze(images, axis=-1) plt.figure(figsize=(n_cols, n_rows)) for index, image in enumerate(images): plt.subplot(n_rows, n_cols, index + 1) plt.imshow(((image+1) /2)) plt.axis("off") train_dataset = iter(train_ds) generator, discriminator = gan.layers for epoch in range(EPOCHS): print("Epoch {}/{}".format(epoch + 1, EPOCHS)) dis_loss_epoch = [] gen_loss_epoch = [] for _ in range(BATCH_PER_EPOCH): real_images = next(train_dataset) for _ in range(n_critic): noise = tf.random.normal(shape=[BATCH_SIZE, random_normal_dimensions]) fake_images = generator(noise) mixed_images = tf.concat([fake_images, real_images], axis=0) # Create labels for the discriminator discriminator_labels = tf.constant([[1.]] * BATCH_SIZE + [[-1.]] * BATCH_SIZE) discriminator.trainable = True dis_loss = discriminator.train_on_batch(mixed_images, discriminator_labels) dis_loss_epoch.append(dis_loss) real_images = next(train_dataset) noise = tf.random.normal(shape=[BATCH_SIZE, random_normal_dimensions]) generator_labels = tf.constant([[-1.]] * BATCH_SIZE) discriminator.trainable = False gen_loss = gan.train_on_batch(noise, generator_labels) gen_loss_epoch.append(gen_loss) if epoch%5==0: # Plot results plot_results(fake_images[:16], 4) plt.show() print('Discriminator loss=',round(np.mean(dis_loss_epoch),5)) print('Generator loss=',round(
np.mean(gen_loss_epoch)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 10 09:16:42 2022 @author: mbonnema """ import os from netCDF4 import Dataset import matplotlib.pyplot as plt #import geopandas as geo import datetime import numpy as np from datetime import timedelta import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import ee ee.Initialize() import shapely import matplotlib.lines as mlines import csv from readCSV import readCSV from FilterS1 import FilterS1 from FilterJRC import FilterJRC from InterpS1 import InterpS1 from InterpJRC import InterpJRC print('Preparing Data...') dataDir = '../../Results/World_Ver3_CSV/' print('\tReading data csv files...') D,A,LE,WE,ND = readCSV(dataDir) Ds1 = {} As1 = {} Dgsw = {} Agsw = {} #print(LE['1646']) [Ds1, Dgsw] = map(lambda keys: {x: D[x] for x in keys}, [WE.keys(), ND.keys()]) [As1, Agsw] = map(lambda keys: {x: A[x] for x in keys}, [WE.keys(), ND.keys()]) print('\t\tComplete') print('\tFiltering area data...') Ds1,As1,WE,LE = FilterS1(Ds1,As1,WE,LE) Dgsw,Agsw,ND = FilterJRC(Dgsw,Agsw,ND) D = {} A = {} D.update(Ds1) D.update(Dgsw) A.update(As1) A.update(Agsw) print('\t\tComplete') print('\tLoading Lake Database Fields...') lakes = ee.FeatureCollection('users/matthewbonnema/HydroLAKES') largeLakes = lakes.filter(ee.Filter.gte('Lake_area',1)) lakeID = largeLakes.aggregate_array('Hylak_id').getInfo() lakeType = largeLakes.aggregate_array('Lake_type').getInfo() lakeLat = largeLakes.aggregate_array('Pour_lat').getInfo() lakeLon = largeLakes.aggregate_array('Pour_long').getInfo() lakeArea = largeLakes.aggregate_array('Lake_area').getInfo() print('\t\tComplete') print('\tCompute Area Variations...') Av = [] Avp = [] Am = [] A_database = [] Amin = [] Amax = [] lat = [] lon = [] Ltype = [] for key in D: try: a = A[key] stda = np.std(a) mina = np.nanmin(a) maxa = np.nanmax(a) vara = maxa - mina meana = np.nanmean(a) varap = vara/meana ad = lakeArea[lakeID.index(int(key))] index = lakeID.index(int(key)) if np.isnan(mina) or np.isnan(maxa) or
np.isnan(meana)
numpy.isnan
""" Misc utilities for the library Authors: <NAME>, <NAME>, 2015 """ import sys import scipy.linalg as spl import numpy as np from scipy.stats import norm from warnings import warn import pandas as pd py3 = sys.version_info[0] >= 3 def _check_list_length_match(list_1, list_2, var_name_1, var_name_2): """Check length match of two given lists to raise error if necessary""" if len(list_1) != len(list_2): raise ValueError( 'len(%s) %d does not match len(%s) %d' % (str(var_name_1), len(list_1), str(var_name_2), len(list_2))) def _check_and_load_tables(tables_, var_name): """Check tables can be loaded in DataFrame to raise error if necessary""" tables = [] for table_idx, table in enumerate(tables_): if isinstance(table, _basestring): try: loaded = pd.read_csv(table, index_col=0) except: raise ValueError('table path %s could not be loaded' % table) tables.append(loaded) elif isinstance(table, pd.DataFrame): tables.append(table) else: raise TypeError('%s can only be a pandas DataFrames or a' 'string. A %s was provided at idx %d' % (var_name, type(table), table_idx)) return tables def _check_run_tables(run_imgs, tables_, tables_name): """Check fMRI runs and corresponding tables to raise error if necessary""" if isinstance(tables_, (_basestring, pd.DataFrame)): tables_ = [tables_] _check_list_length_match(run_imgs, tables_, 'run_imgs', tables_name) tables_ = _check_and_load_tables(tables_, tables_name) return tables_ def z_score(pvalue): """ Return the z-score corresponding to a given p-value. """ pvalue = np.minimum(np.maximum(pvalue, 1.e-300), 1. - 1.e-16) return norm.isf(pvalue) def multiple_fast_inv(a): """Compute the inverse of a set of arrays. Parameters ---------- a: array_like of shape (n_samples, n_dim, n_dim) Set of square matrices to be inverted. A is changed in place. Returns ------- a: ndarray yielding the inverse of the inputs Raises ------ LinAlgError : If `a` is singular. ValueError : If `a` is not square, or not 2-dimensional. Notes ----- This function is borrowed from scipy.linalg.inv, but with some customizations for speed-up. """ if a.shape[1] != a.shape[2]: raise ValueError('a must have shape (n_samples, n_dim, n_dim)') from scipy.linalg import calc_lwork from scipy.linalg.lapack import get_lapack_funcs a1, n = a[0], a.shape[0] getrf, getri = get_lapack_funcs(('getrf', 'getri'), (a1,)) for i in range(n): if (getrf.module_name[:7] == 'clapack' and getri.module_name[:7] != 'clapack'): # ATLAS 3.2.1 has getrf but not getri. lu, piv, info = getrf(np.transpose(a[i]), rowmajor=0, overwrite_a=True) a[i] = np.transpose(lu) else: a[i], piv, info = getrf(a[i], overwrite_a=True) if info == 0: if getri.module_name[:7] == 'flapack': lwork = calc_lwork.getri(getri.prefix, a1.shape[0]) lwork = lwork[1] # XXX: the following line fixes curious SEGFAULT when # benchmarking 500x500 matrix inverse. This seems to # be a bug in LAPACK ?getri routine because if lwork is # minimal (when using lwork[0] instead of lwork[1]) then # all tests pass. Further investigation is required if # more such SEGFAULTs occur. lwork = int(1.01 * lwork) a[i], _ = getri(a[i], piv, lwork=lwork, overwrite_lu=1) else: # clapack a[i], _ = getri(a[i], piv, overwrite_lu=1) else: raise ValueError('Matrix LU decomposition failed') return a def multiple_mahalanobis(effect, covariance): """Returns the squared Mahalanobis distance for a given set of samples Parameters ---------- effect: array of shape (n_features, n_samples), Each column represents a vector to be evaluated covariance: array of shape (n_features, n_features, n_samples), Corresponding covariance models stacked along the last axis Returns ------- sqd: array of shape (n_samples,) the squared distances (one per sample) """ # check size if effect.ndim == 1: effect = effect[:, np.newaxis] if covariance.ndim == 2: covariance = covariance[:, :, np.newaxis] if effect.shape[0] != covariance.shape[0]: raise ValueError('Inconsistant shape for effect and covariance') if covariance.shape[0] != covariance.shape[1]: raise ValueError('Inconsistant shape for covariance') # transpose and make contuguous for the sake of speed Xt, Kt = np.ascontiguousarray(effect.T), np.ascontiguousarray(covariance.T) # compute the inverse of the covariances Kt = multiple_fast_inv(Kt) # derive the squared Mahalanobis distances sqd = np.sum(np.sum(Xt[:, :, np.newaxis] * Xt[:, np.newaxis] * Kt, 1), 1) return sqd def full_rank(X, cmax=1e15): """ Computes the condition number of X and if it is larger than cmax, returns a matrix with a condition number smaller than cmax. Parameters ---------- X : array of shape (nrows, ncols) input array cmax : float, optional (default:1.e15), tolerance for condition number Returns ------- X : array of shape (nrows, ncols) output array cond : float, actual condition number """ U, s, V = spl.svd(X, full_matrices=False) smax, smin = s.max(), s.min() cond = smax / smin if cond < cmax: return X, cond warn('Matrix is singular at working precision, regularizing...') lda = (smax - cmax * smin) / (cmax - 1) X = np.dot(U, np.dot(np.diag(s + lda), V)) return X, cmax def pos_recipr(X): """ Return element-wise reciprocal of array, setting `X`>=0 to 0 Return the reciprocal of an array, setting all entries less than or equal to 0 to 0. Therefore, it presumes that X should be positive in general. Parameters ---------- X : array-like Returns ------- rX : array array of same shape as `X`, dtype np.float, with values set to 1/X where X > 0, 0 otherwise """ X =
np.asarray(X)
numpy.asarray
#!/usr/bin/env python from math import ceil, sqrt import numpy as np from functools import partial from pyKrig.utilities import pairwise_distance, mmcriterion def latin_hypercube(nsample, ndv): """ create sample points for latin hypercube sampling :param nsample: number of samples :param ndv: number of design variables """ min_level = (1 / nsample) * 0.5 max_level = 1 - min_level levels = np.linspace(min_level, max_level, nsample) lhs = np.empty((nsample, ndv)) index_levels = np.arange(nsample) for j in range(ndv): order = np.random.permutation(index_levels) lhs[:, j] = levels[order] return lhs def perturbate(X): """ randomly choose a pair of sampling points, and interchange the values of a randomly chosen design variable """ ns, ndv = X.shape is1 = np.random.randint(ns) is2 = np.random.randint(ns) idv = np.random.randint(ndv) X[is1, idv], X[is2, idv] = X[is2, idv], X[is1, idv] def optimize_lhs(X, criterion_func): """ optimize a latin hypercube via simulated annealing :param X: a latin hypercube :param criterion_func: the function used to evaluate the latin hypercube """ # initialize phi = criterion_func(X) phi_best = phi Xbest =
np.array(X, copy=True)
numpy.array
import clustertools as ctools import numpy as np units=['pckms','kpckms','nbody','galpy'] def test_init_default(): cluster=ctools.StarCluster() assert cluster.tphys == 0.0 assert cluster.units is None assert cluster.origin is None assert cluster.ctype == 'snapshot' assert cluster.projected == False return None def test_init_custom(): for u in units: cluster=ctools.StarCluster(10.0,'cluster',u,'nbody6',True) assert cluster.tphys == 10.0 assert cluster.units == 'cluster' assert cluster.origin == u assert cluster.ctype == 'nbody6' assert cluster.projected == True return None def test_add_stars_default(): nstar=100 cluster=ctools.StarCluster() x,y,z=np.ones(nstar),np.ones(nstar),np.ones(nstar) vx,vy,vz=np.ones(nstar),np.ones(nstar),np.ones(nstar) cluster.add_stars(x,y,z,vx,vy,vz) np.testing.assert_array_equal(x,cluster.x) np.testing.assert_array_equal(y,cluster.y) np.testing.assert_array_equal(z,cluster.z) np.testing.assert_array_equal(vx,cluster.vx) np.testing.assert_array_equal(vy,cluster.vy) np.testing.assert_array_equal(vz,cluster.vz) np.testing.assert_array_equal(cluster.m,np.ones(len(x))) np.testing.assert_array_equal(cluster.id, np.linspace(0, len(x) - 1, len(x), dtype=int)) assert cluster.ntot == nstar np.testing.assert_array_equal(cluster.kw,np.zeros(nstar)) def test_add_stars_custom(): nstar=100 cluster=ctools.StarCluster() x,y,z=np.ones(nstar),np.ones(nstar),np.ones(nstar) vx,vy,vz=np.ones(nstar),np.ones(nstar),np.ones(nstar) m=np.ones(nstar)*0.1 id=np.linspace(0,nstar,nstar) cluster.add_stars(x,y,z,vx,vy,vz,m,id) np.testing.assert_array_equal(m,cluster.m) np.testing.assert_array_equal(id,cluster.id) def test_add_stars_lenghtdif(): nstar=100 cluster=ctools.StarCluster() x,y=np.ones(nstar),np.ones(nstar) vx,vy=np.ones(nstar),np.ones(nstar) z,vz,m=1.,1.,1. cluster.add_stars(x,y,z,vx,vy,vz,m) np.testing.assert_array_equal(cluster.m,np.ones(nstar)*m) np.testing.assert_array_equal(cluster.z,np.ones(nstar)*z) np.testing.assert_array_equal(cluster.vz,np.ones(nstar)*vz) def test_add_stars_radec(): nstar=100 cluster=ctools.StarCluster(units='radec',origin='sky') x,y,z=np.ones(nstar),np.ones(nstar),np.ones(nstar) vx,vy,vz=np.ones(nstar),np.ones(nstar),np.ones(nstar) cluster.add_stars(x,y,z,vx,vy,vz) np.testing.assert_array_equal(x,cluster.ra) np.testing.assert_array_equal(y,cluster.dec) np.testing.assert_array_equal(z,cluster.dist) np.testing.assert_array_equal(vx,cluster.pmra) np.testing.assert_array_equal(vy,cluster.pmdec)
np.testing.assert_array_equal(vz,cluster.vlos)
numpy.testing.assert_array_equal
import os import time from copy import deepcopy import torch import torch.nn as nn import numpy as np import numpy.random as rd import gym class ActorPPO(nn.Module): def __init__(self, mid_dim, state_dim, action_dim): super().__init__() self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, action_dim), ) self.a_std_log = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True) # trainable parameter self.sqrt_2pi_log = 0.9189385332046727 # =np.log(np.sqrt(2 * np.pi)) layer_norm(self.net[-1], std=0.1) # output layer for action def forward(self, state): return self.net(state).tanh() # action def get_action_noise(self, state): a_avg = self.net(state) a_std = self.a_std_log.exp() noise = torch.randn_like(a_avg) action = a_avg + noise * a_std return action, noise def compute_logprob(self, state, action): a_avg = self.net(state) a_std = self.a_std_log.exp() delta = ((a_avg - action) / a_std).pow(2).__mul__(0.5) # __mul__(0.5) is * 0.5 logprob = -(self.a_std_log + self.sqrt_2pi_log + delta) return logprob.sum(1) class CriticAdv(nn.Module): def __init__(self, state_dim, mid_dim): super().__init__() self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, 1)) layer_norm(self.net[-1], std=0.5) # output layer for Q value def forward(self, state): return self.net(state) # Q value def layer_norm(layer, std=1.0, bias_const=1e-6): torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) class AgentPPO: def __init__(self): super().__init__() self.learning_rate = 1e-4 self.ratio_clip = 0.25 # ratio.clamp(1 - clip, 1 + clip) self.lambda_entropy = 0.01 # could be 0.02 self.lambda_gae_adv = 0.98 # could be 0.95~0.99, GAE (Generalized Advantage Estimation. ICLR.2016.) self.if_use_gae = True self.compute_reward = None self.state = None # set for self.update_buffer(), initialize before training self.noise = None self.act = self.act_target = None self.cri = self.cri_target = None self.optimizer = None self.criterion = None self.device = None def init(self, net_dim, state_dim, action_dim): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.compute_reward = self.compute_reward_gae if self.if_use_gae else self.compute_reward_adv self.act = ActorPPO(net_dim, state_dim, action_dim).to(self.device) self.cri = CriticAdv(state_dim, net_dim).to(self.device) self.criterion = torch.nn.SmoothL1Loss() self.optimizer = torch.optim.Adam([{'params': self.act.parameters(), 'lr': self.learning_rate}, {'params': self.cri.parameters(), 'lr': self.learning_rate}]) def select_action(self, state): states = torch.as_tensor((state,), dtype=torch.float32, device=self.device).detach() actions, noises = self.act.get_action_noise(states) return actions[0].cpu().numpy(), noises[0].cpu().numpy() def store_transition(self, env, buffer, target_step, reward_scale, gamma): buffer.empty_buffer_before_explore() # NOTICE! necessary for on-policy actual_step = 0 while actual_step < target_step: state = env.reset() for _ in range(env.max_step): action, noise = self.select_action(state) next_state, reward, done, _ = env.step(np.tanh(action)) actual_step += 1 other = (reward * reward_scale, 0.0 if done else gamma, *action, *noise) buffer.append_buffer(state, other) if done: break state = next_state return actual_step def update_net(self, buffer, _target_step, batch_size, repeat_times=8): buffer.update_now_len_before_sample() max_memo = buffer.now_len # assert max_memo >= _target_step with torch.no_grad(): # Trajectory using reverse reward buf_reward, buf_mask, buf_action, buf_noise, buf_state = buffer.sample_for_ppo() bs = 2 ** 10 # set a smaller 'bs: batch size' when out of GPU memory. buf_value = torch.cat([self.cri(buf_state[i:i + bs]) for i in range(0, buf_state.size(0), bs)], dim=0) buf_logprob = -(buf_noise.pow(2).__mul__(0.5) + self.act.a_std_log + self.act.sqrt_2pi_log).sum(1) buf_r_sum, buf_advantage = self.compute_reward(max_memo, buf_reward, buf_mask, buf_value) del buf_reward, buf_mask, buf_noise obj_critic = None for _ in range(int(repeat_times * max_memo / batch_size)): # PPO: Surrogate objective of Trust Region indices = torch.randint(max_memo, size=(batch_size,), requires_grad=False, device=self.device) state = buf_state[indices] action = buf_action[indices] r_sum = buf_r_sum[indices] logprob = buf_logprob[indices] advantage = buf_advantage[indices] new_logprob = self.act.compute_logprob(state, action) # it is obj_actor ratio = (new_logprob - logprob).exp() obj_surrogate1 = advantage * ratio obj_surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip) obj_surrogate = -torch.min(obj_surrogate1, obj_surrogate2).mean() obj_entropy = (new_logprob.exp() * new_logprob).mean() # policy entropy obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state obj_critic = self.criterion(value, r_sum) obj_united = obj_actor + obj_critic / (r_sum.std() + 1e-5) self.optimizer.zero_grad() obj_united.backward() self.optimizer.step() return self.act.a_std_log.mean().item(), obj_critic.item() def compute_reward_adv(self, max_memo, buf_reward, buf_mask, buf_value): buf_r_sum = torch.empty(max_memo, dtype=torch.float32, device=self.device) # reward sum pre_r_sum = 0 # reward sum of previous step for i in range(max_memo - 1, -1, -1): buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage = buf_r_sum - (buf_mask * buf_value.squeeze(1)) buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5) return buf_r_sum, buf_advantage def compute_reward_gae(self, max_memo, buf_reward, buf_mask, buf_value): buf_r_sum = torch.empty(max_memo, dtype=torch.float32, device=self.device) # old policy value buf_advantage = torch.empty(max_memo, dtype=torch.float32, device=self.device) # advantage value pre_r_sum = 0 # reward sum of previous step pre_advantage = 0 # advantage value of previous step for i in range(max_memo - 1, -1, -1): buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage[i] = buf_reward[i] + buf_mask[i] * pre_advantage - buf_value[i] pre_advantage = buf_value[i] + buf_advantage[i] * self.lambda_gae_adv buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5) return buf_r_sum, buf_advantage class ReplayBuffer: def __init__(self, max_len, state_dim, action_dim): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.max_len = max_len self.now_len = 0 self.next_idx = 0 self.if_full = False self.action_dim = action_dim # for self.sample_for_ppo( self.if_gpu = False other_dim = 1 + 1 + action_dim * 2 self.buf_other = np.empty((max_len, other_dim), dtype=np.float32) self.buf_state = np.empty((max_len, state_dim), dtype=np.float32) def append_buffer(self, state, other): # CPU array to CPU array self.buf_state[self.next_idx] = state self.buf_other[self.next_idx] = other self.next_idx += 1 if self.next_idx >= self.max_len: self.if_full = True self.next_idx = 0 def extend_buffer(self, state, other): # CPU array to CPU array size = len(other) next_idx = self.next_idx + size if next_idx > self.max_len: if next_idx > self.max_len: self.buf_state[self.next_idx:self.max_len] = state[:self.max_len - self.next_idx] self.buf_other[self.next_idx:self.max_len] = other[:self.max_len - self.next_idx] self.if_full = True next_idx = next_idx - self.max_len self.buf_state[0:next_idx] = state[-next_idx:] self.buf_other[0:next_idx] = other[-next_idx:] else: self.buf_state[self.next_idx:next_idx] = state self.buf_other[self.next_idx:next_idx] = other self.next_idx = next_idx def sample_batch(self, batch_size): indices = rd.randint(self.now_len - 1, size=batch_size) r_m_a = self.buf_other[indices] return (r_m_a[:, 0:1], # reward r_m_a[:, 1:2], # mask = 0.0 if done else gamma r_m_a[:, 2:], # action self.buf_state[indices], # state self.buf_state[indices + 1]) # next_state def sample_for_ppo(self): all_other = torch.as_tensor(self.buf_other[:self.now_len], device=self.device) return (all_other[:, 0], # reward all_other[:, 1], # mask = 0.0 if done else gamma all_other[:, 2:2 + self.action_dim], # action all_other[:, 2 + self.action_dim:], # noise torch.as_tensor(self.buf_state[:self.now_len], device=self.device)) # state def update_now_len_before_sample(self): self.now_len = self.max_len if self.if_full else self.next_idx def empty_buffer_before_explore(self): self.next_idx = 0 self.now_len = 0 self.if_full = False '''Utils''' class Evaluator: def __init__(self, cwd, agent_id, eval_times, show_gap, env, device): self.recorder = [(0., -np.inf, 0., 0., 0.), ] # total_step, r_avg, r_std, obj_a, obj_c self.r_max = -np.inf self.total_step = 0 self.cwd = cwd # constant self.device = device self.agent_id = agent_id self.show_gap = show_gap self.eva_times = eval_times self.env = env self.target_reward = env.target_reward self.used_time = None self.start_time = time.time() self.print_time = time.time() print(f"{'ID':>2} {'Step':>8} {'MaxR':>8} |{'avgR':>8} {'stdR':>8} {'objA':>8} {'objC':>8}") def evaluate_save(self, act, steps, obj_a, obj_c): reward_list = [get_episode_return(self.env, act, self.device) for _ in range(self.eva_times)] r_avg = np.average(reward_list) # episode return average r_std = float(np.std(reward_list)) # episode return std if r_avg > self.r_max: # save checkpoint with highest episode return self.r_max = r_avg # update max reward (episode return) act_save_path = f'{self.cwd}/actor.pth' torch.save(act.state_dict(), act_save_path) print(f"{self.agent_id:<2} {self.total_step:8.2e} {self.r_max:8.2f} |") self.total_step += steps # update total training steps self.recorder.append((self.total_step, r_avg, r_std, obj_a, obj_c)) # update recorder if_solve = bool(self.r_max > self.target_reward) # check if_solve if if_solve and self.used_time is None: self.used_time = int(time.time() - self.start_time) print(f"{'ID':>2} {'Step':>8} {'TargetR':>8} |" f"{'avgR':>8} {'stdR':>8} {'UsedTime':>8} ########\n" f"{self.agent_id:<2} {self.total_step:8.2e} {self.target_reward:8.2f} |" f"{r_avg:8.2f} {r_std:8.2f} {self.used_time:>8} ########") if time.time() - self.print_time > self.show_gap: self.print_time = time.time() print(f"{self.agent_id:<2} {self.total_step:8.2e} {self.r_max:8.2f} |" f"{r_avg:8.2f} {r_std:8.2f} {obj_a:8.2f} {obj_c:8.2f}") return if_solve def get_episode_return(env, act, device) -> float: episode_return = 0.0 # sum of rewards in an episode max_step = env.max_step if_discrete = env.if_discrete state = env.reset() for _ in range(max_step): s_tensor = torch.as_tensor((state,), device=device) a_tensor = act(s_tensor) if if_discrete: a_tensor = a_tensor.argmax(dim=1) action = a_tensor.cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside state, reward, done, _ = env.step(action) episode_return += reward if done: break return env.episode_return if hasattr(env, 'episode_return') else episode_return '''env.py''' class PreprocessEnv(gym.Wrapper): # env wrapper def __init__(self, env, if_print=True, data_type=np.float32): super(PreprocessEnv, self).__init__(env) self.env = env self.data_type = data_type (self.env_name, self.state_dim, self.action_dim, self.action_max, self.if_discrete, self.target_reward, self.max_step ) = get_gym_env_info(env, if_print) self.step = self.step_type def reset(self): state = self.env.reset() return state.astype(self.data_type) def step_type(self, action): # there are not type error of action state, reward, done, info = self.env.step(action * self.action_max) return state.astype(self.data_type), reward, done, info def get_gym_env_info(env, if_print): import gym # gym of OpenAI is not necessary for ElegantRL (even RL) gym.logger.set_level(40) # Block warning: 'WARN: Box bound precision lowered by casting to float32' assert isinstance(env, gym.Env) env_name = env.unwrapped.spec.id state_shape = env.observation_space.shape state_dim = state_shape[0] if len(state_shape) == 1 else state_shape # sometimes state_dim is a list target_reward = getattr(env, 'target_reward', None) target_reward_default = getattr(env.spec, 'reward_threshold', None) if target_reward is None: target_reward = target_reward_default if target_reward is None: target_reward = 2 ** 16 max_step = getattr(env, 'max_step', None) max_step_default = getattr(env, '_max_episode_steps', None) if max_step is None: max_step = max_step_default if max_step is None: max_step = 2 ** 10 if_discrete = isinstance(env.action_space, gym.spaces.Discrete) if if_discrete: # make sure it is discrete action space action_dim = env.action_space.n action_max = int(1) elif isinstance(env.action_space, gym.spaces.Box): # make sure it is continuous action space action_dim = env.action_space.shape[0] action_max = float(env.action_space.high[0]) else: raise RuntimeError('| Please set these value manually: if_discrete=bool, action_dim=int, action_max=1.0') print(f"\n| env_name: {env_name}, action space if_discrete: {if_discrete}" f"\n| state_dim: {state_dim}, action_dim: {action_dim}, action_max: {action_max}" f"\n| max_step: {max_step} target_reward: {target_reward}") if if_print else None return env_name, state_dim, action_dim, action_max, if_discrete, target_reward, max_step '''DEMO''' class Arguments: def __init__(self, agent=None, env=None, gpu_id=None, if_on_policy=False): self.agent = agent # Deep Reinforcement Learning algorithm self.cwd = None # current work directory. cwd is None means set it automatically self.env = env # the environment for training self.env_eval = None # the environment for evaluating self.gpu_id = gpu_id # choose the GPU for running. gpu_id is None means set it automatically '''Arguments for training (off-policy)''' self.net_dim = 2 ** 8 # the network width self.batch_size = 2 ** 8 # num of transitions sampled from replay buffer. self.repeat_times = 2 ** 0 # repeatedly update network to keep critic's loss small self.target_step = 2 ** 10 # collect target_step, then update network self.max_memo = 2 ** 17 # capacity of replay buffer if if_on_policy: # (on-policy) self.net_dim = 2 ** 9 self.batch_size = 2 ** 8 self.repeat_times = 2 ** 4 self.target_step = 2 ** 12 self.max_memo = self.target_step self.reward_scale = 2 ** 0 # an approximate target reward usually be closed to 256 self.gamma = 0.99 # discount factor of future rewards self.num_threads = 4 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads) '''Arguments for evaluate''' self.if_remove = True # remove the cwd folder? (True, False, None:ask me) self.if_allow_break = True # allow break training when reach goal (early termination) self.break_step = 2 ** 20 # break training after 'total_step > break_step' self.eval_times = 2 ** 1 # evaluation times if 'eval_reward > target_reward' self.show_gap = 2 ** 8 # show the Reward and Loss value per show_gap seconds self.random_seed = 0 # initialize random seed in self.init_before_training( def init_before_training(self): self.gpu_id = '0' if self.gpu_id is None else str(self.gpu_id) self.cwd = f'./{self.env.env_name}_{self.gpu_id}' if self.cwd is None else self.cwd print(f'| GPU id: {self.gpu_id}, cwd: {self.cwd}') import shutil # remove history according to bool(if_remove) if self.if_remove is None: self.if_remove = bool(input("PRESS 'y' to REMOVE: {}? ".format(self.cwd)) == 'y') if self.if_remove: shutil.rmtree(self.cwd, ignore_errors=True) print("| Remove history") os.makedirs(self.cwd, exist_ok=True) os.environ['CUDA_VISIBLE_DEVICES'] = str(self.gpu_id) torch.set_num_threads(self.num_threads) torch.set_default_dtype(torch.float32) torch.manual_seed(self.random_seed)
np.random.seed(self.random_seed)
numpy.random.seed
import numpy import scipy.ndimage from . import _deform_grid def deform_random_grid(X, sigma=25, points=3, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None): """ Elastic deformation with a random deformation grid This generates a random, square deformation grid with displacements sampled from from a normal distribution with standard deviation `sigma`. The deformation is then applied to the image or list of images, See ``deform_grid`` for a full description of the parameters. Parameters ---------- X : numpy array or list of arrays image, or list of images of the same size sigma : float standard deviation of the normal distribution points : array number of points of the deformation grid See Also -------- deform_grid : for a full description of the parameters. """ # prepare inputs and axis selection Xs = _normalize_inputs(X) axis, deform_shape = _normalize_axis_list(axis, Xs) if not isinstance(points, (list, tuple)): points = [points] * len(deform_shape) displacement = numpy.random.randn(len(deform_shape), *points) * sigma return deform_grid(X, displacement, order, mode, cval, crop, prefilter, axis) def deform_grid(X, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None): """ Elastic deformation with a deformation grid The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation. Parameters ---------- X : numpy array or list of arrays image, or list of images of the same size If X is a list of images, the values for order, mode and cval can be lists to specify a different value for every image in X. displacement : numpy array displacement vectors for each control point displacement is a NumPy array with displacement vectors for each control points. For example, to deform a 2D image with 3 x 5 control points, provide a displacement matrix of shape 2 x 3 x 5. order : {0, 1, 2, 3, 4} interpolation order mode : ({nearest, wrap, reflect, mirror, constant}) border mode cval : float constant value to be used if mode == 'constant' crop : None or list None, or a list of slice() objects to crop the output crop can be a list of slice() objects to crop the output with. Only very simple slicing is supported: the slice start and stop values must be positive and should not be larger than the output. Note that this parameter is dependent of the axis parameter: if an axis list is given, crop must only contain slice() objects for the dimensions in axis. prefilter : bool if True the input X will be pre-filtered with a spline filter axis : None, int, a list of ints, or a list of lists of ints the axes to deform over axis indicates the axes on which the deformation should be applied. The default (None) is to apply a deformation to all dimensions of the input. Giving a single axis (int) or a tuple of axes will apply the deformation only to those axes. The shape of the displacement must match this number of axes. If multiple inputs are given, axis should be None or a list of tuples with the axes for each input. Returns ------- numpy array or list of arrays The deformed image, or a list of deformed images if a list of inputs is given. Notes ----- See the SciPy documentation for scipy.ndimage.interpolation.map_coordinates for more details on some of the parameters. The elastic deformation approach is found in * Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" https://arxiv.org/abs/1505.04597 * Cicek et al., "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" https://arxiv.org/abs/1606.06650 Based on a Python implementation by <NAME>. """ # prepare inputs and axis selection Xs = _normalize_inputs(X) axis, deform_shape = _normalize_axis_list(axis, Xs) # prepare output cropping output_shapes, output_offset = _compute_output_shapes(Xs, axis, deform_shape, crop) # prepare other parameters displacement = _normalize_displacement(displacement, Xs, axis) order = _normalize_order(order, Xs) mode = _normalize_mode(mode, Xs) cval = _normalize_cval(cval, Xs) # prefilter inputs Xs_f = [] for i, x in enumerate(Xs): if prefilter and order[i] > 1: x_f = numpy.zeros_like(x) for d in axis[i]: scipy.ndimage.spline_filter1d(x, axis=d, order=order[i], output=x_f) x = x_f Xs_f.append(x_f) else: Xs_f.append(x) # prefilter displacement displacement_f =
numpy.zeros_like(displacement)
numpy.zeros_like
import pytest import numpy as np import cmath import math from numpy.testing import assert_almost_equal def test_phasor(): from electricpy.phasor import phasor magnitude = 10 # basic angles test case 0 z1 = phasor(magnitude, 0) z2 = phasor(magnitude, 30) z3 = phasor(magnitude, 45) z4 = phasor(magnitude, 60) z5 = phasor(magnitude, 90) assert_almost_equal(z1, complex(magnitude, 0)) assert_almost_equal(z2, complex(magnitude * np.sqrt(3) / 2, magnitude / 2)) assert_almost_equal(z3, complex(magnitude / np.sqrt(2), magnitude / np.sqrt(2))) assert_almost_equal(z4, complex(magnitude / 2, magnitude * np.sqrt(3) / 2)) assert_almost_equal(z5, complex(0, magnitude)) # z(theta) = z(theta+360) test case 1 theta =
np.random.randint(360)
numpy.random.randint
# -*- coding: utf-8 -*- """ Created on Thu Jul 25 16:29:42 2019 @author: Weike (Vicky) Sun <EMAIL>/<EMAIL> (c) 2020 <NAME>, all rights reserved """ """ Load packages and Set reproduceble results """ from sklearn.preprocessing import StandardScaler import RNN_feedback as RNN_fd import matplotlib.pyplot as plt # Seed value seed_value= 1 # 1. Set `PYTHONHASHSEED` environment variable at a fixed value import os os.environ['PYTHONHASHSEED']=str(seed_value) seed_value += 1 # 2. Set `python` built-in pseudo-random generator at a fixed value import random random.seed(seed_value) seed_value += 1 # 3. Set `numpy` pseudo-random generator at a fixed value import numpy as np np.random.seed(seed_value) seed_value += 1 # 4. Set `tensorflow` pseudo-random generator at a fixed value import tensorflow as tf tf.set_random_seed(seed_value) def timeseries_RNN_feedback_single_train(X, Y, X_val = None, Y_val = None, X_test=None, Y_test=None, train_ratio = 0.8,\ cell_type='e',activation = 'tanh', state_size = 2,\ batch_size = 1, epoch_overlap = None,num_steps = 10,\ num_layers = 1, learning_rate = 1e-2, lambda_l2_reg = 1e-3,\ num_epochs =200, input_prob = 0.95, output_prob = 0.95, state_prob = 0.95,\ input_prob_test = 1, output_prob_test = 1, state_prob_test = 1,\ max_checks_without_progress = 100,epoch_before_val=50, location='RNN_feedback_0', round_number = '', plot=False): '''This function fits RNN_feedback model to training data, using validation data to determine when to stop, when test data is given, it is used to choose the hyperparameter, otherwise AIC will be returned based on training data to select the hyper parameter Input: X: training data predictors numpy array: Nxm y: training data response numy array: Nx1 X_test: testing data predictors numpy arrray: N_testxm y_test: testing data response numpy array: N_test x 1 train_ratio: float, portion of training data used to train the model, and the rest is used as validation data if X_val is provided, this value is overrided cell_type: str, type of RNN cell, can be either LSTM, GRU, others for BasicRNN, default = basicRNN activation: str, type of activation function, can be relu, tanh, sigmoid, linear, default = tanh state_size: int, number of states in the model batch_size: int, number of batch used in training epoch_overlap: None or int, None indicate no overlap between each training patch, int number represnets the space between each path, (e.g. 0 represtns adjacent patch) num_steps: int, number of steps of memory used in dyanmic_RNN training num_layer: int, number of RNN layer in the system, default = 1 learning_rate: float, learning rate for Adam, default= 1e-2 labda_l2_reg: float, regularization weight, <=0 indicate no regularization, default = 1e-3, num_epochs: int, maximum number of epochs considered in the system intput_prob, output_prob, state_prob: float, (0, 1], the keep probability for dropout during training, default = 0.95 intput_prob_test, output_prob_test, state_prob_test: float (0,1], the keep probability for dropout during testing, default = 1 (no dropout) max_chekcs_without_progress: int, number of epochs in validation does not improve error for early stopping, default = 100 epoch_before_val: int, number of epochs in training before using validation set to early stop, default = 50 location: str, name for saving the trained RNN-feedback model plot: Boolean, whether to plot the training results or not Output: (AIC or test results, prediction_train, prediction_test) ''' print('========= Loading data =========') """ Load and arrange data for regression """ #parameter for the data sets if X_val is None: num_train = round(X.shape[0]*train_ratio) else: num_train = X.shape[0] if X_test is not None: test = True num_test = X_test.shape[0] else: test = False x_num_features = X.shape[1] y_num_features = Y.shape[1] print('======== Pre-process Data =========') if X_val is None: scaler = StandardScaler() scaler.fit(X[:num_train]) X_train = scaler.transform(X[:num_train]) X_val = scaler.transform(X[num_train:]) scalery = StandardScaler() scalery.fit(Y[:num_train]) Y_train=scalery.transform(Y[:num_train]) Y_val = scalery.transform(Y[num_train:]) else: scaler = StandardScaler() scaler.fit(X) X_train = scaler.transform(X) X_val = scaler.transform(X_val) scalery = StandardScaler() scalery.fit(Y) Y_train=scalery.transform(Y) Y_val = scalery.transform(Y_val) if test: X_test = scaler.transform(X_test) Y_test = scalery.transform(Y_test) input_size_x = x_num_features input_size_y = y_num_features print('======== Training =========') g_train=RNN_fd.build_multilayer_rnn_graph_with_dynamic_rnn(cell_type=cell_type, activation=activation,state_size=state_size, num_steps=num_steps, num_layers=num_layers, input_size_x=input_size_x, input_size_y=input_size_y , learning_rate=learning_rate, lambda_l2_reg=lambda_l2_reg) train_loss,val_loss,num_parameter = RNN_fd.train_rnn(X_train,Y_train,X_val,Y_val, g_train ,num_epochs, num_steps, batch_size, input_prob, output_prob, state_prob, verbose=True, save=location, epoch_overlap=epoch_overlap, max_checks_without_progress=max_checks_without_progress, epoch_before_val = epoch_before_val) if train_loss is None: return (None, None, None, (100000,100000,100000), 100000,100000,100000) val_loss = np.array(val_loss) if plot: '''Plot the result''' plt.figure() s = 12 plt.plot(train_loss, color='xkcd:sky blue', label = 'train loss') plt.plot(np.linspace(epoch_before_val-1,epoch_before_val+val_loss.shape[0]-1, num = val_loss.shape[0]), val_loss, color= 'xkcd:coral', label = 'val loss') plt.title('Traingin and validation loss') plt.ylabel('Loss') plt.xlabel('# of epoch') plt.legend(fontsize=s) plt.tight_layout() plt.savefig('Training and validation error round ' + round_number +'.png', dpi = 600,bbox_inches='tight') ############################################################################ """Training Final Results""" g_train_final = RNN_fd.build_multilayer_rnn_graph_with_dynamic_rnn(cell_type=cell_type, activation=activation,state_size=state_size, num_steps= num_train , num_layers=num_layers, input_size_x=input_size_x, input_size_y = input_size_y , learning_rate = learning_rate, lambda_l2_reg=lambda_l2_reg) prediction_train,train_loss_final,_ = RNN_fd.test_rnn(X_train,Y_train, g_train_final, location, input_prob_test, output_prob_test, state_prob_test, num_train) AIC = num_train*np.log(np.sum(train_loss_final)/y_num_features) + 2*num_parameter AICc = num_train*np.log(
np.sum(train_loss_final)
numpy.sum
""" Copyright (c) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import datetime from functools import partial import cv2 as cv import torch import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import transforms as t from scipy.spatial.distance import cosine from tqdm import tqdm import numpy as np def get_subset(container, subset_bounds): """Returns a subset of the given list with respect to the list of bounds""" subset = [] for bound in subset_bounds: subset += container[bound[0]: bound[1]] return subset def get_roc(scores_with_gt, n_threshs=400): """Computes a ROC cureve on the LFW dataset""" thresholds = np.linspace(0., 4., n_threshs) fp_rates = [] tp_rates = [] for threshold in thresholds: fp = 0 tp = 0 for score_with_gt in scores_with_gt: predict_same = score_with_gt['score'] < threshold actual_same = score_with_gt['is_same'] if predict_same and actual_same: tp += 1 elif predict_same and not actual_same: fp += 1 fp_rates.append(float(fp) / len(scores_with_gt) * 2) tp_rates.append(float(tp) / len(scores_with_gt) * 2) return np.array(fp_rates), np.array(tp_rates) def get_auc(fprs, tprs): """Computes AUC under a ROC curve""" sorted_fprs, sorted_tprs = zip(*sorted(zip(*(fprs, tprs)))) sorted_fprs = list(sorted_fprs) sorted_tprs = list(sorted_tprs) if sorted_fprs[-1] != 1.0: sorted_fprs.append(1.0) sorted_tprs.append(sorted_tprs[-1]) return
np.trapz(sorted_tprs, sorted_fprs)
numpy.trapz
import skimage.io as io import skimage.transform as skt import numpy as np from PIL import Image from src.models.class_patcher import patcher from src.utils.imgproc import * class patcher(patcher): def __init__(self, body='./body/body_hakka.png', **options): super().__init__('薄荷', body=body, pantie_position=[0, 0], **options) self.mask_front = io.imread('./mask/mask_hakka_front.png') self.mask_back = io.imread('./mask/mask_hakka_back.png') def convert_front(self, image): pantie = np.array(image) patch = np.copy(pantie[-120:-5, 546:, :]) [pr, pc, d] = patch.shape pantie[125:125 + pr, :pc, :] = patch[::-1, ::-1] front = pantie[:, :330] arrx = np.zeros(64) arrx[20:] += np.sin(np.linspace(0, np.pi / 2, 44)) * 79 arrx[10:20] += np.sin(np.linspace(0, np.pi, 10)) * 8 arrx -= 80 arry = np.zeros(64) front = affine_transform_by_arr(front, arrx, arry)[:320] front = np.uint8(resize(front, [1.2, 1.12]) * 255)[:, 8:] front = np.bitwise_and(front, self.mask_front) front = np.concatenate([front[:, ::-1], front], axis=1) return Image.fromarray(front) def convert_back(self, image): pantie = np.array(image) pantie[-120:, 546:, :] = 0 back = np.rot90(pantie[:-15, 330:][:, ::-1]) arrx = np.zeros(36) arry =
np.zeros(36)
numpy.zeros
""" adapted from https://github.com/openai/spinningup/blob/master/spinup/algos/pytorch/vpg/vpg.py """ import torch import carla.agents.core as core import numpy as np from collections import deque from PIL import Image from torch.utils.data import Dataset class MultipleWorkerBuffer: """ A buffer for storing trajectories experienced of a multiple worker agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__(self, obs_space, act_dim, size, device, gamma=0.99, lam=1., n_proc=1): self.device = device self.obs_space = obs_space self.obs_dim = {} self.obs_buf = {} for space in self.obs_space: obs_dim = self.obs_space[space].shape self.obs_dim[space] = obs_dim self.obs_buf[space] = np.zeros((n_proc,) + core.combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros((n_proc,) + core.combined_shape(size, act_dim), dtype=np.float32) self.adv_buf = np.zeros((n_proc, size), dtype=np.float32) self.rew_buf = np.zeros((n_proc, size), dtype=np.float32) self.ret_buf = np.zeros((n_proc, size), dtype=np.float32) self.val_buf = np.zeros((n_proc, size), dtype=np.float32) self.logp_buf = np.zeros((n_proc, size), dtype=np.float32) self.gamma, self.lam = gamma, lam self.ptr, self.path_start_idx, self.max_size = np.zeros(n_proc, dtype=np.int32), np.zeros(n_proc, dtype=np.int32), size self.n_proc = n_proc def store(self, obs, act, rew, val, logp): """ Append one timestep of agent-environment interaction to the buffer. """ assert (self.ptr < self.max_size).all() # buffer has to have room so you can store for i, ptr in enumerate(self.ptr): for space in obs.keys(): self.obs_buf[space][i][ptr] = obs[space][i] self.act_buf[i][ptr] = act[i] self.rew_buf[i][ptr] = rew[i] self.val_buf[i][ptr] = val[i] self.logp_buf[i][ptr] = logp[i] self.ptr[i] += 1 def finish_path(self, proc_idx, last_val=0): """ Call this at the end of a trajectory, or when one gets cut off by an epoch ending. This looks back in the buffer to where the trajectory started, and uses rewards and value estimates from the whole trajectory to compute advantage estimates with GAE-Lambda, as well as compute the rewards-to-go for each state, to use as the targets for the value function. The "last_val" argument should be 0 if the trajectory ended because the agent reached a terminal state (died), and otherwise should be V(s_T), the value function estimated for the last state. This allows us to bootstrap the reward-to-go calculation to account for timesteps beyond the arbitrary episode horizon (or epoch cutoff). """ path_slice = slice(self.path_start_idx[proc_idx], self.ptr[proc_idx]) rews = np.append(self.rew_buf[proc_idx][path_slice], last_val) vals =
np.append(self.val_buf[proc_idx][path_slice], last_val)
numpy.append
import warnings import numpy as np import numpy.linalg as la from numpy.random import Generator, PCG64 from modpy.optimize._optim_util import OptimizeResult, OptimizePath, _function, _chk_callable from modpy.optimize._constraints import _prepare_constraints ID_INFEASIBLE = -12 ID_MAX_SIGMA = -11 ID_TOL_X = -10 ID_TOL_FUN = -9 ID_TOL_X_UP = -8 ID_COND_COV = -7 ID_STAGNATION = -6 ID_EQUAL_FUN = -5 ID_NO_EFFECT_COORD = -4 ID_NO_EFFECT_AXIS = -3 ID_MAX_RESTART = -2 ID_LIN_ALG = -1 ID_MAX_ITER = 0 ID_CONV = 1 TERMINATION_MESSAGES = { ID_INFEASIBLE: 'No feasible candidates', ID_MAX_SIGMA: 'MaxSigma criteria.', ID_TOL_X: 'TolX criteria.', ID_TOL_FUN: 'TolFun criteria.', ID_TOL_X_UP: 'TolXUp criteria', ID_COND_COV: 'ConditionCov criteria.', ID_STAGNATION: 'Stagnation criteria.', ID_EQUAL_FUN: 'EqualFunValues criteria.', ID_NO_EFFECT_COORD: 'NoEffectCoord criteria.', ID_NO_EFFECT_AXIS: 'NoEffectAxis criteria.', ID_MAX_RESTART: 'Maximum number of restart reached.', ID_LIN_ALG: 'LinAlgError due to indeterminate system.', ID_MAX_ITER: 'Maximum number of iterations reached.', ID_CONV: 'Tolerance termination condition is satisfied.', } MAX_SIGMA = 1e32 def cma_es(obj, x0, bounds=None, constraints=(), method='IPOP', sigma0=1., C0=None, mu=None, lam=None, lbound=np.inf, tol=1e-6, ftol=1e-12, xtol=1e-12, stol=1e-12, maxiter=None, max_restart=5, seed=None, keep_path=False, args=(), kwargs={}): """ Wrapper method for Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES). Parameters ---------- obj : callable Objective function x0 : array_like or int If array_like `x0` is used as a start guess, if int it is the problem dimension. bounds : 2-tuple of array_like, optional Bounds on the solution vector, should be (array_like (n,), array_like (n,)). If None no bounds are applied. constraints : tuple or Constraint Tuple of class Constraints. method : {'1+1, 'mu-lam', 'IPOP'}, optional Which CMA-ES implementation to use. sigma0 : float, optional Coordinate wise standard deviation (step size). C0 : array_like, shape (n, n), optional Initial correlation matrix. mu : int, optional Number of selected candidates from sampled population. lam : int, optional Number of sampled candidates in the population. lbound : float, optional Analytical or empirical bound for the function value to at least obtain in order to have converged. tol : float, optional Tolerance related to change in fitness value over sequence of populations. ftol : float, optional Tolerance of the TolFun termination criteria. xtol : float, optional Tolerance of the TolX termination criteria. stol : float, optional Tolerance of the NoEffectAxis and NoEffectCoord termination criteria. maxiter : int, optional Maximum number of allowed iterations. max_restart : int, optional Maximum number of allowed restarts. seed : int, optional Seed of the random number generator used in generation step. keep_path : bool, optional Whether to save path information. Can require substantial memory. args : tuple, optional Additional arguments to `fun`. kwargs : dict, optional Additional key-word arguments to `fun`. Returns ------- OptimizeResult with the following fields: x : array_like, shape (n,) Solution vector. success : bool, True if algorithm converged within its optimality conditions. status : int Reason for algorithm termination message : str Description of the termination reason. nit : int Number of iterations used to converge. """ # prepare start guess and initial objective function value if isinstance(x0, int): x0 = np.random.randn(x0) n = x0.size # wrap function call with args and kwargs f = _function(obj, args, kwargs) _chk_callable(x0, f) if sigma0 < 0.: raise ValueError('CMA-ES requires sigma0 > 0.') # prepare constraints if (bounds is not None) or constraints: con = _prepare_constraints(bounds, constraints, n) # if con.any_equal(): # raise ValueError('CMA-ES algorithms does not allow equality constraints.') else: con = None # try: # # if method == 'mu-lam': # # sol, f_opt, status, nit, path = _cma_es_mu_lam(f, x0, generator, constraints=con, sigma0=sigma0, C0=C0, # mu=mu, lam=lam, lbound=lbound, tol=tol, ftol=ftol, xtol=xtol, # stol=stol, maxiter=maxiter, keep_path=keep_path) # # elif method == 'IPOP': # # sol, f_opt, status, nit, path = _cma_es_ipop(f, x0, generator, constraints=con, sigma0=sigma0, C0=C0, mu=mu, # lam=lam, lbound=lbound, tol=tol, ftol=ftol, xtol=xtol, stol=stol, # maxiter=maxiter, max_restart=max_restart, keep_path=keep_path) # # elif method == '1+1': # # if con is None: # # sol, f_opt, status, nit, path = _cma_es_1p1(f, x0, sigma0=sigma0, tol=tol, stol=stol, # maxiter=maxiter, keep_path=keep_path) # # else: # # sol, f_opt, status, nit, path = _cma_es_1p1_con(f, x0, con, sigma0=sigma0, tol=tol, stol=stol, # maxiter=maxiter, keep_path=keep_path) # # else: # # raise ValueError("`method` must be either '1+1' or 'mu-lam'.") # # f_opt = float(f_opt) # # except la.LinAlgError: # # f_opt = None # sol = None # status = -1 # nit = 0 # path = None # # if sol is None: # x = None # else: # x = sol # # res = OptimizeResult(x, f_opt, sol, status=status, nit=nit, tol=tol) # res.success = status > 0 # res.message = TERMINATION_MESSAGES[res.status] # res.path = path opt = CMAES(obj, x0, method, con, sigma0, C0, mu, lam, lbound, tol, ftol, xtol, stol, maxiter, max_restart, seed, keep_path) opt.run() res = opt.get_result() return res class CMAES: """ Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES). """ def __init__(self, obj, x0, method='IPOP', constraints=None, sigma0=1., C0=None, mu=None, lam=None, lbound=np.inf, tol=1e-6, ftol=1e-12, xtol=1e-12, stol=1e-10, maxiter=None, max_restart=5, seed=None, keep_path=False): """ Initializer of the CMA-ES algorithm class. Parameters ---------- obj : callable Objective function x0 : array_like, shape (n,) Start guess method : {'mu-lam', 'IPOP'}, optional Which CMA-ES implementation to use. constraints : Constraints, optional Class Constraints. sigma0 : float, optional Coordinate wise standard deviation (step size). C0 : array_like, shape (n, n), optional Initial correlation matrix. mu : int, optional Number of selected candidates from sampled population. lam : int, optional Number of sampled candidates in the population. lbound : float, optional Analytical or empirical bound for the function value to at least obtain in order to have converged. tol : float, optional Tolerance related to change in fitness value over sequence of populations. ftol : float, optional Tolerance of the TolFun termination criteria. xtol : float, optional Tolerance of the TolX termination criteria. stol : float, optional Tolerance of the NoEffectAxis and NoEffectCoord termination criteria. maxiter : int, optional Maximum number of allowed iterations max_restart : int, optional Maximum number of allowed restarts, for IPOP only. seed : int, optional Seed of the random number generator used in generation step. keep_path : bool, optional Whether to save path information. Can require substantial memory. """ # problem definition self.dim = None self.obj = obj self.method = method self.constraints = constraints # final solution variables self.x_opt = None self.f_opt = None # current solution variables self.m = np.array(x0) self.sigma = sigma0 self.C = C0 # provided parameters ------------------------------------------------------------------------------------------ self.lam = lam # population sample size self.mu_ori = mu # original recombination sample size self.mu = None # recombination sample size at iteration k (may change due to infeasible samples) self._reduced = False # if mu is updated during iteration # derived parameters ------------------------------------------------------------------------------------------- # static self.chiN = None # E[||N(0, I)||] self.gamma = None # constraint violation parameter # dynamic self.mu_eff = None # variance - effectiveness of sum w_i x_i self.w = None # recombination weights array self.cc = None # time constant for cumulation of C self.cs = None # time constant for cumulation of sigma self.c1 = None # learning rate for rank-1 update of C self.cmu = None # learning rate for rank-mu update of C self.ds = None # damping for sigma # storage variables -------------------------------------------------------------------------------------------- # static self.yw = None # weighted recombination of random variables (stored for int. calculations) self.pc = None # evolution path for C self.ps = None # evolution paths for sigma self.B = None # orthonormal eigendecomposition matrix of C self.D = None # vector of eigenvalues of C self.BD = None # matrix-product of B and D self.C = None # covariance matrix C self.invsqrtC = None # square-root of inverse covariance matrix self.D_min = None # minimum eigenvalue self.D_max = None # maximum eigenvalue self.max_sigma = None # maximum sigma of current iteration # dynamic self.y = None # array of sampled random numbers self.x = None # array of candidate solutions self.f = None # vector of objective function values self.x_all = None # store all feasible candidates (for later save) # convergence options ------------------------------------------------------------------------------------------ # termination criteria self.tol = tol self.ftol = ftol self.xtol = xtol self.stol = stol self.lbound = lbound self.tolx = None # maximum iterations self.maxiter = maxiter # maximum iterations for a given (mu/mu_w-lam)-CMA-ES loop self.max_redraw = 20 # maximum number of redraws allowed if sample is infeasible self.max_restart = max_restart # maximum number of restarts for IPOP-CMA-ES # counters self.it = 0 self.it_total = 0 self.it_restart = 0 self.eig_it = 0 # convergence status self.status = 1 self.converged = False self.success = False # random generation -------------------------------------------------------------------------------------------- self.seed = seed self.generator = None # optimization path -------------------------------------------------------------------------------------------- self.keep_path = keep_path self.path = OptimizePath(keep=keep_path) def get_result(self): res = OptimizeResult(self.x_opt, self.f_opt, self.x_opt, status=self.status, nit=self.it_total, tol=self.tol) res.success = self.status > 0 res.message = TERMINATION_MESSAGES[self.status] res.path = self.path return res def run(self): if self.method == 'mu-lam': self.initialize() self._run_mu_lam() self.it_total = self.it elif self.method == 'IPOP': self._run_ipop() else: raise ValueError("`method` must be either 'mu-lam' or 'IPOP'.") # if the algorithm terminated with an infeasible solution, it has diverged if self.constraints is not None: if np.any(self.constraints.f(self.m) < 0.): self.status = ID_INFEASIBLE self.converged = False # TODO: several termination criterias will be considered as converged, reasonable? if self.status in (ID_NO_EFFECT_AXIS, ID_NO_EFFECT_COORD): self.status = 1 self.converged = 1 def _run_ipop(self): """ An IPOP-(mu/muw lambda)-CMA-ES. References ---------- [1] <NAME>., <NAME>. (2005). A Restart CMA Evolution Strategy With Increasing Population Size Link: http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf """ while self.it_restart < self.max_restart: # call sub (mu/lam)-CMA-ES self.initialize() self._run_mu_lam() self.it_total += self.it self.it = 0 # check if the inner optimizer converged if self.converged: break else: # otherwise update population size and step-size self.lam *= 2 if self.status == ID_TOL_X_UP: self.sigma *= 10. else: self.sigma *= 2. self.it_restart += 1 if self.it_restart == self.max_restart: self.status = ID_MAX_RESTART def _run_mu_lam(self): """ A classical (mu/mu_w lambda)-CMA-ES. Primarily based on the work of <NAME> [1], but further improvements made for convergence checking. Constraint handling is implemented according to [2]. References ---------- [1] <NAME>. (2011). The CMA Evolution Strategy: A Tutorial Link: http://www.cmap.polytechnique.fr/~nikolaus.hansen/cmatutorial110628.pdf [2] <NAME>., <NAME>., <NAME>. (2015). Modified Covariance Matrix Adaptation - Evolution Strategy for constrained optimization under uncertainty, application to rocket design. International Journal for Simulation and Multidisciplinary Design Optimization. """ while self.it < self.maxiter: # draw candidates and sort based on fitness self._draw_candidates() self._sort_candidates() # handle constraint violations self._handle_constraints() self._adjust_constrained_candidates() if self.y.size: # update solution estimate and evolution path self._recombine_solution() self._update_evolution_paths() self._decompose_covariance() # check if algorithm has converged self.converged = self._check_convergence() if self.converged: break # check if algorithm should be terminated/restarted self.status = self._check_termination_criteria() if self.status < 1: break # escape flat fitness self._escape_flat_fitness() elif self.status < 1: break # save optimization path for later plotting if self.keep_path: self.path.append(self.m, self.f[0], self.f[0], sigma=self.sigma, candidates=self.x_all) # revert recombination parameters to default values if self._reduced: self._define_parameters(self.mu_ori) self._reduced = False self.it += 1 # assign optimal values at the point of termination self.x_opt = self.m self.f_opt = self.obj(self.m) if self.it == self.maxiter: self.status = 0 self.success = self.status > 0 def initialize(self): self.dim = self.m.size # strategy parameter setting: selection if self.maxiter is None: self.maxiter = 1e3 * self.dim ** 2 if self.lam is None: self.lam = int(4 + np.floor(3 * np.log(self.dim))) else: self.lam = int(self.lam) if self.lam < 2: raise ValueError('CMA-ES requires lam >= 2.') if self.mu_ori is None: self.mu_ori = self.lam / 2 if self.mu_ori > self.lam: raise ValueError('CMA-ES requires mu <= lam.') self.chiN = self.dim ** 0.5 * (1. - 1. / (4. * self.dim) + 1. / (21. * self.dim ** 2.)) self.gamma = 0.1 / (self.dim + 2.) self.max_sigma = float(self.sigma) self._define_parameters(self.mu_ori) self._initialize_static_arrays() # random sampling if isinstance(self.seed, Generator): self.generator = self.seed else: self.generator = Generator(PCG64(self.seed)) self._initialize_tolerances() def _define_parameters(self, mu): n = self.dim # set recombination weights w = np.log(mu + .5) - np.log(range(1, int(mu + 1))) self.w = w / np.sum(w) # set number of points to include in recombination mu_eff = 1. / np.sum(w ** 2.) self.mu = int(np.floor(mu)) # strategy parameter setting: adaptation self.cc = (4. + mu_eff / n) / (n + 4. + 2. * mu_eff / n) self.cs = (mu_eff + 2.) / (n + mu_eff + 5.) self.c1 = 2. / ((n + 1.3) ** 2. + mu_eff) self.cmu = np.minimum(1. - self.c1, 2. * (mu_eff - 2. + 1. / mu_eff) / ((n + 2.) ** 2. + mu_eff)) self.ds = 1. + 2. * np.maximum(0., 0. if mu_eff < 1. else np.sqrt((mu_eff - 1.) / (n + 1.)) - 1.) + self.cs self.mu_eff = mu_eff def _initialize_static_arrays(self): n = self.m.size self.ps = np.zeros((n,)) self.pc = np.zeros((n,)) if self.C is None: self.C =
np.eye(n)
numpy.eye
from CameraClient import CameraClient, ImageType, Command, CameraIntri import pyzed.sl as sl import numpy as np import open3d from os.path import join import sys import argparse import cv2 import os import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt SAVE_PATH = "/home/wangqingyu/桌面/mecheye_python_interface" MECHEYE_IP = "169.254.108.2" ZED_BASELINE = 0.1216 ZED_FOCAL_LENGTH = 1384.4 SAVE_FILE = True K_ZED_LEFT = np.array([[1385.8813, 0, 1093.5342], [0, 1386.0066, 606.4279], [0, 0, 1]], dtype=float) # 3*3 K_MECH = np.array([[2734.9911, 0, 964.9017], [0, 2734.7569, 622.0475], [0, 0, 1]], dtype=float) # 3*3 R_MECH_ZED = np.array([[0.99022184, 0.01741097, -0.13840878], [-0.02072163, 0.99953165, -0.0225139], [0.13795202, 0.02516189, 0.990118958]], dtype=float) # 3*3 T_MECH_ZED = np.array([[36.8203540533], [-54.5903607433], [-23.53339511167]], dtype=float) # 3*1 def connect_to_mecheye(camera_ip): camera = CameraClient() camera_ip = camera_ip if not camera.connect(camera_ip): exit(-1) return camera def set_mech_exposure(exposure_mode, exposure_time): camera.setParameter(paraName="scan2dExposureMode", value=exposure_mode) camera.setParameter(paraName="scan2dExposureTime", value=exposure_time) def zed_capture(): zed = sl.Camera() # Create a InitParameters object and set configuration parameters init_params = sl.InitParameters() init_params.camera_resolution = sl.RESOLUTION.HD2K # Use 2K video mode init_params.camera_fps = 30 # Set fps at 30 # Open the camera err = zed.open(init_params) if err != sl.ERROR_CODE.SUCCESS: exit(1) i = 0 image_left = sl.Mat() image_right = sl.Mat() runtime_parameters = sl.RuntimeParameters() while i < 5: # Grab an image, a RuntimeParameters object must be given to grab() if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS: # A new image is available if grab() returns SUCCESS zed.retrieve_image(image_left, sl.VIEW.LEFT) zed.retrieve_image(image_right, sl.VIEW.RIGHT) timestamp = zed.get_timestamp(sl.TIME_REFERENCE.CURRENT) # Get the timestamp at the time the image was captured print("Image resolution: {0} x {1} || Image timestamp: {2}\n".format(image_left.get_width(), image_left.get_height(), timestamp.get_milliseconds())) i = i + 1 if SAVE_FILE: image_left = image_left.get_data()[:, :, :3] image_right = image_right.get_data()[:, :, :3] cv2.imwrite(SAVE_PATH + "/uncrop_left.png", image_left) cv2.imwrite(SAVE_PATH + "/uncrop_right.png", image_right) zed.close() return image_left, image_right, image_left.shape[0], image_left.shape[1] def mech_zed_alignment(depth, mech_height, mech_width, zed_height, zed_width): ground_truth =
np.zeros(shape=(zed_height, zed_width), dtype=float)
numpy.zeros
# pylint: disable=F841 """ unit test for GAM Author: <NAME> Created on 08/07/2015 """ import os import numpy as np from numpy.testing import assert_allclose import pandas as pd from scipy.linalg import block_diag import pytest from statsmodels.tools.linalg import matrix_sqrt from statsmodels.gam.smooth_basis import ( UnivariatePolynomialSmoother, PolynomialSmoother, BSplines, GenericSmoothers, UnivariateCubicSplines, CyclicCubicSplines) from statsmodels.gam.generalized_additive_model import ( GLMGam, LogitGam, make_augmented_matrix, penalized_wls) from statsmodels.gam.gam_cross_validation.gam_cross_validation import ( MultivariateGAMCV, MultivariateGAMCVPath, _split_train_test_smoothers) from statsmodels.gam.gam_penalties import (UnivariateGamPenalty, MultivariateGamPenalty) from statsmodels.gam.gam_cross_validation.cross_validators import KFold from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.families.family import Gaussian from statsmodels.genmod.generalized_linear_model import lm sigmoid = np.vectorize(lambda x: 1.0 / (1.0 + np.exp(-x))) def polynomial_sample_data(): """A polynomial of degree 4 poly = ax^4 + bx^3 + cx^2 + dx + e second der = 12ax^2 + 6bx + 2c integral from -1 to 1 of second der^2 is (288 a^2)/5 + 32 a c + 8 (3 b^2 + c^2) the gradient of the integral is der [576*a/5 + 32 * c, 48*b, 32*a + 16*c, 0, 0] Returns ------- poly : smoother instance y : ndarray generated function values, demeaned """ n = 10000 x = np.linspace(-1, 1, n) y = 2 * x ** 3 - x y -= y.mean() degree = [4] pol = PolynomialSmoother(x, degree) return pol, y def integral(params): d, c, b, a = params itg = (288 * a ** 2) / 5 + (32 * a * c) + 8 * (3 * b ** 2 + c ** 2) itg /= 2 return itg def grad(params): d, c, b, a = params grd = np.array([576 * a / 5 + 32 * c, 48 * b, 32 * a + 16 * c, 0]) grd = grd[::-1] return grd / 2 def hessian(params): hess = np.array([[576 / 5, 0, 32, 0], [0, 48, 0, 0], [32, 0, 16, 0], [0, 0, 0, 0] ]) return hess / 2 def cost_function(params, pol, y, alpha): # this should be the MSE or log likelihood value lin_pred = np.dot(pol.basis, params) gaussian = Gaussian() expval = gaussian.link.inverse(lin_pred) loglike = gaussian.loglike(y, expval) # this is the vale of the GAM penalty. For the example polynomial itg = integral(params) # return the cost function of the GAM for the given polynomial return loglike - alpha * itg, loglike, itg def test_gam_penalty(): """ test the func method of the gam penalty :return: """ pol, y = polynomial_sample_data() univ_pol = pol.smoothers[0] alpha = 1 gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=univ_pol) for _ in range(10): params = np.random.randint(-2, 2, 4) gp_score = gp.func(params) itg = integral(params) assert_allclose(gp_score, itg, atol=1.e-1) def test_gam_gradient(): # test the gam gradient for the example polynomial np.random.seed(1) pol, y = polynomial_sample_data() alpha = 1 smoother = pol.smoothers[0] gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=smoother) for _ in range(10): params = np.random.uniform(-2, 2, 4) params = np.array([1, 1, 1, 1]) gam_grad = gp.deriv(params) grd = grad(params) assert_allclose(gam_grad, grd, rtol=1.e-2, atol=1.e-2) def test_gam_hessian(): # test the deriv2 method of the gam penalty np.random.seed(1) pol, y = polynomial_sample_data() univ_pol = pol.smoothers[0] alpha = 1 gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=univ_pol) for _ in range(10): params = np.random.randint(-2, 2, 5) gam_der2 = gp.deriv2(params) hess = hessian(params) hess = np.flipud(hess) hess = np.fliplr(hess) assert_allclose(gam_der2, hess, atol=1.e-13, rtol=1.e-3) def test_approximation(): np.random.seed(1) poly, y = polynomial_sample_data() alpha = 1 for _ in range(10): params = np.random.uniform(-1, 1, 4) cost, err, itg = cost_function(params, poly, y, alpha) glm_gam = GLMGam(y, smoother=poly, alpha=alpha) # TODO: why do we need pen_weight=1 gam_loglike = glm_gam.loglike(params, scale=1, pen_weight=1) assert_allclose(err - itg, cost, rtol=1e-10) assert_allclose(gam_loglike, cost, rtol=0.1) def test_gam_glm(): cur_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv") data_from_r = pd.read_csv(file_path) # dataset used to train the R model x = data_from_r.x.values y = data_from_r.y.values df = [10] degree = [3] bsplines = BSplines(x, degree=degree, df=df, include_intercept=True) # y_mgcv is obtained from R with the following code # g = gam(y~s(x, k = 10, bs = "cr"), data = data, scale = 80) y_mgcv = np.asarray(data_from_r.y_est) alpha = 0.1 # chosen by trial and error glm_gam = GLMGam(y, smoother=bsplines, alpha=alpha) res_glm_gam = glm_gam.fit(method='bfgs', max_start_irls=0, disp=1, maxiter=10000) y_gam0 = np.dot(bsplines.basis, res_glm_gam.params) y_gam = np.asarray(res_glm_gam.fittedvalues) assert_allclose(y_gam, y_gam0, rtol=1e-10) # plt.plot(x, y_gam, '.', label='gam') # plt.plot(x, y_mgcv, '.', label='mgcv') # plt.plot(x, y, '.', label='y') # plt.legend() # plt.show() assert_allclose(y_gam, y_mgcv, atol=1.e-2) def test_gam_discrete(): cur_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv") data_from_r = pd.read_csv(file_path) # dataset used to train the R model x = data_from_r.x.values y = data_from_r.ybin.values df = [10] degree = [5] bsplines = BSplines(x, degree=degree, df=df, include_intercept=True) # y_mgcv is obtained from R with the following code # g = gam(y~s(x, k = 10, bs = "cr"), data = data, scale = 80) y_mgcv = data_from_r.ybin_est alpha = 0.00002 # gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=bsplines) # lg_gam = LogitGam(y, bsplines.basis, penal=gp) # lg_gam = LogitGam(y, bsplines, alpha=alpha) res_lg_gam = lg_gam.fit(maxiter=10000) y_gam = np.dot(bsplines.basis, res_lg_gam.params) y_gam = sigmoid(y_gam) y_mgcv = sigmoid(y_mgcv) # plt.plot(x, y_gam, label='gam') # plt.plot(x, y_mgcv, label='mgcv') # plt.plot(x, y, '.', label='y') # plt.ylim(-0.4, 1.4) # plt.legend() # plt.show() assert_allclose(y_gam, y_mgcv, rtol=1.e-10, atol=1.e-1) def multivariate_sample_data(seed=1): n = 1000 x1 = np.linspace(-1, 1, n) x2 = np.linspace(-10, 10, n) x = np.vstack([x1, x2]).T np.random.seed(seed) y = x1 * x1 * x1 + x2 +
np.random.normal(0, 0.01, n)
numpy.random.normal
from __future__ import absolute_import, division import sys import argparse import numpy as np from numpy.linalg.linalg import LinAlgError import astropy.io.fits as pyfits from numpy.polynomial.legendre import legval,legfit from scipy.signal import fftconvolve import specter.psf from lvmspec.io import read_image from lvmutil.log import get_logger from lvmspec.linalg import cholesky_solve,cholesky_solve_and_invert from lvmspec.interpolation import resample_flux def read_psf_and_traces(psf_filename) : """ Reads PSF and traces in PSF fits file Args: psf_filename : Path to input fits file which has to contain XTRACE and YTRACE HDUs Returns: psf : specter PSF object xtrace : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ytrace : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) """ log=get_logger() psf=None xtrace=None ytrace=None wavemin=None wavemax=None wavemin2=None wavemax2=None fits_file = pyfits.open(psf_filename) try : psftype=fits_file[0].header["PSFTYPE"] except KeyError : psftype="" if psftype=="GAUSS-HERMITE" : psf = specter.psf.GaussHermitePSF(psf_filename) elif psftype=="SPOTGRID" : psf = specter.psf.SpotGridPSF(psf_filename) # now read trace coefficients log.info("psf is a '%s'"%psftype) if psftype == "bootcalib" : wavemin = fits_file[0].header["WAVEMIN"] wavemax = fits_file[0].header["WAVEMAX"] xcoef = fits_file[0].data ycoef = fits_file[1].data wavemin2 = wavemin wavemax2 = wavemax elif "XTRACE" in fits_file : xtrace=fits_file["XTRACE"].data ytrace=fits_file["YTRACE"].data wavemin=fits_file["XTRACE"].header["WAVEMIN"] wavemax=fits_file["XTRACE"].header["WAVEMAX"] wavemin2=fits_file["YTRACE"].header["WAVEMIN"] wavemax2=fits_file["YTRACE"].header["WAVEMAX"] elif psftype == "GAUSS-HERMITE" : table=fits_file["PSF"].data i=np.where(table["PARAM"]=="X")[0][0] wavemin=table["WAVEMIN"][i] wavemax=table["WAVEMAX"][i] xtrace=table["COEFF"][i] i=np.where(table["PARAM"]=="Y")[0][0] ytrace=table["COEFF"][i] wavemin2=table["WAVEMIN"][i] wavemax2=table["WAVEMAX"][i] if xtrace is None or ytrace is None : raise ValueError("could not find XTRACE and YTRACE in psf file %s"%psf_filename) if wavemin != wavemin2 : raise ValueError("XTRACE and YTRACE don't have same WAVEMIN %f %f"%(wavemin,wavemin2)) if wavemax != wavemax2 : raise ValueError("XTRACE and YTRACE don't have same WAVEMAX %f %f"%(wavemax,wavemax2)) if xtrace.shape[0] != ytrace.shape[0] : raise ValueError("XTRACE and YTRACE don't have same number of fibers %d %d"%(xtrace.shape[0],ytrace.shape[0])) fits_file.close() return psf,xtrace,ytrace,wavemin,wavemax def write_traces_in_psf(input_psf_filename,output_psf_filename,xcoef,ycoef,wavemin,wavemax) : """ Writes traces in a PSF. Args: input_psf_filename : Path to input fits file which has to contain XTRACE and YTRACE HDUs output_psf_filename : Path to output fits file which has to contain XTRACE and YTRACE HDUs xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) """ log = get_logger() psf_fits=pyfits.open(input_psf_filename) psftype=psf_fits[0].header["PSFTYPE"] modified_x=False modified_y=False if psftype=="GAUSS-HERMITE" : if "X" in psf_fits["PSF"].data["PARAM"] : i=np.where(psf_fits["PSF"].data["PARAM"]=="X")[0][0] ishape=psf_fits["PSF"].data["COEFF"][i].shape if ishape != xcoef.shape : log.warning("xcoef from file and from arg don't have same shape : %s != %s"%(str(ishape),str(xcoef.shape))) n0=min(ishape[0],xcoef.shape[0]) n1=min(ishape[1],xcoef.shape[1]) psf_fits["PSF"].data["COEFF"][i] *= 0. psf_fits["PSF"].data["COEFF"][i][:n0,:n1]=xcoef[:n0,:n1] psf_fits["PSF"].data["WAVEMIN"][i]=wavemin psf_fits["PSF"].data["WAVEMAX"][i]=wavemax modified_x=True if "Y" in psf_fits["PSF"].data["PARAM"] : i=np.where(psf_fits["PSF"].data["PARAM"]=="Y")[0][0] ishape=psf_fits["PSF"].data["COEFF"][i].shape if ishape != ycoef.shape : log.warning("xcoef from file and from arg don't have same shape : %s != %s"%(str(ishape),str(ycoef.shape))) n0=min(psf_fits["PSF"].data["COEFF"][i].shape[0],ycoef.shape[0]) n1=min(psf_fits["PSF"].data["COEFF"][i].shape[1],ycoef.shape[1]) psf_fits["PSF"].data["COEFF"][i] *= 0. psf_fits["PSF"].data["COEFF"][i][:n0,:n1]=ycoef[:n0,:n1] psf_fits["PSF"].data["WAVEMIN"][i]=wavemin psf_fits["PSF"].data["WAVEMAX"][i]=wavemax modified_y=True if "XTRACE" in psf_fits : psf_fits["XTRACE"].data = xcoef psf_fits["XTRACE"].header["WAVEMIN"] = wavemin psf_fits["XTRACE"].header["WAVEMAX"] = wavemax modified_x=True if "YTRACE" in psf_fits : psf_fits["YTRACE"].data = ycoef psf_fits["YTRACE"].header["WAVEMIN"] = wavemin psf_fits["YTRACE"].header["WAVEMAX"] = wavemax modified_y=True if not modified_x : log.error("didn't change the X coefs in the psf: I/O error") raise IOError("didn't change the X coefs in the psf") if not modified_y : log.error("didn't change the Y coefs in the psf: I/O error") raise IOError("didn't change the Y coefs in the psf") psf_fits.writeto(output_psf_filename,clobber=True) log.info("wrote traces and psf in %s"%output_psf_filename) def legx(wave,wavemin,wavemax) : """ Reduced coordinate (range [-1,1]) for calls to legval and legfit Args: wave : ND np.array wavemin : float, min. val wavemax : float, max. val Returns: array of same shape as wave """ return 2.*(wave-wavemin)/(wavemax-wavemin)-1. # beginning of routines for cross-correlation method for trace shifts def boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=None, width=7) : """ Fast boxcar extraction of spectra from a preprocessed image and a trace set Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : extraction boxcar width, default is 7 Returns: flux : 2D np.array of shape (nfibers,n0=image.shape[0]), sum of pixel values per row of length=width per fiber ivar : 2D np.array of shape (nfibers,n0), ivar[f,j] = 1/( sum_[j,b:e] (1/image.ivar) ), ivar=0 if at least 1 pixel in the row has image.ivar=0 or image.mask!=0 wave : 2D np.array of shape (nfibers,n0), determined from the traces """ log=get_logger() log.info("Starting boxcar extraction...") if fibers is None : fibers = np.arange(psf.nspec) log.info("wavelength range : [%f,%f]"%(wavemin,wavemax)) if image.mask is not None : image.ivar *= (image.mask==0) # Applying a mask that keeps positive value to get the Variance by inversing the inverse variance. var=np.zeros(image.ivar.size) ok=image.ivar.ravel()>0 var[ok] = 1./image.ivar.ravel()[ok] var=var.reshape(image.ivar.shape) badimage=(image.ivar==0) n0 = image.pix.shape[0] n1 = image.pix.shape[1] frame_flux = np.zeros((fibers.size,n0)) frame_ivar = np.zeros((fibers.size,n0)) frame_wave = np.zeros((fibers.size,n0)) xx = np.tile(np.arange(n1),(n0,1)) hw = width//2 ncoef=ycoef.shape[1] twave=np.linspace(wavemin, wavemax, ncoef+2) for f,fiber in enumerate(fibers) : log.info("extracting fiber #%03d"%fiber) y_of_wave = legval(legx(twave, wavemin, wavemax), ycoef[fiber]) coef = legfit(legx(y_of_wave, 0, n0), twave, deg=ncoef) # add one deg frame_wave[f] = legval(legx(np.arange(n0).astype(float), 0, n0), coef) x_of_y = np.floor( legval(legx(frame_wave[f], wavemin, wavemax), xcoef[fiber]) + 0.5 ).astype(int) mask=((xx.T>=x_of_y-hw)&(xx.T<=x_of_y+hw)).T frame_flux[f]=image.pix[mask].reshape((n0,width)).sum(-1) tvar=var[mask].reshape((n0,width)).sum(-1) frame_ivar[f]=(tvar>0)/(tvar+(tvar==0)) bad=(badimage[mask].reshape((n0,width)).sum(-1))>0 frame_ivar[f,bad]=0. return frame_flux, frame_ivar, frame_wave def resample_boxcar_frame(frame_flux,frame_ivar,frame_wave,oversampling=2) : """ Resamples the spectra in a frame obtained with boxcar extraction to the same wavelength grid, with oversampling. Uses resample_flux routine. Args: frame_flux : 2D np.array of shape (nfibers,nwave), sum of pixel values per row of length=width per fiber frame_ivar : 2D np.array of shape (nfibers,nwave), ivar[f,j] = 1/( sum_[j,b:e] (1/image.ivar) ), ivar=0 if at least 1 pixel in the row has image.ivar=0 or image.mask!=0 frame_wave : 2D np.array of shape (nfibers,nwave), determined from the traces Optional: oversampling : int , oversampling factor , default is 2 Returns: flux : 2D np.array of shape (nfibers,nwave*oversampling) ivar : 2D np.array of shape (nfibers,nwave*oversampling) frame_wave : 1D np.array of size (nwave*oversampling) """ log=get_logger() log.info("resampling with oversampling") nfibers=frame_flux.shape[0] wave=frame_wave[nfibers//2] dwave=np.median(np.gradient(frame_wave))/oversampling wave=np.linspace(wave[0],wave[-1],int((wave[-1]-wave[0])/dwave)) nwave=wave.size flux=np.zeros((nfibers,nwave)) ivar=np.zeros((nfibers,nwave)) for i in range(nfibers) : log.info("resampling fiber #%03d"%i) flux[i],ivar[i] = resample_flux(wave, frame_wave[i],frame_flux[i],frame_ivar[i]) return flux,ivar,wave def compute_dy_from_spectral_cross_correlation(flux,wave,refflux,ivar=None,hw=3.,deg=2) : """ Measure y offsets from two spectra expected to be on the same wavelength grid. refflux is the assumed well calibrated spectrum. A relative flux calibration of the two spectra is done internally. Args: flux : 1D array of spectral flux as a function of wavelenght wave : 1D array of wavelength (in Angstrom) refflux : 1D array of reference spectral flux Optional: ivar : 1D array of inverse variance of flux hw : half width in Angstrom of the cross-correlation chi2 scan, default=3A corresponding approximatly to 5 pixels for DESI deg : degree of polynomial fit as a function of wavelength, only used to find and mask outliers Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD ex : 1D array of uncertainties on dx fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ # absorb differences of calibration (fiberflat not yet applied) x=(wave-wave[wave.size//2])/500. kernel=np.exp(-x**2/2) f1=fftconvolve(flux,kernel,mode='same') f2=fftconvolve(refflux,kernel,mode='same') scale=f1/f2 refflux *= scale error_floor=0.01 #A if ivar is None : ivar=np.ones(flux.shape) dwave=wave[1]-wave[0] ihw=int(hw/dwave)+1 chi2=np.zeros((2*ihw+1)) ndata=np.sum(ivar[ihw:-ihw]>0) for i in range(2*ihw+1) : d=i-ihw b=ihw+d e=-ihw+d if e==0 : e=wave.size chi2[i] = np.sum(ivar[ihw:-ihw]*(flux[ihw:-ihw]-refflux[b:e])**2) i=np.argmin(chi2) if i<2 or i>=chi2.size-2 : # something went wrong delta=0. sigma=100. else : # refine minimum hh=int(0.6/dwave)+1 b=i-hh e=i+hh+1 if b<0 : b=0 e=b+2*hh+1 if e>2*ihw+1 : e=2*ihw+1 b=e-(2*hh+1) x=dwave*(np.arange(b,e)-ihw) c=np.polyfit(x,chi2[b:e],deg) if c[0]>0 : delta=-c[1]/(2.*c[0]) sigma=np.sqrt(1./c[0] + error_floor**2) if ndata>1 : chi2pdf=(c[0]*delta**2+c[1]*delta+c[2])/(ndata+1) if chi2pdf>1 : sigma *= np.sqrt(chi2pdf) else : # something else went wrong delta=0. sigma=100. ''' print("dw= %f +- %f"%(delta,sigma)) if np.abs(delta)>1. : print("chi2/ndf=%f/%d=%f"%(chi2[i],(ndata-1),chi2[i]/(ndata-1))) import matplotlib.pyplot as plt x=dwave*(np.arange(chi2.size)-ihw) plt.plot(x,chi2,"o-") pol=np.poly1d(c) xx=np.linspace(x[b],x[e-1],20) plt.plot(xx,pol(xx)) plt.axvline(delta) plt.axvline(delta-sigma) plt.axvline(delta+sigma) plt.show() ''' return delta,sigma def compute_dy_from_spectral_cross_correlations_of_frame(flux, ivar, wave , xcoef, ycoef, wavemin, wavemax, reference_flux , n_wavelength_bins = 4) : """ Measures y offsets from a set of resampled spectra and a reference spectrum that are on the same wavelength grid. reference_flux is the assumed well calibrated spectrum. Calls compute_dy_from_spectral_cross_correlation per fiber Args: flux : 2D np.array of shape (nfibers,nwave) ivar : 2D np.array of shape (nfibers,nwave) , inverse variance of flux wave : 1D array of wavelength (in Angstrom) of size nwave refflux : 1D array of reference spectral flux of size nwave Optional: n_wavelength_bins : number of bins along wavelength Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dy : 1D array of shifts along y coordinates on CCD ey : 1D array of uncertainties on dy fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() x_for_dy=np.array([]) y_for_dy=np.array([]) dy=np.array([]) ey=np.array([]) fiber_for_dy=np.array([]) wave_for_dy=np.array([]) nfibers = flux.shape[0] for fiber in range(nfibers) : log.info("computing dy for fiber #%03d"%fiber) for b in range(n_wavelength_bins) : wmin=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*b if b<n_wavelength_bins-1 : wmax=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*(b+1) else : wmax=wave[-1] ok=(wave>=wmin)&(wave<=wmax) sw=np.sum(ivar[fiber,ok]*flux[fiber,ok]*(flux[fiber,ok]>0)) if sw<=0 : continue dwave,err = compute_dy_from_spectral_cross_correlation(flux[fiber,ok],wave[ok],reference_flux[ok],ivar=ivar[fiber,ok],hw=3.) block_wave = np.sum(ivar[fiber,ok]*flux[fiber,ok]*(flux[fiber,ok]>0)*wave[ok])/sw if err > 1 : continue rw = legx(block_wave,wavemin,wavemax) tx = legval(rw,xcoef[fiber]) ty = legval(rw,ycoef[fiber]) eps=0.1 yp = legval(legx(block_wave+eps,wavemin,wavemax),ycoef[fiber]) dydw = (yp-ty)/eps tdy = -dwave*dydw tey = err*dydw x_for_dy=np.append(x_for_dy,tx) y_for_dy=np.append(y_for_dy,ty) dy=np.append(dy,tdy) ey=np.append(ey,tey) fiber_for_dy=np.append(fiber_for_dy,fiber) wave_for_dy=np.append(wave_for_dy,block_wave) return x_for_dy,y_for_dy,dy,ey,fiber_for_dy,wave_for_dy def compute_dy_using_boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers, width=7, degyy=2) : """ Measures y offsets (internal wavelength calibration) from a preprocessed image and a trace set using a cross-correlation of boxcar extracted spectra. Uses boxcar_extraction , resample_boxcar_frame , compute_dy_from_spectral_cross_correlations_of_frame Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : int, extraction boxcar width, default is 7 degyy : int, degree of polynomial fit of shifts as a function of y, used to reject outliers. Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dy : 1D array of shifts along y coordinates on CCD ey : 1D array of uncertainties on dy fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() # boxcar extraction boxcar_flux, boxcar_ivar, boxcar_wave = boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=fibers, width=7) # resampling on common finer wavelength grid flux, ivar, wave = resample_boxcar_frame(boxcar_flux, boxcar_ivar, boxcar_wave, oversampling=4) # median flux used as internal spectral reference mflux=np.median(flux,axis=0) # measure y shifts return compute_dy_from_spectral_cross_correlations_of_frame(flux=flux, ivar=ivar, wave=wave, xcoef=xcoef, ycoef=ycoef, wavemin=wavemin, wavemax=wavemax, reference_flux = mflux , n_wavelength_bins = degyy+4) def compute_dx_from_cross_dispersion_profiles(xcoef,ycoef,wavemin,wavemax, image, fibers=None, width=7,deg=2) : """ Measure x offsets from a preprocessed image and a trace set Args: xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object Optional: fibers : 1D np.array of int (default is all fibers, the first fiber is always = 0) width : extraction boxcar width, default is 5 deg : degree of polynomial fit as a function of y, only used to find and mask outliers Returns: x : 1D array of x coordinates on CCD (axis=1 in numpy image array, AXIS=0 in FITS, cross-dispersion axis = fiber number direction) y : 1D array of y coordinates on CCD (axis=0 in numpy image array, AXIS=1 in FITS, wavelength dispersion axis) dx : 1D array of shifts along x coordinates on CCD ex : 1D array of uncertainties on dx fiber : 1D array of fiber ID (first fiber = 0) wave : 1D array of wavelength """ log=get_logger() log.info("Starting compute_dx_from_cross_dispersion_profiles ...") if fibers is None : fibers = np.arange(psf.nspec) log.info("wavelength range : [%f,%f]"%(wavemin,wavemax)) if image.mask is not None : image.ivar *= (image.mask==0) error_floor = 0.04 # pixel # Variance based on inverse variance's size var = np.zeros(image.ivar.shape) # Applying a mask that keeps positive value to get the Variance by inversing the inverse variance. n0 = image.pix.shape[0] n1 = image.pix.shape[1] y = np.arange(n0) xx = np.tile(np.arange(n1),(n0,1)) hw = width//2 ncoef=ycoef.shape[1] twave=np.linspace(wavemin, wavemax, ncoef+2) ox=np.array([]) oy=np.array([]) odx=np.array([]) oex=np.array([]) of=np.array([]) ol=np.array([]) for f,fiber in enumerate(fibers) : log.info("computing dx for fiber #%03d"%fiber) y_of_wave = legval(legx(twave, wavemin, wavemax), ycoef[fiber]) coef = legfit(legx(y_of_wave, 0, n0), twave, deg=ncoef) # add one deg twave = legval(legx(np.arange(n0).astype(float), 0, n0), coef) x_of_y = legval(legx(twave, wavemin, wavemax), xcoef[fiber]) x_of_y_int = np.floor(x_of_y+0.5).astype(int) dx = (xx.T-x_of_y).T mask=((xx.T>=x_of_y_int-hw)&(xx.T<=x_of_y_int+hw)).T ok = ((image.ivar[mask]==0).reshape((n0,width)).sum(-1)==0) swdx = (dx[mask] * image.pix[mask] ).reshape((n0,width)).sum(-1) swdxvar = (dx[mask]**2/(image.ivar[mask]+0.1*(image.ivar[mask]==0) )).reshape((n0,width)).sum(-1) sw = (image.pix[mask]).reshape((n0,width)).sum(-1) swy = sw*y swx = sw*x_of_y swl = sw*twave # rebin rebin = 200 ok = ((ok[:(n0//rebin)*rebin].reshape(n0//rebin,rebin)==0).sum(-1)==0) sw = sw[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swdx = swdx[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swdxvar = swdxvar[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swx = swx[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swy = swy[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) swl = swl[:(n0//rebin)*rebin].reshape(n0//rebin,rebin).sum(-1) ''' import matplotlib.pyplot as plt i=np.where((sw>0.01)&(ok>0))[0] plt.errorbar(swy[i]/sw[i],swdx[i]/sw[i],np.sqrt(swdxvar[i])/sw[i],fmt="o") plt.show() ''' sw[sw<0] = 0 fex = np.sqrt(swdxvar/(sw+(sw==0))**2 + error_floor**2) # error on dx, with an error floor ok &= (fex>0)&(fex<10) # ok means no ivar=0 pixel fex = fex[ok] fdx = (swdx/(sw+(sw==0)))[ok] fx = (swx/(sw+(sw==0)))[ok] fy = (swy/(sw+(sw==0)))[ok] fl = (swl/(sw+(sw==0)))[ok] good_fiber=True for loop in range(10) : if fdx.size < deg+2 : good_fiber=False break try : c = np.polyfit(fy,fdx,deg,w=1/fex**2) pol = np.poly1d(c) chi2 = (fdx-pol(fy))**2/fex**2 mchi2 = np.median(chi2) #log.info("mchi2=%f"%mchi2) #if mchi2>1 : # fex *= np.sqrt(mchi2) ok = np.where(chi2<=25.*mchi2)[0] nbad = fdx.size-ok.size fex = fex[ok] fdx = fdx[ok] fx = fx[ok] fy = fy[ok] fl = fl[ok] except LinAlgError : good_fiber=False break if nbad==0 : break #print("removing %d bad measurements"%nbad) # we return the original sample of offset values if good_fiber : ox = np.append(ox,fx) oy = np.append(oy,fy) odx = np.append(odx,fdx) oex = np.append(oex,fex) of = np.append(of,fiber*np.ones(fy.size)) ol = np.append(ol,fl) return ox,oy,odx,oex,of,ol def shift_ycoef_using_external_spectrum(psf,xcoef,ycoef,wavemin,wavemax,image,fibers,spectrum_filename,degyy=2,width=7) : """ Measure y offsets (external wavelength calibration) from a preprocessed image , a PSF + trace set using a cross-correlation of boxcar extracted spectra and an external well-calibrated spectrum. The PSF shape is used to convolve the input spectrum. It could also be used to correct for the PSF asymetry (disabled for now). A relative flux calibration of the spectra is performed internally. Args: psf : specter PSF xcoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to XCCD ycoef : 2D np.array of shape (nfibers,ncoef) containing Legendre coefficents for each fiber to convert wavelenght to YCCD wavemin : float wavemax : float. wavemin and wavemax are used to define a reduced variable legx(wave,wavemin,wavemax)=2*(wave-wavemin)/(wavemax-wavemin)-1 used to compute the traces, xccd=legval(legx(wave,wavemin,wavemax),xtrace[fiber]) image : DESI preprocessed image object fibers : 1D np.array of fiber indices spectrum_filename : path to input spectral file ( read with np.loadtxt , first column is wavelength (in vacuum and Angstrom) , second column in flux (arb. units) Optional: width : int, extraction boxcar width, default is 7 degyy : int, degree of polynomial fit of shifts as a function of y, used to reject outliers. Returns: ycoef : 2D np.array of same shape as input, with modified Legendre coefficents for each fiber to convert wavelenght to YCCD """ log = get_logger() tmp=np.loadtxt(spectrum_filename).T ref_wave=tmp[0] ref_spectrum=tmp[1] log.info("read reference spectrum in %s with %d entries"%(spectrum_filename,ref_wave.size)) log.info("rextract spectra with boxcar") # boxcar extraction boxcar_flux, boxcar_ivar, boxcar_wave = boxcar_extraction(xcoef,ycoef,wavemin,wavemax, image, fibers=fibers, width=width) # resampling on common finer wavelength grid flux, ivar, wave = resample_boxcar_frame(boxcar_flux, boxcar_ivar, boxcar_wave, oversampling=2) # median flux used as internal spectral reference mflux=np.median(flux,axis=0) mivar=np.median(ivar,axis=0)*flux.shape[0]*(2./np.pi) # very appoximate ! # trim ref_spectrum i=(ref_wave>=wave[0])&(ref_wave<=wave[-1]) ref_wave=ref_wave[i] ref_spectrum=ref_spectrum[i] # check wave is linear or make it linear if np.abs((ref_wave[1]-ref_wave[0])-(ref_wave[-1]-ref_wave[-2]))>0.0001*(ref_wave[1]-ref_wave[0]) : log.info("reference spectrum wavelength is not on a linear grid, resample it") dwave = np.min(np.gradient(ref_wave)) tmp_wave = np.linspace(ref_wave[0],ref_wave[-1],int((ref_wave[-1]-ref_wave[0])/dwave)) ref_spectrum = resample_flux(tmp_wave, ref_wave , ref_spectrum) ref_wave = tmp_wave try : # compute psf at most significant line of ref_spectrum i=np.argmax(ref_spectrum) central_wave_for_psf_evaluation = ref_wave[i] fiber_for_psf_evaluation = (boxcar_flux.shape[0]//2) dwave=ref_wave[i+1]-ref_wave[i] hw=int(3./dwave)+1 # 3A half width wave_range = ref_wave[i-hw:i+hw+1] x,y=psf.xy(fiber_for_psf_evaluation,wave_range) x=np.tile(x[hw]+np.arange(-hw,hw+1)*(y[-1]-y[0])/(2*hw+1),(y.size,1)) y=np.tile(y,(2*hw+1,1)).T kernel2d=psf._value(x,y,fiber_for_psf_evaluation,central_wave_for_psf_evaluation) kernel1d=np.sum(kernel2d,axis=1) log.info("convolve reference spectrum using PSF at fiber %d and wavelength %dA"%(fiber_for_psf_evaluation,central_wave_for_psf_evaluation)) ref_spectrum=fftconvolve(ref_spectrum,kernel1d, mode='same') except : log.warning("couldn't convolve reference spectrum: %s %s"%(sys.exc_info()[0],sys.exc_info()[1])) # resample input spectrum log.info("resample convolved reference spectrum") ref_spectrum = resample_flux(wave, ref_wave , ref_spectrum) log.info("absorb difference of calibration") x=(wave-wave[wave.size//2])/50. kernel=np.exp(-x**2/2) f1=fftconvolve(mflux,kernel,mode='same') f2=fftconvolve(ref_spectrum,kernel,mode='same') scale=f1/f2 ref_spectrum *= scale log.info("fit shifts on wavelength bins") # define bins n_wavelength_bins = degyy+4 y_for_dy=np.array([]) dy=np.array([]) ey=np.array([]) wave_for_dy=np.array([]) for b in range(n_wavelength_bins) : wmin=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*b if b<n_wavelength_bins-1 : wmax=wave[0]+((wave[-1]-wave[0])/n_wavelength_bins)*(b+1) else : wmax=wave[-1] ok=(wave>=wmin)&(wave<=wmax) sw= np.sum(mflux[ok]*(mflux[ok]>0)) if sw==0 : continue dwave,err = compute_dy_from_spectral_cross_correlation(mflux[ok],wave[ok],ref_spectrum[ok],ivar=mivar[ok],hw=3.) bin_wave = np.sum(mflux[ok]*(mflux[ok]>0)*wave[ok])/sw x,y=psf.xy(fiber_for_psf_evaluation,bin_wave) eps=0.1 x,yp=psf.xy(fiber_for_psf_evaluation,bin_wave+eps) dydw=(yp-y)/eps if err*dydw<1 : dy=np.append(dy,-dwave*dydw) ey=np.append(ey,err*dydw) wave_for_dy=np.append(wave_for_dy,bin_wave) y_for_dy=np.append(y_for_dy,y) log.info("wave = %fA , y=%d, measured dwave = %f +- %f A"%(bin_wave,y,dwave,err)) if False : # we don't need this for now try : log.info("correcting bias due to asymmetry of PSF") hw=5 oversampling=4 xx=np.tile(np.arange(2*hw*oversampling+1)-hw*oversampling,(2*hw*oversampling+1,1))/float(oversampling) yy=xx.T x,y=psf.xy(fiber_for_psf_evaluation,central_wave_for_psf_evaluation) prof=psf._value(xx+x,yy+y,fiber_for_psf_evaluation,central_wave_for_psf_evaluation) dy_asym_central = np.sum(yy*prof)/np.sum(prof) for i in range(dy.size) : x,y=psf.xy(fiber_for_psf_evaluation,wave_for_dy[i]) prof=psf._value(xx+x,yy+y,fiber_for_psf_evaluation,wave_for_dy[i]) dy_asym = np.sum(yy*prof)/np.sum(prof) log.info("y=%f, measured dy=%f , bias due to PSF asymetry = %f"%(y,dy[i],dy_asym-dy_asym_central)) dy[i] -= (dy_asym-dy_asym_central) except : log.warning("couldn't correct for asymmetry of PSF: %s %s"%(sys.exc_info()[0],sys.exc_info()[1])) log.info("polynomial fit of shifts and modification of PSF ycoef") # pol fit coef = np.polyfit(wave_for_dy,dy,degyy,w=1./ey**2) pol =
