prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" Optimal binning algorithm for continuous target. """ # <NAME> <<EMAIL>> # Copyright (C) 2019 import numbers import time from sklearn.utils import check_array import numpy as np from ..information import solver_statistics from ..logging import Logger from .auto_monotonic import auto_monotonic_continuous from .auto_monotonic import peak_valley_trend_change_heuristic from .binning import OptimalBinning from .binning_statistics import continuous_bin_info from .binning_statistics import ContinuousBinningTable from .binning_statistics import target_info_special_continuous from .continuous_cp import ContinuousBinningCP from .preprocessing import preprocessing_user_splits_categorical from .preprocessing import split_data from .transformations import transform_continuous_target logger = Logger(__name__).logger def _check_parameters(name, dtype, prebinning_method, max_n_prebins, min_prebin_size, min_n_bins, max_n_bins, min_bin_size, max_bin_size, monotonic_trend, min_mean_diff, max_pvalue, max_pvalue_policy, outlier_detector, outlier_params, cat_cutoff, user_splits, user_splits_fixed, special_codes, split_digits, time_limit, verbose): if not isinstance(name, str): raise TypeError("name must be a string.") if dtype not in ("categorical", "numerical"): raise ValueError('Invalid value for dtype. Allowed string ' 'values are "categorical" and "numerical".') if prebinning_method not in ("cart", "quantile", "uniform"): raise ValueError('Invalid value for prebinning_method. Allowed string ' 'values are "cart", "quantile" and "uniform".') if not isinstance(max_n_prebins, numbers.Integral) or max_n_prebins <= 1: raise ValueError("max_prebins must be an integer greater than 1; " "got {}.".format(max_n_prebins)) if not 0. < min_prebin_size <= 0.5: raise ValueError("min_prebin_size must be in (0, 0.5]; got {}." .format(min_prebin_size)) if min_n_bins is not None: if not isinstance(min_n_bins, numbers.Integral) or min_n_bins <= 0: raise ValueError("min_n_bins must be a positive integer; got {}." .format(min_n_bins)) if max_n_bins is not None: if not isinstance(max_n_bins, numbers.Integral) or max_n_bins <= 0: raise ValueError("max_n_bins must be a positive integer; got {}." .format(max_n_bins)) if min_n_bins is not None and max_n_bins is not None: if min_n_bins > max_n_bins: raise ValueError("min_n_bins must be <= max_n_bins; got {} <= {}." .format(min_n_bins, max_n_bins)) if min_bin_size is not None: if (not isinstance(min_bin_size, numbers.Number) or not 0. < min_bin_size <= 0.5): raise ValueError("min_bin_size must be in (0, 0.5]; got {}." .format(min_bin_size)) if max_bin_size is not None: if (not isinstance(max_bin_size, numbers.Number) or not 0. < max_bin_size <= 1.0): raise ValueError("max_bin_size must be in (0, 1.0]; got {}." .format(max_bin_size)) if min_bin_size is not None and max_bin_size is not None: if min_bin_size > max_bin_size: raise ValueError("min_bin_size must be <= max_bin_size; " "got {} <= {}.".format(min_bin_size, max_bin_size)) if monotonic_trend is not None: if monotonic_trend not in ("auto", "auto_heuristic", "auto_asc_desc", "ascending", "descending", "convex", "concave", "peak", "valley", "peak_heuristic", "valley_heuristic"): raise ValueError('Invalid value for monotonic trend. Allowed ' 'string values are "auto", "auto_heuristic", ' '"auto_asc_desc", "ascending", "descending", ' '"concave", "convex", "peak", "valley", ' '"peak_heuristic" and "valley_heuristic".') if (not isinstance(min_mean_diff, numbers.Number) or min_mean_diff < 0): raise ValueError("min_mean_diff must be >= 0; got {}." .format(min_mean_diff)) if max_pvalue is not None: if (not isinstance(max_pvalue, numbers.Number) or not 0. < max_pvalue <= 1.0): raise ValueError("max_pvalue must be in (0, 1.0]; got {}." .format(max_pvalue)) if max_pvalue_policy not in ("all", "consecutive"): raise ValueError('Invalid value for max_pvalue_policy. Allowed string ' 'values are "all" and "consecutive".') if outlier_detector is not None: if outlier_detector not in ("range", "zscore"): raise ValueError('Invalid value for outlier_detector. Allowed ' 'string values are "range" and "zscore".') if outlier_params is not None: if not isinstance(outlier_params, dict): raise TypeError("outlier_params must be a dict or None; " "got {}.".format(outlier_params)) if cat_cutoff is not None: if (not isinstance(cat_cutoff, numbers.Number) or not 0. < cat_cutoff <= 1.0): raise ValueError("cat_cutoff must be in (0, 1.0]; got {}." .format(cat_cutoff)) if user_splits is not None: if not isinstance(user_splits, (np.ndarray, list)): raise TypeError("user_splits must be a list or numpy.ndarray.") if user_splits_fixed is not None: if user_splits is None: raise ValueError("user_splits must be provided.") else: if not isinstance(user_splits_fixed, (np.ndarray, list)): raise TypeError("user_splits_fixed must be a list or " "numpy.ndarray.") elif not all(isinstance(s, bool) for s in user_splits_fixed): raise ValueError("user_splits_fixed must be list of boolean.") elif len(user_splits) != len(user_splits_fixed): raise ValueError("Inconsistent length of user_splits and " "user_splits_fixed: {} != {}. Lengths must " "be equal".format(len(user_splits), len(user_splits_fixed))) if special_codes is not None: if not isinstance(special_codes, (np.ndarray, list, dict)): raise TypeError("special_codes must be a dit, list or " "numpy.ndarray.") if isinstance(special_codes, dict) and not len(special_codes): raise ValueError("special_codes empty. special_codes dict must " "contain at least one special.") if split_digits is not None: if (not isinstance(split_digits, numbers.Integral) or not 0 <= split_digits <= 8): raise ValueError("split_digist must be an integer in [0, 8]; " "got {}.".format(split_digits)) if not isinstance(time_limit, numbers.Number) or time_limit < 0: raise ValueError("time_limit must be a positive value in seconds; " "got {}.".format(time_limit)) if not isinstance(verbose, bool): raise TypeError("verbose must be a boolean; got {}.".format(verbose)) class ContinuousOptimalBinning(OptimalBinning): """Optimal binning of a numerical or categorical variable with respect to a continuous target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The **mean** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend minimize the L1-norm using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins> 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_mean_diff : float, optional (default=0) The minimum mean difference between consecutives bins. This option currently only applies when ``monotonic_trend`` is "ascending" or "descending". max_pvalue : float or None, optional (default=0.05) The maximum p-value among bins. The T-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The T-test uses an estimate of the standard deviation of the contingency table to speed up the model generation and reduce memory usage. Therefore, it is not guaranteed to obtain bins satisfying the p-value constraint, although it may work reasonably well in most cases. To avoid having bins with similar bins the parameter ``min_mean_diff`` is recommended. """ def __init__(self, name="", dtype="numerical", prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_mean_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, cat_cutoff=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = "cp" self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_mean_diff = min_mean_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.cat_cutoff = cat_cutoff self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._categories = None self._cat_others = None self._n_records = None self._sums = None self._stds = None self._min_target = None self._max_target = None self._n_zeros = None self._n_records_cat_others = None self._n_records_missing = None self._n_records_special = None self._sum_cat_others = None self._sum_special = None self._sum_missing = None self._std_cat_others = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._min_target_others = None self._max_target_missing = None self._max_target_special = None self._max_target_others = None self._n_zeros_missing = None self._n_zeros_special = None self._n_zeros_others = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning Fitted optimal binning. """ return self._fit(x, y, check_input) def fit_transform(self, x, y, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero mean. """ self._check_is_fitted() return transform_continuous_target(self._splits_optimal, self.dtype, x, self._n_records, self._sums, self.special_codes, self._categories, self._cat_others, metric, metric_special, metric_missing, self.user_splits, show_digits, check_input) def _fit(self, x, y, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, _, _, _, _] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: {}" .format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories others: {}" .format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_records = np.array([]) sums = np.array([]) stds = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx =
np.argsort(user_splits)
numpy.argsort
import os import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import json # import sys # sys.path.insert(0, './data') # sys.path.insert(0, './utils') # sys.path.insert(0, './common') import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from utils.visualization import * from utils.skeleton import Skeleton from common.mmm import parse_motions from common.transforms3dbatch import * from common.quaternion import * from renderUtils import quat2xyz from model.model import Integrator import torch import pickle as pkl import scipy.ndimage.filters as filters import pdb ## permute joints to make it a DAG def permute(parents, root=0, new_parent=-1, new_joints=[], new_parents=[]): new_joints.append(root) new_parents.append(new_parent) new_parent = len(new_joints) - 1 for idx, p in enumerate(parents): if p == root: permute(parents, root=idx, new_parent=new_parent, new_joints=new_joints, new_parents=new_parents) return new_joints, new_parents def softmax(x, **kw): softness = kw.pop('softness', 1.0) maxi, mini = np.max(x, **kw), np.min(x, **kw) return maxi + np.log(softness + np.exp(mini - maxi)) def softmin(x, **kw): return -softmax(-x, **kw) class RawData(): def __init__(self): pass def _get_f(self): raise NotImplementedError def _get_df(self): raise NotImplementedError def preProcess(self): raise NotImplementedError def get_skeletonNpermutation(self): raise NotImplementedError @property def quat_columns(self): ## quaternion columns quat_columns = ['root_tx', 'root_ty', 'root_tz'] for joint in self.skel.joints: quat_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rw', 'rx', 'ry', 'rz']] return quat_columns @property def fke_columns(self): ## forward kinematics columns fke_columns = [] for joint in self.skel.joints: fke_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['tx', 'ty', 'tz']] return fke_columns @property def pose_columns(self): pose_columns = [] for joint in self.skel.joints: pose_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rx', 'ry', 'rz']] return pose_columns @property def rifke_columns(self): ## Save Rotation invariant fke (rifke) rifke_columns = self.fke_columns + ['root_Vx', 'root_Vz', 'root_Ry', 'feet_l1', 'feet_l2', 'feet_r1', 'feet_r2'] return rifke_columns @property def rifke_dict(self): raise NotImplementedError def output_columns(self, feats_kind): if feats_kind in {'euler'}: return self.pose_columns elif feats_kind in {'quaternion'}: return self.quat_columns elif feats_kind in {'fke'}: return self.fke_columns elif feats_kind in {'rifke'}: return self.rifke_columns def mat2csv(self, data, filename, columns): pd.DataFrame(data=data, columns=columns).to_csv(filename) def quat2fke(self, df_quat, filename_fke, filename_rifke): '''Save Forward Kinematics''' df_fke = pd.DataFrame(data=np.zeros((df_quat.shape[0], len(self.fke_columns))), columns=self.fke_columns) ## copying translation as is df_fke[['root_tx', 'root_ty', 'root_tz']] = df_quat.loc[:, ['root_tx', 'root_ty', 'root_tz']].copy() xyz_data = quat2xyz(df_quat, self.skel) df_fke.loc[:, self.fke_columns] = xyz_data.reshape(-1, np.prod(xyz_data.shape[1:])) #filename_fke = dir_name / Path(row[feats_kind]).relative_to(Path(path2data)/'subjects').with_suffix('.fke') os.makedirs(filename_fke.parent, exist_ok=True) df_fke.to_csv(filename_fke.as_posix()) '''Save Rotation Invariant Forward Kinematics''' df_rifke = pd.DataFrame(data=np.zeros((df_quat.shape[0]-1, len(self.rifke_columns))), columns=self.rifke_columns) rifke_data = self.fke2rifke(xyz_data.copy()) df_rifke[self.rifke_columns] = rifke_data[..., 3:] #filename_rifke = dir_name / Path(row[feats_kind]).relative_to(Path(path2data)/'subjects').with_suffix('.rifke') os.makedirs(filename_rifke.parent, exist_ok=True) df_rifke.to_csv(filename_rifke.as_posix()) ''' Convert rifke to fke to get comparable ground truths ''' new_df_fke = pd.DataFrame(data=self.rifke2fke(df_rifke[self.rifke_columns].values, filename_rifke).reshape(-1, len(self.fke_columns)), columns=self.fke_columns) new_fke_dir = filename_fke.parent/'new_fke' os.makedirs(new_fke_dir, exist_ok=True) new_df_fke.to_csv((new_fke_dir/filename_fke.name).as_posix()) return xyz_data ## fke to rotation invariant fke (Holden et. al.) def fke2rifke(self, positions): """ Put on Floor """ #fid_l, fid_r = np.array([5,6]), np.array([10,11]) fid_l, fid_r = self.rifke_dict['fid_l'], self.rifke_dict['fid_r'] foot_heights = np.minimum(positions[:,fid_l,1], positions[:,fid_r,1]).min(axis=1) floor_height = softmin(foot_heights, softness=0.5, axis=0) positions[:,:,1] -= floor_height """ Add Reference Joint """ trajectory_filterwidth = 3 reference = positions[:,0] *
np.array([1,0,1])
numpy.array
#Library of tire models import numpy as np #Fiala model. Calculates nonlinear tire curve using Fiala brush model with no longitudinal force. Inputs are the cornering stiffness per axle (N/rad). The muP and muS are slip and slip friction coefficients. alpha = slip angle (rad) Fz = normal load on that axle (N) def fiala(C, muP, muS, alpha, Fz): alphaSlide = np.abs(np.arctan( 3*muP*Fz / C )) Fy = np.zeros(alpha.size) for i in range(alpha.size): #Use 3rd order polynomial equation when below the tire range if np.abs(alpha[i]) < alphaSlide: Fy[i] = -C * np.tan(alpha[i]) + C**2 / (3 * muP * Fz) * (2 - muS / muP) * np.tan(alpha[i]) * np.abs(np.tan(alpha[i])) - C**3/(9*muP**2*Fz**2)*
np.tan(alpha[i])
numpy.tan
import random import gym import numpy as np M = 5.0 T = 1.0 GOAL = 0.001 class WeightEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self): super(WeightEnv, self).__init__() self.reward_range = (-float('inf'), 0.0) self.state = np.array([0, 0, 0]) # position, velocity, acceleration # action: force[-10, 10] self.action_space = gym.spaces.Box(low=-10, high=10, shape=(1,), dtype=np.float32) # observation: position[-10,10], velocity[-10,10], acceleration[-10,10], jerk[-10,10] self.observation_space = gym.spaces.Box(np.array([-10, -10, -10, -10]),
np.array([10, 10, 10, 10], dtype=np.float32)
numpy.array
import warnings from inspect import isclass import numpy as np from UQpy.RunModel import RunModel from UQpy.SampleMethods import * ######################################################################################################################## ######################################################################################################################## # Subset Simulation ######################################################################################################################## class SubsetSimulation: """ Perform Subset Simulation to estimate probability of failure. This class estimates probability of failure for a user-defined model using Subset Simulation. The class can use one of several MCMC algorithms to draw conditional samples. **Input:** * **runmodel_object** (``RunModel`` object): The computational model. It should be of type `RunModel` (see ``RunModel`` class). * **mcmc_class** (Class of type ``SampleMethods.MCMC``) Specifies the MCMC algorithm. Must be a child class of the ``SampleMethods.MCMC`` parent class. Note: This is `not` and object of the class. This input specifies the class itself. * **samples_init** (`ndarray`) A set of samples from the specified probability distribution. These are the samples from the original distribution. They are not conditional samples. The samples must be an array of size `nsamples_per_ss x dimension`. If `samples_init` is not specified, the Subset_Simulation class will use the `mcmc_class` to draw the initial samples. * **p_cond** (`float`): Conditional probability for each conditional level. * **nsamples_per_ss** (`int`) Number of samples to draw in each conditional level. * **max_level** (`int`) Maximum number of allowable conditional levels. * **verbose** (Boolean): A boolean declaring whether to write text to the terminal. * **mcmc_kwargs** (`dict`) Any additional keyword arguments needed for the specific ``MCMC`` class. **Attributes:** * **samples** (`list` of `ndarrays`) A list of arrays containing the samples in each conditional level. * **g** (`list` of `ndarrays`) A list of arrays containing the evaluation of the performance function at each sample in each conditional level. * **g_level** (`list`) Threshold value of the performance function for each conditional level * **pf** (`float`) Probability of failure estimate * **cov1** (`float`) Coefficient of variation of the probability of failure estimate assuming independent chains * **cov2** (`float`) Coefficient of variation of the probability of failure estimate with dependent chains. From [4]_ **Methods:** """ def __init__(self, runmodel_object, mcmc_class=MMH, samples_init=None, p_cond=0.1, nsamples_per_ss=1000, max_level=10, verbose=False, **mcmc_kwargs): # Store the MCMC object to create a new object of this type for each subset self.mcmc_kwargs = mcmc_kwargs self.mcmc_class = mcmc_class # Initialize other attributes self.runmodel_object = runmodel_object self.samples_init = samples_init self.p_cond = p_cond self.nsamples_per_ss = nsamples_per_ss self.max_level = max_level self.verbose = verbose # Check that a RunModel object is being passed in. if not isinstance(self.runmodel_object, RunModel): raise AttributeError( 'UQpy: Subset simulation requires the user to pass a RunModel object') if 'random_state' in self.mcmc_kwargs: self.random_state = self.mcmc_kwargs['random_state'] if isinstance(self.random_state, int): self.random_state = np.random.RandomState(self.random_state) elif not isinstance(self.random_state, (type(None), np.random.RandomState)): raise TypeError('UQpy: random_state must be None, an int or an np.random.RandomState object.') else: self.random_state = None # Perform initial error checks self._init_sus() # Initialize the mcmc_object from the specified class. mcmc_object = self.mcmc_class(**self.mcmc_kwargs) self.mcmc_objects = [mcmc_object] # Initialize new attributes/variables self.samples = list() self.g = list() self.g_level = list() if self.verbose: print('UQpy: Running Subset Simulation with MCMC of type: ' + str(type(mcmc_object))) [self.pf, self.cov1, self.cov2] = self.run() if self.verbose: print('UQpy: Subset Simulation Complete!') # ----------------------------------------------------------------------------------------------------------------------- # The run function executes the chosen subset simulation algorithm def run(self): """ Execute subset simulation This is an instance method that runs subset simulation. It is automatically called when the SubsetSimulation class is instantiated. **Output/Returns:** * **pf** (`float`) Probability of failure estimate * **cov1** (`float`) Coefficient of variation of the probability of failure estimate assuming independent chains * **cov2** (`float`) Coefficient of variation of the probability of failure estimate with dependent chains. From [4]_ """ step = 0 n_keep = int(self.p_cond * self.nsamples_per_ss) d12 = list() d22 = list() # Generate the initial samples - Level 0 # Here we need to make sure that we have good initial samples from the target joint density. if self.samples_init is None: warnings.warn('UQpy: You have not provided initial samples.\n Subset simulation is highly sensitive to the ' 'initial sample set. It is recommended that the user either:\n' '- Provide an initial set of samples (samples_init) known to follow the distribution; or\n' '- Provide a robust MCMC object that will draw independent initial samples from the ' 'distribution.') self.mcmc_objects[0].run(nsamples=self.nsamples_per_ss) self.samples.append(self.mcmc_objects[0].samples) else: self.samples.append(self.samples_init) # Run the model for the initial samples, sort them by their performance function, and identify the # conditional level self.runmodel_object.run(samples=np.atleast_2d(self.samples[step])) self.g.append(np.squeeze(self.runmodel_object.qoi_list)) g_ind = np.argsort(self.g[step]) self.g_level.append(self.g[step][g_ind[n_keep - 1]]) # Estimate coefficient of variation of conditional probability of first level d1, d2 = self._cov_sus(step) d12.append(d1 ** 2) d22.append(d2 ** 2) if self.verbose: print('UQpy: Subset Simulation, conditional level 0 complete.') while self.g_level[step] > 0 and step < self.max_level: # Increment the conditional level step = step + 1 # Initialize the samples and the performance function at the next conditional level self.samples.append(np.zeros_like(self.samples[step - 1])) self.samples[step][:n_keep] = self.samples[step - 1][g_ind[0:n_keep], :] self.g.append(np.zeros_like(self.g[step - 1])) self.g[step][:n_keep] = self.g[step - 1][g_ind[:n_keep]] # Unpack the attributes # Initialize a new MCMC object for each conditional level self.mcmc_kwargs['seed'] = np.atleast_2d(self.samples[step][:n_keep, :]) self.mcmc_kwargs['random_state'] = self.random_state new_mcmc_object = self.mcmc_class(**self.mcmc_kwargs) self.mcmc_objects.append(new_mcmc_object) # Set the number of samples to propagate each chain (n_prop) in the conditional level n_prop_test = self.nsamples_per_ss / self.mcmc_objects[step].nchains if n_prop_test.is_integer(): n_prop = self.nsamples_per_ss // self.mcmc_objects[step].nchains else: raise AttributeError( 'UQpy: The number of samples per subset (nsamples_per_ss) must be an integer multiple of ' 'the number of MCMC chains.') # Propagate each chain n_prop times and evaluate the model to accept or reject. for i in range(n_prop - 1): # Propagate each chain if i == 0: self.mcmc_objects[step].run(nsamples=2 * self.mcmc_objects[step].nchains) else: self.mcmc_objects[step].run(nsamples=self.mcmc_objects[step].nchains) # Decide whether a new simulation is needed for each proposed state a = self.mcmc_objects[step].samples[i * n_keep:(i + 1) * n_keep, :] b = self.mcmc_objects[step].samples[(i + 1) * n_keep:(i + 2) * n_keep, :] test1 = np.equal(a, b) test = np.logical_and(test1[:, 0], test1[:, 1]) # Pull out the indices of the false values in the test list ind_false = [i for i, val in enumerate(test) if not val] # Pull out the indices of the true values in the test list ind_true = [i for i, val in enumerate(test) if val] # Do not run the model for those samples where the MCMC state remains unchanged. self.samples[step][[x + (i + 1) * n_keep for x in ind_true], :] = \ self.mcmc_objects[step].samples[ind_true, :] self.g[step][[x + (i + 1) * n_keep for x in ind_true]] = self.g[step][ind_true] # Run the model at each of the new sample points x_run = self.mcmc_objects[step].samples[[x + (i + 1) * n_keep for x in ind_false], :] if x_run.size != 0: self.runmodel_object.run(samples=x_run) # Temporarily save the latest model runs g_temp = np.asarray(self.runmodel_object.qoi_list[-len(x_run):]) # Accept the states with g <= g_level ind_accept = np.where(g_temp <= self.g_level[step - 1])[0] for ii in ind_accept: self.samples[step][(i + 1) * n_keep + ind_false[ii]] = x_run[ii] self.g[step][(i + 1) * n_keep + ind_false[ii]] = g_temp[ii] # Reject the states with g > g_level ind_reject = np.where(g_temp > self.g_level[step - 1])[0] for ii in ind_reject: self.samples[step][(i + 1) * n_keep + ind_false[ii]] = \ self.samples[step][i * n_keep + ind_false[ii]] self.g[step][(i + 1) * n_keep + ind_false[ii]] = self.g[step][i * n_keep + ind_false[ii]] g_ind = np.argsort(self.g[step]) self.g_level.append(self.g[step][g_ind[n_keep]]) # Estimate coefficient of variation of conditional probability of first level d1, d2 = self._cov_sus(step) d12.append(d1 ** 2) d22.append(d2 ** 2) if self.verbose: print('UQpy: Subset Simulation, conditional level ' + str(step) + ' complete.') n_fail = len([value for value in self.g[step] if value < 0]) pf = self.p_cond ** step * n_fail / self.nsamples_per_ss cov1 = np.sqrt(np.sum(d12)) cov2 = np.sqrt(np.sum(d22)) return pf, cov1, cov2 # ----------------------------------------------------------------------------------------------------------------------- # Support functions for subset simulation def _init_sus(self): """ Check for errors in the SubsetSimulation class input This is an instance method that checks for errors in the input to the SubsetSimulation class. It is automatically called when the SubsetSimualtion class is instantiated. No inputs or returns. """ # Check that an MCMC class is being passed in. if not isclass(self.mcmc_class): raise ValueError('UQpy: mcmc_class must be a child class of MCMC. Note it is not an instance of the class.') if not issubclass(self.mcmc_class, MCMC): raise ValueError('UQpy: mcmc_class must be a child class of MCMC.') # Check that a RunModel object is being passed in. if not isinstance(self.runmodel_object, RunModel): raise AttributeError( 'UQpy: Subset simulation requires the user to pass a RunModel object') # Check that a valid conditional probability is specified. if type(self.p_cond).