np.poly1d(coef)
numpy.poly1d
from numpy.random import seed import scipy.io from keras.utils import np_utils import numpy as np import pickle import scipy as sc def createDataset_12(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.append(mat['muestras'].item(i)[18][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_11(path): seed(0) sample = [] labels = [] subject = [] ages = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.append(mat['muestras'].item(i)[18][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] age = mat['muestras'].item(i)[3] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) ages.append(age) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject), np.array(ages) def createDataset_15(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if np.any(mat['muestras'].item(i)[23][:, 1:4]): sample.append(mat['muestras'].item(i)[23][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_07(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if np.any(mat['muestras'].item(i)[19][:, 1:4]): sample.append(mat['muestras'].item(i)[19][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample =
np.expand_dims(sample, 1)
numpy.expand_dims
import numpy as np import os import glob import sys sys.path.append(r"../../../utils") from partImage import img2patches IMG_PATCH_SIZE = 128 def rejectOutliers(data, m=3.5): data = np.array(data) d = np.abs(data - np.median(data)) mdev = np.median(d) s = d / (mdev if mdev else 1.) return data[s < m] def evaluateNoiseEstimationMedianMinMax(dirsIn, pathLogFile, noiseLevels): """ Evaluate robust (5% outliers rejected) median, min and max statistics of noise estimations. :param dirsIn: Main directories of noise estimation results. Each directory is supposed to contain sub-directories with noise estimation results (.npz) according to the applied noise levels (e.g., 0, 1, 2, ...). :param pathLogFile: Path to the output log file. :param noiseLevels: Applied ground truth noise levels when corrupting images. :return: Null """ def writeLogEntry(logStream, entry): logStream.write(entry + "\n") print(entry) with open(pathLogFile, "w") as log: for dirIdx, dirPath in enumerate(dirsIn): writeLogEntry(log, "Method: " + dirPath) dirsInSplit = dirPath.rsplit(os.sep, 1) baseDir, corruptionTypeDir = dirsInSplit[-2], dirsInSplit[-1] medianByNoiseLevel = {key: [] for key in noiseLevels} minMaxErrorsByNoiseLevel = {key: [[], []] for key in noiseLevels} for noiseLevel in noiseLevels: noiseLevelStr = os.path.join(corruptionTypeDir, str(noiseLevel)) resultFilPaths = glob.glob(os.path.join(baseDir, noiseLevelStr, "*.npz")) numResultFiles = 0 writeLogEntry(log, "Noise Level: " + str(noiseLevel) + ", file count: " + str(len(resultFilPaths)) + ".") for idx, resultPath in enumerate(resultFilPaths): try: noiseResultMat = np.load(resultPath)["arr_0"] except: continue patches = img2patches(noiseResultMat, IMG_PATCH_SIZE, IMG_PATCH_SIZE, IMG_PATCH_SIZE, IMG_PATCH_SIZE) if len(patches) == 0 or len(patches.shape) != 3: print("Skip result file", resultPath, "due to an invalid patch size.") continue # Since the CNN estimates the noise level pixelwise, aggregate the estimations patch-wise using their median values first. # Then, buffer min and max statistics. patchMedians = np.median(patches, axis=(1,2)) minVal = np.min(patchMedians) maxVal =
np.max(patchMedians)
numpy.max
""" csalt_models.py Usage: - import modules Outputs: - various """ import os, sys import numpy as np from astropy.io import fits from vis_sample import vis_sample from scipy.ndimage import convolve1d from scipy.interpolate import interp1d from vis_sample.classes import * from simple_disk import simple_disk import const as const import matplotlib.pyplot as plt def cube_parser(pars, FOV=8, Npix=128, dist=150, r_min=0, r_max=500, r0=10, RA=240, DEC=-40, restfreq=230.538e9, Vsys=0, vel=None, datafile=None, outfile=None): ### Generate a model disk disk = simple_disk(pars[0], pars[1], x0=0, y0=0, dist=dist, mstar=pars[2], r_min=r_min, r_max=r_max, r0=r0, r_l=pars[3], z0=pars[4], zpsi=pars[5], zphi=np.inf, Tb0=pars[6], Tbq=pars[7], Tbeps=np.inf, Tbmax=1000, Tbmax_b=pars[8], tau0=1000, tauq=0, taueta=np.inf, taumax=5000, dV0=pars[9], dVq=0.5*pars[7], dVmax=1000, FOV=FOV, Npix=Npix) ### Set velocities for cube (either use the channels in an already-existing ### cube from a .FITS file, or use the provided values) if datafile is not None: hd = fits.open(datafile)[0].header f0, ix, nf, df = hd['CRVAL4'], hd['CRPIX4'], hd['NAXIS4'], hd['CDELT4'] freqs = f0 + (np.arange(nf) - ix + 1) * df vel = const.c_ * (1 - freqs / restfreq) else: freqs = restfreq * (1 - vel / const.c_) # adjust for systemic velocity vlsr = vel - Vsys ### Generate the spectral line cube cube = disk.get_cube(vlsr) # convert from brightness temperatures to Jy / pixel pixel_area = (disk.cell_sky * np.pi / (180 * 3600))**2 for i in range(len(freqs)): cube[i,:,:] *= 1e26 * pixel_area * 2 * freqs[i]**2 * \ const.k_ / const.c_**2 ### Prepare the output: either into the specified .FITS file or into a ### vis_sample "SKY OBJECT". if outfile is not None: hdu = fits.PrimaryHDU(cube[:,::-1,:]) header = hdu.header # basic header inputs header['EPOCH'] = 2000. header['EQUINOX'] = 2000. header['LATPOLE'] = -1.436915713634E+01 header['LONPOLE'] = 180. # spatial coordinates header['CTYPE1'] = 'RA---SIN' header['CUNIT1'] = 'DEG' header['CDELT1'] = -disk.cell_sky / 3600. header['CRPIX1'] = 0.5 * disk.Npix + 0.5 header['CRVAL1'] = RA header['CTYPE2'] = 'DEC--SIN' header['CUNIT2'] = 'DEG' header['CDELT2'] = disk.cell_sky / 3600. header['CRPIX2'] = 0.5 * disk.Npix + 0.5 header['CRVAL2'] = DEC # frequency coordinates header['CTYPE3'] = 'FREQ' header['CUNIT3'] = 'Hz' header['CRPIX3'] = 1. header['CDELT3'] = freqs[1]-freqs[0] header['CRVAL3'] = freqs[0] header['SPECSYS'] = 'LSRK' header['VELREF'] = 257 # intensity units header['BSCALE'] = 1. header['BZERO'] = 0. header['BUNIT'] = 'JY/PIXEL' header['BTYPE'] = 'Intensity' # output FITS hdu.writeto(outfile, overwrite=True) return cube[:,::-1,:] # otherwise, return a vis_sample SkyObject else: # adjust cube formatting mod_data = np.rollaxis(cube[:,::-1,:], 0, 3) # spatial coordinates npix_ra = disk.Npix mid_pix_ra = 0.5 * disk.Npix + 0.5 delt_ra = -disk.cell_sky / 3600 if (delt_ra < 0): mod_data = np.fliplr(mod_data) mod_ra = (np.arange(npix_ra) - (mid_pix_ra-0.5))*np.abs(delt_ra)*3600 npix_dec = disk.Npix mid_pix_dec = 0.5 * disk.Npix + 0.5 delt_dec = disk.cell_sky / 3600 if (delt_dec < 0): mod_data = np.flipud(mod_data) mod_dec = (np.arange(npix_dec)-(mid_pix_dec-0.5))*np.abs(delt_dec)*3600 # spectral coordinates try: nchan_freq = len(freqs) mid_chan_freq = freqs[0] mid_chan = 1 delt_freq = freqs[1] - freqs[0] mod_freqs = (np.arange(nchan_freq)-(mid_chan-1))*delt_freq + \ mid_chan_freq except: mod_freqs = [0] # return a vis_sample SkyImage object return SkyImage(mod_data, mod_ra, mod_dec, mod_freqs, None) def vismodel_full(pars, fixed, dataset, chpad=3, oversample=None, noise_inject=None): ### - Prepare inputs # Parse fixed parameters restfreq, FOV, Npix, dist, rmax = fixed npars = len(pars) # Spatial frequencies to lambda units uu = dataset.um * np.mean(dataset.nu_TOPO) / const.c_ vv = dataset.vm * np.mean(dataset.nu_TOPO) / const.c_ # Pad the frequency arrays dnu_TOPO = np.diff(dataset.nu_TOPO)[0] nu_TOPO_s = dataset.nu_TOPO[0] + dnu_TOPO * np.arange(-chpad, 0, 1) nu_TOPO_f = dataset.nu_TOPO[-1] + dnu_TOPO * np.arange(1, chpad+1, 1) dataset.nu_TOPO = np.concatenate((nu_TOPO_s, dataset.nu_TOPO, nu_TOPO_f)) dnu_LSRK = np.diff(dataset.nu_LSRK, axis=1)[:,0] nu_LSRK_s = (dataset.nu_LSRK[:,0])[:,None] + \ dnu_LSRK[:,None] * np.arange(-chpad, 0, 1)[None,:] nu_LSRK_f = (dataset.nu_LSRK[:,-1])[:,None] + \ dnu_LSRK[:,None] * np.arange(1, chpad+1, 1)[None,:] dataset.nu_LSRK = np.concatenate((nu_LSRK_s, dataset.nu_LSRK, nu_LSRK_f), axis=1) # Upsample in the spectral domain (if necessary) if oversample is not None: nchan = dataset.nchan + 2 * chpad nu_TOPO = np.interp(np.arange((nchan-1) * oversample + 1), np.arange(0, nchan * oversample, oversample), dataset.nu_TOPO) nch = len(nu_TOPO) nu_LSRK =
np.empty((dataset.nstamps, nch))
numpy.empty
# -*- coding: utf-8 -*- # Copyright (C) 2008-2011, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # License: MIT. See COPYING.MIT file in the milk distribution ''' ================ Tree Classifier ================ Decision tree based classifier ------------------------------ ''' from __future__ import division import numpy as np from .classifier import normaliselabels from .base import supervised_model __all__ = [ 'tree_learner', 'stump_learner', ] class Leaf(object): ''' v : value w : weight ''' def __init__(self, v, w): self.v = v self.w = w def __repr__(self): return 'Leaf(%s,%s)' % (self.v, self.w) class Node(object): # This could be replaced by a namedtuple def __init__(self, featid, featval, left, right): self.featid = featid self.featval = featval self.left = left self.right = right def _split(features, labels, weights, criterion, subsample, R): N,f = features.shape if subsample is not None: samples = np.array(R.sample(range(features.shape[1]), subsample)) features = features[:, samples] f = subsample best = None best_val = float('-Inf') for i in range(f): domain_i = sorted(set(features[:,i])) for d in domain_i[1:]: cur_split = (features[:,i] < d) if weights is not None: value = criterion(labels[cur_split], labels[~cur_split], weights[cur_split], weights[~cur_split]) else: value = criterion(labels[cur_split], labels[~cur_split]) if value > best_val: best_val = value if subsample is not None: ti = samples[i] else: ti = i best = ti,d return best from ._tree import set_entropy from ._tree import information_gain as _information_gain def information_gain(labels0, labels1, include_entropy=False): ''' ig = information_gain(labels0, labels1, include_entropy=False) Information Gain See http://en.wikipedia.org/wiki/Information_gain_in_decision_trees The function calculated here does not include the original entropy unless you explicitly ask for it (by passing include_entropy=True) ''' if include_entropy: return set_entropy(np.concatenate( (labels0, labels1) )) + \ _information_gain(labels0, labels1) return _information_gain(labels0, labels1) def z1_loss(labels0, labels1, weights0=None, weights1=None): ''' z = z1_loss(labels0, labels1) z = z1_loss(labels0, labels1, weights0, weights1) zero-one loss ''' def _acc(labels, weights): c = (labels.mean() > .5) if weights is not None: return np.dot((labels != c), weights) return np.sum(labels != c) return _acc(labels0, weights0) + _acc(labels1, weights1) def neg_z1_loss(labels0, labels1, weights0=None, weights1=None): ''' z = neg_z1_loss(labels0, labels1) z = neg_z1_loss(labels0, labels1, weights0, weights1) zero-one loss, with the sign reversed so it can be *maximised*. ''' return -z1_loss(labels0,labels1,weights0,weights1) def build_tree(features, labels, criterion, min_split=4, subsample=None, R=None, weights=None): ''' tree = build_tree(features, labels, criterion, min_split=4, subsample=None, R=None, weights={all 1s}) Parameters ---------- features : sequence features to use labels : sequence labels criterion : function {labels} x {labels} -> float function to measure goodness of split min_split : integer minimum size to split on subsample : integer, optional if given, then, at each step, choose R : source of randomness, optional See `milk.util.get_pyrandom` weights : sequence, optional weight of instance (default: all the same) Returns ------- tree : Tree ''' assert len(features) == len(labels), 'build_tree: Nr of labels does not match nr of features' features = np.asanyarray(features) labels =
np.asanyarray(labels, dtype=np.int)
numpy.asanyarray
#!/usr/bin/env python3 """ RGBD camera sensor simulation for pybullet_ros based on pybullet.getCameraImage(). """ import math import numpy as np import rospy from cv_bridge import CvBridge from sensor_msgs.msg import Image class RGBDCamera: def __init__(self, pybullet, robot): self._pb = pybullet self._robot = robot # create image msg placeholder for publication self._image_msg = Image() # get RGBD camera parameters from ROS param server self._image_msg.width = rospy.get_param('~rgbd_camera/resolution/width', 640) self._image_msg.height = rospy.get_param('~rgbd_camera/resolution/height', 480) assert (self._image_msg.width > 5) assert (self._image_msg.height > 5) cam_frame_name = rospy.get_param('~rgbd_camera/frame_name', None) if not cam_frame_name: rospy.logerr("[RGBDCamera::init] Required parameter 'rgbd_camera/frame_name' not set, will exit now.") rospy.signal_shutdown("[RGBDCamera::init] Required param 'rgbd_camera/frame_name' not set.") return # get pybullet camera link id from its name if cam_frame_name not in self._robot.link_names: rospy.logerr( "[RGBDCamera::init] RGBD camera reference frame '{}' not found in URDF model, cannot continue.".format( cam_frame_name)) rospy.logwarn("[RGBDCamera::init] Available frames are: {}.".format(self._robot.link_names)) rospy.signal_shutdown("[RGBDCamera::init] Required param 'rgbd_camera/frame_name' not set properly.") return self._camera_link_id = self._robot.get_link_index_by_name(cam_frame_name) self._image_msg.header.frame_id = cam_frame_name # create publisher self._publisher = rospy.Publisher('rgb_image', Image, queue_size=1) self._image_msg.encoding = rospy.get_param('~rgbd_camera/resolution/encoding', 'rgb8') self._image_msg.is_bigendian = rospy.get_param('~rgbd_camera/resolution/encoding', 0) self._image_msg.step = rospy.get_param('~rgbd_camera/resolution/encoding', 1920) # projection matrix hfov = rospy.get_param('~rgbd_camera/hfov', 56.3) vfov = rospy.get_param('~rgbd_camera/vfov', 43.7) near_plane = rospy.get_param('~rgbd_camera/near_plane', 0.4) far_plane = rospy.get_param('~rgbd_camera/far_plane', 8) self._projection_matrix = self._compute_projection_matrix(hfov, vfov, near_plane, far_plane) # use cv_bridge ros to convert cv matrix to ros format self._image_bridge = CvBridge() # variable used to run this plugin at a lower frequency, HACK self._count = 0 def _compute_projection_matrix(self, hfov, vfov, near_plane, far_plane): return self._pb.computeProjectionMatrix( left=-math.tan(math.pi * hfov / 360.0) * near_plane, right=math.tan(math.pi * hfov / 360.0) * near_plane, bottom=-math.tan(math.pi * vfov / 360.0) * near_plane, top=math.tan(math.pi * vfov / 360.0) * near_plane, nearVal=near_plane, farVal=far_plane) def _extract_frame(self, camera_image): bgr_image =
np.zeros((self._image_msg.height, self._image_msg.width, 3))
numpy.zeros
from collections import defaultdict from functools import partial import itertools import operator import re from typing import List, Optional, Sequence, Tuple, Union import numpy as np from pandas._libs import Timedelta, Timestamp, internals as libinternals, lib from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( find_common_type, infer_dtype_from_scalar, maybe_convert_objects, maybe_promote, ) from pandas.core.dtypes.common import ( _NS_DTYPE, is_extension_array_dtype, is_list_like, is_scalar, is_sparse, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCExtensionArray, ABCSeries from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos from pandas.core.base import PandasObject from pandas.core.index import Index, MultiIndex, ensure_index from pandas.core.indexers import maybe_convert_indices from pandas.io.formats.printing import pprint_thing from .blocks import ( Block, CategoricalBlock, DatetimeTZBlock, ExtensionBlock, ObjectValuesExtensionBlock, _extend_blocks, _merge_blocks, _safe_reshape, get_block_type, make_block, ) from .concat import ( # all for concatenate_block_managers combine_concat_plans, concatenate_join_units, get_mgr_concatenation_plan, is_uniform_join_units, ) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame, Series, etc. Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = [ "axes", "blocks", "_ndim", "_shape", "_known_consolidated", "_is_consolidated", "_blknos", "_blklocs", ] def __init__( self, blocks: Sequence[Block], axes: Sequence[Index], do_integrity_check: bool = True, ): self.axes = [ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) # type: Tuple[Block, ...] for block in blocks: if self.ndim != block.ndim: raise AssertionError( "Number of Block dimensions ({block}) must equal " "number of axes ({self})".format(block=block.ndim, self=self.ndim) ) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [ensure_index([])] + [ensure_index(a) for a in self.axes[1:]] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self) -> int: return len(self.axes) def set_axis(self, axis, new_labels): new_labels = ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError( "Length mismatch: Expected axis has {old} elements, new " "values have {new} elements".format(old=old_len, new=new_len) ) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True, level=None): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True level : int, default None """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) return obj @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice( 0, len(self), 1 ) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs @property def items(self): return self.axes[0] def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return algos.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return algos.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = list(self.axes) extra_state = { "0.14.1": { "axes": axes_array, "blocks": [ dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks ], } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): return make_block(values, placement=mgr_locs) if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]: state = state[3]["0.14.1"] self.axes = [ensure_index(ax) for ax in state["axes"]] self.blocks = tuple( unpickle_block(b["values"], b["mgr_locs"]) for b in state["blocks"] ) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [ self.axes[0].get_indexer(blk_items) for blk_items in bitems ] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs) ) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self) -> int: return len(self.items) def __repr__(self) -> str: output = pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += "\nItems: {ax}".format(ax=ax) else: output += "\nAxis {i}: {ax}".format(i=i, ax=ax) for block in self.blocks: output += "\n{block}".format(block=pprint_thing(block)) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if block._verify_integrity and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError( "Number of manager items must equal union of " "block items\n# manager items: {0}, # " "tot_items: {1}".format(len(self.items), tot_items) ) def apply( self, f, axes=None, filter=None, do_integrity_check=False, consolidate=True, **kwargs, ): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check consolidate: boolean, default True. Join together blocks having same dtype Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs["filter"] = filter_locs if consolidate: self._consolidate_inplace() if f == "where": align_copy = True if kwargs.get("align", True): align_keys = ["other", "cond"] else: align_keys = ["cond"] elif f == "putmask": align_copy = False if kwargs.get("align", True): align_keys = ["new", "mask"] else: align_keys = ["mask"] elif f == "fillna": # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ["value"] else: align_keys = [] # TODO(EA): may interfere with ExtensionBlock.setitem for blocks # with a .values attribute. aligned_args = { k: kwargs[k] for k in align_keys if not isinstance(kwargs[k], ABCExtensionArray) and hasattr(kwargs[k], "values") } for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = obj._info_axis_number kwargs[k] = obj.reindex(b_items, axis=axis, copy=align_copy) applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__( result_blocks, axes or self.axes, do_integrity_check=do_integrity_check ) bm._consolidate_inplace() return bm def quantile( self, axis=0, consolidate=True, transposed=False, interpolation="linear", qs=None, numeric_only=None, ): """ Iterate over blocks applying quantile reduction. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- axis: reduction axis, default 0 consolidate: boolean, default True. Join together blocks having same dtype transposed: boolean, default False we are holding transposed data interpolation : type of interpolation, default 'linear' qs : a scalar or list of the quantiles to be computed numeric_only : ignored Returns ------- Block Manager (new object) """ # Series dispatches to DataFrame for quantile, which allows us to # simplify some of the code here and in the blocks assert self.ndim >= 2 if consolidate: self._consolidate_inplace() def get_axe(block, qs, axes): # Because Series dispatches to DataFrame, we will always have # block.ndim == 2 from pandas import Float64Index if is_list_like(qs): ax = Float64Index(qs) else: ax = axes[0] return ax axes, blocks = [], [] for b in self.blocks: block = b.quantile(axis=axis, qs=qs, interpolation=interpolation) axe = get_axe(b, qs, axes=self.axes) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = {b.ndim for b in blocks} assert 0 not in ndim, ndim if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate([ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [ b.make_block(b.values.T, placement=np.arange(b.shape[1])) for b in blocks ] return self.__class__(blocks, new_axes) # single block, i.e. ndim == {1} values = concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( [make_block(values, ndim=1, placement=np.arange(len(values)))], axes[0] ) def isna(self, func, **kwargs): return self.apply("apply", func=func, **kwargs) def where(self, **kwargs): return self.apply("where", **kwargs) def setitem(self, **kwargs): return self.apply("setitem", **kwargs) def putmask(self, **kwargs): return self.apply("putmask", **kwargs) def diff(self, **kwargs): return self.apply("diff", **kwargs) def interpolate(self, **kwargs): return self.apply("interpolate", **kwargs) def shift(self, **kwargs): return self.apply("shift", **kwargs) def fillna(self, **kwargs): return self.apply("fillna", **kwargs) def downcast(self, **kwargs): return self.apply("downcast", **kwargs) def astype(self, dtype, **kwargs): return self.apply("astype", dtype=dtype, **kwargs) def convert(self, **kwargs): return self.apply("convert", **kwargs) def replace(self, value, **kwargs): assert np.ndim(value) == 0, value return self.apply("replace", value=value, **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """ inplace = validate_bool_kwarg(inplace, "inplace") # figure out our mask a-priori to avoid repeated replacements values = self.as_array() def comp(s, regex=False): """ Generate a bool array by perform an equality check, or perform an element-wise regular expression matching """ if isna(s): return isna(values) if isinstance(s, (Timedelta, Timestamp)) and getattr(s, "tz", None) is None: return _compare_or_regex_search( maybe_convert_objects(values), s.asm8, regex ) return _compare_or_regex_search(values, s, regex) masks = [comp(s, regex) for i, s in enumerate(src_list)] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): # TODO: assert/validate that `d` is always a scalar? new_rb = [] for b in rb: m = masks[i][b.mgr_locs.indexer] convert = i == src_len result = b._replace_coerce( mask=m, to_replace=s, value=d, inplace=inplace, convert=convert, regex=regex, ) if m.any(): new_rb = _extend_blocks(result, new_rb) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all(block.is_numeric for block in self.blocks) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return any(block.is_datelike for block in self.blocks) @property def any_extension_types(self): """Whether any of the blocks in this manager are extension blocks""" return any(block.is_extension for block in self.blocks) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d( inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False ) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return self.__class__(new_blocks, axes, do_integrity_check=False) def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return len(self.blocks) def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """ # this preserves the notion of view copying of axes if deep: if deep == "all": copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply("copy", axes=new_axes, deep=deep, do_integrity_check=False) def as_array(self, transpose=False, items=None): """Convert the blockmanager data into an numpy array. Parameters ---------- transpose : boolean, default False If True, transpose the return array items : list of strings or None Names of block items that will be included in the returned array. ``None`` means that all block items will be used Returns ------- arr : ndarray """ if len(self.blocks) == 0: arr = np.empty(self.shape, dtype=float) return arr.transpose() if transpose else arr if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block and mgr.blocks[0].is_datetimetz: # TODO(Block.get_values): Make DatetimeTZBlock.get_values # always be object dtype. Some callers seem to want the # DatetimeArray (previously DTI) arr = mgr.blocks[0].get_values(dtype=object) elif self._is_single_block or not self.is_mixed_type: arr = np.asarray(mgr.blocks[0].get_values()) else: arr = mgr._interleave() return arr.transpose() if transpose else arr def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) # TODO: https://github.com/pandas-dev/pandas/issues/22791 # Give EAs some input on what happens here. Sparse needs this. if is_sparse(dtype): dtype = dtype.subtype elif is_extension_array_dtype(dtype): dtype = "object" result = np.empty(self.shape, dtype=dtype) itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError("Some items were not contained in blocks") return result def to_dict(self, copy=True): """ Return a dict of str(dtype) -> BlockManager Parameters ---------- copy : boolean, default True Returns ------- values : a dict of dtype -> BlockManager Notes ----- This consolidates based on str(dtype) """ self._consolidate_inplace() bd = {} for b in self.blocks: bd.setdefault(str(b.dtype), []).append(b) return {dtype: self.combine(blocks, copy=copy) for dtype, blocks in bd.items()} def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) if is_extension_array_dtype(dtype): # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk.iget((i, loc)) if is_extension_array_dtype(dtype): result = dtype.construct_array_type()._from_sequence(result, dtype=dtype) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isna(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isna(self.items)] # allow a single nan location indexer if not is_scalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc) else: if isna(item): raise TypeError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer( new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True ) def iget(self, i): """ Return the data as a SingleBlockManager if possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) # shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( [ block.make_block_same_class( values, placement=slice(0, len(values)), ndim=1 ) ], self.axes[1], ) def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple( b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno] ) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_extension_type = is_extension_array_dtype(value) # categorical/sparse/datetimetz if value_is_extension_type: def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = _safe_reshape(value, (1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError( "Shape of new values must be compatible with manager shape" ) try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in libinternals.get_blkno_placements(blknos, group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs)) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = algos.take_1d( new_blknos, self._blknos, axis=0, allow_fill=False ) self.blocks = tuple( blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos) ) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_extension_type: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block( values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1), ) for mgr_loc in unfit_mgr_locs ) self._blknos[unfit_mgr_locs] = np.arange(unfit_count) + len(self.blocks) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block( values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs, ) ) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc: int, item, value, allow_duplicates: bool = False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError("cannot insert {}, already exists".format(item)) if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster, let's use it if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis( self, new_index, axis, method=None, limit=None, fill_value=None, copy=True ): """ Conform block manager to new index. """ new_index = ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit ) return self.reindex_indexer( new_index, indexer, axis=axis, fill_value=fill_value, copy=copy ) def reindex_indexer( self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True ): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(indexer, fill_tuple=(fill_value,)) else: new_blocks = [ blk.take_nd( indexer, axis=axis, fill_tuple=( fill_value if fill_value is not None else blk.fill_value, ), ) for blk in self.blocks ] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill ) if self._is_single_block: blk = self.blocks[0] if sl_type in ("slice", "mask"): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [ blk.take_nd( slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple, ) ] if sl_type in ("slice", "mask"): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = algos.take_1d( self._blknos, slobj, fill_value=-1, allow_fill=allow_fill ) blklocs = algos.take_1d( self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill ) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append( self._make_na_block(placement=mgr_locs, fill_value=fill_value) ) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's # only one item and each mgr loc is a copy of that single # item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append( blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None, ) ) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = ( np.arange(indexer.start, indexer.stop, indexer.step, dtype="int64") if isinstance(indexer, slice) else
np.asanyarray(indexer, dtype="int64")
numpy.asanyarray
#!/usr/bin/env python """ @author: <NAME> Date Created: 9/24/2011 """ from __future__ import division, print_function from future.utils import iteritems, viewitems from builtins import int, map, zip import os import sys import copy import fnmatch import time import argparse import inspect from joblib import Parallel, delayed import shutil import platform import subprocess from collections import OrderedDict from . import vector_tools from .helpers import random_float, overwrite_file, check_and_create_dir, _iteration_parameters from .errors import EmptyImage, LenError, MissingRequirement, ropenError, ArrayShapeError, ArrayOffsetError, logger from .veg_indices import veg_indices, VegIndicesEquations try: import deprecation except: logger.error('deprecation must be installed (pip install deprecation)') raise ImportError # GDAL try: from osgeo import gdal, osr from osgeo.gdalconst import GA_ReadOnly, GA_Update except: logger.error(' GDAL Python must be installed') raise ImportError # NumPy try: import numpy as np except: logger.error(' NumPy must be installed') raise ImportError # Matplotlib try: import matplotlib as mpl if (os.environ.get('DISPLAY', '') == '') or (platform.system() == 'Darwin'): mpl.use('Agg') try: mpl.pyplot.switch_backend('agg') except: pass import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import ticker, colors, colorbar import matplotlib.cm as cm from mpl_toolkits.axes_grid1 import make_axes_locatable except: logger.warning(' Matplotlib must be installed for plotting') # Scikit-learn try: from sklearn.preprocessing import StandardScaler except: logger.warning(' Scikit-learn must be installed for pixel_stats z-scores.') # Scikit-image try: from skimage import exposure except: logger.warning(' Scikit-image must be installed for image color balancing.') # SciPy try: from scipy.stats import mode as sci_mode from scipy.ndimage.measurements import label as lab_img except: logger.error(' SciPy must be installed') raise ImportError # Pandas try: import pandas as pd except: logger.warning(' Pandas must be installed to parse metadata') # OpenCV try: import cv2 except: logger.warning(' OpenCV must be installed to use stat functions.') # BeautifulSoup4 try: from bs4 import BeautifulSoup except: logger.warning(' BeautifulSoup4 must be installed to parse metadata') gdal.UseExceptions() gdal.PushErrorHandler('CPLQuietErrorHandler') gdal.SetCacheMax(int(2.0**30.0)) DRIVER_DICT = {'.bin': 'ENVI', '.bsq': 'ENVI', '.dat': 'ENVI', '.ecw': 'ECW', '.img': 'HFA', '.hdf': 'HDF4', '.hdf4': 'HDF4', '.hdf5': 'HDF5', '.h5': 'HDF5', '.hdr': 'ENVI', '.jp2': 'JPEG2000', '.kea': 'KEA', '.mem': 'MEM', '.nc': 'netCDF', '.ntf': 'NITF', '.pix': 'PCRaster', '.hgt': 'SRTMHGT', '.sid': 'MrSID', '.tif': 'GTiff', '.tiff': 'GTiff', '.til': 'TIL', '.vrt': 'VRT'} FORMAT_DICT = dict((v, k) for k, v in iteritems(DRIVER_DICT)) STORAGE_DICT = {'byte': 'uint8', 'int16': 'int16', 'uint16': 'uint16', 'int32': 'int32', 'uint32': 'uint32', 'int64': 'int64', 'uint64': 'uint64', 'float32': 'float32', 'float64': 'float64'} STORAGE_DICT_r = dict((v, k) for k, v in iteritems(STORAGE_DICT)) STORAGE_DICT_GDAL = {'unknown': gdal.GDT_Unknown, 'byte': gdal.GDT_Byte, 'uint16': gdal.GDT_UInt16, 'int16': gdal.GDT_Int16, 'uint32': gdal.GDT_UInt32, 'int32': gdal.GDT_Int32, 'float32': gdal.GDT_Float32, 'float64': gdal.GDT_Float64, 'cint16': gdal.GDT_CInt16, 'cint32': gdal.GDT_CInt32, 'cfloat32': gdal.GDT_CFloat32, 'cfloat64': gdal.GDT_CFloat64} STORAGE_DICT_NUMPY = {'byte': np.uint8, 'int16': np.int16, 'uint16': np.uint16, 'int32': np.int32, 'uint32': np.uint32, 'int64': np.int64, 'uint64': np.uint64, 'float32': np.float32, 'float64': np.float64} RESAMPLE_DICT = dict(average=gdal.GRA_Average, bilinear=gdal.GRA_Bilinear, nearest=gdal.GRA_NearestNeighbour, cubic=gdal.GRA_Cubic) PANSHARPEN_WEIGHTS = dict(oli_tirs=dict(bw=0.2, gw=1.0, rw=1.0, iw=0.1), etm=dict(bw=0.1, gw=1.0, rw=1.0, iw=1.0)) GOOGLE_CLOUD_SENSORS = dict(oli_tirs='LC08', etm='LE07', tm='LT05') SENSOR_DICT = {'landsat_tm': 'tm', 'lt4': 'tm', 'lt5': 'tm', 'tm': 'tm', 'landsat_etm_slc_off': 'etm', 'landsat_etm': 'etm', 'landsat_et': 'etm', 'landsat_etm_slc_on': 'etm', 'etm': 'etm', 'le7': 'etm', 'lt7': 'etm', 'landsat_oli_tirs': 'oli_tirs', 'oli_tirs': 'oli_tirs', 'oli': 'oli_tirs', 'tirs': 'oli_tirs', 'lc8': 'oli_tirs', 'lt8': 'oli_tirs'} def create_memory_raster(image_info, rows, cols, left, top): """ Creates an in-memory raster object Args: image_info (object) rows (int) cols (int) left (float) top (float) Returns: Datasource object """ # Create a raster to rasterize into. target_ds = gdal.GetDriverByName('MEM').Create('', cols, rows, 1, gdal.GDT_Byte) target_ds.SetGeoTransform([left, image_info.cellY, 0.0, top, 0.0, -image_info.cellY]) target_ds.SetProjection(image_info.projection) return target_ds def nd_to_rgb(array2reshape): """ Reshapes an array from nd layout to RGB """ if len(array2reshape.shape) != 3: logger.error(' The array must be 3 dimensions.') raise LenError if array2reshape.shape[0] != 3: logger.error(' The array must be 3 bands.') raise ArrayShapeError return np.ascontiguousarray(array2reshape.transpose(1, 2, 0)) def rgb_to_nd(array2reshape): """ Reshapes an array RGB layout to nd layout """ if len(array2reshape.shape) != 3: logger.error(' The array must be 3 dimensions.') raise LenError if array2reshape.shape[2] != 3: logger.error(' The array must be 3 bands.') raise ArrayShapeError return np.ascontiguousarray(array2reshape.transpose(2, 0, 1)) def nd_to_columns(array2reshape, layers, rows, columns): """ Reshapes an array from nd layout to [samples (rows*columns) x dimensions] """ if layers == 1: return array2reshape.flatten()[:, np.newaxis] else: return array2reshape.reshape(layers, rows, columns).transpose(1, 2, 0).reshape(rows*columns, layers) def columns_to_nd(array2reshape, layers, rows, columns): """ Reshapes an array from columns layout to [n layers x rows x columns] """ if layers == 1: return array2reshape.reshape(columns, rows).T else: return array2reshape.T.reshape(layers, rows, columns) class ReadWrite(object): def read(self, bands2open=1, i=0, j=0, rows=-1, cols=-1, d_type=None, compute_index='none', sensor='Landsat', sort_bands2open=True, predictions=False, y=0., x=0., check_x=None, check_y=None, as_xarray=False, xarray_dims=None, xarray_coords=None, **viargs): """ Reads a raster as an array Args: bands2open (Optional[int or int list or dict]: Band position to open, list of bands to open, or a dictionary of name-band pairs. Default is 1. Examples: bands2open = 1 (open band 1) bands2open = [1,2,3] (open first three bands) bands2open = [4,3,2] (open bands in a specific order) *When opening bands in a specific order, be sure to set ``sort_bands2open`` as ``False``. bands2open = -1 (open all bands) bands2open = {'blue': 1, 'green': 2, 'nir': 4} (open bands 1, 2, and 4) i (Optional[int]): Starting row position. Default is 0, or first row. j (Optional[int]): Starting column position. Default is 0, or first column. rows (Optional[int]): Number of rows to extract. Default is -1, or all rows. cols (Optional[int]): Number of columns to extract. Default is -1, or all columns. d_type (Optional[str]): Type of array to return. Choices are ['byte', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64', 'float32', 'float64']. Default is None, or gathered from <i_info>. compute_index (Optional[str]): A spectral index to compute. Default is 'none'. sensor (Optional[str]): The input sensor type (used with ``compute_index``). Default is 'Landsat'. sort_bands2open (Optional[bool]): Whether to sort ``bands2open``. Default is True. predictions (Optional[bool]): Whether to return reshaped array for Scikit-learn formatted predictions (i.e., samples x dimensions). y (Optional[float]): A y index coordinate (latitude, in map units). Default is 0. If greater than 0, overrides ``i``. x (Optional[float]): A x index coordinate (longitude, in map units). Default is 0. If greater than 0, overrides ``j``. check_x (Optional[float]): Check the x offset against ``check_x``. Default is None. check_y (Optional[float]): Check the y offset against ``check_y``. Default is None. as_xarray (Optional[bool]): Whether to open the array as a xarray, otherwise as a Numpy array. Default is False. xarray_dims (Optional[list]): Dimension names for xarray. Default is None. xarray_coords (Optional[list]): Coordinates for xarray. Default is None. viargs (Optional[dict]): Keyword arguments passed to `veg_indices`. Default is None. Attributes: array (ndarray) Returns: ``ndarray``, where shape is (rows x cols) if 1 band or (bands x rows x cols) if more than 1 band. Examples: >>> import mpglue as gl >>> >>> i_info = mp.ropen('image.tif') >>> i_info = mp.open('image.tif') >>> >>> # Open 1 band. >>> array = i_info.read(bands2open=1) >>> >>> # Open multiple bands. >>> array = i_info.read(bands2open=[1, 2, 3]) >>> band_1 = array[0] >>> >>> # Open as a dictionary of arrays. >>> bands = i_info.read(bands2open={'blue': 1, 'red': 2, 'nir': 4}) >>> red = bands['red'] >>> >>> # Index an image by pixel positions. >>> array = i_info.read(i=1000, j=4000, rows=500, cols=500) >>> >>> # Index an image by map coordinates. >>> array = i_info.read(y=1200000., x=4230000., rows=500, cols=500) """ self.i = i self.j = j # `self.rows` and `self.cols` are the # image dimension info, so don't overwrite. self.rrows = rows self.ccols = cols self.sort_bands2open = sort_bands2open self.as_xarray = as_xarray self.xarray_dims = xarray_dims self.xarray_coords = xarray_coords if isinstance(bands2open, dict): if isinstance(d_type, str): self.d_type = STORAGE_DICT_NUMPY[d_type] else: self.d_type = STORAGE_DICT_NUMPY[self.storage.lower()] else: if isinstance(d_type, str): self.d_type = STORAGE_DICT[d_type] else: self.d_type = STORAGE_DICT[self.storage.lower()] if compute_index != 'none': bh = veg_indices.BandHandler(sensor) bh.get_band_order() # Overwrite the bands to open bands2open = bh.get_band_positions(bh.wavelength_lists[compute_index.upper()]) self.d_type = 'float32' if self.rrows == -1: self.rrows = self.rows else: if self.rrows > self.rows: self.rrows = self.rows logger.warning(' The requested rows cannot be larger than the image rows.') if self.ccols == -1: self.ccols = self.cols else: if self.ccols > self.cols: self.ccols = self.cols logger.warning(' The requested columns cannot be larger than the image columns.') # Index the image by x, y coordinates (in map units). if (abs(y) > 0) and (abs(x) > 0): __, __, self.j, self.i = vector_tools.get_xy_offsets(self, x=x, y=y, check_position=False) if isinstance(check_x, float) and isinstance(check_y, float): __, __, x_offset, y_offset = vector_tools.get_xy_offsets(self, x=check_x, y=check_y, check_position=False) self.i += y_offset self.j += x_offset ################# # Bounds checking ################# # Row indices if self.i < 0: self.i = 0 if self.i >= self.rows: self.i = self.rows - 1 # Number of rows self.rrows = n_rows_cols(self.i, self.rrows, self.rows) # Column indices if self.j < 0: self.j = 0 if self.j >= self.cols: self.j = self.cols - 1 # Number of columns self.ccols = n_rows_cols(self.j, self.ccols, self.cols) ################# # format_dict = {'byte': 'B', 'int16': 'i', 'uint16': 'I', 'float32': 'f', 'float64': 'd'} # values = struct.unpack('%d%s' % ((rows * cols * len(bands2open)), format_dict[i_info.storage.lower()]), # i_info.datasource.ReadRaster(yoff=i, xoff=j, xsize=cols, ysize=rows, band_list=bands2open)) if hasattr(self, 'band'): self.array = self.band.ReadAsArray(self.j, self.i, self.ccols, self.rrows).astype(self.d_type) self.array_shape = [1, self.rrows, self.ccols] if predictions: self._norm2predictions(1) else: # Check ``bands2open`` type. bands2open = self._check_band_list(bands2open) # Open the array. self._open_array(bands2open) if predictions: self._norm2predictions(len(bands2open)) if compute_index != 'none': vie = VegIndicesEquations(self.array, chunk_size=-1) # exec('self.{} = vie.compute(compute_index.upper())'.format(compute_index.lower())) self.array = vie.compute(compute_index.upper(), **viargs) self.array[np.isnan(self.array) | np.isinf(self.array)] = 0 if self.as_xarray: self._as_xarray() return self.array def _as_xarray(self): """ Transforms the NumPy array to a xarray object """ try: import xarray as xr except: logger.error(' Cannot import xarray') raise ImportError if len(self.array.shape) == 3: n_bands = self.array.shape[0] if not self.xarray_coords: self.xarray_coords = dict(z=('B' + ',B'.join(list(map(str, range(1, n_bands+1))))).split(',')) if not self.xarray_dims: self.xarray_dims = ['z', 'y', 'x'] else: if not self.xarray_dims: self.xarray_dims = ['y', 'x'] self.array = xr.DataArray(self.array, coords=self.xarray_coords, dims=self.xarray_dims) def _open_array(self, bands2open): """ Opens image bands into a ndarray. Args: bands2open (int or list) """ # Open the image as a dictionary of arrays. if isinstance(bands2open, dict): self.array = dict() for band_name, band_position in viewitems(bands2open): if self.hdf_file: self.array[band_name] = self.hdf_datasources[band_position-1].ReadAsArray(self.j, self.i, self.ccols, self.rrows).astype(self.d_type) else: self.array[band_name] = self.datasource.GetRasterBand(band_position).ReadAsArray(self.j, self.i, self.ccols, self.rrows).astype(self.d_type) # Open the image as an array. else: if self.hdf_file: self.array = np.asarray([self.hdf_datasources[band-1].ReadAsArray(self.j, self.i, self.ccols, self.rrows) for band in bands2open], dtype=self.d_type) else: self.array = list() for band in bands2open: arr = self.datasource.GetRasterBand(band).ReadAsArray(self.j, self.i, self.ccols, self.rrows) if not isinstance(arr, np.ndarray): logger.info(type(arr)) logger.error(' Band {:d} is not a NumPy array.'.format(band)) raise TypeError self.array.append(arr) self.array = np.asarray(self.array, dtype=self.d_type) self.array = self._reshape(self.array, bands2open) def _predictions2norm(self, n_bands): """ Reshapes an array from predictions to nd array Args: n_bands (int) """ self.array = columns_to_nd(self.array, n_bands, self.rrows, self.ccols) self.array_shape = [n_bands, self.rrows, self.ccols] def _norm2predictions(self, n_bands): """ Reshapes an array from normal layout to Scikit-learn compatible shape (i.e., samples x dimensions) Args: n_bands (int) """ self.array = nd_to_columns(self.array, n_bands, self.rrows, self.ccols) self.array_shape = [1, self.rrows*self.ccols, n_bands] def _reshape(self, array2reshape, band_list): """ Reshapes an array into [rows X columns] or [dimensions X rows X columns]. Args: array2reshape (ndarray) band_list (list) """ if len(band_list) == 1: array2reshape = array2reshape.reshape(self.rrows, self.ccols) else: array2reshape = array2reshape.reshape(len(band_list), self.rrows, self.ccols) self.array_shape = [len(band_list), self.rrows, self.ccols] return array2reshape def _check_band_list(self, bands2open): """ Checks whether a band list is valid. Args: bands2open (dict, list, or int) """ if isinstance(bands2open, dict): return bands2open elif isinstance(bands2open, list): if not bands2open: logger.error(' A band list must be declared.\n') raise LenError if 0 in bands2open: logger.error(' A band list cannot have any zeros. GDAL indexes starting at 1.\n') raise ValueError if not self.hdf_file: if max(bands2open) > self.bands: logger.error(' The requested band position cannot be greater than the image bands.\n') raise ValueError elif isinstance(bands2open, int): if not self.hdf_file: if bands2open > self.bands: logger.error(' The requested band position cannot be greater than the image bands.\n') raise ValueError if bands2open == -1: bands2open = list(range(1, self.bands+1)) else: bands2open = [bands2open] else: logger.error(' The `bands2open` parameter must be a dict, list, or int.\n') raise TypeError if self.sort_bands2open and not isinstance(bands2open, dict): bands2open = sorted(bands2open) return bands2open def write2raster(self, out_name, write_which='array', o_info=None, x=0, y=0, out_rst=None, write2bands=None, compress='deflate', tile=False, close_band=True, flush_final=False, write_chunks=False, **kwargs): """ Writes an array to file. Args: out_name (str): The output image name. write_which (Optional[str]): The array type to write. Choices are ['array', '<spectral indices>']. Default is 'array'. o_info (Optional[object]): Output image information, instance of ``ropen``. Needed if <out_rst> not given. Default is None. x (Optional[int]): Column starting position. Default is 0. y (Optional[int]): Row starting position. Default is 0. out_rst (Optional[object]): GDAL object to right to, otherwise created. Default is None. write2bands (Optional[int or int list]): Band positions to write to, otherwise takes the order of the input array dimensions. Default is None. compress (Optional[str]): Needed if <out_rst> not given. Default is 'deflate'. tile (Optional[bool]): Needed if <out_rst> not given. Default is False. close_band (Optional[bool]): Whether to flush the band cache. Default is True. flush_final (Optional[bool]): Whether to flush the raster cache. Default is False. write_chunks (Optional[bool]): Whether to write to file in <write_chunks> chunks. Default is False. Returns: None, writes <out_name>. """ if isinstance(write_which, str): if write_which == 'ndvi': out_arr = self.ndvi elif write_which == 'evi2': out_arr = self.evi2 elif write_which == 'pca': out_arr = self.pca_components else: out_arr = self.array elif isinstance(write_which, np.ndarray): out_arr = write_which d_name, f_name = os.path.split(out_name) if not os.path.isdir(d_name): os.makedirs(d_name) array_shape = out_arr.shape if len(array_shape) == 2: out_rows, out_cols = out_arr.shape out_dims = 1 else: out_dims, out_rows, out_cols = out_arr.shape new_file = False if not out_rst: new_file = True if kwargs: try: o_info.storage = kwargs['storage'] except: pass try: o_info.bands = kwargs['bands'] except: o_info.bands = out_dims o_info.rows = out_rows o_info.cols = out_cols out_rst = create_raster(out_name, o_info, compress=compress, tile=tile) # Specify a band to write to. if isinstance(write2bands, int) or isinstance(write2bands, list): if isinstance(write2bands, int): write2bands = [write2bands] for n_band in write2bands: out_rst.get_band(n_band) if write_chunks: out_rst.get_chunk_size() for i in range(0, out_rst.rows, out_rst.chunk_size): n_rows = n_rows_cols(i, out_rst.chunk_size, out_rst.rows) for j in range(0, out_rst.cols, out_rst.chunk_size): n_cols = n_rows_cols(j, out_rst.chunk_size, out_rst.cols) out_rst.write_array(out_arr[i:i+n_rows, j:j+n_cols], i=i, j=j) else: out_rst.write_array(out_arr, i=y, j=x) if close_band: out_rst.close_band() # Write in order of the 3rd array dimension. else: arr_shape = out_arr.shape if len(arr_shape) > 2: out_bands = arr_shape[0] for n_band in range(1, out_bands+1): out_rst.write_array(out_arr[n_band-1], i=y, j=x, band=n_band) if close_band: out_rst.close_band() else: out_rst.write_array(out_arr, i=y, j=x, band=1) if close_band: out_rst.close_band() # close the dataset if it was created or prompted by <flush_final> if flush_final or new_file: out_rst.close_file() class DataChecks(object): """ A class for spatial and cloud checks """ def contains(self, iinfo): """ Tests whether the open image contains another image. Args: iinfo (object): An image instance of ``ropen`` to test. """ if (iinfo.left > self.left) and (iinfo.right < self.right) \ and (iinfo.top < self.top) and (iinfo.bottom > self.bottom): return True else: return False def contains_value(self, value, array=None): """ Tests whether a value is within the array Args: value (int): The value to check. array (Optional[ndarray]): An array to check. Otherwise, check self.array. Default is None. Returns: Whether the array contains `value` (bool) """ if not isinstance(array, np.ndarray) and not hasattr(self, 'array'): logger.exception(' No array to check') if hasattr(self, 'array'): return np.in1d(np.array([value]), self.array)[0] else: return np.in1d(np.array([value]), array)[0] def intersects(self, iinfo): """ Tests whether the open image intersects another image. Args: iinfo (object): An image instance of ``ropen`` to test. """ image_intersects = False # At least within the longitude frame. if ((iinfo.left > self.left) and (iinfo.left < self.right)) or \ ((iinfo.right < self.right) and (iinfo.right > self.left)): # Also within the latitude frame. if ((iinfo.bottom > self.bottom) and (iinfo.bottom < self.top)) or \ ((iinfo.top < self.top) and (iinfo.top > self.bottom)): image_intersects = True return image_intersects def within(self, iinfo): """ Tests whether the open image falls within another image. Args: iinfo (object or dict): An image instance of ``ropen`` to test. """ if isinstance(iinfo, ropen): iinfo = self._info2dict(iinfo) if (self.left > iinfo['left']) and (self.right < iinfo['right']) \ and (self.top < iinfo['top']) and (self.bottom > iinfo['bottom']): return True else: return False def outside(self, iinfo): """ Tests whether the open image falls outside coordinates Args: iinfo (object or dict): An image instance of ``ropen`` to test. """ if isinstance(iinfo, dict): iif = ImageInfo() for k, v in viewitems(iinfo): setattr(iif, k, v) iinfo = iif.copy() has_extent = False if hasattr(self, 'left') and hasattr(self, 'right'): has_extent = True if self.left > iinfo.right: return True if self.right < iinfo.left: return True if hasattr(self, 'top') and hasattr(self, 'bottom'): has_extent = True if self.top < iinfo.bottom: return True if self.bottom > iinfo.top: return True if not has_extent: logger.error('The `iinfo` parameter did not contain extent information.') return False def check_clouds(self, cloud_band=7, clear_value=0, background_value=255): """ Checks cloud information. Args: cloud_band (Optional[int]): The cloud band position. Default is 7. clear_value (Optional[int]): The clear pixel value. Default is 0. background_value (Optional[int]): The background pixel value. Default is 255. """ cloud_array = self.read(bands2open=cloud_band) clear_pixels = (cloud_array == clear_value).sum() non_background_pixels = (cloud_array != background_value).sum() self.clear_percent = (float(clear_pixels) / float(non_background_pixels)) * 100. class RegisterDriver(object): """ Class handler for driver registration Args: out_name (str): The file to register. in_memory (bool): Whether to create the file in memory. Attributes: out_name (str) driver (object) file_format (str) """ def __init__(self, out_name, in_memory): gdal.AllRegister() if not in_memory: self._get_file_format(out_name) self.driver = gdal.GetDriverByName(self.file_format) else: self.driver = gdal.GetDriverByName('MEM') self.driver.Register def _get_file_format(self, image_name): d_name, f_name = os.path.split(image_name) __, file_extension = os.path.splitext(f_name) self.hdr_file = False if os.path.isfile(os.path.join(d_name, '{}.hdr'.format(f_name))): file_extension = '.hdr' self.hdr_file = True self.file_format = self._get_driver_name(file_extension) @staticmethod def _get_driver_name(file_extension): if file_extension.lower() not in DRIVER_DICT: logger.error('{} is not an image, or is not a supported raster format.'.format(file_extension)) raise TypeError else: return DRIVER_DICT[file_extension.lower()] class CreateDriver(RegisterDriver): """ Class handler for driver creation Args: out_name (str): The output file name. out_rows (int): The output number of rows. out_cols (int): The output number of columns. n_bands (int): The output number of bands. storage_type (str): The output storage type. in_memory (bool): Whether to create the file in memory. overwrite (bool): Whether to overwrite an existing file. parameters (str list): A list of GDAL creation parameters. Attributes: datasource (object) """ def __init__(self, out_name, out_rows, out_cols, n_bands, storage_type, in_memory, overwrite, parameters): RegisterDriver.__init__(self, out_name, in_memory) if overwrite and not in_memory: if os.path.isfile(out_name): os.remove(out_name) # Create the output driver. if in_memory: self.datasource = self.driver.Create('', out_cols, out_rows, n_bands, storage_type) else: self.datasource = self.driver.Create(out_name, out_cols, out_rows, n_bands, storage_type, parameters) class DatasourceInfo(object): def datasource_info(self): if self.datasource is None: if hasattr(self, 'file_name'): logger.error(' {} appears to be empty.'.format(self.file_name)) raise EmptyImage else: logger.error(' The datasource appears to be empty.') raise EmptyImage try: self.meta_dict = self.datasource.GetMetadata_Dict() except: logger.error(gdal.GetLastErrorMsg()) self.meta_dict = 'none' try: self.storage = gdal.GetDataTypeName(self.datasource.GetRasterBand(1).DataType) except: self.storage = 'none' if hasattr(self, 'file_name'): self.directory, self.filename = os.path.split(self.file_name) if self.hdf_file: self.bands = len(self.hdf_datasources) else: self.bands = self.datasource.RasterCount # Initiate the data checks object. # DataChecks.__init__(self) # Check if any of the bands are corrupted. if hasattr(self, 'check_corrupted'): if self.check_corrupted: self.check_corrupted_bands() self.projection = self.datasource.GetProjection() self.sp_ref = osr.SpatialReference() self.sp_ref.ImportFromWkt(self.projection) self.proj4 = self.sp_ref.ExportToProj4() self.color_interpretation = self.datasource.GetRasterBand(1).GetRasterColorInterpretation() if 'PROJ' in self.projection[:4]: if self.sp_ref.GetAttrValue('PROJCS|AUTHORITY', 1): self.epsg = int(self.sp_ref.GetAttrValue('PROJCS|AUTHORITY', 1)) else: self.epsg = 'none' elif 'GEOG' in self.projection[:4]: try: self.epsg = int(self.sp_ref.GetAttrValue('GEOGCS|AUTHORITY', 1)) except: logger.error(gdal.GetLastErrorMsg()) if 'WGS' in self.sp_ref.GetAttrValue('GEOGCS') and '84' in self.sp_ref.GetAttrValue('GEOGCS'): self.epsg = 4326 # WGS 1984 else: self.epsg = 'none' else: self.epsg = 'none' # Set georeference and projection. self.geo_transform = self.datasource.GetGeoTransform() # adfGeoTransform[0] :: top left x # adfGeoTransform[1] :: w-e pixel resolution # adfGeoTransform[2] :: rotation, 0 if image is north up # adfGeoTransform[3] :: top left y # adfGeoTransform[4] :: rotation, 0 if image is north up # adfGeoTransform[5] :: n-s pixel resolution self.left = self.geo_transform[0] # get left extent self.top = self.geo_transform[3] # get top extent self.cellY = self.geo_transform[1] # pixel height self.cellX = self.geo_transform[5] # pixel width self.rotation1 = self.geo_transform[2] self.rotation2 = self.geo_transform[4] self.rows = self.datasource.RasterYSize # get number of rows self.cols = self.datasource.RasterXSize # get number of columns self.center_x = self.left + ((self.cols / 2) * self.cellY) self.center_y = self.top - ((self.rows / 2) * self.cellY) if not self.projection: self._get_hdr_info() self.shape = dict(bands=self.bands, rows='{:,d}'.format(self.rows), columns='{:,d}'.format(self.cols), pixels='{:,d}'.format(self.bands * self.rows * self.cols), row_units='{:,.2f}'.format(self.rows * self.cellY), col_units='{:,.2f}'.format(self.cols * self.cellY)) self.right = self.left + (self.cols * abs(self.cellY)) # get right extent self.bottom = self.top - (self.rows * abs(self.cellX)) # get bottom extent self.image_envelope = [self.left, self.right, self.bottom, self.top] self.extent = dict(left=self.left, right=self.right, bottom=self.bottom, top=self.top) self.name = self.datasource.GetDriver().ShortName try: self.block_x = self.datasource.GetRasterBand(1).GetBlockSize()[0] self.block_y = self.datasource.GetRasterBand(1).GetBlockSize()[1] except: logger.error(gdal.GetLastErrorMsg()) self.block_x = 'none' self.block_y = 'none' class FileManager(DataChecks, RegisterDriver, DatasourceInfo): """ Class for file handling Args: open2read (bool) hdf_band (int) check_corrupted (bool) Attributes: band (GDAL object) datasource (GDAL object) chunk_size (int) Methods: build_overviews get_band write_array close_band close_file close_all get_chunk_size remove_overviews Returns: None """ def get_image_info(self, open2read, hdf_band, check_corrupted): self.hdf_file = False self.check_corrupted = check_corrupted # HDF subdatasets given as files in `vrt_builder`. # Find the file name in the subdataset name. if '.hdf' in self.file_name.lower() and not self.file_name.lower().endswith('.hdf'): stris = [stri for stri, strt in enumerate(self.file_name) if strt == ':'] self.file_name = self.file_name[stris[1]+2:stris[2]-1] if not os.path.isfile(self.file_name): raise IOError('\n{} does not exist.\n'.format(self.file_name)) self._get_file_format(self.file_name) # Open input raster. try: if open2read: self.datasource = gdal.Open(self.file_name, GA_ReadOnly) self.image_mode = 'read only' else: self.datasource = gdal.Open(self.file_name, GA_Update) self.image_mode = 'update' self.file_open = True except: logger.error(gdal.GetLastErrorMsg()) logger.warning('\nCould not open {}.\n'.format(self.file_name)) return if self.file_name.lower().endswith('.hdf'): self.hdf_file = True if self.datasource is None: logger.warning('\n1) {} appears to be empty.\n'.format(self.file_name)) return # self.hdf_layers = self.datasource.GetSubDatasets() self.hdf_layers = self.datasource.GetMetadata('SUBDATASETS') self.hdf_key_list = [k for k in list(self.hdf_layers) if '_NAME' in k] self.hdf_name_dict = dict() for hdf_str in self.hdf_key_list: str_digit = hdf_str[hdf_str.find('_')+1:len(hdf_str)-hdf_str[::-1].find('_')-1] if len(str_digit) == 1: self.hdf_name_dict[hdf_str.replace(str_digit, '0{}'.format(str_digit))] = self.hdf_layers[hdf_str] else: self.hdf_name_dict[hdf_str] = self.hdf_layers[hdf_str] self.hdf_name_list = [self.hdf_name_dict[k] for k in sorted(self.hdf_name_dict)] # self.hdf_name_list = [self.hdf_layers[k] for k in list(self.hdf_layers) if '_NAME' in k] self.hdf_datasources = [self._open_dataset(hdf_name, True) for hdf_name in self.hdf_name_list] self.datasource = self.hdf_datasources[hdf_band-1] # self.datasource = gdal.Open(self.datasource.GetSubDatasets()[hdf_band - 1][0], GA_ReadOnly) self.datasource_info() @staticmethod def _open_dataset(image_name, open2read): """ Opens the image dataset. Args: image_name (str): The full path, name, and extension of the image to open. open2read (bool): Whether to open the image in 'Read Only' mode. Returns: The datasource pointer. """ if open2read: source_dataset = gdal.Open(image_name, GA_ReadOnly) else: source_dataset = gdal.Open(image_name, GA_Update) if source_dataset is None: logger.error('{} appears to be empty'.format(image_name)) raise EmptyImage return source_dataset def _get_hdr_info(self): hdr_file = '{}.hdr'.format(self.file_name) if not os.path.isfile(hdr_file): return with open(hdr_file, 'rb') as hdr_open: for line in hdr_open: if line.startswith('samples'): line_parsed = line.replace('samples = ', '') self.rows = int(line_parsed) elif line.startswith('lines'): line_parsed = line.replace('lines = ', '') self.cols = int(line_parsed) elif line.startswith('map info'): line_parsed = line.replace('map info = {', '') line_parsed = line_parsed.replace('}', '').split(',') self.left = float(line_parsed[3].strip()) self.top = float(line_parsed[4].strip()) self.cellY = float(line_parsed[5].strip()) self.cellX = -self.cellY elif line.startswith('coordinate'): self.projection = line.replace('coordinate system string = {', '') self.projection = self.projection.replace('}\n', '') def build_overviews(self, sampling_method='nearest', levels=None, be_quiet=False): """ Builds image overviews. Args: sampling_method (Optional[str]): The sampling method to use. Default is 'nearest'. levels (Optional[int list]): The levels to build. Default is [2, 4, 8, 16]. be_quiet (Optional[bool]): Whether to be quiet and do not print progress. Default is False. """ if not levels: levels = [2, 4, 8, 16] else: levels = list(map(int, levels)) try: if not be_quiet: logger.info(' Building pyramid overviews ...') self.datasource.BuildOverviews(sampling_method.upper(), overviewlist=levels) except: logger.error(gdal.GetLastErrorMsg()) raise ValueError('Failed to build overviews.') def get_band(self, band_position): """ Loads a raster band pointer. Args: band_position (int): The band position to load. """ if not isinstance(band_position, int) or band_position < 1: logger.error('The band position must be an integer > 0.') raise ValueError try: self.band = self.datasource.GetRasterBand(band_position) self.band_open = True except: logger.error(gdal.GetLastErrorMsg()) raise ValueError('Failed to load the band.') def get_stats(self, band_position): """ Get band statistics. Args: band_position (int) Returns: Minimum, Maximum, Mean, Standard deviation """ self.get_band(band_position) return self.band.GetStatistics(1, 1) def check_corrupted_bands(self): """Checks whether corrupted bands exist.""" self.corrupted_bands = list() for band in range(1, self.bands+1): try: self.datasource.GetRasterBand(band).Checksum() if gdal.GetLastErrorType() != 0: logger.info('\nBand {:d} of {} appears to be corrupted.\n'.format(band, self.file_name)) self.corrupted_bands.append(str(band)) except: logger.error(gdal.GetLastErrorMsg()) logger.info('\nBand {:d} of {} appears to be corrupted.\n'.format(band, self.file_name)) self.corrupted_bands.append(str(band)) def write_array(self, array2write, i=0, j=0, band=None): """ Writes array to the loaded band object (``self.band`` of ``get_band``). Args: array2write (ndarray): The array to write. i (Optional[int]): The starting row position to write to. Default is 0. j (Optional[int]): The starting column position to write to. Default is 0. band (Optional[int]): The band position to write to. Default is None. If None, an object of ``get_band`` must be open. """ if not isinstance(array2write, np.ndarray): logger.error(' The array must be an ndarray.') raise ValueError if not isinstance(i, int) or (i < 0): logger.error(' The row index must be a positive integer.') raise ValueError if not isinstance(j, int) or (j < 0): logger.error(' The column index must be a positive integer.') raise ValueError if isinstance(band, int): self.get_band(band_position=band) try: self.band.WriteArray(array2write, j, i) except: logger.error(gdal.GetLastErrorMsg()) if (array2write.shape[0] > self.rows) or (array2write.shape[1] > self.cols): logger.error('\nThe array is larger than the file size.\n') raise ArrayShapeError elif (i + array2write.shape[0]) > self.rows: logger.error('\nThe starting row position + the array rows spills over.\n') raise ArrayOffsetError elif (j + array2write.shape[j]) > self.cols: logger.error('\nThe starting column position + the array columns spills over.\n') raise ArrayOffsetError else: if not hasattr(self, 'band'): logger.error('\nThe band must be set either with `get_band` or `write_array`.\n') raise AttributeError else: logger.error('\nFailed to write the array to file (issue not apparent).') def close_band(self): """Closes a band object""" if hasattr(self, 'band') and self.band_open: # try: # self.band.SetColorInterpretation(self.color_interpretation) # self.band.SetRasterColorInterpretation(self.color_interpretation) # except: # logger.warning('The band color could not be set.') # logger.error(gdal.GetLastErrorMsg()) # pass try: self.band.GetStatistics(0, 1) except: logger.warning('The band statistics could not be calculated.') logger.warning(gdal.GetLastErrorMsg()) try: self.band.FlushCache() except: logger.warning('The band statistics could not be flushed.') logger.warning(gdal.GetLastErrorMsg()) self.band = None self.band_open = False def close_file(self): """Closes a file object""" if hasattr(self, 'datasource'): if hasattr(self, 'hdf_file'): if self.hdf_file: if self.hdf_datasources: for hdfd in range(0, len(self.hdf_datasources)): if hasattr(self.hdf_datasources[hdfd], 'FlushCache'): self.hdf_datasources[hdfd].FlushCache() self.hdf_datasources[hdfd] = None # try: # hdfd.FlushCache() # except: # # logger.warning('The HDF subdataset could not be flushed.') # logger.error(gdal.GetLastErrorMsg()) # # pass # hdfd = None if hasattr(self.datasource, 'FlushCache'): try: self.datasource.FlushCache() except: logger.warning('The dataset could not be flushed.') if hasattr(self, 'output_image'): # Unlink memory images if self.output_image.lower().endswith('.mem'): gdal.Unlink(self.output_image) try: os.remove(self.output_image) except: pass self.datasource = None self.hdf_datasources = None self.file_open = False def close_all(self): """Closes a band object and a file object""" self.close_band() self.close_file() def fill(self, fill_value, band=None): """ Fills a band with a specified value. Args: fill_value (int): The value to fill. band (Optional[int]): The band to fill. Default is None. """ if isinstance(band, int): self.get_band(band_position=band) self.band.Fill(fill_value) def get_chunk_size(self): """Gets the band block size""" try: self.chunk_size = self.band.GetBlockSize()[0] except: raise IOError('\nFailed to get the block size.\n') def remove_overviews(self): """Removes image overviews""" if self.image_mode != 'update': raise NameError('\nOpen the image in update mode (open2read=False) to remove overviews.\n') else: self.build_overviews(levels=[]) def calculate_stats(self, band=1): """ Calculates image statistics and can be used to check for empty images. Args: band (Optional[int]) """ self.get_band(band_position=band) image_metadata = self.band.GetMetadata() use_exceptions = gdal.GetUseExceptions() gdal.UseExceptions() try: image_min, image_max, image_mu, image_std = self.band.GetStatistics(False, True) image_metadata['STATISTICS_MINIMUM'] = repr(image_min) image_metadata['STATISTICS_MAXIMUM'] = repr(image_max) image_metadata['STATISTICS_MEAN'] = repr(image_mu) image_metadata['STATISTICS_STDDEV'] = repr(image_std) image_metadata['STATISTICS_SKIPFACTORX'] = '1' image_metadata['STATISTICS_SKIPFACTORY'] = '1' if not use_exceptions: gdal.DontUseExceptions() self.band.SetMetadata(image_metadata) return True except: logger.error(gdal.GetLastErrorMsg()) if not use_exceptions: gdal.DontUseExceptions() return False class UpdateInfo(object): """A class for updating attributes""" def update_info(self, **kwargs): for k, v in viewitems(kwargs): setattr(self, k, v) class ImageInfo(UpdateInfo, ReadWrite, FileManager, DatasourceInfo): """An empty class for passing image information""" def __init__(self): pass def copy(self): return copy.copy(self) class LandsatParser(object): """ A class to parse Landsat metadata Args: metadata (str) band_order (Optional[list]) """ def __init__(self, metadata, band_order=[]): self.bo = copy.copy(band_order) if metadata.endswith('MTL.txt'): self.parse_mtl(metadata) elif metadata.endswith('.xml'): self.parse_xml(metadata) else: raise NameError('Parser type not supported') def _cleanup(self): if os.path.isdir(self.temp_dir): for landsat_file in os.listdir(self.temp_dir): os.remove(os.path.join(self.temp_dir, landsat_file)) shutil.rmtree(self.temp_dir) def parse_mtl(self, metadata): df = pd.read_table(metadata, header=None, sep='=') df.rename(columns={0: 'Variable', 1: 'Value'}, inplace=True) df['Variable'] = df['Variable'].str.strip() df['Value'] = df['Value'].str.strip() self.scene_id = df.loc[df['Variable'] == 'LANDSAT_SCENE_ID', 'Value'].values[0].replace('"', '').strip() if not df.loc[df['Variable'] == 'DATE_ACQUIRED', 'Value'].empty: self.date = df.loc[df['Variable'] == 'DATE_ACQUIRED', 'Value'].values[0].replace('"', '').strip() else: self.date = df.loc[df['Variable'] == 'ACQUISITION_DATE', 'Value'].values[0].replace('"', '').strip() self.date_ = self.date.split('-') self.year = self.date_[0] self.month = self.date_[1] self.day = self.date_[2] self.sensor = df.loc[df['Variable'] == 'SENSOR_ID', 'Value'].values[0].replace('"', '').strip() self.series = df.loc[df['Variable'] == 'SPACECRAFT_ID', 'Value'].values[0].replace('"', '').strip() self.path = df.loc[df['Variable'] == 'WRS_PATH', 'Value'].astype(int).astype(str).values[0].strip() if not df.loc[df['Variable'] == 'WRS_ROW', 'Value'].empty: self.row = df.loc[df['Variable'] == 'WRS_ROW', 'Value'].astype(int).astype(str).values[0].strip() else: self.row = df.loc[df['Variable'] == 'STARTING_ROW', 'Value'].astype(int).astype(str).values[0].strip() self.elev = df.loc[df['Variable'] == 'SUN_ELEVATION', 'Value'].astype(float).values[0] self.zenith = 90. - self.elev self.azimuth = df.loc[df['Variable'] == 'SUN_AZIMUTH', 'Value'].astype(float).values[0] self.cloudCover = df.loc[df['Variable'] == 'CLOUD_COVER', 'Value'].astype(float).astype(str).values[0].strip() try: self.imgQuality = df.loc[df['Variable'] == 'IMAGE_QUALITY', 'Value'].astype(int).astype(str).values[0].strip() except: self.img_quality_oli = df.loc[df['Variable'] == 'IMAGE_QUALITY_OLI', 'Value'].astype(int).astype(str).values[0].strip() self.img_quality_tirs = df.loc[df['Variable'] == 'IMAGE_QUALITY_TIRS', 'Value'].astype(int).astype(str).values[0].strip() self.LMAX_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0.} self.LMIN_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0.} self.no_coeff = 999 # Landsat 8 radiance self.rad_mult_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0., 10: 0., 11: 0.} self.rad_add_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0., 10: 0., 11: 0.} # Landsat 8 reflectance self.refl_mult_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0.} self.refl_add_dict = {1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0.} self.k1 = 0 self.k2 = 0 if self.sensor.lower() == 'oli_tirs': if not self.bo: self.bo = [2, 3, 4, 5, 6, 7] else: if not self.bo: self.bo = [1, 2, 3, 4, 5, 7] for bi in self.bo: if not df.loc[df['Variable'] == 'RADIANCE_MAXIMUM_BAND_{:d}'.format(bi), 'Value'].empty: self.LMAX_dict[bi] = df.loc[df['Variable'] == 'RADIANCE_MAXIMUM_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] self.LMIN_dict[bi] = df.loc[df['Variable'] == 'RADIANCE_MINIMUM_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] self.no_coeff = 1000 else: self.LMAX_dict[bi] = df.loc[df['Variable'] == 'LMAX_BAND{:d}'.format(bi), 'Value'].astype(float).values[0] self.LMIN_dict[bi] = df.loc[df['Variable'] == 'LMIN_BAND{:d}'.format(bi), 'Value'].astype(float).values[0] self.no_coeff = 1000 if self.sensor.lower() == 'oli_tirs': self.rad_mult_dict[bi] = df.loc[df['Variable'] == 'RADIANCE_MULT_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] self.rad_add_dict[bi] = df.loc[df['Variable'] == 'RADIANCE_ADD_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] self.refl_mult_dict[bi] = df.loc[df['Variable'] == 'REFLECTANCE_MULT_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] self.refl_add_dict[bi] = df.loc[df['Variable'] == 'REFLECTANCE_ADD_BAND_{:d}'.format(bi), 'Value'].astype(float).values[0] # TODO: add k1 and k2 values # self.k1 = # self.k2 = def parse_xml(self, metadata): with open(metadata) as mo: meta = mo.read() soup = BeautifulSoup(meta) wrs = soup.find('wrs') try: self.product_id = str(soup.find('product_id').text.strip()) except: self.product_id = None self.scene_id = soup.find('lpgs_metadata_file').text si_index = self.scene_id.find('_') self.scene_id = self.scene_id[:si_index].strip() self.path = wrs['path'].strip() self.row = wrs['row'].strip() self.sensor = soup.find('instrument').text.strip() self.series = soup.find('satellite').text.strip() self.date = soup.find('acquisition_date').text.strip() self.date_ = self.date.split('-') self.year = self.date_[0].strip() self.month = self.date_[1].strip() self.day = self.date_[2].strip() solar_angles = soup.find('solar_angles') self.solar_zenith = float(solar_angles['zenith'].strip()) self.solar_azimuth = float(solar_angles['azimuth'].strip()) self.solar_elevation = 90. - self.solar_zenith class SentinelParser(object): """A class to parse Sentinel 2 metadata""" def parse_xml(self, metadata): """ Args: metadata (str) mgrs (Optional[str]) """ self.complete = False # xmltodict try: import xmltodict except ImportError: raise ImportError('xmltodict must be installed to parse Sentinel data') if not metadata.endswith('.xml'): logger.warning(' Parser type not supported') return if metadata.endswith('_report.xml'): logger.warning(' Cannot process <report> files.') return with open(metadata) as xml_tree: xml_object = xmltodict.parse(xml_tree.read()) safe_dir = os.path.split(metadata)[0] self.level = '1C' if 'n1:Level-1C_User_Product' in list(xml_object) else '2A' base_xml = xml_object['n1:Level-{LEVEL}_User_Product'.format(LEVEL=self.level)] general_info = base_xml['n1:General_Info'] quality_info = base_xml['n1:Quality_Indicators_Info'] self.cloud_cover = float(quality_info['Cloud_Coverage_Assessment']) product_info = general_info['L{LEVEL}_Product_Info'.format(LEVEL=self.level)] self.year, self.month, self.day = product_info['GENERATION_TIME'][:10].split('-') # self.band_list = product_info['Query_Options']['Band_List'] # self.band_list = [bn for bn in self.band_list['BAND_NAME']] granule_list = product_info['L{LEVEL}_Product_Organisation'.format(LEVEL=self.level)]['Granule_List'] self.band_name_dict = dict() for granule_index in range(0, len(granule_list)): granule_key = 'Granule' if 'Granule' in granule_list[granule_index] else 'Granules' image_key = 'IMAGE_FILE_2A' if 'IMAGE_FILE_2A' in granule_list[granule_index][granule_key] else 'IMAGE_ID_2A' granule_identifier = granule_list[granule_index][granule_key]['@granuleIdentifier'] img_data_dir = os.path.join(safe_dir, 'GRANULE', granule_identifier, 'IMG_DATA') qi_data_dir = os.path.join(safe_dir, 'GRANULE', granule_identifier, 'QI_DATA') # List of image names granule_image_list = granule_list[granule_index][granule_key][image_key] mgrs_code = granule_image_list[0][-13:-8] # Check if the file name has 20m. if '20m' in granule_image_list[0]: granule_image_list_full = list() for granule_image in granule_image_list: if '_CLD_' in granule_image: granule_image_list_full.append(os.path.join(qi_data_dir, granule_image)) else: granule_image_list_full.append(os.path.join(img_data_dir, 'R20m', granule_image)) self.band_name_dict['{MGRS}-20m'.format(MGRS=mgrs_code)] = granule_image_list_full elif '10m' in granule_image_list[0]: granule_image_list_full = list() for granule_image in granule_image_list: if '_CLD_' in granule_image: granule_image_list_full.append(os.path.join(qi_data_dir, granule_image)) else: granule_image_list_full.append(os.path.join(img_data_dir, 'R10m', granule_image)) self.band_name_dict['{MGRS}-10m'.format(MGRS=mgrs_code)] = granule_image_list_full image_format = granule_list[granule_index][granule_key]['@imageFormat'] # self.granule_dict = dict() # # for granule in granule_list: # # tile = granule['Granules'] # tile_id = tile['@granuleIdentifier'] # image_ids = tile['IMAGE_ID'] # # image_format = tile['@imageFormat'] # # self.granule_dict[tile_id] = image_ids self.image_ext = FORMAT_DICT[image_format] # print self.granule_dict # self.level = product_info['PROCESSING_LEVEL'] self.product = product_info['PRODUCT_TYPE'] self.series = product_info['Datatake']['SPACECRAFT_NAME'] self.no_data = int(general_info['L{LEVEL}_Product_Image_Characteristics'.format(LEVEL=self.level)]['Special_Values'][0]['SPECIAL_VALUE_INDEX']) self.saturated = int(general_info['L{LEVEL}_Product_Image_Characteristics'.format(LEVEL=self.level)]['Special_Values'][1]['SPECIAL_VALUE_INDEX']) self.complete = True class ropen(FileManager, LandsatParser, SentinelParser, UpdateInfo, ReadWrite): """ Gets image information and returns a file pointer object. Args: file_name (Optional[str]): Image location, name, and extension. Default is 'none'. open2read (Optional[bool]): Whether to open image as 'read only' (True) or writeable (False). Default is True. metadata (Optional[str]): A metadata file. Default is None. sensor (Optional[str]): The satellite sensor to parse with ``metadata``. Default is 'Landsat'. Choices are ['Landsat', 'Sentinel2']. This is only used for inplace spectral transformations. It will not affect the image otherwise. hdf_band (Optional[int]) Attributes: file_name (str) datasource (object) directory (str) filename (str) bands (int) projection (str) geo_transform (list) left (float) top (float) right (float) bottom (float) cellY (float) cellX (float) rows (int) cols (int) shape (str) name (str) block_x (int) block_y (int) Returns: None Examples: >>> # typical usage >>> import mpglue as gl >>> >>> i_info = mp.ropen('/some_raster.tif') >>> # <ropen> has its own array instance >>> i_info = mp.open('/some_raster.tif') >>> # <rinfo> has its own array instance >>> array = i_info.read() # opens band 1, all rows and columns >>> print array >>> >>> # use the <read> function >>> # open specific rows and columns >>> array = mp.read(i_info, >>> bands2open=[-1], >>> i=100, j=100, >>> rows=500, cols=500) >>> >>> # compute the NDVI (for Landsat-like band channels only) >>> i_info.read(compute_index='ndvi') >>> print i_info.ndvi >>> print i_info.array.shape # note that the image array is a 2xrowsxcolumns array >>> # display the NDVI >>> i_info.show('ndvi') >>> # display band 1 of the image (band 1 of <array> is the red band) >>> i_info.show(band=1) >>> # write the NDVI to file >>> i_info.write2raster('/ndvi.tif', write_which='ndvi', \ >>> o_info=i_info.copy(), storage='float32') >>> >>> # write an array to file >>> array = np.random.randn(3, 1000, 1000) >>> i_info.write2raster('/array.tif', write_which=array, \ >>> o_info=i_info.copy(), storage='float32') >>> >>> # create info from scratch >>> i_info = mp.ropen('create', left=, right=, top=, bottom=, \ >>> i_info = mp.open('create', left=, right=, top=, bottom=, \ >>> cellY=, cellX=, bands=, storage=, projection=, \ >>> rows=, cols=) >>> >>> # build overviews >>> i_info = mp.ropen('/some_raster.tif') >>> i_info = mp.open('/some_raster.tif') >>> i_info.build_overviews() >>> i_info.close() >>> >>> # remove overviews >>> i_info = mp.ropen('/some_raster.tif', open2read=False) >>> i_info = mp.open('/some_raster.tif', open2read=False) >>> i_info.remove_overviews() >>> i_info.close() """ def __init__(self, file_name='none', open2read=True, metadata=None, sensor='Landsat', hdf_band=1, check_corrupted=False, **kwargs): self.file_name = os.path.normpath(file_name) passed = True if file_name == 'create': self.update_info(**kwargs) elif file_name != 'none': self.get_image_info(open2read, hdf_band, check_corrupted) else: passed = False if isinstance(metadata, str): self.get_metadata(metadata, sensor) else: if not passed: logger.warning(' No image or metadata file was given.') # Check open files before closing. # atexit.register(self.close) def get_metadata(self, metadata, sensor): """ Args: metadata (str): The metadata file. sensor (str): The satellite sensor to search. Default is 'Landsat'. Choices are ['Landsat', 'Sentinel2']. """ if sensor == 'Landsat': LandsatParser.__init__(self, metadata) elif sensor == 'Sentinel2': SentinelParser.__init__(self, metadata) else: logger.error('The {} sensor is not an option.'.format(sensor)) raise NameError def copy(self): return copy.copy(self) def close(self): """Closes the dataset""" self.close_all() def warp(self, output_image, epsg, resample='nearest', cell_size=0., **kwargs): """ Warp transforms a dataset Args: output_image (str): The output image. epsg (int): The output EPSG projection code. resample (Optional[str]): The resampling method. Default is 'nearest'.N cell_size (Optional[float]): The output cell size. Default is 0. kwargs: format='GTiff', outputBounds=None (minX, minY, maxX, maxY), outputBoundsSRS=None, targetAlignedPixels=False, width=0, height=0, srcAlpha=False, dstAlpha=False, warpOptions=None, errorThreshold=None, warpMemoryLimit=None, creationOptions=None, outputType=0, workingType=0, resampleAlg=resample_dict[resample], srcNodata=None, dstNodata=None, multithread=False, tps=False, rpc=False, geoloc=False, polynomialOrder=None, transformerOptions=None, cutlineDSName=None, cutlineLayer=None, cutlineWhere=None, cutlineSQL=None, cutlineBlend=None, cropToCutline=False, copyMetadata=True, metadataConflictValue=None, setColorInterpretation=False, callback=None, callback_data=None Returns: None, writes to `output_image'. """ warp_options = gdal.WarpOptions(srcSRS=None, dstSRS='EPSG:{:d}'.format(epsg), xRes=cell_size, yRes=cell_size, resampleAlg=RESAMPLE_DICT[resample], **kwargs) out_ds = gdal.Warp(output_image, self.file_name, options=warp_options) out_ds = None def translate(self, output_image, cell_size=0, **kwargs): """ Args: output_image (str): The output image. cell_size (Optional[float]): The output cell size. Default is 0. kwargs: format='GTiff', outputType=0, bandList=None, maskBand=None, width=0, height=0, widthPct=0.0, heightPct=0.0, xRes=0.0, yRes=0.0, creationOptions=None, srcWin=None, projWin=None, projWinSRS=None, strict=False, unscale=False, scaleParams=None, exponents=None, outputBounds=None, metadataOptions=None, outputSRS=None, GCPs=None, noData=None, rgbExpand=None, stats=False, rat=True, resampleAlg=None, callback=None, callback_data=None """ translate_options = gdal.TranslateOptions(xRes=cell_size, yRes=cell_size, **kwargs) out_ds = gdal.Translate(output_image, self.file_name, options=translate_options) out_ds = None def hist(self, input_array=None, band=1, i=0, j=0, rows=-1, cols=-1, d_type='byte', name_dict=None, bins=256, **kwargs): """ Prints the image histogram Args: input_array (Optional[2d array]): An array to get the histogram from, otherwise, open the array. band (Optional[int]): The band to get the histogram from. i (Optional[int]): The starting row position. j (Optional[int]): The starting column position. rows (Optional[int]): The number of rows to take. cols (Optional[int]): The number of columns to take. d_type (Optional[str]): The image data type. name_dict (Optional[dict]): A dictionary of {value: 'name'} for discrete value arrays. bins (Optional[int]): The number of bins. kwargs: Other arguments passed to `numpy.histogram`. range (Optional[tuple]): The histogram range. normed (Optional[bool]) weights density Example: >>> import mpglue as gl >>> >>> i_info = gl.ropen('image_name.tif') >>> >>> i_info.hist() >>> >>> # Print the histogram dictionary. >>> print(i_info.hist_dict) """ if 'range' not in kwargs: kwargs['range'] = (0, bins-1) if isinstance(input_array, np.ndarray): the_hist, bin_edges = np.histogram(input_array, bins=bins, **kwargs) elif hasattr(self, 'array') and not isinstance(input_array, np.ndarray): the_hist, bin_edges = np.histogram(self.array, bins=bins, **kwargs) else: the_hist, bin_edges = np.histogram(self.read(bands2open=band, i=i, j=j, rows=rows, cols=cols, d_type=d_type), bins=bins, **kwargs) if kwargs['range'][0] == 0: self.total_samples = float(the_hist[1:].sum()) else: self.total_samples = float(the_hist.sum()) the_hist_pct = (the_hist / self.total_samples) * 100. self.hist_dict = dict() for i in range(0, bins): if the_hist[i] > 0: if isinstance(name_dict, dict): if i not in name_dict: label = 'unknown' else: label = name_dict[i] self.hist_dict[i] = dict(value=i, name=label, count=the_hist[i], perc=round(the_hist_pct[i], 4)) else: self.hist_dict[i] = dict(value=i, count=the_hist[i], perc=round(the_hist_pct[i], 4)) # Sort the values, largest to smallest self.hist_dict = OrderedDict(sorted(list(iteritems(self.hist_dict)), key=lambda item: item[1]['count'], reverse=True)) def pca(self, n_components=3): """ Computes Principle Components Analysis Args: n_components (Optional[int]): The number of components to return. Default is 3. Attributes: pca_components (ndarray) Returns: None """ # Scikit-learn try: from sklearn import decomposition from sklearn.preprocessing import StandardScaler except ImportError: raise ImportError('Scikit-learn must be installed to run PCA') if n_components > self.bands: n_components = self.bands embedder = decomposition.PCA(n_components=n_components) dims, rs, cs = self.array.shape x = self.array.T.reshape(rs*cs, dims) scaler = StandardScaler().fit(x) x = scaler.transform(x.astype(np.float32)).astype(np.float32) x_fit = embedder.fit(x.astype(np.float32)) x_reduced = x_fit.transform(x) self.pca_components = x_reduced.reshape(cs, rs, n_components).T def show(self, show_which='array', band=1, color_map='gist_stern', discrete=False, class_list=None, out_fig=None, dpi=300, clip_percentiles=(2, 98), equalize_hist=False, equalize_adapthist=False, gammas=None, sigmoid=None): """ Displays an array Args: show_which (Optional[str]): Which array to display. Default is 'array'. Choices are ['array', 'evi2', 'gndvi', 'ndbai', 'ndvi', 'ndwi', 'savi']. band (Optional[int]): The band to display. Default is 1. color_map (Optional[str]): The colormap to use. Default is 'gist_stern'. For more colormaps, visit http://matplotlib.org/examples/color/colormaps_reference.html. discrete (Optional[bool]): Whether the colormap is discrete. Otherwise, continuous. Default is False. class_list (Optional[int list]): A list of the classes to display. Default is []. out_fig (Optional[str]): An output image to save to. Default is None. dpi (Optional[int]): The DPI of the output figure. Default is 300. clip_percentiles (Optional[tuple]): The lower and upper clip percentiles to rescale RGB images. Default is (2, 98). equalize_hist (Optional[bool]): Whether to equalize the histogram. Default is False. equalize_adapthist (Optional[bool]): Whether to equalize the histogram using a localized approach. Default is False. gammas (Optional[float list]): A list of gamma corrections for each band. Default is []. sigmoid (Optional[float list]): A list of sigmoid contrast and gain values. Default is []. Examples: >>> import mpglue as gl >>> i_info = mp.ropen('image') >>> i_info = mp.open('image') >>> >>> # Plot a discrete map with specified colors >>> color_map = ['#000000', '#DF7401', '#AEB404', '#0B6121', '#610B0B', '#A9D0F5', >>> '#8181F7', '#BDBDBD', '#3A2F0B', '#F2F5A9', '#5F04B4'] >>> i_info.show(color_map=color_map, discrete=True, >>> class_list=[0,1,2,3,4,5,6,7,8,9,10]) >>> >>> # Plot the NDVI >>> i_info.read(compute_index='ndvi') >>> i_info.show(show_which='ndvi') >>> >>> # Plot a single band array as greyscale >>> i_info.read(bands2open=4) >>> i_info.show(color_map='Greys') >>> >>> # Plot a 3-band array as RGB true color >>> i_info.read(bands2open=[3, 2, 1], sort_bands2open=False) >>> i_info.show(band='rgb') Returns: None """ fig = plt.figure() ax = fig.add_subplot(111) plt.axis('off') if show_which == 'ndvi': self.array[self.array != 0] += 1.1 if equalize_hist: self.array = exposure.equalize_hist(self.array) ip = ax.imshow(self.array) im_min = np.percentile(self.array, clip_percentiles[0]) im_max = np.percentile(self.array, clip_percentiles[1]) elif show_which == 'evi2': if equalize_hist: self.array = exposure.equalize_hist(self.array) ip = ax.imshow(self.array) im_min = np.percentile(self.array, clip_percentiles[0]) im_max = np.percentile(self.array, clip_percentiles[1]) elif show_which == 'pca': if equalize_hist: self.pca_components[band-1] = exposure.equalize_hist(self.pca_components[band-1]) ip = ax.imshow(self.pca_components[band-1]) im_min = np.percentile(self.pca_components[band-1], clip_percentiles[0]) im_max = np.percentile(self.pca_components[band-1], clip_percentiles[1]) else: if self.array_shape[0] > 1: if band == 'rgb': for ii, im in enumerate(self.array): pl, pu = np.percentile(im, clip_percentiles) self.array[ii] = exposure.rescale_intensity(im, in_range=(pl, pu), out_range=(0, 255)) if equalize_hist: self.array[ii] = exposure.equalize_hist(im) if equalize_adapthist: self.array[ii] = exposure.equalize_adapthist(im, ntiles_x=4, ntiles_y=4, clip_limit=0.5) if gammas: self.array[ii] = exposure.adjust_gamma(im, gammas[ii]) if sigmoid: self.array[ii] = exposure.adjust_sigmoid(im, cutoff=sigmoid[0], gain=sigmoid[1]) # ip = ax.imshow(cv2.merge([self.array[2], self.array[1], self.array[0]])) ip = ax.imshow(np.ascontiguousarray(self.array.transpose(1, 2, 0))) # ip = ax.imshow(np.dstack((self.array[0], self.array[1], self.array[2])), interpolation='nearest') else: ip = ax.imshow(self.array[band-1]) im_min = np.percentile(self.array[band-1], clip_percentiles[0]) im_max = np.percentile(self.array[band-1], clip_percentiles[1]) else: ip = ax.imshow(self.array) im_min = np.percentile(self.array, clip_percentiles[0]) im_max = np.percentile(self.array, clip_percentiles[1]) ip.axes.get_xaxis().set_visible(False) ip.axes.get_yaxis().set_visible(False) if discrete: if isinstance(color_map, list): color_map = colors.ListedColormap(color_map) # color_map = colorbar.ColorbarBase(ax, cmap=color_map_) ip.set_cmap(color_map) elif color_map.lower() == 'random': ip.set_cmap(colors.ListedColormap(np.random.rand(len(class_list), 3))) else: ip.set_cmap(_discrete_cmap(len(class_list), base_cmap=color_map)) ip.set_clim(min(class_list), max(class_list)) else: if band != 'rgb': ip.set_cmap(color_map) ip.set_clim(im_min, im_max) cbar = plt.colorbar(ip, fraction=0.046, pad=0.04, orientation='horizontal') cbar.solids.set_edgecolor('face') # Remove colorbar container frame cbar.outline.set_visible(False) # cbar.set_ticks([]) # cbar.set_ticklabels(class_list) if band == 'rgb': colorbar_label = 'RGB' else: if show_which == 'array': colorbar_label = 'Band {:d} of {:d} bands'.format(band, self.array_shape[0]) else: colorbar_label = show_which.upper() cbar.ax.set_xlabel(colorbar_label) # Remove color bar tick lines, while keeping the tick labels cbarytks = plt.getp(cbar.ax.axes, 'xticklines') plt.setp(cbarytks, visible=False) if isinstance(out_fig, str): plt.savefig(out_fig, dpi=dpi, bbox_inches='tight', pad_inches=.1, transparent=True) else: plt.show() if show_which == 'ndvi': self.array[self.array != 0] -= 1.1 plt.clf() plt.close(fig) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): self.close() def __del__(self): self.__exit__(None, None, None) class PanSharpen(object): """ A class to pan sharpen an image Args: multi_image (str) pan_array (str) out_dir (Optional[str]) method (Optional[str]) Equation: DNF = (P - IW * I) / (RW * R + GW * G + BW * B) Red_out = R * DNF Green_out = G * DNF Blue_out = B * DNF Infrared_out = I * DNF pan / ((rgb[0] + rgb[1] + rgb[2] * weight) / (2 + weight)) Example: >>> ps = PanSharpen('/multi.tif', '/pan.tif', method='brovey') >>> ps.sharpen() """ def __init__(self, multi_image, pan_image, out_dir=None, method='brovey'): self.multi_image = multi_image self.pan_image = pan_image self.method = method if isinstance(out_dir, str): self.out_dir = out_dir else: self.out_dir = os.path.split(self.multi_image)[0] f_name = os.path.split(self.multi_image)[1] self.f_base, self.f_ext = os.path.splitext(f_name) self.multi_image_ps = os.path.join(self.out_dir, '{}_pan.tif'.format(self.f_base)) def sharpen(self, bw=.2, gw=1., rw=1., iw=.5): self.bw = bw self.gw = gw self.rw = rw self.iw = iw # self._sharpen_gdal() self._warp_multi() self._sharpen() def _sharpen_gdal(self): with ropen(self.multi_image) as m_info: m_bands = m_info.bands m_info = None logger.info('\nPan-sharpening ...\n') if m_bands == 4: com = 'gdal_pansharpen.py {} {} {} ' \ '-w {:f} -w {:f} -w {:f} -w {:f} -r cubic ' \ '-bitdepth 16 -threads ALL_CPUS -co TILED=YES -co COMPRESS=DEFLATE'.format(self.pan_image, self.multi_image, self.multi_image_ps, self.w1, self.w2, self.w3, self.w4) else: com = 'gdal_pansharpen.py {} {} {} ' \ '-w {:f} -w {:f} -w {:f} -r cubic ' \ '-bitdepth 16 -threads ALL_CPUS -co TILED=YES -co COMPRESS=DEFLATE'.format(self.pan_image, self.multi_image, self.multi_image_ps, self.w1, self.w2, self.w3) subprocess.call(com, shell=True) def _do_sharpen(self, im): try: import numexpr as ne except: raise ImportError('Numexpr is needed for pan-sharpening.') blue = im[0][0] green = im[0][1] red = im[0][2] pan_array = im[1] bw = self.bw gw = self.gw rw = self.rw iw = self.iw if im[0].shape[0] == 4: nir = im[0][3] if self.method == 'esri': dnf = ne.evaluate('pan_array - ((red*.166 + green*.167 + blue*.167 + nir*.5) / (.166+.167+.167+.5))') elif self.method == 'brovey': # dnf = ne.evaluate('(pan_array - (iw * nir)) / ((rw * red) + (gw * green) + (bw * blue))') dnf = ne.evaluate('pan_array / (((blue * bw) + (green * gw) + (red * rw) + (nir * iw)) / (bw + gw + rw + iw))') # TODO # else: # dnf = ne.evaluate('(pan_array - iw * nir) / (rw * red + gw * green + bw * blue)') im = im[0] # plt.subplot(121) # plt.imshow(im[0]+dnf) # plt.axis('off') # plt.subplot(122) # plt.imshow(dnf) # plt.axis('off') # plt.show() # sys.exit() for bi in range(0, im.shape[0]): if self.method == 'esri': im[bi] += dnf elif self.method == 'brovey': im[bi] *= dnf return im def _sharpen(self): with ropen(self.multi_warped) as m_info, ropen(self.pan_image) as p_info: o_info = m_info.copy() bp = BlockFunc(self._do_sharpen, [m_info, p_info], self.multi_image_ps, o_info, band_list=[range(1, m_info.bands+1), 1], d_types=['float32', 'float32'], block_rows=4000, block_cols=4000, print_statement='\nPan sharpening using {} ...\n'.format(self.method.title()), method=self.method) bp.run() m_info = None p_info = None def _warp_multi(self): # Get warping info. with ropen(self.pan_image) as p_info: extent = p_info.extent cell_size = p_info.cellY p_info = None self.multi_warped = os.path.join(self.out_dir, '{}_warped.tif'.format(self.f_base)) logger.info('Resampling to pan scale ...') # Resample the multi-spectral bands. warp(self.multi_image, self.multi_warped, cell_size=cell_size, resample='cubic', outputBounds=[extent['left'], extent['bottom'], extent['right'], extent['top']], multithread=True, creationOptions=['GDAL_CACHEMAX=256', 'TILED=YES']) def gdal_open(image2open, band): """ A direct file open from GDAL. """ driver_o = gdal.Open(image2open, GA_ReadOnly) return driver_o, driver_o.GetRasterBand(band) def gdal_read(image2open, band, i, j, rows, cols): """ A direct array read from GDAL. """ driver_o = gdal.Open(image2open, GA_ReadOnly) if isinstance(band, list): band_array = [] for bd in band: band_object_o = driver_o.GetRasterBand(bd) band_array.append(band_object_o.ReadAsArray(j, i, cols, rows)) band_object_o = None driver_o = None return np.array(band_array, dtype='float32').reshape(len(band), rows, cols) else: band_object_o = driver_o.GetRasterBand(band) band_array = np.float32(band_object_o.ReadAsArray(j, i, cols, rows)) band_object_o = None driver_o = None return band_array def gdal_write(band_object_w, array2write, io=0, jo=0): band_object_w.WriteArray(array2write, jo, io) def gdal_close_band(band_object_c): try: band_object_c.FlushCache() except: logger.error(gdal.GetLastErrorMsg()) pass band_object_c = None return band_object_c def gdal_close_datasource(datasource_d): try: datasource_d.FlushCache() except: logger.error(gdal.GetLastErrorMsg()) pass datasource_d = None return datasource_d def gdal_register(image_name, in_memory=False): __, f_name = os.path.split(image_name) __, file_extension = os.path.splitext(f_name) if file_extension.lower() not in DRIVER_DICT: raise TypeError('{} is not an image, or is not a supported raster format.'.format(file_extension)) else: file_format = DRIVER_DICT[file_extension.lower()] gdal.AllRegister() if in_memory: driver_r = gdal.GetDriverByName('MEM') else: driver_r = gdal.GetDriverByName(file_format) driver_r.Register return driver_r def gdal_create(image_name, driver_cr, out_rows, out_cols, n_bands, storage_type, left, top, cellY, cellX, projection, in_memory=False, overwrite=False, parameters=[]): if overwrite: if os.path.isfile(image_name): os.remove(image_name) # Create the output driver. if in_memory: return driver_cr.Create('', out_cols, out_rows, n_bands, storage_type) else: ds = driver_cr.Create(image_name, out_cols, out_rows, n_bands, storage_type, parameters) # Set the geo-transformation. ds.SetGeoTransform([left, cellY, 0., top, 0., cellX]) # Set the projection. ds.SetProjection(projection) return ds def gdal_get_band(datasource_b, band_position): return datasource_b.GetRasterBand(band_position) def _parallel_blocks(out_image, band_list, ii, jj, y_offset, x_offset, nn_rows, nn_cols, left, top, cellY, cellX, projection, **kwargs): """ Args: out_image: band_list: ii: jj: y_offset: x_offset: n_rows: n_cols: **kwargs: Returns: """ # out_info_tile = out_info.copy() # out_info_tile.update_info(rows=nn_rows, cols=nn_cols, # left=out_info.left+(jj*out_info.cellY), # top=out_info.top-(ii*out_info.cellY)) d_name_, f_name_ = os.path.split(out_image) f_base_, f_ext_ = os.path.splitext(f_name_) d_name_ = os.path.join(d_name_, 'temp') rsn = '{:f}'.format(abs(np.random.randn(1)[0]))[-4:] out_image_tile = os.path.join(d_name_, '{}_{}{}'.format(f_base_, rsn, f_ext_)) datasource = gdal_create(out_image_tile, driver_pp, nn_rows, nn_cols, 1, STORAGE_DICT_GDAL['float32'], left, top, cellY, cellX, projection) band_object = gdal_get_band(datasource, 1) # out_raster = create_raster(out_image_tile, out_info_tile) # out_raster.get_band(1) image_arrays = [gdal_read(image_infos_list[imi], band_list[imi], ii+y_offset[imi], jj+x_offset[imi], nn_rows, nn_cols) for imi in range(0, len(image_infos_list))] output = block_func(image_arrays, **kwargs) gdal_write(band_object, output) band_object = gdal_close_band(band_object) datasource = gdal_close_datasource(datasource) return out_image_tile class BlockFunc(object): """ A class for block by block processing Args: func image_infos (list): A list of ``ropen`` instances. out_image (str): The output image. out_info (object): An instance of ``ropen``. band_list (Optional[list]): A list of band positions. Default is []. proc_info (Optional[object]): An instance of ``ropen``. Overrides image_infos[0]. Default is None. y_offset (Optional[list]): The row offset. Default is [0]. x_offset (Optional[list]): The column offset. Default is [0]. y_pad (Optional[list]): The row padding. Default is [0]. x_pad (Optional[list]): The column padding. Default is [0]. block_rows (Optional[int]): The block row chunk size. Default is 2048. block_cols (Optional[int]): The block column chunk size. Default is 2048. d_types (Optional[str list]): A list of read data types. Default is None. be_quiet (Optional[bool]): Whether to be quiet and do not print progress. Default is False. print_statement (Optional[str]): A string to print. Default is None. out_attributes (Optional[list]): A list of output attribute names. Default is []. write_array (Optional[bool]): Whether to write the output array to file. Default is True. bigtiff (Optional[str]): GDAL option passed to `create_raster`. Default is 'no'. See `create_raster` for details. boundary_file (Optional[str]): A file to use for block intersection. Default is None. Skip blocks that do not intersect ``boundary_file``. mask_file (Optional[str]): A file to use for block masking. Default is None. Recode blocks to binary 1 and 0 that intersect ``mask_file``. n_jobs (Optional[int]): The number of blocks to process in parallel. Default is 1. no_data_values (Optional[list]): A list of no data values for each image. Default is None. kwargs (Optional[dict]): Function specific parameters. Returns: None, writes to ``out_image``. """ def __init__(self, func, image_infos, out_image, out_info, band_list=None, proc_info=None, y_offset=None, x_offset=None, y_pad=None, x_pad=None, block_rows=2000, block_cols=2000, be_quiet=False, d_types=None, print_statement=None, out_attributes=None, write_array=True, bigtiff='no', boundary_file=None, mask_file=None, n_jobs=1, close_files=True, no_data_values=None, overwrite=False, **kwargs): self.func = func self.image_infos = image_infos self.out_image = out_image self.out_info = out_info self.band_list = band_list self.proc_info = proc_info self.y_offset = y_offset self.x_offset = x_offset self.y_pad = y_pad self.x_pad = x_pad self.block_rows = block_rows self.block_cols = block_cols self.d_types = d_types self.be_quiet = be_quiet self.print_statement = print_statement self.out_attributes = out_attributes self.write_array = write_array self.bigtiff = bigtiff self.boundary_file = boundary_file self.mask_file = mask_file self.n_jobs = n_jobs self.close_files = close_files self.no_data_values = no_data_values self.kwargs = kwargs self.out_attributes_dict = dict() if not isinstance(self.d_types, list): self.d_types = ['byte'] * len(self.image_infos) if not self.y_offset: self.y_offset = [0] * len(self.image_infos) if not self.x_offset: self.x_offset = [0] * len(self.image_infos) if not isinstance(self.out_image, str) and write_array: logger.error(' The output image was not given.') raise NameError if overwrite: if os.path.isfile(self.out_image): os.remove(self.out_image) if self.n_jobs in [0, 1]: if not self.proc_info: self.proc_info = self.image_infos[0] for imi in range(0, len(self.image_infos)): if not isinstance(self.image_infos[imi], ropen): if not isinstance(self.image_infos[imi], GetMinExtent): if not isinstance(self.image_infos[imi], ImageInfo): logger.error(' The image info list should be instances of `ropen`, `GetMinExtent`, or `ImageInfo`.') raise ropenError if not isinstance(self.band_list, list) and isinstance(self.band_list, int): self.band_list = [self.band_list] * len(self.image_infos) else: if self.band_list: if len(self.band_list) != len(self.image_infos): logger.error(' The band list and image info list much be the same length.') raise LenError else: self.band_list = [1] * len(self.image_infos) if isinstance(out_image, str): if not isinstance(self.out_info, ropen): if not isinstance(self.out_info, GetMinExtent): logger.error(' The output image object is not a `raster_tools` instance.') raise ropenError if not isinstance(self.image_infos, list): logger.error(' The image infos must be given as a list.') raise TypeError if not len(self.y_offset) == len(self.x_offset) == len(self.image_infos): logger.error(' The offset lists and input image info lists must be the same length.') raise LenError def run(self): global block_func, image_infos_list, driver_pp if self.n_jobs in [0, 1]: for imi in range(0, len(self.image_infos)): if isinstance(self.band_list[imi], int): self.image_infos[imi].get_band(self.band_list[imi]) self._process_blocks() else: block_func = self.func image_infos_list = self.image_infos self._get_pairs() dn, fn = os.path.split(self.out_image) if not dn and not os.path.isabs(fn): dn = os.path.join(os.path.abspath('.'), 'temp') else: check_and_create_dir(os.path.join(dn, 'temp')) driver_pp = gdal_register(self.out_image) tile_list = Parallel(n_jobs=self.n_jobs, max_nbytes=None)(delayed(_parallel_blocks)(self.out_image, self.band_list, pair[0], pair[1], self.y_offset, self.x_offset, pair[2], pair[3], self.out_info.left+(pair[1]*self.out_info.cellY), self.out_info.top-(pair[0]*self.out_info.cellY), self.out_info.cellY, self.out_info.cellX, self.out_info.projection, **self.kwargs) for pair in self.pairs) def _get_pairs(self): self.pairs = [] for i in range(0, self.proc_info.rows, self.block_rows): n_rows = n_rows_cols(i, self.block_rows, self.proc_info.rows) for j in range(0, self.proc_info.cols, self.block_cols): n_cols = n_rows_cols(j, self.block_cols, self.proc_info.cols) self.pairs.append((i, j, n_rows, n_cols)) def _process_blocks(self): if self.write_array: out_raster = create_raster(self.out_image, self.out_info, bigtiff=self.bigtiff) # n_blocks = 0 # for i in range(0, self.proc_info.rows, self.block_rows): # for j in range(0, self.proc_info.cols, self.block_cols): # n_blocks += 1 # # n_block = 1 if isinstance(self.print_statement, str): logger.info(self.print_statement) # set widget and pbar if not self.be_quiet: ctr, pbar = _iteration_parameters(self.proc_info.rows, self.proc_info.cols, self.block_rows, self.block_cols) # iterate over the images and get change pixels for i in range(0, self.proc_info.rows, self.block_rows): n_rows = n_rows_cols(i, self.block_rows, self.proc_info.rows) if isinstance(self.y_pad, int): y_pad_minus = 0 if i == 0 else self.y_pad y_pad_plus = 0 if i + n_rows + self.y_pad > self.proc_info.rows else self.proc_info.rows - (i + n_rows) else: y_pad_minus = 0 y_pad_plus = 0 for j in range(0, self.proc_info.cols, self.block_cols): n_cols = n_rows_cols(j, self.block_cols, self.proc_info.cols) if isinstance(self.x_pad, int): x_pad_minus = 0 if j == 0 else self.x_pad x_pad_plus = 0 if j + n_cols + self.x_pad > self.proc_info.cols else self.proc_info.cols - (j + n_cols) else: x_pad_minus = 0 x_pad_plus = 0 if isinstance(self.boundary_file, str): # Get the extent of the current block. self.get_block_extent(i, j, n_rows, n_cols) # Check if the block intersects the boundary file. if not vector_tools.intersects_boundary(self.extent_dict, self.boundary_file): continue # if not self.be_quiet: # # if n_block == 1: # print 'Blocks 1--19 of {:,d} ...'.format(n_blocks) # elif n_block % 20 == 0: # n_block_ = n_block + 19 if n_blocks - n_block > 20 else n_blocks # print 'Block {:,d}--{:,d} of {:,d} ...'.format(n_block, n_block_, n_blocks) # # n_block += 1 image_arrays = [self.image_infos[imi].read(bands2open=self.band_list[imi], i=i+self.y_offset[imi]-y_pad_minus, j=j+self.x_offset[imi]-x_pad_minus, rows=n_rows+y_pad_plus, cols=n_cols+x_pad_plus, d_type=self.d_types[imi]) for imi in range(0, len(self.image_infos))] skip_block = False # Check for no data values. if isinstance(self.no_data_values, list): for no_data, im_block in zip(self.no_data_values, image_arrays): if isinstance(no_data, int) or isinstance(no_data, float): if im_block.max() == no_data: skip_block = True break if skip_block: continue if isinstance(self.mask_file, str): self.get_block_extent(i, j, n_rows, n_cols) orw = create_raster('none', None, in_memory=True, rows=n_rows, cols=n_cols, bands=1, projection=self.proc_info.projection, cellY=self.proc_info.cellY, cellX=self.proc_info.cellX, left=self.extent_dict['UL'][0], top=self.extent_dict['UL'][1], storage='byte') # Rasterize the vector at the current block. with vector_tools.vopen(self.mask_file) as v_info: gdal.RasterizeLayer(orw.datasource, [1], v_info.lyr, burn_values=[1]) block_array = orw.datasource.GetRasterBand(1).ReadAsArray(0, 0, n_cols, n_rows) for imib, image_array in enumerate(image_arrays): image_array[block_array == 0] = 0 image_arrays[imib] = image_array v_info = None gdal.Unlink('none') output = self.func(image_arrays, **self.kwargs) if isinstance(output, tuple): if self.write_array: if output[0].shape[0] > 1: for obi, obb in enumerate(output[0]): out_raster.write_array(obb, i=i, j=j, band=obi + 1) else: out_raster.write_array(output[0], i=i, j=j, band=1) # Get the other results. for ri in range(1, len(output)): # self.kwargs[self.out_attributes[ri-1]] = output[ri] if self.out_attributes[ri-1] not in self.out_attributes_dict: self.out_attributes_dict[self.out_attributes[ri-1]] = [output[ri]] else: self.out_attributes_dict[self.out_attributes[ri-1]].append(output[ri]) else: if self.write_array: if len(output.shape) > 2: for obi, obb in enumerate(output): out_raster.write_array(obb, i=i, j=j, band=obi+1) else: out_raster.write_array(output, i=i, j=j, band=1) if not self.be_quiet: pbar.update(ctr) ctr += 1 if self.out_attributes_dict: for ri in range(1, len(output)): setattr(self, self.out_attributes[ri-1], self.out_attributes_dict[self.out_attributes[ri-1]]) if not self.be_quiet: pbar.finish() if isinstance(self.out_image, str): if self.close_files: for imi in range(0, len(self.image_infos)): self.image_infos[imi].close() self.out_info.close() if self.write_array: out_raster.close_all() def get_block_extent(self, ii, jj, nn_rows, nn_cols): adj_left = self.proc_info.left + (jj * self.proc_info.cellY) adj_right = adj_left + (nn_cols * self.proc_info.cellY) + self.proc_info.cellY adj_top = self.proc_info.top - (ii * self.proc_info.cellY) adj_bottom = adj_top - (nn_rows * self.proc_info.cellY) - self.proc_info.cellY self.extent_dict = {'UL': [adj_left, adj_top], 'UR': [adj_right, adj_top], 'LL': [adj_left, adj_bottom], 'LR': [adj_right, adj_bottom]} def _read_parallel(image, image_info, bands2open, y, x, rows2open, columns2open, n_jobs, d_type, predictions): """ Opens image bands into arrays using multiple processes Args: image (str): The image to open. image_info (instance) bands2open (int or int list: Band position to open or list of bands to open. y (int): Starting row position. x (int): Starting column position. rows2open (int): Number of rows to extract. columns2open (int): Number of columns to extract. n_jobs (int): The number of jobs to run in parallel. d_type (str): Type of array to return. predictions (bool): Whether to return reshaped array for predictions. Returns: Ndarray where [rows, cols] if 1 band and [bands, rows, cols] if more than 1 band """ if isinstance(bands2open, list): if max(bands2open) > image_info.bands: raise ValueError('\nCannot open more bands than exist in the image.\n') else: if bands2open == -1: bands2open = list(range(1, image_info.bands+1)) if rows2open == -1: rows2open = image_info.rows if columns2open == -1: columns2open = image_info.cols image_info.close() band_arrays = Parallel(n_jobs=n_jobs)(delayed(gdal_read)(image, band2open, y, x, rows2open, columns2open) for band2open in bands2open) if predictions: # Check for empty images. band_arrays = [b_ if b_.shape else np.zeros((rows2open, columns2open), dtype=d_type) for b_ in band_arrays] return np.array(band_arrays, dtype=d_type).reshape(len(bands2open), rows2open, columns2open).transpose(1, 2, 0).reshape(rows2open*columns2open, len(bands2open)) else: return np.array(band_arrays, dtype=d_type).reshape(len(bands2open), rows2open, columns2open) def read(image2open=None, i_info=None, bands2open=1, i=0, j=0, rows=-1, cols=-1, d_type=None, predictions=False, sort_bands2open=True, y=0., x=0., n_jobs=0): """ Reads a raster as an array Args: image2open (Optional[str]): An image to open. Default is None. i_info (Optional[object]): An instance of `ropen`. Default is None bands2open (Optional[int list or int]: Band position to open or list of bands to open. Default is 1. Examples: bands2open = 1 (open band 1) bands2open = [1,2,3] (open first three bands) bands2open = -1 (open all bands) i (Optional[int]): Starting row position. Default is 0, or first row. j (Optional[int]): Starting column position. Default is 0, or first column. rows (Optional[int]): Number of rows to extract. Default is all rows. cols (Optional[int]): Number of columns to extract. Default is all columns. d_type (Optional[str]): Type of array to return. Default is None, or gathered from <i_info>. Choices are ['uint8', 'int8', 'uint16', 'uint32', 'int16', 'float32', 'float64']. predictions (Optional[bool]): Whether to return reshaped array for predictions. sort_bands2open (Optional[bool]): Whether to sort ``bands2open``. Default is True. y (Optional[float]): A y index coordinate. Default is 0. If greater than 0, overrides `i`. x (Optional[float]): A x index coordinate. Default is 0. If greater than 0, overrides `j`. n_jobs (Optional[int]): The number of bands to open in parallel. Default is 0. Attributes: array (ndarray) Returns: Ndarray where [rows, cols] if 1 band and [bands, rows, cols] if more than 1 band Examples: >>> import mpglue as gl >>> >>> array = mp.read('image.tif') >>> >>> array = mp.read('image.tif', bands2open=[1, 2, 3]) >>> print(a.shape) >>> >>> array = mp.read('image.tif', bands2open={'green': 3, 'nir': 4}) >>> print(len(array)) >>> print(array['nir'].shape) """ if not isinstance(i_info, ropen) and not isinstance(image2open, str): logger.error('Either `i_info` or `image2open` must be declared.') raise MissingRequirement elif isinstance(i_info, ropen) and isinstance(image2open, str): logger.error('Choose either `i_info` or `image2open`, but not both.') raise OverflowError elif not isinstance(i_info, ropen) and isinstance(image2open, str): i_info = ropen(image2open) rrows = copy.copy(rows) ccols = copy.copy(cols) if rrows == -1: rrows = i_info.rows else: if rrows > i_info.rows: rrows = i_info.rows logger.warning(' The requested rows cannot be larger than the image rows.') if ccols == -1: ccols = i_info.cols else: if ccols > i_info.cols: ccols = i_info.cols logger.warning(' The requested columns cannot be larger than the image columns.') ################# # Bounds checking ################# # Row indices if i < 0: i = 0 if i >= i_info.rows: i = i_info.rows - 1 # Number of rows rrows = n_rows_cols(i, rrows, i_info.rows) # Column indices if j < 0: j = 0 if j >= i_info.cols: j = i_info.cols - 1 # Number of columns ccols = n_rows_cols(j, ccols, i_info.cols) if isinstance(bands2open, list): if len(bands2open) == 0: raise ValueError('\nA band list must be declared.\n') if max(bands2open) > i_info.bands: raise ValueError('\nThe requested band position cannot be greater than the image bands.\n') elif isinstance(bands2open, int): if bands2open > i_info.bands: raise ValueError('\nThe requested band position cannot be greater than the image bands.\n') if bands2open == -1: bands2open = list(range(1, i_info.bands+1)) else: bands2open = [bands2open] if sort_bands2open: bands2open = sorted(bands2open) # Index the image by x, y coordinates (in map units). if abs(y) > 0: __, __, __, i = vector_tools.get_xy_offsets(i_info, x=x, y=y) if abs(x) > 0: __, __, j, __ = vector_tools.get_xy_offsets(i_info, x=x, y=y) if (n_jobs in [0, 1]) and not predictions: kwargs = dict(bands2open=bands2open, i=i, j=j, rows=rrows, cols=ccols, d_type=d_type, sort_bands2open=sort_bands2open, y=y, x=x) return i_info.read(**kwargs) else: # Convert to NumPy dtype. if isinstance(d_type, str): d_type = STORAGE_DICT[d_type] else: d_type = STORAGE_DICT[i_info.storage.lower()] # format_dict = {'byte': 'B', 'int16': 'i', 'uint16': 'I', 'float32': 'f', 'float64': 'd'} if n_jobs in [0, 1]: values = np.asarray([i_info.datasource.GetRasterBand(band).ReadAsArray(j, i, ccols, rrows) for band in bands2open], dtype=d_type) # values = struct.unpack('%d%s' % ((rows * cols * len(bands2open)), format_dict[i_info.storage.lower()]), # i_info.datasource.ReadRaster(yoff=i, xoff=j, xsize=cols, ysize=rows, band_list=bands2open)) if predictions: return values.reshape(len(bands2open), rrows, ccols).transpose(1, 2, 0).reshape(rrows*ccols, len(bands2open)) else: if len(bands2open) == 1: return values.reshape(rrows, ccols) else: return values.reshape(len(bands2open), rrows, ccols) # only close the image if it was opened internally # if isinstance(image2open, str): # i_info.close() else: return _read_parallel(image2open, i_info, bands2open, i, j, rrows, ccols, n_jobs, d_type, predictions) def build_vrt(file_list, output_image, cell_size=0.0, return_datasource=False, overwrite=False, **kwargs): """ Build a VRT file Args: file_list (str list): A list of files. output_image (str): The output image. cell_size (Optional[float]): The output cell size. Default is 0. return_datasource (Optional[bool]: Whether to return the raster datasource. Default is False. overwrite (Optional[bool]): Whether to overwrite an existing VRT file. Default is False. kwargs: resolution=None, outputBounds=None (minX, minY, maxX, maxY), targetAlignedPixels=None, separate=None, bandList=None, addAlpha=None, resampleAlg=None, outputSRS=None, allowProjectionDifference=None, srcNodata=None, VRTNodata=None, hideNodata=None, callback=None, callback_data=None """ if overwrite: if os.path.isfile(output_image): os.remove(output_image) vrt_options = gdal.BuildVRTOptions(xRes=cell_size, yRes=cell_size, **kwargs) out_ds = gdal.BuildVRT(output_image, file_list, options=vrt_options) if return_datasource: return out_ds else: out_ds = None def _merge_dicts(dict1, dict2): dict3 = dict1.copy() dict3.update(dict2) return dict3 def warp(input_image, output_image, out_epsg=None, out_proj=None, in_epsg=None, in_proj=None, resample='nearest', cell_size=0, d_type=None, return_datasource=False, overwrite=False, **kwargs): """ Warp transforms a dataset Args: input_image (str): The image to warp. output_image (str): The output image. out_epsg (Optional[int]): The output EPSG projection code. out_proj (Optional[str]): The output proj4 projection code. in_epsg (Optional[int]): An input EPSG code. Default is None. in_proj (Optional[str]): An input projection string. Default is None. resample (Optional[str]): The resampling method. Default is 'nearest'. cell_size (Optional[float]): The output cell size. Default is 0. d_type (Optional[str]): Data type to overwrite `outputType`. Default is None. return_datasource (Optional[bool]): Whether to return the datasource object. Default is False. overwrite (Optional[bool]): Whether to overwrite `out_vrt`, if it exists. Default is False. kwargs: format=None, outputBounds=None (minX, minY, maxX, maxY), outputBoundsSRS=None, targetAlignedPixels=False, width=0, height=0, srcAlpha=False, dstAlpha=False, warpOptions=None, errorThreshold=None, warpMemoryLimit=None, creationOptions=None, outputType=0, workingType=0, resampleAlg=resample_dict[resample], srcNodata=None, dstNodata=None, multithread=False, tps=False, rpc=False, geoloc=False, polynomialOrder=None, transformerOptions=None, cutlineDSName=None, cutlineLayer=None, cutlineWhere=None, cutlineSQL=None, cutlineBlend=None, cropToCutline=False, copyMetadata=True, metadataConflictValue=None, setColorInterpretation=False, callback=None, callback_data=None E.g., creationOptions=['GDAL_CACHEMAX=256', 'TILED=YES'] Returns: None, writes to `output_image'. Examples: >>> from mpglue import raster_tools >>> >>> # Resample a subset of an image in memory >>> warp_info = raster_tools.warp('/input_image.tif', >>> 'memory_image.mem', >>> resample='nearest', >>> cell_size=10.0, >>> return_datasource=True, >>> outputBounds=[<left, bottom, right, top>]) >>> >>> # Load the resampled array >>> resampled_array = warp_info.read() """ if output_image.endswith('.mem'): while True: output_image = '{:f}'.format(abs(np.random.randn(1)[0]))[-5:] + '.mem' if not os.path.isfile(output_image): break else: d_name, f_name = os.path.split(output_image) if not d_name and not os.path.isabs(f_name): d_name = os.path.abspath('.') else: check_and_create_dir(d_name) if isinstance(out_epsg, int): out_proj = 'EPSG:{:d}'.format(out_epsg) if isinstance(in_epsg, int): in_proj = 'EPSG:{:d}'.format(in_epsg) if cell_size == 0: cell_size = (None, None) else: cell_size = (cell_size, -cell_size) if overwrite: if os.path.isfile(output_image): os.remove(output_image) if isinstance(d_type, str): awargs = _merge_dicts(dict(srcSRS=in_proj, dstSRS=out_proj, xRes=cell_size[0], yRes=cell_size[1], outputType=STORAGE_DICT_GDAL[d_type], resampleAlg=RESAMPLE_DICT[resample]), kwargs) else: awargs = _merge_dicts(dict(srcSRS=in_proj, dstSRS=out_proj, xRes=cell_size[0], yRes=cell_size[1], resampleAlg=RESAMPLE_DICT[resample]), kwargs) warp_options = gdal.WarpOptions(**awargs) try: out_ds = gdal.Warp(output_image, input_image, options=warp_options) except: if 'outputBounds' in awargs: logger.info(' Input image extent:') with ropen(input_image) as info: logger.info(info.extent) info = None logger.info('') logger.info(' Requested image extent (left, bottom, right, top):') logger.info(awargs['outputBounds']) logger.warning(' GDAL returned an exception--check the output file, {}.'.format(output_image)) out_ds = None if return_datasource: if out_ds is None: return None i_info = ImageInfo() i_info.update_info(datasource=out_ds, hdf_file=False, output_image=output_image) i_info.datasource_info() out_ds = None return i_info else: out_ds = None if output_image.endswith('.mem'): gdal.Unlink(output_image) def translate(input_image, output_image, cell_size=0, d_type=None, return_datasource=False, overwrite=False, **kwargs): """ Args: input_image (str): The image to translate. output_image (str): The output image. cell_size (Optional[float]): The output cell size. Default is 0. d_type (Optional[str]): Data type to overwrite `outputType`. Default is None. return_datasource (Optional[bool]): Whether to return the datasource object. Default is False. overwrite (Optional[bool]): Whether to overwrite `out_vrt`, if it exists. Default is False. kwargs: format='GTiff', outputType=0, bandList=None, maskBand=None, width=0, height=0, widthPct=0.0, heightPct=0.0, xRes=0.0, yRes=0.0, creationOptions=None, srcWin=None, projWin=None [ulx, uly, lrx, lry], projWinSRS=None, strict=False, unscale=False, scaleParams=None [[srcmin, srcmax, dstmin, dstmax]], exponents=None, outputBounds=None, metadataOptions=None, outputSRS=None, GCPs=None, noData=None, rgbExpand=None, stats=False, rat=True, resampleAlg=None, callback=None, callback_data=None Examples: >>> from mpglue import raster_tools >>> >>> raster_tools.translate('input.tif', 'output.tif', >>> cell_size=30., >>> format='GTiff', d_type='byte', >>> creationOptions=['GDAL_CACHEMAX=256', 'TILED=YES']) """ d_name, f_name = os.path.split(output_image) if not d_name and not os.path.isabs(f_name): d_name = os.path.abspath('.') else: check_and_create_dir(d_name) if overwrite: if os.path.isfile(output_image): os.remove(output_image) if isinstance(d_type, str): translate_options = gdal.TranslateOptions(xRes=cell_size, yRes=cell_size, outputType=STORAGE_DICT_GDAL[d_type], **kwargs) else: translate_options = gdal.TranslateOptions(xRes=cell_size, yRes=cell_size, **kwargs) try: out_ds = gdal.Translate(output_image, input_image, options=translate_options) except: logger.warning(' GDAL returned an exception--check the output file, {}.'.format(output_image)) if return_datasource: i_info = ImageInfo() i_info.update_info(datasource=out_ds, hdf_file=False) i_info.datasource_info() return i_info else: out_ds = None def vis2rgb(image_array): """ Converts a layer x rows x columns array to RGB """ return image_array.transpose(1, 2, 0) class create_raster(CreateDriver, FileManager, UpdateInfo): """ Creates a raster driver to write to. Args: out_name (str): Output raster name. o_info (object): Instance of ``ropen``. compress (Optional[str]): The type of compression to use. Default is 'deflate'. Choices are ['none' 'lzw', 'packbits', 'deflate']. bigtiff (Optional[str]): How to manage large TIFF files. Default is 'no'. Choices are ['yes', 'no', 'if_needed', 'if_safer']. tile (Optional[bool]): Whether to tile the new image. Default is True. project_epsg (Optional[int]): Project the new raster to an EPSG code projection. create_tiles (Optional[str]): If positive, image is created in separate file tiles. Default is 0. overwrite (Optional[str]): Whether to overwrite an existing file. Default is False. in_memory (Optional[str]): Whether to create the raster dataset in memory. Default is False. Attributes: filename (str) rows (int) cols (int) bands (int) storage (str) Returns: Raster driver GDAL object or list of GDAL objects (if create_tiles > 0). """ def __init__(self, out_name, o_info, compress='deflate', tile=True, bigtiff='no', project_epsg=None, create_tiles=0, overwrite=False, in_memory=False, **kwargs): if not in_memory: d_name, f_name = os.path.split(out_name) f_base, f_ext = os.path.splitext(f_name) if not d_name and not os.path.isabs(f_name): d_name = os.path.abspath('.') else: check_and_create_dir(d_name) storage_type = STORAGE_DICT_GDAL[o_info.storage.lower()] if 'storage' not in kwargs \ else STORAGE_DICT_GDAL[kwargs['storage'].lower()] out_rows = o_info.rows if 'rows' not in kwargs else kwargs['rows'] out_cols = o_info.cols if 'cols' not in kwargs else kwargs['cols'] n_bands = o_info.bands if 'bands' not in kwargs else kwargs['bands'] projection = o_info.projection if 'projection' not in kwargs else kwargs['projection'] cellY = o_info.cellY if 'cellY' not in kwargs else kwargs['cellY'] cellX = o_info.cellX if 'cellX' not in kwargs else kwargs['cellX'] left = o_info.left if 'left' not in kwargs else kwargs['left'] top = o_info.top if 'top' not in kwargs else kwargs['top'] if tile: tile = 'YES' else: tile = 'NO' if abs(cellY) == 0: raise ValueError('The cell y size must be greater than 0.') if abs(cellX) == 0: raise ValueError('The cell x size must be greater than 0.') if cellX > 0: cellX *= -1. if cellY < 0: cellY *= -1. if out_name.lower().endswith('.img'): if compress.upper() == 'NONE': parameters = ['COMPRESS=NO'] else: parameters = ['COMPRESS=YES'] elif out_name.lower().endswith('.tif'): if compress.upper() == 'NONE': parameters = ['TILED={}'.format(tile), 'BIGTIFF={}'.format(bigtiff.upper())] else: parameters = ['TILED={}'.format(tile), 'COMPRESS={}'.format(compress.upper()), 'BIGTIFF={}'.format(bigtiff.upper())] elif (out_name.lower().endswith('.dat')) or (out_name.lower().endswith('.bin')): parameters = ['INTERLEAVE=BSQ'] elif out_name.lower().endswith('.kea'): parameters = ['DEFLATE=1'] else: parameters = list() if isinstance(project_epsg, int): osng = osr.SpatialReference() osng.ImportFromWkt(o_info.projection) srs = osr.SpatialReference() srs.ImportFromEPSG(project_epsg) new_projection = srs.ExportToWkt() tx = osr.CoordinateTransformation(osng, srs) # Work out the boundaries of the new dataset in the target projection ulx, uly, ulz = tx.TransformPoint(o_info.left, o_info.top) lrx, lry, lrz = tx.TransformPoint(o_info.left + o_info.cellY*o_info.cols, o_info.top + o_info.cellX*o_info.rows) # project_rows = int((uly - lry) / o_info.cellY) # project_cols = int((lrx - ulx) / o_info.cellY) # Calculate the new geotransform new_geo = [ulx, o_info.cellY, o_info.rotation1, uly, o_info.rotation2, o_info.cellX] # out_rows = int((uly - lry) / o_info.cellY) # out_cols = int((lrx - ulx) / o_info.cellY) # Create driver for output image. if create_tiles > 0: d_name_tiles = os.path.join(d_name, '{}_tiles'.format(f_base)) if not os.path.isdir(d_name_tiles): os.makedirs(d_name_tiles) out_rst = {} if out_rows >= create_tiles: blk_size_rows = create_tiles else: blk_size_rows = copy.copy(out_rows) if out_cols >= create_tiles: blk_size_cols = create_tiles else: blk_size_cols = copy.copy(out_cols) topo = copy.copy(top) image_counter = 1 for i in range(0, out_rows, blk_size_rows): lefto = copy.copy(left) out_rows = n_rows_cols(i, blk_size_rows, out_rows) for j in range(0, out_cols, blk_size_cols): out_cols = n_rows_cols(j, blk_size_cols, out_cols) out_name = os.path.join(d_name_tiles, '{}_{:d}_{:d}{}'.format(f_base, i, j, f_ext)) out_rst[image_counter] = out_name image_counter += 1 if overwrite: if os.path.isfile(out_name): try: os.remove(out_name) except OSError: raise OSError('\nCould not delete {}.'.format(out_name)) else: if os.path.isfile(out_name): logger.warning('\n{} already exists.'.format(out_name)) continue CreateDriver.__init__(self, out_name, out_rows, out_cols, n_bands, storage_type, in_memory, overwrite, parameters) # FileManager.__init__(self) # out_rst_ = self.driver.Create(out_name, out_cols, out_rows, bands, storage_type, parameters) # set the geo-transformation self.datasource.SetGeoTransform([lefto, cellY, 0.0, topo, 0.0, cellX]) # set the projection self.datasource.SetProjection(projection) self.close_file() lefto += (out_cols * cellY) topo -= (out_rows * cellY) else: if not in_memory: if overwrite: if os.path.isfile(out_name): try: os.remove(out_name) except: logger.warning(' Could not delete {}.\nWill attempt to write over the image'.format(out_name)) else: if os.path.isfile(out_name): logger.warning(' {} already exists.\nWill not attempt to overwrite.'.format(out_name)) return CreateDriver.__init__(self, out_name, out_rows, out_cols, n_bands, storage_type, in_memory, overwrite, parameters) # FileManager.__init__(self) # self.datasource = self.driver.Create(out_name, out_cols, out_rows, bands, storage_type, parameters) if isinstance(project_epsg, int): # set the geo-transformation self.datasource.SetGeoTransform(new_geo) # set the projection self.datasource.SetProjection(new_projection) # gdal.ReprojectImage(o_info.datasource, out_rst, o_info.proj, new_projection, GRA_NearestNeighbour) else: # Set the geo-transformation. self.datasource.SetGeoTransform([left, cellY, 0., top, 0., cellX]) # Set the projection. self.datasource.SetProjection(projection) self.filename = out_name self.rows = out_rows self.cols = out_cols self.bands = n_bands self.storage = storage_type def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): self.close_all() # @deprecation.deprecated(deprecated_in='0.1.3', # removed_in='0.1.5', # current_version=__version__, # details='Variables `x` and `y` will be replaced with `j` and `i`, respectively.') def write2raster(out_array, out_name, o_info=None, x=0, y=0, out_rst=None, write2bands=None, close_band=True, flush_final=False, write_chunks=False, **kwargs): """ Writes an ndarray to file. Args: out_array (ndarray): The array to write to file. out_name (str): The output image name. o_info (Optional[object]): Output image information. Needed if ``out_rst`` not given. Default is None. x (Optional[int]): Column starting position. Default is 0. y (Optional[int]): Row starting position. Default is 0. out_rst (Optional[object]): GDAL object to write to, otherwise created. Default is None. write2bands (Optional[int or int list]): Band positions to write to, otherwise takes the order of the input array dimensions. Default is None. close_band (Optional[bool]): Whether to flush the band cache. Default is True. flush_final (Optional[bool]): Whether to flush the raster cache. Default is False. write_chunks (Optional[bool]): Whether to write to file in <write_chunks> chunks. Default is False. kwargs (Optional[dict]): Arguments passed to `create_raster`. Returns: None, writes <out_name>. Examples: >>> # Example >>> from mpglue import raster_tools >>> i_info = raster_tools.ropen('/in_raster.tif') >>> >>> out_array = np.random.randn(3, 100, 100).astype(np.float32) >>> >>> raster_tools.write2raster(out_array, >>> '/out_name.tif', >>> o_info=i_info.copy()) """ # Get the output information. d_name, f_name = os.path.split(out_name) if not d_name and not os.path.isabs(f_name): d_name = os.path.abspath('.') else: check_and_create_dir(d_name) array_shape = out_array.shape if len(array_shape) > 3: logger.error('The array shape should be 2d or 3d.') raise ArrayShapeError if len(array_shape) == 2: out_rows, out_cols = out_array.shape out_dims = 1 else: out_dims, out_rows, out_cols = out_array.shape new_file = False # Does the file need to be created? if not out_rst: if not isinstance(o_info, ropen): if not isinstance(o_info, ImageInfo): logger.error('The output information must be set.') raise ropenError new_file = True o_info.update_info(bands=out_dims, rows=out_rows, cols=out_cols) if kwargs: out_rst = create_raster(out_name, o_info, **kwargs) else: out_rst = create_raster(out_name, o_info) ########################## # pack the data to binary ########################## # format_dict = {'byte': 'B', 'int16': 'i', 'uint16': 'I', 'float32': 'f', 'float64': 'd'} # specifiy a band to write to if isinstance(write2bands, int) or isinstance(write2bands, list): if isinstance(write2bands, int): write2bands = [write2bands] for n_band in write2bands: out_rst.get_band(n_band) if write_chunks: out_rst.get_chunk_size() for i in range(0, out_rst.rows, out_rst.chunk_size): n_rows = n_rows_cols(i, out_rst.chunk_size, out_rst.rows) for j in range(0, out_rst.cols, out_rst.chunk_size): n_cols = n_rows_cols(j, out_rst.chunk_size, out_rst.cols) out_rst.write_array(out_array[i:i+n_rows, j:j+n_cols], i=i, j=j) else: out_rst.write_array(out_array, i=y, j=x) if close_band: out_rst.close_band() else: if out_dims >= 2: for n_band in range(1, out_dims+1): out_rst.write_array(out_array[n_band-1], i=y, j=x, band=n_band) if close_band: out_rst.close_band() else: out_rst.write_array(out_array, i=y, j=x, band=1) if close_band: out_rst.close_band() # close the dataset if it was created or prompted by <flush_final> if flush_final or new_file: out_rst.close_file() out_rst = None class GetMinExtent(UpdateInfo): """ Args: info1 (ropen or GetMinExtent object) info2 (ropen or GetMinExtent object) Attributes: Inherits from ``info1``. """ def __init__(self, info1, info2): if not isinstance(info1, ropen): if not isinstance(info1, GetMinExtent): if not isinstance(info1, ImageInfo): raise TypeError('The first info argument must be an instance of ropen, GetMinExtent, or ImageInfo.') if not isinstance(info2, ropen): if not isinstance(info2, GetMinExtent): if not isinstance(info2, ImageInfo): if not isinstance(info2, vector_tools.vopen): raise TypeError('The second info argument must be an instance of ropen, vopen, GetMinExtent, or ImageInfo.') # Pass the image info properties. attributes = inspect.getmembers(info1, lambda ia: not (inspect.isroutine(ia))) attributes = [ia for ia in attributes if not (ia[0].startswith('__') and ia[0].endswith('__'))] for attribute in attributes: setattr(self, attribute[0], attribute[1]) self.get_overlap_info(info2) def copy(self): return copy.copy(self) def close(self): pass def get_overlap_info(self, info2): self.left = np.maximum(self.left, info2.left) self.right = np.minimum(self.right, info2.right) self.top = np.minimum(self.top, info2.top) self.bottom = np.maximum(self.bottom, info2.bottom) if (self.left < 0) and (self.right < 0) or (self.left >= 0) and (self.right >= 0): self.cols = int(abs(abs(self.right) - abs(self.left)) / self.cellY) elif (self.left < 0) and (self.right >= 0): self.cols = int(abs(abs(self.right) + abs(self.left)) / self.cellY) if (self.top < 0) and (self.bottom < 0) or (self.top >= 0) and (self.bottom >= 0): self.rows = int(abs(abs(self.top) - abs(self.bottom)) / self.cellY) elif (self.top >= 0) and (self.bottom < 0): self.rows = int(abs(abs(self.top) + abs(self.bottom)) / self.cellY) # Rounded dimensions for aligning pixels. left_max = np.minimum(self.left, info2.left) top_max = np.maximum(self.top, info2.top) if (left_max < 0) and (self.left < 0): n_col_pixels = int((abs(left_max) - abs(self.left)) / self.cellY) self.left_rounded = left_max + (n_col_pixels * self.cellY) elif (left_max >= 0) and (self.left >= 0): n_col_pixels = int((abs(left_max) - abs(self.left)) / self.cellY) self.left_rounded = left_max + (n_col_pixels * self.cellY) elif (left_max < 0) and (self.left >= 0): n_col_pixels1 = int(abs(left_max) / self.cellY) n_col_pixels2 = int(abs(self.left) / self.cellY) self.left_rounded = left_max + (n_col_pixels1 * self.cellY) + (n_col_pixels2 * self.cellY) if (top_max >= 0) and (self.top >= 0): n_row_pixels = int((abs(top_max) - abs(self.top)) / self.cellY) self.top_rounded = top_max - (n_row_pixels * self.cellY) elif (top_max < 0) and (self.top < 0): n_row_pixels = int((abs(top_max) - abs(self.top)) / self.cellY) self.top_rounded = top_max - (n_row_pixels * self.cellY) elif (top_max >= 0) and (self.top < 0): n_row_pixels1 = int(abs(top_max) / self.cellY) n_row_pixels2 = int(abs(self.top) / self.cellY) self.top_rounded = top_max - (n_row_pixels1 * self.cellY) - (n_row_pixels2 * self.cellY) if (self.left_rounded < 0) and (self.right < 0): n_col_pixels_r = int((abs(self.left_rounded) - abs(self.right)) / self.cellY) self.right_rounded = self.left_rounded + (n_col_pixels_r * self.cellY) elif (self.left_rounded >= 0) and (self.right >= 0): n_col_pixels_r = int((abs(self.left_rounded) - abs(self.right)) / self.cellY) self.right_rounded = self.left_rounded + (n_col_pixels_r * self.cellY) elif (self.left_rounded < 0) and (self.right >= 0): n_col_pixels_r1 = int(abs(self.left_rounded) / self.cellY) n_col_pixels_r2 = int(abs(self.right) / self.cellY) self.right_rounded = self.left_rounded + (n_col_pixels_r1 * self.cellY) + (n_col_pixels_r2 * self.cellY) if (self.top_rounded < 0) and (self.bottom < 0): n_row_pixels_r = int((abs(self.top_rounded) - abs(self.bottom)) / self.cellY) self.bottom_rounded = self.top_rounded - (n_row_pixels_r * self.cellY) elif (self.top_rounded >= 0) and (self.bottom >= 0): n_row_pixels_r = int((abs(self.top_rounded) - abs(self.bottom)) / self.cellY) self.bottom_rounded = self.top_rounded - (n_row_pixels_r * self.cellY) elif (self.top_rounded >= 0) and (self.bottom < 0): n_row_pixels_r1 = int(abs(self.top_rounded) / self.cellY) n_row_pixels_r2 = int(abs(self.bottom) / self.cellY) self.bottom_rounded = self.top_rounded - (n_row_pixels_r1 * self.cellY) + (n_row_pixels_r2 * self.cellY) def get_min_extent(image1, image2): """ Finds the minimum extent of two rasters Args: image1 (dict or object): The first image. If a ``dict``, {left: <left>, right: <right>, top: <top>, bottom: <bottom>}. image2 (dict or object): The second image. If a ``dict``, {left: <left>, right: <right>, top: <top>, bottom: <bottom>}. Returns: List as [left, right, top, bottom]. """ if isinstance(image1, ropen): left1 = image1.left top1 = image1.top right1 = image1.right bottom1 = image1.bottom else: left1 = image1['left'] top1 = image1['top'] right1 = image1['right'] bottom1 = image1['bottom'] if isinstance(image2, ropen): left2 = image2.left top2 = image2.top right2 = image2.right bottom2 = image2.bottom else: left2 = image2['left'] top2 = image2['top'] right2 = image2['right'] bottom2 = image2['bottom'] left = np.maximum(left1, left2) right = np.minimum(right1, right2) top = np.minimum(top1, top2) bottom = np.maximum(bottom1, bottom2) return left, right, top, bottom def get_min_extent_list(image_list): lefto = image_list[0].left righto = image_list[0].right topo = image_list[0].top bottomo = image_list[0].bottom cell_size = image_list[0].cellY for img in image_list[1:]: lefto, righto, topo, bottomo = \ get_min_extent(dict(left=lefto, right=righto, top=topo, bottom=bottomo), dict(left=img.left, right=img.right, top=img.top, bottom=img.bottom)) # Check for East/West, positive/negative dividing line. if (righto >= 0) and (lefto <= 0): cs = int((abs(lefto) + righto) / cell_size) else: cs = int(abs(abs(righto) - abs(lefto)) / cell_size) if (topo >= 0) and (bottomo <= 0): rs = int((abs(bottomo) + topo) / cell_size) else: rs = int(abs(abs(topo) - abs(bottomo)) / cell_size) return [lefto, topo, righto, bottomo, -cell_size, cell_size, rs, cs] def get_new_dimensions(image_info, kernel_size): """ Gets new [output] image dimensions based on kernel size used in processing. Args: image_info (object) kernel_size (int) Returns: ``new rows``, ``new columns``, ``new cell size y``, ``new cell size x`` """ image_info.rows = int(np.ceil(float(image_info.rows) / float(kernel_size))) image_info.cols = int(np.ceil(float(image_info.cols) / float(kernel_size))) image_info.cellY = float(kernel_size) * float(image_info.cellY) image_info.cellX = float(kernel_size) * float(image_info.cellX) return image_info def n_rows_cols(pixel_index, block_size, rows_cols): """ Adjusts block size for the end of image rows and columns. Args: pixel_index (int): The current pixel row or column index. block_size (int): The image block size. rows_cols (int): The total number of rows or columns in the image. Example: >>> n_rows = 5000 >>> block_size = 1024 >>> i = 4050 >>> adjusted_block_size = n_rows_cols(i, block_size, n_rows) Returns: Adjusted block size as int. """ return block_size if (pixel_index + block_size) < rows_cols else rows_cols - pixel_index def n_i_j(pixel_index, offset): """ Args: pixel_index (int): Current pixel index. block_size (int): Block size to use. Returns: int """ if pixel_index - offset < 0: samp_out = 0 else: samp_out = pixel_index - offset return samp_out def block_dimensions(image_rows, image_cols, row_block_size=1024, col_block_size=1024): """ Args: image_rows (int): The number of image rows. image_cols (int): The number of image columns. row_block_size (Optional[int]): Default is 1024. col_block_size (Optional[int]): Default is 1024. Returns: Row dimensions, Column dimensions """ # set the block dimensions if image_rows >= row_block_size: row_blocks = row_block_size else: row_blocks = copy.copy(image_rows) if image_cols >= col_block_size: col_blocks = col_block_size else: col_blocks = copy.copy(image_cols) return row_blocks, col_blocks def stats_func(im, ignore_value=None, stat=None, stats_functions=None, set_below=None, set_above=None, set_common=None, no_data_value=None): im = im[0][:] if isinstance(ignore_value, int): stat = 'nan{}'.format(stat) im[im == ignore_value] = np.nan if stat in stats_functions: out_array = stats_functions[stat](im, axis=0) elif stat == 'nancv': out_array = stats_functions['nanstd'](im, axis=0) out_array /= stats_functions['nanmean'](im, axis=0) elif stat == 'nanmode': out_array = sci_mode(im, axis=0, nan_policy='omit') elif stat == 'cv': out_array = im.std(axis=0) out_array /= im.mean(axis=0) elif stat == 'min': out_array = im.min(axis=0) elif stat == 'max': out_array = im.max(axis=0) elif stat == 'mean': out_array = im.mean(axis=0) elif stat == 'var': out_array = im.var(axis=0) elif stat == 'std': out_array = im.std(axis=0) elif stat == 'sum': out_array = im.sum(axis=0) elif stat == 'zscore': dims, rows, cols = im.shape scaler = StandardScaler(with_mean=True, with_std=True) out_array = columns_to_nd(scaler.fit_transform(nd_to_columns(im, dims, rows, cols)), dims, rows, cols) # Filter values. if isinstance(set_below, int): out_array[out_array < set_below] = no_data_value if isinstance(set_above, int): if set_common: # Mask unwanted to 1 above threshold. out_array[out_array > set_above] = set_above + 1 # Invert the array values. __, out_array = cv2.threshold(np.uint8(out_array), 0, 1, cv2.THRESH_BINARY_INV) # Add the common value among all bands. out_array *= np.uint8(im[0]) else: out_array[out_array > set_above] = no_data_value # Reset no data pixels out_array[np.isnan(out_array) |
np.isinf(out_array)
numpy.isinf
# -*- coding: utf-8 -*- import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from decorator import decorator # Moving Average def MA(ds, n): MA = pd.Series(ds.rolling(n).mean(), name = 'MA_' + str(n)) return MA # difference between short MA and long MA def diffMA(ds, l=60, s=5): """ ds: dataset is pandas data series """ ma_l = ds.rolling(l, min_periods=l).mean() ma_s = ds.rolling(s, min_periods=s).mean() return (ma_s/ma_l)-1 # Linear Regression import statsmodels.formula.api as smf def liner_regression(x,y): model = smf.OLS(y,x) results = model.fit() b = results.params R = results.rsquared pvalue = results.pvalues t='Y=%0.4fX --- R2=%0.2f%% --- p-value=%0.4f' %(b[0], R*100, pvalue[0]) return b,t # slope of MA def slopeMA(ds, m=60, dw=5): ma = ds.rolling(m, min_periods=1).mean() slope = ma.copy() x = np.arange(1,dw+1)/100.0 for t in range(dw,len(slope)): y = ma[t-dw+1:t+1] / ma[t-dw+1:t+1].mean() - 1 slope[t], _ = liner_regression(x,y) return slope # garch def addGARCH(ds, hln=200): ts = 100*ds.to_returns().dropna() hts = ts[:hln].values var = [] # rolling estimate var while (len(hts)<len(ts)): f_var, _ = forecast_var_from_garch(hts[-hln:]) var.append(f_var) hts = np.append(hts, ts.iloc[len(hts)]) print(max(var), min(var)) var = np.append(np.zeros([len(ds)-len(var),1]), var) return var # historical var def addVAR(ds, hln=200): ts = 100*ds.to_returns().dropna() hts = ts[:hln].values var = [] # rolling estimate var while (len(hts)<len(ts)): f_var, _ = forecast_var_from_constant_mean(hts[-hln:]) var.append(f_var) hts = np.append(hts, ts.iloc[len(hts)]) #print(max(var), min(var)) var = np.append(np.zeros([len(ds)-len(var),1]), var) return var # historical cov def addCOV(ds1, ds2, hln=200): ts1 = ds1.to_returns().dropna().values ts2 = ds2.to_returns().dropna().values cov = [] #cov.append(np.nan) # add 1 when dropna at prices->returns for t in range(hln): cov.append(np.nan) for t in range(hln, len(ts1)+1): f_cov = np.cov(ts1[t-hln:t], ts2[t-hln:t]) cov.append(f_cov[0][1]*10000) return cov # Seek Best Garch Model import statsmodels.tsa.api as smt def seek_garch_model(TS): """ TS is returns of a price-series numpy array or array # Seek Best GARCH Model res_tup = seek_garch_model(ts) order = res_tup[1] p_ = order[0] o_ = order[1] q_ = order[2] # Using student T distribution usually provides better fit am = arch_model(ts, p=p_, o=o_, q=q_, dist='StudentsT') res = am.fit(update_freq=5, disp='off') fig = res.plot(annualize='D') print(res.summary()) ts_plot(res.resid, lags=30) """ best_aic = np.inf best_order = None best_mdl = None pq_rng = range(5) # [0,1,2,3,4] d_rng = range(2) # [0,1] for i in pq_rng: for d in d_rng: for j in pq_rng: try: tmp_mdl = smt.ARIMA(TS, order=(i,d,j)).fit( method='mle', trend='nc' ) tmp_aic = tmp_mdl.aic if tmp_aic < best_aic: best_aic = tmp_aic best_order = (i, d, j) best_mdl = tmp_mdl except: continue print('aic: {:6.5f} | order: {}'.format(best_aic, best_order)) return best_aic, best_order, best_mdl #under arch model scheme @decorator def forecast_var(model_est_var, *args, **kwargs): """ Use historical data (0 to t) to forecast variance at t+1 via the model (defined in arch) Args: * args[0]: returns (numpy array or array): Returns for security. Returns: forecast variance: float residuals: array """ if len(args)<1: raise Exception("Not Enough Parameters") m = model_est_var(*args, **kwargs) res = m.fit(update_freq=5, disp='off') return res.forecast().variance.values[-1][0], res.resid from arch.univariate import ConstantMean @forecast_var def forecast_var_from_constant_mean(returns): """ returns is historical returns """ return ConstantMean(returns) from arch import arch_model @forecast_var def forecast_var_from_garch(returns): """ returns is historical returns """ return arch_model(returns, vol='Garch', p=1, o=0, q=1, dist='Normal') @forecast_var def forecast_var_from_best(returns): """ returns is historical returns """ from pyetf.algos import seek_garch_model from arch import arch_model res_tup = seek_garch_model(returns) order = res_tup[1] p_ = order[0] o_ = order[1] q_ = order[2] return arch_model(returns, p=p_, o=o_, q=q_, dist='StudentsT') # future mean and var def future_mean_var(p, negative=False): """ p is numpy and prices series in future m dates negative is True: calculate if p(t) < p(0) negative is False: calculate all p(t) """ m = len(p) dr = [] if negative: for d in range(1,m): if p[d]<p[0]: dr.append((p[d]/p[0])**(1/d)-1) if len(dr) == 0: dr.append(0.) else: for d in range(1,m): dr.append((p[d]/p[0])**(1/d)-1) mean = np.mean(dr) var = np.var(dr) return mean, var # future mean and var def future_covar(p1, p2=None): """ p1 and p2 are numpy and prices series in future fm(30) dates + historical hm(200-fm) dates p1 = p2: calculate var """ r1 = np.diff(p1)/p1[0:len(p1)-1] if p2 is None: return np.var(r1) else: r2 = np.diff(p2)/p1[0:len(p2)-1] return np.cov(r1, r2) # under keras model scheme def strucutre_keras_model(train_model, addFeatures, addTarget, prices, prices_two=None, model_path="\\keras_model\\"): """ * prices: pandas series (or dataframe) with date index and prices * function will save model estimated by keras to a h5 file named 'est_var(_ticker_).h5' * load model from keras.models import load_model model_load = load_model('est_var(_ticker_).h5') """ # 1. Data Process if prices_two is None: # 1.1 initial data dataset, model_filename = initData(prices, model_path) # 1.2 process data x_dataset, y_dataset = processData(addFeatures, addTarget, dataset) else: dataset, model_filename = initData_two(prices, prices_two, model_path) x_dataset, y_dataset = processData_two(addFeatures, addTarget, dataset) # 1.3 split train set and test set x_train, y_train, x_test, y_test = splitDataset(x_dataset, y_dataset) # 1.4 shuttle train set x_train, y_train = shuffleDataset(x_train, y_train) # 2. Build Model # 2.1 setup model # 2.2 train model model = train_model(x_train, y_train) # 2.3 save model model.save(model_filename) # 3 evaluation trainScore = model.evaluate(x_train, y_train) testScore = model.evaluate(x_test, y_test) print(f"Train Score Loss: {trainScore[0]:0.4f}") print(f"Test Score Loss: {testScore[0]:0.4f}") # 4. Plot Results plt.figure(figsize=(10, 8)) #plt.plot(y_dataset) #plt.plot(y_predict) plt.plot(y_test) plt.plot(model.predict(x_test)) plt.show() from keras.models import load_model def load_keras_model(prices, model_path="\\keras_model\\"): # 1. Data Process # 1.1 initial data dataset, model_filename = initData(prices, model_path) model = load_model(model_filename) return dataset, model # stucture X and Y from dataset def buildXY(dataset, pastDays=30): """ Result -> numpy """ m = pastDays x_dataset = dataset.drop(columns='y').values y_dataset = dataset['y'].values dataX, dataY = [], [] for t in range(0, len(dataset)-m+1): dataX.append(x_dataset[t:(t+m)]) dataY.append(y_dataset[t+m-1]) return np.array(dataX), np.array(dataY) # stucture X from dataset to forecast def buildX(dataset, pastDays=30): """ Result -> numpy """ m = pastDays x_dataset = dataset.values dataX = [] for t in range(0, len(dataset)-m+1): dataX.append(x_dataset[t:(t+m)]) return np.array(dataX) # normalize dataset from sklearn.preprocessing import MinMaxScaler def normalise_windows(window_data): scaler = MinMaxScaler(feature_range=(0, 1)) normalised_data = [] for window in window_data: normalised_window = scaler.fit_transform(window) normalised_data.append(normalised_window) return normalised_data # split dataset to train and test def splitDataset(x_dataset, y_dataset, train_size_ratio=0.6): train_size = int(len(x_dataset) * train_size_ratio) x_train, x_test = x_dataset[0:train_size], x_dataset[train_size:len(x_dataset)] y_train, y_test = y_dataset[0:train_size], y_dataset[train_size:len(y_dataset)] return np.array(x_train), np.array(y_train), np.array(x_test), np.array(y_test) # random train dataset def shuffleDataset(x, y): np.random.seed(10) randomList = np.arange(x.shape[0]) np.random.shuffle(randomList) return x[randomList], y[randomList] # initial Data and model name def initData(prices, model_path, model_name='est_var'): if isinstance(prices, pd.core.series.Series): e = prices.name dataset = pd.DataFrame(prices) else: e = prices.columns[0] dataset = prices.copy() print(f"{e}") dataset = dataset.rename({e:'price'}, axis=1) model_path = os.getcwd() + model_path model_filename = model_path + model_name + '(' + e + ').h5' return dataset, model_filename # initial Data and model name def initData_two(prices_one, prices_two, model_path, model_name='est_cov'): if isinstance(prices_one, pd.core.series.Series): e1 = prices_one.name dataset = pd.DataFrame(prices_one) else: e1 = prices_one.columns[0] dataset = prices_one.copy() dataset = dataset.rename({e1:'price_one'}, axis=1) if isinstance(prices_two, pd.core.series.Series): e2 = prices_two.name dataset[e2] = pd.DataFrame(prices_two) else: e2 = prices_two.columns[0] dataset[e2] = prices_two.columns[0] dataset = dataset.rename({e2:'price_two'}, axis=1) print(f"{e1} {e2}") model_path = os.getcwd() + model_path model_filename = model_path + model_name + '(' + e1+'_'+e2 + ').h5' return dataset, model_filename # process data: add features and add Y def processData(addFeatures, addTarget, dataset): # 1.2 add features to X dataset = addFeatures(dataset) # 1.3 add targets to Y dataset = addTarget(dataset) # 1.4 structure train and test data dataset = dataset.drop(columns='price') x_dataset, y_dataset = buildXY(dataset) # 1.5 normalization #x_dataset = normalise_windows(x_dataset) return x_dataset, y_dataset # process data: add features and add Y def processData_two(addFeatures, addTarget, dataset, pastDays=30): # 1.2 add features to X dataset = addFeatures(dataset) # 1.3 add targets to Y dataset = addTarget(dataset) # 1.4 structure train and test data dataset = dataset.dropna() dataset = dataset.drop(columns='price_one') dataset = dataset.drop(columns='price_two') #print(dataset.head()) #print(dataset.tail()) x_dataset, y_dataset = buildXY(dataset, pastDays) # 1.5 normalization #x_dataset = normalise_windows(x_dataset) return x_dataset, y_dataset # lstm var from time import process_time def forecast_var_from_lstm(addFeatures, prices, model_path="\\keras_model\\"): """ Prices is one asset's price data, in either DataFrame or Pandas Series """ # Initializing Data and Load Model start_time = process_time() dataset, model = load_keras_model(prices) print(f"load data and model: {process_time()-start_time:0.4f}s") start_time = process_time() dataset = addFeatures(dataset) x_dataset = dataset.drop(columns='price') x_dataset = buildX(x_dataset) print(f"process dataset: {process_time()-start_time:0.4f}s") start_time = process_time() f_var = np.append(np.zeros([len(prices)-len(x_dataset),1]), model.predict(
np.array(x_dataset)
numpy.array
#TODO create a errorplot class import pyaudio import numpy as np import matplotlib.pyplot as plt import time import queue import keyboard import enum from scipy.io.wavfile import write import os #class used to set the direction of shift or amplitude class Direction(enum.Enum): Right = 1.0 Left = -1.0 #class to cancel the frequencies class AntiSoundController: def __init__(self,sample_size,sampling_rate,amount_frequencies_to_cancel): #list of frequencies to cancel self.sampling_rate = sampling_rate self.sample_size = sample_size self.amount_frequencies_to_cancel = amount_frequencies_to_cancel #filled after init self.frequencies_to_cancel = None #variable to declare init self.init_done = False #queue with data of pyaudio self.input_queue = queue.Queue() #queue with data for pyaudio self.output_queue = queue.Queue() #time when to change the amplitude self.time_till_change_amplitude = 0 #sample of one second of pyaudio self.microphone_samples_one_second = np.array([]) #costcalculator to determine the energy of the frequencies which is cost self.costcalculator = CostCalculator(sampling_rate) #list of sinus generators, shift correcters and amplitude correcters one per frequency to cancel self.sinus_generators = [SinusGenerator(sample_size,sampling_rate) for i in range(self.amount_frequencies_to_cancel)] self.amplitude_correcters = [Correcter(0.005,sampling_rate,self.costcalculator) for i in range(self.amount_frequencies_to_cancel)] #pyaudio object to deal with pyaudio self.pyaudio_object = pyaudio.PyAudio() #stream from pyaudio to interact with speakers and microphone self.stream = self.pyaudio_object.open(channels=1, frames_per_buffer= sample_size, rate=sampling_rate, format=pyaudio.paFloat32, output=True, input=True, output_device_index=3, input_device_index=1, stream_callback=self.callback) #callback function used by pyaudio to get new data def callback(self, in_data, frame_count, time_info, status): #data to input queue self.input_queue.put(in_data) #data from output queue to pyaudio output = self.output_queue.get() return (output, pyaudio.paContinue) def append_numpy_to_file(self,one_second): with open('test.npy', 'ab') as f: np.save(f, one_second) def write_numpy_to_wav(self): with open('test.npy', 'rb') as f: fsz = os.fstat(f.fileno()).st_size out = np.load(f) while f.tell() < fsz: out = np.concatenate([out,np.load(f)]) write("recorded_18-05-2021.wav",self.sampling_rate, out.astype(np.float32)) #function to start the stream def start_stream(self): self.stream.start_stream() #init function to get the main frequencies from the sound def get_main_frequencies(self): if not self.input_queue.empty(): #get the inputdata as float 32 microphone_wave = self.input_queue.get() microphone_wave = np.frombuffer(microphone_wave, dtype=np.float32) #create 1 second of microphone_waves self.microphone_samples_one_second = np.concatenate([self.microphone_samples_one_second, microphone_wave]) #when we really have one second, analyse and get main frequencies if len(self.microphone_samples_one_second) >= self.sampling_rate*10: #self.microphone_samples_one_second = self.microphone_samples_one_second[:self.sampling_rate] frequencies,energy = self.costcalculator.calculate_frequencies_energy(self.microphone_samples_one_second) top_indices = self.costcalculator.get_top_N_indices_energy(energy,AMOUNT_FREQUENCIES_TO_CANCEL) frequencies_to_cancel = frequencies[top_indices] self.shift_correcters = [] for frequency in frequencies_to_cancel: self.shift_correcters.append(Correcter(0.0001, self.sampling_rate,self.costcalculator)) self.microphone_samples_one_second = np.array([]) self.input_queue.queue.clear() self.output_queue.queue.clear() self.init_done = True return frequencies_to_cancel #play a silent sound to let the stream play and input sound if self.output_queue.qsize()<5: silent_wave = np.zeros(self.sample_size).astype(np.float32) self.output_queue.put(silent_wave.tobytes()) else: time.sleep(0.01) #main function cancel the main frequencies by changing shift and amplitude def cancel_main_frequencies(self): #cancel program and show error if keyboard.is_pressed('a'): self.plot(ERROR_LIST, TOTAL_ERROR_LIST) self.write_numpy_to_wav() return #we have got input data from pyaudio if not self.input_queue.empty(): #get the inputdata as float 32 microphone_wave = self.input_queue.get() microphone_wave = np.frombuffer(microphone_wave, dtype=np.float32) #create 1 second of microphone_waves self.microphone_samples_one_second = np.concatenate([self.microphone_samples_one_second, microphone_wave]) #when we really have one second update shift and amplitude if len(self.microphone_samples_one_second) >= self.sampling_rate: #self.microphone_samples_one_second = self.microphone_samples_one_second[:self.sampling_rate] #for every frequency update shift self.append_numpy_to_file(self.microphone_samples_one_second) total_error = np.sum(np.square(self.microphone_samples_one_second)) TOTAL_ERROR_LIST.append(total_error) for index, frequency in enumerate(self.frequencies_to_cancel): error, shift = self.shift_correcters[index].get_corrected_value(self.microphone_samples_one_second, frequency) ERROR_LIST[index].append(error) self.sinus_generators[index].change_shift(shift) #update amplitude only once every 30 seconds if self.time_till_change_amplitude <= 30: self.time_till_change_amplitude += 1 else: #for every frequency update amplitude(double for maybe swap logic) for index, frequency in enumerate(self.frequencies_to_cancel): error, amplitude = self.amplitude_correcters[index].get_corrected_value(self.microphone_samples_one_second,frequency) self.sinus_generators[index].change_amplitude(amplitude) #reset time to 10 to get the shift right self.time_till_change_amplitude = 10 #we have parsed one second of data, now clear variable and wait untill new self.microphone_samples_one_second = np.array([]) #when we have less then 10 samples in out queue put in new samples with the right amplitude and shift if self.output_queue.qsize()<5: #print(self.output_queue.qsize()) #create a summed wave summed_wave = np.zeros(self.sample_size).astype(np.float32) #sum all frequencies with right amplitude and shift for index, frequency in enumerate(self.frequencies_to_cancel): summed_wave += self.sinus_generators[index].get_sample(frequency).astype(np.float32) #append to output queue so pyaudio can callback for it self.output_queue.put(summed_wave.tobytes()) else: time.sleep(0.01) #main logic program def main(self): while self.stream.is_active(): if self.init_done == False: if os.path.exists("test.npy"): os.remove("test.npy") self.frequencies_to_cancel = self.get_main_frequencies() else: self.cancel_main_frequencies() #plot error of every frequency def plot(self, error,total_error): fig, axs = plt.subplots(2) fig.suptitle('Error') for e in error: axs[0].plot(e) axs[1].plot(total_error) plt.show() #close stream def stop_stream(self): self.stream.stop_stream() self.stream.close() self.pyaudio_object.terminate() #class to calculate the cost of frequencies class CostCalculator: def __init__(self, sampling_rate): self.sampling_rate = sampling_rate #get all frequencies with their energy def calculate_frequencies_energy(self, microphone_samples_one_second): frequencies = np.fft.rfftfreq(microphone_samples_one_second.size, d=1/self.sampling_rate) energy =