__name__ != 'float': raise AttributeError('UQpy: Invalid conditional probability. p_cond must be of float type.') elif self.p_cond <= 0. or self.p_cond >= 1.: raise AttributeError('UQpy: Invalid conditional probability. p_cond must be in (0, 1).') # Check that the number of samples per subset is properly defined. if type(self.nsamples_per_ss).__name__ != 'int': raise AttributeError('UQpy: Number of samples per subset (nsamples_per_ss) must be integer valued.') # Check that max_level is an integer if type(self.max_level).__name__ != 'int': raise AttributeError('UQpy: The maximum subset level (max_level) must be integer valued.') def _cov_sus(self, step): """ Compute the coefficient of variation of the samples in a conditional level This is an instance method that is called after each conditional level is complete to compute the coefficient of variation of the conditional probability in that level. **Input:** :param step: Specifies the conditional level :type step: int **Output/Returns:** :param d1: Coefficient of variation in conditional level assuming independent chains :type d1: float :param d2: Coefficient of variation in conditional level with dependent chains :type d2: float """ # Here, we assume that the initial samples are drawn to be uncorrelated such that the correction factors do not # need to be computed. if step == 0: d1 =
np.sqrt((1 - self.p_cond) / (self.p_cond * self.nsamples_per_ss))
numpy.sqrt
"""Unit tests for convexified belief propagation""" import unittest from mrftools import * import numpy as np import matplotlib.pyplot as plt class TestConvexBP(unittest.TestCase): """ Unit test class for convexified belief propagation """ def create_q_model(self): """Create loop model with one variable hanging off the loop (forming a Q shape).""" mn = MarkovNet() np.random.seed(1) k = [4, 3, 6, 2, 5] mn.set_unary_factor(0, np.random.randn(k[0])) mn.set_unary_factor(1, np.random.randn(k[1])) mn.set_unary_factor(2, np.random.randn(k[2])) mn.set_unary_factor(3, np.random.randn(k[3])) mn.set_unary_factor(4, np.random.randn(k[4])) mn.set_edge_factor((0, 1), np.random.randn(k[0], k[1])) mn.set_edge_factor((1, 2), np.random.randn(k[1], k[2])) mn.set_edge_factor((2, 3), np.random.randn(k[2], k[3])) mn.set_edge_factor((0, 3), np.random.randn(k[0], k[3])) mn.set_edge_factor((0, 4), np.random.randn(k[0], k[4])) mn.create_matrices() return mn def test_comparison_to_trbp(self): """ Test that convex BP and tree-reweighted BP produce the same results when the convex BP counting numbers are set to the TRBP counting numbers. """ mn = self.create_q_model() probs = {(0, 1): 0.75, (1, 2): 0.75, (2, 3): 0.75, (0, 3): 0.75, (0, 4): 1.0} trbp_mat = MatrixTRBeliefPropagator(mn, probs) trbp_mat.infer(display='full') trbp_mat.load_beliefs() counting_numbers = probs.copy() counting_numbers[0] = 1.0 - 2.5 counting_numbers[1] = 1.0 - 1.5 counting_numbers[2] = 1.0 - 1.5 counting_numbers[3] = 1.0 - 1.5 counting_numbers[4] = 1.0 - 1.0 cbp = ConvexBeliefPropagator(mn, counting_numbers) cbp.infer(display='full') cbp.load_beliefs() for i in mn.variables: print("Convex unary marginal of %d: %s" % (i, repr(np.exp(cbp.var_beliefs[i])))) print("Matrix TRBP unary marginal of %d: %s" % (i, repr(np.exp(trbp_mat.var_beliefs[i])))) assert np.allclose(np.exp(cbp.var_beliefs[i]), np.exp(trbp_mat.var_beliefs[i])), "unary beliefs don't match" print("Convex pairwise marginal: " + repr(np.exp(cbp.pair_beliefs[(0, 1)]))) print("Matrix TRBP pairwise marginal: " + repr(np.exp(trbp_mat.pair_beliefs[(0, 1)]))) print("Pairwise marginal error %f" % np.sum(np.abs(np.exp(cbp.pair_beliefs[(0, 1)]) - np.exp(trbp_mat.pair_beliefs[(0, 1)])))) # plt.subplot(211) # plt.imshow(cbp.pair_beliefs[(0, 1)], interpolation='nearest') # plt.xlabel('CBP') # plt.subplot(212) # plt.imshow(trbp_mat.pair_beliefs[(0, 1)], interpolation='nearest') # plt.xlabel('TRBP') # plt.show() assert np.allclose(cbp.pair_beliefs[(0, 1)], trbp_mat.pair_beliefs[(0, 1)]), "Pair beliefs don't match: " + \ "\nCBP:" + repr( np.exp(cbp.pair_beliefs[(0, 1)])) + "\nMatTRBP:" + repr(np.exp(trbp_mat.pair_beliefs[(0, 1)])) print("TRBP matrix energy functional: %f" % trbp_mat.compute_energy_functional()) print("Convex energy functional: %f" % cbp.compute_energy_functional()) assert np.allclose(trbp_mat.compute_energy_functional(), cbp.compute_energy_functional()), \ "Energy functional is not exact. Convex: %f, Matrix TRBP: %f" % (cbp.compute_energy_functional(), trbp_mat.compute_energy_functional()) def test_comparison_to_bethe(self): """ Test that loopy belief propagation and convexified belief propagation output the same inferred marginals when the counting numbers are set to the Bethe counting numbers (which make convex BP no longer convex). :return: None """ mn = self.create_q_model() bp = MatrixBeliefPropagator(mn) bp.infer(display='final') bp.load_beliefs() counting_numbers = {(0, 1): 1.0, (1, 2): 1.0, (2, 3): 1.0, (0, 3): 1.0, (0, 4): 1.0, 0: 1.0 - 3.0, 1: 1.0 - 2.0, 2: 1.0 - 2.0, 3: 1.0 - 2.0, 4: 1.0 - 1.0} cbp = ConvexBeliefPropagator(mn, counting_numbers) cbp.infer(display='full') cbp.load_beliefs() for i in mn.variables: print("Convex unary marginal of %d: %s" % (i, repr(np.exp(cbp.var_beliefs[i])))) print("Matrix BP unary marginal of %d: %s" % (i, repr(np.exp(bp.var_beliefs[i])))) assert np.allclose(np.exp(cbp.var_beliefs[i]), np.exp(bp.var_beliefs[i])), "unary beliefs don't match" print("Convex pairwise marginal: " + repr(np.exp(cbp.pair_beliefs[(0, 1)]))) print("Matrix BP pairwise marginal: " + repr(np.exp(bp.pair_beliefs[(0, 1)]))) assert np.allclose(cbp.pair_beliefs[(0, 1)], bp.pair_beliefs[(0, 1)]), "Pair beliefs don't match: " + \ "\nCBP:" + repr( np.exp(cbp.pair_beliefs[(0, 1)])) + "\nMatBP:" + repr(np.exp(bp.pair_beliefs[(0, 1)])) print("Bethe matrix energy functional: %f" % bp.compute_energy_functional()) print("Convex energy functional: %f" % cbp.compute_energy_functional()) assert np.allclose(bp.compute_energy_functional(), cbp.compute_energy_functional()), \ "Energy functional is not exact. Convex: %f, BP: %f" % (cbp.compute_energy_functional(), bp.compute_energy_functional()) def test_convexity(self): """Test that the convex BP objective is within numerical precision of being truly convex.""" mn = self.create_q_model() edge_count = 0.1 node_count = 0.1 counting_numbers = {(0, 1): edge_count, (1, 2): edge_count, (2, 3): edge_count, (0, 3): edge_count, (0, 4): edge_count, 0: node_count, 1: node_count, 2: node_count, 3: node_count, 4: node_count} bp = ConvexBeliefPropagator(mn, counting_numbers) bp.infer(display="full") messages = bp.message_mat.copy() noise = 0.1 *
np.random.randn(messages.shape[0], messages.shape[1])
numpy.random.randn
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from mmocr.models.textdet.dense_heads import DRRGHead def test_drrg_head(): in_channels = 10 drrg_head = DRRGHead(in_channels) assert drrg_head.in_channels == in_channels assert drrg_head.k_at_hops == (8, 4) assert drrg_head.num_adjacent_linkages == 3 assert drrg_head.node_geo_feat_len == 120 assert np.allclose(drrg_head.pooling_scale, 1.0) assert drrg_head.pooling_output_size == (4, 3) assert np.allclose(drrg_head.nms_thr, 0.3) assert np.allclose(drrg_head.min_width, 8.0) assert np.allclose(drrg_head.max_width, 24.0) assert np.allclose(drrg_head.comp_shrink_ratio, 1.03) assert np.allclose(drrg_head.comp_ratio, 0.4) assert np.allclose(drrg_head.comp_score_thr, 0.3) assert np.allclose(drrg_head.text_region_thr, 0.2) assert np.allclose(drrg_head.center_region_thr, 0.2) assert drrg_head.center_region_area_thr == 50 assert np.allclose(drrg_head.local_graph_thr, 0.7) # test forward train num_rois = 16 feature_maps = torch.randn((2, 10, 128, 128), dtype=torch.float) x = np.random.randint(4, 124, (num_rois, 1)) y = np.random.randint(4, 124, (num_rois, 1)) h = 4 * np.ones((num_rois, 1)) w = 4 * np.ones((num_rois, 1)) angle = (np.random.random_sample((num_rois, 1)) * 2 - 1) * np.pi / 2 cos, sin = np.cos(angle), np.sin(angle) comp_labels = np.random.randint(1, 3, (num_rois, 1)) num_rois = num_rois * np.ones((num_rois, 1)) comp_attribs = np.hstack([num_rois, x, y, h, w, cos, sin, comp_labels]) comp_attribs = comp_attribs.astype(np.float32) comp_attribs_ = comp_attribs.copy() comp_attribs = np.stack([comp_attribs, comp_attribs_]) pred_maps, gcn_data = drrg_head(feature_maps, comp_attribs) pred_labels, gt_labels = gcn_data assert pred_maps.size() == (2, 6, 128, 128) assert pred_labels.ndim == gt_labels.ndim == 2 assert gt_labels.size()[0] * gt_labels.size()[1] == pred_labels.size()[0] assert pred_labels.size()[1] == 2 # test forward test with torch.no_grad(): feat_maps = torch.zeros((1, 10, 128, 128)) drrg_head.out_conv.bias.data.fill_(-10) preds = drrg_head.single_test(feat_maps) assert all([pred is None for pred in preds]) # test get_boundary edges = np.stack([np.arange(0, 10), np.arange(1, 11)]).transpose() edges = np.vstack([edges, np.array([1, 0])]) scores = np.ones(11, dtype=np.float32) * 0.9 x1 = np.arange(2, 22, 2) x2 = x1 + 2 y1 = np.ones(10) * 2 y2 = y1 + 2 comp_scores = np.ones(10, dtype=np.float32) * 0.9 text_comps = np.stack([x1, y1, x2, y1, x2, y2, x1, y2, comp_scores]).transpose() outlier = np.array([50, 50, 52, 50, 52, 52, 50, 52, 0.9]) text_comps =
np.vstack([text_comps, outlier])
numpy.vstack
""" ======================================== Getting the observer location from a Map ======================================== How to access the observer location from a `~sunpy.map.Map` and interpret it. """ import matplotlib.pyplot as plt import numpy as np from astropy.constants import R_earth import sunpy.map from sunpy.coordinates import get_body_heliographic_stonyhurst from sunpy.data.sample import AIA_171_IMAGE ############################################################################### # We use the sunpy sample data. aiamap = sunpy.map.Map(AIA_171_IMAGE) ############################################################################### # You can access the observer coordinate with: print(aiamap.observer_coordinate) ############################################################################### # This provides the location of the SDO as defined in the header and is # necessary to fully define the helioprojective coordinate system which # depends on where the observer is. Let's see where this is with respect # to Earth. SDO is a geosynchronous orbit with a semi-major axis of # 42,164.71 km and an inclination of 28.05 deg. # We will convert it to Geocentric Celestial Reference System (GCRS) # whose center is at the Earth's center-of-mass. sdo_gcrs = aiamap.observer_coordinate.gcrs sun = get_body_heliographic_stonyhurst('sun', aiamap.date) ############################################################################## # Let's plot the results. The green circle represents the Earth. # This looks like the Earth is in the way of SDO's # field of view but remember that it is also above the plane of this plot # by its declination. fig = plt.figure() ax = fig.add_subplot(projection='polar') circle = plt.Circle((0.0, 0.0), 1.0, transform=ax.transProjectionAffine + ax.transAxes, color="green", alpha=0.4, label="Earth") ax.add_artist(circle) ax.text(0.48, 0.5, "Earth", transform=ax.transAxes) ax.plot(sdo_gcrs.ra.to('rad'), sdo_gcrs.distance / R_earth, 'o', label=f'SDO {sdo_gcrs.dec:.2f}') ax.plot(sun.lon.to('rad').value *
np.ones(2)
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Join Hypocenter-Velocity Inversion on Tetrahedral meshes (JHVIT). 6 functions can be called and run in this package: 1- jntHypoVel_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the velocity model. 2- jntHyposlow_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the slowness model. 3- jntHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the velocity models. 4- jntHyposlowPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the slowness models. 5-jointHypoVel_T : Joint hypocenter-velocity inversion of P wave data. Input data and inversion parameters are downloaded automatically from external text files. 6-jointHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data. Input data and inversion parameters are downloaded automatically from external text files. Notes: - The package ttcrpy must be installed in order to perform the raytracing step. This package can be downloaded from: https://ttcrpy.readthedocs.io/en/latest/ - To prevent bugs, it would be better to use python 3.7 Created on Sat Sep 14 2019 @author: <NAME> """ import numpy as np import scipy.sparse as sp import scipy.sparse.linalg as spl import scipy.stats as scps import re import sys import copy from mesh import MSHReader from ttcrpy import tmesh from multiprocessing import Pool, cpu_count, current_process, Manager import multiprocessing as mp from collections import OrderedDict try: import vtk from vtk.util.numpy_support import numpy_to_vtk except BaseException: print('VTK module not found, saving velocity model in vtk form is disabled') def msh2vtk(nodes, cells, velocity, outputFilename, fieldname="Velocity"): """ Generate a vtk file to store the velocity model. Parameters ---------- nodes : np.ndarray, shape (nnodes, 3) Node coordinates. cells : np.ndarray of int, shape (number of cells, 4) Indices of nodes forming each cell. velocity : np.ndarray, shape (nnodes, 1) Velocity model. outputFilename : string The output vtk filename. fieldname : string, optional The saved field title. The default is "Velocity". Returns ------- float return 0.0 if no bugs occur. """ ugrid = vtk.vtkUnstructuredGrid() tPts = vtk.vtkPoints() tPts.SetNumberOfPoints(nodes.shape[0]) for n in range(nodes.shape[0]): tPts.InsertPoint(n, nodes[n, 0], nodes[n, 1], nodes[n, 2]) ugrid.SetPoints(tPts) VtkVelocity = numpy_to_vtk(velocity, deep=0, array_type=vtk.VTK_DOUBLE) VtkVelocity.SetName(fieldname) ugrid.GetPointData().SetScalars(VtkVelocity) Tetra = vtk.vtkTetra() for n in np.arange(cells.shape[0]): Tetra.GetPointIds().SetId(0, cells[n, 0]) Tetra.GetPointIds().SetId(1, cells[n, 1]) Tetra.GetPointIds().SetId(2, cells[n, 2]) Tetra.GetPointIds().SetId(3, cells[n, 3]) ugrid.InsertNextCell(Tetra.GetCellType(), Tetra.GetPointIds()) gWriter = vtk.vtkUnstructuredGridWriter() gWriter.SetFileName(outputFilename) gWriter.SetInputData(ugrid) gWriter.SetFileTypeToBinary() gWriter.Update() return 0.0 def check_hypo_indomain(Hypo_new, P_Dimension, Mesh=None): """ Check if the new hypocenter is still inside the domain and project it onto the domain surface otherwise. Parameters ---------- Hypo_new : np.ndarray, shape (3, ) or (3,1) The updated hypocenter coordinates. P_Dimension : np.ndarray, shape (6, ) Domain borders: the maximum and minimum of its 3 dimensions. Mesh : instance of the class tmesh, optional The domain discretization. The default is None. Returns ------- Hypo_new : np.ndarray, shape (3, ) The input Hypo_new or its projections on the domain surface. outside : boolean True if Hypo_new was outside the domain. """ outside = False Hypo_new = Hypo_new.reshape([1, -1]) if Hypo_new[0, 0] < P_Dimension[0]: Hypo_new[0, 0] = P_Dimension[0] outside = True if Hypo_new[0, 0] > P_Dimension[1]: Hypo_new[0, 0] = P_Dimension[1] outside = True if Hypo_new[0, 1] < P_Dimension[2]: Hypo_new[0, 1] = P_Dimension[2] outside = True if Hypo_new[0, 1] > P_Dimension[3]: Hypo_new[0, 1] = P_Dimension[3] outside = True if Hypo_new[0, 2] < P_Dimension[4]: Hypo_new[0, 2] = P_Dimension[4] outside = True if Hypo_new[0, 2] > P_Dimension[5]: Hypo_new[0, 2] = P_Dimension[5] outside = True if Mesh: if Mesh.is_outside(Hypo_new): outside = True Hypout = copy.copy(Hypo_new) Hypin = np.array([[Hypo_new[0, 0], Hypo_new[0, 1], P_Dimension[4]]]) distance = np.sqrt(np.sum((Hypin - Hypout)**2)) while distance > 1.e-5: Hmiddle = 0.5 * Hypout + 0.5 * Hypin if Mesh.is_outside(Hmiddle): Hypout = Hmiddle else: Hypin = Hmiddle distance = np.sqrt(np.sum((Hypout - Hypin)**2)) Hypo_new = Hypin return Hypo_new.reshape([-1, ]), outside class Parameters: def __init__(self, maxit, maxit_hypo, conv_hypo, Vlim, VpVslim, dmax, lagrangians, max_sc, invert_vel=True, invert_VsVp=False, hypo_2step=False, use_sc=True, save_vel=False, uncrtants=False, confdce_lev=0.95, verbose=False): """ Parameters ---------- maxit : int Maximum number of iterations. maxit_hypo : int Maximum number of iterations to update hypocenter coordinates. conv_hypo : float Convergence criterion. Vlim : tuple of 3 or 6 floats Vlmin holds the maximum and the minimum values of P- and S-wave velocity models and the slopes of the penalty functions, example Vlim = (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs). VpVslim : tuple of 3 floats Upper and lower limits of Vp/Vs ratio and the slope of the corresponding Vp/Vs penalty function. dmax : tuple of four floats It holds the maximum admissible corrections for the velocity models (dVp_max and dVs_max), the origin time (dt_max) and the hypocenter coordinates (dx_max). lagrangians : tuple of 6 floats Penalty and constraint weights: λ (smoothing constraint weight), γ (penalty constraint weight), α (weight of velocity data point const- raint), wzK (vertical smoothing weight), γ_vpvs (penalty constraint weight of Vp/Vs ratio), stig (weight of the constraint used to impose statistical moments on Vp/Vs model). invert_vel : boolean, optional Perform velocity inversion if True. The default is True. invert_VsVp : boolean, optional Find Vp/Vs ratio model rather than S wave model. The default is False. hypo_2step : boolean, optional Relocate hypocenter events in 2 steps. The default is False. use_sc : boolean, optional Use static corrections. The default is 'True'. save_vel : string, optional Save intermediate velocity models or the final model. The default is False. uncrtants : boolean, optional Calculate the uncertainty of the hypocenter parameters. The default is False. confdce_lev : float, optional The confidence coefficient to calculate the uncertainty. The default is 0.95. verbose : boolean, optional Print information messages about inversion progression. The default is False. Returns ------- None. """ self.maxit = maxit self.maxit_hypo = maxit_hypo self.conv_hypo = conv_hypo self.Vpmin = Vlim[0] self.Vpmax = Vlim[1] self.PAp = Vlim[2] if len(Vlim) > 3: self.Vsmin = Vlim[3] self.Vsmax = Vlim[4] self.PAs = Vlim[5] self.VpVsmin = VpVslim[0] self.VpVsmax = VpVslim[1] self.Pvpvs = VpVslim[2] self.dVp_max = dmax[0] self.dx_max = dmax[1] self.dt_max = dmax[2] if len(dmax) > 3: self.dVs_max = dmax[3] self.λ = lagrangians[0] self.γ = lagrangians[1] self.γ_vpvs = lagrangians[2] self.α = lagrangians[3] self.stig = lagrangians[4] self.wzK = lagrangians[5] self.invert_vel = invert_vel self.invert_VpVs = invert_VsVp self.hypo_2step = hypo_2step self.use_sc = use_sc self.max_sc = max_sc self.p = confdce_lev self.uncertainty = uncrtants self.verbose = verbose self.saveVel = save_vel def __str__(self): """ Encapsulate the attributes of the class Parameters in a string. Returns ------- output : string Attributes of the class Parameters written in string. """ output = "-------------------------\n" output += "\nParameters of Inversion :\n" output += "\n-------------------------\n" output += "\nMaximum number of iterations : {0:d}\n".format(self.maxit) output += "\nMaximum number of iterations to get hypocenters" output += ": {0:d}\n".format(self.maxit_hypo) output += "\nVp minimum : {0:4.2f} km/s\n".format(self.Vpmin) output += "\nVp maximum : {0:4.2f} km/s\n".format(self.Vpmax) if self.Vsmin: output += "\nVs minimum : {0:4.2f} km/s\n".format(self.Vsmin) if self.Vsmax: output += "\nVs maximum : {0:4.2f} km/s\n".format(self.Vsmax) if self.VpVsmin: output += "\nVpVs minimum : {0:4.2f} km/s\n".format(self.VpVsmin) if self.VpVsmax: output += "\nVpVs maximum : {0:4.2f} km/s\n".format(self.VpVsmax) output += "\nSlope of the penalty function (P wave) : {0:3f}\n".format( self.PAp) if self.PAs: output += "\nSlope of the penalty function (S wave) : {0:3f}\n".format( self.PAs) if self.Pvpvs: output += "\nSlope of the penalty function" output += "(VpVs ratio wave) : {0:3f}\n".format(self.Pvpvs) output += "\nMaximum time perturbation by step : {0:4.3f} s\n".format( self.dt_max) output += "\nMaximum distance perturbation by step : {0:4.3f} km\n".format( self.dx_max) output += "\nMaximum P wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVp_max) if self.dVs_max: output += "\nMaximum S wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVs_max) output += "\nLagrangians parameters : λ = {0:1.1e}\n".format(self.λ) output += " : γ = {0:1.1e}\n".format(self.γ) if self.γ_vpvs: output += " : γ VpVs ratio = {0:1.1e}\n".format( self.γ_vpvs) output += " : α = {0:1.1e}\n".format(self.α) output += " : wzK factor = {0:4.2f}\n".format( self.wzK) if self.stig: output += " : stats. moment. penalty" output += "coef. = {0:1.1e}\n".format(self.stig) output += "\nOther parameters : Inverse Velocity = {0}\n".format( self.invert_vel) output += "\n : Use Vs/Vp instead of Vs = {0}\n".format( self.invert_VpVs) output += "\n : Use static correction = {0}\n".format( self.use_sc) output += "\n : Hyp. parameter Uncertainty estimation = " output += "{0}\n".format(self.uncertainty) if self.uncertainty: output += "\n with a confidence level of" output += " {0:3.2f}\n".format(self.p) if self.saveVel == 'last': output += "\n : Save intermediate velocity models = " output += "last iteration only\n" elif self.saveVel == 'all': output += "\n : Save intermediate velocity models = " output += "all iterations\n" else: output += "\n : Save intermediate velocity models = " output += "False\n" output += "\n : Relocate hypoctenters using 2 steps = " output += "{0}\n".format(self.hypo_2step) output += "\n : convergence criterion = {0:3.4f}\n".format( self.conv_hypo) if self.use_sc: output += "\n : Maximum static correction = " output += "{0:3.2f}\n".format(self.max_sc) return output class fileReader: def __init__(self, filename): """ Parameters ---------- filename : string List of data files and other inversion parameters. Returns ------- None. """ try: open(filename, 'r') except IOError: print("Could not read file:", filename) sys.exit() self.filename = filename assert(self.readParameter('base name')), 'invalid base name' assert(self.readParameter('mesh file')), 'invalid mesh file' assert(self.readParameter('rcvfile')), 'invalid rcv file' assert(self.readParameter('Velocity')), 'invalid Velocity file' assert(self.readParameter('Time calibration') ), 'invalid calibration data file' def readParameter(self, parameter, dtype=None): """ Read the data filename or the inversion parameter value specified by the argument parameter. Parameters ---------- parameter : string Filename or inversion parameter to read. dtype : data type, optional Explicit data type of the filename or the parameter read. The default is None. Returns ------- param : string/int/float File or inversion parameter. """ try: f = open(self.filename, 'r') for line in f: if line.startswith(parameter): position = line.find(':') param = line[position + 1:] param = param.rstrip("\n\r") if dtype is None: break if dtype == int: param = int(param) elif dtype == float: param = float(param) elif dtype == bool: if param == 'true' or param == 'True' or param == '1': param = True elif param == 'false' or param == 'False' or param == '0': param = False else: print(" non recognized format") break return param except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float for " + parameter + "\n") except NameError as NErr: print( parameter + " is not indicated or has bad value:{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise finally: f.close() def saveVel(self): """ Method to read the specified option for saving the velocity model(s). Returns ------- bool/string Save or not the velocity model(s) and for which iteration. """ try: f = open(self.filename, 'r') for line in f: if line.startswith('Save Velocity'): position = line.find(':') if position > 0: sv = line[position + 1:].strip() break f.close() if sv == 'last' or sv == 'Last': return 'last' elif sv == 'all' or sv == 'All': return 'all' elif sv == 'false' or sv == 'False' or sv == '0': return False else: print('bad option to save velocity: default value will be used') return False except OSError as err: print("OS error: {0}".format(err)) except NameError as NErr: print("save velocity is not indicated :{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getIversionParam(self): """ Read the inversion parameters and store them in an object of the class Parameters. Returns ------- Params : instance of the class Parameters Inversion parameters and options. """ maxit = self.readParameter('number of iterations', int) maxit_hypo = self.readParameter('num. iters. to get hypo.', int) conv_hypo = self.readParameter('convergence Criterion', float) Vpmin = self.readParameter('Vpmin', float) Vpmax = self.readParameter('Vpmax', float) PAp = self.readParameter('PAp', float) if PAp is None or PAp < 0: print('PAp : default value will be considered\n') PAp = 1. # default value Vsmin = self.readParameter('Vsmin', float) Vsmax = self.readParameter('Vsmax', float) PAs = self.readParameter('PAs', float) if PAs is None or PAs < 0: print('PAs : default value will be considered\n') PAs = 1. # default value VpVsmax = self.readParameter('VpVs_max', float) if VpVsmax is None or VpVsmax < 0: print('default value will be considered (5)\n') VpVsmax = 5. # default value VpVsmin = self.readParameter('VpVs_min', float) if VpVsmin is None or VpVsmin < 0: print('default value will be considered (1.5)\n') VpVsmin = 1.5 # default value Pvpvs = self.readParameter('Pvpvs', float) if Pvpvs is None or Pvpvs < 0: print('default value will be considered\n') Pvpvs = 1. # default value dVp_max = self.readParameter('dVp max', float) dVs_max = self.readParameter('dVs max', float) dx_max = self.readParameter('dx max', float) dt_max = self.readParameter('dt max', float) Alpha = self.readParameter('alpha', float) Lambda = self.readParameter('lambda', float) Gamma = self.readParameter('Gamma', float) Gamma_ps = self.readParameter('Gamma_vpvs', float) stigma = self.readParameter('stigma', float) if stigma is None or stigma < 0: stigma = 0. # default value VerSmooth = self.readParameter('vertical smoothing', float) InverVel = self.readParameter('inverse velocity', bool) InverseRatio = self.readParameter('inverse Vs/Vp', bool) Hyp2stp = self.readParameter('reloc.hypo.in 2 steps', bool) Sc = self.readParameter('use static corrections', bool) if Sc: Sc_max = self.readParameter('maximum stat. correction', float) else: Sc_max = 0. uncrtants = self.readParameter('uncertainty estm.', bool) if uncrtants: confdce_lev = self.readParameter('confidence level', float) else: confdce_lev = np.NAN Verb = self.readParameter('Verbose ', bool) saveVel = self.saveVel() Params = Parameters(maxit, maxit_hypo, conv_hypo, (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs), (VpVsmin, VpVsmax, Pvpvs), (dVp_max, dx_max, dt_max, dVs_max), (Lambda, Gamma, Gamma_ps, Alpha, stigma, VerSmooth), Sc_max, InverVel, InverseRatio, Hyp2stp, Sc, saveVel, uncrtants, confdce_lev, Verb) return Params class RCVReader: def __init__(self, p_rcvfile): """ Parameters ---------- p_rcvfile : string File holding receiver coordinates. Returns ------- None. """ self.rcv_file = p_rcvfile assert(self.__ChekFormat()), 'invalid format for rcv file' def getNumberOfStation(self): """ Return the number of receivers. Returns ------- Nstations : int Receiver number. """ try: fin = open(self.rcv_file, 'r') Nstations = int(fin.readline()) fin.close() return Nstations except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to an integer for the station number.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getStation(self): """ Return coordinates of receivers. Returns ------- coordonates : np.ndarray, shape(receiver number,3) Receiver coordinates. """ try: fin = open(self.rcv_file, 'r') Nsta = int(fin.readline()) coordonates = np.zeros([Nsta, 3]) for n in range(Nsta): line = fin.readline() Coord = re.split(r' ', line) coordonates[n, 0] = float(Coord[0]) coordonates[n, 1] = float(Coord[2]) coordonates[n, 2] = float(Coord[4]) fin.close() return coordonates except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def __ChekFormat(self): try: fin = open(self.rcv_file) n = 0 for line in fin: if n == 0: Nsta = int(line) num_lines = sum(1 for line in fin) if(num_lines != Nsta): fin.close() return False if n > 0: Coord = re.split(r' ', line) if len(Coord) != 5: fin.close() return False n += 1 fin.close() return True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readEventsFiles(time_file, waveType=False): """ Read a list of seismic events and corresponding data from a text file. Parameters ---------- time_file : string Event data filename. waveType : bool True if the seismic phase of each event is identified. The default is False. Returns ------- data : np.ndarray or a list of two np.ndarrays Event arrival time data """ if (time_file == ""): if not waveType: return (np.array([])) elif waveType: return (np.array([]), np.array([])) try: fin = open(time_file, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Ev_idn'): break if not waveType: data = np.loadtxt(time_file, skiprows=lstart, ndmin=2) elif waveType: data = np.loadtxt(fname=time_file, skiprows=2, dtype='S15', ndmin=2) ind = np.where(data[:, -1] == b'P')[0] dataP = data[ind, :-1].astype(float) ind = np.where(data[:, -1] == b'S')[0] dataS = data[ind, :-1].astype(float) data = (dataP, dataS) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + time_file + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readVelpoints(vlpfile): """ Read known velocity points from a text file. Parameters ---------- vlpfile : string Name of the file containing the known velocity points. Returns ------- data : np.ndarray, shape (number of points , 3) Data corresponding to the known velocity points. """ if (vlpfile == ""): return (np.array([])) try: fin = open(vlpfile, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Pt_id'): break data = np.loadtxt(vlpfile, skiprows=lstart) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + vlpfile + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def _hypo_relocation(ev, evID, hypo, data, rcv, sc, convergence, par): """ Location of a single hypocenter event using P arrival time data. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (number of events ,) Event indices. hypo : np.ndarray, shape (number of events ,5) Current hypocenter coordinates and origin time for each event. data : np.ndarray, shape (arrival times number,3) Arrival times for all events. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) Static correction values. convergence : boolean list, shape (event number) Convergence state of each event. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("\nEven N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indr = np.where(data[:, 0] == evID[ev])[0] rcv_ev = rcv[data[indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size Hypocenter = hypo[indh[0]].copy() if par.hypo_2step: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones((nst, 2)) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge' ' for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH[1:]) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) T0 = np.kron(Hypocenter[1], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent cannot be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: print('\nEvent N {0:d} cannot be relocated inside the domain\n'.format( int(hypo[ev, 0]))) convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at {1:d}' ' iteration(s)\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations' ' was reached\n'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _hypo_relocationPS(ev, evID, hypo, data, rcv, sc, convergence, slow, par): """ Relocate a single hypocenter event using P- and S-wave arrival times. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number ,) Event indices. hypo : np.ndarray, shape (event number ,5) Current hypocenter coordinates and origin times for each event. data : tuple of two np.ndarrays Arrival times of P- and S-waves. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : tuple of two np.ndarrays (shape(receiver number or 0,1)) Static correction values of P- and S-waves. convergence : boolean list, shape (event number) The convergence state of each event. slow : tuple of two np.ndarrays (shape(nnodes,1)) P and S slowness models. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ (slowP, slowS) = slow (scp, scs) = sc (dataP, dataS) = data indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("Even N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size Hypocenter = hypo[indh[0]].copy() if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1] scs_ev = scs[dataS[indrs, 2].astype(int) - 1] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) if par.hypo_2step: if par.verbose: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 2)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f})and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 0] = -dx * slw0 / ds Hi[nr + nstP, 1] = -dy * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[2, 0] - Hypocenter[2] dy = rayi[2, 1] - Hypocenter[3] dz = rayi[2, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 1] = -dx * slw0 / ds Hi[nr + nstP, 2] = -dy * slw0 / ds Hi[nr + nstP, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping\n') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: if par.verbose: print('\nEvent N {0:d} could not be relocated inside ' 'the domain\n'.format(int(hypo[ev, 0]))) sys.stdout.flush() convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at ' ' iteration {1:d}\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations was' ' reached'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _uncertaintyEstimat(ev, evID, hypo, data, rcv, sc, slow, par, varData=None): """ Estimate origin time uncertainty and confidence ellipsoid. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number,) Event indices. hypo : np.ndarray, shape (event number,5) Estimated hypocenter coordinates and origin time. data : np.ndarray, shape (arrival time number,3) or tuple if both P and S waves are used. Arrival times of seismic events. rcv : np.ndarray, shape (receiver number ,3) coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) or tuple if both P and S waves are used. Static correction values. slow : np.ndarray or tuple, shape(nnodes,1) P or P and S slowness models. par : instance of the class Parameters The inversion parameters. varData : list of two lists Number of arrival times and the sum of residuals needed to compute the noise variance. See Block's Thesis, 1991 (P. 63) The default is None. Returns ------- to_confInterv : float Origin time uncertainty interval. axis1 : np.ndarray, shape(3,) Coordinates of the 1st confidence ellipsoid axis (vector). axis2 : np.ndarray, shape(3,) Coordinates of the 2nd confidence ellipsoid axis (vector). axis3 : np.ndarray, shape(3,) Coordinates of the 3rd confidence ellipsoid axis (vector). """ if par.verbose: print("Uncertainty estimation for the Even N {0:d}".format( int(hypo[ev, 0])) + '\n') sys.stdout.flush() indh = np.where(hypo[:, 0] == evID[ev])[0] if len(slow) == 2: (slowP, slowS) = slow (dataP, dataS) = data (scp, scs) = sc indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size T0p = np.kron(hypo[indh, 1], np.ones([nstP, 1])) indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size T0s = np.kron(hypo[indh, 1], np.ones([nstS, 1])) Txp = np.kron(hypo[indh, 2:], np.ones([nstP, 1])) Txs = np.kron(hypo[indh, 2:], np.ones([nstS, 1])) if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1, :] scs_ev = scs[dataS[indrs, 2].astype(int) - 1, :] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) srcp = np.hstack((ev*np.ones([nstP, 1]), T0p + scp_ev, Txp)) srcs = np.hstack((ev*np.ones([nstS, 1]), T0s + scs_ev, Txs)) tcalp, raysP = Mesh3D.raytrace(source=srcp, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) tcals, raysS = Mesh3D.raytrace(source=srcs, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcp) slowS_0 = Mesh3D.get_s0(srcs) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: continue slw0 = slowP_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: continue slw0 = slowS_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] elif len(slow) == 1: indr = np.where(data[0][:, 0] == evID[ev])[0] rcv_ev = rcv[data[0][indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[0][indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) Tx = np.kron(hypo[indh, 2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0+sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=slow[0], aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: # unconverged ray continue slw0 = slow_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[0][indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] N = res.shape[0] try: Q = np.linalg.inv(Hi.T @ Hi) except np.linalg.linalg.LinAlgError: if par.verbose: print("ill-conditioned Jacobian matrix") sys.stdout.flush() U, S, V = np.linalg.svd(Hi.T @ Hi) Q = V.T @ np.diag(1./(S + 1.e-9)) @ U.T eigenVals, eigenVec = np.linalg.eig(Q[:3, :3]) ind = np.argsort(eigenVals) if varData: s2 = 1 varData[0] += [np.sum(res**2)] varData[1] += [N] else: s2 = np.sum(res**2) / (N - 4) alpha = 1 - par.p coef = scps.t.ppf(1 - alpha / 2., N - 4) axis1 = np.sqrt(eigenVals[ind[2]] * s2) * coef * eigenVec[:, ind[2]] axis2 = np.sqrt(eigenVals[ind[1]] * s2) * coef * eigenVec[:, ind[1]] axis3 = np.sqrt(eigenVals[ind[0]] * s2) * coef * eigenVec[:, ind[0]] to_confInterv = np.sqrt(Q[-1, -1] * s2) * coef return to_confInterv, axis1, axis2, axis3 def jntHypoVel_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Vel'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the velocity model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event.. caldata : np.ndarray, shape(number of calibration shots, 3) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output file. The default is 'Vel'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the velocity model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Velocity = Vinit * np.ones([nnodes, 1]) Slowness = 1. / Velocity elif Vinit.size == nnodes: Velocity = Vinit Slowness = 1. / Velocity else: print("invalid Velocity Model\n") sys.stdout.flush() return 0 # used threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, process_vel=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix( np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) for i in range(par.maxit): if par.verbose: print("Iteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print('Iteration {0:d} - Updating velocity model\n'.format(i + 1)) print("Updating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Velocity) cy = ky.dot(Velocity) cz = kz.dot(Velocity) # build matrix P and dP indVmin = np.where(Velocity < par.Vpmin)[0] indVmax = np.where(Velocity > par.Vpmax)[0] indPinality = np.hstack([indVmin, indVmax]) dPinality_V = np.hstack( [-par.PAp * np.ones(indVmin.size), par.PAp * np.ones(indVmax.size)]) pinality_V = np.vstack( [par.PAp * (par.Vpmin - Velocity[indVmin]), par.PAp * (Velocity[indVmax] - par.Vpmax)]) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=( nnodes, nbre_param)) Pinality = sp.csr_matrix( (pinality_V.reshape([-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(nnodes, 1)) if par.verbose: print('Penalties applied at {0:d} nodes\n'.format( dPinality_V.size)) print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sources = np.empty((data.shape[0], 5)) if par.use_sc: sc_data = np.empty((data.shape[0], )) for ev in np.arange(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sources[indr, :] = Hypocenters[indh, :] if par.use_sc: sc_data[indr] = Static_Corr[data[indr, 2].astype(int) - 1, 0] if par.use_sc: sources[:, 1] += sc_data tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) else: tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) v0 = 1. / Mesh3D.get_s0(sources) if par.verbose: inconverged = np.where(tt == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[icr, 0]), sources[icr, 2], sources[icr, 3], sources[icr, 4], int(data[icr, 2]), rcvData[icr, 0], rcvData[icr, 1], rcvData[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt = np.array([]) if ncal > 0: if par.use_sc: TxCalib[:, 1] = Static_Corr[caldata[:, 2].astype(int) - 1, 0] tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) else: tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) if par.verbose: inconverged = np.where(tt_Calib == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for calibration shot N ' '{0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(caldata[icr, 0]), TxCalib[icr, 2], TxCalib[icr, 3], TxCalib[icr, 4], int(caldata[icr, 2]), rcvCalib[icr, 0], rcvCalib[icr, 1], rcvCalib[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt_Calib = np.array([]) Resid = tObserved - tt convrayData = np.where(tt != 0)[0] convrayClib = np.where(tt_Calib != 0)[0] if Resid.size == 0: Residue = time_calibration[convrayClib] - tt_Calib[convrayClib] else: Residue = np.hstack( (np.zeros([np.count_nonzero(tt) - 4 * numberOfEvents]), time_calibration[convrayClib] - tt_Calib[convrayClib])) ResidueNorm[i] = np.linalg.norm(np.hstack( (Resid[convrayData], time_calibration[convrayClib] - tt_Calib[convrayClib]))) if par.verbose: print('...Building matrix M\n') sys.stdout.flush() M = sp.csr_matrix((0, nbre_param)) ir = 0 for even in range(numberOfEvents): indh = np.where(Hypocenters[:, 0] == evID[even])[0] indr = np.where(data[:, 0] == evID[even])[0] Mi = M0[even] nst_ev = Mi.shape[0] Hi = np.ones([indr.size, 4]) for nr in range(indr.size): rayi = rays[indr[nr]] if rayi.shape[0] == 1: continue vel0 = v0[indr[nr]] dx = rayi[1, 0] - Hypocenters[indh[0], 2] dy = rayi[1, 1] - Hypocenters[indh[0], 3] dz = rayi[1, 2] - Hypocenters[indh[0], 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx / (vel0 * ds) Hi[nr, 2] = -dy / (vel0 * ds) Hi[nr, 3] = -dz / (vel0 * ds) convrays = np.where(tt[indr] != 0)[0] if convrays.shape[0] < nst_ev: Hi = Hi[convrays, :] nst_ev = convrays.size Q, _ = np.linalg.qr(Hi, mode='complete') Ti = sp.csr_matrix(Q[:, 4:]) Ti = Ti.T if par.use_sc: Lsc = sp.csr_matrix((np.ones(nst_ev,), (range(nst_ev), data[indr[convrays], 2] - 1)), shape=(nst_ev, nstation)) Mi = sp.hstack((Mi, Lsc)) Mi = sp.csr_matrix(Ti @ Mi) M = sp.vstack([M, Mi]) Residue[ir:ir + (nst_ev - 4)] = Ti.dot(Resid[indr[convrays]]) ir += nst_ev - 4 for evCal in range(len(Mcalib)): Mi = Mcalib[evCal] if par.use_sc: indrCal = np.where(caldata[:, 0] == calID[evCal])[0] convraysCal = np.where(tt_Calib[indrCal] != 0)[0] Mi = sp.hstack((Mi, Msc_cal[evCal][convraysCal])) M = sp.vstack([M, Mi]) if par.verbose: print('Assembling matrices and solving system\n') sys.stdout.flush() S = np.sum(Static_Corr) term1 = (M.T).dot(M) nM = spl.norm(term1[:nnodes, :nnodes]) term2 = (d_Pinality.T).dot(d_Pinality) nP = spl.norm(term2) term3 = U.dot(U.T) λ = par.λ * nM / nK if nP != 0: γ = par.γ * nM / nP else: γ = par.γ A = term1 + λ * KtK + γ * term2 + term3 if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: A += NtN term1 = (M.T).dot(Residue) term1 = term1.reshape([-1, 1]) term2 = (KX.T).dot(cx) + (KY.T).dot(cy) + par.wzK * (KZ.T).dot(cz) term3 = (d_Pinality.T).dot(Pinality) term4 = U.dot(S) b = term1 - λ * term2 - γ * term3 - term4 if vPoints.size > 0: α = par.α * nM / nD A += α * DtD b += α * D.T @ (vPoints[:, 1].reshape(-1, 1) - D[:, :nnodes] @ Velocity) x = spl.minres(A, b, tol=1.e-8) deltam = x[0].reshape(-1, 1) # update velocity vector and static correction dVmax = np.max(abs(deltam[:nnodes])) if dVmax > par.dVp_max: deltam[:nnodes] *= par.dVp_max / dVmax if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: sc_mean = np.mean(abs(deltam[nnodes:])) if sc_mean > par.max_sc * np.mean(abs(Residue)): deltam[nnodes:] *= par.max_sc * np.mean(abs(Residue)) / sc_mean Velocity += np.matrix(deltam[:nnodes]) Slowness = 1. / Velocity Static_Corr += deltam[nnodes:] if par.saveVel == 'all': if par.verbose: print('...Saving Velocity models\n') sys.stdout.flush() try: msh2vtk(nodes, cells, Velocity, basename + 'it{0}.vtk'.format(i + 1)) except ImportError: print('vtk module is not installed\n') sys.stdout.flush() elif par.saveVel == 'last' and i == par.maxit - 1: try: msh2vtk(nodes, cells, Velocity, basename + '.vtk') except ImportError: print('vtk module is not installed\n') sys.stdout.flush() ####################################### # relocate Hypocenters ####################################### Mesh3D.set_slowness(Slowness) if numberOfEvents > 0: print("\nIteration N {0:d} : Relocation of events\n".format(i + 1)) sys.stdout.flush() if nThreads == 1: for ev in range(numberOfEvents): Hypocenters[ev, :] = _hypo_relocation( ev, evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) else: p = mp.get_context("fork").Pool(processes=nThreads) updatedHypo = p.starmap(_hypo_relocation, [(int(ev), evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par)for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() Hypocenters = np.array([updatedHypo])[0] # Calculate the hypocenter parameter uncertainty uncertnty = [] if par.uncertainty and numberOfEvents > 0: print("\nUncertainty evaluation\n") sys.stdout.flush() # estimate data variance if nThreads == 1: varData = [[], []] for ev in range(numberOfEvents): uncertnty.append( _uncertaintyEstimat(ev, evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData)) else: varData = manager.list([[], []]) with Pool(processes=nThreads) as p: uncertnty = p.starmap( _uncertaintyEstimat, [(int(ev), evID, Hypocenters, (data, ), rcv, Static_Corr, (Slowness, ), par, varData) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() sgmData = np.sqrt(np.sum(varData[0]) / (np.sum(varData[1]) - 4 * numberOfEvents - Static_Corr.size)) for ic in range(numberOfEvents): uncertnty[ic] = tuple([sgmData * x for x in uncertnty[ic]]) output = OrderedDict() output['Hypocenters'] = Hypocenters output['Convergence'] = list(hypo_convergence) output['Uncertainties'] = uncertnty output['Velocity'] = Velocity output['Sts_Corrections'] = Static_Corr output['Residual_norm'] = ResidueNorm return output def jntHyposlow_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Slowness'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the slowness model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event. caldata : np.ndarray, shape(number of calibration shots, 6) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. Cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output files. The default is 'Slowness'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the slowness model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # get calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Slowness = 1. / (Vinit * np.ones([nnodes, 1])) elif Vinit.size == nnodes: Slowness = 1. / Vinit else: print("invalid Velocity Model") sys.stdout.flush() return 0 # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() # number of threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions # build mesh object Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix(np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(
np.zeros(numberOfEvents, dtype=bool)
numpy.zeros
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data =
np.array([])
numpy.array