np.fft.rfft(microphone_samples_one_second)
numpy.fft.rfft
import numpy as np import unittest import pytest from pysph.base.particle_array import ParticleArray import pysph.tools.mesh_tools as G from pysph.base.utils import get_particle_array # Data of a unit length cube def cube_data(): points = np.array([[0., 0., 0.], [0., 1., 0.], [1., 1., 0.], [1., 0., 0.], [0., 0., 1.], [0., 1., 1.], [1., 0., 1.], [1., 1., 1.]]) x_cube, y_cube, z_cube = points.T cells = np.array([[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4], [4, 6, 7], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]]) normals = np.array([[0., 0., -1.], [0., 0., -1.], [-1., 0., 0.], [-1., 0., 0.], [0., -1., 0.], [0., -1., 0.], [0., 0., 1.], [0., 0., 1.], [1., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 1., 0.]]) vectors = np.zeros((len(cells), 3, 3)) for i, cell in enumerate(cells): idx1, idx2, idx3 = cell vector = np.array([[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube[idx2], z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]]) vectors[i] = vector return x_cube, y_cube, z_cube, cells, normals, vectors class TestGeometry(unittest.TestCase): def test_in_triangle(self): assert(G._in_triangle(0.5, 0.5, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5) is True) assert(G._in_triangle(1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0) is False) def test_interp_2d(self): # Check interpolation between two points on line y=x dx = 0.1 r = G._interp_2d(np.array([0., 0.]), np.array([1., 1.]), dx) # Check if all points satisfy y=x np.testing.assert_array_almost_equal( r[:, 0] - r[:, 1], np.zeros(r.shape[0])) # Check if distance between consecutive points is lesser than dx np.testing.assert_array_less(np.linalg.norm(r[1:] - r[0:-1], axis=1), np.ones(r.shape[0] - 1) * dx) def test_fill_triangle(self): triangle = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.]]) dx_triangle = 0.1 x, y, z = G._fill_triangle(triangle, dx_triangle) EPS = np.finfo(float).eps np.testing.assert_array_less(-x, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-y, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-(x + y), np.ones(x.shape[0]) + EPS) np.testing.assert_almost_equal(z, np.zeros(x.shape[0])) def test_fill_triangle_throws_zero_area_triangle_exception(self): self.assertRaises(G.ZeroAreaTriangleException, G._fill_triangle, np.zeros((3, 3)), 0.5) def test_fill_triangle_throws_polygon_mesh_error(self): self.assertRaises(G.PolygonMeshError, G._fill_triangle,
np.zeros((4, 3))
numpy.zeros
import os import numpy as np import warnings import SimpleITK as sitk import cv2 from utils.imageutils import pad_resize, resize_by_spacing __author__ = '<NAME>' def read_dicom_series(dicom_folder, correct_ct_val=0): """Read a DICOM series from a folder as a volume. :param dicom_folder: a folder containing files of a volume. :param correct_ct_val: if not 0, the given value is subtracted from the image intensity if necessary. :return: a SimpleITK image. """ # Read a series as a volume file_names = sitk.ImageSeriesReader.GetGDCMSeriesFileNames(dicom_folder) reader = sitk.ImageSeriesReader() reader.SetFileNames(file_names) image = reader.Execute() # Correct CT intensity value if required if correct_ct_val != 0: # Check conflict first_slice = sitk.ReadImage(file_names[0]) if first_slice.HasMetaDataKey('0008|0060') and first_slice.GetMetaData('0008|0060') != 'CT': raise Exception('correct_ct_val != 0 for non-CT image.') # Correct CT intensity value minmax = sitk.MinimumMaximumImageFilter() minmax.Execute(image) if minmax.GetMinimum() >= 0: image -= correct_ct_val return image def read_image(image_path, gray_scale=True, correct_ct_val=0, check_direction=True): """Reads an image by its file extension. :param image_path: an image file or a DICOM series folder. :param gray_scale: if True, a gray-scale image is returned. :param correct_ct_val: if not 0, the given value is subtracted from the image intensity if necessary. :param check_direction: if True, assert direction matrix == identity matrix for SimpleITK images. :return: a 2D (height, width) or 3D (depth, height, width) numpy array. """ # DICOM series if os.path.isdir(image_path): image = read_dicom_series(image_path, correct_ct_val=correct_ct_val) # Single file elif any(image_path.endswith(ext) for ext in ['.nii', '.nii.gz', '.dcm']): image = sitk.ReadImage(image_path) # Correct CT intensity value if required if correct_ct_val != 0: # Check conflict if image.HasMetaDataKey('0008|0060') and image.GetMetaData('0008|0060') != 'CT': raise Exception('correct_ct_val != 0 for non-CT image.') # Correct CT intensity value minmax = sitk.MinimumMaximumImageFilter() minmax.Execute(image) if minmax.GetMinimum() >= 0: image -= correct_ct_val elif any(image_path.endswith(ext) for ext in ['.npy', '.npz']): image = np.load(image_path) if image_path.endswith('.npz'): image = image[image.files[0]] else: image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # image = sitk.ReadImage(image_path) # image = sitk.GetArrayFromImage(image) if gray_scale and image.ndim == 3: image = image.mean(axis=-1).astype(image.dtype) # elif not gray_scale and image.ndim == 2: # image = np.expand_dims(image, -1).repeat(3, axis=-1) if isinstance(image, sitk.Image): # Check direction if check_direction: direction = image.GetDirection() if tuple(np.eye(image.GetDimension()).flatten()) != direction: raise Exception('Non-identity direction: ', direction) # Change to 2D if necessary if image.GetDimension() == 3 and image.GetDepth() == 1: image = sitk.Extract(image, image.GetSize()[:2] + (0,),
np.zeros(3, np.int)
numpy.zeros
import time from pathlib import Path import numpy as np from py_diff_pd.env.env_base import EnvBase from py_diff_pd.common.common import create_folder, ndarray from py_diff_pd.common.quad_mesh import generate_rectangle_mesh from py_diff_pd.common.display import display_quad_mesh, export_gif from py_diff_pd.core.py_diff_pd_core import QuadMesh2d, QuadDeformable, StdRealVector class HopperEnv2d(EnvBase): def __init__(self, seed, folder, options): EnvBase.__init__(self, folder) np.random.seed(seed) create_folder(folder, exist_ok=True) refinement = options['refinement'] if 'refinement' in options else 2 youngs_modulus = options['youngs_modulus'] if 'youngs_modulus' in options else 4e5 poissons_ratio = options['poissons_ratio'] if 'poissons_ratio' in options else 0.45 actuator_parameters = options['actuator_parameters'] if 'actuator_parameters' in options else ndarray([5., 5.]) state_force_parameters = options['state_force_parameters'] if 'state_force_parameters' in options else ndarray([0.0, -9.81]) # Mesh parameters. cell_nums = (2 * refinement, 4 * refinement) node_nums = (cell_nums[0] + 1, cell_nums[1] + 1) dx = 0.03 / refinement origin = (0, dx) bin_file_name = str(folder / 'mesh.bin') generate_rectangle_mesh(cell_nums, dx, origin, bin_file_name) mesh = QuadMesh2d() mesh.Initialize(bin_file_name) # FEM parameters. youngs_modulus = 4e5 poissons_ratio = 0.45 la = youngs_modulus * poissons_ratio / ((1 + poissons_ratio) * (1 - 2 * poissons_ratio)) mu = youngs_modulus / (2 * (1 + poissons_ratio)) density = 1e3 deformable = QuadDeformable() deformable.Initialize(bin_file_name, density, 'none', youngs_modulus, poissons_ratio) # External force. deformable.AddStateForce('gravity', state_force_parameters) # Elasticity. deformable.AddPdEnergy('corotated', [2 * mu,], []) deformable.AddPdEnergy('volume', [la,], []) # Actuation. left_muscle_indices = [] right_muscle_indices = [] for j in range(cell_nums[1]): left_muscle_indices.append(0 * cell_nums[1] + j) right_muscle_indices.append((2 * refinement - 1) * cell_nums[1] + j) actuator_stiffness = self._actuator_parameter_to_stiffness(actuator_parameters) deformable.AddActuation(actuator_stiffness[0], [0.0, 1.0], left_muscle_indices) deformable.AddActuation(actuator_stiffness[1], [0.0, 1.0], right_muscle_indices) # Collision. friction_node_idx = [] for i in range(node_nums[0]): friction_node_idx.append(i * node_nums[1]) deformable.SetFrictionalBoundary('planar', [0.0, 1.0, 0.0], friction_node_idx) # Initial conditions. dofs = deformable.dofs() # Perturb q0 a bit to avoid singular gradients in SVD. q0 = ndarray(mesh.py_vertices()) + np.random.uniform(low=-2 * dx * 0.01, high=2 * dx * 0.01, size=dofs) # 5 body lengths per second at 45 deg from the horizontal v0_mult = 5 * dx * cell_nums[0] v0 =
np.ones(dofs)
numpy.ones
import numpy as np import math import scipy import scipy.stats def compute_rdp_data_dependent_gnmax(logq, sigma, orders): """ Computes data-dependent RDP guarantees for the GNMax mechanism. This is the bound D_\lambda(M(D) || M(D')) from Theorem 6 (equation 2), PATE 2018 (Appendix A). Bounds RDP from above of GNMax given an upper bound on q. Args: logq: a union bound on log(Pr[outcome != argmax]) for the GNMax mechanism. sigma: std of the Gaussian noise in the GNMax mechanism. orders: an array-like list of RDP orders. Returns: A numpy array of upper bounds on RDP for all orders. Raises: ValueError: if the inputs are invalid. """ if logq > 0 or sigma < 0 or np.isscalar(orders) or np.any(orders <= 1): raise ValueError( "'logq' must be non-positive, 'sigma' must be non-negative, " "'orders' must be array-like, and all elements in 'orders' must be " "greater than 1!") if np.isneginf(logq): # deterministic mechanism with sigma == 0 return np.full_like(orders, 0., dtype=np.float) variance = sigma ** 2 orders = np.array(orders) rdp_eps = orders / variance # data-independent bound as baseline # Two different higher orders computed according to Proposition 10. # See Appendix A in PATE 2018. # rdp_order2 = sigma * math.sqrt(-logq) rdp_order2 = math.sqrt(variance * -logq) rdp_order1 = rdp_order2 + 1 # Filter out entries to which data-dependent bound does not apply. mask = np.logical_and(rdp_order1 > orders, rdp_order2 > 1) # Corresponding RDP guarantees for the two higher orders. # The GNMAx mechanism satisfies: # (order = \lambda, eps = \lambda / sigma^2)-RDP. rdp_eps1 = rdp_order1 / variance rdp_eps2 = rdp_order2 / variance log_a2 = (rdp_order2 - 1) * rdp_eps2 # Make sure that logq lies in the increasing range and that A is positive. if (np.any(mask) and -logq > rdp_eps2 and logq <= log_a2 - rdp_order2 * (math.log(1 + 1 / (rdp_order1 - 1)) + math.log( 1 + 1 / (rdp_order2 - 1)))): # Use log1p(x) = log(1 + x) to avoid catastrophic cancellations when x ~ 0. log1mq = _log1mexp(logq) # log1mq = log(1-q) log_a = (orders - 1) * ( log1mq - _log1mexp((logq + rdp_eps2) * (1 - 1 / rdp_order2))) log_b = (orders - 1) * (rdp_eps1 - logq / (rdp_order1 - 1)) # Use logaddexp(x, y) = log(e^x + e^y) to avoid overflow for large x, y. log_s = np.logaddexp(log1mq + log_a, logq + log_b) # Values of q close to 1 could result in a looser bound, so minimum # between the data dependent bound and the data independent bound # rdp_esp = orders / variance is taken. rdp_eps[mask] = np.minimum(rdp_eps, log_s / (orders - 1))[mask] assert np.all(rdp_eps >= 0) return rdp_eps def compute_logq_gnmax(votes, sigma): """ Computes an upper bound on log(Pr[outcome != argmax]) for the GNMax mechanism. Implementation of Proposition 7 from PATE 2018 paper. Args: votes: a 1-D numpy array of raw ensemble votes for a given query. sigma: std of the Gaussian noise in the GNMax mechanism. Returns: A scalar upper bound on log(Pr[outcome != argmax]) where log denotes natural logarithm. """ num_classes = len(votes) variance = sigma ** 2 idx_max = np.argmax(votes) votes_gap = votes[idx_max] - votes votes_gap = votes_gap[np.arange(num_classes) != idx_max] # exclude argmax # Upper bound log(q) via a union bound rather than a more precise # calculation. logq = _logsumexp( scipy.stats.norm.logsf(votes_gap, scale=math.sqrt(2 * variance))) return min(logq, math.log(1 - (1 / num_classes))) # another obvious upper bound def compute_rdp_data_dependent_gnmax_no_upper_bound(logq, sigma, orders): """ If the data dependent bound applies, then use it even though its higher than the data independent bound. In this case, we are interested in estimating the privacy budget solely on the data and are not optimizing its value to be as small as possible. Computes data-dependent RDP guarantees for the GNMax mechanism. This is the bound D_\lambda(M(D) || M(D')) from Theorem 6 (equation 2), PATE 2018 (Appendix A). Bounds RDP from above of GNMax given an upper bound on q. Args: logq: a union bound on log(Pr[outcome != argmax]) for the GNMax mechanism. sigma: std of the Gaussian noise in the GNMax mechanism. orders: an array-like list of RDP orders. Returns: A numpy array of upper bounds on RDP for all orders. Raises: ValueError: if the inputs are invalid. """ if logq > 0 or sigma < 0 or np.isscalar(orders) or np.any(orders <= 1): raise ValueError( "'logq' must be non-positive, 'sigma' must be non-negative, " "'orders' must be array-like, and all elements in 'orders' must be " "greater than 1!") if np.isneginf(logq): # deterministic mechanism with sigma == 0 return np.full_like(orders, 0., dtype=np.float) variance = sigma ** 2 orders = np.array(orders) rdp_eps = orders / variance # data-independent bound as baseline # Two different higher orders computed according to Proposition 10. # See Appendix A in PATE 2018. # rdp_order2 = sigma * math.sqrt(-logq) rdp_order2 = math.sqrt(variance * -logq) rdp_order1 = rdp_order2 + 1 # Filter out entries to which data-dependent bound does not apply. mask = np.logical_and(rdp_order1 > orders, rdp_order2 > 1) # Corresponding RDP guarantees for the two higher orders. # The GNMAx mechanism satisfies: # (order = \lambda, eps = \lambda / sigma^2)-RDP. rdp_eps1 = rdp_order1 / variance rdp_eps2 = rdp_order2 / variance log_a2 = (rdp_order2 - 1) * rdp_eps2 # Make sure that logq lies in the increasing range and that A is positive. if (np.any(mask) and -logq > rdp_eps2 and logq <= log_a2 - rdp_order2 * (math.log(1 + 1 / (rdp_order1 - 1)) + math.log( 1 + 1 / (rdp_order2 - 1)))): # Use log1p(x) = log(1 + x) to avoid catastrophic cancellations when x ~ 0. log1mq = _log1mexp(logq) # log1mq = log(1-q) log_a = (orders - 1) * ( log1mq - _log1mexp( (logq + rdp_eps2) * (1 - 1 / rdp_order2))) log_b = (orders - 1) * (rdp_eps1 - logq / (rdp_order1 - 1)) # Use logaddexp(x, y) = log(e^x + e^y) to avoid overflow for large x, y. log_s = np.logaddexp(log1mq + log_a, logq + log_b) # Do not apply the minimum between the data independent and data # dependent bound - but limit the computation to data dependent bound # only! rdp_eps[mask] = (log_s / (orders - 1))[mask] assert np.all(rdp_eps >= 0) return rdp_eps def rdp_to_dp(orders, rdp_eps, delta): """ Conversion from (lambda, eps)-RDP to conventional (eps, delta)-DP. Papernot 2018, Theorem 5. (From RDP to DP) Args: orders: an array-like list of RDP orders. rdp_eps: an array-like list of RDP guarantees (of the same length as orders). delta: target delta (a scalar). Returns: A pair of (dp_eps, optimal_order). """ assert not np.isscalar(orders) and not np.isscalar(rdp_eps) and len( orders) == len( rdp_eps), "'orders' and 'rdp_eps' must be array-like and of the same length!" dp_eps = np.array(rdp_eps) - math.log(delta) / (np.array(orders) - 1) idx_opt = np.argmin(dp_eps) return dp_eps[idx_opt], orders[idx_opt] def _logsumexp(x): """ Sum in the log space. An addition operation in the standard linear-scale becomes the LSE (log-sum-exp) in log-scale. Args: x: array-like. Returns: A scalar. """ x =
np.array(x)
numpy.array
''' The contents of this file are focused on the Data class, which is used for storage of imported data from N-body output files. ''' #TODO: split functions should fix id values? Maybe not, depends on what the behavior is supposed to do # this could probably be added into update #TODO: UNIT TESTS #=============================================================================== # IMPORTS #=============================================================================== import numpy as np import coords as co import astropy from astropy.coordinates import SkyCoord import astropy.units as u import random import galpy import unittest import os import mwahpy_glob import flags import output_handler #=============================================================================== # DATA CLASS #=============================================================================== #AttrDict is used as a helper class in Data to allow referencing attributes #as dict keys and vice-versa. #this is probably a bad way to implement this but it works, and it's better than #making Data inherit from dict, which was the other solution I was able to #strum up class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class Data(): def __init__(self, id_val=[], x=[], y=[], z=[], l=[], b=[], r=[], vx=[], vy=[], vz=[], mass=[], vlos=[], centerOfMass=[0, 0, 0], centerOfMomentum=[0, 0, 0], pot_offset=0, *args, **kwargs): #all this is typically specified by the readOutput function in output_handler #readOutput is the preferred way to input data to this data structure #but if you're really feeling adventurous you can always do it yourself #----------------------------------------------------------------------- # HOUSEKEEPING #----------------------------------------------------------------------- #this data structure allows access to a dictionary like an attribute, i.e. # d = AttrDict({'a':1, 'b':2}) # d['a'] == d.a //returns True #it seems like magic but it works by accessing the way python handles attributes #within each class. There are pros and cons, the most notable thing is #that it creates a memory leak in python <3.2.3 ad = AttrDict() #this is a private helper class that allows for the #desired indexing behavior self.__dict__ = ad.__dict__ #----------------------------------------------------------------------- self.id = np.array(id_val) self.x = np.array(x) self.y = np.array(y) self.z = np.array(z) self.l = np.array(l) self.b = np.array(b) self.dist = np.array(r) self.vx = np.array(vx) self.vy = np.array(vy) self.vz = np.array(vz) self.mass = np.array(mass) self.vlos = np.array(vlos) #NOTE: Any time you update the position data, you have to update # the center of mass (and same for velocity and COMomentum) # This is done automatically if flags.updateData is on self.centerOfMass = centerOfMass self.centerOfMomentum = centerOfMomentum self.msol = self.mass * mwahpy_glob.structToSol #ICRS information c = SkyCoord(l=self.l*u.degree, b=self.b*u.degree, frame='galactic') c_trans = c.transform_to('icrs') self.ra = c_trans.ra.degree self.dec = c_trans.dec.degree self.rv, self.pmra, self.pmdec = co.getrvpm(self.ra, self.dec, self.dist, self.vx, self.vy, self.vz) self.pmtot = (self.pmra**2 + self.pmdec**2)**0.5 #4.848e-6 is arcsec->rad, 3.086e16 is kpc->km, and 3.156e7 is sidereal yr -> seconds self.vtan = 4.74*self.dist*self.pmtot #eq. to self.r*np.tan(self.pmtot*4.848e-6) * 3.086e16 / 3.156e7 #angular momentum information self.lx = self.y * self.vz - self.z * self.vy self.ly = self.x * self.vz - self.z * self.vx self.lz = self.x * self.vy - self.y * self.vx self.lperp = (self.lx**2 + self.ly**2)**0.5 self.ltot = (self.lx**2 + self.ly**2 + self.lz**2)**0.5 #galactocentric information self.r = (self.x**2 + self.y**2 + self.z**2)**0.5 self.vgsr = self.vlos + 10.1*np.cos(self.b*np.pi/180)*np.cos(self.l*np.pi/180) + 224*np.cos(self.b*np.pi/180)*
np.sin(self.l*np.pi/180)
numpy.sin
import pandas as pd from hydroDL.data import usgs, gageII, gridMET, ntn, GLASS, transform, dbBasin import numpy as np import matplotlib.pyplot as plt from hydroDL.post import axplot, figplot from hydroDL import kPath, utils import json import os import importlib from hydroDL.master import basinFull from hydroDL.app.waterQuality import WRTDS import warnings # warnings.simplefilter('error') dataName = 'G200N' # with warnings.catch_warnings(): # warnings.simplefilter('ignore', category=RuntimeWarning) # DF = dbBasin.DataFrameBasin(dataName) DF = dbBasin.DataFrameBasin(dataName) codeLst = usgs.newC trainLst = ['rmR20', 'rmL20', 'rmRT20', 'rmYr5', 'B10'] testLst = ['pkR20', 'pkL20', 'pkRT20', 'pkYr5', 'A10'] trainSet = 'rmR20' testSet = 'pkR20' # trainSet = 'B10' # testSet = 'A10' labelLst = ['QFPRT2C', 'QFRT2C', 'QFPT2C', 'FPRT2C'] nL = len(labelLst) yLst = list() for label in labelLst: outName = '{}-{}-{}'.format(dataName, label, trainSet) yP, ycP = basinFull.testModel( outName, DF=DF, testSet=testSet, ep=500) yOut = np.ndarray(yP.shape) for k, code in enumerate(codeLst): m = DF.g[:, DF.varG.index(code+'-M')] s = DF.g[:, DF.varG.index(code+'-S')] yOut[:, :, k] = yP[:, :, k]*s+m yLst.append(yOut) # WRTDS # yW = WRTDS.testWRTDS(dataName, trainSet, testSet, codeLst) dirRoot = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-dbBasin') fileName = '{}-{}-{}'.format(dataName, trainSet, 'all') yW = np.load(os.path.join(dirRoot, fileName)+'.npz')['arr_0'] code = '00945' indC = codeLst.index(code) # correlation matrix d1 = dbBasin.DataModelBasin(DF, subset=trainSet, varY=codeLst) d2 = dbBasin.DataModelBasin(DF, subset=testSet, varY=codeLst) siteNoLst = DF.siteNoLst matW = np.full([len(siteNoLst), 4], np.nan) matLst = [np.full([len(siteNoLst), 4], np.nan) for x in labelLst] for indS, siteNo in enumerate(siteNoLst): n1 = np.sum(~np.isnan(d1.Y[:, indS, indC]), axis=0) n2 = np.sum(~np.isnan(d2.Y[:, indS, indC]), axis=0) if n1 >= 160 and n2 >= 40: statW = utils.stat.calStat(yW[:, indS, indC], d2.Y[:, indS, indC]) matW[indS, :] = list(statW.values()) for k in range(nL): yL = yLst[k] statL = utils.stat.calStat( yL[:, indS, indC], d2.Y[:, indS, indC]) matLst[k][indS, :] = list(statL.values()) dfCrd = gageII.readData( varLst=['LAT_GAGE', 'LNG_GAGE'], siteNoLst=siteNoLst) lat = dfCrd['LAT_GAGE'].values lon = dfCrd['LNG_GAGE'].values figM, axM = plt.subplots(nL+1, 1, figsize=(8, 6)) for k, label in enumerate(labelLst): axplot.mapPoint(axM[k], lat, lon, matLst[k][:, -1], s=12) axplot.mapPoint(axM[-1], lat, lon, matW[:, -1], s=12) figM.show() code = '00955' indC = codeLst.index(code) indS = 0 figP, axP = plt.subplots(1, 1, figsize=(12, 3)) dataTS = [y[:, indS, indC] for y in yLst[:3]] + \ [DF.c[:, indS, indC]] # dataTS = [yLst[2][:, indS, indC], yLst[1][:, indS, indC]] + \ # [yW[:, indS, indC]]+[DF.c[:, indS, indC]] axplot.plotTS(axP, DF.t, dataTS, cLst='bcgk') figP.show() def funcMap(): nM = len(plotVar) figM, axM = plt.subplots(nM, 1, figsize=(8, 6)) axM =
np.array([axM])
numpy.array
""" Draw Figures - Chapter 4 This script generates all of the figures that appear in Chapter 4 of the textbook. Ported from MATLAB Code <NAME> 24 March 2021 """ import utils from utils.unit_conversions import lin_to_db, db_to_lin import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np import scipy as sp from scipy import stats from scipy import fftpack import seaborn as sns import detector def make_all_figures(close_figs=False): """ Call all the figure generators for this chapter :close_figs: Boolean flag. If true, will close all figures after generating them; for batch scripting. Default=False :return: List of figure handles """ # Initializes colorSet - Mx3 RGB vector for successive plot lines colors = plt.get_cmap("tab10") # Reset the random number generator, to ensure reproducability rng = np.random.default_rng(0) # Find the output directory prefix = utils.init_output_dir('chapter4') # Activate seaborn for prettier plots sns.set() # Generate all figures fig1a = make_figure_1a(prefix) fig1b = make_figure_1b(prefix, rng) fig2a = make_figure_2a(prefix, rng) fig2b = make_figure_2b(prefix, rng) fig3 = make_figure_3(prefix) fig5 = make_figure_5(prefix, colors) fig6 = make_figure_6(prefix, rng, colors) fig7 = make_figure_7(prefix) fig8 = make_figure_8(prefix, colors) figs = [fig1a, fig1b, fig2a, fig2b, fig3, fig5, fig6, fig7, fig8] if close_figs: for fig in figs: plt.close(fig) return None else: plt.show() return figs def make_figure_1a(prefix=None): """ Figure 1a - Alternating Sine Waves Ported from MATLAB Code <NAME> 24 March 2021 :param prefix: output directory to place generated figure :return: figure handle """ # Sine wave num_points = 1024 # Sample points y_chip = np.exp(1j*(np.pi/2+2*np.pi*np.arange(num_points)/num_points)) # String together multiple periods code = np.array([0, 1, 1, 0, 1]) symbol = np.exp(1j*np.pi*code) y_full = np.ravel(np.expand_dims(y_chip, axis=0)*np.expand_dims(symbol, axis=1)) # x axis t_vec = np.arange(np.size(y_full)) fig1a = plt.figure() plt.plot(t_vec, np.real(y_full), color='k', linewidth=0.5) plt.plot(t_vec, np.zeros_like(t_vec), color='k', linewidth=0.5) for idx, bit in enumerate(code): plt.text(num_points/2 + num_points*idx-1, 1.5, '{}'.format(bit)) plt.plot(num_points*idx*np.array([1, 1]), np.array([-1, 2]), color='k', linestyle=':') # Annotation plt.annotate(s='', xy=(2*num_points, 1.1), xytext=(3*num_points, 1.1), arrowprops=dict(arrowstyle='<->')) plt.text(2.35*num_points, 1.25, r'$T_{chip}$') # Turn off the axes ax = plt.gca() ax.axis('off') # Save figure if prefix is not None: plt.savefig(prefix + 'fig1a.svg') plt.savefig(prefix + 'fig1a.png') return fig1a def make_figure_1b(prefix=None, rng=None): """ Figure 1b - Figure 1b, Bandwidth Ported from MATLAB Code <NAME> 24 March 2021 :param prefix: output directory to place generated figure :param rng: random number generator :return: figure handle """ if rng is None: rng = np.random.default_rng() num_samples = 16 # Number of samples per cycle num_code_bits = 128 # Length of transmit code in bits y_chip = np.exp(1j*(np.pi/2+2*np.pi*np.arange(num_samples)/num_samples)) num_code_samples = num_code_bits*num_samples lo = np.exp(1j*2*np.pi*np.arange(num_code_samples)*4/num_samples) # 4 samples/cycle num_monte_carlo = 100 spectral_average = np.zeros_like(lo) for ii in range(num_monte_carlo): # Generate a random code code = rng.integers(low=0, high=2, size=(num_code_bits, 1)) # with random integers, the interval is [low, high) symbol = np.exp(1j*np.pi*code) # Random starting phase starting_phase = np.exp(1j*rng.uniform(low=0, high=2*np.pi)) # Generate full transmit signal at the intermediate frequency (IF) of y_chip signal_if = np.ravel(starting_phase*symbol*y_chip) # Mix with the local oscillator (lo) to get the radio frequency (RF) sample signal_rf = signal_if*lo # Take the fourier transform spectral_average += np.absolute(sp.fft((np.real(signal_rf)))) # Normalize, and use an fftshift to put the center frequency in the middle of the vector spectral_average = fftpack.fftshift(spectral_average)/np.max(np.absolute(spectral_average)) fig1b = plt.figure() plt.plot(np.linspace(start=-1, stop=1, num=num_code_samples), 2*lin_to_db(
np.absolute(spectral_average)
numpy.absolute
#!/usr/bin/env python """ Multi-Resolution (2) Binary Classification with underline Gaussian Distributions <NAME> & <NAME>, Electrical and Computer Engineering Dept., University of Maryland """ #%% Import Modules import pickle import numpy as np # import pandas as pd import matplotlib.pyplot as plt # from scipy.stats import multivariate_normal # plt.ioff() # turn off interactive mode: only show figures with plt.show() plt.close('all') #%% save_file = 'data.pkl' # Gaussian Sampling? gauss_sampling = True # gauss_sampling = False # Number of samples per Gaussian ns = 120 test_ratio = 20.0/100 # Gaussian Density 2D, Symmetric def gauss_dens(c,s,X,Y): # pos = np.empty(X.shape + (2,)) # pos[:, :, 0] = X # pos[:, :, 1] = Y # dens = multivariate_normal.pdf(pos, mean=c, cov=np.diag((s,s))) dens = 1/(2*np.pi*s) * np.exp(-((X-c[0])**2 + (Y-c[1])**2)/(2.0*s**2)) return dens b = 3 c = 0 centers = [[b-1.4,b+0.4],[b+2.2,b+1.0],[b-0.4+c,b-1.4],[b+1.4+c,b-0.4],[b+0.4+c,b+2.0]] sigmas = [0.75, 0.5, 0.35, 0.75, 0.5] sigmas = [0.35, 0.25, 0.15, 0.35, 0.25] sigmas = [0.20, 0.15, 0.10, 0.20, 0.15] # Contour alpha aa = 0.05 # samples alpha aaa = 0.4 np.random.seed(0) # np.random.seed(13) #%% Sample Data Set data = [] labels = [] if gauss_sampling: # class o cx = np.array(centers[0]) sx = sigmas[0] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class o cx = np.array(centers[1]) sx = sigmas[1] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class o cx = np.array(centers[2]) sx = sigmas[2] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class x cx = np.array(centers[3]) sx = sigmas[3] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(1) # class x cx = np.array(centers[4]) sx = sigmas[4] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(1) else: def arc_point(c, r, theta): c = np.array(c) d = np.array([r*np.cos(theta), r*np.sin(theta)]) return c + d # class o cx = np.array(centers[0]) for r in [0.5,1]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(0) # class o cx = np.array(centers[1]) for r in [0.3,0.5]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(0) # class o cx =
np.array(centers[2])
numpy.array
import os import errno import h5py import numpy as np import scipy import logging from shutil import rmtree from typing import * from loompy import LoomConnection class LoomTiles(object): ############# # DEEP ZOOM # ############# __slots__ = [ 'ds', '_maxes', '_mins' ] def __init__(self, ds: LoomConnection) -> None: self.ds = ds self._maxes = None # type: np.ndarray self._mins = None def maxes(self) -> Any: if self._maxes is None: # colormax = np.percentile(data, 99, axis=1) + 0.1 # minFloat = np.finfo(float).eps; # def percentileMap(data): # return np.percentile(data, 99, axis=1) + minFloat; # Prefer using numpy's built-in method for finding the # max values faster # self._maxes = self.ds.map([max], 0)[0] logging.info('calculating & caching max values') rows = self.ds.shape[0] _maxes = np.zeros(rows) ix = 0 while ix < rows: rows_per_chunk = min(rows - ix, 64) chunk = self.ds[ix:ix + rows_per_chunk, :] _maxes[ix:ix + rows_per_chunk] = np.nanmax(chunk, axis=1) ix += rows_per_chunk print('.', end='', flush=True) self._maxes = _maxes print(' done\n\n') return self._maxes def mins(self) -> Any: if self._mins is None: # self._mins = self.ds.map([min], 0)[0] logging.info('calculating & caching min values') rows = self.ds.shape[0] _mins = np.zeros(rows) ix = 0 while ix < rows: rows_per_chunk = min(rows - ix, 64) chunk = self.ds[ix:ix + rows_per_chunk, :] _mins[ix:ix + rows_per_chunk] = np.nanmin(chunk, axis=1) ix += rows_per_chunk print('.', end='', flush=True) self._mins = _mins print(' done\n\n') return self._mins def prepare_heatmap(self, truncate: bool = False) -> None: tile_dir = "%s.tiles/" % (self.ds.filename) if os.path.isdir(tile_dir): logging.info(" Previous tile folder found at %s)", tile_dir) if truncate: logging.info(" Truncate set, removing old tile folder") rmtree(tile_dir) else: logging.info(" Call prepare_heatmap(truncate=True) to overwrite") return self.maxes() self.mins() logging.info(' Generating and saving tiles') self.dz_get_zoom_tile(0, 0, 8, truncate) print(" done\n\n") def dz_zoom_range(self) -> Tuple[int, int, int]: """ Determine the zoom limits for this file. Returns: Tuple (middle, min_zoom, max_zoom) of integer zoom levels. """ return (8, int(max(np.ceil(np.log2(self.ds.shape)))), int(max(np.ceil(np.log2(self.ds.shape))) + 8)) def dz_dimensions(self) -> Tuple[int, int]: """ Determine the total size of the deep zoom image. Returns: Tuple (x,y) of integers """ (y, x) = np.divide(self.ds.shape, 256) * 256 * pow(2, 8) return (x, y) def dz_tile_to_image(self, x: int, y: int, z: int, tile: Any) -> Any: # Crop outside matrix dimensions (zmin, zmid, zmax) = self.dz_zoom_range() (max_x, max_y) = (int(pow(2, z - zmid) * self.ds.shape[1]) - x * 256, int(pow(2, z - zmid) * self.ds.shape[0]) - y * 256) if max_x < 0: max_x = -1 if max_y < 0: max_y = -1 if max_x < 255: tile[:, max_x + 1:256] = 255 if max_y < 255: tile[max_y + 1:256, :] = 255 return scipy.misc.toimage(tile, cmin=0, cmax=255, pal=_viridis) def dz_save_tile(self, x: int, y: int, z: int, tile: Any, truncate: bool = False) -> Any: (zmin, zmid, zmax) = self.dz_zoom_range() if ( z < zmin or z > zmid or x < 0 or y < 0 or x * 256 * 2**(zmid - z) > self.ds.shape[1] or y * 256 * 2**(zmid - z) > self.ds.shape[0] ): # logging.info("Trying to save out of bound tile: x: %02d y: %02d z: %02d" % (x, y, z)) return tile_dir = '%s.tiles/z%02d/' % (self.ds.filename, z) tile_path = '%sx%03d_y%03d.png' % (tile_dir, x, y) # make sure the tile directory exists # we use a try/error approach so that we # don't have to worry about race conditions # (if another process creates the same # directory we just catch the exception) try: os.makedirs(tile_dir, exist_ok=True) except OSError as exception: # if the error was that the directory already # exists, ignore it, since that is expected. if exception.errno != errno.EEXIST: raise if os.path.isfile(tile_path): if truncate: # remove old file os.remove(tile_path) else: # load old file instead of generating new image return scipy.misc.imread(tile_path, mode='P') img = self.dz_tile_to_image(x, y, z, tile) # save to file with open(tile_path, 'wb') as img_io: # logging.info("saving %s" % tile_path) print('.', end='', flush=True) img.save(img_io, 'PNG', compress_level=4) return img def dz_merge_tile(self, tl: Any, tr: Any, bl: Any, br: Any) -> Any: temp = np.empty((512, 512), dtype='float32') temp[0:256, 0:256] = tl temp[0:256, 256:512] = tr temp[256:512, 0:256] = bl temp[256:512, 256:512] = br # various strategies of aggregating values for # zoomed out tiles, each with their own trade-offs # Pick top-left of four pixels # fastest, large systematic bias, # does not preserve structure very well # return temp[0::2, 0::2] # Average of four # biased towards whatever bias the value distribution has # (typically towards zero) # Preserves structures better # temp2 = temp[0::2, 0::2] # temp2 += temp[1::2, 0::2] # temp2 += temp[0::2, 1::2] # temp2 += temp[1::2, 1::2] # temp2 *= 0.25 # return temp2 # Max value # Makes everything too bright, # completely destroys noise profile # tl = temp[0::2, 0::2] # tr = temp[1::2, 0::2] # bl = temp[0::2, 1::2] # br = temp[1::2, 1::2] # tl = np.fmax(tl, tr, out=tl) # bl = np.fmax(bl, br, out=bl) # np.fmax(tl, bl, out=tl) # return tl # Max value per column, average per row # an almost happy medium of the previous two, # still introduces too much brightness per zoom level # tl = temp[0::2, 0::2] # tr = temp[1::2, 0::2] # bl = temp[0::2, 1::2] # br = temp[1::2, 1::2] # tl = np.fmax(tl, tr, out=tl) # bl = np.fmax(bl, br, out=bl) # tl += bl # tl *= 0.5 # return tl # Max-biased value per column, average per row # Looks like a good trade-off, introduces # a little brightness, but not much # could be tweaked with different weights tl = temp[0::2, 0::2] tr = temp[1::2, 0::2] bl = temp[0::2, 1::2] br = temp[1::2, 1::2] # this is a weighed average, with the higher value 3:1 tmax = np.fmax(tl, tr) tmax += tmax tmax += tl tmax += tr bmax = np.fmax(bl, br) bmax += bmax bmax += bl bmax += br tmax += bmax tmax *= 0.125 return tmax # Returns a submatrix scaled to 0-255 range def dz_get_zoom_tile(self, x: int, y: int, z: int, truncate: bool = False) -> Any: """ Create a 256x256 pixel matrix corresponding to the tile at x,y and z. Args: x (int): Horizontal tile index (0 is left-most) y (int): Vertical tile index (0 is top-most) z (int): Zoom level (8 is 'middle' where pixels correspond to data values) Returns: Numpy ndarray of shape (256,256) """ # logging.debug("Computing tile at x=%i y=%i z=%i" % (x,y,z)) (zmin, zmid, zmax) = self.dz_zoom_range() if z < zmin: raise ValueError("z cannot be less than %s" % zmin) if z > zmax: raise ValueError("z cannot be greater than %s" % zmax) if x < 0: raise ValueError("x cannot be less than zero") if y < 0: raise ValueError("y cannot be less than zero") if x * 256 * 2**(zmid - z) > self.ds.shape[1] or y * 256 * 2**(zmid - z) > self.ds.shape[0]: return np.zeros((256, 256), dtype='float32') if z == zmid: tile = self.ds._file['matrix'][y * 256:y * 256 + 256, x * 256:x * 256 + 256] # Pad if needed to make it 256x256 if tile.shape[0] < 256 or tile.shape[1] < 256: tile = np.pad(tile, ((0, 256 - tile.shape[0]), (0, 256 - tile.shape[1])), 'constant', constant_values=0) # Rescale maxes = self.maxes()[y * 256:y * 256 + 256] mins = self.mins()[y * 256:y * 256 + 256] if maxes.shape[0] < 256: maxes = np.pad(maxes, (0, 256 - maxes.shape[0]), 'constant', constant_values=0) mins = np.pad(mins, (0, 256 - mins.shape[0]), 'constant', constant_values=0) # Human readable version of code below: # We add one because we want a log2 curve, # but keep zero values equal to zero, and # log2(0 + 1) = 0. # # p = np.log2(1 + tile.transpose() - mins) # q = np.log2(1 + maxes - mins)*255 # tile = (p/q).transpose() mins = mins - 1 maxes = maxes - mins # avoid allocating new arrays as much as we can np.log2(maxes, maxes) # replace zero with smallest non-zero positive number # to avoid complaints about dividing by zero later maxes[maxes == 0] =
np.nextafter(0, 1)
numpy.nextafter
""" Created on Tue Dec 29 19:42:32 2020 @author: jessm This file formats and plots the .h5 and fields files from the MEDIS simulation. There is still unresloved ringing in the fields plot. """ import os import matplotlib.pyplot as plt import numpy as np import tables as pt from matplotlib.colors import LogNorm, SymLogNorm from skimage.util import img_as_ubyte from skimage.util import invert from skimage import color from skimage import io from numpy import inf #import optics as opx #c=os.chdir('C:/Users/jessm/PycharmProjects') #print(c) import sys sys.path.append("C:/Users/jessm/OneDrive/Documents/Coding/proper_v3.2.3_python_3.x") def open_obs_sequence_hdf5(obs_seq_file='hyper.h5'): """opens existing obs sequence .h5 file and returns it""" # hdf5_path = "my_data.hdf5" read_hdf5_file = pt.open_file(obs_seq_file, mode='r') # Here we slice [:] all the data back into memory, then operate on it obs_sequence = read_hdf5_file.root.data[:] # hdf5_clusters = read_hdf5_file.root.clusters[:] read_hdf5_file.close() return obs_sequence def cpx_to_intensity(data_in): """ converts complex data to units of intensity WARNING: if you sum the data sequence over object or wavelength with simple case of np.sum(), must be done AFTER converting to intensity, else results are invalid """ return np.abs(data_in)**2 def crop_center(img): y,x = img.shape if img.shape[0]<img.shape[1]: cropx=img.shape[0] startx = x//2-(cropx//2) return img[:,startx:startx+cropx] elif img.shape[1]<img.shape[0]: cropy=img.shape[1] starty = y//2-(cropy//2) return img[starty:starty+cropy,:] else : print("it is already a cube") return img """you have to put in the path to your own file""" rebinned = open_obs_sequence_hdf5('C:/Users/jessm/.spyder-py3/MEDIS_spy/rebinned_cube5e8.h5') #C:\Users\jessm\.spyder-py3\MEDIS_spy\ savename='np_rebinned5e8' """looking at fields""" fields0 = open_obs_sequence_hdf5('C:/Users/jessm/.spyder-py3/MEDIS_spy/fields5e8.h5') fields=fields0.astype(float) #h5 file=complex image #'timesteps', 'save planes', 'wavelengths', 'astronomical bodies', 'x', 'y' print("Fields shape", fields.shape) focal_sun=rebinned[0,-1,:,:] focal_planet=fields[0,-1,:,:,:,:] print("focal planet shape", focal_planet.shape) print("rebinned cube shape", rebinned.shape) #FOR REBINNED CUBE #-no object or plane axis #-rectangle """plotting fields""" fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) #cax = ax.imshow(np.sum(focal_planet, axis=(0,1)), vmin=1e-9, vmax=1e-4, origin='lower', norm=SymLogNorm(1e-10)) cax = ax.imshow(np.sum(cpx_to_intensity(focal_planet), axis=(0,1)), origin='lower', norm=LogNorm(vmin=1e-7, vmax=1e-3), cmap = "YlGnBu_r") plt.title("Star and Planet Broadband - Unresolved Ringing") plt.xlabel("X Coordinates") plt.ylabel("Y Coordinates") cb = plt.colorbar(cax) plt.show() """cropping rebinned cube into cube""" #print(crop_rebinned.shape) rebinsum= np.sum(rebinned, axis=(0,1)) print("this is before cropping \n rebinned sum =", rebinsum.shape) rebinsum=crop_center(rebinsum) print("this is after cropping \n rebinned sum =", rebinsum.shape) """plotting lognorm rebinned cube""" fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) #cax=ax.imshow(np.sum(rebinned)) cax = ax.imshow(rebinsum, origin='lower', norm=SymLogNorm(1e-10,vmin=1e-1, base=np.e), cmap = "YlGnBu_r") #SymLogNorm values were hand selected #Symlognorm only uses positive values, but thats ok because we only have positive values plt.title("Rebinned Cube") plt.xlabel("X Coordinates") plt.ylabel("Y Coordinates") cb = plt.colorbar(cax) plt.show() """log normalizing from 0 to 1""" x=np.log(rebinsum) print("max", np.amax(x), "min",
np.amin(x)
numpy.amin
from service_objects import services import numpy as np import pandas as pd from django.db import connection import datetime from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface class IngestMatchesService(services.Service): def process(self): cursor = connection.cursor() errors = '' total_matches_updated = 0 total_matches_inserted = 0 tourneys = {} surfaces = {} tourney_levels = {} players = {} for year in range(1990, 2021): csv_file = pd.read_csv('https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/atp_matches_' + str(year) + '.csv', header=1, names=self.getColumns()) for row in csv_file.itertuples(): created_at = datetime.datetime.now() updated_at = datetime.datetime.now() #try: id = str(row.tourney_id) + '-' + str(row.match_num) match = Match.objects.filter(id=id) if (not match): match = Match() match.id = id match.year = row.tourney_id.split('-')[0] match.match_num = row.match_num match.result = row.score match.best_of = row.best_of match.minutes = None if np.isnan(row.minutes) else row.minutes match.round = row.round if not tourneys.get(str(row.tourney_id)): tourney = Tourney.objects.filter(id=row.tourney_id) if (not tourney): tourney = Tourney() tourney.id = row.tourney_id tourney.name = row.tourney_name tourney.date = datetime.datetime.strptime(str(int(row.tourney_date)), '%Y%m%d').date() tourney.created_at = created_at tourney.updated_at = updated_at if not surfaces.get(str(row.surface)): surfaces[str(row.surface)] = self.getSurface(str(row.surface)) tourney.surface = surfaces[str(row.surface)] if not tourney_levels.get(str(row.tourney_level)): tourney_levels[str(row.tourney_level)] = self.getTourneyLevel(str(row.tourney_level)) tourney.tourney_level = tourney_levels[str(row.tourney_level)] tourney.created_at = created_at tourney.updated_at = updated_at tourney.save() else: tourney = tourney[0] tourneys[str(row.tourney_id)] = tourney match.tourney = tourneys[str(row.tourney_id)] match.created_at = created_at match.updated_at = updated_at match.save() total_matches_inserted += 1 else: match[0].year = row.tourney_id.split('-')[0] match[0].save() total_matches_updated += 1 match = match[0] match_stats_id = str(row.tourney_id) + '-' + str(row.match_num) + '-' + str(row.winner_id) match_stats = Match_Stats.objects.filter(id=match_stats_id) if (not match_stats): seed = row.winner_seed if pd.isnull(row.winner_seed) or not str(row.winner_seed).isnumeric(): seed = None match_stats = Match_Stats() match_stats.id = match_stats_id match_stats.type = "" match_stats.seed = seed match_stats.aces = None if np.isnan(row.w_ace) else row.w_ace match_stats.double_faults = None if
np.isnan(row.w_df)
numpy.isnan
""" Programming Project 12 <NAME> 15863 """ import cmath from cmath import sin, cos, exp from math import sqrt, pi, asin from random import random import numpy as np N = 3 psi = np.ndarray((2 ** N, 1), complex) # N-qubit register comp_state = 0 for i in range(2 ** N): if i == comp_state: psi[i] = 1 else: psi[i] = 0 psi_state_0 = np.copy(psi) j = cmath.sqrt(-1) error_prob_percent = 10 error = asin(sqrt(error_prob_percent / 100)) H = 1 / sqrt(2) * np.array([[1, 1], [1, -1]]) # Hadamard gate I = np.eye(2, dtype=int) EX = np.array(([cos(error), -j * sin(error)], [-j * sin(error), cos(error)]), complex) EZ = np.array(([exp(-j * error), 0], [0, exp(j * error)]), complex) X = np.array(([0, 1], [1, 0]), int) Z = np.array(([1, 0], [0, -1]), int) def kd(i, j): if i == j: return 1 else: return 0 C_NOT = np.zeros((4, 4), int) C_NOT[0][0] = 1 C_NOT[1][1] = 1 C_NOT[2][3] = 1 C_NOT[3][2] = 1 def C_NOTn(a, b): C_NOTn = np.ndarray((2 ** N, 2 ** N)) bits = 2 ** N extra = [] for r in range(0, N): extra.append(int(r)) extra.remove(a - 1) extra.remove(b - 1) for i in range(bits): for j in range(bits): final = 1 ii = str(format(i, '0{}b'.format(N))) jj = str(format(j, '0{}b'.format(N))) index1 = np.zeros((N), str) index2 = np.zeros((N), str) for k in range(N): index1[k] = ii[k] index2[k] = jj[k] qp = int(str(index1[a - 1] + index1[b - 1]), 2) q_p_ = int(str(index2[a - 1] + index2[b - 1]), 2) for m in extra: final = final * kd(index1[m], index2[m]) C_NOTn[i][j] = C_NOT[qp][q_p_] * final return C_NOTn def multi_gate(gate, n): right = N - n left = N - right - 1 if right > 0: RIGHT = np.eye(2 ** right, dtype=int) if left > 0: LEFT = np.eye(2 ** left, dtype=int) if right == 0: return np.kron(LEFT, gate) if left == 0: return np.kron(gate, RIGHT) return (np.kron(LEFT, np.kron(gate, RIGHT))) def R(th): # Phase shift gate return np.array([[1, 0], [0, cmath.exp(th * j)]], complex) T = R(pi / 4) S = R(pi / 2) T_dag = R(-pi / 4) def Toffoli(a, b, c): return C_NOTn(a, b) @ multi_gate(H, c) @ multi_gate(S, a) @ C_NOTn(b, c) @ C_NOTn(c, a) @ multi_gate(T_dag, a) @ multi_gate( T_dag, b) @ multi_gate(T, c) @ C_NOTn(b, a) @ multi_gate(T_dag, a) @ C_NOTn(b, c) @ C_NOTn(c, a) @ C_NOTn(a, b) @ multi_gate( T_dag, a) @ multi_gate(T, b) @ multi_gate(T, c) @ multi_gate(H, c) repeat = 100 result = np.ndarray((2, repeat), np.ndarray) ques = 2 for k in range(repeat): PSI = [] psi = np.copy(psi_state_0) ''' Replace I to add errors & can also change qubit number to which error is added. Will correct 1 bit flip error Will not correct phase flip error Fail to correct 2 bit flip errors depending on position of errors ''' # for project 12 circuit (b) PSI.append(multi_gate(I, 3) @ psi) psi = np.copy(psi_state_0) # for project 12 circuit (d) H_corrected = C_NOTn(1, 2) @ C_NOTn(1, 3) @ Toffoli(3, 2, 1) @ multi_gate(H, 1) @ Toffoli(3, 2, 1) @ C_NOTn(1, 3) @ C_NOTn( 1, 2) PSI.append(multi_gate(I, 2) @ H_corrected @ multi_gate(I, 2) @ H_corrected @ multi_gate(I, 3) @ psi) for n in range(ques): r = random() q = 0 for i in range(2 ** N): q = q + abs(PSI[n][i]) ** 2 if r < q: result[n][k] = (i) break for n in range(ques): result_freq = np.zeros((2 ** N), int) if n == 0: print('\nfor project 12 circuit (b)') else: print('\nfor project 12 circuit (d)') for i in range(2 ** N): result_freq[i] =
np.count_nonzero(result[n][:] == i)
numpy.count_nonzero
#!/usr/bin/env python3 import scipy import os import argparse import numpy as np from skimage.restoration import unwrap_phase from scipy import io if __name__ == '__main__': parser = argparse.ArgumentParser( description='''Unwrap phase using <NAME>, <NAME>, <NAME>. Lalor, and <NAME>, "Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path," Appl. Opt. 41, 7437-7444 (2002). ''', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( 'file', type=argparse.FileType('rb'), help='Wrapped phase, either in a MATLAB or an ASCII file.') parser.add_argument( '--debug', action='store_true', help='Plot phases.') parser.add_argument( '--quiet', action='store_true', help='No console output.') args = parser.parse_args() dout = dict() matfile = io.loadmat(args.file) phiw = matfile['phiw'] apmask = matfile['apmask'].astype(np.bool) masked = np.ma.masked_array(phiw,
np.invert(apmask)
numpy.invert
import csv import numpy as np import matplotlib import matplotlib.pyplot as plt import numpy as np import csv from planner.helperFunctions import euclidianDistance def cmToInches(cm): return cm / 2.54 class TrajectoryUtils: def __init__(self, trajectoryDataFile=None, tentacleLength=0.1): if trajectoryDataFile is not None: trajectoryData = np.loadtxt(trajectoryDataFile, delimiter=",", skiprows=1) self.timestamps = np.array([row[0] for row in trajectoryData]) self.positions = np.array([row[1:4] for row in trajectoryData]) self.velocities = np.array([row[4:7] for row in trajectoryData]) self.accelerations = np.array([row[7:10] for row in trajectoryData]) self.yaws = np.array([row[10] for row in trajectoryData]) self.omegas = np.array([row[11:14] for row in trajectoryData]) else: self.timestamps = np.array([]) self.positions = np.array([]) self.velocities = np.array([]) self.accelerations = np.array([]) self.yaws = np.array([]) self.omegas = np.array([]) self.tentacleLength = tentacleLength def appendEvent(self, timestamp, position, yaw=0, velocity=[0, 0, 0], acceleration=[0, 0, 0], omega=[0, 0, 0]): self.timestamps = np.append(self.timestamps, timestamp) # Update position old_pos = self.positions new_pos = np.array([position]) self.positions = new_pos if len(old_pos) == 0 else np.append(old_pos, new_pos, axis=0) # Update velocities old_vel = self.velocities new_vel = np.array([velocity]) self.velocities = new_vel if len(old_vel) == 0 else np.append(old_vel, new_vel, axis=0) # Update accelerations old_acc = self.accelerations new_acc = np.array([acceleration]) self.accelerations = new_acc if len(old_acc) == 0 else np.append(old_acc, new_acc, axis=0) self.yaws = np.append(self.yaws, yaw) # Update omegas old_omegas = self.omegas new_omegas = np.array([omega]) self.omegas = new_omegas if len(old_omegas) == 0 else np.append(old_omegas, new_omegas, axis=0) def appendDroneEvent(self, timestamp, drone): # print(f"Curr: {drone.position()}\n") self.appendEvent( timestamp=timestamp, position=drone.position(), velocity=drone.velocity(), acceleration=drone.acceleration(), yaw=drone.yaw(), omega=drone.setState.omega ) def saveTrajectoryToCsv(self, fileName): with open(fileName, 'w', encoding='UTF8') as f: writer = csv.writer(f) header = [ "timestamp", "pos_x", "pos_y", "pos_z", "x_vel", "y_vel", "z_vel", "x_acc", "y_acc", "z_acc", "yaw", "roll_vel", "pitch_vel", "yaw_vel" ] writer.writerow(header) numEvents = len(self.timestamps) for i in range(numEvents): timestamp = self.timestamps[i] pos = self.positions[i] pos_x, pos_y, pos_z = pos[0], pos[1], pos[2] x_vel, y_vel, z_vel = self.velocities[i][0], self.velocities[i][1], self.velocities[i][2] x_acc, y_acc, z_acc = self.accelerations[i][0], self.accelerations[i][1], self.accelerations[i][2] yaw = self.yaws[i] omega = self.omegas[i] roll_vel, pitch_vel, yaw_vel = omega[0], omega[1], omega[2] row = [ timestamp, pos_x, pos_y, pos_z, x_vel, y_vel, z_vel, x_acc, y_acc, z_acc, yaw, roll_vel, pitch_vel, yaw_vel ] writer.writerow(row) def compareWithOtherTrajectory(self, otherTrajectory): trajectoryDiff = TrajectoryUtils() trajectoryDiff.timestamps = self.timestamps trajectoryDiff.positions = self.positions - otherTrajectory.positions trajectoryDiff.velocities = self.velocities - otherTrajectory.velocities trajectoryDiff.accelerations = self.accelerations - otherTrajectory.accelerations trajectoryDiff.yaws = self.yaws - otherTrajectory.yaws trajectoryDiff.omegas = self.omegas - otherTrajectory.omegas font = {'size': 30} matplotlib.rc('font', **font) fig, axs = plt.subplots(3) # --- PLOT 1 --- axs[0].plot(trajectoryDiff.timestamps, trajectoryDiff.velocities[:, 0]) axs[0].plot(trajectoryDiff.timestamps, trajectoryDiff.velocities[:, 1]) axs[0].plot(trajectoryDiff.timestamps, trajectoryDiff.velocities[:, 2]) legend0 = axs[0].legend(('x', 'y', 'z'), loc=( 0.02, 0.7), prop={'size': 30}) for legendObj in legend0.legendHandles: legendObj.set_linewidth(4.2) axs[0].set( xlabel='time (s)', ylabel='velocity (m/s)', title='Velocity diff between desired trajectory and executed trajectory' ) axs[0].grid() # --- PLOT 2 --- axs[1].plot(trajectoryDiff.timestamps, trajectoryDiff.positions[:, 0]) axs[1].plot(trajectoryDiff.timestamps, trajectoryDiff.positions[:, 1]) axs[1].plot(trajectoryDiff.timestamps, trajectoryDiff.positions[:, 2]) legend1 = axs[1].legend(('x', 'y', 'z'), loc=( 0.02, 0.7), prop={'size': 30}) for legendObj in legend1.legendHandles: legendObj.set_linewidth(4.2) axs[1].set( xlabel='time (s)', ylabel='distance (m)', title='Position diff between desired trajectory and executed trajectory' ) axs[1].grid() # --- PLOT 3 --- axs[2].plot(trajectoryDiff.timestamps, trajectoryDiff.accelerations[:, 0]) axs[2].plot(trajectoryDiff.timestamps, trajectoryDiff.accelerations[:, 1]) axs[2].plot(trajectoryDiff.timestamps, trajectoryDiff.accelerations[:, 2]) legend1 = axs[2].legend(('x', 'y', 'z'), loc=( 0.02, 0.7), prop={'size': 30}) for legendObj in legend1.legendHandles: legendObj.set_linewidth(4.2) axs[2].set( xlabel='time (s)', ylabel='acceleration (m/s²)', title='Acceleration diff between desired trajectory and executed trajectory' ) # axs[2].grid() # -------------- ratio = 30 / 30 width_in_inches = 65 w = cmToInches(width_in_inches) h = cmToInches(width_in_inches / ratio) fig.set_size_inches(w, h) filename = "diffBetweenTrajectoryAndLoggedTrajectory" fig.savefig(f"plots/{filename}.png", format='png', dpi=72) font = {'size': 12} matplotlib.rc('font', **font) trajectoryDiff.saveTrajectoryToCsv(f"csvs/{filename}.csv") class Obstacle: def __init__(self, x, y, radius): self.x = x self.y = y self.radius = radius class Position: def __init__(self, x, y): self.x = x self.y = y def euclidianDistanceToCurrentPosition(self, otherPos): return euclidianDistance(self.x, self.y, otherPos.x, otherPos.y) def reachedCurrentPosition(self, otherPos, currentPlanningState): distance = self.euclidianDistanceToCurrentPosition(otherPos) # print(f"D#{currentPlanningState.depth} | Distance = {round(distance, 2)}m") return distance < 0.05 def collidedWithObstacle(self, obstacle): distanceToObstacleCenter = self.euclidianDistanceToCurrentPosition(obstacle) haveCollided = distanceToObstacleCenter <= obstacle.radius return haveCollided class PlanningState: def __init__(self, parent, depth, position, yaw): self.parentState = parent self.depth = depth self.position = position self.yaw = yaw self.tried = { "left": False, "straight": False, "right": False } self.child = None class LatticePath: def __init__(self, x, y, direction): self.x = x self.y = y self.direction = direction self.tentacleLength = euclidianDistance(0, 0, x[-1], y[-1]) startPos = np.array([0, 0]) goalPos = np.array([x[-1], y[-1]]) self.hypotenuse = np.linalg.norm(startPos - goalPos) if direction == "left": self.angle = np.arccos(x[-1] / self.hypotenuse) elif direction == "straight": self.angle = 0 elif direction == "right": self.angle = - np.arccos(x[-1] / self.hypotenuse) # print(f"({self.direction[0]}) Angle = {np.rad2deg(self.angle)}°") def getNewPos(self, currentYaw, currentPos): endAngle = currentYaw + self.angle return Position(currentPos.x + self.hypotenuse * np.cos(endAngle), currentPos.y + self.hypotenuse *
np.sin(endAngle)
numpy.sin
''' ========================================================================= Author: <NAME> Company: Filename: Last modifed: 06.04.2017 by <NAME> Description: Functional test ========================================================================= ========================================================================= ''' import numpy as np import ext3DLBPpy print("=============================================") test = "RD_LBP_P92g_R1" array =
np.array([ [[165,226,124],[215,96,200],[138,102,175]], [[59,241,247],[27,52,111],[209,123,210]], [[147,113,7],[18,118,196],[253,90,98]] ], dtype=np.int)
numpy.array
import gzip import numpy as np import math import time import pandas as pd start = time.time() total_class = 10 cols = 28 rows = 28 total_px = cols * rows dt = np.dtype(np.uint8).newbyteorder(">") def loadMNIST(data_file, label_file): f_ti = open(data_file, "rb") f_tl = open(label_file, "rb") _ = f_ti.read(4) # magic_number(4 bytes) img_num = int.from_bytes(f_ti.read(4), "big") rows = int.from_bytes(f_ti.read(4), "big") cols = int.from_bytes(f_ti.read(4), "big") _ = f_tl.read(8) # magic_number(4 bytes), item number(4 bytes) img_pixels = np.zeros((img_num, rows * cols), dtype=int) img_label = np.zeros(img_num, dtype=int) for n in range(img_num): pixels = f_ti.read(rows * cols) img_pixels[n] = np.frombuffer(pixels, dtype=dt) img_label[n] = int.from_bytes(f_tl.read(1), "big") f_ti.close() f_tl.close() return img_pixels, img_label def printNumber(print_str, guess, labels=
np.arange(10)
numpy.arange
""" Create randomly centered, tiled projections to be used in light cones. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import numpy as np from yt.funcs import \ mylog from yt.units.yt_array import \ uconcatenate from yt.visualization.fixed_resolution import \ FixedResolutionBuffer from yt.utilities.parallel_tools.parallel_analysis_interface import \ parallel_blocking_call @parallel_blocking_call def _light_cone_projection(my_slice, field, pixels, weight_field=None, save_image=False, field_cuts=None): "Create a single projection to be added into the light cone stack." # We are just saving the projection object, so only the projection axis # needs to be considered since the lateral shifting and tiling occurs after # the projection object is made. # Likewise, only the box_depth_fraction needs to be considered. mylog.info("Making projection at z = %f from %s." % \ (my_slice["redshift"], my_slice["filename"])) region_center = [0.5 * (my_slice["object"].domain_right_edge[q] + my_slice["object"].domain_left_edge[q]) \ for q in range(my_slice["object"].dimensionality)] # 1. The Depth Problem # Use coordinate field cut in line of sight to cut projection to proper depth. if field_cuts is None: these_field_cuts = [] else: these_field_cuts = field_cuts.copy() if (my_slice["box_depth_fraction"] < 1): axis = ("x", "y", "z")[my_slice["projection_axis"]] depthLeft = \ my_slice["projection_center"][my_slice["projection_axis"]] \ - 0.5 * my_slice["box_depth_fraction"] depthRight = \ my_slice["projection_center"][my_slice["projection_axis"]] \ + 0.5 * my_slice["box_depth_fraction"] if (depthLeft < 0): cut_mask = ( "((obj['index', '%s'] + 0.5*obj['index', 'd%s'] >= 0) & " " (obj['index', '%s'] - 0.5*obj['index', 'd%s'] <= %f)) | " "((obj['index', '%s'] + 0.5*obj['index', 'd%s'] >= %f) & " " (obj['index', '%s'] - 0.5*obj['index', 'd%s'] <= 1))") % \ (axis, axis, axis, axis, depthRight, axis, axis, (depthLeft+1), axis, axis) elif (depthRight > 1): cut_mask = ( "((obj['index', '%s'] + 0.5*obj['index', 'd%s'] >= 0) & " "(obj['index', '%s'] - 0.5*obj['index', 'd%s'] <= %f)) | " "((obj['index', '%s'] + 0.5*obj['index', 'd%s'] >= %f) & " "(obj['index', '%s'] - 0.5*obj['index', 'd%s'] <= 1))") % \ (axis, axis, axis, axis, (depthRight-1), axis, axis, depthLeft, axis, axis) else: cut_mask = ( "(obj['index', '%s'] + 0.5*obj['index', 'd%s'] >= %f) & " "(obj['index', '%s'] - 0.5*obj['index', '%s'] <= %f)") % \ (axis, axis, depthLeft, axis, axis, depthRight) these_field_cuts.append(cut_mask) data_source = my_slice["object"].all_data() cut_region = data_source.cut_region(these_field_cuts) # Make projection. proj = my_slice["object"].proj(field, my_slice["projection_axis"], weight_field=weight_field, center=region_center, data_source=cut_region) proj_field = proj.field[0] if weight_field is not None: proj_weight_field = proj.weight_field # Do a projection of the weight field so we can keep it. weight_proj = my_slice["object"].proj( proj_weight_field, my_slice["projection_axis"], weight_field=None, center=region_center, data_source=cut_region) del data_source, cut_region # 2. The Tile Problem # Tile projection to specified width. # Original projection data. original_px = proj["px"].in_units("code_length").copy() original_py = proj["py"].in_units("code_length").copy() original_pdx = proj["pdx"].in_units("code_length").copy() original_pdy = proj["pdy"].in_units("code_length").copy() original_field = proj[proj_field].copy() if weight_field is not None: original_weight_field = weight_proj[proj_weight_field].copy() for my_field in ["px", "py", "pdx", "pdy", proj_field]: proj.field_data[my_field] = [proj.field_data[my_field]] if weight_field is not None: weight_proj.field_data[proj_weight_field] = \ [weight_proj.field_data[proj_weight_field]] # Copy original into offset positions to make tiles. for x in range(int(np.ceil(my_slice["box_width_fraction"]))): x = my_slice["object"].quan(x, "code_length") for y in range(int(
np.ceil(my_slice["box_width_fraction"])
numpy.ceil
"""Compute qubit vs toffoli for THC LCU""" from math import pi import numpy as np import itertools import matplotlib.pyplot as plt from numpy.lib.scimath import arccos, arcsin # want version that has analytic continuation to cplx from chemftr.utils import QR, QI def qubit_vs_toffoli(lam, dE, eps, n, chi, beta, M, algorithm='half', verbose=False): """ Args: lam (float) - the lambda-value for the Hamiltonian dE (float) - allowable error in phase estimation. usually 0.001 eps (float) - allowable error for synthesis (dE/(10 * lam)) usually n (int) - number of spin orbitals. chi (int) - number of bits of precision for state prep beta (int) - number of bits of precision for rotations M (int) - THC rank or r_{Thc} algorithm (str) - 'half', where half of the phasing angles are loaded at a time 'full', where angles loaded from QROM to perform phasing operations are all loaded at the same time Note: In 'Even more efficient quantum...' paper (arXiv:2011.03494), 'half' corresponds to Fig 11, while 'full' corresponds to Fig 12. verbose (bool) - do additional printing of intermediates? """ # only valid algorithms accepted assert algorithm in ['half', 'full'] # (*The number of iterations for the phase estimation.*) iters = np.ceil(pi * lam / (dE * 2)) # (*The number of bits used for each register.*) nM = np.ceil(np.log2(M + 1)) # (*This is the number of distinct items of data we need to output, see Eq. (28).*) d = M * (M + 1) / 2 + n / 2 # (*The number of bits used for the contiguous register.*) nc=np.ceil(np.log2(d)) # (*The output size is 2*Log[M] for the alt values, χ for the keep value, and 2 for the two sign bits.*) m=2*nM+2+chi # QR[L_,M_]:= np.ceil(MinValue[{L/2^k+M*(2^k-1),k>=0},k∈Integers]] (*This gives the minimum cost for a QROM over L values of size M.*) # QRa[L_,M_]:=ArgMin[{L/2^k+M*(2^k-1),k>=0},k∈Integers] (*Gives the optimal k.*) # QI[L_]:= np.ceil(MinValue[{L/2^k+2^k,k>=0},k∈Integers]] (*This gives the minimum cost for an inverse QROM over L values.*) # QIa[L_]:= np.ceil(ArgMin[{L/2^k+2^k,k>=0},k∈Integers]] (*This gives the minimum cost for an inverse QROM over L values.*) # (*The next block of code finds the optimal number of bits to use for the rotation angle for the amplitude a # mplification taking into account the probability of failure and the cost of the rotations.*) oh = np.zeros(20, dtype=float) for p in range(1, 20 + 1): cos_term = arccos(np.power(2, nM) / np.sqrt(d) / 2) # print(cos_term) v = np.round(np.power(2, p) / (2 * pi) * cos_term) asin_term = arcsin(np.cos(v*2*pi/np.power(2,p)) * np.sqrt(d) / np.power(2, nM)) sin_term = np.sin(3 * asin_term)**2 oh[p-1] = (20_000 * (1 / sin_term - 1) + 4 * p).real br= np.argmin(oh) + 1 #(*Here br is the number of bits used in the rotation.*) # (*Next are the costs for the state preparation.*) cp1 = 2 * (10 * nM + 2 * br - 9) # (*There is cost 10*Log[M] for preparing the equal superposition over the input registers. This is the costing from above Eq. (29).*) cp2 = 2 * (nM ** 2 + nM - 1) # (*This is the cost of computing the contiguous register and inverting it. This is with a sophisticated scheme adding together triplets of bits. This is the cost of step 2 in the list on page 14.*) cp3 = QR(d, m)[1] + QI(d)[1] # (*This is the cost of the QROM for the state preparation and its inverse.*) cp4 = 2 * chi # (*The cost for the inequality test.*) cp5 = 4 * nM # ( *The cost 2*nM for the controlled swaps.*) cp6 = 2 * nM + 3 # (*Then there is a cost of nM+1 for swapping the μ and ν registers, where the +3 is because we need to control on two registers, and control swap of the spin registers.*) CPCP = cp1 + cp2 + cp3 + cp4 + cp5 + cp6 # (*The total cost in Eq. (33).*) # (*Next are the costs for the select operation.*) cs1 = 2 * n # (*This is the cost of swapping based on the spin register. These costs are from the list on page 15, and this is steps 1 and 7.*) k1 = 2 ** QI(M + n / 2)[0] cs2a = M + n / 2 - 2 + np.ceil(M / k1) + np.ceil(n / 2 / k1) + k1 # (*The QROM for the rotation angles the first time. Here M+n/2-2 is the cost for generating them, and the second part is the cost for inverting them with advanced QROM.*) cs2b = M - 2 + QI(M)[1] # (*The QROM for the rotation angles the second time. Here the cost M-2 is for generating the angles the second time, and QI[M] is for inverting the QROM. Steps 2 and 6.*) cs3 = 4 * n * (beta - 2) # (*The cost of the rotations steps 3 and 5.*) cs4 = 1 # (*Cost for extra part in making the Z doubly controlled step 4.*) CS = cs1 + cs2a + cs2b + cs3 + cs4 # (*The total select cost in Eq. (43).*) costref = 2 * nM + chi + 3 # (*The cost given slightly above Eq. (44) is 2*nM+5. That is a typo and it should have the aleph (equivalent to χ here) like at the top of the column. Here we have +3 in this line, +1 in the next line and +1 for cs4, to give the same total.*) cost = CPCP + CS + costref + 1 # (*Next are qubit costs.*) ac1 = 2 * np.ceil(np.log2(iters + 1)) - 1 ac2 = n ac3 = 2 * nM ac47 = 5 ac8 = beta ac9 = nc kt = 2 ** QR(d, m)[0] ac10 = m * kt + np.ceil(np.log2(d / kt)) ac11 = chi # (*This is for the equal superposition state to perform the inequality test with the keep register.*) ac12 = 1 # (*The qubit to control the swap of the μ and ν registers.*) aca = ac1 + ac2 + ac3 + ac47 + ac8 + ac9 + ac11 + ac12 ac13 = beta * n / 2 # (*This is the data needed for the rotations.*) ac14 = beta - 2 # (*These are the ancillas needed for adding into the phase gradient state.*) acc = ac13 + ac14 + m # (*These are the temporary ancillas in between erasing the first QROM ancillas and inverting that QROM. The +m is the for output of the first QROM.*) if verbose: print("Total Toffoli cost ", cost*iters) # (*The total Toffoli cost.*) print("Ancilla for first QROM ", aca+ac10) # (*This is the ancillas needed up to the point we are computing the first QROM.*) print("Actual ancilla ... ", np.max([aca+ac10,aca+acc])) # (*This is the actual ancilla cost if we need more ancillas in between.*) print("Spacetime volume ", np.max([aca+ac10,aca+acc])*cost) # (*Spacetime volume.*) #TODO: Clean up and re-organize the logic a bit ... this is more or less a direct port from Mathematica # (*First are the numbers of qubits that must be kept throughout the computation. See page 18.*) if algorithm == 'half': ac1 = np.ceil(np.log2(iters + 1)) # (*The qubits used as the control registers for the phase estimation, that must be kept the whole way through. If we used independent controls each time that would increase the Toffoli cost by np.ceil(np.log2iters+1]]-3, while saving np.ceil(np.log2iters+1]]-1 qubits.*) elif algorithm == 'full': ac1 = 2 * np.ceil(np.log2(iters + 1)) - 1 # (*The qubits used as the control registers for the phase estimation, that must be kept the whole way through. If we used independent controls each time that would increase the Toffoli cost by np.ceil(np.log2iters+1]]-3, while saving np.ceil(np.log2iters+1]]-1 qubits.*) ac2 = n # (*The system qubits that must always be included.*) ac3 = 2 * nM # (*The μ and ν registers, that must be kept because they are control registers that aren't fully erased and must be reflected on.*) ac4512 = 4 # (*These are the qubits for the spin in the control state as well as the qubit that is rotated for the preparation of the equal superposition state, AND the qubit that is used to control . None of these are fully inversely prepared.*) ac8 = beta # (*The qubits for the phase gradient state.*) ac11 = chi # (*This is for the equal superposition state to perform the inequality test with the keep register. It must be kept around and reflected upon.*) perm = ac1 + ac2 + ac3 + ac4512 + ac8 + ac11 # (*The total number of permanent qubits.*) # (*In preparing the equal superposition state there are 6 temporary qubits used in the rotation of the ancilla. There are another three that are needed for the temporary results of inequality tests. By far the largest number, however, come from keeping the temporary ancillas from the inequality tests. That should be 3*nM+nN-4. There are an other two qubits in output at the end that will be kept until this step is undone.*) nN = np.ceil(np.log2(n / 2)) qu1 = perm + 4 * nM - 1 # (*This is the maximum number of qubits used while preparing the equal superposition state.*) # (*To explain the number of temporary ancillas, we have nM+1 to perform the inequality test on mu and nu with out-of-place addition. We have another nM-2 for the equality test. Then we can do the inequality tests on mu and nu with constants (temporarily) overwriting these variables, and keeping nM-1 qubits on each. Then there are another 2 temporary qubits used for the reflection. That gives 4*nM-1 total.*) tof1 = 10 * nM + 2 * br - 9 # (*This is the number of Toffolis during this step.*) perm = perm + 2 # (*This is increasing the running number of permanent ancillas by 2 for the ν=M+1 flag qubit and the success flag qubit.*) qu2 = perm + nM**2 + nM # (*The number of temporary qubits used in this computation is the the same as the number of Toffolis plus one.*) tof2 = nM**2 + nM - 1 # (*The Toffoli cost of computing the contiguous register.*) perm = perm + nc # (*The running number of qubits is increased by the number needed for the contiguous register.*) if algorithm == 'half': kt = 16 # (*Here I'm setting the k-value for the QROM by hand instead of choosing the optimal one for Toffolis.*) elif algorithm == 'full': kt = 32 # (*Here I'm setting the k-value for the QROM by hand instead of choosing the optimal one for Toffolis.*) qu3 = perm + m * kt + np.ceil(np.log2(d / kt)) # (*This is the number of qubits needed during the QROM.*) tof3 = np.ceil(d / kt) + m * (kt - 1) # (*The number of Toffolis for the QROM.*) perm = perm + m # (*The number of ancillas used increases by the actual output size of the QROM.*) qu4 = perm + chi # (*The number of ancilla qubits used for the subtraction for the inequality test. # We can use one of the qubits from the registers that are subtracted as the flag qubit so we don't need an extra flag qubit.*) tof4 = chi # (*The number of Toffolis needed for the inequality test. The number of permanent ancillas is unchanged.*) qu5 = perm # (*We don't need any extra ancillas for the controlled swaps.*) tof5 = 2 * nM # (*We are swapping pairs of registers of size nM*) qu6 = perm # (*One extra ancilla for the controlled swap of mu and nu because it is controlled on two qubits.*) tof6 = nM + 1 # (*One more Toffoli for the double controls.*) qu7 = perm # (*Swapping based on the spin register.*) tof7 = n / 2 if algorithm == 'half': qu8 = perm + nM + beta * n / 4 # (*We use these temporary ancillas for the first QROM for the rotation angles.*) elif algorithm == 'full': qu8 = perm + nM + beta * n / 2 # (*We use these temporary ancillas for the first QROM for the rotation angles.*) tof8 = M + n / 2 - 2 # (*The cost of outputting the rotation angles including those for the one-electron part.*) if algorithm == 'half': perm = perm + beta * n / 4 # (*We are now need the output rotation angles, though we don't need the temporary qubits from the unary iteration.*) elif algorithm == 'full': perm = perm + beta * n / 2 # (*We are now need the output rotation angles, though we don't need the temporary qubits from the unary iteration.*) qu9 = perm + (beta - 2) # (*We need a few temporary registers for adding into the phase gradient register.*) if algorithm == 'half': tof9 = n * (beta - 2) / 2 # (*The cost of the rotations.*) qu10 = np.array([-j * beta for j in range(int(n / 4))]) + perm + beta - 2 # Table[-j*beta,{j,0,n/4-1}]+perm+(beta-2) # (*Make a list where we keep subtracting the data qubits that can be erased.*) tof10 = np.array([2 * (beta - 2) for j in range(int(n / 4))]) # Table[2*(beta-2),{j,0,n/4-1}] # (*The cost of the rotations.*) perm = perm - beta * n / 4 # (*We've erased the data.*) elif algorithm == 'full': tof9 = n * (beta - 2) # (*The cost of the rotations.*) qu10 = np.array([-j * beta for j in range(int(n / 2))]) + perm + beta - 2 # Table[-j*beta,{j,0,n/2-1}]+perm+(beta-2) # (*Make a list where we keep subtracting the data qubits that can be erased.*) tof10 = np.array([2 * (beta - 2) for j in range(int(n / 2))]) # Table[2*(beta-2),{j,0,n/2-1}] # (*The cost of the rotations.*) perm = perm - beta * n / 2 # (*We've erased the data.*) k1 = 2 ** QI(M + n / 2)[0] # (*Find the k for the phase fixup for the erasure of the rotations.*) qu11 = perm + k1 + np.ceil(np.log2(M / k1)) # (*The temporary qubits used. The data qubits were already erased, so don't change perm.*) tof11 = np.ceil(M / k1) + np.ceil(n / 2 / k1) + k1 qu12 = perm # (*Swapping based on the spin register.*) tof12 = n / 2 qu12a = perm tof12a = 1 # (*Swapping the spin registers.*) qu13 = perm # (*Swapping based on the spin register.*) tof13 = n / 2 if algorithm == 'half': qu14 = perm + nM - 1 + beta * n / 4 # (*We use these temporary ancillas for the second QROM for the rotation angles.*) perm = perm + beta * n / 4 elif algorithm == 'full': qu14 = perm + nM - 1 + beta * n / 2 # (*We use these temporary ancillas for the second QROM for the rotation angles.*) perm = perm + beta * n / 2 tof14 = M - 2 qu15 = perm + (beta - 2) # (*We need a few temporary registers for adding into the phase gradient register.*) if algorithm == 'half': tof15 = n * (beta - 2) / 2 # (*The cost of the rotations.*) elif algorithm == 'full': tof15 = n * (beta - 2) # (*The cost of the rotations.*) qu16 = perm # (*Just one Toffoli to do the controlled Z1.*) tof16 = 1 if algorithm == 'half': qu17 = np.array([-j * beta for j in range(int(n / 4))]) + perm + beta - 2 # Table[-j*beta,{j,0,n/4-1}]+perm+(beta-2) # (*Make a list where we keep subtracting the data qubits that can be erased.*) tof17 = np.array([2 * (beta - 2) for j in range(int(n / 4))]) # Table[2*(beta-2),{j,0,n/4-1}] # (*The cost of the rotations.*) perm = perm - beta * n / 4 # (*We've erased the data.*) elif algorithm == 'full': qu17 = np.array([-j * beta for j in range(int(n / 2))]) + perm + beta - 2 # Table[-j*beta,{j,0,n/2-1}]+perm+(beta-2) # (*Make a list where we keep subtracting the data qubits that can be erased.*) tof17 = np.array([2 * (beta - 2) for j in range(int(n / 2))]) # Table[2*(beat-2),{j,0,n/2-1}] # (*The cost of the rotations.*) perm = perm - beta * n / 2 # (*We've erased the data.*) k1 = 2 ** QI(M)[0] # (*Find the k for the phase fixup for the erasure of the rotations.*) qu18 = perm + k1 + np.ceil(np.log2(M / k1)) # (*The temporary qubits used. The data qubits were already erased, so don't change perm.*) tof18 = np.ceil(M / k1) + k1 qu19 = perm # (*Swapping based on the spin register.*) tof19 = n / 2 qu20 = perm + 1 # (*One extra ancilla for the controlled swap of mu and nu because it is controlled on two qubits.*) tof20 = nM + 1 # (*One extra Toffoli, because we are controlling on two qubits.*) qu21 = perm # (*We don't need any extra ancillas for the controlled swaps.*) tof21 = 2 * nM # (*We are swapping pairs of registers of size nM*) qu22 = perm + chi # (*The number of ancilla qubits used for the subtraction for the inequality test. # We can use one of the qubits from the registers that are subtracted as the flag qubit so we don't need an extra flag qubit.*) tof22 = chi # (*The number of Toffolis needed for inverting the inequality test. The number of permanent ancillas is unchanged.*) perm = perm - m # (*We can erase the data for the QROM for inverting the state preparation, then do the phase fixup.*) kt=2**QI(d)[0] qu23 = perm + kt + np.ceil(np.log2(d / kt)) # (*This is the number of qubits needed during the QROM.*) tof23 = np.ceil(d / kt) + kt # (*The number of Toffolis for the QROM.*) qu24 = perm - nc + nM**2 + nM # (*The number of temporary qubits used in this computation is the same as the number of Toffolis plus one. We are erasing the contiguous register as we go so can subtract nc.*) tof24 = nM**2 + nM - 1 # (*The Toffoli cost of computing the contiguous register.*) perm = perm - nc # (*The contiguous register has now been deleted.*) qu25 = perm + 4 * nM - 1 # (*This is the maximum number of qubits used while preparing the equal superposition state.*) tof25 = 10 * nM + 2 * br - 9 # (*This is the number of Toffolis during this step.*) perm = perm - 2 # (*This is increasing the running number of permanent ancillas by 2 for the ν=M+1 flag qubit and the success flag qubit.*) if algorithm == 'half': qu26 = perm + costref + np.ceil(np.log2(iters + 1)) # (*We need some ancillas to perform a reflection on multiple qubits. We are including one more Toffoli to make it controlled.*) tof26 = costref + np.ceil(np.log2(iters + 1)) elif algorithm == 'full': qu26 = perm + costref # (*We need some ancillas to perform a reflection on multiple qubits. We are including one more Toffoli to make it controlled.*) tof26 = costref # FIXME: are qu27 and tof27 present in the improved algorithm? qu27 = perm # (*Iterate the control register.*) tof27 = 1 # Labels sm = 'small element' pq = 'preparation QROM' rq = 'rotation QROM' ri = 'R$^{\dag}$' ro = 'R' iq = 'inverse QROM' color_dict = {sm: '#435CE8',pq:'#E83935',rq:'#F59236', ri:'#E3D246', ro:'#36B83E',iq:'#E83935'} if algorithm == 'half': tgates = np.hstack((np.array([tof1, tof2, tof3, tof4, tof5, tof6, tof7, tof8, tof9, tof8, tof9, tof9, tof8]), tof10,
np.array([tof11, tof12, tof12a, tof13, tof14, tof15, tof14, tof15, tof16, tof15, tof14])
numpy.array
import argparse from design_search import RobotDesignEnv, make_graph, build_normalized_robot, presimulate, simulate import mcts import numpy as np import os import pyrobotdesign as rd import random import tasks import time class CameraTracker(object): def __init__(self, viewer, sim, robot_idx): self.viewer = viewer self.sim = sim self.robot_idx = robot_idx self.reset() def update(self, time_step): lower = np.zeros(3) upper = np.zeros(3) self.sim.get_robot_world_aabb(self.robot_idx, lower, upper) # Update camera position to track the robot smoothly target_pos = 0.5 * (lower + upper) camera_pos = self.viewer.camera_params.position.copy() camera_pos += 5.0 * time_step * (target_pos - camera_pos) self.viewer.camera_params.position = camera_pos def reset(self): lower = np.zeros(3) upper = np.zeros(3) self.sim.get_robot_world_aabb(self.robot_idx, lower, upper) self.viewer.camera_params.position = 0.5 * (lower + upper) def run_trajectory(sim, robot_idx, input_sequence, task, step_callback): step_callback(0) for j in range(input_sequence.shape[1]): for k in range(task.interval): step_idx = j * task.interval + k sim.set_joint_targets(robot_idx, input_sequence[:,j].reshape(-1, 1)) task.add_noise(sim, step_idx) sim.step() step_callback(step_idx + 1) def view_trajectory(sim, robot_idx, input_sequence, task): record_step_indices = set() sim.save_state() viewer = rd.GLFWViewer() # Get robot bounds lower =
np.zeros(3)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 16 13:50:20 2020 @author: joaovitor """ import time import multiprocessing as mp import numpy as np from scipy import signal as ss from matplotlib import pyplot as plt #import sounddevice as sd # 1. Variáveis e álgebra fs = 44100 # taxa de amostragem [Hz] dt = 1/fs # intervalo de tempo entre amostras [s] nsamp = 2**9 # número total de amostras [-] tlen = (nsamp - 1) / fs # duração do sinal [s] print (f"{fs=} {dt=}\n{nsamp=} {tlen=}") b = 0 # Número de semitons [-] c = 343 # Velocidade de propagação do som no ar [m/s] f = 440 * 2**(b/12) # frequência [Hz] T = 1/f # Período [s] l = c / f # comprimento de onda [m] print(f"{c=} {f=}\n{T=} {l=}") omega = 2 * np.pi * f # frequencia angular [rad/s] k = 2 * np.pi / l # número de onda [rad/m] kl = 1/l print (f"{omega=} {k=} {kl=}") nmark = 2 * nsamp # número de marcações no espaço [-] dx = 1 / nmark # intervalo entre as marcações [m] print (f"{nmark=} {dx=}") xm = np.linspace(0, 1 - dx, nmark) # [m] marcações no espaço ts = np.linspace(0, tlen, nsamp) # [s] instantes de tempo cosx = np.exp(k * xm * 1j) cost = np.exp(-omega * ts * 1j) """ Explique o que está sendo calculado nas linhas 59 e 60: Escreva aqui """ print (f"{xm.shape=} {cosx.shape=}") print (f"{ts.shape=} {cost.shape=}") fig1, axs = plt.subplots(2, 1) xlines = [] xlines.append(*axs[0].plot(xm, np.real(cosx))) xlines.append(*axs[0].plot(xm, np.imag(cosx))) xlines.append(axs[0].hlines(np.abs(cosx)/(2**0.5), xm[0], xm[-1])) tlines = [] tlines.append(*axs[1].plot(ts, np.real(cost))) tlines.append(*axs[1].plot(ts, np.imag(cost))) tlines.append(axs[1].hlines(np.abs(cost)/(2**0.5), ts[0], ts[-1])) axs[0].set_title("Gráfico de Re{exp(jkx)} variando no tempo") axs[0].set_xlabel("Posição [m]") axs[0].set_ylabel("Amplitude [-]") axs[1].set_title("Gráfico de Re{exp(-jωt)} variando no espaço") axs[1].set_xlabel("Tempo [s]") axs[1].set_ylabel("Amplitude [-]") fig1.tight_layout() fig1.canvas.draw() fig1.show() def loop(fig1, axs, xlines, tlines, cosx, cost, nsamp): from time import time tstart = time() for n in range(nsamp): extn = cosx * cost[n] exnt = cosx[2*n] * cost xlines[0].set_ydata(np.real(extn)) xlines[1].set_ydata(np.imag(extn)) tlines[0].set_ydata(np.real(exnt)) tlines[1].set_ydata(np.imag(exnt)) axs[0].draw_artist(axs[0].patch) [axs[0].draw_artist(xline) for xline in xlines] axs[1].draw_artist(axs[1].patch) [axs[1].draw_artist(tline) for tline in tlines] fig1.canvas.update() fig1.canvas.flush_events() tend = time() return tend - tstart tloop = loop(fig1, axs, xlines, tlines, cosx, cost, nsamp) print(f"{tloop=:.6f}") def rms(x: np.ndarray): return (x**2).mean(axis=0)**0.5 def dB(x: np.ndarray): return 20*np.log10(rms(x)) print(f"{rms(np.real(cosx))=:.3f} {dB(np.real(cosx))=:.1f}") print(f"{rms(np.real(cost))=:.3f} {dB(np.real(cost))=:.1f}") cos_xt = np.zeros((xm.size, ts.size), dtype='complex64') print (f"{cos_xt.shape=}") print(f"começo do cálculo de exp(jkx - jωt)") tstart = time.time() for n, x in enumerate(xm): cos_xt[n, :] =
np.exp(1j*k*x - 1j*omega*ts)
numpy.exp
import numpy as np from scipy.interpolate import LinearNDInterpolator, interp1d, griddata from scipy.spatial import cKDTree from numpy import matlib import discretize from discretize import TensorMesh import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import ticker import warnings from ....data import Data from .. import resistivity as dc from ....utils import ( closestPoints, mkvc, surface2ind_topo, model_builder, define_plane_from_points, ) from ....utils.io_utils import ( read_dcip2d_ubc, write_dcip2d_ubc, read_dcip3d_ubc, write_dcip3d_ubc, ) from ....utils.plot_utils import plot_1d_layer_model from ....utils.code_utils import deprecate_method try: import plotly.graph_objects as grapho has_plotly = True except: has_plotly = False DATA_TYPES = { "apparent resistivity": [ "apparent resistivity", "appresistivity", "apparentresistivity", "apparent-resistivity", "apparent_resistivity", "appres", ], "apparent conductivity": [ "apparent conductivity", "appconductivity", "apparentconductivity", "apparent-conductivity", "apparent_conductivity", "appcon", ], "apparent chargeability": [ "apparent chargeability", "appchargeability", "apparentchargeability", "apparent-chargeability", "apparent_chargeability", ], "potential": ["potential", "potentials", "volt", "V", "voltages", "voltage"], } SPACE_TYPES = { "half space": ["half space", "half-space", "half_space", "halfspace", "half"], "whole space": ["whole space", "whole-space", "whole_space", "wholespace", "whole"], } ####################################################################### # SURVEY GEOMETRY ####################################################################### def electrode_separations(survey_object, electrode_pair="all", **kwargs): """ Calculate horizontal separation between specific or all electrodes. Input: survey_object : SimPEG.electromagnetics.static.survey.Survey A DC or IP survey object electrode_pair : str or list of str A string or list of strings from the following {'all', 'AB', 'MN', 'AM', 'AN', 'BM', 'BN} Output: list of np.ndarray For each electrode pair specified, the electrode distance is returned in a list. """ if "survey_type" in kwargs: warnings.warn( "The survey_type is no longer necessary to calculate electrode separations. " "Feel free to remove it from the call. This option will be removed in SimPEG 0.16.0", FutureWarning, ) if not isinstance(electrode_pair, list): if electrode_pair.lower() == "all": electrode_pair = ["AB", "MN", "AM", "AN", "BM", "BN"] elif isinstance(electrode_pair, str): electrode_pair = [electrode_pair.upper()] else: raise TypeError( "electrode_pair must be either a string, list of strings, or an " "ndarray containing the electrode separation distances you would " "like to calculate not {}".format(type(electrode_pair)) ) elecSepDict = {} AB = [] MN = [] AM = [] AN = [] BM = [] BN = [] for src in survey_object.source_list: # pole or dipole source if isinstance(src.location, list): a_loc = src.location[0] b_loc = src.location[1] else: a_loc = src.location b_loc = np.inf * np.ones_like(src.location) for rx in src.receiver_list: # pole or dipole receiver if isinstance(rx.locations, list): M = rx.locations[0] N = rx.locations[1] else: M = rx.locations N = -np.inf * np.ones_like(rx.locations) n_rx = np.shape(M)[0] A = matlib.repmat(a_loc, n_rx, 1) B = matlib.repmat(b_loc, n_rx, 1) # Compute distances AB.append(np.sqrt(
np.sum((A - B) ** 2.0, axis=1)
numpy.sum
import numpy as np import scipy import multiprocessing from pydoc import locate from copy import deepcopy, copy from joblib import Parallel, delayed from bokeh.layouts import gridplot from statsmodels.stats.weightstats import ttest_ind from bokeh.models import HoverTool, Slope, Span from bokeh.plotting import ColumnDataSource, figure from scipy.stats import ttest_1samp from sklearn.model_selection import StratifiedKFold from tqdm import tqdm from ..utils import binary_metrics class permutation_test(): def __init__(self, model, params, X, Y, nperm=100, folds=5): self.model = locate(model.__name__) self.params = params self.skf = StratifiedKFold(n_splits=folds) self.folds = folds self.X = X self.Y = Y self.nperm = nperm self.n_cores = multiprocessing.cpu_count() def _calc_original(self): skf = self.skf X = self.X Y = self.Y model = self.model(**self.params) trainidx = [] testidx = [] for train, test in skf.split(X, Y): trainidx.append(train) testidx.append(test) # Calculate binary_metrics for stats_full y_pred_test = model.train(X, Y) #y_pred_full = model.test(X) stats_full = binary_metrics(Y, y_pred_test) # if seed is set, make sure it's none if 'seed' in self.params: self.params['seed'] = None model = self.model(**self.params) # Calculate binary_metrics for stats_cv y_pred_cv = [None] * len(Y) for j in range(len(trainidx)): X_train = X[trainidx[j], :] Y_train = Y[trainidx[j]] X_test = X[testidx[j], :] model.train(X_train, Y_train) y_pred = model.test(X_test) for (idx, val) in zip(testidx[j], y_pred): y_pred_cv[idx] = val.tolist() stats_cv = binary_metrics(Y, y_pred_cv) self.stats_original = [stats_full, stats_cv] def _calc_perm(self): stats = Parallel(n_jobs=self.n_cores)(delayed(self._calc_perm_loop)(i) for i in tqdm(range(self.nperm))) self.stats_perm = stats def _calc_perm_loop(self, i): skf = self.skf X = self.X Y = self.Y folds = self.folds model_i = self.model(**self.params) # Shuffle Y_shuff = Y.copy() np.random.shuffle(Y_shuff) # Model and calculate full binary_metrics model_i.train(X, Y_shuff) y_pred_full = model_i.test(X) stats_full = binary_metrics(Y_shuff, y_pred_full) # Get train and test idx using Stratified KFold for Y_shuff skf_nperm = StratifiedKFold(n_splits=folds) trainidx_nperm = [] testidx_nperm = [] for train, test in skf_nperm.split(X, Y_shuff): trainidx_nperm.append(train) testidx_nperm.append(test) # Model and calculate cv binary_metrics y_pred_cv = [None] * len(Y_shuff) for j in range(len(trainidx_nperm)): X_train = X[trainidx_nperm[j], :] Y_train = Y_shuff[trainidx_nperm[j]] X_test = X[testidx_nperm[j], :] model_i.train(X_train, Y_train) y_pred = model_i.test(X_test) for (idx, val) in zip(testidx_nperm[j], y_pred): y_pred_cv[idx] = val.tolist() stats_cv = binary_metrics(Y_shuff, y_pred_cv) corr = abs(np.corrcoef(Y_shuff, Y)[0, 1]) stats_comb = [stats_full, stats_cv, corr] return stats_comb def run(self): self._calc_original() self._calc_perm() def plot(self, metric="r2q2", hide_pval=True, grid_line=False, legend=True): # Choose metric to plot metric_title = np.array(["ACCURACY", "AIC", "AUC", "BIC", "F1-SCORE", "PRECISION", "R²", "SENSITIVITY", "SPECIFICITY", "SSE"]) metric_list = np.array(["acc", "aic", "auc", "bic", "f1score", "prec", "r2q2", "sens", "spec", "sse"]) metric_idx = np.where(metric_list == metric)[0][0] mname = metric_title[metric_idx] stats = [] stats.append([self.stats_original[0][mname], self.stats_original[1][mname], 1]) for i in self.stats_perm: stats.append([i[0][mname], i[1][mname], i[2]]) self.stats = stats if metric == "r2q2": full_text = "R²" cv_text = "Q²" else: full_text = mname + "full" cv_text = mname + "cv" # Split data for plotting (corr, r2, q2) stats_r2 = [] stats_q2 = [] stats_corr = [] for i in range(len(stats)): stats_r2.append(stats[i][0]) stats_q2.append(stats[i][1]) stats_corr.append(stats[i][2]) # Calculate gradient, and y-intercept for plot 1 r2gradient = (stats_r2[0] - np.mean(stats_r2[1:])) / (1 - np.mean(stats_corr[1:])) q2gradient = (stats_q2[0] - np.mean(stats_q2[1:])) / (1 -
np.mean(stats_corr[1:])
numpy.mean
""" Module work provides classes to compute and analyse active work and active work autocorrelations and correlations with order parameter. """ import numpy as np from collections import OrderedDict from operator import itemgetter from coll_dyn_activem.read import Dat from coll_dyn_activem.maths import Distribution, mean_sterr,\ linspace, logspace, CurveFit class ActiveWork(Dat): """ Compute and analyse active work from simulation data. (see https://yketa.github.io/DAMTP_MSC_2019_Wiki/#Active%20Brownian%20particles) """ def __init__(self, filename, workPart='all', skip=1, corruption=None): """ Loads file. Parameters ---------- filename : string Name of input data file. workPart : string Part of the active work to consider in computations: * 'all': active work, * 'force': force part of the active work, * 'orientation': orientation part of the active work, * 'noise': noise part of the active work. (default: 'all') NOTE: This can be changed at any time by calling self._setWorkPart. skip : int Skip the `skip' first computed values of the active work in the following calculations. (default: 1) NOTE: This can be changed at any time by setting self.skip. corruption : str or None Pass corruption test for given file type (see coll_dyn_activem.read.Dat). (default: None) NOTE: if corruption == None, then the file has to pass corruption tests. """ super().__init__(filename, loadWork=True, corruption=corruption) # initialise with super class self.workDict = { # hash table of active work parts 'all': self.activeWork, 'force': self.activeWorkForce, 'orientation': self.activeWorkOri, 'noise': self.activeWork - self.activeWorkForce - self.activeWorkOri} self._setWorkPart(workPart) self.skip = skip # skip the `skip' first measurements of the active work in the analysis def nWork(self, n, int_max=None): """ Returns normalised rate of active work averaged on packs of size `n' of consecutive individual active works. NOTE: Individual active work refers to the normalised rate of active work on self.dumpPeriod*self.framesWork consecutive frames and stored as element of self.workArray. Parameters ---------- n : int Size of packs on which to average active work. int_max : int or None Maximum number of packs consider. (default: None) NOTE: If int_max == None, then take the maximum number of packs. int_max cannot exceed the maximum number of nonoverlapping packs. Returns ------- workAvegared : float numpy array Array of computed active works. """ workAvegared = [] for i in self._time0(n, int_max=int_max): workAvegared += [self.workArray[i:i + n].mean()] return
np.array(workAvegared)
numpy.array
#!/usr/bin/env python """ @author: cdeline bifacial_radiance.py - module to develop radiance bifacial scenes, including gendaylit and gencumulativesky 7/5/2016 - test script based on G173_journal_height 5/1/2017 - standalone module Pre-requisites: This software is written for Python >3.6 leveraging many Anaconda tools (e.g. pandas, numpy, etc) *RADIANCE software should be installed from https://github.com/NREL/Radiance/releases *If you want to use gencumulativesky, move 'gencumulativesky.exe' from 'bifacial_radiance\data' into your RADIANCE source directory. *If using a Windows machine you should download the Jaloxa executables at http://www.jaloxa.eu/resources/radiance/radwinexe.shtml#Download * Installation of bifacial_radiance from the repo: 1. Clone the repo 2. Navigate to the directory using the command prompt 3. run `pip install -e . ` Overview: Bifacial_radiance includes several helper functions to make it easier to evaluate different PV system orientations for rear bifacial irradiance. Note that this is simply an optical model - identifying available rear irradiance under different conditions. For a detailed demonstration example, look at the .ipnyb notebook in \docs\ There are two solar resource modes in bifacial_radiance: `gendaylit` uses hour-by-hour solar resource descriptions using the Perez diffuse tilted plane model. `gencumulativesky` is an annual average solar resource that combines hourly Perez skies into one single solar source, and computes an annual average. bifacial_radiance includes five object-oriented classes: RadianceObj: top level class to work on radiance objects, keep track of filenames, sky values, PV module type etc. GroundObj: details for the ground surface and reflectance SceneObj: scene information including array configuration (row spacing, clearance or hub height) MetObj: meteorological data from EPW (energyplus) file. Future work: include other file support including TMY files AnalysisObj: Analysis class for plotting and reporting """ import logging logging.basicConfig() LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.DEBUG) import os, datetime from subprocess import Popen, PIPE # replacement for os.system() import pandas as pd import numpy as np import warnings #from input import * # Mutual parameters across all processes #daydate=sys.argv[1] global DATA_PATH # path to data files including module.json. Global context #DATA_PATH = os.path.abspath(pkg_resources.resource_filename('bifacial_radiance', 'data/') ) DATA_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data')) def _findme(lst, a): #find string match in a list. script from stackexchange return [i for i, x in enumerate(lst) if x == a] def _missingKeyWarning(dictype, missingkey, newvalue): # prints warnings if type(newvalue) is bool: valueunit = '' else: valueunit = 'm' print("Warning: {} Dictionary Parameters passed, but {} is missing. ".format(dictype, missingkey)) print("Setting it to default value of {} {} to continue\n".format(newvalue, valueunit)) def _normRGB(r, g, b): #normalize by each color for human vision sensitivity return r*0.216+g*0.7152+b*0.0722 def _popen(cmd, data_in, data_out=PIPE): """ Helper function subprocess.popen replaces os.system - gives better input/output process control usage: pass <data_in> to process <cmd> and return results based on rgbeimage.py (<NAME> 2010) """ if type(cmd) == str: cmd = str(cmd) # gets rid of unicode oddities shell=True else: shell=False p = Popen(cmd, bufsize=-1, stdin=PIPE, stdout=data_out, stderr=PIPE, shell=shell) #shell=True required for Linux? quick fix, but may be security concern data, err = p.communicate(data_in) #if err: # return 'message: '+err.strip() #if data: # return data. in Python3 this is returned as `bytes` and needs to be decoded if err: if data: returntuple = (data.decode('latin1'), 'message: '+err.decode('latin1').strip()) else: returntuple = (None, 'message: '+err.decode('latin1').strip()) else: if data: returntuple = (data.decode('latin1'), None) #Py3 requires decoding else: returntuple = (None, None) return returntuple def _interactive_load(title=None): # Tkinter file picker import tkinter from tkinter import filedialog root = tkinter.Tk() root.withdraw() #Start interactive file input root.attributes("-topmost", True) #Bring window into foreground return filedialog.askopenfilename(parent=root, title=title) #initialdir = data_dir def _interactive_directory(title=None): # Tkinter directory picker. Now Py3.6 compliant! import tkinter from tkinter import filedialog root = tkinter.Tk() root.withdraw() #Start interactive file input root.attributes("-topmost", True) #Bring to front return filedialog.askdirectory(parent=root, title=title) def _modDict(originaldict, moddict, relative=False): ''' Compares keys in originaldict with moddict and updates values of originaldict to moddict if existing. Parameters ---------- originaldict : dictionary Original dictionary calculated, for example frontscan or backscan dictionaries. moddict : dictionary Modified dictinoary, for example modscan['xstart'] = 0 to change position of x. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) Returns ------- originaldict : dictionary Updated original dictionary with values from moddict. ''' newdict = originaldict.copy() for key in moddict: try: if relative: newdict[key] = moddict[key] + newdict[key] else: newdict[key] = moddict[key] except: print("Wrong key in modified dictionary") return newdict def _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height'): """ Parameters ---------- sceneDict : dictionary Dictionary that might contain more than one way of defining height for the array: `clearance_height`, `hub_height`, `height`* * height deprecated from sceneDict. This function helps choose * which definition to use. preferred : str, optional When sceneDict has hub_height and clearance_height, or it only has height, it will leave only the preferred option.. The default is 'hub_height'. nonpreferred : TYPE, optional When sceneDict has hub_height and clearance_height, it wil ldelete this nonpreferred option. The default is 'clearance_height'. Returns ------- sceneDict : TYPE Dictionary now containing the appropriate definition for system height. use_clearanceheight : Bool Helper variable to specify if dictionary has only clearancehet for use inside `makeScene1axis`. Will get deprecated once that internal function is streamlined. """ # TODO: When we update to python 3.9.0, this could be a Switch Cases (Structural Pattern Matching): heightCases = '_' if 'height' in sceneDict: heightCases = heightCases+'height__' if 'clearance_height' in sceneDict: heightCases = heightCases+'clearance_height__' if 'hub_height' in sceneDict: heightCases = heightCases+'hub_height__' use_clearanceheight = False # CASES: if heightCases == '_height__': print("sceneDict Warning: 'height' is being deprecated. "+ "Renaming as "+preferred) sceneDict[preferred]=sceneDict['height'] del sceneDict['height'] elif heightCases == '_clearance_height__': #print("Using clearance_height.") use_clearanceheight = True elif heightCases == '_hub_height__': #print("Using hub_height.'") pass elif heightCases == '_height__clearance_height__': print("sceneDict Warning: 'clearance_height and 'height' "+ "(deprecated) are being passed. removing 'height' "+ "from sceneDict for this tracking routine") del sceneDict['height'] use_clearanceheight = True elif heightCases == '_height__hub_height__': print("sceneDict Warning: 'height' is being deprecated. Using 'hub_height'") del sceneDict['height'] elif heightCases == '_height__clearance_height__hub_height__': print("sceneDict Warning: 'hub_height', 'clearance_height'"+ ", and 'height' are being passed. Removing 'height'"+ " (deprecated) and "+ nonpreferred+ ", using "+preferred) del sceneDict[nonpreferred] elif heightCases == '_clearance_height__hub_height__': print("sceneDict Warning: 'hub_height' and 'clearance_height'"+ " are being passed. Using "+preferred+ " and removing "+ nonpreferred) del sceneDict[nonpreferred] else: print ("sceneDict Error! no argument in sceneDict found "+ "for 'hub_height', 'height' nor 'clearance_height'. "+ "Exiting routine.") return sceneDict, use_clearanceheight def _is_leap_and_29Feb(s): # Removes Feb. 29 if it a leap year. return (s.index.year % 4 == 0) & \ ((s.index.year % 100 != 0) | (s.index.year % 400 == 0)) & \ (s.index.month == 2) & (s.index.day == 29) def _subhourlydatatoGencumskyformat(gencumskydata, label='right'): # Subroutine to resample, pad, remove leap year and get data in the # 8760 hourly format # for saving the temporary files for gencumsky in _saveTempTMY and # _makeTrackerCSV #Resample to hourly. Gencumsky wants right-labeled data. gencumskydata = gencumskydata.resample('60T', closed='right', label='right').mean() if label == 'left': #switch from left to right labeled by adding an hour gencumskydata.index = gencumskydata.index + pd.to_timedelta('1H') # Padding tzinfo = gencumskydata.index.tzinfo padstart = pd.to_datetime('%s-%s-%s %s:%s' % (gencumskydata.index.year[0],1,1,1,0 ) ).tz_localize(tzinfo) padend = pd.to_datetime('%s-%s-%s %s:%s' % (gencumskydata.index.year[0]+1,1,1,0,0) ).tz_localize(tzinfo) gencumskydata.iloc[0] = 0 # set first datapt to zero to forward fill w zeros gencumskydata.iloc[-1] = 0 # set last datapt to zero to forward fill w zeros # check if index exists. I'm sure there is a way to do this backwards. if any(gencumskydata.index.isin([padstart])): print("Data starts on Jan. 01") else: #gencumskydata=gencumskydata.append(pd.DataFrame(index=[padstart])) gencumskydata=pd.concat([gencumskydata,pd.DataFrame(index=[padstart])]) if any(gencumskydata.index.isin([padend])): print("Data ends on Dec. 31st") else: #gencumskydata=gencumskydata.append(pd.DataFrame(index=[padend])) gencumskydata=pd.concat([gencumskydata, pd.DataFrame(index=[padend])]) gencumskydata.loc[padstart]=0 gencumskydata.loc[padend]=0 gencumskydata=gencumskydata.sort_index() # Fill empty timestamps with zeros gencumskydata = gencumskydata.resample('60T').asfreq().fillna(0) # Mask leap year leapmask = ~(_is_leap_and_29Feb(gencumskydata)) gencumskydata = gencumskydata[leapmask] if (gencumskydata.index.year[-1] == gencumskydata.index.year[-2]+1) and len(gencumskydata)>8760: gencumskydata = gencumskydata[:-1] return gencumskydata # end _subhourlydatatoGencumskyformat class RadianceObj: """ The RadianceObj top level class is used to work on radiance objects, keep track of filenames, sky values, PV module configuration, etc. Parameters ---------- name : text to append to output files filelist : list of Radiance files to create oconv nowstr : current date/time string path : working directory with Radiance materials and objects Methods ------- __init__ : initialize the object _setPath : change the working directory """ def __repr__(self): return str(self.__dict__) def __init__(self, name=None, path=None, hpc=False): ''' initialize RadianceObj with path of Radiance materials and objects, as well as a basename to append to Parameters ---------- name: string, append temporary and output files with this value path: location of Radiance materials and objects hpc: Keeps track if User is running simulation on HPC so some file reading routines try reading a bit longer and some writing routines (makeModule) that overwrite themselves are inactivated. Returns ------- none ''' self.metdata = {} # data from epw met file self.data = {} # data stored at each timestep self.path = "" # path of working directory self.name = "" # basename to append #self.filelist = [] # list of files to include in the oconv self.materialfiles = [] # material files for oconv self.skyfiles = [] # skyfiles for oconv self.radfiles = [] # scene rad files for oconv self.octfile = [] #octfile name for analysis self.Wm2Front = 0 # cumulative tabulation of front W/m2 self.Wm2Back = 0 # cumulative tabulation of rear W/m2 self.backRatio = 0 # ratio of rear / front Wm2 self.nMods = None # number of modules per row self.nRows = None # number of rows per scene self.hpc = hpc # HPC simulation is being run. Some read/write functions are modified now = datetime.datetime.now() self.nowstr = str(now.date())+'_'+str(now.hour)+str(now.minute)+str(now.second) # DEFAULTS if name is None: self.name = self.nowstr # set default filename for output files else: self.name = name self.basename = name # add backwards compatibility for prior versions #self.__name__ = self.name #optional info #self.__str__ = self.__name__ #optional info if path is None: self._setPath(os.getcwd()) else: self._setPath(path) # load files in the /materials/ directory self.materialfiles = self.returnMaterialFiles('materials') def _setPath(self, path): """ setPath - move path and working directory """ self.path = os.path.abspath(path) print('path = '+ path) try: os.chdir(self.path) except OSError as exc: LOGGER.error('Path doesn''t exist: %s' % (path)) LOGGER.exception(exc) raise(exc) # check for path in the new Radiance directory: def _checkPath(path): # create the file structure if it doesn't exist if not os.path.exists(path): os.makedirs(path) print('Making path: '+path) _checkPath('images'); _checkPath('objects') _checkPath('results'); _checkPath('skies'); _checkPath('EPWs') # if materials directory doesn't exist, populate it with ground.rad # figure out where pip installed support files. from shutil import copy2 if not os.path.exists('materials'): #copy ground.rad to /materials os.makedirs('materials') print('Making path: materials') copy2(os.path.join(DATA_PATH, 'ground.rad'), 'materials') # if views directory doesn't exist, create it with two default views - side.vp and front.vp if not os.path.exists('views'): os.makedirs('views') with open(os.path.join('views', 'side.vp'), 'w') as f: f.write('rvu -vtv -vp -10 1.5 3 -vd 1.581 0 -0.519234 '+ '-vu 0 0 1 -vh 45 -vv 45 -vo 0 -va 0 -vs 0 -vl 0') with open(os.path.join('views', 'front.vp'), 'w') as f: f.write('rvu -vtv -vp 0 -3 5 -vd 0 0.894427 -0.894427 '+ '-vu 0 0 1 -vh 45 -vv 45 -vo 0 -va 0 -vs 0 -vl 0') def getfilelist(self): """ Return concat of matfiles, radfiles and skyfiles """ return self.materialfiles + self.skyfiles + self.radfiles def save(self, savefile=None): """ Pickle the radiance object for further use. Very basic operation - not much use right now. Parameters ---------- savefile : str Optional savefile name, with .pickle extension. Otherwise default to save.pickle """ import pickle if savefile is None: savefile = 'save.pickle' with open(savefile, 'wb') as f: pickle.dump(self, f) print('Saved to file {}'.format(savefile)) #def setHPC(self, hpc=True): # self.hpc = hpc def addMaterial(self, material, Rrefl, Grefl, Brefl, materialtype='plastic', specularity=0, roughness=0, material_file=None, comment=None, rewrite=True): """ Function to add a material in Radiance format. Parameters ---------- material : str DESCRIPTION. Rrefl : str Reflectivity for first wavelength, or 'R' bin. Grefl : str Reflecstrtivity for second wavelength, or 'G' bin. Brefl : str Reflectivity for third wavelength, or 'B' bin. materialtype : str, optional Type of material. The default is 'plastic'. Others can be mirror, trans, etc. See RADIANCe documentation. specularity : str, optional Ratio of reflection that is specular and not diffuse. The default is 0. roughness : str, optional This is the microscopic surface roughness: the more jagged the facets are, the rougher it is and more blurry reflections will appear. material_file : str, optional DESCRIPTION. The default is None. comment : str, optional DESCRIPTION. The default is None. rewrite : str, optional DESCRIPTION. The default is True. Returns ------- None. Just adds the material to the material_file specified or the default in ``materials\ground.rad``. References: See examples of documentation for more materialtype details. http://www.jaloxa.eu/resources/radiance/documentation/docs/radiance_tutorial.pdf page 10 Also, you can use https://www.jaloxa.eu/resources/radiance/colour_picker.shtml to have a sense of how the material would look with the RGB values as well as specularity and roughness. To understand more on reflectivity, specularity and roughness values https://thinkmoult.com/radiance-specularity-and-roughness-value-examples.html """ if material_file is None: material_file = 'ground.rad' matfile = os.path.join('materials', material_file) with open(matfile, 'r') as fp: buffer = fp.readlines() # search buffer for material matching requested addition found = False for i in buffer: if materialtype and material in i: loc = buffer.index(i) found = True break if found: if rewrite: print('Material exists, overwriting...\n') if comment is None: pre = loc - 1 else: pre = loc - 2 # commit buffer without material match with open(matfile, 'w') as fp: for i in buffer[0:pre]: fp.write(i) for i in buffer[loc+4:]: fp.write(i) if (found and rewrite) or (not found): # append -- This will create the file if it doesn't exist file_object = open(matfile, 'a') file_object.write("\n\n") if comment is not None: file_object.write("#{}".format(comment)) file_object.write("\nvoid {} {}".format(materialtype, material)) if materialtype == 'glass': file_object.write("\n0\n0\n3 {} {} {}".format(Rrefl, Grefl, Brefl)) else: file_object.write("\n0\n0\n5 {} {} {} {} {}".format(Rrefl, Grefl, Brefl, specularity, roughness)) file_object.close() print('Added material {} to file {}'.format(material, material_file)) if (found and not rewrite): print('Material already exists\n') def exportTrackerDict(self, trackerdict=None, savefile=None, reindex=None): """ Use :py:func:`~bifacial_radiance.load._exportTrackerDict` to save a TrackerDict output as a csv file. Parameters ---------- trackerdict The tracker dictionary to save savefile : str path to .csv save file location reindex : bool True saves the trackerdict in TMY format, including rows for hours where there is no sun/irradiance results (empty) """ import bifacial_radiance.load if trackerdict is None: trackerdict = self.trackerdict if savefile is None: savefile = _interactive_load(title='Select a .csv file to save to') if reindex is None: if self.cumulativesky is True: # don't re-index for cumulativesky, # which has angles for index reindex = False else: reindex = True if self.cumulativesky is True and reindex is True: # don't re-index for cumulativesky, # which has angles for index print ("\n Warning: For cumulativesky simulations, exporting the " "TrackerDict requires reindex = False. Setting reindex = " "False and proceeding") reindex = False bifacial_radiance.load._exportTrackerDict(trackerdict, savefile, reindex) def loadtrackerdict(self, trackerdict=None, fileprefix=None): """ Use :py:class:`bifacial_radiance.load._loadtrackerdict` to browse the results directory and load back any results saved in there. Parameters ---------- trackerdict fileprefix : str """ from bifacial_radiance.load import loadTrackerDict if trackerdict is None: trackerdict = self.trackerdict (trackerdict, totaldict) = loadTrackerDict(trackerdict, fileprefix) self.Wm2Front = totaldict['Wm2Front'] self.Wm2Back = totaldict['Wm2Back'] def returnOctFiles(self): """ Return files in the root directory with `.oct` extension Returns ------- oct_files : list List of .oct files """ oct_files = [f for f in os.listdir(self.path) if f.endswith('.oct')] #self.oct_files = oct_files return oct_files def returnMaterialFiles(self, material_path=None): """ Return files in the Materials directory with .rad extension appends materials files to the oconv file list Parameters ---------- material_path : str Optional parameter to point to a specific materials directory. otherwise /materials/ is default Returns ------- material_files : list List of .rad files """ if material_path is None: material_path = 'materials' material_files = [f for f in os.listdir(os.path.join(self.path, material_path)) if f.endswith('.rad')] materialfilelist = [os.path.join(material_path, f) for f in material_files] self.materialfiles = materialfilelist return materialfilelist def setGround(self, material=None, material_file=None): """ Use GroundObj constructor class and return a ground object Parameters ------------ material : numeric or str If number between 0 and 1 is passed, albedo input is assumed and assigned. If string is passed with the name of the material desired. e.g. 'litesoil', properties are searched in `material_file`. Default Material names to choose from: litesoil, concrete, white_EPDM, beigeroof, beigeroof_lite, beigeroof_heavy, black, asphalt material_file : str Filename of the material information. Default `ground.rad` Returns ------- self.ground : tuple self.ground.normval : numeric Normalized color value self.ground.ReflAvg : numeric Average reflectance """ if material is None: try: if self.metdata.albedo is not None: material = self.metdata.albedo print(" Assigned Albedo from metdata.albedo") except: pass self.ground = GroundObj(material, material_file) def getEPW(self, lat=None, lon=None, GetAll=False): """ Subroutine to download nearest epw files to latitude and longitude provided, into the directory \EPWs\ based on github/aahoo. .. warning:: verify=false is required to operate within NREL's network. to avoid annoying warnings, insecurerequestwarning is disabled currently this function is not working within NREL's network. annoying! Parameters ---------- lat : decimal Used to find closest EPW file. lon : decimal Longitude value to find closest EPW file. GetAll : boolean Download all available files. Note that no epw file will be loaded into memory """ import requests, re from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) hdr = {'User-Agent' : "Magic Browser", 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' } path_to_save = 'EPWs' # create a directory and write the name of directory here if not os.path.exists(path_to_save): os.makedirs(path_to_save) def _returnEPWnames(): ''' return a dataframe with the name, lat, lon, url of available files''' r = requests.get('https://github.com/NREL/EnergyPlus/raw/develop/weather/master.geojson', verify=False) data = r.json() #metadata for available files #download lat/lon and url details for each .epw file into a dataframe df = pd.DataFrame({'url':[], 'lat':[], 'lon':[], 'name':[]}) for location in data['features']: match = re.search(r'href=[\'"]?([^\'" >]+)', location['properties']['epw']) if match: url = match.group(1) name = url[url.rfind('/') + 1:] lontemp = location['geometry']['coordinates'][0] lattemp = location['geometry']['coordinates'][1] dftemp = pd.DataFrame({'url':[url], 'lat':[lattemp], 'lon':[lontemp], 'name':[name]}) #df = df.append(dftemp, ignore_index=True) df = pd.concat([df, dftemp], ignore_index=True) return df def _findClosestEPW(lat, lon, df): #locate the record with the nearest lat/lon errorvec = np.sqrt(np.square(df.lat - lat) + np.square(df.lon - lon)) index = errorvec.idxmin() url = df['url'][index] name = df['name'][index] return url, name def _downloadEPWfile(url, path_to_save, name): r = requests.get(url, verify=False, headers=hdr) if r.ok: filename = os.path.join(path_to_save, name) # py2 and 3 compatible: binary write, encode text first with open(filename, 'wb') as f: f.write(r.text.encode('ascii', 'ignore')) print(' ... OK!') else: print(' connection error status code: %s' %(r.status_code)) r.raise_for_status() # Get the list of EPW filenames and lat/lon df = _returnEPWnames() # find the closest EPW file to the given lat/lon if (lat is not None) & (lon is not None) & (GetAll is False): url, name = _findClosestEPW(lat, lon, df) # download the EPW file to the local drive. print('Getting weather file: ' + name) _downloadEPWfile(url, path_to_save, name) self.epwfile = os.path.join('EPWs', name) elif GetAll is True: if input('Downloading ALL EPW files available. OK? [y/n]') == 'y': # get all of the EPW files for index, row in df.iterrows(): print('Getting weather file: ' + row['name']) _downloadEPWfile(row['url'], path_to_save, row['name']) self.epwfile = None else: print('Nothing returned. Proper usage: epwfile = getEPW(lat,lon)') self.epwfile = None return self.epwfile def readWeatherFile(self, weatherFile=None, starttime=None, endtime=None, label=None, source=None, coerce_year=None, tz_convert_val=None): """ Read either a EPW or a TMY file, calls the functions :py:class:`~bifacial_radiance.readTMY` or :py:class:`~bifacial_radiance.readEPW` according to the weatherfile extention. Parameters ---------- weatherFile : str File containing the weather information. EPW, TMY or solargis accepted. starttime : str Limited start time option in 'YYYY-mm-dd_HHMM' or 'mm_dd_HH' format endtime : str Limited end time option in 'YYYY-mm-dd_HHMM' or 'mm_dd_HH' format daydate : str DEPRECATED For single day in 'MM/DD' or MM_DD format. Now use starttime and endtime set to the same date. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. source : str To help identify different types of .csv files. If None, it assumes it is a TMY3-style formated data. Current options: 'TMY3', 'solargis', 'EPW' coerce_year : int Year to coerce weather data to in YYYY format, ie 2021. If more than one year of data in the weather file, year is NOT coerced. tz_convert_val : int Convert timezone to this fixed value, following ISO standard (negative values indicating West of UTC.) """ #from datetime import datetime import warnings if weatherFile is None: if hasattr(self,'epwfile'): weatherFile = self.epwfile else: try: weatherFile = _interactive_load('Select EPW or TMY3 climate file') except: raise Exception('Interactive load failed. Tkinter not supported'+ 'on this system. Try installing X-Quartz and reloading') if coerce_year is not None: coerce_year = int(coerce_year) if str(coerce_year).__len__() != 4: warnings.warn('Incorrect coerce_year. Setting to None') coerce_year = None def _parseTimes(t, hour, coerce_year): ''' parse time input t which could be string mm_dd_HH or YYYY-mm-dd_HHMM or datetime.datetime object. Return pd.datetime object. Define hour as hour input if not passed directly. ''' import re if type(t) == str: try: tsplit = re.split('-|_| ', t) #mm_dd format if tsplit.__len__() == 2 and t.__len__() == 5: if coerce_year is None: coerce_year = 2021 #default year. tsplit.insert(0,str(coerce_year)) tsplit.append(str(hour).rjust(2,'0')+'00') #mm_dd_hh or YYYY_mm_dd format elif tsplit.__len__() == 3 : if tsplit[0].__len__() == 2: if coerce_year is None: coerce_year = 2021 #default year. tsplit.insert(0,str(coerce_year)) elif tsplit[0].__len__() == 4: tsplit.append(str(hour).rjust(2,'0')+'00') #YYYY-mm-dd_HHMM format if tsplit.__len__() == 4 and tsplit[0].__len__() == 4: t_out = pd.to_datetime(''.join(tsplit).ljust(12,'0') ) else: raise Exception(f'incorrect time string passed {t}.' 'Valid options: mm_dd, mm_dd_HH, ' 'mm_dd_HHMM, YYYY-mm-dd_HHMM') except Exception as e: # Error for incorrect string passed: raise(e) else: #datetime or timestamp try: t_out = pd.to_datetime(t) except pd.errors.ParserError: print('incorrect time object passed. Valid options: ' 'string or datetime.datetime or pd.timeIndex. You ' f'passed {type(t)}.') return t_out, coerce_year # end _parseTimes def _tz_convert(metdata, metadata, tz_convert_val): """ convert metdata to a different local timzone. Particularly for SolarGIS weather files which are returned in UTC by default. ---------- tz_convert_val : int Convert timezone to this fixed value, following ISO standard (negative values indicating West of UTC.) Returns: metdata, metadata """ import pytz if (type(tz_convert_val) == int) | (type(tz_convert_val) == float): metadata['TZ'] = tz_convert_val metdata = metdata.tz_convert(pytz.FixedOffset(tz_convert_val*60)) return metdata, metadata # end _tz_convert if source is None: if weatherFile[-3:].lower() == 'epw': source = 'EPW' else: print('Warning: CSV file passed for input. Assuming it is TMY3'+ 'style format') source = 'TMY3' if label is None: label = 'right' # EPW and TMY are by deffault right-labeled. if source.lower() == 'solargis': if label is None: label = 'center' metdata, metadata = self._readSOLARGIS(weatherFile, label=label) if source.lower() =='epw': metdata, metadata = self._readEPW(weatherFile, label=label) if source.lower() =='tmy3': metdata, metadata = self._readTMY(weatherFile, label=label) metdata, metadata = _tz_convert(metdata, metadata, tz_convert_val) tzinfo = metdata.index.tzinfo tempMetDatatitle = 'metdata_temp.csv' # Parse the start and endtime strings. if starttime is not None: starttime, coerce_year = _parseTimes(starttime, 1, coerce_year) starttime = starttime.tz_localize(tzinfo) if endtime is not None: endtime, coerce_year = _parseTimes(endtime, 23, coerce_year) endtime = endtime.tz_localize(tzinfo) ''' #TODO: do we really need this check? if coerce_year is not None and starttime is not None: if coerce_year != starttime.year or coerce_year != endtime.year: print("Warning: Coerce year does not match requested sampled "+ "date(s)'s years. Setting Coerce year to None.") coerce_year = None ''' tmydata_trunc = self._saveTempTMY(metdata, filename=tempMetDatatitle, starttime=starttime, endtime=endtime, coerce_year=coerce_year, label=label) if tmydata_trunc.__len__() > 0: self.metdata = MetObj(tmydata_trunc, metadata, label = label) else: self.metdata = None raise Exception('Weather file returned zero points for the ' 'starttime / endtime provided') return self.metdata def _saveTempTMY(self, tmydata, filename=None, starttime=None, endtime=None, coerce_year=None, label=None): ''' private function to save part or all of tmydata into /EPWs/ for use in gencumsky -G mode and return truncated tmydata. Gencumsky 8760 starts with Jan 1, 1AM and ends Dec 31, 2400 starttime: tz-localized pd.TimeIndex endtime: tz-localized pd.TimeIndex returns: tmydata_truncated : subset of tmydata based on start & end ''' if filename is None: filename = 'temp.csv' gencumskydata = None gencumdict = None if len(tmydata) == 8760: print("8760 line in WeatherFile. Assuming this is a standard hourly"+ " WeatherFile for the year for purposes of saving Gencumulativesky"+ " temporary weather files in EPW folder.") if coerce_year is None and starttime is not None: coerce_year = starttime.year # SILVANA: If user doesn't pass starttime, and doesn't select # coerce_year, then do we really need to coerce it? elif coerce_year is None: coerce_year = 2021 print(f"Coercing year to {coerce_year}") with warnings.catch_warnings(): warnings.simplefilter("ignore") tmydata.index.values[:] = tmydata.index[:] + pd.DateOffset(year=(coerce_year)) # Correcting last index to next year. tmydata.index.values[-1] = tmydata.index[-1] + pd.DateOffset(year=(coerce_year+1)) # FilterDates filterdates = None if starttime is not None and endtime is not None: starttime filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata[~filterdates] = 0 gencumskydata = tmydata.copy() else: if len(tmydata.index.year.unique()) == 1: if coerce_year: # TODO: check why subhourly data still has 0 entries on the next day on _readTMY3 # in the meantime, let's make Silvana's life easy by just deletig 0 entries tmydata = tmydata[~(tmydata.index.hour == 0)] print(f"Coercing year to {coerce_year}") # TODO: this coercing shows a python warning. Turn it off or find another method? bleh. tmydata.index.values[:] = tmydata.index[:] + pd.DateOffset(year=(coerce_year)) # FilterDates filterdates = None if starttime is not None and endtime is not None: filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata[~filterdates] = 0 gencumskydata = tmydata.copy() gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) else: if coerce_year: print("More than 1 year of data identified. Can't do coercing") # Check if years are consecutive l = list(tmydata.index.year.unique()) if l != list(range(min(l), max(l)+1)): print("Years are not consecutive. Won't be able to use Gencumsky"+ " because who knows what's going on with this data.") else: print("Years are consecutive. For Gencumsky, make sure to select"+ " which yearly temporary weather file you want to use"+ " else they will all get accumulated to same hour/day") # FilterDates filterdates = None if starttime is not None and endtime is not None: filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata = tmydata[filterdates] # Reducing years potentially # Checking if filtering reduced to just 1 year to do usual savin. if len(tmydata.index.year.unique()) == 1: gencumskydata = tmydata.copy() gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) else: gencumdict = [g for n, g in tmydata.groupby(pd.Grouper(freq='Y'))] for ii in range(0, len(gencumdict)): gencumskydata = gencumdict[ii] gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) gencumdict[ii] = gencumskydata gencumskydata = None # clearing so that the dictionary style can be activated. # Let's save files in EPWs folder for Gencumsky if gencumskydata is not None: csvfile = os.path.join('EPWs', filename) print('Saving file {}, # points: {}'.format(csvfile, gencumskydata.__len__())) gencumskydata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) self.gencumsky_metfile = csvfile if gencumdict is not None: self.gencumsky_metfile = [] for ii in range (0, len(gencumdict)): gencumskydata = gencumdict[ii] newfilename = filename.split('.')[0]+'_year_'+str(ii)+'.csv' csvfile = os.path.join('EPWs', newfilename) print('Saving file {}, # points: {}'.format(csvfile, gencumskydata.__len__())) gencumskydata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) self.gencumsky_metfile.append(csvfile) return tmydata def _readTMY(self, tmyfile=None, label = 'right', coerce_year=None): ''' use pvlib to read in a tmy3 file. Note: pvlib 0.7 does not currently support sub-hourly files. Until then, use _readTMYdate() to create the index Parameters ------------ tmyfile : str Filename of tmy3 to be read with pvlib.tmy.readtmy3 label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. coerce_year : int Year to coerce to. Default is 2021. Returns ------- metdata - MetObj collected from TMY3 file ''' def _convertTMYdate(data, meta): ''' requires pvlib 0.8, updated to handle subhourly timestamps ''' # get the date column as a pd.Series of numpy datetime64 data_ymd = pd.to_datetime(data['Date (MM/DD/YYYY)']) # shift the time column so that midnite is 00:00 instead of 24:00 shifted_hour = data['Time (HH:MM)'].str[:2].astype(int) % 24 minute = data['Time (HH:MM)'].str[3:].astype(int) # shift the dates at midnite so they correspond to the next day data_ymd[shifted_hour == 0] += datetime.timedelta(days=1) # NOTE: as of pandas>=0.24 the pd.Series.array has a month attribute, but # in pandas-0.18.1, only DatetimeIndex has month, but indices are immutable # so we need to continue to work with the panda series of dates `data_ymd` data_index = pd.DatetimeIndex(data_ymd) # use indices to check for a leap day and advance it to March 1st leapday = (data_index.month == 2) & (data_index.day == 29) data_ymd[leapday] += datetime.timedelta(days=1) # shifted_hour is a pd.Series, so use pd.to_timedelta to get a pd.Series of # timedeltas # NOTE: as of pvlib-0.6.3, min req is pandas-0.18.1, so pd.to_timedelta # unit must be in (D,h,m,s,ms,us,ns), but pandas>=0.24 allows unit='hour' data.index = (data_ymd + pd.to_timedelta(shifted_hour, unit='h') + pd.to_timedelta(minute, unit='min') ) data = data.tz_localize(int(meta['TZ'] * 3600)) return data import pvlib #(tmydata, metadata) = pvlib.tmy.readtmy3(filename=tmyfile) #pvlib<=0.6 (tmydata, metadata) = pvlib.iotools.tmy.read_tmy3(filename=tmyfile, coerce_year=coerce_year) try: tmydata = _convertTMYdate(tmydata, metadata) except KeyError: print('PVLib >= 0.8.0 is required for sub-hourly data input') return tmydata, metadata def _readEPW(self, epwfile=None, label = 'right', coerce_year=None): """ Uses readepw from pvlib>0.6.1 but un-do -1hr offset and rename columns to match TMY3: DNI, DHI, GHI, DryBulb, Wspd Parameters ------------ epwfile : str Direction and filename of the epwfile. If None, opens an interactive loading window. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. coerce_year : int Year to coerce data to. """ import pvlib #import re ''' NOTE: In PVLib > 0.6.1 the new epw.read_epw() function reads in time with a default -1 hour offset. This is reflected in our existing workflow. ''' #(tmydata, metadata) = readepw(epwfile) # (tmydata, metadata) = pvlib.iotools.epw.read_epw(epwfile, coerce_year=coerce_year) #pvlib>0.6.1 #pvlib uses -1hr offset that needs to be un-done. Why did they do this? tmydata.index = tmydata.index+pd.Timedelta(hours=1) # rename different field parameters to match output from # pvlib.tmy.readtmy: DNI, DHI, DryBulb, Wspd tmydata.rename(columns={'dni':'DNI', 'dhi':'DHI', 'temp_air':'DryBulb', 'wind_speed':'Wspd', 'ghi':'GHI', 'albedo':'Alb' }, inplace=True) return tmydata, metadata def _readSOLARGIS(self, filename=None, label='center'): """ Read solarGIS data file which is timestamped in UTC. rename columns to match TMY3: DNI, DHI, GHI, DryBulb, Wspd Timezone is always returned as UTC. Use tz_convert in readWeatherFile to manually convert to local time Parameters ------------ filename : str filename of the solarGIS file. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval. SolarGis default style is center, unless user requests a right label. """ # file format: anything with # preceding is in the header header = []; lat = None; lon = None; elev = None; name = None with open(filename, 'r') as result: for line in result: if line.startswith('#'): header.append(line) if line.startswith('#Latitude:'): lat = line[11:] if line.startswith('#Longitude:'): lon = line[12:] if line.startswith('#Elevation:'): elev = line[12:17] if line.startswith('#Site name:'): name = line[12:-1] else: break metadata = {'latitude':float(lat), 'longitude':float(lon), 'altitude':float(elev), 'Name':name, 'TZ':0.0} # read in remainder of data data = pd.read_csv(filename,skiprows=header.__len__(), delimiter=';') # rename different field parameters to match output from # pvlib.tmy.readtmy: DNI, DHI, DryBulb, Wspd data.rename(columns={'DIF':'DHI', 'TEMP':'DryBulb', 'WS':'Wspd', }, inplace=True) # Generate index from Date (DD.HH.YYYY) and Time data.index = pd.to_datetime(data.Date + ' ' + data.Time, dayfirst=True, utc=True, infer_datetime_format = True) return data, metadata def getSingleTimestampTrackerAngle(self, metdata, timeindex, gcr=None, azimuth=180, axis_tilt=0, limit_angle=45, backtrack=True): """ Helper function to calculate a tracker's angle for use with the fixed tilt routines of bifacial_radiance. It calculates tracker angle for sun position at the timeindex passed (no left or right time offset, label = 'center') Parameters ---------- metdata : :py:class:`~bifacial_radiance.MetObj` Meterological object to set up geometry. Usually set automatically by `bifacial_radiance` after running :py:class:`bifacial_radiance.readepw`. Default = self.metdata timeindex : int Index between 0 to 8760 indicating hour to simulate. gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] azimuth : float or int Orientation axis of tracker torque tube. Default North-South (180 deg) axis_tilt : float or int Default 0. Axis tilt -- not implemented in sensors locations so it's pointless at this release to change it. limit_angle : float or int Limit angle (+/-) of the 1-axis tracker in degrees. Default 45 backtrack : boolean Whether backtracking is enabled (default = True) """ ''' elev = metdata.elevation lat = metdata.latitude lon = metdata.longitude timestamp = metdata.datetime[timeindex] ''' import pvlib solpos = metdata.solpos.iloc[timeindex] sunzen = float(solpos.apparent_zenith) sunaz = float(solpos.azimuth) # not substracting the 180 trackingdata = pvlib.tracking.singleaxis(sunzen, sunaz, axis_tilt, azimuth, limit_angle, backtrack, gcr) tracker_theta = float(np.round(trackingdata['tracker_theta'],2)) tracker_theta = tracker_theta*-1 # bifacial_radiance uses East (morning) theta as positive return tracker_theta def gendaylit(self, timeindex, metdata=None, debug=False): """ Sets and returns sky information using gendaylit. Uses PVLIB for calculating the sun position angles instead of using Radiance internal sun position calculation (for that use gendaylit function) Parameters ---------- timeindex : int Index from 0 to ~4000 of the MetObj (daylight hours only) metdata : ``MetObj`` MetObj object with list of dni, dhi, ghi and location debug : bool Flag to print output of sky DHI and DNI Returns ------- skyname : str Sets as a self.skyname and returns filename of sky in /skies/ directory. If errors exist, such as DNI = 0 or sun below horizon, this skyname is None """ import warnings if metdata is None: try: metdata = self.metdata except: print('usage: pass metdata, or run after running ' + 'readWeatherfile() ') return ground = self.ground locName = metdata.city dni = metdata.dni[timeindex] dhi = metdata.dhi[timeindex] ghi = metdata.ghi[timeindex] elev = metdata.elevation lat = metdata.latitude lon = metdata.longitude # Assign Albedos try: if ground.ReflAvg.shape == metdata.dni.shape: groundindex = timeindex elif self.ground.ReflAvg.shape[0] == 1: # just 1 entry groundindex = 0 else: warnings.warn("Shape of ground Albedos and TMY data do not match.") return except: print('usage: make sure to run setGround() before gendaylit()') return if debug is True: print('Sky generated with Gendaylit, with DNI: %0.1f, DHI: %0.1f' % (dni, dhi)) print("Datetime TimeIndex", metdata.datetime[timeindex]) #Time conversion to correct format and offset. #datetime = metdata.sunrisesetdata['corrected_timestamp'][timeindex] #Don't need any of this any more. Already sunrise/sunset corrected and offset by appropriate interval # get solar position zenith and azimuth based on site metadata #solpos = pvlib.irradiance.solarposition.get_solarposition(datetimetz,lat,lon,elev) solpos = metdata.solpos.iloc[timeindex] sunalt = float(solpos.elevation) # Radiance expects azimuth South = 0, PVlib gives South = 180. Must substract 180 to match. sunaz = float(solpos.azimuth)-180.0 sky_path = 'skies' if dhi <= 0: self.skyfiles = [None] return None # We should already be filtering for elevation >0. But just in case... if sunalt <= 0: sunalt = np.arcsin((ghi-dhi)/(dni+.001))*180/np.pi # reverse engineer elevation from ghi, dhi, dni print('Warning: negative sun elevation at '+ '{}. '.format(metdata.datetime[timeindex])+ 'Re-calculated elevation: {:0.2}'.format(sunalt)) # Note - -W and -O1 option is used to create full spectrum analysis in units of Wm-2 #" -L %s %s -g %s \n" %(dni/.0079, dhi/.0079, self.ground.ReflAvg) + \ skyStr = ("# start of sky definition for daylighting studies\n" + \ "# location name: " + str(locName) + " LAT: " + str(lat) +" LON: " + str(lon) + " Elev: " + str(elev) + "\n" "# Sun position calculated w. PVLib\n" + \ "!gendaylit -ang %s %s" %(sunalt, sunaz)) + \ " -W %s %s -g %s -O 1 \n" %(dni, dhi, ground.ReflAvg[groundindex]) + \ "skyfunc glow sky_mat\n0\n0\n4 1 1 1 0\n" + \ "\nsky_mat source sky\n0\n0\n4 0 0 1 180\n" + \ ground._makeGroundString(index=groundindex, cumulativesky=False) time = metdata.datetime[timeindex] #filename = str(time)[2:-9].replace('-','_').replace(' ','_').replace(':','_') filename = time.strftime('%Y-%m-%d_%H%M') skyname = os.path.join(sky_path,"sky2_%s_%s_%s.rad" %(lat, lon, filename)) skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname] return skyname def gendaylit2manual(self, dni, dhi, sunalt, sunaz): """ Sets and returns sky information using gendaylit. Uses user-provided data for sun position and irradiance. .. warning:: This generates the sky at the sun altitude&azimuth provided, make sure it is the right position relative to how the weather data got created and read (i.e. label right, left or center). Parameters ------------ dni: int or float Direct Normal Irradiance (DNI) value, in W/m^2 dhi : int or float Diffuse Horizontal Irradiance (DHI) value, in W/m^2 sunalt : int or float Sun altitude (degrees) sunaz : int or float Sun azimuth (degrees) Returns ------- skyname : string Filename of sky in /skies/ directory """ print('Sky generated with Gendaylit 2 MANUAL, with DNI: %0.1f, DHI: %0.1f' % (dni, dhi)) sky_path = 'skies' if sunalt <= 0 or dhi <= 0: self.skyfiles = [None] return None # Assign Albedos try: if self.ground.ReflAvg.shape[0] == 1: # just 1 entry groundindex = 0 else: print("Ambiguous albedo entry, Set albedo to single value " "in setGround()") return except: print('usage: make sure to run setGround() before gendaylit()') return # Note: -W and -O1 are used to create full spectrum analysis in units of Wm-2 #" -L %s %s -g %s \n" %(dni/.0079, dhi/.0079, self.ground.ReflAvg) + \ skyStr = ("# start of sky definition for daylighting studies\n" + \ "# Manual inputs of DNI, DHI, SunAlt and SunAZ into Gendaylit used \n" + \ "!gendaylit -ang %s %s" %(sunalt, sunaz)) + \ " -W %s %s -g %s -O 1 \n" %(dni, dhi, self.ground.ReflAvg[groundindex]) + \ "skyfunc glow sky_mat\n0\n0\n4 1 1 1 0\n" + \ "\nsky_mat source sky\n0\n0\n4 0 0 1 180\n" + \ self.ground._makeGroundString(index=groundindex, cumulativesky=False) skyname = os.path.join(sky_path, "sky2_%s.rad" %(self.name)) skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname] return skyname def genCumSky(self, gencumsky_metfile=None, savefile=None): """ Generate Skydome using gencumsky. .. warning:: gencumulativesky.exe is required to be installed, which is not a standard radiance distribution. You can find the program in the bifacial_radiance distribution directory in \Lib\site-packages\bifacial_radiance\data Use :func:`readWeatherFile(filename, starttime='YYYY-mm-dd_HHMM', endtime='YYYY-mm-dd_HHMM')` to limit gencumsky simulations instead. Parameters ------------ gencumsky_metfile : str Filename with path to temporary created meteorological file usually created in EPWs folder. This csv file has no headers, no index, and two space separated columns with values for GHI and DNI for each hour in the year, and MUST have 8760 entries long otherwise gencumulativesky.exe cries. savefile : string If savefile is None, defaults to "cumulative" Returns -------- skyname : str Filename of the .rad file containing cumulativesky info """ # TODO: error checking and auto-install of gencumulativesky.exe # TODO: add check if readWeatherfile has not be done # TODO: check if it fails if gcc module has been loaded? (common hpc issue) #import datetime if gencumsky_metfile is None: gencumsky_metfile = self.gencumsky_metfile if isinstance(gencumsky_metfile, str): print("Loaded ", gencumsky_metfile) if isinstance(gencumsky_metfile, list): print("There are more than 1 year of gencumsky temporal weather file saved."+ "You can pass which file you want with gencumsky_metfile input. Since "+ "No year was selected, defaulting to using the first year of the list") gencumsky_metfile = gencumsky_metfile[0] print("Loaded ", gencumsky_metfile) if savefile is None: savefile = "cumulative" sky_path = 'skies' lat = self.metdata.latitude lon = self.metdata.longitude timeZone = self.metdata.timezone ''' cmd = "gencumulativesky +s1 -h 0 -a %s -o %s -m %s %s " %(lat, lon, float(timeZone)*15, filetype) +\ "-time %s %s -date %s %s %s %s %s" % (startdt.hour, enddt.hour+1, startdt.month, startdt.day, enddt.month, enddt.day, gencumsky_metfile) ''' cmd = (f"gencumulativesky +s1 -h 0 -a {lat} -o {lon} -m " f"{float(timeZone)*15} -G {gencumsky_metfile}" ) with open(savefile+".cal","w") as f: _,err = _popen(cmd, None, f) if err is not None: print(err) # Assign Albedos try: groundstring = self.ground._makeGroundString(cumulativesky=True) except: raise Exception('Error: ground reflection not defined. ' 'Run RadianceObj.setGround() first') return skyStr = "#Cumulative Sky Definition\n" +\ "void brightfunc skyfunc\n" + \ "2 skybright " + "%s.cal\n" % (savefile) + \ "0\n" + \ "0\n" + \ "\nskyfunc glow sky_glow\n" + \ "0\n" + \ "0\n" + \ "4 1 1 1 0\n" + \ "\nsky_glow source sky\n" + \ "0\n" + \ "0\n" + \ "4 0 0 1 180\n" + \ groundstring skyname = os.path.join(sky_path, savefile+".rad") skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname]#, 'SunFile.rad' ] return skyname def set1axis(self, metdata=None, azimuth=180, limit_angle=45, angledelta=5, backtrack=True, gcr=1.0 / 3, cumulativesky=True, fixed_tilt_angle=None, useMeasuredTrackerAngle=False, axis_azimuth=None): """ Set up geometry for 1-axis tracking. Pull in tracking angle details from pvlib, create multiple 8760 metdata sub-files where datetime of met data matches the tracking angle. Returns 'trackerdict' which has keys equal to either the tracker angles (gencumsky workflow) or timestamps (gendaylit hourly workflow) Parameters ------------ metdata : :py:class:`~bifacial_radiance.MetObj` Meterological object to set up geometry. Usually set automatically by `bifacial_radiance` after running :py:class:`bifacial_radiance.readepw`. Default = self.metdata azimuth : numeric Orientation axis of tracker torque tube. Default North-South (180 deg). For fixed-tilt configuration, input is fixed azimuth (180 is south) limit_angle : numeric Limit angle (+/-) of the 1-axis tracker in degrees. Default 45 angledelta : numeric Degree of rotation increment to parse irradiance bins. Default 5 degrees. (0.4 % error for DNI). Other options: 4 (.25%), 2.5 (0.1%). Note: the smaller the angledelta, the more simulations must be run. backtrack : bool Whether backtracking is enabled (default = True) gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] cumulativesky : bool [True] Wether individual csv files are created with constant tilt angle for the cumulativesky approach. if false, the gendaylit tracking approach must be used. fixed_tilt_angle : numeric If passed, this changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and axis_azimuth as the tilt and azimuth useMeasuredTrackerAngle: Bool If True, and data for tracker angles has been passed by being included in the WeatherFile object (column name 'Tracker Angle (degrees)'), then tracker angles will be set to these values instead of being calculated. NOTE that the value for azimuth passed to set1axis must be surface azimuth in the morning and not the axis_azimuth (i.e. for a N-S HSAT, azimuth = 90). axis_azimuth : numeric DEPRECATED. returns deprecation warning. Pass the tracker axis_azimuth through to azimuth input instead. Returns ------- trackerdict : dictionary Keys represent tracker tilt angles (gencumsky) or timestamps (gendaylit) and list of csv metfile, and datetimes at that angle trackerdict[angle]['csvfile';'surf_azm';'surf_tilt';'UTCtime'] - or - trackerdict[time]['tracker_theta';'surf_azm';'surf_tilt'] """ # Documentation check: # Removed Internal variables # ------- # metdata.solpos dataframe with solar position data # metdata.surface_azimuth list of tracker azimuth data # metdata.surface_tilt list of tracker surface tilt data # metdata.tracker_theta list of tracker tilt angle import warnings if metdata == None: metdata = self.metdata if metdata == {}: raise Exception("metdata doesnt exist yet. "+ "Run RadianceObj.readWeatherFile() ") if axis_azimuth: azimuth = axis_azimuth warnings.warn("axis_azimuth is deprecated in set1axis; use azimuth " "input instead.", DeprecationWarning) #backtrack = True # include backtracking support in later version #gcr = 1.0/3.0 # default value - not used if backtrack = False. # get 1-axis tracker angles for this location, rounded to nearest 'angledelta' trackerdict = metdata._set1axis(cumulativesky=cumulativesky, azimuth=azimuth, limit_angle=limit_angle, angledelta=angledelta, backtrack=backtrack, gcr=gcr, fixed_tilt_angle=fixed_tilt_angle, useMeasuredTrackerAngle=useMeasuredTrackerAngle ) self.trackerdict = trackerdict self.cumulativesky = cumulativesky return trackerdict def gendaylit1axis(self, metdata=None, trackerdict=None, startdate=None, enddate=None, debug=False): """ 1-axis tracking implementation of gendaylit. Creates multiple sky files, one for each time of day. Parameters ------------ metdata MetObj output from readWeatherFile. Needs to have RadianceObj.set1axis() run on it first. startdate : str DEPRECATED, does not do anything now. Recommended to downselect metdata when reading Weather File. enddate : str DEPRECATED, does not do anything now. Recommended to downselect metdata when reading Weather File. trackerdict : dictionary Dictionary with keys for tracker tilt angles (gencumsky) or timestamps (gendaylit) Returns ------- Updated trackerdict dictionary Dictionary with keys for tracker tilt angles (gencumsky) or timestamps (gendaylit) with the additional dictionary value ['skyfile'] added """ if metdata is None: metdata = self.metdata if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if startdate is not None or enddate is not None: print("Deprecation Warning: gendyalit1axis no longer downselects"+ " entries by stardate and enddate. Downselect your data"+ " when loading with readWeatherFile") return try: metdata.tracker_theta # this may not exist except AttributeError: print("metdata.tracker_theta doesn't exist. Run RadianceObj.set1axis() first") if debug is False: print('Creating ~%d skyfiles. '%(len(trackerdict.keys()))) count = 0 # counter to get number of skyfiles created, just for giggles trackerdict2={} for i in range(0, len(trackerdict.keys())): try: time = metdata.datetime[i] except IndexError: #out of range error break # #filename = str(time)[5:-12].replace('-','_').replace(' ','_') filename = time.strftime('%Y-%m-%d_%H%M') self.name = filename #check for GHI > 0 #if metdata.ghi[i] > 0: if (metdata.ghi[i] > 0) & (~np.isnan(metdata.tracker_theta[i])): skyfile = self.gendaylit(metdata=metdata,timeindex=i, debug=debug) # trackerdict2 reduces the dict to only the range specified. trackerdict2[filename] = trackerdict[filename] trackerdict2[filename]['skyfile'] = skyfile count +=1 print('Created {} skyfiles in /skies/'.format(count)) self.trackerdict = trackerdict2 return trackerdict2 def genCumSky1axis(self, trackerdict=None): """ 1-axis tracking implementation of gencumulativesky. Creates multiple .cal files and .rad files, one for each tracker angle. Use :func:`readWeatherFile` to limit gencumsky simulations Parameters ------------ trackerdict : dictionary Trackerdict generated as output by RadianceObj.set1axis() Returns ------- trackerdict : dictionary Trackerdict dictionary with new entry trackerdict.skyfile Appends 'skyfile' to the 1-axis dict with the location of the sky .radfile """ if trackerdict == None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') for theta in sorted(trackerdict): # call gencumulativesky with a new .cal and .rad name csvfile = trackerdict[theta]['csvfile'] savefile = '1axis_%s'%(theta) #prefix for .cal file and skies\*.rad file skyfile = self.genCumSky(gencumsky_metfile=csvfile, savefile=savefile) trackerdict[theta]['skyfile'] = skyfile print('Created skyfile %s'%(skyfile)) # delete default skyfile (not strictly necessary) self.skyfiles = None self.trackerdict = trackerdict return trackerdict def makeOct(self, filelist=None, octname=None): """ Combine everything together into a .oct file Parameters ---------- filelist : list Files to include. otherwise takes self.filelist octname : str filename (without .oct extension) Returns ------- octname : str filename of .oct file in root directory including extension err : str Error message returned from oconv (if any) """ if filelist is None: filelist = self.getfilelist() if octname is None: octname = self.name debug = False #JSS. With the way that the break is handled now, this will wait the 10 for all the hours # that were not generated sky files. if self.hpc : import time time_to_wait = 10 time_counter = 0 for file in filelist: if debug: print("HPC Checking for file %s" % (file)) if None in filelist: # are we missing any files? abort! print('Missing files, skipping...') self.octfile = None return None #Filesky is being saved as 'none', so it crashes ! while not os.path.exists(file): time.sleep(1) time_counter += 1 if time_counter > time_to_wait: print ("filenotfound") break #os.system('oconv '+ ' '.join(filelist) + ' > %s.oct' % (octname)) if None in filelist: # are we missing any files? abort! print('Missing files, skipping...') self.octfile = None return None #cmd = 'oconv ' + ' '.join(filelist) filelist.insert(0,'oconv') with open('%s.oct' % (octname), "w") as f: _,err = _popen(filelist, None, f) #TODO: exception handling for no sun up if err is not None: if err[0:5] == 'error': raise Exception(err[7:]) if err[0:7] == 'message': warnings.warn(err[9:], Warning) #use rvu to see if everything looks good. # use cmd for this since it locks out the terminal. #'rvu -vf views\side.vp -e .01 monopanel_test.oct' print("Created %s.oct" % (octname)) self.octfile = '%s.oct' % (octname) return '%s.oct' % (octname) def makeOct1axis(self, trackerdict=None, singleindex=None, customname=None): """ Combine files listed in trackerdict into multiple .oct files Parameters ------------ trackerdict Output from :py:class:`~bifacial_radiance.RadianceObj.makeScene1axis` singleindex : str Single index for trackerdict to run makeOct1axis in single-value mode, format 'YYYY-MM-DD_HHMM'. customname : str Custom text string added to the end of the OCT file name. Returns ------- trackerdict Append 'octfile' to the 1-axis dict with the location of the scene .octfile """ if customname is None: customname = '' if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if singleindex is None: # loop through all values in the tracker dictionary indexlist = trackerdict.keys() else: # just loop through one single index in tracker dictionary indexlist = [singleindex] print('\nMaking {} octfiles in root directory.'.format(indexlist.__len__())) for index in sorted(indexlist): # run through either entire key list of trackerdict, or just a single value try: filelist = self.materialfiles + [trackerdict[index]['skyfile'], trackerdict[index]['radfile']] octname = '1axis_%s%s'%(index, customname) trackerdict[index]['octfile'] = self.makeOct(filelist, octname) except KeyError as e: print('Trackerdict key error: {}'.format(e)) return trackerdict def makeModule(self, name=None, x=None, y=None, z=None, modulefile=None, text=None, customtext='', xgap=0.01, ygap=0.0, zgap=0.1, numpanels=1, rewriteModulefile=True, glass=False, modulematerial=None, bifi=1, **kwargs): """ pass module generation details into ModuleObj(). See ModuleObj() docstring for more details """ from bifacial_radiance import ModuleObj if name is None: print("usage: makeModule(name,x,y,z, modulefile = '\objects\*.rad', "+ " zgap = 0.1 (module offset)"+ "numpanels = 1 (# of panels in portrait), ygap = 0.05 "+ "(slope distance between panels when arrayed), "+ "rewriteModulefile = True (or False), bifi = 1") print("You can also override module_type info by passing 'text'"+ "variable, or add on at the end for racking details with "+ "'customtext'. See function definition for more details") print("Optional: tubeParams={} (torque tube details including " "diameter (torque tube dia. in meters), tubetype='Round' " "(or 'square', 'hex'), material='Metal_Grey' (or 'black')" ", axisofrotation=True (does scene rotate around tube)") print("Optional: cellModule={} (create cell-level module by "+ " passing in dictionary with keys 'numcellsx'6 (#cells in "+ "X-dir.), 'numcellsy', 'xcell' (cell size in X-dir. in meters),"+ "'ycell', 'xcellgap' (spacing between cells in X-dir.), 'ycellgap'") print("Optional: omegaParams={} (create the support structure omega by "+ "passing in dictionary with keys 'omega_material' (the material of "+ "omega), 'mod_overlap'(the length of the module adjacent piece of"+ " omega that overlaps with the module),'x_omega1', 'y_omega' (ideally same"+ " for all the parts of omega),'z_omega1', 'x_omega2' (X-dir length of the"+ " vertical piece), 'x_omega3', z_omega3") return """ # TODO: check for deprecated torquetube and axisofrotationTorqueTube in kwargs. """ if 'tubeParams' in kwargs: tubeParams = kwargs.pop('tubeParams') else: tubeParams = None if 'torquetube' in kwargs: torquetube = kwargs.pop('torquetube') print("\nWarning: boolean input `torquetube` passed into makeModule" ". Starting in v0.4.0 this boolean parameter is deprecated." " Use module.addTorquetube() with `visible` parameter instead.") if tubeParams: tubeParams['visible'] = torquetube elif (tubeParams is None) & (torquetube is True): tubeParams = {'visible':True} # create default TT if 'axisofrotationTorqueTube' in kwargs: axisofrotation = kwargs.pop('axisofrotationTorqueTube') print("\nWarning: input boolean `axisofrotationTorqueTube` passed " "into makeModule. Starting in v0.4.0 this boolean parameter is" " deprecated. Use module.addTorquetube() with `axisofrotation`" "parameter instead.") if tubeParams: #this kwarg only does somehting if there's a TT. tubeParams['axisofrotation'] = axisofrotation if self.hpc: # trigger HPC simulation in ModuleObj kwargs['hpc']=True self.module = ModuleObj(name=name, x=x, y=y, z=z, bifi=bifi, modulefile=modulefile, text=text, customtext=customtext, xgap=xgap, ygap=ygap, zgap=zgap, numpanels=numpanels, rewriteModulefile=rewriteModulefile, glass=glass, modulematerial=modulematerial, tubeParams=tubeParams, **kwargs) return self.module def makeCustomObject(self, name=None, text=None): """ Function for development and experimenting with extraneous objects in the scene. This function creates a `name.rad` textfile in the objects folder with whatever text that is passed to it. It is up to the user to pass the correct radiance format. For example, to create a box at coordinates 0,0 (with its bottom surface on the plane z=0): .. code-block: name = 'box' text='! genbox black PVmodule 0.5 0.5 0.5 | xform -t -0.25 -0.25 0' Parameters ---------- name : str String input to name the module type text : str Text used in the radfile to generate the module """ customradfile = os.path.join('objects', '%s.rad'%(name)) # update in 0.2.3 to shorten radnames # py2 and 3 compatible: binary write, encode text first with open(customradfile, 'wb') as f: f.write(text.encode('ascii')) print("\nCustom Object Name", customradfile) self.customradfile = customradfile return customradfile def printModules(self): # print available module types from ModuleObj from bifacial_radiance import ModuleObj modulenames = ModuleObj().readModule() print('Available module names: {}'.format([str(x) for x in modulenames])) return modulenames def makeScene(self, module=None, sceneDict=None, radname=None, moduletype=None): """ Create a SceneObj which contains details of the PV system configuration including tilt, row pitch, height, nMods per row, nRows in the system... Parameters ---------- module : str or ModuleObj String name of module created with makeModule() sceneDict : dictionary Dictionary with keys: `tilt`, `clearance_height`*, `pitch`, `azimuth`, `nMods`, `nRows`, `hub_height`*, `height`* * height deprecated from sceneDict. For makeScene (fixed systems) if passed it is assumed it reffers to clearance_height. `clearance_height` recommended for fixed_tracking systems. `hub_height` can also be passed as a possibility. radname : str Gives a custom name to the scene file. Useful when parallelizing. moduletype: DEPRECATED. use the `module` kwarg instead. Returns ------- SceneObj 'scene' with configuration details """ if moduletype is not None: module = moduletype print("Warning: input `moduletype` is deprecated. Use kwarg " "`module` instead") if module is None: try: module = self.module print(f'Using last saved module, name: {module.name}') except AttributeError: print('makeScene(module, sceneDict, nMods, nRows). '+\ 'Available moduletypes: ' ) self.printModules() #print available module types return self.scene = SceneObj(module) self.scene.hpc = self.hpc #pass HPC mode from parent if sceneDict is None: print('makeScene(moduletype, sceneDict, nMods, nRows). '+\ 'sceneDict inputs: .tilt .clearance_height .pitch .azimuth') return self.scene if 'azimuth' not in sceneDict: sceneDict['azimuth'] = 180 if 'nRows' not in sceneDict: sceneDict['nRows'] = 7 if 'nMods' not in sceneDict: sceneDict['nMods'] = 20 # Fixed tilt routine # Preferred: clearance_height, # If only height is passed, it is assumed to be clearance_height. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='clearance_height', nonpreferred='hub_height') self.nMods = sceneDict['nMods'] self.nRows = sceneDict['nRows'] self.sceneRAD = self.scene._makeSceneNxR(sceneDict=sceneDict, radname=radname) if 'appendRadfile' not in sceneDict: appendRadfile = False else: appendRadfile = sceneDict['appendRadfile'] if appendRadfile: debug = False try: self.radfiles.append(self.sceneRAD) if debug: print( "Radfile APPENDED!") except: #TODO: Manage situation where radfile was created with #appendRadfile to False first.. self.radfiles=[] self.radfiles.append(self.sceneRAD) if debug: print( "Radfile APPENDAGE created!") else: self.radfiles = [self.sceneRAD] return self.scene def appendtoScene(self, radfile=None, customObject=None, text=''): """ Appends to the `Scene radfile` in folder `\objects` the text command in Radiance lingo created by the user. Useful when using addCustomObject to the scene. Parameters ---------- radfile: str Directory and name of where .rad scene file is stored customObject : str Directory and name of custom object .rad file is stored text : str Command to be appended to the radfile. Do not leave empty spaces at the end. Returns ------- Nothing, the radfile must already be created and assigned when running this. """ #TODO: Add a custom name and replace radfile name # py2 and 3 compatible: binary write, encode text first text2 = '\n' + text + ' ' + customObject debug = False if debug: print (text2) with open(radfile, 'a+') as f: f.write(text2) def makeScene1axis(self, trackerdict=None, module=None, sceneDict=None, cumulativesky=None, moduletype=None): """ Creates a SceneObj for each tracking angle which contains details of the PV system configuration including row pitch, hub_height, nMods per row, nRows in the system... Parameters ------------ trackerdict Output from GenCumSky1axis module : str or ModuleObj Name or ModuleObj created with makeModule() sceneDict : Dictionary with keys:`tilt`, `hub_height`, `pitch`, `azimuth` cumulativesky : bool Defines if sky will be generated with cumulativesky or gendaylit. moduletype: DEPRECATED. use the `module` kwarg instead. Returns -------- trackerdict Append the following keys 'radfile' directory where .rad scene file is stored 'scene' SceneObj for each tracker theta 'clearance_height' Calculated ground clearance based on `hub height`, `tilt` angle and overall collector width `sceney` """ import math if sceneDict is None: print('usage: makeScene1axis(module, sceneDict, nMods, nRows).'+ 'sceneDict inputs: .hub_height .azimuth .nMods .nRows'+ 'and .pitch or .gcr') return # If no nRows or nMods assigned on deprecated variable or dictionary, # assign default. if 'nRows' not in sceneDict: sceneDict['nRows'] = 7 if 'nMods' not in sceneDict: sceneDict['nMods'] = 20 if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if cumulativesky is None: try: # see if cumulativesky = False was set earlier, # e.g. in RadianceObj.set1axis cumulativesky = self.cumulativesky except AttributeError: # default cumulativesky = true to maintain backward compatibility. cumulativesky = True if moduletype is not None: module = moduletype print("Warning: input `moduletype` is deprecated. Use kwarg " "`module` instead") if module is None: try: module = self.module print(f'Using last saved module, name: {module.name}') except AttributeError: print('usage: makeScene1axis(trackerdict, module, '+ 'sceneDict, nMods, nRows). ') self.printModules() #print available module types return if 'orientation' in sceneDict: raise Exception('\n\n ERROR: Orientation format has been ' 'deprecated since version 0.2.4. If you want to flip your ' 'modules, on makeModule switch the x and y values.\n\n') # 1axis routine # Preferred hub_height sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height') if use_clearanceheight: simplefix = 0 hubheight = sceneDict['clearance_height'] # Not really, but this is the fastest # to make it work with the simplefix as below the actual clearnace height # gets calculated and the 0 sets the cosine correction to 0. # TODO CLEAN THIS UP. else: #the hub height is the tracker height at center of rotation. hubheight = sceneDict['hub_height'] simplefix = 1 if cumulativesky is True: # cumulativesky workflow print('\nMaking .rad files for cumulativesky 1-axis workflow') for theta in trackerdict: scene = SceneObj(module) if trackerdict[theta]['surf_azm'] >= 180: trackerdict[theta]['surf_azm'] = trackerdict[theta]['surf_azm']-180 trackerdict[theta]['surf_tilt'] = trackerdict[theta]['surf_tilt']*-1 radname = '1axis%s_'%(theta,) # Calculating clearance height for this theta. height = hubheight - simplefix*0.5* math.sin(abs(theta) * math.pi / 180) \ * scene.module.sceney + scene.module.offsetfromaxis \ * math.sin(abs(theta)*math.pi/180) # Calculate the ground clearance height based on the hub height. Add abs(theta) to avoid negative tilt angle errors trackerdict[theta]['clearance_height'] = height try: sceneDict2 = {'tilt':trackerdict[theta]['surf_tilt'], 'pitch':sceneDict['pitch'], 'clearance_height':trackerdict[theta]['clearance_height'], 'azimuth':trackerdict[theta]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} except KeyError: #maybe gcr is passed, not pitch sceneDict2 = {'tilt':trackerdict[theta]['surf_tilt'], 'gcr':sceneDict['gcr'], 'clearance_height':trackerdict[theta]['clearance_height'], 'azimuth':trackerdict[theta]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} radfile = scene._makeSceneNxR(sceneDict=sceneDict2, radname=radname) trackerdict[theta]['radfile'] = radfile trackerdict[theta]['scene'] = scene print('{} Radfiles created in /objects/'.format(trackerdict.__len__())) else: #gendaylit workflow print('\nMaking ~%s .rad files for gendaylit 1-axis workflow (this takes a minute..)' % (len(trackerdict))) count = 0 for time in trackerdict: scene = SceneObj(module) if trackerdict[time]['surf_azm'] >= 180: trackerdict[time]['surf_azm'] = trackerdict[time]['surf_azm']-180 trackerdict[time]['surf_tilt'] = trackerdict[time]['surf_tilt']*-1 theta = trackerdict[time]['theta'] radname = '1axis%s_'%(time,) # Calculating clearance height for this time. height = hubheight - simplefix*0.5* math.sin(abs(theta) * math.pi / 180) \ * scene.module.sceney + scene.module.offsetfromaxis \ * math.sin(abs(theta)*math.pi/180) if trackerdict[time]['ghi'] > 0: trackerdict[time]['clearance_height'] = height try: sceneDict2 = {'tilt':trackerdict[time]['surf_tilt'], 'pitch':sceneDict['pitch'], 'clearance_height': trackerdict[time]['clearance_height'], 'azimuth':trackerdict[time]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} except KeyError: #maybe gcr is passed instead of pitch sceneDict2 = {'tilt':trackerdict[time]['surf_tilt'], 'gcr':sceneDict['gcr'], 'clearance_height': trackerdict[time]['clearance_height'], 'azimuth':trackerdict[time]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} radfile = scene._makeSceneNxR(sceneDict=sceneDict2, radname=radname) trackerdict[time]['radfile'] = radfile trackerdict[time]['scene'] = scene count+=1 print('{} Radfiles created in /objects/'.format(count)) self.trackerdict = trackerdict self.nMods = sceneDict['nMods'] #assign nMods and nRows to RadianceObj self.nRows = sceneDict['nRows'] self.hub_height = hubheight return trackerdict def analysis1axis(self, trackerdict=None, singleindex=None, accuracy='low', customname=None, modWanted=None, rowWanted=None, sensorsy=9, sensorsx=1, modscanfront = None, modscanback = None, relative=False, debug=False ): """ Loop through trackerdict and runs linescans for each scene and scan in there. Parameters ---------------- trackerdict singleindex : str For single-index mode, just the one index we want to run (new in 0.2.3). Example format '21_06_14_12_30' for 2021 June 14th 12:30 pm accuracy : str 'low' or 'high', resolution option used during _irrPlot and rtrace customname : str Custom text string to be added to the file name for the results .CSV files modWanted : int Module to be sampled. Index starts at 1. rowWanted : int Row to be sampled. Index starts at 1. (row 1) sensorsy : int or list Number of 'sensors' or scanning points along the collector width (CW) of the module(s). If multiple values are passed, first value represents number of front sensors, second value is number of back sensors sensorsx : int or list Number of 'sensors' or scanning points along the length, the side perpendicular to the collector width (CW) of the module(s) for the back side of the module. If multiple values are passed, first value represents number of front sensors, second value is number of back sensors. modscanfront : dict dictionary with one or more of the following key: xstart, ystart, zstart, xinc, yinc, zinc, Nx, Ny, Nz, orient. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. modscanback : dict dictionary with one or more of the following key: xstart, ystart, zstart, xinc, yinc, zinc, Nx, Ny, Nz, orient. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) debug : Bool Activates internal printing of the function to help debugging. Returns ------- trackerdict with new keys: 'AnalysisObj' : analysis object for this tracker theta 'Wm2Front' : list of front Wm-2 irradiances, len=sensorsy_back 'Wm2Back' : list of rear Wm-2 irradiances, len=sensorsy_back 'backRatio' : list of rear irradiance ratios, len=sensorsy_back RadianceObj with new appended values: 'Wm2Front' : np Array with front irradiance cumulative 'Wm2Back' : np Array with rear irradiance cumulative 'backRatio' : np Array with rear irradiance ratios """ import warnings if customname is None: customname = '' if trackerdict == None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if singleindex is None: # run over all values in trackerdict trackerkeys = sorted(trackerdict.keys()) else: # run in single index mode. trackerkeys = [singleindex] if modWanted == None: modWanted = round(self.nMods / 1.99) if rowWanted == None: rowWanted = round(self.nRows / 1.99) frontWm2 = 0 # container for tracking front irradiance across module chord. Dynamically size based on first analysis run backWm2 = 0 # container for tracking rear irradiance across module chord. for index in trackerkeys: # either full list of trackerdict keys, or single index name = '1axis_%s%s'%(index,customname) octfile = trackerdict[index]['octfile'] scene = trackerdict[index]['scene'] if octfile is None: continue # don't run analysis if the octfile is none try: # look for missing data analysis = AnalysisObj(octfile,name) name = '1axis_%s%s'%(index,customname,) frontscanind, backscanind = analysis.moduleAnalysis(scene=scene, modWanted=modWanted, rowWanted=rowWanted, sensorsy=sensorsy, sensorsx=sensorsx, modscanfront=modscanfront, modscanback=modscanback, relative=relative, debug=debug) analysis.analysis(octfile=octfile,name=name,frontscan=frontscanind,backscan=backscanind,accuracy=accuracy) trackerdict[index]['AnalysisObj'] = analysis except Exception as e: # problem with file. TODO: only catch specific error types here. warnings.warn('Index: {}. Problem with file. Error: {}. Skipping'.format(index,e), Warning) return #combine cumulative front and back irradiance for each tracker angle try: #on error, trackerdict[index] is returned empty trackerdict[index]['Wm2Front'] = analysis.Wm2Front trackerdict[index]['Wm2Back'] = analysis.Wm2Back trackerdict[index]['backRatio'] = analysis.backRatio except AttributeError as e: # no key Wm2Front. warnings.warn('Index: {}. Trackerdict key not found: {}. Skipping'.format(index,e), Warning) return if np.sum(frontWm2) == 0: # define frontWm2 the first time through frontWm2 = np.array(analysis.Wm2Front) backWm2 = np.array(analysis.Wm2Back) else: frontWm2 += np.array(analysis.Wm2Front) backWm2 += np.array(analysis.Wm2Back) print('Index: {}. Wm2Front: {}. Wm2Back: {}'.format(index, np.mean(analysis.Wm2Front), np.mean(analysis.Wm2Back))) if np.sum(self.Wm2Front) == 0: self.Wm2Front = frontWm2 # these are accumulated over all indices passed in. self.Wm2Back = backWm2 else: self.Wm2Front += frontWm2 # these are accumulated over all indices passed in. self.Wm2Back += backWm2 self.backRatio = np.mean(backWm2)/np.mean(frontWm2+.001) # Save compiled results using _saveresults if singleindex is None: print ("Saving a cumulative-results file in the main simulation folder." + "This adds up by sensor location the irradiance over all hours " + "or configurations considered." + "\nWarning: This file saving routine does not clean results, so "+ "if your setup has ygaps, or 2+modules or torque tubes, doing "+ "a deeper cleaning and working with the individual results "+ "files in the results folder is highly suggested.") cumfilename = 'cumulative_results_%s.csv'%(customname) if self.cumulativesky is True: frontcum = pd.DataFrame() rearcum = pd.DataFrame() temptrackerdict = trackerdict[list(trackerdict)[0]]['AnalysisObj'] #temptrackerdict = trackerdict[0.0]['AnalysisObj'] frontcum ['x'] = temptrackerdict.x frontcum ['y'] = temptrackerdict.y frontcum ['z'] = temptrackerdict.z frontcum ['mattype'] = temptrackerdict.mattype frontcum ['Wm2'] = self.Wm2Front rearcum ['x'] = temptrackerdict.x rearcum ['y'] = temptrackerdict.x rearcum ['z'] = temptrackerdict.rearZ rearcum ['mattype'] = temptrackerdict.rearMat rearcum ['Wm2'] = self.Wm2Back cumanalysisobj = AnalysisObj() print ("\nSaving Cumulative results" ) cumanalysisobj._saveResultsCumulative(frontcum, rearcum, savefile=cumfilename) else: # trackerkeys are day/hour/min, and there's no easy way to find a # tilt of 0, so making a fake linepoint object for tilt 0 # and then saving. try: cumscene = trackerdict[trackerkeys[0]]['scene'] cumscene.sceneDict['tilt']=0 cumscene.sceneDict['clearance_height'] = self.hub_height cumanalysisobj = AnalysisObj() frontscancum, backscancum = cumanalysisobj.moduleAnalysis(scene=cumscene, modWanted=modWanted, rowWanted=rowWanted, sensorsy=sensorsy, sensorsx=sensorsx, modscanfront=modscanfront, modscanback=modscanback, relative=relative, debug=debug) x,y,z = cumanalysisobj._linePtsArray(frontscancum) x,y,rearz = cumanalysisobj._linePtsArray(backscancum) frontcum = pd.DataFrame() rearcum = pd.DataFrame() frontcum ['x'] = x frontcum ['y'] = y frontcum ['z'] = z frontcum ['mattype'] = trackerdict[trackerkeys[0]]['AnalysisObj'].mattype frontcum ['Wm2'] = self.Wm2Front rearcum ['x'] = x rearcum ['y'] = y rearcum ['z'] = rearz rearcum ['mattype'] = trackerdict[trackerkeys[0]]['AnalysisObj'].rearMat rearcum ['Wm2'] = self.Wm2Back print ("\nSaving Cumulative results" ) cumanalysisobj._saveResultsCumulative(frontcum, rearcum, savefile=cumfilename) except: print("Not able to save a cumulative result for this simulation.") return trackerdict # End RadianceObj definition class GroundObj: """ Class to set and return details for the ground surface materials and reflectance. If 1 albedo value is passed, it is used as default. If 3 albedo values are passed, they are assigned to each of the three wavelength placeholders (RGB), If material type is known, it is used to get reflectance info. if material type isn't known, material_info.list is returned Parameters ------------ materialOrAlbedo : numeric or str If number between 0 and 1 is passed, albedo input is assumed and assigned. If string is passed with the name of the material desired. e.g. 'litesoil', properties are searched in `material_file`. Default Material names to choose from: litesoil, concrete, white_EPDM, beigeroof, beigeroof_lite, beigeroof_heavy, black, asphalt material_file : str Filename of the material information. Default `ground.rad` Returns ------- """ def __init__(self, materialOrAlbedo=None, material_file=None): import warnings from numbers import Number self.normval = None self.ReflAvg = None self.Rrefl = None self.Grefl = None self.Brefl = None self.ground_type = 'custom' if material_file is None: material_file = 'ground.rad' self.material_file = material_file if materialOrAlbedo is None: # Case where it's none. print('\nInput albedo 0-1, or string from ground.printGroundMaterials().' '\nAlternatively, run setGround after readWeatherData()' 'and setGround will read metdata.albedo if available') return if isinstance(materialOrAlbedo, str) : self.ground_type = materialOrAlbedo # Return the RGB albedo for material ground_type materialOrAlbedo = self.printGroundMaterials(self.ground_type) # Check for double and int. if isinstance(materialOrAlbedo, Number): materialOrAlbedo = np.array([[materialOrAlbedo, materialOrAlbedo, materialOrAlbedo]]) if isinstance(materialOrAlbedo, list): materialOrAlbedo = np.asarray(materialOrAlbedo) # By this point, materialOrAlbedo should be a np.ndarray: if isinstance(materialOrAlbedo, np.ndarray): if materialOrAlbedo.ndim == 0: # numpy array of one single value, i.e. np.array(0.62) # after this if, np.array([0.62]) materialOrAlbedo = materialOrAlbedo.reshape([1]) if materialOrAlbedo.ndim == 1: # If np.array is ([0.62]), this repeats it so at the end it's # np.array ([0.62, 0.62, 0.62]) materialOrAlbedo = np.repeat(np.array([materialOrAlbedo]), 3, axis=1).reshape( len(materialOrAlbedo),3) if (materialOrAlbedo.ndim == 2) & (materialOrAlbedo.shape[1] > 3): warnings.warn("Radiance only raytraces 3 wavelengths at " "a time. Trimming albedo np.array input to " "3 wavelengths.") materialOrAlbedo = materialOrAlbedo[:,0:3] # By this point we should have np.array of dim=2 and shape[1] = 3. # Check for invalid values if (materialOrAlbedo > 1).any() or (materialOrAlbedo < 0).any(): print('Warning: albedo values greater than 1 or less than 0. ' 'Constraining to [0..1]') materialOrAlbedo = materialOrAlbedo.clip(min=0, max=1) try: self.Rrefl = materialOrAlbedo[:,0] self.Grefl = materialOrAlbedo[:,1] self.Brefl = materialOrAlbedo[:,2] self.normval = _normRGB(materialOrAlbedo[:,0],materialOrAlbedo[:,1], materialOrAlbedo[:,2]) self.ReflAvg = np.round(np.mean(materialOrAlbedo, axis=1),4) print(f'Loading albedo, {self.ReflAvg.__len__()} value(s), ' f'{self._nonzeromean(self.ReflAvg):0.3f} avg\n' f'{self.ReflAvg[self.ReflAvg != 0].__len__()} nonzero albedo values.') except IndexError as e: print('albedo.shape should be 3 column (N x 3)') raise e def printGroundMaterials(self, materialString=None): """ printGroundMaterials(materialString=None) input: None or materialString. If None, return list of acceptable material types from ground.rad. If valid string, return RGB albedo of the material type selected. """ import warnings material_path = 'materials' f = open(os.path.join(material_path, self.material_file)) keys = [] #list of material key names Rreflall = []; Greflall=[]; Breflall=[] #RGB material reflectance temp = f.read().split() f.close() #return indices for 'plastic' definition index = _findme(temp,'plastic') for i in index: keys.append(temp[i+1])# after plastic comes the material name Rreflall.append(float(temp[i+5]))#RGB reflectance comes a few more down the list Greflall.append(float(temp[i+6])) Breflall.append(float(temp[i+7])) if materialString is not None: try: index = _findme(keys,materialString)[0] except IndexError: warnings.warn('Error - materialString not in ' f'{self.material_file}: {materialString}') return(np.array([[Rreflall[index], Greflall[index], Breflall[index]]])) else: return(keys) def _nonzeromean(self, val): ''' array mean excluding zero. return zero if everything's zero''' tempmean = np.nanmean(val) if tempmean > 0: tempmean = np.nanmean(val[val !=0]) return tempmean def _makeGroundString(self, index=0, cumulativesky=False): ''' create string with ground reflectance parameters for use in gendaylit and gencumsky. Parameters ----------- index : integer Index of time for time-series albedo. Default 0 cumulativesky: Boolean If true, set albedo to average of time series values. Returns ------- groundstring: text with albedo details to append to sky.rad in gendaylit ''' try: if cumulativesky is True: Rrefl = self._nonzeromean(self.Rrefl) Grefl = self._nonzeromean(self.Grefl) Brefl = self._nonzeromean(self.Brefl) normval = _normRGB(Rrefl, Grefl, Brefl) else: Rrefl = self.Rrefl[index] Grefl = self.Grefl[index] Brefl = self.Brefl[index] normval = _normRGB(Rrefl, Grefl, Brefl) # Check for all zero albedo case if normval == 0: normval = 1 groundstring = ( f'\nskyfunc glow ground_glow\n0\n0\n4 ' f'{Rrefl/normval} {Grefl/normval} {Brefl/normval} 0\n' '\nground_glow source ground\n0\n0\n4 0 0 -1 180\n' f'\nvoid plastic {self.ground_type}\n0\n0\n5 ' f'{Rrefl:0.3f} {Grefl:0.3f} {Brefl:0.3f} 0 0\n' f"\n{self.ground_type} ring groundplane\n" '0\n0\n8\n0 0 -.01\n0 0 1\n0 100' ) except IndexError as err: print(f'Index {index} passed to albedo with only ' f'{self.Rrefl.__len__()} values.' ) raise err return groundstring class SceneObj: ''' scene information including PV module type, bifaciality, array info pv module orientation defaults: Azimuth = 180 (south) pv module origin: z = 0 bottom of frame. y = 0 lower edge of frame. x = 0 vertical centerline of module scene includes module details (x,y,bifi, sceney (collector_width), scenex) ''' def __repr__(self): return str(self.__dict__) def __init__(self, module=None): ''' initialize SceneObj ''' from bifacial_radiance import ModuleObj # should sceneDict be initialized here? This is set in _makeSceneNxR if module is None: return elif type(module) == str: self.module = ModuleObj(name=module) elif type(module) == ModuleObj: # try moduleObj self.module = module #self.moduleDict = self.module.getDataDict() #self.scenex = self.module.scenex #self.sceney = self.module.sceney #self.offsetfromaxis = self.moduleDict['offsetfromaxis'] #TODO: get rid of these 4 values self.modulefile = self.module.modulefile self.hpc = False #default False. Set True by makeScene after sceneobj created. def _makeSceneNxR(self, modulename=None, sceneDict=None, radname=None): """ Arrange module defined in :py:class:`bifacial_radiance.SceneObj` into a N x R array. Returns a :py:class:`bifacial_radiance.SceneObj` which contains details of the PV system configuration including `tilt`, `row pitch`, `hub_height` or `clearance_height`, `nMod`s per row, `nRows` in the system. The returned scene has (0,0) coordinates centered at the module at the center of the array. For 5 rows, that is row 3, for 4 rows, that is row 2 also (rounds down). For 5 modules in the row, that is module 3, for 4 modules in the row, that is module 2 also (rounds down) Parameters ------------ modulename: str Name of module created with :py:class:`~bifacial_radiance.RadianceObj.makeModule`. sceneDict : dictionary Dictionary of scene parameters. clearance_height : numeric (meters). pitch : numeric Separation between rows tilt : numeric Valid input ranges -90 to 90 degrees azimuth : numeric A value denoting the compass direction along which the axis of rotation lies. Measured in decimal degrees East of North. [0 to 180) possible. nMods : int Number of modules per row (default = 20) nRows : int Number of rows in system (default = 7) radname : str String for name for radfile. Returns ------- radfile : str Filename of .RAD scene in /objects/ scene : :py:class:`~bifacial_radiance.SceneObj ` Returns a `SceneObject` 'scene' with configuration details """ if modulename is None: modulename = self.module.name if sceneDict is None: print('makeScene(modulename, sceneDict, nMods, nRows). sceneDict' ' inputs: .tilt .azimuth .nMods .nRows' ' AND .tilt or .gcr ; AND .hub_height or .clearance_height') if 'orientation' in sceneDict: raise Exception('\n\n ERROR: Orientation format has been ' 'deprecated since version 0.2.4. If you want to flip your ' 'modules, on makeModule switch the x and y values.\n\n') if 'azimuth' not in sceneDict: sceneDict['azimuth'] = 180 if 'axis_tilt' not in sceneDict: sceneDict['axis_tilt'] = 0 if 'originx' not in sceneDict: sceneDict['originx'] = 0 if 'originy' not in sceneDict: sceneDict['originy'] = 0 if radname is None: radname = str(self.module.name).strip().replace(' ', '_') # loading variables tilt = sceneDict['tilt'] azimuth = sceneDict['azimuth'] nMods = sceneDict['nMods'] nRows = sceneDict['nRows'] axis_tilt = sceneDict['axis_tilt'] originx = sceneDict ['originx'] originy = sceneDict['originy'] # hub_height, clearance_height and height logic. # this routine uses hub_height to move the panels up so it's important # to have a value for that, either obtianing from clearance_height # (if coming from makeScene) or from hub_height itself. # it is assumed that if no clearance_height or hub_height is passed, # hub_height = height. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height') if use_clearanceheight : hubheight = sceneDict['clearance_height'] + 0.5* np.sin(abs(tilt) * np.pi / 180) \ * self.module.sceney - self.module.offsetfromaxis*np.sin(abs(tilt)*np.pi/180) title_clearance_height = sceneDict['clearance_height'] else: hubheight = sceneDict['hub_height'] # this calculates clearance_height, used for the title title_clearance_height = sceneDict['hub_height'] - 0.5* np.sin(abs(tilt) * np.pi / 180) \ * self.module.sceney + self.module.offsetfromaxis*np.sin(abs(tilt)*np.pi/180) try: if sceneDict['pitch'] >0: pitch = sceneDict['pitch'] else: raise Exception('default to gcr') except: if 'gcr' in sceneDict: pitch = np.round(self.module.sceney/sceneDict['gcr'],3) else: raise Exception('No valid `pitch` or `gcr` in sceneDict') ''' INITIALIZE VARIABLES ''' text = '!xform ' text += '-rx %s -t %s %s %s ' %(tilt, 0, 0, hubheight) # create nMods-element array along x, nRows along y. 1cm module gap. text += '-a %s -t %s 0 0 -a %s -t 0 %s 0 ' %(nMods, self.module.scenex, nRows, pitch) # azimuth rotation of the entire shebang. Select the row to scan here based on y-translation. # Modifying so center row is centered in the array. (i.e. 3 rows, row 2. 4 rows, row 2 too) # Since the array is already centered on row 1, module 1, we need to increment by Nrows/2-1 and Nmods/2-1 text += (f'-i 1 -t {-self.module.scenex*(round(nMods/1.999)*1.0-1)} ' f'{-pitch*(round(nRows / 1.999)*1.0-1)} 0 -rz {180-azimuth} ' f'-t {originx} {originy} 0 ' ) #axis tilt only working for N-S trackers if axis_tilt != 0 and azimuth == 90: print("Axis_Tilt is still under development. The scene will be " "created with the proper axis tilt, and the tracking angle" "will consider the axis_tilt, but the sensors for the " "analysis might not fall in the correct surfaces unless you" " manually position them for this version. Sorry! :D ") text += (f'-rx {axis_tilt} -t 0 0 %s ' %( self.module.scenex*(round(nMods/1.99)*1.0-1)*np.sin( axis_tilt * np.pi/180) ) ) filename = (f'{radname}_C_{title_clearance_height:0.5f}_rtr_{pitch:0.5f}_tilt_{tilt:0.5f}_' f'{nMods}modsx{nRows}rows_origin{originx},{originy}.rad' ) if self.hpc: text += f'"{os.path.join(os.getcwd(), self.modulefile)}"' radfile = os.path.join(os.getcwd(), 'objects', filename) else: text += os.path.join(self.modulefile) radfile = os.path.join('objects',filename ) # py2 and 3 compatible: binary write, encode text first with open(radfile, 'wb') as f: f.write(text.encode('ascii')) self.gcr = self.module.sceney / pitch self.text = text self.radfiles = radfile self.sceneDict = sceneDict # self.hub_height = hubheight return radfile def showScene(self): """ Method to call objview on the scene included in self """ cmd = 'objview %s %s' % (os.path.join('materials', 'ground.rad'), self.radfiles) print('Rendering scene. This may take a moment...') _,err = _popen(cmd,None) if err is not None: print('Error: {}'.format(err)) print('possible solution: install radwinexe binary package from ' 'http://www.jaloxa.eu/resources/radiance/radwinexe.shtml' ' into your RADIANCE binaries path') return # end of SceneObj class MetObj: """ Meteorological data from EPW file. Initialize the MetObj from tmy data already read in. Parameters ----------- tmydata : DataFrame TMY3 output from :py:class:`~bifacial_radiance.RadianceObj.readTMY` or from :py:class:`~bifacial_radiance.RadianceObj.readEPW`. metadata : Dictionary Metadata output from output from :py:class:`~bifacial_radiance.RadianceObj.readTMY`` or from :py:class:`~bifacial_radiance.RadianceObj.readEPW`. label : str label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position should be calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. """ def __init__(self, tmydata, metadata, label = 'right'): import pytz import pvlib #import numpy as np #First prune all GHI = 0 timepoints. New as of 0.4.0 # TODO: is this a good idea? This changes default behavior... tmydata = tmydata[tmydata.GHI > 0] # location data. so far needed: # latitude, longitude, elevation, timezone, city self.latitude = metadata['latitude']; lat=self.latitude self.longitude = metadata['longitude']; lon=self.longitude self.elevation = metadata['altitude']; elev=self.elevation self.timezone = metadata['TZ'] try: self.city = metadata['Name'] # readepw version except KeyError: self.city = metadata['city'] # pvlib version #self.location.state_province_region = metadata['State'] # unecessary self.datetime = tmydata.index.tolist() # this is tz-aware. self.ghi = np.array(tmydata.GHI) self.dhi = np.array(tmydata.DHI) self.dni = np.array(tmydata.DNI) try: self.albedo = np.array(tmydata.Alb) except AttributeError: # no TMY albedo data self.albedo = None # Try and retrieve dewpoint and pressure try: self.dewpoint = np.array(tmydata['temp_dew']) except KeyError: self.dewpoint = None try: self.pressure = np.array(tmydata['atmospheric_pressure']) except KeyError: self.pressure = None try: self.temp_air = np.array(tmydata['temp_air']) except KeyError: self.temp_air = None try: self.wind_speed = np.array(tmydata['wind_speed']) except KeyError: self.wind_speed = None # Try and retrieve TrackerAngle try: self.meastracker_angle = np.array(tmydata['Tracker Angle (degrees)']) except KeyError: self.meastracker_angle= None #v0.2.5: initialize MetObj with solpos, sunrise/set and corrected time datetimetz = pd.DatetimeIndex(self.datetime) try: # make sure the data is tz-localized. datetimetz = datetimetz.tz_localize(pytz.FixedOffset(self.timezone*60))# use pytz.FixedOffset (in minutes) except TypeError: # data is tz-localized already. Just put it in local time. datetimetz = datetimetz.tz_convert(pytz.FixedOffset(self.timezone*60)) #check for data interval. default 1h. try: interval = datetimetz[1]-datetimetz[0] except IndexError: interval = pd.Timedelta('1h') # ISSUE: if 1 datapoint is passed, are we sure it's hourly data? print ("WARNING: TMY interval was unable to be defined, so setting it to 1h.") # TODO: Refactor this into a subfunction. first calculate minutedelta # based on label and interval (-30, 0, +30, +7.5 etc) then correct all. if label.lower() == 'center': print("Calculating Sun position for center labeled data, at exact timestamp in input Weather File") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['corrected_timestamp'] = datetimetz else: if interval== pd.Timedelta('1h'): if label.lower() == 'right': print("Calculating Sun position for Metdata that is right-labeled ", "with a delta of -30 mins. i.e. 12 is 11:30 sunpos") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['minutedelta']= int(interval.seconds/2/60) # default sun angle 30 minutes before timestamp # vector update of minutedelta at sunrise sunrisemask = sunup.index.hour-1==sunup['sunrise'].dt.hour sunup['minutedelta'].mask(sunrisemask,np.floor((60-(sunup['sunrise'].dt.minute))/2),inplace=True) # vector update of minutedelta at sunset sunsetmask = sunup.index.hour-1==sunup['sunset'].dt.hour sunup['minutedelta'].mask(sunsetmask,np.floor((60-(sunup['sunset'].dt.minute))/2),inplace=True) # save corrected timestamp sunup['corrected_timestamp'] = sunup.index-pd.to_timedelta(sunup['minutedelta'], unit='m') elif label.lower() == 'left': print("Calculating Sun position for Metdata that is left-labeled ", "with a delta of +30 mins. i.e. 12 is 12:30 sunpos.") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) sunup['minutedelta']= int(interval.seconds/2/60) # default sun angle 30 minutes after timestamp # vector update of minutedelta at sunrise sunrisemask = sunup.index.hour==sunup['sunrise'].dt.hour sunup['minutedelta'].mask(sunrisemask,np.ceil((60+sunup['sunrise'].dt.minute)/2),inplace=True) # vector update of minutedelta at sunset sunsetmask = sunup.index.hour==sunup['sunset'].dt.hour sunup['minutedelta'].mask(sunsetmask,np.ceil((60+sunup['sunset'].dt.minute)/2),inplace=True) # save corrected timestamp sunup['corrected_timestamp'] = sunup.index+pd.to_timedelta(sunup['minutedelta'], unit='m') else: raise ValueError('Error: invalid weather label passed. Valid inputs: right, left or center') else: minutedelta = int(interval.seconds/2/60) print("Interval in weather data is less than 1 hr, calculating" f" Sun position with a delta of -{minutedelta} minutes.") print("If you want no delta for sunposition, use " "readWeatherFile( label='center').") #datetimetz=datetimetz-pd.Timedelta(minutes = minutedelta) # This doesn't check for Sunrise or Sunset #sunup= pvlib.irradiance.solarposition.get_sun_rise_set_transit(datetimetz, lat, lon) # deprecated in pvlib 0.6.1 sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['corrected_timestamp'] = sunup.index-pd.Timedelta(minutes = minutedelta) self.solpos = pvlib.irradiance.solarposition.get_solarposition(sunup['corrected_timestamp'],lat,lon,elev) self.sunrisesetdata=sunup self.label = label def _set1axis(self, azimuth=180, limit_angle=45, angledelta=None, backtrack=True, gcr=1.0/3.0, cumulativesky=True, fixed_tilt_angle=None, axis_tilt=0, useMeasuredTrackerAngle=False): """ Set up geometry for 1-axis tracking cumulativesky. Solpos data already stored in `metdata.solpos`. Pull in tracking angle details from pvlib, create multiple 8760 metdata sub-files where datetime of met data matches the tracking angle. Parameters ------------ cumulativesky : bool Whether individual csv files are created with constant tilt angle for the cumulativesky approach. if false, the gendaylit tracking approach must be used. azimuth : numerical orientation axis of tracker torque tube. Default North-South (180 deg) For fixed tilt simulations this is the orientation azimuth limit_angle : numerical +/- limit angle of the 1-axis tracker in degrees. Default 45 angledelta : numerical Degree of rotation increment to parse irradiance bins. Default 5 degrees (0.4 % error for DNI). Other options: 4 (.25%), 2.5 (0.1%). (the smaller the angledelta, the more simulations) backtrack : bool Whether backtracking is enabled (default = True) gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] axis_tilt : float Tilt of the axis. While it can be considered for the tracking calculation, the scene geometry creation of the trackers does not support tilte axis_trackers yet (but can be done manuallyish. See Tutorials) fixed_tilt_angle : numeric If passed, this changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and azimuth as the tilt and azimuth Returns ------- trackerdict : dictionary Keys for tracker tilt angles and list of csv metfile, and datetimes at that angle trackerdict[angle]['csvfile';'surf_azm';'surf_tilt';'UTCtime'] metdata.solpos : dataframe Dataframe with output from pvlib solar position for each timestep metdata.sunrisesetdata : Pandas dataframe with sunrise, sunset and adjusted time data. metdata.tracker_theta : list Tracker tilt angle from pvlib for each timestep metdata.surface_tilt : list Tracker surface tilt angle from pvlib for each timestep metdata.surface_azimuth : list Tracker surface azimuth angle from pvlib for each timestep """ #axis_tilt = 0 # only support 0 tilt trackers for now self.cumulativesky = cumulativesky # track whether we're using cumulativesky or gendaylit if (cumulativesky is True) & (angledelta is None): angledelta = 5 # round angle to 5 degrees for cumulativesky # get 1-axis tracker angles for this location, # round to nearest 'angledelta' if self.meastracker_angle is not None and useMeasuredTrackerAngle is True: print("Tracking Data: Reading from provided Tracker Angles") elif self.meastracker_angle is None and useMeasuredTrackerAngle is True: useMeasuredTrackerAngle = False print("Warning: Using Measured Tracker Angles was specified but DATA"+ " for trackers has not yet been assigned. "+ " Assign it by making it a column on your Weatherdata File "+ "named 'Tracker Angle (degrees)' and run ReadWeatherFile again") trackingdata = self._getTrackingAngles(azimuth, limit_angle, angledelta, axis_tilt = axis_tilt, backtrack = backtrack, gcr = gcr, fixed_tilt_angle=fixed_tilt_angle, useMeasuredTrackerAngle=useMeasuredTrackerAngle) # get list of unique rounded tracker angles theta_list = trackingdata.dropna()['theta_round'].unique() if cumulativesky is True: # create a separate metfile for each unique tracker theta angle. # return dict of filenames and details trackerdict = self._makeTrackerCSV(theta_list,trackingdata) else: # trackerdict uses timestamp as keys. return azimuth # and tilt for each timestamp #times = [str(i)[5:-12].replace('-','_').replace(' ','_') for i in self.datetime] times = [i.strftime('%Y-%m-%d_%H%M') for i in self.datetime] #trackerdict = dict.fromkeys(times) trackerdict = {} for i,time in enumerate(times) : # remove NaN tracker theta from trackerdict if (self.ghi[i] > 0) & (~np.isnan(self.tracker_theta[i])): trackerdict[time] = { 'surf_azm':self.surface_azimuth[i], 'surf_tilt':self.surface_tilt[i], 'theta':self.tracker_theta[i], 'ghi':self.ghi[i], 'dhi':self.dhi[i] } return trackerdict def _getTrackingAngles(self, azimuth=180, limit_angle=45, angledelta=None, axis_tilt=0, backtrack=True, gcr = 1.0/3.0, fixed_tilt_angle=None, useMeasuredTrackerAngle=False): ''' Helper subroutine to return 1-axis tracker tilt and azimuth data. Parameters ---------- same as pvlib.tracking.singleaxis, plus: angledelta : degrees Angle to round tracker_theta to. This is for cumulativesky simulations. Other input options: None (no rounding of tracker angle) fixed_tilt_angle : (Optional) degrees This changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and azimuth as the tilt and azimuth Returns ------- DataFrame with the following columns: * tracker_theta: The rotation angle of the tracker. tracker_theta = 0 is horizontal, and positive rotation angles are clockwise. * aoi: The angle-of-incidence of direct irradiance onto the rotated panel surface. * surface_tilt: The angle between the panel surface and the earth surface, accounting for panel rotation. * surface_azimuth: The azimuth of the rotated panel, determined by projecting the vector normal to the panel's surface to the earth's surface. * 'theta_round' : tracker_theta rounded to the nearest 'angledelta' If no angledelta is specified, it is rounded to the nearest degree. ''' import pvlib import warnings from pvlib.irradiance import aoi #import numpy as np #import pandas as pd solpos = self.solpos #New as of 0.3.2: pass fixed_tilt_angle and switches to FIXED TILT mode if fixed_tilt_angle is not None: # system with fixed tilt = fixed_tilt_angle surface_tilt=fixed_tilt_angle surface_azimuth=azimuth # trackingdata keys: 'tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt' trackingdata = pd.DataFrame({'tracker_theta':fixed_tilt_angle, 'aoi':aoi(surface_tilt, surface_azimuth, solpos['zenith'], solpos['azimuth']), 'surface_azimuth':azimuth, 'surface_tilt':fixed_tilt_angle}) elif useMeasuredTrackerAngle: # tracked system surface_tilt=self.meastracker_angle surface_azimuth=azimuth trackingdata = pd.DataFrame({'tracker_theta':self.meastracker_angle, 'aoi':aoi(surface_tilt, surface_azimuth, solpos['zenith'], solpos['azimuth']), 'surface_azimuth':azimuth, 'surface_tilt':abs(self.meastracker_angle)}) else: # get 1-axis tracker tracker_theta, surface_tilt and surface_azimuth with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) trackingdata = pvlib.tracking.singleaxis(solpos['zenith'], solpos['azimuth'], axis_tilt, azimuth, limit_angle, backtrack, gcr) # save tracker tilt information to metdata.tracker_theta, # metdata.surface_tilt and metdata.surface_azimuth self.tracker_theta = np.round(trackingdata['tracker_theta'],2).tolist() self.surface_tilt = np.round(trackingdata['surface_tilt'],2).tolist() self.surface_azimuth = np.round(trackingdata['surface_azimuth'],2).tolist() # undo the timestamp offset put in by solpos. #trackingdata.index = trackingdata.index + pd.Timedelta(minutes = 30) # It may not be exactly 30 minutes any more... trackingdata.index = self.sunrisesetdata.index #this has the original time data in it # round tracker_theta to increments of angledelta for use in cumulativesky def _roundArbitrary(x, base=angledelta): # round to nearest 'base' value. # mask NaN's to avoid rounding error message return base * (x/float(base)).round() if angledelta == 0: raise ZeroDivisionError('Angledelta = 0. Use None instead') elif angledelta is None: # don't round theta trackingdata['theta_round'] = trackingdata['tracker_theta'] else: # round theta trackingdata['theta_round'] = \ _roundArbitrary(trackingdata['tracker_theta'], angledelta) return trackingdata def _makeTrackerCSV(self, theta_list, trackingdata): ''' Create multiple new irradiance csv files with data for each unique rounded tracker angle. Return a dictionary with the new csv filenames and other details, Used for cumulativesky tracking Parameters ----------- theta_list : array Array of unique tracker angle values trackingdata : Pandas Pandas Series with hourly tracker angles from :pvlib.tracking.singleaxis Returns -------- trackerdict : dictionary keys: *theta_round tracker angle (default: -45 to +45 in 5 degree increments). sub-array keys: *datetime: array of datetime strings in this group of angles *count: number of datapoints in this group of angles *surf_azm: tracker surface azimuth during this group of angles *surf_tilt: tilt angle average during this group of angles *csvfile: name of csv met data file saved in /EPWs/ ''' dt = pd.to_datetime(self.datetime) trackerdict = dict.fromkeys(theta_list) for theta in sorted(trackerdict): trackerdict[theta] = {} csvfile = os.path.join('EPWs', '1axis_{}.csv'.format(theta)) tempdata = trackingdata[trackingdata['theta_round'] == theta] #Set up trackerdict output for each value of theta trackerdict[theta]['csvfile'] = csvfile trackerdict[theta]['surf_azm'] = tempdata['surface_azimuth'].median() trackerdict[theta]['surf_tilt'] = abs(theta) datetimetemp = tempdata.index.strftime('%Y-%m-%d %H:%M:%S') #local time trackerdict[theta]['datetime'] = datetimetemp trackerdict[theta]['count'] = datetimetemp.__len__() #Create new temp csv file with zero values for all times not equal to datetimetemp # write 8760 2-column csv: GHI,DHI ghi_temp = [] dhi_temp = [] for g, d, time in zip(self.ghi, self.dhi, dt.strftime('%Y-%m-%d %H:%M:%S')): # is this time included in a particular theta_round angle? if time in datetimetemp: ghi_temp.append(g) dhi_temp.append(d) else: # mask out irradiance at this time, since it # belongs to a different bin ghi_temp.append(0.0) dhi_temp.append(0.0) # save in 2-column GHI,DHI format for gencumulativesky -G savedata = pd.DataFrame({'GHI':ghi_temp, 'DHI':dhi_temp}, index = self.datetime).tz_localize(None) # Fill partial year. Requires 2021 measurement year. savedata = _subhourlydatatoGencumskyformat(savedata, label=self.label) print('Saving file {}, # points: {}'.format( trackerdict[theta]['csvfile'], datetimetemp.__len__())) savedata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) return trackerdict class AnalysisObj: """ Analysis class for performing raytrace to obtain irradiance measurements at the array, as well plotting and reporting results. """ def __repr__(self): return str(self.__dict__) def __init__(self, octfile=None, name=None, hpc=False): """ Initialize AnalysisObj by pointing to the octfile. Scan information is defined separately by passing scene details into AnalysisObj.moduleAnalysis() Parameters ------------ octfile : string Filename and extension of .oct file name : hpc : boolean, default False. Waits for octfile for a longer time if parallel processing. """ self.octfile = octfile self.name = name self.hpc = hpc def makeImage(self, viewfile, octfile=None, name=None): """ Makes a visible image (rendering) of octfile, viewfile """ import time if octfile is None: octfile = self.octfile if name is None: name = self.name #TODO: update this for cross-platform compatibility w/ os.path.join if self.hpc : time_to_wait = 10 time_counter = 0 filelist = [octfile, "views/"+viewfile] for file in filelist: while not os.path.exists(file): time.sleep(1) time_counter += 1 if time_counter > time_to_wait:break print('Generating visible render of scene') #TODO: update this for cross-platform compatibility w os.path.join os.system("rpict -dp 256 -ar 48 -ms 1 -ds .2 -dj .9 -dt .1 "+ "-dc .5 -dr 1 -ss 1 -st .1 -ab 3 -aa .1 "+ "-ad 1536 -as 392 -av 25 25 25 -lr 8 -lw 1e-4 -vf views/" +viewfile+ " " + octfile + " > images/"+name+viewfile[:-3] +".hdr") def makeFalseColor(self, viewfile, octfile=None, name=None): """ Makes a false-color plot of octfile, viewfile .. note:: For Windows requires installation of falsecolor.exe, which is part of radwinexe-5.0.a.8-win64.zip found at http://www.jaloxa.eu/resources/radiance/radwinexe.shtml """ #TODO: error checking for installation of falsecolor.exe if octfile is None: octfile = self.octfile if name is None: name = self.name print('Generating scene in WM-2. This may take some time.') #TODO: update and test this for cross-platform compatibility using os.path.join cmd = "rpict -i -dp 256 -ar 48 -ms 1 -ds .2 -dj .9 -dt .1 "+\ "-dc .5 -dr 1 -ss 1 -st .1 -ab 3 -aa .1 -ad 1536 -as 392 " +\ "-av 25 25 25 -lr 8 -lw 1e-4 -vf views/"+viewfile + " " + octfile WM2_out,err = _popen(cmd,None) if err is not None: print('Error: {}'.format(err)) return # determine the extreme maximum value to help with falsecolor autoscale extrm_out,err = _popen("pextrem",WM2_out.encode('latin1')) # cast the pextrem string as a float and find the max value WM2max = max(map(float,extrm_out.split())) print('Saving scene in false color') #auto scale false color map if WM2max < 1100: cmd = "falsecolor -l W/m2 -m 1 -s 1100 -n 11" else: cmd = "falsecolor -l W/m2 -m 1 -s %s"%(WM2max,) with open(os.path.join("images","%s%s_FC.hdr"%(name,viewfile[:-3]) ),"w") as f: data,err = _popen(cmd,WM2_out.encode('latin1'),f) if err is not None: print(err) print('possible solution: install radwinexe binary package from ' 'http://www.jaloxa.eu/resources/radiance/radwinexe.shtml') def _linePtsArray(self, linePtsDict): """ Helper function to just print the x y and z values in an array format, just like they will show in the .csv result files. """ xstart = linePtsDict['xstart'] ystart = linePtsDict['ystart'] zstart = linePtsDict['zstart'] xinc = linePtsDict['xinc'] yinc = linePtsDict['yinc'] zinc = linePtsDict['zinc'] sx_xinc = linePtsDict['sx_xinc'] sx_yinc = linePtsDict['sx_yinc'] sx_zinc = linePtsDict['sx_zinc'] Nx = int(linePtsDict['Nx']) Ny = int(linePtsDict['Ny']) Nz = int(linePtsDict['Nz']) x = [] y = [] z = [] for iz in range(0,Nz): for ix in range(0,Nx): for iy in range(0,Ny): x . append(xstart+iy*xinc+ix*sx_xinc) y . append(ystart+iy*yinc+ix*sx_yinc) z . append(zstart+iy*zinc+ix*sx_zinc) return x, y, z def _linePtsMakeDict(self, linePtsDict): a = linePtsDict linepts = self._linePtsMake3D(a['xstart'],a['ystart'],a['zstart'], a['xinc'], a['yinc'], a['zinc'], a['sx_xinc'], a['sx_yinc'], a['sx_zinc'], a['Nx'],a['Ny'],a['Nz'],a['orient']) return linepts def _linePtsMake3D(self, xstart, ystart, zstart, xinc, yinc, zinc, sx_xinc, sx_yinc, sx_zinc, Nx, Ny, Nz, orient): #create linepts text input with variable x,y,z. #If you don't want to iterate over a variable, inc = 0, N = 1. linepts = "" # make sure Nx, Ny, Nz are ints. Nx = int(Nx) Ny = int(Ny) Nz = int(Nz) for iz in range(0,Nz): for ix in range(0,Nx): for iy in range(0,Ny): xpos = xstart+iy*xinc+ix*sx_xinc ypos = ystart+iy*yinc+ix*sx_yinc zpos = zstart+iy*zinc+ix*sx_zinc linepts = linepts + str(xpos) + ' ' + str(ypos) + \ ' '+str(zpos) + ' ' + orient + " \r" return(linepts) def _irrPlot(self, octfile, linepts, mytitle=None, plotflag=None, accuracy='low'): """ (plotdict) = _irrPlot(linepts,title,time,plotflag, accuracy) irradiance plotting using rtrace pass in the linepts structure of the view along with a title string for the plots. Parameters ------------ octfile : string Filename and extension of .oct file linepts : Output from :py:class:`bifacial_radiance.AnalysisObj._linePtsMake3D` mytitle : string Title to append to results files plotflag : Boolean Include plot of resulting irradiance accuracy : string Either 'low' (default - faster) or 'high' (better for low light) Returns ------- out : dictionary out.x,y,z - coordinates of point .r,g,b - r,g,b values in Wm-2 .Wm2 - equal-weight irradiance .mattype - material intersected .title - title passed in """ if mytitle is None: mytitle = octfile[:-4] if plotflag is None: plotflag = False if self.hpc : import time time_to_wait = 10 time_counter = 0 while not os.path.exists(octfile): time.sleep(1) time_counter += 1 if time_counter > time_to_wait: print('Warning: OCTFILE NOT FOUND') break if octfile is None: print('Analysis aborted. octfile = None' ) return None keys = ['<KEY>'] out = {key: [] for key in keys} #out = dict.fromkeys(['Wm2','x','y','z','r','g','b','mattype','title']) out['title'] = mytitle print ('Linescan in process: %s' %(mytitle)) #rtrace ambient values set for 'very accurate': #cmd = "rtrace -i -ab 5 -aa .08 -ar 512 -ad 2048 -as 512 -h -oovs "+ octfile if accuracy == 'low': #rtrace optimized for faster scans: (ab2, others 96 is too coarse) cmd = "rtrace -i -ab 2 -aa .1 -ar 256 -ad 2048 -as 256 -h -oovs "+ octfile elif accuracy == 'high': #rtrace ambient values set for 'very accurate': cmd = "rtrace -i -ab 5 -aa .08 -ar 512 -ad 2048 -as 512 -h -oovs "+ octfile else: print('_irrPlot accuracy options: "low" or "high"') return({}) temp_out,err = _popen(cmd,linepts.encode()) if err is not None: if err[0:5] == 'error': raise Exception(err[7:]) else: print(err) # when file errors occur, temp_out is None, and err message is printed. if temp_out is not None: for line in temp_out.splitlines(): temp = line.split('\t') out['x'].append(float(temp[0])) out['y'].append(float(temp[1])) out['z'].append(float(temp[2])) out['r'].append(float(temp[3])) out['g'].append(float(temp[4])) out['b'].append(float(temp[5])) out['mattype'].append(temp[6]) out['Wm2'].append(sum([float(i) for i in temp[3:6]])/3.0) if plotflag is True: import matplotlib.pyplot as plt plt.figure() plt.plot(out['Wm2']) plt.ylabel('Wm2 irradiance') plt.xlabel('variable') plt.title(mytitle) plt.show() else: out = None # return empty if error message. return(out) def _saveResults(self, data=None, reardata=None, savefile=None, RGB = False): """ Function to save output from _irrPlot If rearvals is passed in, back ratio is saved If data = None then only reardata is saved. Returns -------- savefile : str If set to None, will write to default .csv filename in results folder. """ if savefile is None: savefile = data['title'] + '.csv' if data is None and reardata is not None: # only rear data is passed. data = reardata reardata = None # run process like normal but swap labels at the end rearswapflag = True else: rearswapflag = False # make savefile dataframe and set self.attributes if RGB: data_sub = {key:data[key] for key in ['x', 'y', 'z', 'mattype', 'Wm2','r', 'g', 'b' ]} else: data_sub = {key:data[key] for key in ['x', 'y', 'z', 'mattype','Wm2' ]} df = pd.DataFrame(data_sub) df = df.rename(columns={'Wm2':'Wm2Front'}) if reardata is not None: df.insert(3, 'rearZ', reardata['z']) df.insert(5, 'rearMat', reardata['mattype']) df.insert(7, 'Wm2Back', reardata['Wm2']) # add 1mW/m2 to avoid dividebyzero df.insert(8, 'Back/FrontRatio', df['Wm2Back'] / (df['Wm2Front']+.001)) df['backRatio'] = df['Back/FrontRatio'] df['rearX'] = reardata['x'] df['rearY'] = reardata['y'] if RGB: df['rearR'] = reardata['r'] df['rearG'] = reardata['g'] df['rearB'] = reardata['b'] #df = df[['x','y','z','rearZ','mattype','rearMat', # 'Wm2Front','Wm2Back','Back/FrontRatio', # 'r','g','b', 'rearR','rearG','rearB']] #else: #df = df[['x','y','z','rearZ','mattype','rearMat', # 'Wm2Front','Wm2Back','Back/FrontRatio']] #else: # if RGB: # df = df[['x','y','z', 'mattype','Wm2Front', 'r', 'g', 'b']] # # else: # df = df[['x','y','z', 'mattype','Wm2Front']] # rename columns if only rear data was originally passed if rearswapflag: df = df.rename(columns={'Wm2Front':'Wm2Back','mattype':'rearMat'}) # set attributes of analysis to equal columns of df for col in df.columns: setattr(self, col, list(df[col])) # only save a subset df = df.drop(columns=['rearX','rearY','backRatio'], errors='ignore') df.to_csv(os.path.join("results", savefile), sep = ',', index = False) print('Saved: %s'%(os.path.join("results", savefile))) return os.path.join("results", savefile) def _saveResultsCumulative(self, data, reardata=None, savefile=None): """ TEMPORARY FUNCTION -- this is a fix to save ONE cumulative results csv in the main working folder for when doing multiple entries in a tracker dict. Returns -------- savefile : str If set to None, will write to default .csv filename in results folder. """ if savefile is None: savefile = data['title'] + '.csv' # make dataframe from results data_sub = {key:data[key] for key in ['x', 'y', 'z', 'Wm2', 'mattype']} self.x = data['x'] self.y = data['y'] self.z = data['z'] self.mattype = data['mattype'] #TODO: data_sub front values don't seem to be saved to self. if reardata is not None: self.rearX = reardata['x'] self.rearY = reardata['y'] self.rearMat = reardata['mattype'] data_sub['rearMat'] = self.rearMat self.rearZ = reardata['z'] data_sub['rearZ'] = self.rearZ self.Wm2Front = data_sub.pop('Wm2') data_sub['Wm2Front'] = self.Wm2Front self.Wm2Back = reardata['Wm2'] data_sub['Wm2Back'] = self.Wm2Back self.backRatio = [x/(y+.001) for x,y in zip(reardata['Wm2'],data['Wm2'])] # add 1mW/m2 to avoid dividebyzero data_sub['Back/FrontRatio'] = self.backRatio df = pd.DataFrame.from_dict(data_sub) df.to_csv(savefile, sep = ',', columns = ['x','y','z','rearZ','mattype','rearMat', 'Wm2Front','Wm2Back','Back/FrontRatio'], index = False) # new in 0.2.3 else: df = pd.DataFrame.from_dict(data_sub) df.to_csv(savefile, sep = ',', columns = ['x','y','z', 'mattype','Wm2'], index = False) print('Saved: %s'%(savefile)) return (savefile) def moduleAnalysis(self, scene, modWanted=None, rowWanted=None, sensorsy=9, sensorsx=1, frontsurfaceoffset=0.001, backsurfaceoffset=0.001, modscanfront=None, modscanback=None, relative=False, debug=False): """ Handler function that decides how to handle different number of front and back sensors. If number for front sensors is not provided or is the same as for the back, _moduleAnalysis is called only once. Else it is called twice to get the different front and back dictionary. This function defines the scan points to be used in the :py:class:`~bifacial_radiance.AnalysisObj.analysis` function, to perform the raytrace through Radiance function `rtrace` Parameters ------------ scene : ``SceneObj`` Generated with :py:class:`~bifacial_radiance.RadianceObj.makeScene`. modWanted : int Module wanted to sample. If none, defaults to center module (rounding down) rowWanted : int Row wanted to sample. If none, defaults to center row (rounding down) sensorsy : int or list Number of 'sensors' or scanning points along the collector width (CW) of the module(s). If multiple values are passed, first value represents number of front sensors, second value is number of back sensors sensorsx : int or list Number of 'sensors' or scanning points along the length, the side perpendicular to the collector width (CW) of the module(s) for the back side of the module. If multiple values are passed, first value represents number of front sensors, second value is number of back sensors. debug : bool Activates various print statemetns for debugging this function. modscanfront : dict Dictionary to modify the fronstcan values established by this routine and set a specific value. Keys possible are 'xstart', 'ystart', 'zstart', 'xinc', 'yinc', 'zinc', 'Nx', 'Ny', 'Nz', and 'orient'. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. modscanback: dict Dictionary to modify the backscan values established by this routine and set a specific value. Keys possible are 'xstart', 'ystart', 'zstart', 'xinc', 'yinc', 'zinc', 'Nx', 'Ny', 'Nz', and 'orient'. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) Returns ------- frontscan : dictionary Scan dictionary for module's front side. Used to pass into :py:class:`~bifacial_radiance.AnalysisObj.analysis` function backscan : dictionary Scan dictionary for module's back side. Used to pass into :py:class:`~bifacial_radiance.AnalysisObj.analysis` function """ # Height: clearance height for fixed tilt systems, or torque tube # height for single-axis tracked systems. # Single axis tracked systems will consider the offset to calculate the final height. def _checkSensors(sensors): # Checking Sensors input data for list or tuple if (type(sensors)==tuple or type(sensors)==list): try: sensors_back = sensors[1] sensors_front = sensors[0] except IndexError: # only 1 value passed?? sensors_back = sensors_front = sensors[0] elif (type(sensors)==int or type(sensors)==float): # Ensure sensors are positive int values. if int(sensors) < 1: raise Exception('input sensorsy must be numeric >0') sensors_back = sensors_front = int(sensors) else: print('Warning: invalid value passed for sensors. Setting = 1') sensors_back = sensors_front = 1 return sensors_front, sensors_back sensorsy_front, sensorsy_back = _checkSensors(sensorsy) sensorsx_front, sensorsx_back = _checkSensors(sensorsx) if (sensorsx_back != sensorsx_front) or (sensorsy_back != sensorsy_front): sensors_diff = True else: sensors_diff = False dtor = np.pi/180.0 # Internal scene parameters are stored in scene.sceneDict. Load these into local variables sceneDict = scene.sceneDict azimuth = sceneDict['azimuth'] tilt = sceneDict['tilt'] nMods = sceneDict['nMods'] nRows = sceneDict['nRows'] originx = sceneDict['originx'] originy = sceneDict['originy'] # offset = moduleDict['offsetfromaxis'] offset = scene.module.offsetfromaxis sceney = scene.module.sceney scenex = scene.module.scenex # x needed for sensorsx>1 case x = scene.module.x ## Check for proper input variables in sceneDict if 'pitch' in sceneDict: pitch = sceneDict['pitch'] elif 'gcr' in sceneDict: pitch = sceney / sceneDict['gcr'] else: raise Exception("Error: no 'pitch' or 'gcr' passed in sceneDict" ) if 'axis_tilt' in sceneDict: axis_tilt = sceneDict['axis_tilt'] else: axis_tilt = 0 if hasattr(scene.module,'z'): modulez = scene.module.z else: print ("Module's z not set on sceneDict internal dictionary. Setting to default") modulez = 0.02 if frontsurfaceoffset is None: frontsurfaceoffset = 0.001 if backsurfaceoffset is None: backsurfaceoffset = 0.001 # The Sensor routine below needs a "hub-height", not a clearance height. # The below complicated check checks to see if height (deprecated) is passed, # and if clearance_height or hub_height is passed as well. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred = 'hub_height', nonpreferred = 'clearance_height') if use_clearanceheight : height = sceneDict['clearance_height'] + 0.5* \ np.sin(abs(tilt) * np.pi / 180) * \ sceney - offset*np.sin(abs(tilt)*np.pi/180) else: height = sceneDict['hub_height'] if debug: print("For debug:\n hub_height, Azimuth, Tilt, nMods, nRows, " "Pitch, Offset, SceneY, SceneX") print(height, azimuth, tilt, nMods, nRows, pitch, offset, sceney, scenex) if modWanted == 0: print( " FYI Modules and Rows start at index 1. " "Reindexing to modWanted 1" ) modWanted = modWanted+1 # otherwise it gives results on Space. if rowWanted ==0: print( " FYI Modules and Rows start at index 1. " "Reindexing to rowWanted 1" ) rowWanted = rowWanted+1 if modWanted is None: modWanted = round(nMods / 1.99) if rowWanted is None: rowWanted = round(nRows / 1.99) if debug is True: print( f"Sampling: modWanted {modWanted}, rowWanted {rowWanted} " "out of {nMods} modules, {nRows} rows" ) x0 = (modWanted-1)*scenex - (scenex*(round(nMods/1.99)*1.0-1)) y0 = (rowWanted-1)*pitch - (pitch*(round(nRows / 1.99)*1.0-1)) x1 = x0 * np.cos ((180-azimuth)*dtor) - y0 * np.sin((180-azimuth)*dtor) y1 = x0 * np.sin ((180-azimuth)*dtor) + y0 * np.cos((180-azimuth)*dtor) z1 = 0 if axis_tilt != 0 and azimuth == 90: print ("fixing height for axis_tilt") z1 = (modWanted-1)*scenex * np.sin(axis_tilt*dtor) # Edge of Panel x2 = (sceney/2.0) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) y2 = (sceney/2.0) * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) z2 = -(sceney/2.0) * np.sin(tilt*dtor) # Axis of rotation Offset (if offset is not 0) for the front of the module x3 = (offset + modulez + frontsurfaceoffset) * np.sin(tilt*dtor) * np.sin((azimuth)*dtor) y3 = (offset + modulez + frontsurfaceoffset) * np.sin(tilt*dtor) * np.cos((azimuth)*dtor) z3 = (offset + modulez + frontsurfaceoffset) * np.cos(tilt*dtor) # Axis of rotation Offset, for the back of the module x4 = (offset - backsurfaceoffset) * np.sin(tilt*dtor) * np.sin((azimuth)*dtor) y4 = (offset - backsurfaceoffset) * np.sin(tilt*dtor) * np.cos((azimuth)*dtor) z4 = (offset - backsurfaceoffset) * np.cos(tilt*dtor) xstartfront = x1 + x2 + x3 + originx xstartback = x1 + x2 + x4 + originx ystartfront = y1 + y2 + y3 + originy ystartback = y1 + y2 + y4 + originy zstartfront = height + z1 + z2 + z3 zstartback = height + z1 + z2 + z4 #Adjust orientation of scan depending on tilt & azimuth zdir = np.cos((tilt)*dtor) ydir = np.sin((tilt)*dtor) * np.cos((azimuth)*dtor) xdir = np.sin((tilt)*dtor) * np.sin((azimuth)*dtor) front_orient = '%0.3f %0.3f %0.3f' % (-xdir, -ydir, -zdir) back_orient = '%0.3f %0.3f %0.3f' % (xdir, ydir, zdir) #IF cellmodule: #TODO: Add check for sensorsx_back #temp = scene.moduleDict.get('cellModule') #error-free way to query it #if ((temp is not None) and if ((getattr(scene.module, 'cellModule', None)) and (sensorsy_back == scene.module.cellModule.numcellsy)): ycell = scene.module.cellModule.ycell xinc_back = -((sceney - ycell ) / (scene.module.cellModule.numcellsy-1)) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) yinc_back = -((sceney - ycell) / (scene.module.cellModule.numcellsy-1)) * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) zinc_back = ((sceney - ycell) / (scene.module.cellModule.numcellsy-1)) * np.sin(tilt*dtor) firstsensorxstartfront = xstartfront - scene.module.cellModule.ycell/2 * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) firstsensorxstartback = xstartback - ycell/2 * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) firstsensorystartfront = ystartfront - ycell/2 * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) firstsensorystartback = ystartback - ycell/2 * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) firstsensorzstartfront = zstartfront + ycell/2 * np.sin(tilt*dtor) firstsensorzstartback = zstartback + ycell/2 * np.sin(tilt*dtor) xinc_front = xinc_back yinc_front = yinc_back zinc_front = zinc_back sx_xinc_front = 0.0 sx_yinc_front = 0.0 sx_zinc_front = 0.0 sx_xinc_back = 0.0 sx_yinc_back = 0.0 sx_zinc_back = 0.0 if (sensorsx_back != 1.0): print("Warning: Cell-level module analysis for sensorsx > 1 not "+ "fine-tuned yet. Use at own risk, some of the x positions "+ "might fall in spacing between cells.") else: xinc_back = -(sceney/(sensorsy_back + 1.0)) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) yinc_back = -(sceney/(sensorsy_back + 1.0)) * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) zinc_back = (sceney/(sensorsy_back + 1.0)) * np.sin(tilt*dtor) if sensors_diff: xinc_front = -(sceney/(sensorsy_front + 1.0)) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) yinc_front = -(sceney/(sensorsy_front + 1.0)) * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) zinc_front = (sceney/(sensorsy_front + 1.0)) *
np.sin(tilt*dtor)
numpy.sin
import numpy as np def findCosineDistance(source_representation, test_representation): a = np.matmul(np.transpose(source_representation), test_representation) b = np.sum(np.multiply(source_representation, source_representation)) c = np.sum(np.multiply(test_representation, test_representation)) return 1 - (a / (np.sqrt(b) * np.sqrt(c))) def findEuclideanDistance(source_representation, test_representation): euclidean_distance = source_representation - test_representation euclidean_distance = np.sum(
np.multiply(euclidean_distance, euclidean_distance)
numpy.multiply
from jesse.helpers import get_candle_source, slice_candles, np_shift import numpy as np from numba import njit import talib from typing import Union from jesse.helpers import get_config from collections import namedtuple #jesse backtest '2021-01-03' '2021-03-02' WEIS = namedtuple('WEIS',['up','dn']) ''' https://www.tradingview.com/script/XttzkWc0-Weis-Wave-Volume-Pinescript-4/#chart-view-comments ''' def weis(candles: np.ndarray, trendDetectionLength:int=3, source_type: str = "close", sequential: bool = False ) -> Union[float, np.ndarray]: candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) up,dn = fast_weis(source,candles,trendDetectionLength) if sequential: return WEIS(up,dn) else: return WEIS(up[-1],dn[-1]) @njit def fast_weis(source,candles,trendDetectionLength): mov = np.full_like(source,0) trend =
np.full_like(source,0)
numpy.full_like
from itertools import accumulate import numba import numpy as np from matplotlib import pyplot as plt from scipy.optimize import curve_fit def do_rw(n=1000000, w=0.1, sigma=1): deltas = sigma * np.random.randn(n) x = np.array(list(accumulate(deltas, lambda x0, xi: x0 + xi - w * x0))) return x @numba.njit(fastmath=True) def do_numba_rw(n=1000, w=0.99, sigma=1.0, init_sigma=7): val = np.random.randn() * init_sigma for i in range(n): val = val * w + np.random.randn() * sigma return val @numba.njit(fastmath=True) def do_full_rw(n=1000, w=0.99, sigma=1.0, init_sigma=7): result = np.zeros(n) val = np.random.randn() * init_sigma for i in range(n): val = val * w + np.random.randn() * sigma result[i] = val return result @numba.njit(fastmath=True) def find_final_std(w, sigma, tolerance=0.01, n=1000, nrounds=1000): # get two initial data points vals = np.array([do_numba_rw(n, w=w, sigma=sigma) for i in range(nrounds)]) old_std = np.std(vals) # on the second one, use the std dev we found the first time to jumpstart # things vals = np.array([ do_numba_rw(n, w=w, sigma=sigma, init_sigma=old_std) for i in range(nrounds) ]) new_std = np.std(vals) # declare a couple variables. monotonic keeps track of how long the increase # in std is monotonic, stds is an array to accumulate the stds once they b monotonic = True stds = [] # make sure we don't trigger the first time percent_err = tolerance + 1 # the loop has two phases, the initial monotonic phase, and the phase where # we are actually recording stderrs. while monotonic or (percent_err > tolerance): # print("new std: ", new_std) # if we are in the first phase, we will seed the next point with the # last std if not monotonic: avg = new_std # check for monotonicity and switch modes if appropriate if old_std > new_std: monotonic = False # when we switch modes, populate the std array with two initial # values stds.append(old_std) stds.append(new_std) old_std = new_std # while running, run another nrounds random walks and compute the # standard deviation vals = np.array([ do_numba_rw(n, w=w, sigma=sigma, init_sigma=old_std) for i in range(nrounds) ]) new_std = np.std(vals) # in the second mode, compute standard errors of the standard deviations # as well as the mean. if not monotonic: stds.append(new_std) stds_array = np.array(stds) stderr = np.std(stds_array) / np.sqrt(len(stds_array) - 1) # print("stderr: ", stderr) avg = np.mean(stds_array) percent_err = stderr / avg return (avg, np.std(stds_array)) @numba.njit(fastmath=True) def find_coh_length(w, sigma, measured_sigma=-1., tolerance=.01, nrounds=1000): # if not passed a measured_sigma (final sigma of RR), find it: measured_sigma_std = 0 if measured_sigma == -1.: measured_sigma, measured_sigma_std = find_final_std(w, sigma) # now do a bunch of random walks and find the coherence length for each one coherence_lengths = [] # initialize stderr to a large value so we enter the loop the first time percent_err = tolerance + 1 while percent_err > tolerance: # initialize a random walk init_val = np.random.randn() * measured_sigma val = init_val # keeps track of how far the random walk goes counter = 0 # continue the random walk until we have wandered sigma/e (the threshold # for "coherence" for a unweighted random walk. Assuming this is a # resonable estimate for a weighted random walk may be bad, but life is # short. while np.abs(init_val - val) < measured_sigma / np.e: val = val * w + np.random.randn() * sigma counter += 1 coherence_lengths.append(counter) if len(coherence_lengths) > 5: coh_len_array =
np.array(coherence_lengths)
numpy.array
#! /usr/bin/env python """ IMU Node. Gets raw IMU data from ABridge and publishes calibrated IMU messages. Can perform a 2D IMU Calibration as a fallback at the start of a round. Ellipsoid fit, from: https://github.com/aleksandrbazhin/ellipsoid_fit_python Adapted for ROS by <NAME>, Cabrillo College. The MIT License (MIT) Copyright (c) 2016 aleksandrbazhin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. todo: pick validation thresholds that make sense. Something that means the 2D calibration is likely going to be better. todo: ok for node to crash if extended cal file is missing or corrupt? """ from __future__ import print_function import math import numpy import sys import tf import rospy from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue from geometry_msgs.msg import Quaternion from sensor_msgs.msg import Imu from std_msgs.msg import String from std_srvs.srv import Empty, EmptyRequest, EmptyResponse from control_msgs.srv import QueryCalibrationState, QueryCalibrationStateResponse from swarmie_msgs.msg import SwarmieIMU class IMU: """Global State Variables""" STATE_IDLE = 0 STATE_NORMAL = 1 STATE_VALIDATE = 2 STATE_CAL_GYRO_BIAS = 3 STATE_CAL_GYRO_SCALE = 4 STATE_CAL_MAG = 5 STATE_CAL_MISALIGN = 6 # Mode variables MODE_3D = 0 MODE_2D = 1 # In case someone forgets to exit either calibration state. DATA_SIZE_LIMIT = 3000 # 5 min worth of data at 10 Hz MIN_DATA_SIZE = 50 # For extended file validation ROLL_PITCH_TOLERANCE = 3.0 # degrees MAG_VAR_TOLERANCE = 1e-3 ACC_VAR_TOLERANCE = 4e-3 def __init__(self, rover): self.rover = rover rospy.init_node(self.rover + '_IMU') if rospy.has_param('~imu_mode'): # if respawning self._get_mode() else: self.current_mode = IMU.MODE_3D # default to 3D mode self.current_state = IMU.STATE_IDLE # idle until data file is loaded self.gyro_timer = None self.gyro_start_time = None self.gyro_status_msg = '' self.cal = {} self.roll = 0 self.pitch = 0 self.yaw = 0 # used during file validation self.rolls = [] self.pitches = [] # Default param values. Set to final values after validating self.finished_validating = False self.needs_calibration = False self.DEBUG = rospy.get_param( '~publish_debug_topic', default=False ) self.LOAD_RAW_DATA = rospy.get_param( '~load_raw_data', default=False ) self.RAW_DATA_PATH = rospy.get_param( '~raw_data_path', default='/home/swarmie/KSC_extended_calibration.csv' ) # Raw data collected while in a calibration state is stored in a list # of lists, which is converted to a numpy array when needed. self.mag_data = [[], [], []] self.gyro_data = [[], [], []] # Default matrices self.acc_offsets = [[0], [0], [0]] self.acc_transform = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] self.mag_offsets = [[0], [0], [0]] self.mag_transform = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] self.misalignment = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] self.gyro_bias = [[0], [0], [0]] self.gyro_scale = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] # Subscribers self.imu_raw_sub = rospy.Subscriber( self.rover + '/imu/raw', SwarmieIMU, self.imu_callback, queue_size=10 ) # Publishers self.imu_pub = rospy.Publisher( self.rover + '/imu', Imu, queue_size=10 ) self.imu_diag_pub = rospy.Publisher( self.rover + '/imu/cal_diag', DiagnosticArray, queue_size=10, latch=True ) if self.DEBUG: self.imu_cal_data_pub = rospy.Publisher( self.rover + '/imu/raw/calibrated', SwarmieIMU, queue_size=10 ) self.info_log = rospy.Publisher( '/infoLog', String, queue_size=10 ) self.diags_log = rospy.Publisher( '/diagsLog', String, queue_size=10, latch=True ) # Services self.start_imu_cal = rospy.Service( self.rover + '/start_imu_calibration', Empty, self.start_imu_calibration ) self.store_cal = rospy.Service( self.rover + '/store_imu_calibration', Empty, self.store_calibration ) self.start_misalign_cal = rospy.Service( self.rover + '/start_misalignment_calibration', Empty, self.start_misalignment_calibration ) self.start_gyro_bias_cal = rospy.Service( self.rover + '/start_gyro_bias_calibration', Empty, self.start_gyro_bias_calibration ) self.start_gyro_scale_cal = rospy.Service( self.rover + '/start_gyro_scale_calibration', Empty, self.start_gyro_scale_calibration ) self._is_finished_val = rospy.Service( self.rover + '/imu/is_finished_validating', QueryCalibrationState, self._is_finished_validating ) self._needs_cal = rospy.Service( self.rover + '/imu/needs_calibration', QueryCalibrationState, self._needs_calibration ) # Try waiting for subscriber on /diagsLog. Helps to make sure first # message or two actually make it onto the rqt gui. rate = rospy.Rate(10) for i in range(20): if self.diags_log.get_num_connections() > 0: break rate.sleep() # If node is respawning for some reason if rospy.has_param('~imu_calibration_matrices'): self.cal = rospy.get_param('~imu_calibration_matrices') self._get_mode() self.acc_offsets = self.cal['acc_offsets'] self.acc_transform = self.cal['acc_transform'] self.mag_offsets = self.cal['mag_offsets'] self.mag_transform = self.cal['mag_transform'] self.misalignment = self.cal['misalignment'] self.gyro_bias = self.cal['gyro_bias'] self.gyro_scale = self.cal['gyro_scale'] self.current_state = IMU.STATE_NORMAL self.finished_validating = True self.needs_calibration = False msg = self.rover + ': reloaded calibration matrices after respawn.' if self.current_mode == IMU.MODE_2D: msg += ' Using 2D mode.' elif self.current_mode == IMU.MODE_3D: msg += ' Using 3D mode.' rospy.loginfo(msg) self.diags_log.publish(msg) elif self.LOAD_RAW_DATA: self.load_and_validate_calibration() # Publish current calibration once: self.publish_diagnostic_msg() def _set_mode(self, mode): """Sets the IMU mode to mode and puts it onto the parameter server. Useful if node respawns, so it knows which mode (2D/3D) it was in.""" self.current_mode = mode rospy.set_param('~imu_mode', mode) def _get_mode(self): """Gets the IMU mode from the parameter server. Useful if node respawns, so it knows which mode (2D/3D) it was in.""" self.current_mode = rospy.get_param('~imu_mode', default=IMU.MODE_3D) def _is_finished_validating(self, req): """Service to allow Swarmie API to wait until extended calibration file has been loaded and validated.""" response = QueryCalibrationStateResponse() response.is_calibrated = self.finished_validating return response def _needs_calibration(self, req): """Service to allow Swarmie API to ask if the IMU needs to be calibrated using the 2D fallback.""" response = QueryCalibrationStateResponse() response.is_calibrated = self.needs_calibration return response def load_and_validate_calibration(self): """Load the extended calibration file. Raises: * IOError if calibration file can't be found. * ValueError if calibration file is corrupt. """ try: data = numpy.loadtxt(self.RAW_DATA_PATH, delimiter=',') mag_x = data[:,0] mag_y = data[:,1] mag_z = data[:,2] acc_x = data[:,3] acc_y = data[:,4] acc_z = data[:,5] self.cal['mag_offsets'], self.cal['mag_transform'] = \ self.ellipsoid_fit(mag_x, mag_y, mag_z) self.cal['acc_offsets'], self.cal['acc_transform'] = \ self.ellipsoid_fit(acc_x, acc_y, acc_z) self.cal['misalignment'] = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] self.cal['gyro_bias'] = [[0], [0], [0]] self.cal['gyro_scale'] = [[1., 0, 0], [0, 1., 0], [0, 0, 1.]] rospy.loginfo( self.rover + ': IMU raw data file loaded from ' + self.RAW_DATA_PATH ) except IOError as e: msg = (self.rover + ': FATAL ERROR. Extended calibration file not found.') rospy.logfatal(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') raise except ValueError as e: msg = (self.rover + ': FATAL ERROR. Error reading extended calibration file.') rospy.logfatal(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') raise # Calibration matrices are stored as lists and converted to numpy # arrays when needed. self.acc_offsets = self.cal['acc_offsets'] self.acc_transform = self.cal['acc_transform'] self.mag_offsets = self.cal['mag_offsets'] self.mag_transform = self.cal['mag_transform'] self.misalignment = self.cal['misalignment'] self.gyro_bias = self.cal['gyro_bias'] self.gyro_scale = self.cal['gyro_scale'] # Check variance in errors mag_var_err = self.error(mag_x, mag_y, mag_z, self.mag_offsets, self.mag_transform) acc_var_err = self.error(acc_x, acc_y, acc_z, self.acc_offsets, self.acc_transform) mag_msg = '{}: Magnetometer v[Err]: {:7.6f}'.format(self.rover, mag_var_err) acc_msg = '{}: Accelerometer v[Err]: {:7.6f}'.format(self.rover, acc_var_err) self.diags_log.publish(mag_msg) rospy.loginfo(mag_msg) self.diags_log.publish(acc_msg) rospy.loginfo(acc_msg) if (math.isnan(mag_var_err) or abs(mag_var_err) >= IMU.MAG_VAR_TOLERANCE): msg = "{}: The magnetometer fit is too poor to use.".format( self.rover ) rospy.logwarn(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') self.needs_calibration = True self._set_mode(IMU.MODE_2D) if (math.isnan(acc_var_err) or abs(acc_var_err) >= IMU.ACC_VAR_TOLERANCE): msg = "{}: The accelerometer fit is too poor to use.".format( self.rover ) rospy.logwarn(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') self.needs_calibration = True self._set_mode(IMU.MODE_2D) # Check roll and pitch self.current_state = IMU.STATE_VALIDATE try: rospy.wait_for_message( self.rover + '/imu/raw', SwarmieIMU, timeout=5 ) except rospy.ROSException: # hopefully this doesn't happen pass # wait for 2 seconds for messages to come in and populate # self.rolls and self.pitches rospy.sleep(2) avg_roll = numpy.average(self.rolls) * 180 / math.pi avg_pitch = numpy.average(self.pitches) * 180 / math.pi self.diags_log.publish('{}: Average roll: {:6.3f} deg'.format( self.rover, avg_roll) ) self.diags_log.publish('{}: Average pitch: {:6.3f} deg'.format( self.rover, avg_pitch) ) if abs(avg_roll) > IMU.ROLL_PITCH_TOLERANCE: msg = '{}: Roll exceeds tolerance threshold of {:.1f} deg.'.format( self.rover, IMU.ROLL_PITCH_TOLERANCE ) rospy.logwarn(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') self.needs_calibration = True self._set_mode(IMU.MODE_2D) if abs(avg_pitch) > IMU.ROLL_PITCH_TOLERANCE: msg = '{}: Pitch exceeds tolerance threshold of {:.1f} deg.'.format( self.rover, IMU.ROLL_PITCH_TOLERANCE ) rospy.logwarn(msg) self.diags_log.publish('<font color=Red>' + msg + '</font>') self.needs_calibration = True self._set_mode(IMU.MODE_2D) self.finished_validating = True self.store_calibration(EmptyRequest()) self.current_state = IMU.STATE_NORMAL def error(self, x, y, z, offsets, transform): """Compute the variance of errors of data in numpy arrays x, y, z. Errors are the distances of the calibrated points from the surface of the unit sphere. """ v = numpy.array([x, y, z]) offsets = numpy.array(offsets) transform = numpy.array(transform) v = transform.dot(v - offsets) var_err = numpy.var(numpy.sqrt(numpy.sum(numpy.square(v), 0)) - 1) return var_err def ellipsoid_fit(self, x, y, z): """Fit the data points contained in numpy arrays x, y and z to a unit sphere centered at the origin. Returns a list containing the offset matrix to center the data, and a list containing the transformation matrix, to map each data point to its position on the sphere. Modified from: http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit """ D = numpy.array([x*x, y*y, z*z, 2 * x*y, 2 * x*z, 2 * y*z, 2 * x, 2 * y, 2 * z]) DT = D.conj().T v = numpy.linalg.solve(D.dot(DT), D.dot(numpy.ones(numpy.size(x)))) A = numpy.array([[v[0], v[3], v[4], v[6]], [v[3], v[1], v[5], v[7]], [v[4], v[5], v[2], v[8]], [v[6], v[7], v[8], -1]]) center = numpy.linalg.solve(-A[:3,:3], [[v[6]], [v[7]], [v[8]]]) T = numpy.eye(4) T[3,:3] = center.T R = T.dot(A).dot(T.conj().T) evals, evecs = numpy.linalg.eig(R[:3,:3] / -R[3,3]) radii = numpy.sqrt(1. / evals) offset = center a, b, c = radii D = numpy.array([[1/a, 0., 0.], [0., 1/b, 0.], [0., 0., 1/c]]) transform = evecs.dot(D).dot(evecs.T) return offset.tolist(), transform.tolist() def ellipse_fit(self, x, y): """Fits the data points in x and y to a circle centered at the x-y origin. http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html Returns 3R x 1C offset matrix and a 3x3 transformation matrix. Only the first 2 rows and columns are calculated in the transformation matrix, since this is only a 2-D calibration. """ x = x[:,numpy.newaxis] y = y[:,numpy.newaxis] D = numpy.hstack((x*x, x*y, y*y, x, y, numpy.ones_like(x))) S = numpy.dot(D.T,D) C = numpy.zeros([6,6]) C[0,2] = C[2,0] = 2; C[1,1] = -1 E, V = numpy.linalg.eig(numpy.dot(
numpy.linalg.inv(S)
numpy.linalg.inv
import cv2 import pymynt import numpy as np import autoaim import time watching_point = None seq = 0 hook_activate_count = 0 def printDepth(event, x, y, flags, param): global watching_point if event == cv2.EVENT_FLAG_LBUTTON: print((x, y),' :',mat[y,x]) watching_point = (x, y) def depth2img(mat): out = mat/
np.max(mat)
numpy.max
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
import math from io import BytesIO from shutil import copyfile, rmtree from tempfile import mkdtemp from typing import Dict from pathlib import Path import numpy as np from qcore import geo def plot_site_vs30( out_ffp: str, site_lon: float, site_lat: float, station_lon: float, station_lat: float, station_vs30: float, station_ll_ffp: str, vs30_grid_ffp: str = None, site_vs30: float = None, distance: float = 8, ): from qcore import gmt vs30_grid_ffp = ( str( Path(__file__).resolve().parent.parent / "resources" / "nz_vs30_nz-specific-v19p1_100m.grd" ) if vs30_grid_ffp is None else vs30_grid_ffp ) max_lat = geo.ll_shift(site_lat, site_lon, distance, 0)[0] min_lon = geo.ll_shift(site_lat, site_lon, distance, -90)[1] min_lat = site_lat - (max_lat - site_lat) max_lon = site_lon + (site_lon - min_lon) region = (min_lon, max_lon, min_lat, max_lat) # automatic label positioning, doesn't work over geographic quadrants if abs(site_lat - station_lat) > abs(site_lon - station_lon): # labels above/below dx = 0 if site_lat > station_lat: # site label above, closest site label below site_align = "CB" closest_align = "CT" dy = 0.12 else: # opposite site_align = "CT" closest_align = "CB" dy = -0.12 else: # labels to the side dy = 0 if site_lon > station_lon: # site label to right, closest site label to left site_align = "LM" closest_align = "RM" dx = -0.12 else: # opposite site_align = "RM" closest_align = "LM" dx = 0.12 wd = mkdtemp() img = Path(wd) / "snapped_station" cpt = Path(wd) / "vs30.cpt" p = gmt.GMTPlot(str(img) + ".ps") p.spacial("M", region, sizing=9, x_shift=1, y_shift=2) gmt.makecpt("rainbow", str(cpt), 100, 800, continuing=True) p.overlay(vs30_grid_ffp, cpt=str(cpt)) p.points(station_ll_ffp, shape="s", size=0.2, line_thickness="2p", line="black") p.points( f"{site_lon} {site_lat}\n", is_file=False, shape="c", fill="black", size=0.1, line="white", line_thickness="1p", ) p.points( f"{station_lon} {station_lat}\n", is_file=False, shape="c", size=0.2, line_thickness="2p", line="white", ) p.text( site_lon, site_lat, "site", dx=-dx, dy=dy, align=site_align, size="14p", box_fill="white@40", ) p.text( station_lon, station_lat, "closest station", dx=dx * 1.5, dy=-dy * 1.5, align=closest_align, size="14p", box_fill="white@40", ) p.text( min_lon, min_lat, f"Site Vs30: {site_vs30} {'m/s' * (site_vs30 is not None)}", size="20p", align="LB", dx=0.2, dy=0.8, box_fill="white@40", ) p.text( min_lon, min_lat, f"Closest Site Vs30: {station_vs30} m/s", size="20p", align="LB", dx=0.2, dy=0.5, box_fill="white@40", ) p.text( min_lon, min_lat, f"Distance: {geo.ll_dist(station_lon, station_lat, site_lon, site_lat):.2f} km", size="20p", align="LB", dx=0.2, dy=0.2, box_fill="white@40", ) p.ticks(major="0.05d", minor="0.01d") p.cpt_scale( "R", "M", cpt, pos="rel_out", dx=0.2, label="Vs30 (m/s)", major=100, minor=10, horiz=False, ) p.finalise() p.png(background="white") copyfile(str(img) + ".png", out_ffp) rmtree(wd) def plot_context( lon: float, lat: float, out_ffp_no_ext: str, fault_corners_ffp: str = None, bballs_ffp: str = None, ): """Creates a gmt context map Parameters ---------- lon: float lat: float out_ffp_no_ext: str Output file path, no extension... fault_corners_ffp: str, optional Path to the fault corners csv file bballs_ffp: str, optional Path to the beach ball csv file """ from qcore import gmt resource_dir = Path(__file__).resolve().parent.parent / "resources" if fault_corners_ffp is None: fault_corners_ffp = resource_dir / "SimAtlasFaults.csv" if bballs_ffp is None: bballs_ffp = resource_dir / "gmt.bb" mom2mag = lambda mom: (2 / 3.0 * math.log(mom) / math.log(10.0)) - 10.7 wd = mkdtemp() p = gmt.GMTPlot(str(Path(wd) / f"{Path(out_ffp_no_ext).name}.ps")) # in a future release of GMT, this might be possible # p.spacial("M" + str(args.lon) + "/" + str(args.lat) + "/", ("-200", "200", "-200", "200+uk"), sizing=8, x_shift=2, y_shift=2) p.spacial( "M", (lon - 1.3, lon + 1.3, lat - 1, lat + 1), sizing=8, x_shift=1, y_shift=1 ) p.basemap() p.water() paths = [] with fault_corners_ffp.open(mode="r") as c: c.readline() for l in c: paths.append( l.split(",")[9] .replace("]|", "\n") .replace("|", " ") .replace("[[", ">\n") .replace("[", "") .replace("]", "") .replace("\n ", "\n") ) paths = "".join(paths) p.path( paths, is_file=False, close=True, colour="black", width="1.0p", cols="1,0", split="-", ) paths = "\n".join([">\n" + "\n".join(x.split("\n")[1:3]) for x in paths.split(">")]) p.path(paths, is_file=False, colour="black", width="1.5p", cols="1,0") p.ticks() # beachballs by magnitude b5 = [] b56 = [] b6 = [] with bballs_ffp.open(mode="r") as b: for l in b: man, exp = map(float, l.split()[9:11]) mag = mom2mag(man * 10 ** exp) if mag < 5: b5.append(l) elif mag < 6: b56.append(l) else: b6.append(l) if len(b5) > 0: p.beachballs("\n".join(b5), scale=0.2, colour="blue") if len(b56) > 0: p.beachballs("\n".join(b56), scale=0.2, colour="orange") if len(b6) > 0: p.beachballs("\n".join(b6), scale=0.2, colour="red") p.points( f"{lon} {lat}\n", is_file=False, shape="c", fill="black", size=0.1, line="white", line_thickness="1p", ) p.text(lon, lat, "site", dy=-0.12, align="CT", size="14p", box_fill="white@40") p.dist_scale("R", "B", "25", pos="rel", dx=0.5, dy=0.5) p.finalise() p.png(out_dir=str(Path(out_ffp_no_ext).parent), clip=True) rmtree(wd) def plot_disagg( out_ffp_no_ext: str, disagg_data: Dict, dpi: int = 300, bin_type: str = "src" ) -> None: """ Creates a gmt based disagg plot Parameters ---------- out_ffp_no_ext: string Output file path, don't include the file extension... disagg_data: Dictionary The disagg grid data as dictionary dpi: int bin_type: str The type of binning to use for the disagg plot, either "src" (i.e. Fault and DS) or "eps" """ from qcore import gmt # Constants X_LEN = 4.5 Y_LEN = 4.0 Z_LEN = 2.5 ROT = 30 TILT = 60 LEGEND_SPACE = 0.7 EPSILON_LEGEND_EXPAND = 1.0 EPSILON_COLOURS = [ "215/38/3", "252/94/62", "252/180/158", "254/220/210", "217/217/255", "151/151/255", "0/0/255", "0/0/170", ] EPSILON_LABELS = [ "@~e@~<-2", "-2<@~e@~<-1", "-1<@~e@~<-0.5", "-0.5<@~e@~<0", "0<@~e@~<0.5", "0.5<@~e@~<1", "1<@~e@~<2", "2<@~e@~", ] TYPE_LEGEND_EXPAND = 0.35 TYPE_COLOURS = ["blue", "green"] TYPE_LABELS = ["Fault", "DS"] out_dir = Path(out_ffp_no_ext).parent out_name = Path(out_ffp_no_ext).name rrup_edges = np.asarray(disagg_data["rrup_edges"]) mag_edges = np.asarray(disagg_data["mag_edges"]) # modifications based on plot type selection if bin_type == "src": colours = TYPE_COLOURS labels = TYPE_LABELS legend_expand = TYPE_LEGEND_EXPAND else: colours = EPSILON_COLOURS labels = EPSILON_LABELS legend_expand = EPSILON_LEGEND_EXPAND ### ### PROCESS DATA ### # x axis x_axis_max = max(rrup_edges) if x_axis_max < 115: x_tick_inc = 10 elif x_axis_max < 225: x_tick_inc = 20 elif x_axis_max < 335: x_tick_inc = 30 elif x_axis_max < 445: x_tick_inc = 40 else: x_tick_inc = 50 x_axis_max = math.ceil(x_axis_max / float(x_tick_inc)) * x_tick_inc # y axis y_min, y_max = mag_edges[0], mag_edges[-1] if y_max - y_min < 5: y_tick_inc = 0.5 else: y_tick_inc = 1.0 # bins to put data in # TODO: set bottom limit on x and y (not e) bin_centres_rrup = rrup_edges[:-1] + (np.diff(rrup_edges) / 2.0) bin_centre_mag = mag_edges[:-1] + (np.diff(mag_edges) / 2.0) bins_e = np.array([-2, -1, -0.5, 0, 0.5, 1, 2, np.inf]) # build gmt input lines from block data gmt_in = BytesIO() if bin_type == "src": blocks_flt = np.array(disagg_data["flt_bin_contr"]) blocks_ds =
np.array(disagg_data["ds_bin_contr"])
numpy.array
# Copyright 2018 The Lucid Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helpers for generating synthetic stimuli for probing network behavior.""" import numpy as np def sample_binary_image(size, alias_factor=10, color_a=(1,1,1), color_b=(0,0,0), boundary_line=False, boundary_width=1, blur_beyond_radius=None, fade_beyond_radius=None, fade_over_distance=10, fade_color=(.5, .5, .5), **kwds): """Highly flexible tool for sampling binary images. Many stimuli of interest are "binary" in that they have two regions. For example, a curve stimuli has an interio and exterior region. Ideally, such a stimulus should be rendered with antialiasing. Additionlly, there are many styling options that effect how one might wish to render the image: selecting the color for interior and exterior, showing the boundary between the regions instead of interior vs exterior, and much more. This function provides a flexible rendering tool that supports many options. We assume the image is reprented in the "f-rep" or implicit funciton convention: the image is represented by a function which maps (x,y) values to a sclar, with negative representing the object interior and positive representing the exterior. The general usage would look smething like: @sample_binary_image(size, more_options) def img(x,y): return (negative if interior, positive if exterior) Or alternatively: sampler = sample_binary_image(size, more_options) def img_f(x,y): return (negative if interior, positive if exterior) img = sampler(img_f) Arguments: size: Size of image to be rendered in pixels. alias_factor: Number of samples to use in aliasing. color_a: Color of exterior. A 3-tuple of floats between 0 and 1. Defaults to white (1,1,1). color_b: Color of interior or boundary. A 3-tuple of floats between 0 and 1. Defaults to black (0,0,0). boundary_line: Draw boundary instead of interior vs exterior. boundary_width: If drawing boundary, number of pixels wide boundary line should be. Defaults to 1 pixel. blur_beyond_radius: If not None, blur the image outside a given radius. Defaults to None. fade_beyond_radius: If not None, fade the image to fade_color outside a given radius. Defaults to None. fade_over_distance: Controls rate of fading. fade_color: Color to fade to, if fade_beyond_radius is set. Defaults to (.5, .5, .5). Returns: A function which takes a function mapping (x,y) -> float and returns a numpy array of shape [size, size, 3]. """ # Initial setup color_a, color_b = np.asarray(color_a).reshape([1,1,3]), np.asarray(color_b).reshape([1,1,3]) fade_color = np.asarray(fade_color).reshape([1,1,3]) X = (np.arange(size) - size//2) X, Y = X[None, :], X[:, None] alias_offsets = [ tuple(np.random.uniform(-.5, .5, size=2)) for n in range(alias_factor) ] boundary_offsets = [ (boundary_width*np.cos(2*np.pi*n/16.), boundary_width*np.sin(2*np.pi*n/16.)) for n in range(16) ] # Setup for blur / fade stuff radius = np.sqrt(X**2+Y**2) offset_scale = 1 fade_coef = 0 if blur_beyond_radius is not None: offset_scale += np.maximum(0, radius-blur_beyond_radius) if fade_beyond_radius is not None: fade_coef = np.maximum(0, radius-fade_beyond_radius) fade_coef /= float(fade_over_distance) fade_coef = np.clip(fade_coef, 0, 1)[..., None] # The function we'll return. # E is an "energy function" mapping (x,y) -> float # (and vectorized for numpy support) # such that it is negative on interior reigions and positive on exterior ones. def sampler(E): # Naively smaple an image def sample(x_off, y_off): # note: offset_scale controls blurring vals = E(X + offset_scale * x_off, Y + offset_scale * y_off) return np.greater_equal(vals, 0).astype("float32") def boundary_sample(x_off, y_off): imgs = [sample(x_off + bd_off_x, y_off + bd_off_y) for bd_off_x, bd_off_y in boundary_offsets] # If we are on the boundary, some smaples will be zero and others one. # as a result, the mean will be in the middle. vals = np.mean(imgs, axis=0) vals = 2*
np.abs(vals-0.5)
numpy.abs