import numpy as np import transformations import math import os import logging from scipy.spatial import KDTree from utils import vec_angel_diff, dist_in_range # TODO this should be specified in a configuration file LAST_FINGER_JOINT = 'finger_2_joint_1' # TODO this should be defined in a super module class InvalidTriangleException(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class RobotiqHand: def __init__(self, env, hand_cache_file, hand_file): self._or_env = env self._or_env.Load(hand_file) self._or_hand = self._or_env.GetRobots()[0] self._plot_handler = [] # self._hand_mani = RobotiqHandVirtualManifold(self._or_hand) self._hand_mani = RobotiqHandKDTreeManifold(self, hand_cache_file) def __getattr__(self, attr): # composition return getattr(self._or_hand, attr) def get_hand_manifold(self): return self._hand_mani def plot_fingertip_contacts(self): self._plot_handler = [] colors = [np.array((1, 0, 0)), np.array((0, 1, 0)), np.array((0, 0, 1))] tip_link_ids = self.get_fingertip_links() point_size = 0.005 for i in range(len(tip_link_ids)): link = self._or_hand.GetLink(tip_link_ids[i]) T = link.GetGlobalMassFrame() local_frame_rot = transformations.rotation_matrix(math.pi / 6., [0, 0, 1])[:3, :3] T[:3, :3] = T[:3, :3].dot(local_frame_rot) offset = T[0:3,0:3].dot(self.get_tip_offsets()) T[0:3,3] = T[0:3,3] + offset position = T[:3, -1] self._plot_handler.append(self._or_env.plot3(points=position, pointsize=point_size, colors=colors[i], drawstyle=1)) for j in range(3): normal = T[:3, j] self._plot_handler.append(self._or_env.drawarrow(p1=position, p2=position + 0.05 * normal, linewidth=0.001, color=colors[j])) def get_tip_offsets(self): return np.array([0.025, 0.006, 0.0]) def get_tip_transforms(self): tip_link_ids = self.get_fingertip_links() ret = [] for i in range(len(tip_link_ids)): link = self._or_hand.GetLink(tip_link_ids[i]) T = link.GetGlobalMassFrame() local_frame_rot = transformations.rotation_matrix(math.pi / 6., [0, 0, 1])[:3, :3] T[:3, :3] = T[:3, :3].dot(local_frame_rot) offset = T[0:3,0:3].dot(self.get_tip_offsets()) T[0:3,3] = T[0:3,3] + offset ret.append(T) return ret def get_fingertip_links(self): return ['finger_1_link_3', 'finger_2_link_3', 'finger_middle_link_3'] def get_non_fingertip_links(self): return ['palm', 'finger_1_link_0', 'finger_1_link_2', 'finger_2_link_0', 'finger_2_link_1', 'finger_2_link_2', 'finger_middle_link_0', 'finger_middle_link_1', 'finger_middle_link_2'] def get_tip_pn(self): ret = [] tfs = self.get_tip_transforms() for t in tfs: ret.append(np.concatenate((t[:3, 3], t[:3, 1]))) return np.asarray(ret) def get_ori_tip_pn(self, hand_conf): self._or_hand.SetTransform(np.identity(4)) self._or_hand.SetDOFValues(hand_conf) return self.get_tip_pn() def set_random_conf(self): self._lower_limits, self._upper_limits = self._or_hand.GetDOFLimits() self._upper_limits[1] = 0.93124747 self_collision = True while self_collision: ret = [] for i in range(2): ret.append(np.random.uniform(self._lower_limits[i], self._upper_limits[i])) self.SetDOFValues(ret) self_collision = self._or_hand.CheckSelfCollision() def get_contact_number(self): return 3 def hand_obj_transform(self, hand_points, obj_points): # We align the hand with the object by matching a frame at the grasp center frame_hand = self.get_tri_frame(hand_points) # [x; y; z] of this frame in the hand frame frame_obj = self.get_tri_frame(obj_points) # [x; y; z] of this frame in the object frame # Let's build a transformation matrix from this T = transformations.identity_matrix() # frame_hand is a rotation matrix that rotates the hand frame to our helper frame at the grasp center T[0:3, 0:3] = np.dot(frame_obj, np.transpose(frame_hand)) # transpose == inverse for rotation matrices # rotate the hand points to a frame that is aligned with the object frame, but located at the grasp center # we call this frame rotated hand frame new_hand_points = np.transpose(np.dot(T[0:3, 0:3], np.transpose(hand_points))) # use this to compute the translation from object to hand frame obj_c = np.sum(obj_points, axis=0) / 3. # the position of the grasp center in object frame new_hand_c = np.sum(new_hand_points, axis=0) / 3. # the position of the grasp center in the rotated hand frame # Finally, the translation is from origin to obj_c and then from there in the opposite direction of new_hand_c T[:3, -1] = np.transpose(obj_c - new_hand_c) return T def get_tri_frame(self, points): ori = np.sum(points, axis=0) / 3. x = (points[0, :] - ori) / np.linalg.norm(points[0, :] - ori) e01 = points[1, :] - points[0, :] e02 = points[2, :] - points[0, :] e12 = points[2, :] - points[1, :] if np.linalg.norm(e01) == 0.0 or np.linalg.norm(e02) == 0.0 or np.linalg.norm(e12) == 0.0: raise InvalidTriangleException('Two points are identical') z = (np.cross(e02, e01)) / np.linalg.norm(np.cross(e02, e01)) y = np.cross(z, x) frame = np.transpose([x, y, z]) return np.asarray(frame) def comply_fingertips(self, n_step=100): """ Opens and closes the hand until all and only fingertips are in contact. :param n_step: maximal number of iterations :return: """ joint_index = self.GetJoint(LAST_FINGER_JOINT).GetDOFIndex() limit_value = self.GetDOFLimits()[1][joint_index] n_step /= 2 open_succes = self.avoid_collision_at_fingers(n_step) if not open_succes: return False, False curr_conf = self.GetDOFValues() step = (limit_value - curr_conf[joint_index]) / n_step for i in range(n_step): curr_conf[joint_index] += step self.SetDOFValues(curr_conf) if self.are_fingertips_in_contact(): return open_succes, True return open_succes, False def are_fingertips_in_contact(self): links = self.get_fingertip_links() for link in links: if not self._or_env.CheckCollision(self.GetLink(link)): return False return True def avoid_collision_at_fingers(self, n_step): """ Opens the hand until there is no collision anymore. :param n_step - maximum number of sampling steps :return True if successful, False otherwise """ if n_step <= 0: n_step = 1 finger_joint_idx = self.GetJoint(LAST_FINGER_JOINT).GetDOFIndex() start_value = self.GetDOFValues()[finger_joint_idx] # Last joint value opens the fingers step = (self.GetDOFLimits()[0][finger_joint_idx] - start_value) / n_step for i in range(n_step): if not self._or_env.CheckCollision(self._or_hand): return True self.SetDOFValues([start_value + i * step], [finger_joint_idx]) return False # TODO should be generalized to any type of hand class RobotiqHandKDTreeManifold: """ KD tree based hand manifold for the Robotiq hand """ CODE_DIMENSION = 6 NUM_SAMPLES = 10000 def __init__(self, or_robot, cache_file_name): self._or_robot = or_robot self._cache_file_name = cache_file_name self._codes = None self._hand_configurations = None self._kd_tree = None self._code_position_scale = 10.0 self._com_center_weight = 1.0 def set_parameters(self, com_center_weight=None): if com_center_weight is not None: self._com_center_weight = com_center_weight def load(self): if os.path.exists(self._cache_file_name): logging.info('[RobotiqHandKDTreeManifold::load] Loading sample data set form disk.') data = np.load(self._cache_file_name) self._codes = data[:, :self.CODE_DIMENSION] self._hand_configurations = data[:, self.CODE_DIMENSION:] else: logging.info('[RobotiqHandKDTreeManifold::load] No data set available. Generating new...') self._sample_configuration_space() data = np.concatenate((self._codes, self._hand_configurations), axis=1) np.save(self._cache_file_name, data) self._kd_tree = KDTree(self._codes) # self.test_manifold() def _sample_configuration_space(self): lower_limits, upper_limits = self._or_robot.GetDOFLimits() #TODO can this be done in a niceer way? closing the hand all the way does not make sense # TODO hence this limit instead upper_limits[1] = 0.93124747 joint_ranges = np.array(upper_limits) - np.array(lower_limits) interpolation_steps = int(math.sqrt(self.NUM_SAMPLES)) step_sizes = joint_ranges / interpolation_steps config = np.array(lower_limits) self._hand_configurations = np.zeros((self.NUM_SAMPLES, self._or_robot.GetDOF())) self._codes =
np.zeros((self.NUM_SAMPLES, self.CODE_DIMENSION))
numpy.zeros
#!/usr/bin/env python """ Homogeneous Transformation Matrices """ import math import numpy as np # Local modules import trifinger_mujoco.utils as tfu def are_equal(T1, T2, rtol=1e-5, atol=1e-8): """ Returns True if two homogeneous transformation are equal within a tolerance. Parameters ---------- T1: array_like First input homogeneous transformation T2: array_like Second input homogeneous transformation rtol: float The relative tolerance parameter. atol: float The absolute tolerance parameter. Returns ------- equal : bool True if `T1` and `T2` are `almost` equal, False otherwise See Also -------- numpy.allclose: Contains the details about the tolerance parameters """ M1 = np.array(T1, dtype=np.float64, copy=True) M1 /= M1[3, 3] M2 = np.array(T2, dtype=np.float64, copy=True) M2 /= M2[3, 3] return np.allclose(M1, M2, rtol, atol) def between_axes(axis_a, axis_b): """ Compute the transformation that aligns two vectors/axes. Parameters ---------- axis_a: array_like The initial axis axis_b: array_like The goal axis Returns ------- transform: array_like The transformation that transforms `axis_a` into `axis_b` """ a_unit = tfu.vector.unit(axis_a) b_unit = tfu.vector.unit(axis_b) c = np.dot(a_unit, b_unit) angle = np.arccos(c) if np.isclose(c, -1.0) or np.allclose(a_unit, b_unit): axis = tfu.vector.perpendicular(b_unit) else: axis = tfu.vector.unit(np.cross(a_unit, b_unit)) transform = tfu.axis_angle.to_transform(axis, angle) return transform def inverse(transform): """ Compute the inverse of an homogeneous transformation. .. note:: This function is more efficient than :obj:`numpy.linalg.inv` given the special properties of homogeneous transformations. Parameters ---------- transform: array_like The input homogeneous transformation Returns ------- inv: array_like The inverse of the input homogeneous transformation """ R = transform[:3, :3].T p = transform[:3, 3] inv = np.eye(4) inv[:3, :3] = R inv[:3, 3] = np.dot(-R, p) return inv def random(max_position=1.0): """ Generate a random homogeneous transformation. Parameters ---------- max_position: float, optional Maximum value for the position components of the transformation Returns ------- T: array_like The random homogeneous transformation Examples -------- >>> import numpy as np >>> import trifinger_mujoco.utils as tfu >>> T = tfu.transform.random() >>> Tinv = tfu.transform.inverse(T) >>> np.allclose(np.dot(T, Tinv), np.eye(4)) True """ quat = tfu.quaternion.random() T = tfu.quaternion.to_transform(quat) T[:3, 3] = np.random.rand(3) * max_position return T def to_axis_angle(transform): """ Return rotation angle and axis from rotation matrix. Parameters ---------- transform: array_like The input homogeneous transformation Returns ------- axis: array_like axis around which rotation occurs angle: float angle of rotation point: array_like point around which the rotation is performed Examples -------- >>> import numpy as np >>> import trifinger_mujoco.utils as tfu >>> axis = np.random.sample(3) - 0.5 >>> angle = (np.random.sample(1) - 0.5) * (2*np.pi) >>> point = np.random.sample(3) - 0.5 >>> T0 = tfu.axis_angle.to_transform(axis, angle, point) >>> axis, angle, point = tfu.transform.to_axis_angle(T0) >>> T1 = tfu.axis_angle.to_transform(axis, angle, point) >>> tfu.transform.are_equal(T0, T1) True """ R = np.array(transform, dtype=np.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = np.linalg.eig(R33.T) i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") axis = np.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R corresponding to eigenvalue of 1 w, Q = np.linalg.eig(R) i = np.where(abs(
np.real(w)
numpy.real