import numpy as np import scipy.stats as stats import scipy.linalg as la import scipy.optimize as optimize import scipy.integrate as integrate import sklearn.linear_model import kernels import ep_fast #import EP_cython np.set_printoptions(precision=4, linewidth=200) class GradientFields(): def __init__(self, K_nodiag, s0, t_i, prev): normPDF = stats.norm(0,1) try: t_i[0] except: t_i = np.zeros(K_nodiag.shape[0]) + t_i #general computations (always the same if the fixed effects are 0!!!!!) self.Ki = normPDF.sf(t_i) self.Ps = s0 + (1-s0)*self.Ki self.Pi = self.Ki / self.Ps self.stdY = np.sqrt(self.Pi * (1-self.Pi)) #compute Atag0 and B0 self.phi_ti = normPDF.pdf(t_i) self.phitphit = np.outer(self.phi_ti, self.phi_ti) self.stdY_mat = np.outer(self.stdY, self.stdY) mat1_temp = self.phi_ti / self.stdY self.mat1 = np.outer(mat1_temp, mat1_temp) sumProbs_temp = np.tile(self.Pi, (K_nodiag.shape[0], 1)) sumProbs = sumProbs_temp + sumProbs_temp.T Atag0_B0_inner_vec = self.Pi*(1-s0) self.mat2 = np.outer(Atag0_B0_inner_vec, Atag0_B0_inner_vec) + 1-sumProbs*(1-s0) self.Atag0 = self.mat1*self.mat2 self.B0 = np.outer(self.Ps, self.Ps) #Compute the elements of the function value (the squared distance between the observed and expected pairwise phenotypic covariance) self.K_nodiag_AB0 = K_nodiag * self.Atag0/self.B0 self.K_nodiag_sqr_AB0 = K_nodiag * self.K_nodiag_AB0 class PrevTest(): def __init__(self, n, m, prev, useFixed, h2Scale=1.0, prng=None, num_generate=None): self.prng = prng if (prng is None): self.prng = np.random.RandomState(args.seed) self.n = n self.useFixed = useFixed self.h2Scale = h2Scale if num_generate is None: if prev == 0.5: numGeno = n else: numGeno = np.maximum(int(float(self.n)/float(2*prev)), 25000) else: numGeno = num_generate #generate SNPs mafs = self.prng.rand(m) * 0.45 + 0.05 self.X = prng.binomial(2, mafs, size=(numGeno, m)).astype(np.float) mafs_estimated = mafs.copy() self.X_estimated = self.X.copy() self.X -= 2*mafs self.X_estimated -= 2*mafs_estimated self.X /= np.sqrt(2*mafs*(1-mafs)) self.X_estimated /= np.sqrt(2*mafs_estimated*(1-mafs_estimated)) self.m = m self.n = n X_mean_diag = np.mean(np.einsum('ij,ij->i', self.X, self.X)) / self.X.shape[1] X_estimated_mean_diag = np.mean(np.einsum('ij,ij->i', self.X_estimated, self.X_estimated)) / self.X.shape[1] self.diag_ratio = X_estimated_mean_diag / X_mean_diag self.prev = prev #approx coeffs lam_i and c_i for logistic likelihood self.logistic_c = np.array([1.146480988574439e+02, -1.508871030070582e+03, 2.676085036831241e+03, -1.356294962039222e+03, 7.543285642111850e+01]) self.logistic_lam = np.sqrt(2)*np.array([0.44 ,0.41, 0.40, 0.39, 0.36]) self.logistic_lam2 = self.logistic_lam**2 self.logistic_clam = self.logistic_c * self.logistic_lam def genData(self, h2, eDist, numFixed, ascertain=True, scaleG=False, extraSNPs=0, fixedVar=0, frac_cases=0.5, kernel='linear', rbf_scale=1.0): args.seed += 1 self.true_h2 = h2 self.ascertain = ascertain self.eDist = eDist if (numFixed==0): fixedVar=0 if (numFixed > 0): assert fixedVar>0 self.fixedVar = fixedVar self.covars = self.prng.randn(self.X.shape[0], numFixed) if (eDist == 'normal' and not scaleG): sig2g = h2/(1-h2) elif (eDist == 'normal' and scaleG): sig2g = h2 elif (eDist == 'logistic' and not scaleG): sig2g = (np.pi**2)/3.0 * h2 / (1 - h2) elif (eDist == 'logistic' and scaleG): sig2g = h2 else: raise ValueError('unknown e_dist. Valid value are normal, logistic') if kernel == 'linear': self.beta = self.prng.randn(self.m) * np.sqrt(sig2g/self.m) #generate effect sizes self.g = self.X.dot(self.beta) #generate genetic effects self.g_estimated = self.X_estimated.dot(self.beta) elif args.kernel == 'rbf': assert scaleG kernel_obj = kernels.ScaledKernel(kernels.RBFKernel(self.X)) K = kernel_obj.getTrainKernel(np.array([np.log(rbf_scale), np.log(sig2g) / 2.0])) L = la.cholesky(K, lower=True, overwrite_a=True) self.g = L.dot(np.random.randn(K.shape[0])) if np.allclose(self.X, self.X_estimated): self.g_estimated = self.g.copy() else: kernel_obj_estimated = kernels.ScaledKernel(kernels.RBFKernel(self.X_estimated)) K_estimated = kernel_obj_estimated.getTrainKernel(np.array([np.log(rbf_scale), np.log(sig2g) / 2.0])) L_estimated = la.cholesky(K_estimated, lower=True, overwrite_a=True) self.g_estimated = L_estimated.dot(np.random.randn(K_estimated.shape[0])) else: raise ValueError('unknown kernel') #create identical twins if needed if self.prev == 0.5: numGeno = self.n else: numGeno = np.maximum(int(float(self.n)/float(2*self.prev)), 25000) self.fixedEffects = np.ones(numFixed) * (0 if (numFixed==0) else np.sqrt(fixedVar / numFixed)) self.covars = self.prng.randn(self.g.shape[0], numFixed) m = self.covars.dot(self.fixedEffects) self.g += m self.g_estimated += m if (eDist == 'logistic' and numFixed>0): raise ValueError('logistic distribution with fixed effects not supported') #generate environmental effect if (eDist == 'normal' and not scaleG): e = self.prng.randn(self.g.shape[0]) elif (eDist == 'normal' and scaleG): e = self.prng.randn(self.g.shape[0]) * np.sqrt(1 - sig2g)# - (fixedVar if (numFixed>0) else 0)) elif (eDist == 'logistic' and not scaleG): e = stats.logistic(0,1).rvs(self.g.shape[0]) elif (eDist == 'logistic' and scaleG): e = stats.logistic(0,1).rvs(self.g.shape[0]) * np.sqrt(1-sig2g) / np.sqrt((np.pi**2)/3.0) else: raise ValueError('unknown e distribution: ' + self.eDist) self.yAll = self.g + e self.yAll_estimated = self.g_estimated + e self.affCutoff = np.percentile(self.yAll, 100*(1-self.prev)) cases = (self.yAll >= self.affCutoff) #determine cases cases_estimated = (self.yAll_estimated >= self.affCutoff) #determine cases controls = ~cases controls_estimated = ~cases_estimated self.y = np.ones(self.yAll.shape[0]) self.y[controls] = -1 self.y_estimated = np.ones(self.yAll.shape[0]) self.y_estimated = np.ones(self.yAll.shape[0]) self.y_estimated[controls_estimated] = -1 #select cases and controls caseInds = np.where(cases)[0] controlInds = np.where(controls)[0] if ascertain: numCases = np.sum(cases) if (numCases > self.n/2+2): selectedCases = self.prng.permutation(numCases)[:self.n//2] caseInds = caseInds[selectedCases] numCases = len(caseInds) numControls = int(numCases * (1-frac_cases)/frac_cases) selectedControls = self.prng.permutation(controls.sum())[:numControls] selectedInds = np.concatenate((caseInds, controlInds[selectedControls])) else: while True: selectedInds = self.prng.permutation(cases.shape[0])[:self.n] if (np.sum(cases[selectedInds]) > 0): break #scramble inds to avoid numerical issues self.prng.shuffle(selectedInds) self.y = self.y[selectedInds] ###print('%%cases: %0.2f'%(np.mean(self.y>0))) self.g = self.g[selectedInds] self.g_estimated = self.g_estimated[selectedInds] self.y_cont = self.yAll[selectedInds] self.covars = self.covars[selectedInds, :] self.X_selected = self.X_estimated[selectedInds, :] if (extraSNPs > 0): ###print('Adding', extraSNPs, 'non-causal SNPs...') mafs = self.prng.rand(extraSNPs) * 0.45 + 0.05 X2 = self.prng.binomial(2, mafs, size=(self.X_selected.shape[0], extraSNPs)).astype(np.float) X2 -= 2*mafs X2 /= np.sqrt(2*mafs*(1-mafs)) self.X_selected = np.concatenate((self.X_selected, X2), axis=1) #create the kernel matrix if kernel=='linear': kernel_obj = kernels.linearKernel(self.X_selected) K = kernel_obj.getTrainKernel(np.array([])) elif kernel=='rbf': kernel_obj = kernels.RBFKernel(self.X_selected) K = kernel_obj.getTrainKernel(np.array([np.log(rbf_scale)])) else: raise ValueError('unknown kernel') self.kernel = kernels.ScaledKernel(kernel_obj) def computeT(self, K, sig2e=np.pi**2/3.0): if (self.prev==0.5): return 0.0 controls = (self.y < 0) cases = ~controls diagK = np.diag(K) sig2g = (1-self.prev)*np.mean(diagK[controls]) + self.prev*np.mean(diagK[cases]) if (self.eDist == 'normal'): t = stats.norm(0, np.sqrt(sig2g+1)).isf(self.prev) elif (self.eDist == 'logistic'): s = np.sqrt(3*sig2e/np.pi**2) normCache = np.log(np.sqrt(2*np.pi*sig2g)) llF = lambda f,t: -(f-t)**2/(2*sig2g) - normCache pFAndY = lambda f,t: np.exp(llF(f,t)) * (1.0/(1+np.exp(-f/s)) if f>-35 else 0.0) pY = lambda t: integrate.quad(lambda f:pFAndY(f,t), -np.inf, np.inf) t = -optimize.minimize_scalar(lambda t:(pY(t)[0]-self.prev)**2, method='bounded', bounds=(-8, 8)).x else: raise Exception('unknown e distribution: ' + self.eDist) return t def likErf_EP(self, y, mu, s2, hyp=None, compDerivs=False): sqrtVarDenom = 1.0 / np.sqrt(1+s2) z = mu * sqrtVarDenom * y normPDF = stats.norm(0,1) lZ = normPDF.logcdf(z) if (not compDerivs): return lZ n_p = np.exp(normPDF.logpdf(z) - lZ) dlZ = n_p * sqrtVarDenom * y #1st derivative wrt mean d2lZ = -n_p * (z+n_p) / (1+s2) #2nd derivative wrt mean return lZ, dlZ, d2lZ #compute EP for a single individual, and compute derivatives with respect to the mean (mu) def likLogistic_EP_single_new(self, y, mu, s2, hyp): t = hyp[4]; mu = mu-t hyp[4] = 0 lZc, dlZc, d2lZc = self.likProbit_EP_single(y, mu*self.logistic_lam, s2*self.logistic_lam2, hyp) lZ = self.log_expA_x_single(lZc, self.logistic_c) #A=lZc, B=dlZc, d=c.*lam', lZ=log(exp(A)*c) dlZ = self.expABz_expAx_single(lZc, self.logistic_c, dlZc, self.logistic_clam) #((exp(A).*B)*d)./(exp(A)*c) #d2lZ = ((exp(A).*Z)*e)./(exp(A)*c) - dlZ.^2 where e = c.*(lam.^2)' d2lZ = self.expABz_expAx_single(lZc, self.logistic_c, dlZc**2+d2lZc, self.logistic_c * self.logistic_lam2) - dlZ**2 #A note (from the GPML package documentation): #The scale mixture approximation does not capture the correct asymptotic #behavior; we have linear decay instead of quadratic decay as suggested #by the scale mixture approximation. By observing that for large values #of -f*y ln(p(y|f)) for likLogistic is linear in f with slope y, we are #able to analytically integrate the tail region. val = np.abs(mu) - 196/200*s2-4 #empirically determined bound at val==0 lam = 1.0 / (1.0+np.exp(-10*val)) #interpolation weights lZtail = np.minimum(s2/2.0-np.abs(mu), -0.1) #apply the same to p(y|f) = 1 - p(-y|f) if (mu*y > 0): lZtail = np.log(1-np.exp(lZtail)) #label and mean agree dlZtail = 0 else: dlZtail = -np.sign(mu) lZ = (1-lam)* lZ + lam* lZtail #interpolate between scale .. dlZ = (1-lam)* dlZ + lam* dlZtail #.. mixture and .. d2lZ = (1-lam)*d2lZ #.. tail approximation hyp[4] = t return lZ, dlZ, d2lZ def likLogistic_EP_multi_new(self, y, mu, s2, hyp=None): t = hyp[4]; mu = mu-t hyp[4] = 0 lZc = self.likProbit_EP_multi(np.outer(y, np.ones(5)), np.outer(mu, self.logistic_lam), np.outer(s2, self.logistic_lam2), hyp) lZ = self.log_expA_x_multi(lZc, self.logistic_c) #A=lZc, B=dlZc, d=c.*lam', lZ=log(exp(A)*c) val = np.abs(mu) - 196/200*s2-4 #empirically determined bound at val==0 lam = 1.0 / (1.0+np.exp(-10*val)) #interpolation weights lZtail = np.minimum(s2/2.0-np.abs(mu), -0.1) #apply the same to p(y|f) = 1 - p(-y|f) muy = mu*y id = muy>0; lZtail[id] = np.log(1-np.exp(lZtail[id])) #label and mean agree lZ = (1-lam)*lZ + lam*lZtail #interpolate between scale mixture and tail approximation hyp[4] = t return lZ def likProbit_EP_multi(self, y, mu, s2, hyp): sig2e, t = hyp[0], hyp[4] lZ = stats.norm(0,1).logcdf(y * (mu-t) / np.sqrt(s2+sig2e)) return lZ def likProbit_EP_single(self, y, mu, s2, hyp): sig2e, t = hyp[0], hyp[4] a = y / np.sqrt(s2+sig2e) z = a * (mu-t) normPDF = stats.norm(0,1) lZ = normPDF.logcdf(z) n_p = np.exp(normPDF.logpdf(z) - lZ) dlZ = a * n_p d2lZ = -a**2 * n_p * (z+n_p) return lZ, dlZ, d2lZ def likFunc_EP_asc_multi(self, y, mu, s2, hyp): logS0, logSDiff, sDiff = hyp[1], hyp[2], hyp[3] likFunc_numer, likFunc_denom = hyp[5], hyp[6] lZ = likFunc_numer(1, mu, s2, hyp) logZstar = np.logaddexp(logS0, logSDiff+lZ) return logZstar def likFunc_EP_asc_single(self, y, mu, s2, hyp): logS0, logSDiff, sDiff = hyp[1], hyp[2], hyp[3] likFunc_numer, likFunc_denom = hyp[5], hyp[6] lZ, dlZ, d2lZ = likFunc_numer(1, mu, s2, hyp) logZstar = np.logaddexp(logS0, logSDiff+lZ) expDiff = np.exp(lZ-logZstar) temp = sDiff * expDiff dZstar = temp * dlZ d2Zstar = temp * (d2lZ + dlZ**2 * (1-temp)) return logZstar, dZstar, d2Zstar def likFunc_EP_both_single(self, y, mu, s2, hyp): logS0, logSDiff, sDiff = hyp[1], hyp[2], hyp[3] likFunc_numer, likFunc_denom = hyp[5], hyp[6] lZ_numer, dlZ_numer, d2lZ_numer = likFunc_numer(y, mu, s2, hyp) lZ_numer += (logS0 if y<0 else 0) lZ_denom, dlZ_denom, d2lZ_denom = likFunc_denom(y, mu, s2, hyp) return lZ_numer-lZ_denom, dlZ_numer-dlZ_denom, d2lZ_numer-d2lZ_denom def likFunc_EP_both_multi(self, y, mu, s2, hyp): logS0, logSDiff, sDiff = hyp[1], hyp[2], hyp[3] likFunc_numer, likFunc_denom = hyp[5], hyp[6] lZ_numer = likFunc_numer(y, mu, s2, hyp) lZ_numer[y<0] += logS0 #note: we assume that logS1=0 lZ_denom = likFunc_denom(y, mu, s2, hyp) return lZ_numer-lZ_denom def evalLL_EP(self, hyp): try: hyp[0] except: hyp=np.array([hyp]) tol = 1e-4; max_sweep = 20; min_sweep = 2 #tolerance to stop EP iterations p = np.mean(self.y>0) s1 = 1.0 s0 = s1 * self.prev / (1-self.prev) * (1-p) / p logS0 = np.log(s0); sDiff = s1-s0; logSDiff = np.log(sDiff) K = self.kernel.getTrainKernel(hyp) m = np.zeros(self.y.shape[0]) controls = (self.y < 0) cases = ~controls diagK = np.diag(K) sig2g = (1-self.prev)*np.mean(diagK[controls]) + self.prev*np.mean(diagK[cases]) if (sig2g > self.h2Scale): raise ValueError('sig2g larger than h2Scale found') if (self.covars.shape[1] > 0): C = self.covars logreg = sklearn.linear_model.LogisticRegression(penalty='l2', C=1000, fit_intercept=True) s0 = self.prev / (1-self.prev) * (1-np.mean(self.y>0)) / np.mean(self.y>0) logreg.fit(C, self.y) Pi = logreg.predict_proba(C)[:,1] Ki = Pi * s0 / (1 - Pi*(1-s0)) if (self.eDist == 'logistic'): old_prev = self.prev t = np.empty(self.y.shape[0]) for i in range(self.y.shape[0]): self.prev = Ki[i] t[i] = self.computeT(K, self.h2Scale-sig2g) self.prev = old_prev else: t = stats.norm(0,1).isf(Ki) if (self.eDist == 'normal'): likFunc_numer_multi = self.likProbit_EP_multi likFunc_numer_single = self.likProbit_EP_single sig2e = self.h2Scale - sig2g if (self.covars.shape[1] == 0): t = np.zeros(self.y.shape[0]) + stats.norm(0, np.sqrt(sig2g+sig2e)).isf(self.prev) #t = stats.norm(0, np.sqrt(sig2g+sig2e)).isf(self.prev) elif (self.eDist == 'logistic'): likFunc_numer_multi = self.likLogistic_EP_multi_new likFunc_numer_single = self.likLogistic_EP_single_new sig2e = (self.h2Scale - sig2g) / (np.pi**2 / 3.0) #if (self.covars.shape[1] == 0): t = np.zeros(self.y.shape[0]) + self.computeT(K, self.h2Scale-sig2g) t = self.computeT(K, self.h2Scale-sig2g) else: raise ValueError('unknown eDist') likHyp_multi = [sig2e, logS0, logSDiff, sDiff, t, likFunc_numer_multi, self.likFunc_EP_asc_multi] likHyp_single = [sig2e, logS0, logSDiff, sDiff, t, likFunc_numer_single, self.likFunc_EP_asc_single] likFuncMulti = likFunc_numer_multi likFuncSingle = likFunc_numer_single Sigma = K.copy() mu = m.copy() #- t nlZ0 = -np.sum(likFuncMulti(self.y, mu, np.diag(K), likHyp_multi)) ttau, tnu = np.zeros(self.y.shape[0]), np.zeros(self.y.shape[0]) nlZ_old, sweep = np.inf, 0 nlZ = nlZ0 while ((np.abs(nlZ-nlZ_old) > tol and sweep < max_sweep) or sweep<min_sweep): nlZ_old = nlZ sweep+=1 if (self.eDist == 'logistic'): ttau, tnu = self.EP_innerloop2(Sigma, self.y, mu, ttau, tnu, likFuncSingle, likHyp_single) else: ttau, tnu = ep_fast.EP_innerloop_probit(Sigma, self.y, mu, ttau, tnu, sig2e, t) (Sigma, mu, L, alpha, nlZ) = self.epComputeParams2(K, self.y, ttau, tnu, m, likFuncMulti, likHyp_multi) if (sweep == max_sweep and np.abs(nlZ-nlZ_old) > tol): nlZ = np.inf if (nlZ < 0): nlZ = np.inf self.mu = mu return nlZ def evalLL_AEP(self, hyp, grad=False, update_freq=1): try: hyp[0] except: hyp=np.array([hyp]) tol = 1e-4; max_sweep = 20; min_sweep = 2 #tolerance to stop EP iterations p = np.mean(self.y>0) s1 = 1.0 s0 = s1 * self.prev / (1-self.prev) * (1-p) / p y = self.y.copy() useCython = True logS0 = np.log(s0) sDiff = s1-s0 logSDiff = np.log(sDiff) #Generate problem settings hyp_scaled = hyp.copy() if self.h2Scale != 1.0: hyp_scaled[-1] = np.log(np.exp(2*hyp[-1]) * self.h2Scale) / 2.0 K = self.kernel.getTrainKernel(hyp_scaled) C = self.covars.copy() m = np.zeros(y.shape[0]) controls = (y < 0) cases = ~controls diagK = np.diag(K) sig2g = np.exp(2*hyp[-1]) if (self.eDist == 'normal'): sig2e = self.h2Scale - sig2g elif (self.eDist == 'logistic'): sig2e = (self.h2Scale - sig2g) / (np.pi**2 / 3.0) else: raise ValueError('unknown eDist') if (sig2g > self.h2Scale): raise ValueError('sig2g larger than h2Scale found') if C.shape[1] > 0 and self.useFixed: logreg = sklearn.linear_model.LogisticRegression(penalty='l2', C=1000, fit_intercept=True) s0 = self.prev / (1-self.prev) * (1-np.mean(y>0)) / np.mean(y>0) logreg.fit(C, y) Pi = logreg.predict_proba(C)[:,1] Ki = Pi * s0 / (1 - Pi*(1-s0)) if (self.eDist == 'logistic'): old_prev = self.prev t = np.empty(y.shape[0]) for i in range(y.shape[0]): self.prev = Ki[i] t[i] = self.computeT(K, self.h2Scale-sig2g) self.prev = old_prev else: t = stats.norm(0, np.sqrt(sig2g+sig2e)).isf(Ki) if (self.eDist == 'normal'): likFunc_numer_single = self.likProbit_EP_single likFunc_numer_multi = self.likProbit_EP_multi if (C.shape[1] == 0 or not self.useFixed): t = stats.norm(0, np.sqrt(sig2g+sig2e)).isf(self.prev) elif (self.eDist == 'logistic'): likFunc_numer_single = self.likLogistic_EP_single_new likFunc_numer_multi = self.likLogistic_EP_multi_new if (C.shape[1] == 0 or not self.useFixed): t = self.computeT(K, self.h2Scale-sig2g) else: raise ValueError('unknown eDist') likHyp_multi = [sig2e, logS0, logSDiff, sDiff, t, likFunc_numer_multi, self.likFunc_EP_asc_multi] likHyp_single = [sig2e, logS0, logSDiff, sDiff, t, likFunc_numer_single, self.likFunc_EP_asc_single] likFuncMulti = self.likFunc_EP_both_multi likFuncSingle = self.likFunc_EP_both_single #initialize Sigma and mu, the parameters of the Gaussian posterior approximation Sigma = K.copy() mu = m.copy() #marginal likelihood for ttau = tnu = zeros(n,1); equals n*log(2) for likCum* nlZ0 = -np.sum(likFuncMulti(y, mu, np.diag(K), likHyp_multi)) ttau, tnu = np.zeros(y.shape[0]), np.zeros(y.shape[0]) nlZ_old, sweep = np.inf, 0 nlZ = nlZ0 while ((np.abs(nlZ-nlZ_old) > tol and sweep < max_sweep) or sweep<min_sweep): nlZ_old = nlZ sweep+=1 if (self.eDist == 'logistic' or not useCython): ttau, tnu = self.EP_innerloop2(Sigma, y, mu, ttau, tnu, likFuncSingle, likHyp_single) else: ttau, tnu = ep_fast.EP_innerloop_probit_both_parallel(Sigma, y, mu, s0, sDiff, ttau, tnu, sig2e, np.zeros(y.shape[0])+t, update_freq=update_freq) try: (Sigma, mu, L, alpha, nlZ) = self.epComputeParams2(K, y, ttau, tnu, m, likFuncMulti, likHyp_multi) except: nlZ=np.inf print('\t', 'Cholesky failed!') raise break if (sweep == max_sweep and np.abs(nlZ-nlZ_old) > tol): nlZ = np.inf nlZ_asc = nlZ if (len(self.prev_nlZ) >= 2): prev_diff = np.maximum(np.abs(self.prev_nlZ[-1]-self.prev_nlZ[-2]), 2) bad_inds = ((np.abs(ttau)>100) | (np.abs(tnu)>100)) if (np.abs(nlZ - self.prev_nlZ[-1]) > 2*np.abs(prev_diff) and np.any(bad_inds)): nlZ = np.inf nlZ_asc = nlZ if (nlZ == np.inf): self.old_ttau tol=1e-2 ttau, tnu = self.old_ttau, self.old_tnu Sigma = self.old_Sigma mu = self.old_mu nlZ_old, sweep = np.inf, 0 nlZ = np.inf nlZ_arr = [] max_sweep=40 while (sweep<min_sweep or (np.abs(nlZ-nlZ_old) > tol and sweep < max_sweep)): nlZ_old = nlZ sweep+=1 if (self.eDist == 'logistic' or not useCython): ttau, tnu = self.EP_innerloop2(Sigma, y, mu, ttau, tnu, likFuncSingle, likHyp_single) else: ttau, tnu = ep_fast.EP_innerloop_probit_both_parallel(Sigma, y, mu, s0, sDiff, ttau, tnu, sig2e, np.zeros(y.shape[0])+t, update_freq=update_freq) try: (Sigma, mu, L, alpha, nlZ) = self.epComputeParams2(K, y, ttau, tnu, m, likFuncMulti, likHyp_multi) except: nlZ = np.inf break nlZ_arr.append(nlZ) nlZ_arr = np.array(nlZ_arr) if (sweep == max_sweep and np.abs(nlZ-nlZ_old) > tol): if (np.abs(nlZ-nlZ_old) < 3): if (np.all(nlZ_arr[5:] < self.old_nlZ)): nlZ = np.max(nlZ_arr[5:]) elif (np.all(nlZ_arr[5:] > self.old_nlZ)): nlZ = np.min(nlZ_arr[5:]) else: nlZ = np.inf prev_diff = np.maximum(np.abs(self.prev_nlZ[-1]-self.prev_nlZ[-2]), 2) bad_inds = ((np.abs(ttau)>100) | (np.abs(tnu)>100)) try: if (nlZ < np.inf and np.max(np.abs(nlZ_arr[5:] - self.prev_nlZ[-1])) > 2*np.abs(prev_diff) and np.any(bad_inds)): nlZ = np.inf except: pass nlZ_asc = nlZ if (nlZ < np.inf): self.old_ttau, self.old_tnu, self.old_Sigma, self.old_mu, self.old_nlZ = ttau, tnu, Sigma, mu, nlZ self.prev_nlZ.append(nlZ) self.mu = mu nlZ = nlZ_asc if (nlZ < 0): nlZ = np.inf return nlZ def likLogistic_EP_multi(self, y, mu, s2, hyp=None): lZc = self.likErf_EP(np.outer(y, np.ones(5)), np.outer(mu, self.logistic_lam), np.outer(s2, self.logistic_lam2), compDerivs=False) lZ = self.log_expA_x_multi(lZc, self.logistic_c) #A=lZc, B=dlZc, d=c.*lam', lZ=log(exp(A)*c) val = np.abs(mu) - 196/200*s2-4 #empirically determined bound at val==0 lam = 1.0 / (1.0+np.exp(-10*val)) #interpolation weights lZtail = np.minimum(s2/2.0-np.abs(mu), -0.1) #apply the same to p(y|f) = 1 - p(-y|f) muy = mu*y id = muy>0; lZtail[id] = np.log(1-np.exp(lZtail[id])) #label and mean agree lZ = (1-lam)*lZ + lam*lZtail #interpolate between scale mixture and tail approximation return lZ #computes y = log( exp(A)*x ) in a numerically safe way by subtracting the # maximal value in each row to avoid cancelation after taking the exp def log_expA_x_multi(self, A, x): maxA = np.max(A, axis=1) #number of columns, max over columns y = np.log(np.exp(A - maxA[:, np.newaxis]).dot(x)) + maxA #exp(A) = exp(A-max(A))*exp(max(A)) return y #computes y = log( exp(A)*x ) in a numerically safe way by subtracting the # maximal value in each row to avoid cancelation after taking the exp def log_expA_x_single(self, A, x): maxA = np.max(A) #number of columns, max over columns y = np.log(np.exp(A-maxA).dot(x)) + maxA #exp(A) = exp(A-max(A))*exp(max(A)) return y # computes y = ( (exp(A).*B)*z ) ./ ( exp(A)*x ) in a numerically safe way. #The function is not general in the sense that it yields correct values for #all types of inputs. We assume that the values are close together. def expABz_expAx_single(self, A,x,B,z): maxA = np.max(A) #number of columns, max over columns expA = np.exp(A-maxA) y = np.dot(expA*B, z) / np.dot(expA, x) return y def evalLL(self, hyp, method): if (method == 'aep'): return self.evalLL_AEP(hyp) elif (method == 'aep_parallel'): return self.evalLL_AEP(hyp, update_freq=10000000000) elif (method == 'ep'): return self.evalLL_EP(hyp) else: raise ValueError('unrecognized method: %s. Valid methods are reml, pcgc, apl, aep, aep_parallel or ep'%(method)) def reml(self, is_binary): K = self.kernel.getTrainKernel(np.array([0])) logdetXX = 0 #eigendecompose s,U = la.eigh(K) s[s<0]=0 ind = np.argsort(s)[::-1] U = U[:, ind] s = s[ind] #Prepare required matrices if is_binary: y = (self.y>0).astype(np.int) else: y = self.y_cont Uy = U.T.dot(y).flatten() covars = np.ones((y.shape[0], 1)) UX = U.T.dot(covars) if (U.shape[1] < U.shape[0]): UUX = covars - U.dot(UX) UUy = y - U.dot(Uy) UUXUUX = UUX.T.dot(UUX) UUXUUy = UUX.T.dot(UUy) UUyUUy = UUy.T.dot(UUy) else: UUXUUX, UUXUUy, UUyUUy = None, None, None n = U.shape[0] ldeltaopt_glob = optimize.minimize_scalar(self.negLLevalLong, bounds=(-5, 5), method='Bounded', args=(s, Uy, UX, logdetXX, UUXUUX, UUXUUy, UUyUUy, n)).x ll, sig2g, beta, r2 = self.negLLevalLong(ldeltaopt_glob, s, Uy, UX, logdetXX, UUXUUX, UUXUUy, UUyUUy, n, returnAllParams=True) sig2e = np.exp(ldeltaopt_glob) * sig2g return sig2g/(sig2g+sig2e) def negLLevalLong(self, logdelta, s, Uy, UX, logdetXX, UUXUUX, UUXUUy, UUyUUy, numIndividuals, returnAllParams=False): Sd = s + np.exp(logdelta) UyS = Uy / Sd yKy = UyS.T.dot(Uy) logdetK = np.log(Sd).sum() null_ll, sigma2, beta, r2 = self.lleval(Uy, UX, Sd, yKy, logdetK, logdetXX, logdelta, UUXUUX, UUXUUy, UUyUUy, numIndividuals) if returnAllParams: return null_ll, sigma2, beta, r2 else: return -null_ll def lleval(self, Uy, UX, Sd, yKy, logdetK, logdetXX, logdelta, UUXUUX, UUXUUy, UUyUUy, numIndividuals): N = numIndividuals D = UX.shape[1] UXS = UX / np.lib.stride_tricks.as_strided(Sd, (Sd.size, D), (Sd.itemsize,0)) XKy = UXS.T.dot(Uy) XKX = UXS.T.dot(UX) if (Sd.shape[0] < numIndividuals): delta = np.exp(logdelta) denom = delta XKX += UUXUUX / denom XKy += UUXUUy / denom yKy += UUyUUy / denom logdetK += (numIndividuals-Sd.shape[0]) * logdelta [SxKx,UxKx]= la.eigh(XKX) i_pos = SxKx>1E-10 beta = np.dot(UxKx[:,i_pos], (np.dot(UxKx[:,i_pos].T, XKy) / SxKx[i_pos])) r2 = yKy-XKy.dot(beta) reml = True if reml: logdetXKX = np.log(SxKx).sum() sigma2 = (r2 / (N - D)) ll = -0.5 * (logdetK + (N-D)*np.log(2.0*np.pi*sigma2) + (N-D) + logdetXKX - logdetXX) else: sigma2 = r2 / N ll = -0.5 * (logdetK + N*np.log(2.0*np.pi*sigma2) + N) return ll, sigma2, beta, r2 def solveChol(self, L, B, overwrite_b=True): cholSolve1 = la.solve_triangular(L, B, trans=1, check_finite=False, overwrite_b=overwrite_b) cholSolve2 = la.solve_triangular(L, cholSolve1, check_finite=False, overwrite_b=True) return cholSolve2 def evalLL_EP(self, hyp): tol = 1e-4; max_sweep = 20; min_sweep = 2 #tolerance to stop EP iterations s0 = self.prev / (1-self.prev) s1 = 1.0 useCython = False try: hyp[0] except: hyp=np.array([hyp]) if (self.prev < 0.5): logS0 = np.log(s0) logSdiff = np.log(s1-s0) else: logS0 = -np.inf logSdiff = 0.0 #Generate problem settings K = self.kernel.getTrainKernel(hyp) m = np.zeros(self.y.shape[0]) if self.useFixed: m += self.covars.dot(self.fixedEffects) controls = (self.y < 0) cases = ~controls diagK = np.diag(K) sig2g = (1-self.prev)*np.mean(diagK[controls]) + self.prev*np.mean(diagK[cases]) if (sig2g > 1.0): raise ValueError('sig2g larger than 1.0 found') sig2e = 1.0 - sig2g t = stats.norm(0, np.sqrt(sig2g+sig2e)).isf(self.prev) m -= t if useCython: EP_func = EP_cython.EPInnerLoop_cython else: EP_func = self.EPInnerLoop llFunc = self.llFuncStandard #A note on naming (taken directly from the GPML documentation): #variables are given short but descriptive names in #accordance with <NAME> "GPs for Machine Learning" (2006): mu #and s2 are mean and variance, nu and tau are natural parameters. A leading t #means tilde, a subscript _ni means "not i" (for cavity parameters), or _n #for a vector of cavity parameters. N(f|mu,Sigma) is the posterior. #initialize Sigma and mu, the parameters of the Gaussian posterior approximation Sigma = K.copy() mu = m.copy() #marginal likelihood for ttau = tnu = zeros(n,1); equals n*log(2) for likCum* nlZ0 = -np.sum(llFunc(self.y, mu, np.diag(K), sig2e)) ttau, tnu = np.zeros(self.y.shape[0]), np.zeros(self.y.shape[0]) nlZ_old, sweep = np.inf, 0 nlZ = nlZ0 while ((np.abs(nlZ-nlZ_old) > tol and sweep < max_sweep) or sweep<min_sweep): nlZ_old = nlZ sweep+=1 Sigma, mu, ttau, tnu = EP_func(Sigma, self.y, mu, ttau, tnu, sig2e) #recompute since repeated rank-one updates can destroy numerical precision (Sigma, mu, L, alpha, nlZ) = self.epComputeParams(K, self.y, ttau, tnu, sig2e, m, llFunc) self.mu = mu return nlZ def llFuncStandard(self, y, mu, s2, sig2e): z = mu / np.sqrt(sig2e+s2) * y nlZ = stats.norm(0,1).logcdf(z) return nlZ def EP_innerloop2(self, Sigma, y, mu, ttau, tnu, likFuncSingle, likHyp): randpermN = np.random.permutation(range(y.shape[0])) normPDF = stats.norm(0,1) for i in randpermN: #iterate EP updates (in random order) over examples #first find the cavity distribution params tau_ni and nu_ni if (ttau[i] > 1.0/Sigma[i,i]): raise ValueError('infeasible ttau[i] found!!!') tau_ni = 1.0/Sigma[i,i] - ttau[i] #Equation 3.56 rhs (and 3.66) from GP book nu_ni = (mu[i]/Sigma[i,i] - tnu[i]) #Equation 3.56 lhs (and 3.66) from GP book mu_ni = nu_ni / tau_ni #compute the desired derivatives of the individual log partition function try: t = likHyp[4] likHyp[4] = t[i] lZ, dlZ, d2lZ = likFuncSingle(y[i], mu_ni, 1.0/tau_ni, likHyp) likHyp[4] = t except: lZ, dlZ, d2lZ = likFuncSingle(y[i], mu_ni, 1.0/tau_ni, likHyp) ttau_old, tnu_old = ttau[i], tnu[i] #find the new tilde params, keep old ttau[i] = -d2lZ / (1+d2lZ/tau_ni) ttau[i] = np.maximum(ttau[i], 0) #enforce positivity i.e. lower bound ttau by zero tnu[i] = (dlZ - mu_ni*d2lZ ) / (1+d2lZ/tau_ni) if (ttau[i] == 0): tnu[i]=0 dtt = ttau[i] - ttau_old dtn = tnu[i] - tnu_old #rank-1 update Sigma si = Sigma[:,i] ci = dtt / (1+dtt*si[i]) mu -= (ci* (mu[i]+si[i]*dtn) - dtn) * si #Equation 3.53 from GP book Sigma -= np.outer(ci*si, si) #Equation 3.70 from GP book (#takes 70% of total time) return ttau, tnu def EPInnerLoop(self, Sigma, y, mu, ttau, tnu, sig2e): randpermN = np.random.permutation(range(y.shape[0])) normPDF = stats.norm(0,1) for i in randpermN: #iterate EP updates (in random order) over examples #first find the cavity distribution params tau_ni and mu_ni tau_ni = 1.0/Sigma[i,i] - ttau[i] #Equation 3.56 rhs (and 3.66) from GP book mu_ni = (mu[i]/Sigma[i,i] - tnu[i]) / tau_ni #Equation 3.56 lhs (and 3.66) from GP book #compute the desired derivatives of the individual log partition function s2 = 1.0/tau_ni sqrtS2 = np.sqrt(s2 + sig2e) z = mu_ni * y[i] / sqrtS2 #Equation 3.82 from GP book ttau_old, tnu_old = ttau[i], tnu[i] #find the new tilde params, keep old Z = normPDF.logcdf(z) n_p = np.exp(normPDF.logpdf(z) - Z) #Equation 3.82 from GP book #matlab computation... dlZ = y[i] * n_p / sqrtS2 #1st derivative of log(Z) wrt mean d2lZ = -n_p*(z+n_p)/(sig2e+s2) #2nd derivative of log(Z) wrt mean ttau_matlab = -d2lZ / (1+d2lZ/tau_ni) tnu_matlab = (dlZ - mu_ni*d2lZ ) / (1+d2lZ/tau_ni) #my new computation... meanQx = mu_ni + s2*n_p * y[i] / sqrtS2 #This is mu_hat from Equations 3.57-3.59 (specifically this is Equation 3.85) meanQx2 = dlZ/tau_ni + mu_ni assert np.isclose(meanQx, meanQx2) varQx = s2 - s2**2 * n_p / (sig2e+s2) * (z + n_p) #This is sigma^2_hat from Equations 3.57-3.59 (specifically this is equation 3.87) #varQx2 = d2lZ/tau_ni**2 + 2*mu_ni*meanQx - mu_ni**2 + 1.0/tau_ni + dlZ**2/tau_ni**2 - meanQx2**2 varQx2 = (d2lZ+dlZ**2)/tau_ni**2 + 2*mu_ni*meanQx - mu_ni**2 + 1.0/tau_ni - meanQx2**2 assert np.isclose(varQx, varQx2) ttau[i] = 1.0/varQx - tau_ni #Equation 3.59 (and 3.66) tnu[i] = meanQx/varQx - mu_ni*tau_ni #Equation 3.59 (and 3.66) ttau[i] = np.maximum(ttau[i], 0) #enforce positivity i.e. lower bound ttau by zero dtt = ttau[i] - ttau_old dtn = tnu[i] - tnu_old #rank-1 update Sigma si = Sigma[:,i] ci = dtt / (1+dtt*si[i]) mu -= (ci* (mu[i]+si[i]*dtn) - dtn) * si #Equation 3.53 from GP book Sigma -= np.outer(ci*si, si) #Equation 3.70 from GP book (#takes 70% of total time) return Sigma, mu, ttau, tnu def epComputeParams2(self, K, y, ttau, tnu, m, likFuncMulti, likHyp): n = y.shape[0] sW = np.sqrt(ttau) #compute Sigma and mu L = la.cholesky(np.eye(n) + np.outer(sW, sW) * K, overwrite_a=True, check_finite=False) #L.T*L=B=eye(n)+sW*K*sW V = la.solve_triangular(L, K*np.tile(sW, (n, 1)).T, trans=1, check_finite=False, overwrite_b=True) Sigma = K - V.T.dot(V) alpha = tnu-sW * self.solveChol(L, sW*(K.dot(tnu)+m)) mu = K.dot(alpha) + m v = np.diag(Sigma) tau_n = 1.0/np.diag(Sigma) - ttau #compute the log marginal likelihood nu_n = mu/np.diag(Sigma) - tnu #vectors of cavity parameters lZ = likFuncMulti(y, nu_n/tau_n, 1.0/tau_n, likHyp) p = tnu - m*ttau #auxiliary vectors q = nu_n - m*tau_n #auxiliary vectors nlZ = (np.sum(np.log(np.diag(L))) - lZ.sum() - (p.T.dot(Sigma)).dot(p/2.0) + (v.T.dot(p**2))/2.0 - q.T.dot((ttau/tau_n*q - 2*p) * v)/2.0 - np.sum(np.log(1+ttau/tau_n))/2.0) return (Sigma, mu, L, alpha, nlZ) def epComputeParams(self, K, y, ttau, tnu, sig2e, m, llFunc): n = y.shape[0] sW = np.sqrt(ttau) #compute Sigma and mu L = la.cholesky(np.eye(n) + np.outer(sW, sW) * K, overwrite_a=True, check_finite=False) #L.T*L=B=eye(n)+sW*K*sW V = la.solve_triangular(L, K*np.tile(sW, (n, 1)).T, trans=1, check_finite=False, overwrite_b=True) Sigma = K - V.T.dot(V) alpha = tnu-sW * self.solveChol(L, sW*(K.dot(tnu)+m)) mu = K.dot(alpha) + m v = np.diag(Sigma) tau_n = 1.0/np.diag(Sigma) - ttau #compute the log marginal likelihood nu_n = mu/np.diag(Sigma) - tnu #vectors of cavity parameters mu_temp = nu_n/tau_n s2 = 1.0/tau_n lZ = llFunc(y, mu_temp, s2, sig2e) p = tnu - m*ttau #auxiliary vectors q = nu_n - m*tau_n #auxiliary vectors nlZ = (np.sum(np.log(np.diag(L))) - np.sum(lZ) - (p.T.dot(Sigma)).dot(p/2.0) + (v.T.dot(p**2))/2.0 - q.T.dot((ttau/tau_n*q - 2*p) * v)/2.0 - np.sum(np.log(1+ttau/tau_n))/2.0) return (Sigma, mu, L, alpha, nlZ) def solveChol(self, L, B, overwrite_b=True): cholSolve1 = la.solve_triangular(L, B, trans=1, check_finite=False, overwrite_b=overwrite_b) cholSolve2 = la.solve_triangular(L, cholSolve1, check_finite=False, overwrite_b=True) return cholSolve2 def pairwise_ml(self): K = self.kernel.getTrainKernel(np.array([0])) yBinary = (self.y>0).astype(np.int) t = stats.norm(0,1).isf(self.prev) #estimate initial fixed effects C = self.covars if C.shape[1] > 0 and self.useFixed: logreg = sklearn.linear_model.LogisticRegression(penalty='l2', C=1000, fit_intercept=True) s0 = self.prev / (1-self.prev) * (1-np.mean(yBinary>0)) / np.mean(yBinary>0) logreg.fit(C, yBinary) Pi = logreg.predict_proba(C)[:,1] Ki = Pi * s0 / (1 - Pi*(1-s0)) t = stats.norm(0,1).isf(Ki) phit = stats.norm(0,1).pdf(t) ysum_temp = np.tile(yBinary, (yBinary.shape[0], 1)) sumY = ysum_temp + ysum_temp.T #sumY_flat = sumY[np.triu_indices(K.shape[0], 1)] Y0 = (sumY==0) Y1 = (sumY==1) Y2 = (sumY==2) P = np.mean(yBinary) denom = (self.prev**2 * (1-self.prev)**2) coef0 = phit**2 * P * (1-P)**2 * (2*self.prev-P) / denom coef1 = -(phit**2 * 2 * P * (1-P) * (P**2 + self.prev - 2*self.prev*P)) / denom coef2 = phit**2 * (1-P) * P**2 * (1-2*self.prev+P) / denom intercept = Y0*(1-P)**2 + Y1*2*P*(1-P) + Y2*P**2 coef = Y0*coef0 + Y1*coef1 + Y2*coef2 coefG = coef*K np.fill_diagonal(coefG, 0) #to ensure log(intercept + coefG*h2)=0 in diagonal np.fill_diagonal(intercept, 1) #to ensure log(intercept + coefG*h2)=0 in diagonal def pw_nll(h2): ll = np.sum(np.log(intercept + coefG*h2)) if np.isnan(ll): ll=-np.inf return -ll optObj = optimize.minimize_scalar(pw_nll, bounds=(0, 1), method='bounded') best_h2 = optObj.x return best_h2, optObj.fun def pcgc(self, rbf_hyp=None): t = stats.norm(0,1).isf(self.prev) if rbf_hyp is None: K = self.kernel.getTrainKernel(np.array([0])) else: K = self.kernel.getTrainKernel(np.array([rbf_hyp, 0])) y = self.y.copy() y[y>0] = 1 y[y<=0] = 0 C = self.covars if rbf_hyp is None and (C.shape[1] == 0 or not self.useFixed) and False: P = np.sum(y>0) / float(y.shape[0]) phit = stats.norm(0,1).pdf(t) xCoeff = P*(1-P) / (self.prev**2 * (1-self.prev)**2) * phit**2 yBinary = (y>0).astype(np.int) yy = np.outer((yBinary-P) / np.sqrt(P*(1-P)), (yBinary-P) / np.sqrt(P*(1-P))) xx = xCoeff * K yy = yy[np.triu_indices(yy.shape[0], 1)] xx = xx[
np.triu_indices(xx.shape[0], 1)
numpy.triu_indices
"""Test the validation module""" import os import re import sys import tempfile import warnings from functools import partial from time import sleep import pytest import numpy as np from scipy.sparse import coo_matrix, csr_matrix from sklearn.exceptions import FitFailedWarning from sklearn.model_selection.tests.test_search import FailingClassifier from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._mocking import CheckingClassifier, MockDataFrame from sklearn.utils.validation import _num_samples from sklearn.model_selection import cross_val_score, ShuffleSplit from sklearn.model_selection import cross_val_predict from sklearn.model_selection import cross_validate from sklearn.model_selection import permutation_test_score from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import learning_curve from sklearn.model_selection import validation_curve from sklearn.model_selection._validation import _check_is_permutation from sklearn.model_selection._validation import _fit_and_score from sklearn.model_selection._validation import _score from sklearn.datasets import make_regression from sklearn.datasets import load_diabetes from sklearn.datasets import load_iris from sklearn.datasets import load_digits from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import precision_score from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.metrics import check_scoring from sklearn.linear_model import Ridge, LogisticRegression, SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier, RidgeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC from sklearn.cluster import KMeans from sklearn.neural_network import MLPRegressor from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline from io import StringIO from sklearn.base import BaseEstimator from sklearn.base import clone from sklearn.multiclass import OneVsRestClassifier from sklearn.utils import shuffle from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.model_selection.tests.common import OneTimeSplitter from sklearn.model_selection import GridSearchCV try: WindowsError except NameError: WindowsError = None class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2.0 - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes, expected_fit_params=None): super().__init__(n_max_train_sizes) self.x = None self.expected_fit_params = expected_fit_params def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] if self.expected_fit_params: missing = set(self.expected_fit_params) - set(params) if missing: raise AssertionError( f"Expected fit parameter(s) {list(missing)} not seen." ) for key, value in params.items(): if key in self.expected_fit_params and _num_samples( value ) != _num_samples(X): raise AssertionError( f"Fit parameter {key} has length {_num_samples(value)}" f"; expected {_num_samples(X)}." ) class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset class MockEstimatorWithSingleFitCallAllowed(MockEstimatorWithParameter): """Dummy classifier that disallows repeated calls of fit method""" def fit(self, X_subset, y_subset): assert not hasattr(self, "fit_called_"), "fit is called the second time" self.fit_called_ = True return super().fit(X_subset, y_subset) def predict(self, X): raise NotImplementedError class MockClassifier: """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit( self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None, ): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError("X cannot be d") if sample_weight is not None: assert sample_weight.shape[0] == X.shape[0], ( "MockClassifier extra fit_param " "sample_weight.shape[0] is {0}, should be {1}".format( sample_weight.shape[0], X.shape[0] ) ) if class_prior is not None: assert class_prior.shape[0] == len(np.unique(y)), ( "MockClassifier extra fit_param class_prior.shape[0]" " is {0}, should be {1}".format(class_prior.shape[0], len(np.unique(y))) ) if sparse_sample_weight is not None: fmt = ( "MockClassifier extra fit_param sparse_sample_weight" ".shape[0] is {0}, should be {1}" ) assert sparse_sample_weight.shape[0] == X.shape[0], fmt.format( sparse_sample_weight.shape[0], X.shape[0] ) if sparse_param is not None: fmt = ( "MockClassifier extra fit_param sparse_param.shape " "is ({0}, {1}), should be ({2}, {3})" ) assert sparse_param.shape == P_sparse.shape, fmt.format( sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1], ) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def predict_proba(self, T): return T def score(self, X=None, Y=None): return 1.0 / (1 + np.abs(self.a)) def get_params(self, deep=False): return {"a": self.a, "allow_nd": self.allow_nd} # XXX: use 2D array, since 1D X is being detected as a single sample in # check_consistent_length X = np.ones((10, 2)) X_sparse = coo_matrix(X) y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) # The number of samples per class needs to be > n_splits, # for StratifiedKFold(n_splits=3) y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3]) P_sparse = coo_matrix(np.eye(5)) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cross_val_score(clf, X, y2) assert_array_equal(scores, clf.score(X, y2)) # test with multioutput y multioutput_y = np.column_stack([y2, y2[::-1]]) scores = cross_val_score(clf, X_sparse, multioutput_y) assert_array_equal(scores, clf.score(X_sparse, multioutput_y)) scores = cross_val_score(clf, X_sparse, y2) assert_array_equal(scores, clf.score(X_sparse, y2)) # test with multioutput y scores = cross_val_score(clf, X_sparse, multioutput_y) assert_array_equal(scores, clf.score(X_sparse, multioutput_y)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cross_val_score(clf, X.tolist(), y2.tolist(), cv=3) clf = CheckingClassifier(check_y=list_check) scores = cross_val_score(clf, X, y2.tolist(), cv=3) with pytest.raises(ValueError): cross_val_score(clf, X, y2, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cross_val_score(clf, X_3d, y2) clf = MockClassifier(allow_nd=False) with pytest.raises(ValueError): cross_val_score(clf, X_3d, y2, error_score="raise") def test_cross_validate_many_jobs(): # regression test for #12154: cv='warn' with n_jobs>1 trigger a copy of # the parameters leading to a failure in check_cv due to cv is 'warn' # instead of cv == 'warn'. X, y = load_iris(return_X_y=True) clf = SVC(gamma="auto") grid = GridSearchCV(clf, param_grid={"C": [1, 10]}) cross_validate(grid, X, y, n_jobs=2) def test_cross_validate_invalid_scoring_param(): X, y = make_classification(random_state=0) estimator = MockClassifier() # Test the errors error_message_regexp = ".*must be unique strings.*" # List/tuple of callables should raise a message advising users to use # dict of names to callables mapping with pytest.raises(ValueError, match=error_message_regexp): cross_validate( estimator, X, y, scoring=(make_scorer(precision_score), make_scorer(accuracy_score)), ) with pytest.raises(ValueError, match=error_message_regexp): cross_validate(estimator, X, y, scoring=(make_scorer(precision_score),)) # So should empty lists/tuples with pytest.raises(ValueError, match=error_message_regexp + "Empty list.*"): cross_validate(estimator, X, y, scoring=()) # So should duplicated entries with pytest.raises(ValueError, match=error_message_regexp + "Duplicate.*"): cross_validate(estimator, X, y, scoring=("f1_micro", "f1_micro")) # Nested Lists should raise a generic error message with pytest.raises(ValueError, match=error_message_regexp): cross_validate(estimator, X, y, scoring=[[make_scorer(precision_score)]]) error_message_regexp = ( ".*scoring is invalid.*Refer to the scoring glossary for details:.*" ) # Empty dict should raise invalid scoring error with pytest.raises(ValueError, match="An empty dict"): cross_validate(estimator, X, y, scoring=(dict())) # And so should any other invalid entry with pytest.raises(ValueError, match=error_message_regexp): cross_validate(estimator, X, y, scoring=5) multiclass_scorer = make_scorer(precision_recall_fscore_support) # Multiclass Scorers that return multiple values are not supported yet # the warning message we're expecting to see warning_message = ( "Scoring failed. The score on this train-test " f"partition for these parameters will be set to {np.nan}. " "Details: \n" ) with pytest.warns(UserWarning, match=warning_message): cross_validate(estimator, X, y, scoring=multiclass_scorer) with pytest.warns(UserWarning, match=warning_message): cross_validate(estimator, X, y, scoring={"foo": multiclass_scorer}) with pytest.raises(ValueError, match="'mse' is not a valid scoring value."): cross_validate(SVC(), X, y, scoring="mse") def test_cross_validate_nested_estimator(): # Non-regression test to ensure that nested # estimators are properly returned in a list # https://github.com/scikit-learn/scikit-learn/pull/17745 (X, y) = load_iris(return_X_y=True) pipeline = Pipeline( [ ("imputer", SimpleImputer()), ("classifier", MockClassifier()), ] ) results = cross_validate(pipeline, X, y, return_estimator=True) estimators = results["estimator"] assert isinstance(estimators, list) assert all(isinstance(estimator, Pipeline) for estimator in estimators) def test_cross_validate(): # Compute train and test mse/r2 scores cv = KFold() # Regression X_reg, y_reg = make_regression(n_samples=30, random_state=0) reg = Ridge(random_state=0) # Classification X_clf, y_clf = make_classification(n_samples=30, random_state=0) clf = SVC(kernel="linear", random_state=0) for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)): # It's okay to evaluate regression metrics on classification too mse_scorer = check_scoring(est, scoring="neg_mean_squared_error") r2_scorer = check_scoring(est, scoring="r2") train_mse_scores = [] test_mse_scores = [] train_r2_scores = [] test_r2_scores = [] fitted_estimators = [] for train, test in cv.split(X, y): est = clone(reg).fit(X[train], y[train]) train_mse_scores.append(mse_scorer(est, X[train], y[train])) train_r2_scores.append(r2_scorer(est, X[train], y[train])) test_mse_scores.append(mse_scorer(est, X[test], y[test])) test_r2_scores.append(r2_scorer(est, X[test], y[test])) fitted_estimators.append(est) train_mse_scores = np.array(train_mse_scores) test_mse_scores = np.array(test_mse_scores) train_r2_scores =
np.array(train_r2_scores)
numpy.array
""" setinit: this routine creates local directories and makes topo, qinit, and aux DEMs to be used by setrun.py If you have other files, modify this and/or your setrun.py accordingly. """ import numpy as np import dclaw.topotools as gt import os #import pylab #import pdb cdir = os.path.abspath(os.environ['PWD']) #---create local directories for data if they do not exist---------- indatadir=os.path.join(cdir,'init_data') topodir = os.path.join(cdir,indatadir,'topo') auxdir = os.path.join(cdir,indatadir,'aux') qinitdir = os.path.join(cdir,indatadir,'qinit') if not os.path.isdir(indatadir): execstr = 'mkdir '+indatadir os.system(execstr) if not os.path.isdir(topodir): execstr = 'mkdir '+topodir os.system(execstr) if not os.path.isdir(auxdir): execstr = 'mkdir '+auxdir os.system(execstr) if not os.path.isdir(qinitdir): execstr = 'mkdir '+qinitdir os.system(execstr) #------------------------------------------------------------------------ #---------------- functions for flume geometry to build DEMs ------------ def zero(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=90.0))[0] Z = np.zeros(np.shape(X)) return Z def wallzero(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=82.5))[0] xhopperind = np.where((X[0,:]>=-15.0)&(X[0,:]<=0.0))[0] Z = np.zeros(np.shape(X)) Z[np.ix_(yind1,xind)] = 1.6 Z[np.ix_(yind2,xind)] = 1.6 Z[np.ix_(yind1,xhopperind)] = 2.5 Z[np.ix_(yind2,xhopperind)] = 2.5 return Z def zero_backstop(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=90.0))[0] xbackstopind = np.where(X[0,:]<=-4.0)[0] ybackstopind = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=2.5))[0] Z = np.zeros(np.shape(X)) Z[np.ix_(ybackstopind,xbackstopind)] = 2.5 return Z def wallzero_backstop(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=82.5))[0] xhopperind = np.where((X[0,:]>=-15.0)&(X[0,:]<=0.0))[0] Z = np.zeros(np.shape(X)) xbackstopind = np.where(X[0,:]<=-4.0)[0] ybackstopind = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=2.5))[0] Z[np.ix_(yind1,xind)] = 1.6 Z[np.ix_(yind2,xind)] = 1.6 Z[np.ix_(yind1,xhopperind)] = 2.5 Z[np.ix_(yind2,xhopperind)] = 2.5 Z[np.ix_(ybackstopind,xbackstopind)] = 2.5 return Z def flume_eta(X,Y): hopperlen = 4.7 hmax = 1.9 hoppertop = 3.3 topangle = 17.0*np.pi/180.0 flumeangle = 31.0*np.pi/180.0 x0 = -hopperlen x2 = -hmax*np.cos(0.5*np.pi - flumeangle) x1 = x2 - hoppertop*np.cos(flumeangle-topangle) x3 = 0.0 y2 = hmax*np.sin(0.5*np.pi - flumeangle) y1 = y2 - hoppertop*np.sin(flumeangle-topangle) slope0 = y1/(x1-x0) slope1 = (y2-y1)/(x2-x1) slope2 = -y2/(x3-x2) yind = np.where((Y[:,0]<=2.0)&(Y[:,0]>=0.0))[0] x0ind = np.where((X[0,:]>=x0)&(X[0,:]<x1))[0] x1ind = np.where((X[0,:]>=x1)&(X[0,:]<x2))[0] x2ind = np.where((X[0,:]>=x2)&(X[0,:]<x3))[0] #pdb.set_trace() Z=np.zeros(np.shape(X)) Z[np.ix_(yind,x0ind)] = (X[np.ix_(yind,x0ind)]-x0)*slope0 Z[np.ix_(yind,x1ind)] = y1+(X[np.ix_(yind,x1ind)]-x1)*slope1 Z[np.ix_(yind,x2ind)] = -(x3-X[np.ix_(yind,x2ind)])*slope2 return Z def flume_eta_res(X,Y): hopperlen = 4.7 hmax = 1.9 hoppertop = 3.3 topangle = 17.0*np.pi/180.0 flumeangle = 31.0*np.pi/180.0 x0 = -hopperlen x2 = -hmax*np.cos(0.5*np.pi - flumeangle) x1 = x2 - hoppertop*np.cos(flumeangle-topangle) x3 = 0.0 y2 = hmax*np.sin(0.5*np.pi - flumeangle) y1 = y2 - hoppertop*np.sin(flumeangle-topangle) xm1 = x1 - y1*np.tan(0.5*np.pi - flumeangle) slope0 = y1/(x1-xm1) slope1 = (y2-y1)/(x2-x1) slope2 = -y2/(x3-x2) yind = np.where((Y[:,0]<=2.0)&(Y[:,0]>=0.0))[0] xm1ind = np.where((X[0,:]>=xm1)&(X[0,:]<x1))[0] x1ind = np.where((X[0,:]>=x1)&(X[0,:]<x2))[0] x2ind = np.where((X[0,:]>=x2)&(X[0,:]<x3))[0] #pdb.set_trace() Z=np.zeros(np.shape(X)) Z[np.ix_(yind,xm1ind)] = (X[
np.ix_(yind,xm1ind)
numpy.ix_
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from __future__ import division, print_function import ast from copy import copy from collections import OrderedDict from math import cos, sin import numpy as np from six import string_types import warnings from ase.geometry import cellpar_to_cell, complete_cell, get_distances from matplotlib.colors import rgb2hex from scipy.interpolate import interp1d from pyiron.atomistics.structure.atom import Atom from pyiron.atomistics.structure.sparse_list import SparseArray, SparseList from pyiron.atomistics.structure.periodic_table import PeriodicTable, ChemicalElement, ElementColorDictionary from pyiron.base.settings.generic import Settings from scipy.spatial import cKDTree, Voronoi try: import spglib except ImportError: try: import pyspglib as spglib except ImportError: raise ImportError("The spglib package needs to be installed") __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2019, Max-Planck-Institut für Eisenforschung GmbH - " \ "Computational Materials Design (CM) Department" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "production" __date__ = "Sep 1, 2017" s = Settings() class Atoms(object): """ The Atoms class represents all the information required to describe a structure at the atomic scale. This class is written in such a way that is compatible with the `ASE atoms class`_. Some of the functions in this module is based on the corresponding implementation in the ASE package Args: elements (list/numpy.ndarray): List of strings containing the elements or a list of atomistics.structure.periodic_table.ChemicalElement instances numbers (list/numpy.ndarray): List of atomic numbers of elements symbols (list/numpy.ndarray): List of chemical symbols positions (list/numpy.ndarray): List of positions scaled_positions (list/numpy.ndarray): List of scaled positions (relative coordinates) pbc (list/numpy.ndarray/boolean): Tells if periodic boundary conditions should be applied on the three axes cell (list/numpy.ndarray instance): A 3x3 array representing the lattice vectors of the structure Note: Only one of elements/symbols or numbers should be assigned during initialization Attributes: indices (numpy.ndarray): A list of size N which gives the species index of the structure which has N atoms .. _ASE atoms class: https://wiki.fysik.dtu.dk/ase/ase/atoms.html """ def __init__(self, symbols=None, positions=None, numbers=None, tags=None, momenta=None, masses=None, magmoms=None, charges=None, scaled_positions=None, cell=None, pbc=None, celldisp=None, constraint=None, calculator=None, info=None, indices=None, elements=None, dimension=None, species=None, **qwargs): if symbols is not None: if elements is None: elements = symbols else: raise ValueError("Only elements OR symbols should be given.") if tags is not None or momenta is not None or masses is not None or charges is not None \ or celldisp is not None or constraint is not None or calculator is not None or info is not None: s.logger.debug('Not supported parameter used!') self._store_elements = dict() self._species_to_index_dict = None self.colorLut = ElementColorDictionary().to_lut() self._is_scaled = False if cell is not None: # make it ASE compatible if np.linalg.matrix_rank(cell) == 1: cell = np.eye(len(cell)) * cell else: cell = np.array(cell) self._cell = cell self._species = list() self.positions= None self._pse = PeriodicTable() self._tag_list = SparseArray() self.indices = np.array([]) self._info = dict() self.arrays = dict() self.adsorbate_info = {} self.bonds = None self._pbc = False self.dimension = 3 # Default self.units = {"length": "A", "mass": "u"} el_index_lst = list() element_list = None if (elements is None) and (numbers is None) and (indices is None): return if numbers is not None: # for ASE compatibility if not (elements is None): raise AssertionError() elements = self.numbers_to_elements(numbers) if elements is not None: el_object_list = None if isinstance(elements, str): element_list = self.convert_formula(elements) elif isinstance(elements, (list, tuple, np.ndarray)): if not all([isinstance(el, elements[0].__class__) for el in elements]): object_list = list() for el in elements: if isinstance(el, (str, np.str, np.str_)): object_list.append(self.convert_element(el)) if isinstance(el, ChemicalElement): object_list.append(el) if isinstance(el, Atom): object_list.append(el.element) if isinstance(el, (int, np.integer)): # pse = PeriodicTable() object_list.append(self._pse.element(el)) el_object_list = object_list if len(elements) == 0: element_list = elements else: if isinstance(elements[0], (list, tuple, np.ndarray)): elements = np.array(elements).flatten() if isinstance(elements[0], string_types): element_list = elements elif isinstance(elements[0], ChemicalElement): el_object_list = elements elif isinstance(elements[0], Atom): el_object_list = [el.element for el in elements] positions = [el.position for el in elements] elif elements.dtype in [int, np.integer]: el_object_list = self.numbers_to_elements(elements) else: raise ValueError('Unknown static type for element in list: ' + str(type(elements[0]))) if el_object_list is None: el_object_list = [self.convert_element(el) for el in element_list] self.set_species(list(set(el_object_list))) # species_to_index_dict = {el: i for i, el in enumerate(self.species)} el_index_lst = [self._species_to_index_dict[el] for el in el_object_list] elif indices is not None: el_index_lst = indices self.set_species(species) if scaled_positions is not None: if positions is not None: raise ValueError("either position or scaled_positions can be given") if cell is None: raise ValueError('scaled_positions can only be used with a given cell') positions = np.dot(np.array(cell).T, np.array(scaled_positions).T).T if positions is None: self.dimension = 3 if cell is not None: positions = np.zeros((len(el_index_lst), self.dimension)) self.indices = np.array(el_index_lst) self.positions = np.array(positions).astype(np.float) self._tag_list._length = len(positions) for key, val in qwargs.items(): print('set qwargs (ASE): ', key, val) setattr(self, key, val) if len(positions) > 0: self.dimension = len(positions[0]) else: self.dimension = 3 if dimension is not None: self.dimension = dimension if cell is not None: if pbc is None: self.pbc = True # default setting else: self.pbc = pbc self.set_initial_magnetic_moments(magmoms) @property def cell(self): """ numpy.ndarray: A size 3x3 array which gives the lattice vectors of the cell as [a1, a2, a3] """ return self._cell @cell.setter def cell(self, value): if value is None: self._cell = None else: if self._is_scaled: self.set_cell(value, scale_atoms=True) else: self.set_cell(value) @property def species(self): """ list: A list of atomistics.structure.periodic_table.ChemicalElement instances """ return self._species # @species.setter def set_species(self, value): """ Setting the species list Args: value (list): A list atomistics.structure.periodic_table.ChemicalElement instances """ if value is None: return value = list(value) self._species_to_index_dict = {el: i for i, el in enumerate(value)} self._species = value[:] self._store_elements = {el.Abbreviation: el for el in value} @property def info(self): """ dict: This dictionary is merely used to be compatible with the ASE Atoms class. """ return self._info @info.setter def info(self, val): self._info = val @property def pbc(self): """ list: A list of boolean values which gives the periodic boundary consitions along the three axes. The default value is [True, True, True] """ if not isinstance(self._pbc, np.ndarray): self.set_pbc(self._pbc) return self._pbc @pbc.setter def pbc(self, val): self._pbc = val @property def elements(self): """ numpy.ndarray: A size N list of atomistics.structure.periodic_table.ChemicalElement instances according to the ordering of the atoms in the instance """ return np.array([self.species[el] for el in self.indices]) def new_array(self, name, a, dtype=None, shape=None): """ Adding a new array to the instance. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the array a (list/numpy.ndarray): The array to be added dtype (type): Data type of the array shape (list/turple): Shape of the array """ if dtype is not None: a = np.array(a, dtype, order='C') if len(a) == 0 and shape is not None: a.shape = (-1,) + shape else: if not a.flags['C_CONTIGUOUS']: a = np.ascontiguousarray(a) else: a = a.copy() if name in self.arrays: raise RuntimeError for b in self.arrays.values(): if len(a) != len(b): raise ValueError('Array has wrong length: %d != %d.' % (len(a), len(b))) break if shape is not None and a.shape[1:] != shape: raise ValueError('Array has wrong shape %s != %s.' % (a.shape, (a.shape[0:1] + shape))) self.arrays[name] = a def get_array(self, name, copy=True): """ Get an array. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the required array copy (bool): True if a copy of the array is to be returned Returns: An array of a copy of the array """ if copy: return self.arrays[name].copy() else: return self.arrays[name] def set_array(self, name, a, dtype=None, shape=None): """ Update array. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the array a (list/numpy.ndarray): The array to be added dtype (type): Data type of the array shape (list/turple): Shape of the array """ b = self.arrays.get(name) if b is None: if a is not None: self.new_array(name, a, dtype, shape) else: if a is None: del self.arrays[name] else: a = np.asarray(a) if a.shape != b.shape: raise ValueError('Array has wrong shape %s != %s.' % (a.shape, b.shape)) b[:] = a def add_tag(self, *args, **qwargs): """ Add tags to the atoms object. Examples: For selective dynamics:: >>> self.add_tag(selective_dynamics=[False, False, False]) """ self._tag_list.add_tag(*args, **qwargs) # @staticmethod def numbers_to_elements(self, numbers): """ Convert atomic numbers in element objects (needed for compatibility with ASE) Args: numbers (list): List of Element Numbers (as Integers; default in ASE) Returns: list: A list of elements as needed for pyiron """ # pse = PeriodicTable() # TODO; extend to internal PSE which can contain additional elements and tags atom_number_to_element = {} for i_el in set(numbers): i_el = int(i_el) atom_number_to_element[i_el] = self._pse.element(i_el) return [atom_number_to_element[i_el] for i_el in numbers] def copy(self): """ Returns a copy of the instance Returns: pyiron.atomistics.structure.atoms.Atoms: A copy of the instance """ return self.__copy__() def to_hdf(self, hdf, group_name="structure"): """ Save the object in a HDF5 file Args: hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved group_name (str): Group name with which the object should be stored. This same name should be used to retrieve the object """ # import time with hdf.open(group_name) as hdf_structure: # time_start = time.time() hdf_structure["TYPE"] = str(type(self)) for el in self.species: if isinstance(el.tags, dict): with hdf_structure.open("new_species") as hdf_species: el.to_hdf(hdf_species) hdf_structure['species'] = [el.Abbreviation for el in self.species] hdf_structure["indices"] = self.indices with hdf_structure.open("tags") as hdf_tags: for tag in self._tag_list.keys(): tag_value = self._tag_list[tag] if isinstance(tag_value, SparseList): tag_value.to_hdf(hdf_tags, tag) hdf_structure["units"] = self.units hdf_structure["dimension"] = self.dimension if self.cell is not None: with hdf_structure.open("cell") as hdf_cell: hdf_cell["cell"] = self.cell hdf_cell["pbc"] = self.pbc # hdf_structure["coordinates"] = self.positions # "Atomic coordinates" hdf_structure["positions"] = self.positions # "Atomic coordinates" # potentials with explicit bonds (TIP3P, harmonic, etc.) if self.bonds is not None: hdf_structure["explicit_bonds"] = self.bonds # print ('time in atoms.to_hdf: ', time.time() - time_start) def from_hdf(self, hdf, group_name="structure"): """ Retrieve the object from a HDF5 file Args: hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved group_name (str): Group name from which the Atoms object is retreived. Returns: pyiron_atomistic.structure.atoms.Atoms: The retrieved atoms class """ if "indices" in hdf[group_name].list_nodes(): with hdf.open(group_name) as hdf_atoms: if "new_species" in hdf_atoms.list_groups(): with hdf_atoms.open("new_species") as hdf_species: self._pse.from_hdf(hdf_species) el_object_list = [self.convert_element(el, self._pse) for el in hdf_atoms["species"]] self.indices = hdf_atoms["indices"] self._tag_list._length = len(self) self.set_species(el_object_list) self.bonds = None if "explicit_bonds" in hdf_atoms.list_nodes(): # print "bonds: " self.bonds = hdf_atoms["explicit_bonds"] if "tags" in hdf_atoms.list_groups(): with hdf_atoms.open("tags") as hdf_tags: tags = hdf_tags.list_nodes() for tag in tags: # tr_dict = {'0': False, '1': True} if isinstance(hdf_tags[tag], (list, np.ndarray)): my_list = hdf_tags[tag] self._tag_list[tag] = SparseList(my_list, length=len(self)) else: my_dict = hdf_tags.get_pandas(tag).to_dict() my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])} self._tag_list[tag] = SparseList(my_dict, length=len(self)) tr_dict = {1: True, 0: False} self.dimension = hdf_atoms["dimension"] self.units = hdf_atoms["units"] self.cell = None if "cell" in hdf_atoms.list_groups(): with hdf_atoms.open("cell") as hdf_cell: self.cell = hdf_cell["cell"] self.pbc = hdf_cell["pbc"] # Backward compatibility position_tag = "positions" if position_tag not in hdf_atoms.list_nodes(): position_tag = "coordinates" if "is_absolute" in hdf_atoms.list_nodes(): if not tr_dict[hdf_atoms["is_absolute"]]: self.set_scaled_positions(hdf_atoms[position_tag]) else: self.positions = hdf_atoms[position_tag] else: self.positions = hdf_atoms[position_tag] if "bonds" in hdf_atoms.list_nodes(): self.bonds = hdf_atoms["explicit_bonds"] return self else: return self._from_hdf_old(hdf, group_name) def _from_hdf_old(self, hdf, group_name="structure"): """ This function exits merely for the purpose of backward compatibility """ with hdf.open(group_name) as hdf_atoms: self._pse = PeriodicTable() if "species" in hdf_atoms.list_groups(): with hdf_atoms.open("species") as hdf_species: self._pse.from_hdf(hdf_species) chemical_symbols = np.array(hdf_atoms["elements"], dtype=str) el_object_list = [self.convert_element(el, self._pse) for el in chemical_symbols] self.set_species(list(set(el_object_list))) self.indices = [self._species_to_index_dict[el] for el in el_object_list] self._tag_list._length = len(self) self.bonds = None if "explicit_bonds" in hdf_atoms.list_nodes(): # print "bonds: " self.bonds = hdf_atoms["explicit_bonds"] if "tags" in hdf_atoms.list_groups(): with hdf_atoms.open("tags") as hdf_tags: tags = hdf_tags.list_nodes() for tag in tags: # tr_dict = {'0': False, '1': True} if isinstance(hdf_tags[tag], (list, np.ndarray)): my_list = hdf_tags[tag] self._tag_list[tag] = SparseList(my_list, length=len(self)) else: my_dict = hdf_tags.get_pandas(tag).to_dict() my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])} self._tag_list[tag] = SparseList(my_dict, length=len(self)) self.cell = None if "cell" in hdf_atoms.list_groups(): with hdf_atoms.open("cell") as hdf_cell: self.cell = hdf_cell["cell"] self.pbc = hdf_cell["pbc"] tr_dict = {1: True, 0: False} self.dimension = hdf_atoms["dimension"] if "is_absolute" in hdf_atoms and not tr_dict[hdf_atoms["is_absolute"]]: self.positions = hdf_atoms["coordinates"] else: self.set_scaled_positions(hdf_atoms["coordinates"]) self.units = hdf_atoms["units"] if "bonds" in hdf_atoms.list_nodes(): self.bonds = hdf_atoms["explicit_bonds"] return self def center(self, vacuum=None, axis=(0, 1, 2)): """ Center atoms in unit cell. Adopted from ASE code (https://wiki.fysik.dtu.dk/ase/_modules/ase/atoms.html#Atoms.center) Args: vacuum (float): If specified adjust the amount of vacuum when centering. If vacuum=10.0 there will thus be 10 Angstrom of vacuum on each side. axis (tuple/list): List or turple of integers specifying the axis along which the atoms should be centered """ # Find the orientations of the faces of the unit cell c = self.cell if c is None: c = np.identity(self.dimension) self.cell = c dirs = np.zeros_like(c) for i in range(3): dirs[i] = np.cross(c[i - 1], c[i - 2]) dirs[i] /= np.linalg.norm(dirs[i]) # normalize if np.dot(dirs[i], c[i]) < 0.0: dirs[i] *= -1 # Now, decide how much each basis vector should be made longer if isinstance(axis, int): axes = (axis,) else: axes = axis p = self.positions longer = np.zeros(3) shift = np.zeros(3) for i in axes: p0 = np.dot(p, dirs[i]).min() p1 = np.dot(p, dirs[i]).max() height = np.dot(c[i], dirs[i]) if vacuum is not None: lng = (p1 - p0 + 2 * vacuum) - height else: lng = 0.0 # Do not change unit cell size! top = lng + height - p1 shf = 0.5 * (top - p0) cosphi = np.dot(c[i], dirs[i]) / np.linalg.norm(c[i]) longer[i] = lng / cosphi shift[i] = shf / cosphi # Now, do it! translation = np.zeros(3) for i in axes: nowlen = np.sqrt(np.dot(c[i], c[i])) self.cell[i] *= 1 + longer[i] / nowlen translation += shift[i] * c[i] / nowlen self.positions += translation if self.pbc is None: self.pbc = self.dimension * [True] def set_positions(self, positions): """ Set positions. This function is for compatability with ASE Args: positions (numpy.ndarray/list): Positions in absolute coordinates """ self.positions = np.array(positions) self._tag_list._length = len(self) def get_positions(self): """ Get positions. This function is for compatability with ASE Returns: numpy.ndarray: Positions in absolute coordinates """ return self.positions def select_index(self, el): """ Returns the indices of a given element in the structure Args: el (str/atomistics.structures.periodic_table.ChemicalElement/list): Element for which the indices should be returned Returns: numpy.ndarray: An array of indices of the atoms of the given element """ if isinstance(el, str): return np.where(self.get_chemical_symbols()==el)[0] elif isinstance(el, ChemicalElement): return np.where([e==el for e in self.get_chemical_elements()])[0] if isinstance(el, (list, np.ndarray)): if isinstance(el[0], str): return np.where(np.isin(self.get_chemical_symbols(), el))[0] elif isinstance(el[0], ChemicalElement): return np.where([e in el for e in self.get_chemical_elements()])[0] def select_parent_index(self, el): """ Returns the indices of a given element in the structure ignoring user defined elements Args: el (str/atomistics.structures.periodic_table.ChemicalElement): Element for which the indices should be returned Returns: numpy.ndarray: An array of indices of the atoms of the given element """ parent_basis = self.get_parent_basis() return parent_basis.select_index(el) def get_tags(self): """ Returns the keys of the stored tags of the structure Returns: dict_keys: Keys of the stored tags """ return self._tag_list.keys() def get_pbc(self): """ Returns a boolean array of the periodic boundary conditions along the x, y and z axis respectively Returns: numpy.ndarray: Boolean array of length 3 """ if not isinstance(self._pbc, np.ndarray): self.set_pbc(self._pbc) return np.array(self._pbc, bool) def set_pbc(self, value): """ Sets the perioic boundary conditions on all three axis Args: value (numpy.ndarray/list): An array of bool type with length 3 """ if value is None: self._pbc = None else: if isinstance(value, np.ndarray): self._pbc = value elif value in (True, False): value = self.dimension * [value] if not (np.shape(np.array(value)) == (self.dimension,)): raise AssertionError() self._pbc = np.array(value, bool) def convert_element(self, el, pse=None): """ Convert a string or an atom instance into a ChemicalElement instance Args: el (str/atomistics.structure.atom.Atom): String or atom instance from which the element should be generated pse (atomistics.structure.periodictable.PeriodicTable): PeriodicTable instance from which the element is generated (optional) Returns: atomistics.structure.periodictable.ChemicalElement: The required chemical element """ if el in list(self._store_elements.keys()): return self._store_elements[el] if isinstance(el, string_types): # as symbol element = Atom(el, pse=pse).element elif isinstance(el, Atom): element = el.element el = el.element.Abbreviation elif isinstance(el, ChemicalElement): element = el el = el.Abbreviation else: raise ValueError('Unknown static type to specify a element') self._store_elements[el] = element if hasattr(self, 'species'): if element not in self.species: self._species.append(element) self.set_species(self._species) return element def get_chemical_formula(self): """ Returns the chemical formula of structure Returns: str: The chemical formula as a string """ species = self.get_number_species_atoms() formula = "" for string_sym, num in species.items(): if num == 1: formula += str(string_sym) else: formula += str(string_sym) + str(num) return formula def get_chemical_indices(self): """ Returns the list of chemical indices as ordered in self.species Returns: numpy.ndarray: A list of chemical indices """ return self.indices def get_atomic_numbers(self): """ Returns the atomic numbers of all the atoms in the structure Returns: numpy.ndarray: A list of atomic numbers """ el_lst = [el.AtomicNumber for el in self.species] return np.array([el_lst[el] for el in self.indices]) def get_chemical_symbols(self): """ Returns the chemical symbols for all the atoms in the structure Returns: numpy.ndarray: A list of chemical symbols """ el_lst = [el.Abbreviation for el in self.species] return np.array([el_lst[el] for el in self.indices]) def get_parent_symbols(self): """ Returns the chemical symbols for all the atoms in the structure even for user defined elements Returns: numpy.ndarray: A list of chemical symbols """ sp_parent_list = list() for sp in self.species: if isinstance(sp.Parent, (float, np.float, type(None))): sp_parent_list.append(sp.Abbreviation) else: sp_parent_list.append(sp.Parent) return np.array([sp_parent_list[i] for i in self.indices]) def get_parent_basis(self): """ Returns the basis with all user defined/special elements as the it's parent Returns: pyiron.atomistics.structure.atoms.Atoms: Structure without any user defined elements """ parent_basis = copy(self) new_species = np.array(parent_basis.species) for i, sp in enumerate(new_species): if not isinstance(sp.Parent, (float, np.float, type(None))): pse = PeriodicTable() new_species[i] = pse.element(sp.Parent) sym_list = [el.Abbreviation for el in new_species] if len(sym_list) != len(np.unique(sym_list)): uni, ind, inv_ind = np.unique(sym_list, return_index=True, return_inverse=True) new_species = new_species[ind].copy() parent_basis.set_species(list(new_species)) indices_copy = parent_basis.indices.copy() for i, ind_ind in enumerate(inv_ind): indices_copy[parent_basis.indices == i] = ind_ind parent_basis.indices = indices_copy return parent_basis parent_basis.set_species(list(new_species)) return parent_basis def get_chemical_elements(self): """ Returns the list of chemical element instances Returns: numpy.ndarray: A list of chemical element instances """ return self.elements def get_number_species_atoms(self): """ Returns a dictionary with the species in the structure and the corresponding count in the structure Returns: collections.OrderedDict: An ordered dictionary with the species and the corresponding count """ count = OrderedDict() # print "sorted: ", sorted(set(self.elements)) for el in sorted(set(self.get_chemical_symbols())): count[el] = 0 for el in self.get_chemical_symbols(): count[el] += 1 return count def get_species_symbols(self): """ Returns the symbols of the present species Returns: numpy.ndarray: List of the symbols of the species """ return np.array(sorted([el.Abbreviation for el in self.species])) def get_species_objects(self): """ Returns: """ el_set = self.species el_sym_lst = {el.Abbreviation: i for i, el in enumerate(el_set)} el_sorted = self.get_species_symbols() return [el_set[el_sym_lst[el]] for el in el_sorted] def get_number_of_species(self): """ Returns: """ return len(self.species) def get_number_of_degrees_of_freedom(self): """ Returns: """ return len(self) * self.dimension def get_center_of_mass(self): """ Returns: com (float): center of mass in A """ masses = self.get_masses() return np.einsum('i,ij->j', masses, self.positions)/np.sum(masses) def get_masses(self): """ Returns: """ el_lst = [el.AtomicMass for el in self.species] return [el_lst[el] for el in self.indices] def get_masses_dof(self): """ Returns: """ dim = self.dimension return np.repeat(self.get_masses(), dim) def get_volume(self, per_atom=False): """ Args: per_atom (bool): True if volume per atom is to be returned Returns: volume (float): Volume in A**3 """ if per_atom: return np.abs(np.linalg.det(self.cell))/len(self) else: return np.abs(np.linalg.det(self.cell)) def get_density(self): """ Returns the density in g/cm^3 Returns: float: Density of the structure """ # conv_factor = Ang3_to_cm3/scipi.constants.Avogadro # with Ang3_to_cm3 = 1e24 conv_factor = 1.660539040427164 return conv_factor * np.sum(self.get_masses()) / self.get_volume() def get_scaled_positions(self, wrap=True): """ Returns: """ pbc = np.array(self.pbc) positions = np.einsum('jk,ij->ik', np.linalg.inv(self.cell), self.positions) if wrap: positions[:, pbc] = np.mod(positions[:, pbc], 1.) return positions def get_number_of_atoms(self): """ Returns: """ # assert(len(self) == np.sum(self.get_number_species_atoms().values())) return len(self) def set_absolute(self): if self._is_scaled: self._is_scaled = False def set_relative(self): if not self._is_scaled: self._is_scaled = True def center_coordinates_in_unit_cell(self, origin=0, eps=1e-4): """ compact atomic coordinates in supercell as given by a1, a2., a3 Args: origin: 0 to confine between 0 and 1, -0.5 to confine between -0.5 and 0.5 eps: Returns: """ self.set_scaled_positions(np.mod(self.get_scaled_positions(wrap=False) + eps, 1) - eps + origin) return self def repeat(self, rep): """Create new repeated atoms object. The *rep* argument should be a sequence of three positive integers like *(2,3,1)* or a single integer (*r*) equivalent to *(r,r,r)*.""" atoms = self.copy() atoms *= rep return atoms def set_repeat(self, vec): self *= vec def reset_absolute(self, is_absolute): raise NotImplementedError('This function was removed!') def analyse_ovito_cna_adaptive(self, mode='total'): from pyiron.atomistics.structure.ovito import analyse_ovito_cna_adaptive warnings.filterwarnings("ignore") return analyse_ovito_cna_adaptive(atoms=self, mode=mode) def analyse_ovito_centro_symmetry(atoms, num_neighbors=12): from pyiron.atomistics.structure.ovito import analyse_ovito_centro_symmetry warnings.filterwarnings("ignore") return analyse_ovito_centro_symmetry(atoms, num_neighbors=num_neighbors) def analyse_ovito_voronoi_volume(atoms): from pyiron.atomistics.structure.ovito import analyse_ovito_voronoi_volume warnings.filterwarnings("module") return analyse_ovito_voronoi_volume(atoms) def analyse_phonopy_equivalent_atoms(atoms): from pyiron.atomistics.structure.phonopy import analyse_phonopy_equivalent_atoms #warnings.filterwarnings("ignore") warnings.warn("analyse_phonopy_equivalent_atoms() is obsolete use get_symmetry()['equivalent_atoms'] instead") return analyse_phonopy_equivalent_atoms(atoms) @staticmethod def _ngl_write_cell(a1, a2, a3, f1=90, f2=90, f3=90): """ Writes a PDB-formatted line to represent the simulation cell. Args: a1, a2, a3 (float): Lengths of the cell vectors. f1, f2, f3 (float): Angles between the cell vectors (which angles exactly?) (in degrees). Returns: (str): The line defining the cell in PDB format. """ return 'CRYST1 {:8.3f} {:8.3f} {:8.3f} {:6.2f} {:6.2f} {:6.2f} P 1\n'.format(a1, a2, a3, f1, f2, f3) @staticmethod def _ngl_write_atom(num, species, x, y, z, group=None, num2=None, occupancy=1., temperature_factor=0.): """ Writes a PDB-formatted line to represent an atom. Args: num (int): Atomic index. species (str): Elemental species. x, y, z (float): Cartesian coordinates of the atom. group (str): A...group name? (Default is None, repeat elemental species.) num2 (int): An "alternate" index. (Don't ask me...) (Default is None, repeat first number.) occupancy (float): PDB occupancy parameter. (Default is 1.) temperature_factor (float): PDB temperature factor parameter. (Default is 0. Returns: (str): The line defining an atom in PDB format Warnings: * The [PDB docs](https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html) indicate that the xyz coordinates might need to be in some sort of orthogonal basis. If you have weird behaviour, this might be a good place to investigate. """ if group is None: group = species if num2 is None: num2 = num return 'ATOM {:>6} {:>4} {:>4} {:>5} {:10.3f} {:7.3f} {:7.3f} {:5.2f} {:5.2f} {:>11} \n'.format( num, species, group, num2, x, y, z, occupancy, temperature_factor, species) def _ngl_write_structure(self, elements, positions, cell): """ Turns structure information into a NGLView-readable protein-database-formatted string. Args: elements (numpy.ndarray/list): Element symbol for each atom. positions (numpy.ndarray/list): Vector of Cartesian atom positions. cell (numpy.ndarray/list): Simulation cell Bravais matrix. Returns: (str): The PDB-formatted representation of the structure. """ from ase.geometry import cell_to_cellpar, cellpar_to_cell cellpar = cell_to_cellpar(cell) exportedcell = cellpar_to_cell(cellpar) rotation = np.linalg.solve(cell, exportedcell) pdb_str = self._ngl_write_cell(*cellpar) pdb_str += 'MODEL 1\n' if rotation is not None: positions = np.array(positions).dot(rotation) for i, p in enumerate(positions): pdb_str += self._ngl_write_atom(i, elements[i], *p) pdb_str += 'ENDMDL \n' return pdb_str def _atomic_number_to_radius(self, atomic_number, shift=0.2, slope=0.1, scale=1.0): """ Give the atomic radius for plotting, which scales like the root of the atomic number. Args: atomic_number (int/float): The atomic number. shift (float): A constant addition to the radius. (Default is 0.2.) slope (float): A multiplier for the root of the atomic number. (Default is 0.1) scale (float): How much to rescale the whole thing by. Returns: (float): The radius. (Not physical, just for visualization!) """ return (shift + slope * np.sqrt(atomic_number)) * scale def _add_colorscheme_spacefill(self, view, elements, atomic_numbers, particle_size, scheme='element'): """ Set NGLView spacefill parameters according to a color-scheme. Args: view (NGLWidget): The widget to work on. elements (numpy.ndarray/list): Elemental symbols. atomic_numbers (numpy.ndarray/list): Integer atomic numbers for determining atomic size. particle_size (float): A scale factor for the atomic size. scheme (str): The scheme to use. (Default is "element".) Possible NGLView color schemes: " ", "picking", "random", "uniform", "atomindex", "residueindex", "chainindex", "modelindex", "sstruc", "element", "resname", "bfactor", "hydrophobicity", "value", "volume", "occupancy" Returns: (nglview.NGLWidget): The modified widget. """ for elem, num in set(list(zip(elements, atomic_numbers))): view.add_spacefill(selection='#' + elem, radius_type='vdw', radius=self._atomic_number_to_radius(num, scale=particle_size), color_scheme=scheme) return view def _add_custom_color_spacefill(self, view, atomic_numbers, particle_size, colors): """ Set NGLView spacefill parameters according to per-atom colors. Args: view (NGLWidget): The widget to work on. atomic_numbers (numpy.ndarray/list): Integer atomic numbers for determining atomic size. particle_size (float): A scale factor for the atomic size. colors (numpy.ndarray/list): A per-atom list of HTML or hex color codes. Returns: (nglview.NGLWidget): The modified widget. """ for n, num in enumerate(atomic_numbers): view.add_spacefill(selection=[n], radius_type='vdw', radius=self._atomic_number_to_radius(num, scale=particle_size), color=colors[n]) return view @staticmethod def _scalars_to_hex_colors(scalar_field, start=None, end=None, cmap=None): """ Convert scalar values to hex codes using a colormap. Args: scalar_field (numpy.ndarray/list): Scalars to convert. start (float): Scalar value to map to the bottom of the colormap (values below are clipped). (Default is None, use the minimal scalar value.) end (float): Scalar value to map to the top of the colormap (values above are clipped). (Default is None, use the maximal scalar value.) cmap (matplotlib.cm): The colormap to use. (Default is None, which gives a blue-red divergent map.) Returns: (list): The corresponding hex codes for each scalar value passed in. """ if start is None: start = np.amin(scalar_field) if end is None: end = np.amax(scalar_field) interp = interp1d([start, end], [0, 1]) remapped_field = interp(np.clip(scalar_field, start, end)) # Map field onto [0,1] if cmap is None: try: from seaborn import diverging_palette except ImportError: print("The package seaborn needs to be installed for the plot3d() function!") cmap = diverging_palette(245, 15, as_cmap=True) # A nice blue-red palette return [rgb2hex(cmap(scalar)[:3]) for scalar in remapped_field] # The slice gets RGB but leaves alpha def plot3d(self, show_cell=True, show_axes=True, camera='orthographic', spacefill=True, particle_size=1.0, select_atoms=None, background='white', color_scheme=None, colors=None, scalar_field=None, scalar_start=None, scalar_end=None, scalar_cmap=None, vector_field=None, vector_color=None, custom_array=None, custom_3darray=None): """ Plot3d relies on NGLView to visualize atomic structures. Here, we construct a string in the "protein database" ("pdb") format, then turn it into an NGLView "structure". PDB is a white-space sensitive format, so the string snippets are carefully formatted. The final widget is returned. If it is assigned to a variable, the visualization is suppressed until that variable is evaluated, and in the meantime more NGL operations can be applied to it to modify the visualization. Args: show_cell (bool): Whether or not to show the frame. (Default is True.) show_axes (bool): Whether or not to show xyz axes. (Default is True.) camera (str): 'perspective' or 'orthographic'. (Default is 'perspective'.) spacefill (bool): Whether to use a space-filling or ball-and-stick representation. (Default is True, use space-filling atoms.) particle_size (float): Size of the particles. (Default is 1.) select_atoms (numpy.ndarray): Indices of atoms to show, either as integers or a boolean array mask. (Default is None, show all atoms.) background (str): Background color. (Default is 'white'.) color_scheme (str): NGLView color scheme to use. (Default is None, color by element.) colors (numpy.ndarray): A per-atom array of HTML color names or hex color codes to use for atomic colors. (Default is None, use coloring scheme.) scalar_field (numpy.ndarray): Color each atom according to the array value (Default is None, use coloring scheme.) scalar_start (float): The scalar value to be mapped onto the low end of the color map (lower values are clipped). (Default is None, use the minimum value in `scalar_field`.) scalar_end (float): The scalar value to be mapped onto the high end of the color map (higher values are clipped). (Default is None, use the maximum value in `scalar_field`.) scalar_cmap (matplotlib.cm): The colormap to use. (Default is None, giving a blue-red divergent map.) vector_field (numpy.ndarray): Add vectors (3 values) originating at each atom. (Default is None, no vectors.) vector_color (numpy.ndarray): Colors for the vectors (only available with vector_field). (Default is None, vectors are colored by their direction.) Possible NGLView color schemes: " ", "picking", "random", "uniform", "atomindex", "residueindex", "chainindex", "modelindex", "sstruc", "element", "resname", "bfactor", "hydrophobicity", "value", "volume", "occupancy" Returns: (nglview.NGLWidget): The NGLView widget itself, which can be operated on further or viewed as-is. Warnings: * Many features only work with space-filling atoms (e.g. coloring by a scalar field). * The colour interpretation of some hex codes is weird, e.g. 'green'. """ try: # If the graphical packages are not available, the GUI will not work. import nglview except ImportError: raise ImportError("The package nglview needs to be installed for the plot3d() function!") if custom_array is not None: warnings.warn('custom_array is deprecated. Use scalar_field instead', DeprecationWarning) scalar_field = custom_array if custom_3darray is not None: warnings.warn('custom_3darray is deprecated. Use vector_field instead', DeprecationWarning) vector_field = custom_3darray parent_basis = self.get_parent_basis() elements = parent_basis.get_chemical_symbols() atomic_numbers = parent_basis.get_atomic_numbers() positions = self.positions # If `select_atoms` was given, visualize only a subset of the `parent_basis` if select_atoms is not None: select_atoms = np.array(select_atoms, dtype=int) elements = elements[select_atoms] atomic_numbers = atomic_numbers[select_atoms] positions = positions[select_atoms] if colors is not None: colors = np.array(colors) colors = colors[select_atoms] if scalar_field is not None: scalar_field = np.array(scalar_field) scalar_field = scalar_field[select_atoms] if vector_field is not None: vector_field = np.array(vector_field) vector_field = vector_field[select_atoms] if vector_color is not None: vector_color = np.array(vector_color) vector_color = vector_color[select_atoms] # Write the nglview protein-database-formatted string struct = nglview.TextStructure(self._ngl_write_structure(elements, positions, self.cell)) # Parse the string into the displayable widget view = nglview.NGLWidget(struct) if spacefill: # Color by scheme if color_scheme is not None: if colors is not None: warnings.warn('`color_scheme` is overriding `colors`') if scalar_field is not None: warnings.warn('`color_scheme` is overriding `scalar_field`') view = self._add_colorscheme_spacefill(view, elements, atomic_numbers, particle_size, color_scheme) # Color by per-atom colors elif colors is not None: if scalar_field is not None: warnings.warn('`colors` is overriding `scalar_field`') view = self._add_custom_color_spacefill(view, atomic_numbers, particle_size, colors) # Color by per-atom scalars elif scalar_field is not None: # Color by per-atom scalars colors = self._scalars_to_hex_colors(scalar_field, scalar_start, scalar_end, scalar_cmap) view = self._add_custom_color_spacefill(view, atomic_numbers, particle_size, colors) # Color by element else: view = self._add_colorscheme_spacefill(view, elements, atomic_numbers, particle_size) view.remove_ball_and_stick() else: view.add_ball_and_stick() if show_cell: if parent_basis.cell is not None: view.add_unitcell() if vector_color is None and vector_field is not None: vector_color = 0.5 * vector_field / np.linalg.norm(vector_field, axis=-1)[:, np.newaxis] + 0.5 elif vector_field is not None and vector_field is not None: # WARNING: There must be a bug here... try: if vector_color.shape != np.ones((len(self), 3)).shape: vector_color = np.outer(np.ones(len(self)), vector_color / np.linalg.norm(vector_color)) except AttributeError: vector_color = np.ones((len(self), 3)) * vector_color if vector_field is not None: for arr, pos, col in zip(vector_field, positions, vector_color): view.shape.add_arrow(list(pos), list(pos + arr), list(col), 0.2) if show_axes: # Add axes axes_origin = -np.ones(3) arrow_radius = 0.1 text_size = 1 text_color = [0, 0, 0] arrow_names = ['x', 'y', 'z'] for n in [0, 1, 2]: start = list(axes_origin) shift = np.zeros(3) shift[n] = 1 end = list(start + shift) color = list(shift) # We cast as list to avoid JSON warnings view.shape.add_arrow(start, end, color, arrow_radius) view.shape.add_text(end, text_color, text_size, arrow_names[n]) if camera != 'perspective' and camera != 'orthographic': warnings.warn('Only perspective or orthographic is (likely to be) permitted for camera') view.camera = camera view.background = background return view def plot3d_ase(self, spacefill=True, show_cell=True, camera='perspective', particle_size=0.5, background='white', color_scheme='element', show_axes=True): """ Possible color schemes: " ", "picking", "random", "uniform", "atomindex", "residueindex", "chainindex", "modelindex", "sstruc", "element", "resname", "bfactor", "hydrophobicity", "value", "volume", "occupancy" Returns: """ try: # If the graphical packages are not available, the GUI will not work. import nglview except ImportError: raise ImportError("The package nglview needs to be installed for the plot3d() function!") # Always visualize the parent basis parent_basis = self.get_parent_basis() view = nglview.show_ase(parent_basis) if spacefill: view.add_spacefill(radius_type='vdw', color_scheme=color_scheme, radius=particle_size) # view.add_spacefill(radius=1.0) view.remove_ball_and_stick() else: view.add_ball_and_stick() if show_cell: if parent_basis.cell is not None: view.add_unitcell() if show_axes: view.shape.add_arrow([-2, -2, -2], [2, -2, -2], [1, 0, 0], 0.5) view.shape.add_arrow([-2, -2, -2], [-2, 2, -2], [0, 1, 0], 0.5) view.shape.add_arrow([-2, -2, -2], [-2, -2, 2], [0, 0, 1], 0.5) if camera!='perspective' and camera!='orthographic': print('Only perspective or orthographic is permitted') return None view.camera = camera view.background = background return view def pos_xyz(self): """ Returns: """ x = self.positions[:, 0] y = self.positions[:, 1] z = self.positions[:, 2] return x, y, z def scaled_pos_xyz(self): """ Returns: """ xyz = self.get_scaled_positions(wrap=False) return xyz[:,0], xyz[:,1], xyz[:,2] def __select_slice(self, i_dim, i_flag, dist): """ Args: i_dim: i_flag: dist: Returns: """ if i_dim + 1 > self.dimension: return True if i_flag == 1: return self.get_scaled_positions(wrap=False)[:, i_dim] < dist elif i_flag == 0: return True elif i_flag == -1: return self.get_scaled_positions(wrap=False)[:, i_dim] > 1. - dist def get_boundary_region(self, dist): """ get all atoms in the boundary around the supercell which have a distance to the supercell boundary of less than dist Args: dist: Returns: """ rel_coordinates = self.get_scaled_positions(wrap=False) dim = self.dimension cell = self.cell.T # to use same definition as ASE a1 = cell[0] a2, a3 = 0, 0 min_i, max_i = -1, 2 iyl, iy, izl, iz = 0, 1, 0, 1 if dim > 1: a2 = cell[1] iyl, iy = min_i, max_i if dim > 2: a3 = cell[2] izl, iz = min_i, max_i index = np.arange(len(self)) new_coordinates =
np.zeros((1, dim))
numpy.zeros
""" This code is based on https://github.com/ekwebb/fNRI which in turn is based on https://github.com/ethanfetaya/NRI (MIT licence) """ import numpy as np import torch from torch.utils.data.dataset import TensorDataset from torch.utils.data import DataLoader import torch.nn.functional as F from torch.autograd import Variable from itertools import permutations, chain from math import factorial from os import path def my_softmax(input, axis=1): trans_input = input.transpose(axis, 0).contiguous() soft_max_1d = F.softmax(trans_input, dim=0) # added dim=0 as implicit choice is deprecated, dim 0 is edgetype due to transpose return soft_max_1d.transpose(axis, 0) def binary_concrete(logits, tau=1, hard=False, eps=1e-10): y_soft = binary_concrete_sample(logits, tau=tau, eps=eps) if hard: y_hard = (y_soft > 0.5).float() y = Variable(y_hard.data - y_soft.data) + y_soft else: y = y_soft return y def binary_concrete_sample(logits, tau=1, eps=1e-10): logistic_noise = sample_logistic(logits.size(), eps=eps) if logits.is_cuda: logistic_noise = logistic_noise.cuda() y = logits + Variable(logistic_noise) return F.sigmoid(y / tau) def sample_logistic(shape, eps=1e-10): uniform = torch.rand(shape).float() return torch.log(uniform + eps) - torch.log(1 - uniform + eps) def sample_gumbel(shape, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcfed4c44c62b208f750058d14d4dc1b9a9d3 Sample from Gumbel(0, 1) based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb , (MIT license) """ U = torch.rand(shape).float() return - torch.log(eps - torch.log(U + eps)) def gumbel_softmax_sample(logits, tau=1, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/3<PASSWORD> Draw a sample from the Gumbel-Softmax distribution based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb (MIT license) """ gumbel_noise = sample_gumbel(logits.size(), eps=eps) if logits.is_cuda: gumbel_noise = gumbel_noise.cuda() y = logits + Variable(gumbel_noise) return my_softmax(y / tau, axis=-1) def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcf<PASSWORD>9<PASSWORD>3 Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs tau: non-negative scalar temperature hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probability distribution that sums to 1 across classes Constraints: - this implementation only works on batch_size x num_features tensor for now based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb , (MIT license) """ y_soft = gumbel_softmax_sample(logits, tau=tau, eps=eps) if hard: shape = logits.size() _, k = y_soft.data.max(-1) # this bit is based on # https://discuss.pytorch.org/t/stop-gradients-for-st-gumbel-softmax/530/5 y_hard = torch.zeros(*shape) if y_soft.is_cuda: y_hard = y_hard.cuda() y_hard = y_hard.zero_().scatter_(-1, k.view(shape[:-1] + (1,)), 1.0) # this cool bit of code achieves two things: # - makes the output value exactly one-hot (since we add then # subtract y_soft value) # - makes the gradient equal to y_soft gradient (since we strip # all other gradients) y = Variable(y_hard - y_soft.data) + y_soft else: y = y_soft return y def my_sigmoid(logits, hard=True, sharpness=1.0): edges_soft = 1/(1+torch.exp(-sharpness*logits)) if hard: edges_hard = torch.round(edges_soft) # this bit is based on # https://discuss.pytorch.org/t/stop-gradients-for-st-gumbel-softmax/530/5 if edges_soft.is_cuda: edges_hard = edges_hard.cuda() # this cool bit of code achieves two things: # - makes the output value exactly one-hot (since we add then # subtract y_soft value) # - makes the gradient equal to y_soft gradient (since we strip # all other gradients) edges = Variable(edges_hard - edges_soft.data) + edges_soft else: edges = edges_soft return edges def binary_accuracy(output, labels): preds = output > 0.5 correct = preds.type_as(labels).eq(labels).double() correct = correct.sum() return correct / len(labels) def edge_type_encode(edges): # this is used to gives each 'interaction strength' a unique integer = 0, 1, 2 .. unique = np.unique(edges) encode = np.zeros(edges.shape) for i in range(unique.shape[0]): encode += np.where( edges == unique[i], i, 0) return encode def loader_edges_encode(edges, num_atoms): edges = np.reshape(edges, [edges.shape[0], edges.shape[1], num_atoms ** 2]) edges = np.array(edge_type_encode(edges), dtype=np.int64) off_diag_idx = np.ravel_multi_index( np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)), [num_atoms, num_atoms]) edges = edges[:,:, off_diag_idx] return edges def loader_combine_edges(edges): edge_types_list = [ int(np.max(edges[:,i,:]))+1 for i in range(edges.shape[1]) ] assert( edge_types_list == sorted(edge_types_list)[::-1] ) encoded_target = np.zeros( edges[:,0,:].shape ) base = 1 for i in reversed(range(edges.shape[1])): encoded_target += base*edges[:,i,:] base *= edge_types_list[i] return encoded_target.astype('int') def load_data_NRI(batch_size=1, sim_folder='', shuffle=True, data_folder='data'): # the edges numpy arrays below are [ num_sims, N, N ] loc_train = np.load(path.join(data_folder,sim_folder,'loc_train.npy')) vel_train = np.load(path.join(data_folder,sim_folder,'vel_train.npy')) edges_train = np.load(path.join(data_folder,sim_folder,'edges_train.npy')) loc_valid = np.load(path.join(data_folder,sim_folder,'loc_valid.npy')) vel_valid = np.load(path.join(data_folder,sim_folder,'vel_valid.npy')) edges_valid = np.load(path.join(data_folder,sim_folder,'edges_valid.npy')) loc_test = np.load(path.join(data_folder,sim_folder,'loc_test.npy')) vel_test = np.load(path.join(data_folder,sim_folder,'vel_test.npy')) edges_test = np.load(path.join(data_folder,sim_folder,'edges_test.npy')) # [num_samples, num_timesteps, num_dims, num_atoms] num_atoms = loc_train.shape[3] loc_max = loc_train.max() loc_min = loc_train.min() vel_max = vel_train.max() vel_min = vel_train.min() # Normalize to [-1, 1] loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1 vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1 loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1 vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1 loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1 vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1 # Reshape to: [num_sims, num_atoms, num_timesteps, num_dims] loc_train = np.transpose(loc_train, [0, 3, 1, 2]) vel_train = np.transpose(vel_train, [0, 3, 1, 2]) feat_train = np.concatenate([loc_train, vel_train], axis=3) loc_valid = np.transpose(loc_valid, [0, 3, 1, 2]) vel_valid = np.transpose(vel_valid, [0, 3, 1, 2]) feat_valid = np.concatenate([loc_valid, vel_valid], axis=3) loc_test = np.transpose(loc_test, [0, 3, 1, 2]) vel_test = np.transpose(vel_test, [0, 3, 1, 2]) feat_test = np.concatenate([loc_test, vel_test], axis=3) edges_train = loader_edges_encode(edges_train, num_atoms) edges_valid = loader_edges_encode(edges_valid, num_atoms) edges_test = loader_edges_encode(edges_test, num_atoms) edges_train = loader_combine_edges(edges_train) edges_valid = loader_combine_edges(edges_valid) edges_test = loader_combine_edges(edges_test) feat_train = torch.FloatTensor(feat_train) edges_train = torch.LongTensor(edges_train) feat_valid = torch.FloatTensor(feat_valid) edges_valid = torch.LongTensor(edges_valid) feat_test = torch.FloatTensor(feat_test) edges_test = torch.LongTensor(edges_test) train_data = TensorDataset(feat_train, edges_train) valid_data = TensorDataset(feat_valid, edges_valid) test_data = TensorDataset(feat_test, edges_test) train_data_loader = DataLoader(train_data, batch_size=batch_size, shuffle=shuffle) valid_data_loader = DataLoader(valid_data, batch_size=batch_size) test_data_loader = DataLoader(test_data, batch_size=batch_size) return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min def load_data_fNRI(batch_size=1, sim_folder='', shuffle=True, data_folder='data'): # the edges numpy arrays below are [ num_sims, N, N ] loc_train = np.load(path.join(data_folder,sim_folder,'loc_train.npy')) vel_train = np.load(path.join(data_folder,sim_folder,'vel_train.npy')) edges_train = np.load(path.join(data_folder,sim_folder,'edges_train.npy')) loc_valid = np.load(path.join(data_folder,sim_folder,'loc_valid.npy')) vel_valid = np.load(path.join(data_folder,sim_folder,'vel_valid.npy')) edges_valid = np.load(path.join(data_folder,sim_folder,'edges_valid.npy')) loc_test = np.load(path.join(data_folder,sim_folder,'loc_test.npy')) vel_test = np.load(path.join(data_folder,sim_folder,'vel_test.npy')) edges_test = np.load(path.join(data_folder,sim_folder,'edges_test.npy')) # [num_samples, num_timesteps, num_dims, num_atoms] num_atoms = loc_train.shape[3] loc_max = loc_train.max() loc_min = loc_train.min() vel_max = vel_train.max() vel_min = vel_train.min() # Normalize to [-1, 1] loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1 vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1 loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1 vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1 loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1 vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1 # Reshape to: [num_sims, num_atoms, num_timesteps, num_dims] loc_train = np.transpose(loc_train, [0, 3, 1, 2]) vel_train = np.transpose(vel_train, [0, 3, 1, 2]) feat_train = np.concatenate([loc_train, vel_train], axis=3) loc_valid = np.transpose(loc_valid, [0, 3, 1, 2]) vel_valid = np.transpose(vel_valid, [0, 3, 1, 2]) feat_valid = np.concatenate([loc_valid, vel_valid], axis=3) loc_test = np.transpose(loc_test, [0, 3, 1, 2]) vel_test = np.transpose(vel_test, [0, 3, 1, 2]) feat_test = np.concatenate([loc_test, vel_test], axis=3) edges_train = loader_edges_encode( edges_train, num_atoms ) edges_valid = loader_edges_encode( edges_valid, num_atoms ) edges_test = loader_edges_encode( edges_test, num_atoms ) edges_train = torch.LongTensor(edges_train) edges_valid = torch.LongTensor(edges_valid) edges_test = torch.LongTensor(edges_test) feat_train = torch.FloatTensor(feat_train) feat_valid = torch.FloatTensor(feat_valid) feat_test = torch.FloatTensor(feat_test) train_data = TensorDataset(feat_train, edges_train) valid_data = TensorDataset(feat_valid, edges_valid) test_data = TensorDataset(feat_test, edges_test) train_data_loader = DataLoader(train_data, batch_size=batch_size, shuffle=shuffle) valid_data_loader = DataLoader(valid_data, batch_size=batch_size) test_data_loader = DataLoader(test_data, batch_size=batch_size) return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min def to_2d_idx(idx, num_cols): idx = np.array(idx, dtype=np.int64) y_idx = np.array(np.floor(idx / float(num_cols)), dtype=np.int64) x_idx = idx % num_cols return x_idx, y_idx def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot def get_triu_indices(num_nodes): """Linear triu (upper triangular) indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) triu_indices = (ones.triu() - eye).nonzero().t() triu_indices = triu_indices[0] * num_nodes + triu_indices[1] return triu_indices def get_tril_indices(num_nodes): """Linear tril (lower triangular) indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) tril_indices = (ones.tril() - eye).nonzero().t() tril_indices = tril_indices[0] * num_nodes + tril_indices[1] return tril_indices def get_offdiag_indices(num_nodes): """Linear off-diagonal indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) offdiag_indices = (ones - eye).nonzero().t() offdiag_indices = offdiag_indices[0] * num_nodes + offdiag_indices[1] return offdiag_indices def get_triu_offdiag_indices(num_nodes): """Linear triu (upper) indices w.r.t. vector of off-diagonal elements.""" triu_idx = torch.zeros(num_nodes * num_nodes) triu_idx[get_triu_indices(num_nodes)] = 1. triu_idx = triu_idx[get_offdiag_indices(num_nodes)] return triu_idx.nonzero() def get_tril_offdiag_indices(num_nodes): """Linear tril (lower) indices w.r.t. vector of off-diagonal elements.""" tril_idx = torch.zeros(num_nodes * num_nodes) tril_idx[get_tril_indices(num_nodes)] = 1. tril_idx = tril_idx[get_offdiag_indices(num_nodes)] return tril_idx.nonzero() def get_minimum_distance(data): data = data[:, :, :, :2].transpose(1, 2) data_norm = (data ** 2).sum(-1, keepdim=True) dist = data_norm + \ data_norm.transpose(2, 3) - \ 2 * torch.matmul(data, data.transpose(2, 3)) min_dist, _ = dist.min(1) return min_dist.view(min_dist.size(0), -1) def get_buckets(dist, num_buckets): dist = dist.cpu().data.numpy() min_dist =
np.min(dist)
numpy.min
from scipy.optimize import fmin_bfgs from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin from svm_kernels import linear_kernel, polynomial_kernel, rbf_kernel, gaussian_kernel import numpy as np import cvxpy as cp class PlattScaler(TransformerMixin): ''' Perform Platt Scaling. Based on Platt 1999 <NAME>., 1999. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, Advances in Large Margin Classifiers, 61-74, Original code: https://github.com/neal-o-r/platt/blob/master/platt.py ''' def __init__(self): pass def fit(self, f, y): ''' Fit Platt model. This method takes in the classifier outputs and the true labels, and fits a scaling model to convert classifier outputs to true probabilities. Sticks with Platt's weird notation throughout. f: classifier outputs y: true labels ''' eps = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayes priors prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(theta): A, B = theta E = np.exp(A * f + B) P = 1. / (1. + E) l = -(T * np.log(P + eps) + T1 * np.log(1. - P + eps)) return l.sum() def grad(theta): A, B = theta E = np.exp(A * f + B) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) dA = np.dot(TEP_minus_T1P, f) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., np.log((prior0 + 1.) / (prior1 + 1.))]) self.A_, self.B_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) def transform(self, f): ''' Given a set of classifer outputs return probs. ''' return 1. / (1. + np.exp(self.A_ * f + self.B_)) def fit_transform(self, f, y): self.fit(f, y) return self.transform(f) class SVC(BaseEstimator, ClassifierMixin): ''' ###################################################################### # -A soft margin svm classifier capable of using non-linear kernels- # ###################################################################### ''' proba_fit = False classes_ = [-1, 1] # Required def __init__( self, C=None, gamma=1, delta=1, kernel='linear', threshold=1e-7, dtype=np.float64, probability=False, solver_params={'solver':'SCS', 'eps': 1e-14, 'acceleration_lookback': 0}, ): ''' Args: C - float or int, the soft margin penalty kernel - function, takes two array-like objects as input and projects them into a different space, returns a single array-like object gamma - float or int, kernel hyperparameter delta - float or int, kernel hyperparameter (polynomial only) threshold - float or int, support vectors have alphas that exceed this value dtype - callable or string, the data type to use, effects precision, i.e. np.float32 or 'float64' solver_params - dictionary, kwargs for the cvxpy solver ''' self.kernel = kernel self.C = C self.gamma = gamma self.delta = delta self.threshold = threshold self.dtype = dtype self.probability = probability self.solver_params = solver_params def _init(self): if self.C: self.C = self.dtype(self.C) if type(self.kernel) == str: self.kernel = globals()[self.kernel + '_kernel'] def fit(self, X, y=None): ''' Finds the optimal separating hyperplane by solving the dual constraint quadratic optimization problem of maximizing the margin by using cvxpy package Args: X - array-like, shape=[n_samples, n_features], the training data y - array-like, shape=[n_samples], training targets/labels ''' self._init() X = X.astype(self.dtype) y = y.astype(self.dtype) n_samples, n_features = X.shape # Compute proto kernel/gram matrix K = self.kernel(X, params={'gamma': self.gamma, 'delta': self.delta}) # Build the variables P = np.outer(y, y) * K # kernel/gram matrix q = -np.ones(n_samples, dtype=self.dtype) # negative makes it a minimization problem A = y.reshape(1, -1) b = self.dtype(0.0) x = cp.Variable(n_samples) # alphas # Constraints if self.C: # If soft margin classifier... G = np.vstack((-np.eye(n_samples, dtype=self.dtype), np.eye(n_samples, dtype=self.dtype))) h = np.hstack((np.zeros(n_samples, dtype=self.dtype), np.ones(n_samples, dtype=self.dtype) * self.C)) else: # Hard margin... G = np.diag(-np.ones(n_samples, dtype=self.dtype)) h = np.zeros(n_samples, dtype=self.dtype) # self.dtype(0.0) # objective = cp.Minimize(0.5 * cp.quad_form(x, P) + q.T @ x) constraints = [G @ x <= h, A @ x == b] problem = cp.Problem(objective, constraints) problem.solve(**self.solver_params) self.alphas = x.value # Support vectors have non zero lagrange multipliers mask = self.alphas > self.threshold # threshold otherwise we end up with everything being a support vector self.alphas = self.alphas[mask] self.support_vectors = X[mask] self.support_vector_labels = y[mask] # Calculate bias: # .. math:: # b = rac{1}{N_S}\sum\limits_{v∈S} [α_u y_u k(x_u , x_v )] self.b = self.dtype(0.0) self.sv_idx = np.arange(len(X))[mask] n_alpha = len(self.alphas) for i in range(n_alpha): self.b += self.support_vector_labels[i] self.b -= np.sum(self.alphas * self.support_vector_labels * K[self.sv_idx[i], mask]) self.b /= n_alpha if self.probability: self.plattscaler = PlattScaler() distances = self.decision_function(X) self.plattscaler.fit(distances, y) self.proba_fit = True return self def predict_proba(self, X): if not self.proba_fit: raise Exception("SVC must be initialized with 'probability' keyword argument set to True before calling fit method in order to use Platt Scaling and produce probabilistic outputs") distances = self.decision_function(X) n = distances.__len__() pos_p = self.plattscaler.transform(distances) neg_p = np.ones(n) - pos_p probabilities =
np.array((neg_p, pos_p))
numpy.array
#!/usr/bin/env python """ Utility module. All auxiliary functions go here. This module provides internal functionalities for everything else, aside from handling the internal details of running the simulation itself. There is a plethora of varied functions, so it's best left alone unless strictly necessary. Do not modify this module unless you know exactly what you are doing. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ __author__ = "<NAME>" __authors__ = ["<NAME>"] __contact__ = "<EMAIL>" __copyright__ = "Copyright 2019, UAH" __credits__ = ["<NAME>"] __date__ = "2019/03/29" __deprecated__ = False __email__ = "<EMAIL>" __license__ = "GPLv3" __maintainer__ = "<NAME>" __status__ = "Development" __version__ = "0.0.2" from PIL import Image, ImageDraw, ImageColor import numpy as np import pygame from scipy import ndimage as filters from matplotlib.pyplot import imshow from scipy.stats import norm import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.widgets import Button import matplotlib as mpl import time import math import json import copy from robot import Robot import controller from controllers.controllers import get_controllers start_time = time.time() last_call = time.time() frames = 0 delta = 0 pressed = [] labels = [] co2_center = (0, 0) scale = 1 grid_size = [] ax = None frozen_dist = None fig = None npdata = None gui = True show_robot = True button = None showFPS = False run = True screen = None clock = None def switch_show_robot(dummy): """ Helper function that controls whether the robot should be displayed and updated. Mainly created as a callback for buttons to use, can be called before the simulation starts in order to get the corresponding button to show up. It requires a single positional argument due to Matplotlib constraints. """ global show_robot show_robot = not show_robot def press(event): """Helper function that handles key presses. Must be registered to a plot.""" global pressed pressed.append(event.key) def calculate_delta(): """ Helper function that calculates the delta value for any given update call. Necessary in order for the update to be performed somewhat smoothly. """ '''global last_call new_call = time.time() delta = new_call - last_call last_call = new_call return delta''' global clock, delta delta = clock.tick(30) return delta def generate_dist(size = 1): global frozen_dist, scale scale = 1/size norm.stats(scale=scale) frozen_dist = norm() def get_reading(x, y): global frozen_dist if frozen_dist is None: generate_dist(1000) distance = np.linalg.norm((co2_center[0] - x, co2_center[1] - y)) return frozen_dist.pdf(distance*scale) def create_controllers(): """ Driver function to abstract the process of instancing a Controller object using factories. Inputs: - No input, everything comes from the config global variable Outputs: - a fully configured Controller object or a list of Controllers, depending on the config """ global npdata if 'class' in config or 'controllers' in config: return get_controllers(config) else: raise KeyError("The configuration file received doesn't contain a \"class\" attribute") def create_robot(json_file = '../conf/robot.json', controller = None): """ Uses a json file to generate a fully configured Robot object. Inputs: - json_file: path to the JSON configuration file for the robot in question. - controller: pre-configured Controller object. Outputs: - fully configured Robot object. """ with open(json_file, 'r') as fp: f = json.load(fp) if 'name' in f: r = Robot(identifier = f['id'], x = f['x'], y = f['y'],\ orientation = f['orientation'],\ vision_range = (f['sonar_range'][0], f['sonar_range'][1]),\ sensors = f['sonars'],\ radius = f['radius'], max_speed = f['max_speed'], controller=controller, name=f['name']) else: r = Robot(identifier = f['id'], x = f['x'], y = f['y'],\ orientation = f['orientation'],\ vision_range = (f['sonar_range'][0], f['sonar_range'][1]),\ sensors = f['sonars'],\ radius = f['radius'], max_speed = f['max_speed'], controller=controller) if 'battery' in f: r.insert_battery_details(f['step'], f['battery'], f['charging_rate'], f['movement_cost'], f['reading_cost'], f['picture_cost'], f['generic_cost']) if 'color' in f: r.set_color(f['color']) return r def init_globals_from_config(): """ Initialize all global variables based on config TODO: Remove global variables and keep only the config dict, to at some point remove it too and pass it as reference if needed """ showFPS = 'fps' in config gui = config['gui'] co2_center = config['co2_center'] if 'co2_center' in config else (0, 0) def create_robots(controllers): """ Returns a list of robots or one robot depending on the config (TBC, Pedro) Why did we do a deepcopy of the controller config only when we received 1 controler, but not when multiple? If this is still a requirement, we need to add it to the r.append line """ if type(config['robot']) is list: r = [] for i, path in enumerate(config['robot']): if i >= len(controllers): r.append(create_robot(path, controllers[0])) else: r.append(create_robot(path, controllers[i])) else: r = create_robot(config['robot'], controllers[0]) return r def load_simulation(config_mgr): """ Loads a simulation using a configuration file. For the time being, it limits itself to loading the corresponding map and robot. Inputs: - json_file: path to the configuration file describing the simulation to be loaded. This configuration file must be a JSON containing the following: * stage: string defining the path to the image file that represents the stage to be loaded. * robot: string defining the path to the configuration file of the robot that will be used. """ global gui, npdata, co2_center, showFPS, config # Load the config in the global variable config = config_mgr.get_config() # Init global variables based on config dict # TODO: I think we should refactor everything to only use config as global (Pedro) init_globals_from_config() # Load the image used in the stage npdata = load_image(config['stage']) # Get the controller if only one or a list of controllers controllers = create_controllers() if 'co2_radius' in config: generate_dist(config['co2_radius']) robots = create_robots(controllers) display_image(robots) def update_loop(robots, npdata): global delta, pressed, run while run: init_time = time.time() if gui: delta = calculate_delta() else: delta = 0.1 for r in robots: r.update(npdata, delta, True) pressed.clear() time.sleep(1/80) def update(robots, npdata): delta = calculate_delta()/1000 for r in robots: r.update(npdata, delta, True) def animate(robots): """ Update function. Updates internal world data, then prints it to a plot. Must be registered to said plot. """ global start_time, frames, delta, show_robot, screen, clock, grid_size if show_robot: for r in robots: r.get_lock().acquire() if r.controller.has_cur_detected_edge_list(): '''for e in r.controller.detected_edges: pygame.draw.circle(screen, r.color, (int(e[0]), int(e[1])), 1)''' for a in r.controller.actual_sensor_angles: dstX = r.x + np.cos(np.radians(a)) * r.controller.cur_detected_edges_distances[r.controller.actual_sensor_angles.index(a)] dstY = r.y + np.sin(np.radians(a)) * r.controller.cur_detected_edges_distances[r.controller.actual_sensor_angles.index(a)] pygame.draw.line(screen, (255, 0, 255), (int(r.x), int(r.y)), (int(dstX), int(dstY)), 1) for e in r.controller.cur_detected_edges: pygame.draw.circle(screen, (0, 255, 0), (int(e[0]), int(e[1])), int((100/np.linalg.norm((e[0]-r.x, e[1]-r.y)))/90)) if type(r.color) is str: r.color = list(mpl.colors.to_rgb(mpl.colors.get_named_colors_mapping()[r.color])) r.color[0] *= 255 r.color[1] *= 255 r.color[2] *= 255 r.color = tuple(r.color) pygame.draw.circle(screen, r.color, (int(r.x), int(r.y)), int(r.radius)) dstX = r.x + np.cos(np.radians(r.orientation)) * 2 * r.radius dstY = r.y + np.sin(
np.radians(r.orientation)
numpy.radians
# -*- coding: utf-8 -*- # samplers.py # MIT License # Copyright (c) 2017 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from numpy import eye, zeros, dot, array, diag, sqrt, mean from scipy.stats import multivariate_normal, invgamma, invgauss, gamma from numpy.linalg import inv, norm from trendpy.globals import derivative_matrix __all__ = ['Parameter','Parameters','Sampler','L1'] class Parameter(object): """ Implements an unknown parameter to be estimated Examples -------- We first need to import the wanted posterior distribution in `Scipy`: >>> from scipy.stats import norm and then we can instanciate parameter: >>> param1 = Parameter('lambda',norm,(1,1),0.1) """ def __init__(self, name, distribution, size, current_value=None): """ Creates a parameter to estimate in the MCMC algorithm. :param name: Name of the parameter (unique identification) :type name: string :param distribution: Posterior Probability distribution of the parameter. :type distribution: `Scipy.stats.rv_continuous` :param size: Dimension of the parameter. :type name: tuple :param current_value: Current value of the parameter :type current_value: array """ self.name = str(name) self.distribution = distribution self.size = size self.current_value = current_value @property def current_value(self): """Parameter current value (last generated)""" return self.__current_value @current_value.setter def current_value(self, current_value): self.__current_value = current_value def __str__(self): return """ parameter name : %s parameter distribution : %s """ % (self.name, self.distribution.__str__()) def __len__(self): return 1 def is_multivariate(self): """ Checks if the parameter is univariate.""" return not self.size == (1,1) class Parameters(object): """ Implements the set of parameters to be estimated Examples -------- We first need to import the wanted posterior distribution in `Scipy.stats`: >>> from scipy.stats import invgamma then we can create an empty parameter set and add a new parameter: >>> param1 = Parameter('sigma2',invgamma,(1,1),0.09) >>> params = Params() >>> params.append(param1) >>> print(params) """ def __init__(self, list=None, hierarchy=None): """ Creates a parameter set to estimate in the MCMC algorithm. :param list: A dictionary with the parameters to estimate :type list: dict :param hierarchy: List containing the order in which the Gibbs sampler updates the parameter values. :type hierarchy: array """ self.list = list self.hierarchy = hierarchy @property def list(self): """ Dictionary containing the parameters to be estimated. """ return self.__list @list.setter def list(self, new_value): self.__list = new_value if new_value is not None else {} @property def hierarchy(self): """ List containing the order in which the Gibbs sampler updates the parameter values. """ return self.__hierarchy @hierarchy.setter def hierarchy(self, new_value): self.__hierarchy = new_value if new_value is not None else [] def __len__(self): return len(self.list) def __str__(self): descr = '(parameters: ----------------------- \n' descr += ', \n'.join(['name: %s, distribution: %s, size: %s' % (str(l.name), l.distribution.__str__(), l.size) for l in self.list.values()]) descr += '\n ----------------------- )' return descr def __getitem__(self, key): if isinstance(key,str): try: return self.list[key] except KeyError: print("Key %s not found in parameter set" % key) except: print("Wrong key") elif isinstance(key,int): try: return self.list[self.hierarchy[key]] except KeyError: print("Key %s not found in parameter set" % key) except IndexError: print("Index out of bounds: %s > %s" % (key,len(self.hierarchy))) else: raise TypeError("Wrong Type") def __delitem__(self,key): pass def __contains__(self, item): if isinstance(item,Parameter): try: return item.name in self.hierarchy except KeyError: print("Key %s not found in parameter set" % key) except: print("Wrong key: %s" % item.name) else: raise TypeError("Wrong Type") def append(self, parameter): """ Adds a parameter to the parameter set. First parameter added is the first in the hierarchy. :param parameter: parameter to estimate :type parameter: trendpy.Parameter """ if not parameter.name in self.list: self.list[parameter.name] = parameter self.hierarchy.append(parameter.name) def clear(self): """ Removes all parameters.""" self.list = None self.hierarchy = None class Sampler(object): """ Abstract class for implementing Gibbs sampling algorithms and providing outputs.""" def __init__(self): self.parameters = None self.data = None self.options = None self.derivative_matrix = None self.parameters = None def define_parameters(self): """ Method to set the parameter set to be updated in the MCMC algorithm. """ raise NotImplementedError("Must be overriden") def initial_value(self,parameter_name): """ Method that sets the initial value of the parameters to be estimated. :param parameter_name: name of the parameter. :type parameter_name: str :return: initial value of the parameter :rtype: `Numpy.dnarray` """ raise NotImplementedError("Must be overriden") def distribution_parameters(self, parameter_name): """ Method that sets the parameters of the posterior distribution of the parameters to be estimated. :param parameter_name: name of the parameter. :type parameter_name: str :return: dictionary the parameters needed to compute the next value of the Markov chain for the parameter with name: parameter_name. :rtype: dict """ raise NotImplementedError("Must be overriden") def generate(self,parameter_name): """ This method handles the generation of the random draws of the Markov chain for each parameters. :param parameter_name: name of the parameter of interest :type parameter_name: string :return: random draw from the posterior probability distribution :rtype: `Numpy.dnarray` """ raise NotImplementedError("Must be overriden") def output(self, simulations, burn, parameter_name): """ Computes the poserior mean of the parameters. :param simulations: history of the Markov chain simulation :type simulations: dict :param burn: number of draws dismissed as burning samples :type burn: int :param parameter_name: name of the parameter of interest :type parameter_name: string :return: output of the MCMC algorithm :rtype: `Numpy.dnarray` """ raise NotImplementedError("Must be overriden") class Factory(object): def create(self,*args,**kwargs): return Sampler() class L1(Sampler): def __init__(self,data,alpha=0.1,rho=0.1,total_variation_order=2): self.rho = rho self.alpha = alpha self.__data = data self.size = len(data) self.total_variation_order = total_variation_order self.derivative_matrix = derivative_matrix(self.size, self.total_variation_order) self.define_parameters() @property def data(self): return self.__data @property def parameters(self): """ List containing the parameters to estimate.""" return self.__parameters @parameters.setter def parameters(self, new_value): self.__parameters = new_value if new_value is not None else [] def define_parameters(self): params=Parameters() params.append(Parameter("trend", multivariate_normal, (self.size,1))) params.append(Parameter("sigma2", invgamma, (1,1))) params.append(Parameter("lambda2", gamma, (1,1))) params.append(Parameter("omega", invgauss, (self.size-self.total_variation_order,1))) self.parameters = params def initial_value(self,parameter_name): if parameter_name=='trend': return array([(4*i+10)/20 for i in range(self.size)]) elif parameter_name=='sigma2': return 0.8 elif parameter_name=='lambda2': return 1 elif parameter_name==str('omega'): return 0.8*array([(30*(i/2)+3)/(2*(i/2)+35) for i in range(self.size-self.total_variation_order)]) def distribution_parameters(self, parameter_name): if parameter_name=='trend': E = dot(dot(self.derivative_matrix.T,inv(diag(self.parameters.list['omega'].current_value))),self.derivative_matrix) mean = dot(inv(eye(self.size)+E),self.data) cov = (self.parameters.list['sigma2'].current_value)*inv(
eye(self.size)
numpy.eye
from __future__ import print_function import os import pandas as pd import numpy as np from . import load_stdata from ..config import Config from ..utils import string2timestamp ''' STMatrix 时空矩阵对象,每一个进行预测数据创建一个 ''' class STMatrix(object): """docstring for STMatrix""" def __init__(self, data, timestamps, T=48, CheckComplete=True): super(STMatrix, self).__init__() assert len(data) == len(timestamps) self.data = data self.timestamps = timestamps self.T = T self.pd_timestamps = string2timestamp(timestamps, T=self.T) if CheckComplete: self.check_complete() # index self.make_index() def make_index(self): self.get_index = dict() for i, ts in enumerate(self.pd_timestamps): self.get_index[ts] = i def check_complete(self): missing_timestamps = [] offset = pd.DateOffset(minutes=24 * 60 // self.T) pd_timestamps = self.pd_timestamps i = 1 while i < len(pd_timestamps): if pd_timestamps[i-1] + offset != pd_timestamps[i]: missing_timestamps.append("(%s -- %s)" % (pd_timestamps[i-1], pd_timestamps[i])) i += 1 for v in missing_timestamps: print(v) assert len(missing_timestamps) == 0 def get_matrix(self, timestamp): return self.data[self.get_index[timestamp]] def save(self, fname): pass def check_it(self, depends): for d in depends: if d not in self.get_index.keys(): return False return True def create_dataset(self, len_closeness=3, len_trend=3, TrendInterval=7, len_period=3, PeriodInterval=1): """current version """ # offset_week = pd.DateOffset(days=7) offset_frame = pd.DateOffset(minutes=24 * 60 // self.T) XC = [] XP = [] XT = [] Y = [] timestamps_Y = [] depends = [range(1, len_closeness+1), [PeriodInterval * self.T * j for j in range(1, len_period+1)], [TrendInterval * self.T * j for j in range(1, len_trend+1)]] i = max(self.T * TrendInterval * len_trend, self.T * PeriodInterval * len_period, len_closeness) while i < len(self.pd_timestamps): Flag = True for depend in depends: if Flag is False: break Flag = self.check_it([self.pd_timestamps[i] - j * offset_frame for j in depend]) if Flag is False: i += 1 continue x_c = [self.get_matrix(self.pd_timestamps[i] - j * offset_frame) for j in depends[0]] x_p = [self.get_matrix(self.pd_timestamps[i] - j * offset_frame) for j in depends[1]] x_t = [self.get_matrix(self.pd_timestamps[i] - j * offset_frame) for j in depends[2]] y = self.get_matrix(self.pd_timestamps[i]) if len_closeness > 0: XC.append(np.vstack(x_c)) if len_period > 0: XP.append(np.vstack(x_p)) if len_trend > 0: XT.append(np.vstack(x_t)) Y.append(y) timestamps_Y.append(self.timestamps[i]) i += 1 XC = np.asarray(XC) XP =
np.asarray(XP)
numpy.asarray
# -*- coding:utf-8 -*- import unittest from simple_ml.evaluation import * from simple_ml.evaluation import _check_input, _get_binary_confusion_matrix, _gen_binary_pairs import numpy as np from numpy.testing import assert_array_equal from simple_ml.base.base_error import * class TestEvaluation(unittest.TestCase): def test_regression_plot(self): x_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) y_train = np.array([0.1, 0.2, 0.4, 0.6]) x_test = np.array([[1, 3, 4, 5]]) y_test = np.array([0.12]) self.assertRaises(FeatureNumberMismatchError, regression_plot, x_train, y_train, x_test, y_test, y_test) x_test = np.array([[1,3,4]]) y_test = np.array([0.12, 0.13]) self.assertRaises(SampleNumberMismatchError, regression_plot, x_train, y_train, x_test, y_test, y_test) def test_check_input(self): y_true = np.array([[1, 2, 3], [4, 5, 6]]) y_predict = y_true.copy() self.assertRaises(InputTypeError, _check_input, y_predict, y_true) y_true = np.array([1, 2]) y_predict = np.array([1, 2, 3]) self.assertRaises(LabelLengthMismatchError, _check_input, y_predict, y_true) def test_confusion_matrix(self): y1 = np.array([1, 0, 0, 1]) y2 = np.array([1, 0, 0, 2]) self.assertRaises(ParamInputError, _get_binary_confusion_matrix, y1, y2) y2 = np.array([1, 0, 0, 0]) confusion_matrix = _get_binary_confusion_matrix(y1, y2) assert_array_equal(confusion_matrix, np.array([[1, 1], [0, 2]])) def test_classify_accuracy(self): y1 = np.array([1, 0, 0, 1]) y2 = np.array([1, 0, 1, 1]) score = classify_accuracy(y1, y2) self.assertEqual(score, 0.75) def test_classify_precision(self): y1 = np.array([1, 1, 0, 0, 1]) y2 = np.array([1, 0, 1, 0, 0]) score = classify_precision(y1, y2) self.assertEqual(score, 1/3) def test_classify_recall(self): y1 = np.array([1, 1, 0, 0, 1]) y2 = np.array([1, 0, 1, 0, 0]) score = classify_recall(y1, y2) self.assertEqual(score, 0.5) def test_classify_f1(self): y1 = np.array([1, 1, 0, 0, 1]) y2 = np.array([1, 0, 1, 0, 0]) score = classify_f1(y1, y2) self.assertEqual(score, (2 * 0.5 / 3) / (0.5 + 1/3)) def test_gen_binary_paris(self): y1 = np.array([1, 1]) y2 = np.array([1, 0]) res = list(_gen_binary_pairs(y1, y2)) assert_array_equal(res, [(np.array([0, 0]), np.array([0, 1])), (
np.array([1, 1])
numpy.array
import copy as cp import pickle import numpy as np from mmcv.fileio import FileClient from scipy.stats import mode from ..builder import PIPELINES from .augmentations import Flip @PIPELINES.register_module() class MySampleFrames: """Uniformly sample frames from the video. To sample an n-frame clip from the video. UniformSampleFrames basically divide the video into n segments of equal length and randomly sample one frame from each segment. To make the testing results reproducible, a random seed is set during testing, to make the sampling results deterministic. Required keys are "total_frames", "start_index" , added or modified keys are "frame_inds", "clip_len", "frame_interval" and "num_clips". Args: clip_len (int): Frames of each sampled output clip. num_clips (int): Number of clips to be sampled. Default: 1. test_mode (bool): Store True when building test or validation dataset. Default: False. seed (int): The random seed used during test time. Default: 255. """ def __init__(self, clip_len, num_clips=1, test_mode=False, seed=255): self.clip_len = clip_len self.num_clips = num_clips self.test_mode = test_mode self.seed = seed def _get_train_clips(self, num_frames, clip_len): """Uniformly sample indices for training clips. Args: num_frames (int): The number of frames. clip_len (int): The length of the clip. """ assert self.num_clips == 1 if num_frames < clip_len: start = np.random.randint(0, num_frames) inds = np.arange(start, start + clip_len) elif clip_len <= num_frames < 2 * clip_len: basic = np.arange(clip_len) inds = np.random.choice( clip_len + 1, num_frames - clip_len, replace=False) offset = np.zeros(clip_len + 1, dtype=np.int64) offset[inds] = 1 offset = np.cumsum(offset) inds = basic + offset[:-1] else: bids = np.array( [i * num_frames // clip_len for i in range(clip_len + 1)]) bsize = np.diff(bids) bst = bids[:clip_len] offset = np.random.randint(bsize) inds = bst + offset print(inds) return inds def _get_test_clips(self, num_frames, clip_len): """Uniformly sample indices for testing clips. Args: num_frames (int): The number of frames. clip_len (int): The length of the clip. """ np.random.seed(self.seed) if num_frames < clip_len: # Then we use a simple strategy if num_frames < self.num_clips: start_inds = list(range(self.num_clips)) else: start_inds = [ i * num_frames // self.num_clips for i in range(self.num_clips) ] inds = np.concatenate( [np.arange(i, i + clip_len) for i in start_inds]) elif clip_len <= num_frames < clip_len * 2: all_inds = [] for i in range(self.num_clips): basic = np.arange(clip_len) inds = np.random.choice( clip_len + 1, num_frames - clip_len, replace=False) offset =
np.zeros(clip_len + 1, dtype=np.int64)
numpy.zeros
import numpy as np import pytest import unittest from desc.equilibrium import Equilibrium, EquilibriaFamily from desc.grid import ConcentricGrid from desc.profiles import PowerSeriesProfile, SplineProfile from desc.geometry import ( FourierRZCurve, FourierRZToroidalSurface, ZernikeRZToroidalSection, ) class TestConstructor(unittest.TestCase): def test_defaults(self): eq = Equilibrium() self.assertEqual(eq.spectral_indexing, "ansi") self.assertEqual(eq.NFP, 1) self.assertEqual(eq.L, 1) self.assertEqual(eq.M, 1) self.assertEqual(eq.N, 0) self.assertEqual(eq.sym, False) self.assertTrue(eq.surface.eq(FourierRZToroidalSurface())) self.assertIsInstance(eq.pressure, PowerSeriesProfile) np.testing.assert_allclose(eq.p_l, [0]) self.assertIsInstance(eq.iota, PowerSeriesProfile) np.testing.assert_allclose(eq.i_l, [0]) def test_supplied_objects(self): pressure = SplineProfile([1, 2, 3]) iota = SplineProfile([2, 3, 4]) surface = ZernikeRZToroidalSection(spectral_indexing="ansi") axis = FourierRZCurve([-1, 10, 1], [1, 0, -1], NFP=2) eq = Equilibrium(pressure=pressure, iota=iota, surface=surface, axis=axis) self.assertTrue(eq.pressure.eq(pressure)) self.assertTrue(eq.iota.eq(iota)) self.assertTrue(eq.surface.eq(surface)) self.assertTrue(eq.axis.eq(axis)) self.assertEqual(eq.spectral_indexing, "ansi") self.assertEqual(eq.NFP, 2) surface2 = FourierRZToroidalSurface(NFP=3) eq2 = Equilibrium(surface=surface2) self.assertEqual(eq2.NFP, 3) self.assertEqual(eq2.axis.NFP, 3) eq3 = Equilibrium(surface=surface, axis=None) np.testing.assert_allclose(eq3.axis.R_n, [10]) def test_dict(self): inputs = { "L": 4, "M": 2, "N": 2, "NFP": 3, "sym": False, "spectral_indexing": "ansi", "surface": np.array( [[0, 0, 0, 10, 0], [0, 1, 0, 1, 1], [0, -1, 1, 0.1, 0.1]] ), "axis": np.array([[0, 10, 0]]), "pressure": np.array([[0, 10], [2, 5]]), "iota": np.array([[0, 1], [2, 3]]), } eq = Equilibrium(**inputs) self.assertEqual(eq.L, 4) self.assertEqual(eq.M, 2) self.assertEqual(eq.N, 2) self.assertEqual(eq.NFP, 3) self.assertEqual(eq.spectral_indexing, "ansi") np.testing.assert_allclose(eq.p_l, [10, 0, 5]) np.testing.assert_allclose(eq.i_l, [1, 0, 3]) self.assertIsInstance(eq.surface, FourierRZToroidalSurface) np.testing.assert_allclose( eq.Rb_lmn, [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 1.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], ) np.testing.assert_allclose( eq.Zb_lmn, [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], ) inputs["surface"] = np.array([[0, 0, 0, 10, 0], [1, 1, 0, 1, 1]]) eq = Equilibrium(**inputs) self.assertEqual(eq.bdry_mode, "poincare") np.testing.assert_allclose( eq.Rb_lmn, [10.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) def test_asserts(self): with pytest.raises(AssertionError): eq = Equilibrium(L=3.4) with pytest.raises(AssertionError): eq = Equilibrium(M=3.4) with pytest.raises(AssertionError): eq = Equilibrium(N=3.4) with pytest.raises(AssertionError): eq = Equilibrium(NFP=3.4j) with pytest.raises(ValueError): eq = Equilibrium(surface=np.array([[1, 1, 1, 10, 2]])) with pytest.raises(TypeError): eq = Equilibrium(surface=FourierRZCurve()) with pytest.raises(TypeError): eq = Equilibrium(axis=2) with pytest.raises(ValueError): eq = Equilibrium(surface=FourierRZToroidalSurface(NFP=1), NFP=2) with pytest.raises(TypeError): eq = Equilibrium(pressure="abc") with pytest.raises(TypeError): eq = Equilibrium(iota="def") def test_supplied_coeffs(self): R_lmn = np.random.random(3) Z_lmn = np.random.random(3) L_lmn =
np.random.random(3)
numpy.random.random
import numpy as np import os import cv2 import copy import json import dill import psutil import sys class Layer_Dense: def __init__(self, n_inputs, n_neurons, weight_regulator=0., bias_regulator=0.): # Initialise weights and biases self.weights = 0.0001 * np.random.randn(n_inputs, n_neurons) self.biases = np.zeros((1, n_neurons)) # Set regularisation strength self.weight_regulator = weight_regulator self.bias_regulator = bias_regulator def forward(self, inputs, training): # Save input values self.inputs = inputs # Calculate output values self.outputs = np.dot(inputs, self.weights) + self.biases def backward(self, dvalues): # Gradients on parameters self.dweights = np.dot(self.inputs.T, dvalues) self.dbiases = np.sum(dvalues, axis=0, keepdims=True) # Gradients on regularisation self.dweights += 2 * self.weight_regulator * self.weights self.dbiases += 2 * self.bias_regulator * self.biases # Gradient on values self.dinputs = np.dot(dvalues, self.weights.T) class Layer_Dropout: def __init__(self, rate): # Invert the rate self.rate = 1 - rate def forward(self, inputs, training): # Save input values self.inputs = inputs # If not in training mode deactivate dropout if not training: self.outputs = inputs.copy() return # Generate and save scaled mask self.binary_mask = np.random.binomial(1, self.rate, size=inputs.shape) / self.rate # Apply mask to output values self.outputs = inputs * self.binary_mask def backward(self, dvalues): # Gradient on values self.dinputs = dvalues * self.binary_mask class Layer_Input: def forward(self, inputs, training): # No calculation needed. Mark inputs as outputs self.outputs = inputs class Activation_ReLU: def forward(self, inputs, training): # Save input values self.inputs = inputs # Calculate output values self.outputs = np.maximum(0, inputs) def backward(self, dvalues): # Copy dvalues self.dinputs = dvalues.copy() # Gradient on values self.dinputs[self.inputs <= 0] = 0 class Activation_Sigmoid: def forward(self, inputs, training): # Save input values self.inputs = inputs # Calculate output values self.outputs = 1 / (1 + np.exp(-inputs)) def backward(self, dvalues): # Gradient on values self.dinputs = dvalues * (1 - self.outputs) * self.outputs def predictions(self, outputs): # Round output values to 1 or 0 return (outputs > 0.5) * 1 class Optimiser_Adam: def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7, beta_1=0.9, beta_2=0.999): # Initialise optimiser settings self.learning_rate = learning_rate self.current_learning_rate = learning_rate self.decay = decay self.iterations = 0 self.epsilon = epsilon self.beta_1 = beta_1 self.beta_2 = beta_2 def pre_update_params(self): # Update learning rate before any parameter updates self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations)) def update_params(self, layer): # Create cache array filled with 0 if they do not exist if not hasattr(layer, "weight_cache"): layer.weight_momentum = np.zeros_like(layer.weights) layer.weight_cache = np.zeros_like(layer.weights) layer.bias_momentum = np.zeros_like(layer.biases) layer.bias_cache = np.zeros_like(layer.biases) # Update momentum with current gradients layer.weight_momentum = self.beta_1 * layer.weight_momentum + (1 - self.beta_1) * layer.dweights layer.bias_momentum = self.beta_1 * layer.bias_momentum + (1 - self.beta_1) * layer.dbiases # Get corrected momentum weight_momentum_corrected = layer.weight_momentum / (1 - self.beta_1 ** (self.iterations + 1)) bias_momentum_corrected = layer.bias_momentum / (1 - self.beta_1 ** (self.iterations + 1)) # Update cache with squared current gradients layer.weight_cache = self.beta_2 * layer.weight_cache + (1 - self.beta_2) * layer.dweights ** 2 layer.bias_cache = self.beta_2 * layer.bias_cache + (1 - self.beta_2) * layer.dbiases ** 2 # Get corrected cache weight_cache_corrected = layer.weight_cache / (1 - self.beta_2 ** (self.iterations + 1)) bias_cache_corrected = layer.bias_cache / (1 - self.beta_2 ** (self.iterations + 1)) # Update parameters layer.weights -= self.current_learning_rate * weight_momentum_corrected / (np.sqrt(weight_cache_corrected) + self.epsilon) layer.biases -= self.current_learning_rate * bias_momentum_corrected / (np.sqrt(bias_cache_corrected) + self.epsilon) def post_update_params(self): # Update iterations after any parameter updates self.iterations += 1 class Loss: def regularisation_loss(self): regularisation_loss = 0 # Iterate over all trainable layers to calculate regularisation loss for layer in self.trainable_layers: regularisation_loss += layer.weight_regulator * np.sum(layer.weights * layer.weights) regularisation_loss += layer.bias_regulator * np.sum(layer.biases * layer.biases) return regularisation_loss def remember_trainable_layers(self, trainable_layers): # Set/remember trainable layers self.trainable_layers = trainable_layers def calculate(self, outputs, target_outputs): # Calculate loss for each sample sample_losses = self.forward(outputs, target_outputs) # Calculate mean loss over all samples data_loss = np.mean(sample_losses) # Update accumulated self.accumulated_sum += np.sum(sample_losses) self.accumulated_count += sample_losses.size return data_loss, self.regularisation_loss() def calculate_accumulated(self): # Calculate mean loss over whole dataset data_loss = self.accumulated_sum / self.accumulated_count return data_loss, self.regularisation_loss() def new_pass(self): # Reset variables for accumulated loss self.accumulated_sum = 0 self.accumulated_count = 0 class Loss_BinaryCrossentropy(Loss): def forward(self, outputs, target_outputs): # Clip data to prevent division by 0 # Clip both sides to not drag mean towards any value outputs_clipped = np.clip(outputs, 1e-7, 1 - 1e-7) # Calculate sample-wise loss sample_losses = -(target_outputs * np.log(outputs_clipped) + (1 - target_outputs) * np.log(1 - outputs_clipped)) sample_losses = np.mean(sample_losses, axis=-1) # Return losses return sample_losses def backward(self, dvalues, target_outputs): # Clip data to prevent division by 0 # Clip both sides to not drag mean towards any value clipped_dvalues = np.clip(dvalues, 1e-7, 1 - 1e-7) # Calculate gradient self.dinputs = -(target_outputs / clipped_dvalues - (1 - target_outputs) / (1 - clipped_dvalues)) / len(dvalues[0]) # Normalise gradient self.dinputs = self.dinputs / len(dvalues) class Loss_MeanSquaredError(Loss): def forward(self, outputs, target_outputs): # Calculate loss sample_losses = np.mean((target_outputs - outputs) ** 2, axis=-1) # Return losses return sample_losses def backward(self, dvalues, target_outputs): # Gradient on values self.dinputs = -2 * (target_outputs - dvalues) / len(dvalues[0]) # Normalise gradient self.dinputs = self.dinputs / len(dvalues) class Loss_UnbalancedSegmentation(Loss): def forward(self, outputs, target_outputs): # Normalise outputs outputs = target_outputs - outputs # Calculate sample-wise loss sample_losses = 1 / 32 * (outputs + 2) ** 4 - (outputs + 2) + 1.5 sample_losses =
np.mean(sample_losses, axis=-1)
numpy.mean
# -*- coding: utf-8 -*- """ Created on Mon May 15 20:37:33 2017 @author: DX """ ''' Created on 15-May-2017 @author: aii32199 ''' import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs #Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 # Compute clustering with MiniBatchKMeans # Plot result fig = plt.figure(figsize=(12, 8)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0) #k_means_cluster_centers = np.load('E:/PyDevWorkSpaceTest/Ensembles/Chapter_01/data/kmenasCenter.npy') # np.save('E:/PyDevWorkSpaceTest/Ensembles/Chapter_01/data/kmenasCenter.npy',k_means_cluster_centers) k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) ax = fig.add_subplot(1, 2,1) # ax.plot(X[:, 0], X[:, 1], 'w',markerfacecolor='k', marker='.',markersize=8) # KMeans ax = fig.add_subplot(1,2,1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w',markerfacecolor=col, marker='.',markersize=8) # plt.text(X[my_members, 0], X[my_members, 1], '%i' % (k)) ax.plot(cluster_center[0], cluster_center[1], marker='o', markerfacecolor=col, markeredgecolor='k', markersize=10) plt.text(cluster_center[0], cluster_center[1], 'Cluster: %i' % (k)) # ax.set_title('KMeans') test_point = [-1.3,1.3] ax.plot(test_point[0],test_point[1],marker='x',markerfacecolor='r',markersize=12) #plt.text(test_point[0],test_point[1], 'point:%.1f,%.1f' % (test_point[0],test_point[1])) #Check out its distance from each of the cluster dist = [] for center in k_means_cluster_centers: dist.append((sum(np.square((center) - (test_point))))) min = np.argmin(dist) test_point = [-1.3,1.3] ax = fig.add_subplot(1,2,2) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w',markerfacecolor=col, marker='.',markersize=8) # plt.text(X[my_members, 0], X[my_members, 1], '%i' % (k)) ax.plot(cluster_center[0], cluster_center[1], marker='o', markerfacecolor=col, markeredgecolor='k', markersize=10) plt.text(cluster_center[0], cluster_center[1], 'Cluster: %i' % (k)) ax.plot(test_point[0],test_point[1],marker='x',markerfacecolor='r',markersize=8) plt.text(test_point[0],test_point[1], '%i' % (min)) print('distances are: '+ str(dist)) print('Minimum distance index: '+str(min)) #Supervised algorithm from sklearn.ensemble import RandomForestClassifier as rf from sklearn.metrics import log_loss y = k_means_labels X_train, y_train = X[:2000], y[:2000] X_valid, y_valid = X[2000:2500], y[2000:2500] X_train_valid, y_train_valid = X[:2500], y[:2500] X_test, y_test = X[2500:], y[2500:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = rf(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) pred_label = np.argmax(clf_probs,axis=1) # score = log_loss(y_test, clf_probs) nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/np.shape(y_test)[0] print('accuracy is: '+str(acc)) clf_probs = clf.predict_proba(test_point) pred_label =
np.argmax(clf_probs,axis=1)
numpy.argmax
import cv2 import numpy as np import torch def letterbox_image(image, size): ih, iw, _ = np.shape(image) w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = cv2.resize(image, (nw,nh), interpolation=cv2.INTER_LINEAR) new_image = np.ones([size[1],size[0],3])*128 new_image[(h-nh)//2:nh+(h-nh)//2, (w-nw)//2:nw+(w-nw)//2] = image return new_image def retinaface_correct_boxes(result, input_shape, image_shape): new_shape = image_shape*np.min(input_shape/image_shape) offset = (input_shape-new_shape)/2./input_shape scale = input_shape/new_shape scale_for_boxs = [scale[1], scale[0], scale[1], scale[0]] scale_for_landmarks = [scale[1], scale[0], scale[1], scale[0], scale[1], scale[0], scale[1], scale[0], scale[1], scale[0]] offset_for_boxs = [offset[1], offset[0], offset[1],offset[0]] offset_for_landmarks = [offset[1], offset[0], offset[1], offset[0], offset[1], offset[0], offset[1], offset[0], offset[1], offset[0]] result[:,:4] = (result[:,:4] - np.array(offset_for_boxs)) * np.array(scale_for_boxs) result[:,5:] = (result[:,5:] - np.array(offset_for_landmarks)) * np.array(scale_for_landmarks) return result def point_form(boxes): #------------------------------# # Get the upper left and lower right corners of the box #------------------------------# return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, boxes[:, :2] + boxes[:, 2:]/2), 1) def center_size(boxes): #------------------------------# # Get the center and width and height of the box #------------------------------# return torch.cat((boxes[:, 2:] + boxes[:, :2])/2, boxes[:, 2:] - boxes[:, :2], 1) def intersect(box_a, box_b): # Calculates the intersection area of all real boxes and priori boxes A = box_a.size(0) B = box_b.size(0) #------------------------------# # Gets the upper left corner of the intersecting rectangle #------------------------------# max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) #------------------------------# # Gets the bottom right corner of the intersecting rectangle #------------------------------# min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) #-------------------------------------# # Calculate the coincidence area between the priori box and all the real boxes #-------------------------------------# return inter[:, :, 0] * inter[:, :, 1] def jaccard(box_a, box_b): inter = intersect(box_a, box_b) #-------------------------------------# # Calculate the respective area of the anchor and the bounding box #-------------------------------------# area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] union = area_a + area_b - inter #-------------------------------------# # The intersection and union ratio of each bounding box to A anchor is [A,B] #-------------------------------------# return inter / union # [A,B] def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx): #----------------------------------------------# # Calculate the degree of coincidence between the anchor and the bounding box #----------------------------------------------# overlaps = jaccard( truths, point_form(priors) ) #----------------------------------------------# # The best degree of overlap between all bounding boxes and anchor # best_prior_overlap [truth_box,1] # best_prior_idx [truth_box,1] #----------------------------------------------# best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True) best_prior_idx.squeeze_(1) best_prior_overlap.squeeze_(1) best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True) best_truth_idx.squeeze_(0) best_truth_overlap.squeeze_(0) best_truth_overlap.index_fill_(0, best_prior_idx, 2) for j in range(best_prior_idx.size(0)): best_truth_idx[best_prior_idx[j]] = j matches = truths[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来 conf = labels[best_truth_idx] matches_landm = landms[best_truth_idx] conf[best_truth_overlap < threshold] = 0 loc = encode(matches, priors, variances) landm = encode_landm(matches_landm, priors, variances) # [num_priors, 4] loc_t[idx] = loc # [num_priors] conf_t[idx] = conf # [num_priors, 10] landm_t[idx] = landm def encode(matched, priors, variances): g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2] g_cxcy /= (variances[0] * priors[:, 2:]) g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] g_wh = torch.log(g_wh) / variances[1] return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] def encode_landm(matched, priors, variances): matched = torch.reshape(matched, (matched.size(0), 5, 2)) priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2) g_cxcy = matched[:, :, :2] - priors[:, :, :2] g_cxcy /= (variances[0] * priors[:, :, 2:]) g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1) return g_cxcy def log_sum_exp(x): x_max = x.data.max() return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max def decode(loc, priors, variances): boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes def decode_landm(pre, priors, variances): landms = torch.cat((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:], ), dim=1) return landms def non_max_suppression(boxes, conf_thres=0.5, nms_thres=0.3): detection = boxes mask = detection[:, 4] >= conf_thres detection = detection[mask] if not np.shape(detection)[0]: return [] best_box = [] scores = detection[:, 4] arg_sort = np.argsort(scores)[::-1] detection = detection[arg_sort] while np.shape(detection)[0]>0: best_box.append(detection[0]) if len(detection) == 1: break ious = iou(best_box[-1], detection[1:]) detection = detection[1:][ious<nms_thres] return np.array(best_box) def iou(b1,b2): b1_x1, b1_y1, b1_x2, b1_y2 = b1[0], b1[1], b1[2], b1[3] b2_x1, b2_y1, b2_x2, b2_y2 = b2[:, 0], b2[:, 1], b2[:, 2], b2[:, 3] inter_rect_x1 = np.maximum(b1_x1, b2_x1) inter_rect_y1 = np.maximum(b1_y1, b2_y1) inter_rect_x2 = np.minimum(b1_x2, b2_x2) inter_rect_y2 = np.minimum(b1_y2, b2_y2) inter_area =
np.maximum(inter_rect_x2 - inter_rect_x1, 0)
numpy.maximum
import numpy as np import timeit from pemfc import simulation import sys np.set_printoptions(threshold=sys.maxsize, linewidth=10000, precision=9, suppress=True)
np.seterr(all='raise')
numpy.seterr
import numpy as np from numpy.testing import assert_equal, assert_almost_equal, run_module_suite from skimage.feature import ORB from skimage import data from skimage.color import rgb2gray img = rgb2gray(data.lena()) def test_keypoints_orb_desired_no_of_keypoints(): detector_extractor = ORB(n_keypoints=10, fast_n=12, fast_threshold=0.20) detector_extractor.detect(img) exp_rows = np.array([ 435. , 435.6 , 376. , 455. , 434.88, 269. , 375.6 , 310.8 , 413. , 311.04]) exp_cols = np.array([ 180. , 180. , 156. , 176. , 180. , 111. , 156. , 172.8, 70. , 172.8]) exp_scales = np.array([ 1. , 1.2 , 1. , 1. , 1.44 , 1. , 1.2 , 1.2 , 1. , 1.728]) exp_orientations = np.array([-175.64733392, -167.94842949, -148.98350192, -142.03599837, -176.08535837, -53.08162354, -150.89208271, 97.7693776 , -173.4479964 , 38.66312042]) exp_response = np.array([ 0.96770745, 0.81027306, 0.72376257, 0.5626413 , 0.5097993 , 0.44351774, 0.39154173, 0.39084861, 0.39063076, 0.37602487]) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) assert_almost_equal(exp_scales, detector_extractor.scales) assert_almost_equal(exp_response, detector_extractor.responses) assert_almost_equal(exp_orientations, np.rad2deg(detector_extractor.orientations), 5) detector_extractor.detect_and_extract(img) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) def test_keypoints_orb_less_than_desired_no_of_keypoints(): detector_extractor = ORB(n_keypoints=15, fast_n=12, fast_threshold=0.33, downscale=2, n_scales=2) detector_extractor.detect(img) exp_rows = np.array([ 67., 247., 269., 413., 435., 230., 264., 330., 372.]) exp_cols = np.array([ 157., 146., 111., 70., 180., 136., 336., 148., 156.]) exp_scales = np.array([ 1., 1., 1., 1., 1., 2., 2., 2., 2.]) exp_orientations = np.array([-105.76503839, -96.28973044, -53.08162354, -173.4479964 , -175.64733392, -106.07927215, -163.40016243, 75.80865813, -154.73195911]) exp_response = np.array([ 0.13197835, 0.24931321, 0.44351774, 0.39063076, 0.96770745, 0.04935129, 0.21431068, 0.15826555, 0.42403573]) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) assert_almost_equal(exp_scales, detector_extractor.scales) assert_almost_equal(exp_response, detector_extractor.responses) assert_almost_equal(exp_orientations, np.rad2deg(detector_extractor.orientations), 5) detector_extractor.detect_and_extract(img)
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
numpy.testing.assert_almost_equal
import numpy as np from scipy.stats import linregress from matplotlib import pyplot as pl def circles_boxcount(r = 1, n = 10): w = np.logspace(np.log10(r*0.001),
np.log10(r*0.1)
numpy.log10
import unittest import sys, os, shutil, tempfile import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np import coremltools from os.path import dirname from tensorflow.python.tools.freeze_graph import freeze_graph import tfcoreml as tf_converter from coremltools._deps import HAS_KERAS2_TF if HAS_KERAS2_TF: from keras import backend as K from keras.models import Sequential, Model from keras.layers import Dense, Activation, Conv2D, Conv1D, Flatten, BatchNormalization, Conv2DTranspose, SeparableConv2D from keras.layers import MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D, GlobalMaxPooling2D from keras.layers import MaxPooling1D, AveragePooling1D, GlobalAveragePooling1D, GlobalMaxPooling1D from keras.layers import Embedding, Input, Permute, Reshape, RepeatVector, Dropout from keras.layers import Add, Multiply, Concatenate, Dot, Maximum, Average from keras.layers import add, multiply, concatenate, dot, maximum, average from keras.layers import ZeroPadding2D, UpSampling2D, Cropping2D from keras.layers import ZeroPadding1D, UpSampling1D, Cropping1D from keras.layers.core import SpatialDropout1D, SpatialDropout2D from keras.applications.mobilenet import DepthwiseConv2D def _tf_transpose(x, is_sequence=False): if not hasattr(x, "shape"): return x if len(x.shape) == 4: # [Batch, Height, Width, Channels] --> [Batch, Channels, Height, Width] x = np.transpose(x, [0,3,1,2]) return np.expand_dims(x, axis=0) elif len(x.shape) == 3: # We only deal with non-recurrent networks for now # [Batch, (Sequence) Length, Channels] --> [1,B, Channels, 1, Seq] # [0,1,2] [0,2,1] return np.transpose(x, [0,2,1])[None,:,:,None,:] elif len(x.shape) == 2: if is_sequence: # (N,S) --> (S,N,1,) return x.reshape(x.shape[::-1] + (1,)) else: # (N,C) --> (N,C,1,1) return x.reshape((1, ) + x.shape) # Dense elif len(x.shape) == 1: if is_sequence: # (S) --> (S,N,1,1,1) return x.reshape((x.shape[0], 1, 1)) else: return x else: return x def _convert_to_coreml(tf_model_path, mlmodel_path, input_name_shape_dict, output_names): """ Convert and return the coreml model from the Tensorflow """ model = tf_converter.convert(tf_model_path=tf_model_path, mlmodel_path=mlmodel_path, output_feature_names=output_names, input_name_shape_dict=input_name_shape_dict) return model def _generate_data(input_shape, mode = 'random'): """ Generate some random data according to a shape. """ if input_shape is None or len(input_shape) == 0: return 0.5 if mode == 'zeros': X = np.zeros(input_shape) elif mode == 'ones': X = np.ones(input_shape) elif mode == 'linear': X = np.array(range(np.product(input_shape))).reshape(input_shape)*1.0 elif mode == 'random': X = np.random.rand(*input_shape) elif mode == 'random_zero_mean': X = np.random.rand(*input_shape)-0.5 return X class TFNetworkTest(unittest.TestCase): @classmethod def setUpClass(self): """ Set up the unit test by loading common utilities. """ K.set_learning_phase(0) def _simple_freeze(self, input_graph, input_checkpoint, output_graph, output_node_names): # output_node_names is a string of names separated by comma freeze_graph(input_graph=input_graph, input_saver="", input_binary=True, input_checkpoint=input_checkpoint, output_node_names=output_node_names, restore_op_name="save/restore_all", filename_tensor_name="save/Const:0", output_graph=output_graph, clear_devices=True, initializer_nodes="") def _test_keras_model(self, model, data_mode = 'random', delta = 1e-2, use_cpu_only = False, one_dim_seq_flags = None, has_variables = True): """ Saves out the backend TF graph from the Keras model and tests it """ # Some file processing model_dir = tempfile.mkdtemp() graph_def_file = os.path.join(model_dir, 'tf_graph.pb') checkpoint_file = os.path.join(model_dir, 'tf_model.ckpt') frozen_model_file = os.path.join(model_dir, 'tf_frozen.pb') coreml_model_file = os.path.join(model_dir, 'coreml_model.mlmodel') input_shape = [i for i in model.input_shape] for i, d in enumerate(input_shape): if d is None: input_shape[i] = 1 input_tensor_shapes = {model.input.name : input_shape} output_node_names = [model.output.name[:-2]] tf_graph = K.get_session().graph tf.reset_default_graph() if has_variables: with tf_graph.as_default() as g: saver = tf.train.Saver() with tf.Session(graph = tf_graph) as sess: sess.run(tf.global_variables_initializer()) feed_dict = {} for in_tensor_name in input_tensor_shapes: in_tensor_shape = input_tensor_shapes[in_tensor_name] feed_dict[in_tensor_name] = _generate_data(in_tensor_shape, data_mode) # run the result fetches = [tf_graph.get_operation_by_name(name).outputs[0] for name in \ output_node_names] result = sess.run(fetches, feed_dict=feed_dict) # save graph definition somewhere tf.train.write_graph(sess.graph, model_dir, graph_def_file, as_text = False) # save the weights if has_variables: saver.save(sess, checkpoint_file) K.clear_session() # freeze the graph if has_variables: self._simple_freeze( input_graph=graph_def_file, input_checkpoint=checkpoint_file, output_graph=frozen_model_file, output_node_names=",".join(output_node_names)) else: frozen_model_file = graph_def_file # convert the tensorflow model output_tensor_names = [name + ':0' for name in output_node_names] coreml_model = _convert_to_coreml( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file, input_name_shape_dict=input_tensor_shapes, output_names=output_tensor_names) # evaluate coreml coreml_inputs = {} for idx, in_tensor_name in enumerate(input_tensor_shapes): in_shape = input_tensor_shapes[in_tensor_name] coreml_in_name = in_tensor_name.replace(':', '__').replace('/', '__') if one_dim_seq_flags is None: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name]).copy() else: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name], one_dim_seq_flags[idx]).copy() coreml_output = coreml_model.predict(coreml_inputs, useCPUOnly=use_cpu_only) for idx, out_name in enumerate(output_node_names): tp = _tf_transpose(result[idx]).flatten() out_tensor_name = out_name.replace('/','__') +'__0' cp = coreml_output[out_tensor_name].flatten() self.assertEquals(len(tp), len(cp)) for i in range(len(tp)): max_den = max(1.0, tp[i], cp[i]) self.assertAlmostEquals(tp[i]/max_den, cp[i]/max_den, delta=delta) # Cleanup files - models on disk no longer useful if os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not HAS_KERAS2_TF, 'Missing keras. Skipping tests.') class KerasBasicNumericCorrectnessTest(TFNetworkTest): def test_dense_softmax(self): np.random.seed(1987) # Define a model model = Sequential() model.add(Dense(32, input_shape=(32,), activation='softmax')) # Set some random weights model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()]) #Test it self._test_keras_model(model) def test_dense_elu(self): np.random.seed(1988) # Define a model model = Sequential() model.add(Dense(32, input_shape=(32,), activation='elu')) # Set some random weights model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()]) # Test the keras model self._test_keras_model(model) def test_dense_tanh(self): np.random.seed(1988) # Define a model model = Sequential() model.add(Dense(32, input_shape=(32,), activation='tanh')) # Set some random weights model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()]) # Test the keras model self._test_keras_model(model) def test_housenet_random(self): np.random.seed(1988) num_hidden = 2 num_features = 3 # Define a model model = Sequential() model.add(Dense(num_hidden, input_dim = num_features)) model.add(Activation('relu')) model.add(Dense(1, input_dim = num_features)) # Set some random weights model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()]) # Test the keras model self._test_keras_model(model) def test_tiny_conv_random(self):
np.random.seed(1988)
numpy.random.seed
import numpy as np from datetime import datetime cnn_layer_types = ["CONV", "MAXPOOL"] # ( layer type , x_length , y_length , zero_padding, no of mask ) zero_padding and no of mask not applicable for MAXPOOL cnn_layer_info = [] ndelst = inpt_dim = [] # contains the node numbers in FC layer mask_depth = [] # contains the mask depths of each layer epoch_itr = optLyr = hydLyr = 0 lrn_rate = nrm_fac = 0.0 read_wt = 0 instructions_file = "instructions.txt" data_input_file = "data_input_train.txt" data_output_file = "data_output_train.txt" weight_file = "" f_ins = open(instructions_file, "r") lns = f_ins.readlines() # reading the instructions from the instruction files try: lrn_rate = float(lns[0].strip(' \n')) # first line should be learning rate epoch_itr = int(lns[1].strip(' \n')) # second line should contain no of iterations inpt_dim = lns[2].strip(' \n').split(' ') # third line should contain the input matrix dimensions inpt_dim = [int(inpt_dim[i]) for i in range(len(inpt_dim))] if (len(inpt_dim) == 3): mask_depth.append(inpt_dim[2]) else: mask_depth.append(1) optLyr = int(lns[3].strip(' \n')) # fourth line should contain no of nodes in output layer nrm_fac = float(lns[4].strip(' \n')) # fifth line should contain normalization factor hydLyr = int(lns[5].strip(' \n')) # sixth line should contain no of hidden layer ndelst.extend( [int(x) for x in lns[6].strip(' \n').split(' ')]) # seventh line should contain no of nodes in hidden layer ndelst.append(optLyr) read_wt_ln = lns[7].strip(' \n') if (int(read_wt_ln[0]) == 1): weight_file = (read_wt_ln.split(' '))[1] read_wt = 1 for i in range(8, len(lns)): # From eighth line the convolutions and pooling instructions are given intgs = lns[i].strip(' \n').split(' ') operate = cnn_layer_types.index(intgs[0]) if (operate == 0): # check for convolution or pooling cnn_layer_info.append((operate, int(intgs[1]), int(intgs[2]), int(intgs[3]), int(intgs[4]))) mask_depth.append(int(intgs[4])) else: cnn_layer_info.append((operate, int(intgs[1]), int(intgs[2]))) mask_depth.append(mask_depth[-1]) except: print("Wrong Instruction list .. Exitting code") exit(1) f_ins.close() # checking whether convolution operations are correct or not def check_input(): row, col = inpt_dim[0], inpt_dim[1] for i in range(len(cnn_layer_info)): pad = 0 # the pad applied if (cnn_layer_info[i][0] == 0): pad = cnn_layer_info[i][3] row = row - cnn_layer_info[i][1] + 2 * pad + 1 col = col - cnn_layer_info[i][2] + 2 * pad + 1 return row, col row, col = check_input() if (row <= 0 or col <= 0): # row and column should be positive to be valid print("Invalid Convolution and pooling layers .. Exitting code") exit(1) inpLyr = row * col * mask_depth[-1] # no of input nodes for the fully connected layer ndelst.insert(0, inpLyr) # printing the layer informations print(" Learn Rate = " + str(lrn_rate)) print(" No of epoch iterations = " + str(epoch_itr)) print(" No of input layer node = " + str(inpLyr)) print(" No of output layer node = " + str(optLyr)) print(" No of normalization = " + str(nrm_fac)) for i in range(len(cnn_layer_info)): pad = 0 no_mask = None if (cnn_layer_info[i][0] == 0): pad = cnn_layer_info[i][3] no_mask = cnn_layer_info[i][4] print(" " + cnn_layer_types[cnn_layer_info[i][0]] + " " + str(cnn_layer_info[i][1]) + "X" + str( cnn_layer_info[i][2]) + " pad " + str(pad) + " no of masks " + str(no_mask)) print(" No of Hidden layers = " + str(hydLyr)) print(" No of nodes in the hidden layers = ", end="") for i in range(1, len(ndelst) - 1): print(str(ndelst[i]), end=" ") print("") train_input = [] train_input_data = [] train_output = [] no_of_input_data = 0 # accepting input in the specified format and also the output f_in = open(data_input_file, "r") f_out = open(data_output_file, "r") for lns in f_in: intgs = [(float(x)) for x in lns.strip(' \n').split()] if (len(intgs) == 0): train_input.append(
np.array(train_input_data)
numpy.array
''' 从本地获取图像数据 ''' import os,random import numpy as np from PIL import Image import pickle import time import uuid def resize_image(in_image, new_width, new_height, out_image=None, resize_mode=Image.ANTIALIAS): """ Resize an image. Arguments: in_image: `PIL.Image`. The image to resize. new_width: `int`. The image new width. new_height: `int`. The image new height. out_image: `str`. If specified, save the image to the given path. resize_mode: `PIL.Image.mode`. The resizing mode. Returns: `PIL.Image`. The resize image. """ img = in_image.resize((new_width, new_height), resize_mode) if out_image: img.save(out_image) return img def to_categorical(y, nb_classes): """ to_categorical. Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy. Arguments: y: `array`. Class vector to convert. nb_classes: `int`. Total number of classes. """ y = np.asarray(y, dtype='int32') if not nb_classes: nb_classes = np.max(y)+1 Y = np.zeros((len(y), nb_classes)) Y[np.arange(len(y)),y] = 1. return Y def shuffle(*arrs): """ shuffle. Shuffle given arrays at unison, along first axis. Arguments: *arrs: Each array to shuffle at unison. Returns: Tuple of shuffled arrays. """ arrs = list(arrs) for i, arr in enumerate(arrs): assert len(arrs[0]) == len(arrs[i]) arrs[i] = np.array(arr) p = np.random.permutation(len(arrs[0])) return tuple(arr[p] for arr in arrs) def get_img_channel(image_path): """ Load a image and return the channel of the image :param image_path: :return: the channel of the image """ img = load_image(image_path) img = pil_to_nparray(img) try: channel = img.shape[2] except: channel = 1 return channel def ListPic(dir,fileNameList,samples,targets,label,flags=None,filter_channel=False): for sample in fileNameList: if not flags or any(flag in sample for flag in flags): if filter_channel: if get_img_channel(os.path.join(dir, sample)) != 3: continue samples.append(os.path.join(dir, sample)) targets.append(label) def ListDir(dir,dirList,samples,targets,label,flags=None,filter_channel=False): for dirName in dirList: dirPath = os.path.join(dir,dirName) walk = os.walk(dirPath).__next__() ListDir(dir=dirPath, dirList=walk[1], samples=samples, targets=targets, label=label, flags=flags, filter_channel=filter_channel) ListPic(dir=dirPath, fileNameList=walk[2], samples=samples, targets=targets, label=label, flags=flags, filter_channel=filter_channel) def directory_to_samples(directory, flags=None, filter_channel=False): """ Read a directory, and list all subdirectories files as class sample """ samples = [] targets = [] label = 0 classes = sorted(os.walk(directory).__next__()[1]) for c in classes: c_dir = os.path.join(directory, c) walk = os.walk(c_dir).__next__() ListDir(dir=c_dir,dirList=walk[1],samples=samples,targets=targets,label=label,flags=flags,filter_channel=filter_channel) ListPic(dir=c_dir,fileNameList=walk[2],samples=samples,targets=targets,label=label,flags=flags,filter_channel=filter_channel) label += 1 return samples, targets def load_image(in_image): """ Load an image, returns PIL.Image. """ img = Image.open(in_image) return img def convert_color(in_image, mode): """ Convert image color with provided `mode`. """ return in_image.convert(mode) def pil_to_nparray(pil_image): """ Convert a PIL.Image to numpy array. """ pil_image.load() return np.asarray(pil_image, dtype="float32") def image_dirs_to_samples(directory, resize=None, convert_gray=None, filetypes=None): print("Starting to parse images...") if filetypes: if filetypes not in [list, tuple]: filetypes = list(filetypes) samples, targets = directory_to_samples(directory, flags=filetypes) print('Sample is ok,convert image') print("samples number is %d " %(len(samples))) for i, s in enumerate(samples): print(s) samples[i] = load_image(s) if resize: samples[i] = resize_image(samples[i], resize[0], resize[1]) if convert_gray: samples[i] = convert_color(samples[i], 'L') samples[i] = pil_to_nparray(samples[i]) samples[i] /= 255. print("Parsing Done!") return samples, targets def build_image_dataset_from_dir(directory, dataset_file="my_tflearn_dataset.pkl", resize=None, convert_gray=None, filetypes=None, shuffle_data=False, categorical_Y=False): try: X, Y = pickle.load(open(dataset_file, 'rb')) except Exception: X, Y = image_dirs_to_samples(directory, resize, convert_gray, filetypes) if categorical_Y: Y = to_categorical(Y, np.max(Y) + 1) # First class is '0' if shuffle_data: X, Y = shuffle(X, Y) pickle.dump((X, Y), open(dataset_file, 'wb')) return X, Y #dirname 根目录 #imagefolder 图片目录 #pklname 训练数据 def load_data(dirname="TrainData", imagefolder="gray", pklname='ctimage.pkl', convert_gray=True, resize_pics=(227, 227), shuffle=True,one_hot=False): dataset_file = os.path.join(dirname, pklname) if not os.path.exists(dataset_file): imagePath = os.path.join(dirname,imagefolder) if not os.path.exists(imagePath): raise Exception("%s doesn't exist " %(imagePath)) X, Y = build_image_dataset_from_dir(os.path.join(dirname,imagefolder), dataset_file=dataset_file, resize=resize_pics, filetypes=['.jpg', '.jpeg'], convert_gray=convert_gray, shuffle_data=shuffle, categorical_Y=one_hot) X = np.asarray(X, dtype=np.float32) if convert_gray: X = X.reshape([-1,resize_pics[0],resize_pics[1],1]) else: X = X.reshape([-1, resize_pics[0], resize_pics[1], 3]) X_train, X_val = X[:-5000], X[-5000:] y_train, y_val = Y[:-5000], Y[-5000:] X_train =
np.asarray(X_train, dtype=np.float32)
numpy.asarray