from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_array_equal, assert_equal from scipy.optimize._constraints import (NonlinearConstraint, Bounds, PreparedConstraint) from scipy.optimize._trustregion_constr.canonical_constraint \ import CanonicalConstraint, initial_constraints_as_canonical def create_quadratic_function(n, m, rng): a = rng.rand(m) A = rng.rand(m, n) H = rng.rand(m, n, n) HT = np.transpose(H, (1, 2, 0)) def fun(x): return a + A.dot(x) + 0.5 * H.dot(x).dot(x) def jac(x): return A + H.dot(x) def hess(x, v): return HT.dot(v) return fun, jac, hess def test_bounds_cases(): # Test 1: no constraints. user_constraint = Bounds(-np.inf, np.inf) x0 = np.array([-1, 2]) prepared_constraint = PreparedConstraint(user_constraint, x0, False) c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint) assert_equal(c.n_eq, 0) assert_equal(c.n_ineq, 0) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, []) assert_array_equal(c_ineq, []) J_eq, J_ineq = c.jac(x0) assert_array_equal(J_eq, np.empty((0, 2))) assert_array_equal(J_ineq, np.empty((0, 2))) assert_array_equal(c.keep_feasible, []) # Test 2: infinite lower bound. user_constraint = Bounds(-np.inf, [0, np.inf, 1], [False, True, True]) x0 = np.array([-1, -2, -3], dtype=float) prepared_constraint = PreparedConstraint(user_constraint, x0, False) c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint) assert_equal(c.n_eq, 0) assert_equal(c.n_ineq, 2) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, []) assert_array_equal(c_ineq, [-1, -4]) J_eq, J_ineq = c.jac(x0) assert_array_equal(J_eq, np.empty((0, 3))) assert_array_equal(J_ineq, np.array([[1, 0, 0], [0, 0, 1]])) assert_array_equal(c.keep_feasible, [False, True]) # Test 3: infinite upper bound. user_constraint = Bounds([0, 1, -np.inf], np.inf, [True, False, True]) x0 = np.array([1, 2, 3], dtype=float) prepared_constraint = PreparedConstraint(user_constraint, x0, False) c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint) assert_equal(c.n_eq, 0) assert_equal(c.n_ineq, 2) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, []) assert_array_equal(c_ineq, [-1, -1]) J_eq, J_ineq = c.jac(x0) assert_array_equal(J_eq, np.empty((0, 3))) assert_array_equal(J_ineq, np.array([[-1, 0, 0], [0, -1, 0]])) assert_array_equal(c.keep_feasible, [True, False]) # Test 4: interval constraint. user_constraint = Bounds([-1, -np.inf, 2, 3], [1, np.inf, 10, 3], [False, True, True, True]) x0 = np.array([0, 10, 8, 5]) prepared_constraint = PreparedConstraint(user_constraint, x0, False) c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint) assert_equal(c.n_eq, 1) assert_equal(c.n_ineq, 4) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, [2]) assert_array_equal(c_ineq, [-1, -2, -1, -6]) J_eq, J_ineq = c.jac(x0) assert_array_equal(J_eq, [[0, 0, 0, 1]]) assert_array_equal(J_ineq, [[1, 0, 0, 0], [0, 0, 1, 0], [-1, 0, 0, 0], [0, 0, -1, 0]]) assert_array_equal(c.keep_feasible, [False, True, False, True]) def test_nonlinear_constraint(): n = 3 m = 5 rng = np.random.RandomState(0) x0 = rng.rand(n) fun, jac, hess = create_quadratic_function(n, m, rng) f = fun(x0) J = jac(x0) lb = [-10, 3, -np.inf, -np.inf, -5] ub = [10, 3, np.inf, 3, np.inf] user_constraint = NonlinearConstraint( fun, lb, ub, jac, hess, [True, False, False, True, False]) for sparse_jacobian in [False, True]: prepared_constraint = PreparedConstraint(user_constraint, x0, sparse_jacobian) c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint) assert_array_equal(c.n_eq, 1) assert_array_equal(c.n_ineq, 4) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, [f[1] - lb[1]]) assert_array_equal(c_ineq, [f[3] - ub[3], lb[4] - f[4], f[0] - ub[0], lb[0] - f[0]]) J_eq, J_ineq = c.jac(x0) if sparse_jacobian: J_eq = J_eq.toarray() J_ineq = J_ineq.toarray() assert_array_equal(J_eq, J[1, None]) assert_array_equal(J_ineq, np.vstack((J[3], -J[4], J[0], -J[0]))) v_eq = rng.rand(c.n_eq) v_ineq = rng.rand(c.n_ineq) v = np.zeros(m) v[1] = v_eq[0] v[3] = v_ineq[0] v[4] = -v_ineq[1] v[0] = v_ineq[2] - v_ineq[3] assert_array_equal(c.hess(x0, v_eq, v_ineq), hess(x0, v)) assert_array_equal(c.keep_feasible, [True, False, True, True]) def test_concatenation(): rng = np.random.RandomState(0) n = 4 x0 = np.random.rand(n) f1 = x0 J1 = np.eye(n) lb1 = [-1, -np.inf, -2, 3] ub1 = [1, np.inf, np.inf, 3] bounds = Bounds(lb1, ub1, [False, False, True, False]) fun, jac, hess = create_quadratic_function(n, 5, rng) f2 = fun(x0) J2 = jac(x0) lb2 = [-10, 3, -np.inf, -np.inf, -5] ub2 = [10, 3, np.inf, 5, np.inf] nonlinear = NonlinearConstraint( fun, lb2, ub2, jac, hess, [True, False, False, True, False]) for sparse_jacobian in [False, True]: bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian) nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian) c1 = CanonicalConstraint.from_PreparedConstraint(bounds_prepared) c2 = CanonicalConstraint.from_PreparedConstraint(nonlinear_prepared) c = CanonicalConstraint.concatenate([c1, c2], sparse_jacobian) assert_equal(c.n_eq, 2) assert_equal(c.n_ineq, 7) c_eq, c_ineq = c.fun(x0) assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]]) assert_array_equal(c_ineq, [lb1[2] - f1[2], f1[0] - ub1[0], lb1[0] - f1[0], f2[3] - ub2[3], lb2[4] - f2[4], f2[0] - ub2[0], lb2[0] - f2[0]]) J_eq, J_ineq = c.jac(x0) if sparse_jacobian: J_eq = J_eq.toarray() J_ineq = J_ineq.toarray() assert_array_equal(J_eq, np.vstack((J1[3], J2[1]))) assert_array_equal(J_ineq, np.vstack((-J1[2], J1[0], -J1[0], J2[3], -J2[4], J2[0], -J2[0]))) v_eq = rng.rand(c.n_eq) v_ineq = rng.rand(c.n_ineq) v = np.zeros(5) v[1] = v_eq[1] v[3] = v_ineq[3] v[4] = -v_ineq[4] v[0] = v_ineq[5] - v_ineq[6] H = c.hess(x0, v_eq, v_ineq).dot(np.eye(n)) assert_array_equal(H, hess(x0, v)) assert_array_equal(c.keep_feasible, [True, False, False, True, False, True, True]) def test_empty(): x = np.array([1, 2, 3]) c = CanonicalConstraint.empty(3) assert_equal(c.n_eq, 0) assert_equal(c.n_ineq, 0) c_eq, c_ineq = c.fun(x) assert_array_equal(c_eq, []) assert_array_equal(c_ineq, []) J_eq, J_ineq = c.jac(x) assert_array_equal(J_eq, np.empty((0, 3))) assert_array_equal(J_ineq, np.empty((0, 3))) H = c.hess(x, None, None).toarray() assert_array_equal(H, np.zeros((3, 3))) def test_initial_constraints_as_canonical(): # rng is only used to generate the coefficients of the quadratic # function that is used by the nonlinear constraint. rng = np.random.RandomState(0) x0 = np.array([0.5, 0.4, 0.3, 0.2]) n = len(x0) lb1 = [-1, -np.inf, -2, 3] ub1 = [1, np.inf, np.inf, 3] bounds = Bounds(lb1, ub1, [False, False, True, False]) fun, jac, hess = create_quadratic_function(n, 5, rng) lb2 = [-10, 3, -np.inf, -np.inf, -5] ub2 = [10, 3, np.inf, 5, np.inf] nonlinear = NonlinearConstraint( fun, lb2, ub2, jac, hess, [True, False, False, True, False]) for sparse_jacobian in [False, True]: bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian) nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian) f1 = bounds_prepared.fun.f J1 = bounds_prepared.fun.J f2 = nonlinear_prepared.fun.f J2 = nonlinear_prepared.fun.J c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical( n, [bounds_prepared, nonlinear_prepared], sparse_jacobian)
assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
numpy.testing.assert_array_equal
#!/usr/bin/env python # encoding: utf-8 # General utility methods. # # https://github.com/stefanvanberkum/CD-ABSC # # Adapted from Trusca, Wassenberg, Frasincar and Dekker (2020). # https://github.com/mtrusca/HAABSA_PLUS_PLUS # # <NAME>., <NAME>., <NAME>., <NAME>. (2020) A Hybrid Approach for Aspect-Based Sentiment Analysis Using # Deep Contextual Word Embeddings and Hierarchical Attention. In: <NAME>., <NAME>., <NAME>. (eds) Web # Engineering. ICWE 2020. Lecture Notes in Computer Science, vol 12128. Springer, Cham. # https://doi.org/10.1007/978-3-030-50578-3_25 import numpy as np from config import * def batch_index(length, batch_size, n_iter=100, is_shuffle=True): """ Method obtained from Trusca et al. (2020), no original docstring provided. :param length: :param batch_size: :param n_iter: :param is_shuffle: :return: """ index = list(range(length)) for j in range(n_iter): if is_shuffle: np.random.shuffle(index) for i in range(int(length / batch_size) + (1 if length % batch_size else 0)): yield index[i * batch_size:(i + 1) * batch_size] def load_word_id_mapping(word_id_file, encoding='utf8'): """ Method obtained from Trusca et al. (2020), original docstring below. :param word_id_file: word-id mapping file path :param encoding: file's encoding, for changing to unicode :return: word-id mapping, like hello=5 """ word_to_id = dict() for line in open(word_id_file): line = line.decode(encoding, 'ignore').lower().split() word_to_id[line[0]] = int(line[1]) print('\nload word-id mapping done!\n') return word_to_id def load_w2v(w2v_file, embedding_dim, is_skip=False): """ Method obtained from Trusca et al. (2020), no original docstring provided. :param w2v_file: :param embedding_dim: :param is_skip: :return: """ fp = open(w2v_file) if is_skip: fp.readline() w2v = [] word_dict = dict() # [0,0,...,0] represent absent words. w2v.append([0.] * embedding_dim) cnt = 0 for line in fp: cnt += 1 line = line.split() if len(line) != embedding_dim + 1: print('a bad word embedding: {}'.format(line[0])) continue w2v.append([float(v) for v in line[1:]]) word_dict[line[0]] = cnt w2v = np.asarray(w2v, dtype=np.float32) w2v_sum = np.sum(w2v, axis=0, dtype=np.float32) div = np.divide(w2v_sum, cnt, dtype=np.float32) w2v = np.row_stack((w2v, div)) word_dict['$t$'] = (cnt + 1) return word_dict, w2v def change_y_to_onehot(y, pos_neu_neg=True): """ Method adapted from Trusca et al. (2020), no original docstring provided. :param y: vector of polarities :param pos_neu_neg: True if three possible polarities (positive, neutral and negative) :return: """ from collections import Counter count = Counter(y) if FLAGS.writable == 1: with open(FLAGS.results_file, "a") as results: results.write("Positive: " + str(count['1']) + ", Neutral: " + str( count['0']) + ", Negative: " + str(count['-1']) + ", Total: " + str(sum(count.values())) + "\n") print("Polarity count:", count) if pos_neu_neg: class_set = {'1', '0', '-1'} else: class_set = set(y) n_class = len(class_set) y_onehot_mapping = dict(zip(class_set, range(n_class))) print("Polarity mapping:", y_onehot_mapping) onehot = [] for label in y: tmp = [0] * n_class tmp[y_onehot_mapping[label]] = 1 onehot.append(tmp) return np.asarray(onehot, dtype=np.int32), y_onehot_mapping def change_y_to_onehot_keep(y, y_onehot_mapping, pos_neu_neg=True): """ Method adapted from Trusca et al. (2020), no original docstring provided. :param y: vector of polarities :param y_onehot_mapping: one-hot mapping to keep :param pos_neu_neg: True if three possible polarities (positive, neutral and negative) :return: """ from collections import Counter count = Counter(y) if FLAGS.writable == 1: with open(FLAGS.results_file, "a") as results: results.write("Positive: " + str(count['1']) + ", Neutral: " + str( count['0']) + ", Negative: " + str(count['-1']) + ", Total: " + str(sum(count.values())) + "\n") print("Polarity count:", count) if pos_neu_neg: class_set = {'1', '0', '-1'} else: class_set = set(y) n_class = len(class_set) print("Polarity mapping:", y_onehot_mapping) onehot = [] for label in y: tmp = [0] * n_class tmp[y_onehot_mapping[label]] = 1 onehot.append(tmp) return np.asarray(onehot, dtype=np.int32), y_onehot_mapping def load_inputs_twitter(input_file, word_id_file, sentence_len, type_='', is_r=True, target_len=10, encoding='utf8', pos_neu_neg=True): """ Method adapted from Trusca et al. (2020), no original docstring provided. :param input_file: :param word_id_file: :param sentence_len: :param type_: :param is_r: :param target_len: :param encoding: :param pos_neu_neg: True if three possible polarities (positive, neutral and negative) :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('Load word-to-id done!') x, y, sen_len = [], [], [] x_r, sen_len_r = [], [] target_words = [] tar_len = [] all_target, all_sent, all_y = [], [], [] lines = open(input_file).readlines() for i in range(0, len(lines), 3): # Targets. words = lines[i + 1].lower().split() target = words target_word = [] for w in words: if w in word_to_id: target_word.append(word_to_id[w]) length = min(len(target_word), target_len) tar_len.append(length) target_words.append(target_word[:length] + [0] * (target_len - length)) # Sentiment. y.append(lines[i + 2].strip().split()[0]) # Left and right context. words = lines[i].lower().split() sent = words words_l, words_r = [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: if word in word_to_id: words_l.append(word_to_id[word]) else: if word in word_to_id: words_r.append(word_to_id[word]) if type_ == 'TD' or type_ == 'TC': words_l = words_l[:sentence_len] words_r = words_r[:sentence_len] sen_len.append(len(words_l)) x.append(words_l + [0] * (sentence_len - len(words_l))) tmp = words_r if is_r: tmp.reverse() sen_len_r.append(len(tmp)) x_r.append(tmp + [0] * (sentence_len - len(tmp))) all_sent.append(sent) all_target.append(target) else: words = words_l + target_word + words_r words = words[:sentence_len] sen_len.append(len(words)) x.append(words + [0] * (sentence_len - len(words))) all_y = y y, y_onehot_mapping = change_y_to_onehot(y, pos_neu_neg=pos_neu_neg) if type_ == 'TD': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \ np.asarray(sen_len_r), np.asarray(y) elif type_ == 'TC': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), np.asarray(sen_len_r), \ np.asarray(y), np.asarray(target_words), np.asarray(tar_len), np.asarray(all_sent), np.asarray( all_target), np.asarray(all_y), y_onehot_mapping elif type_ == 'IAN': return np.asarray(x), np.asarray(sen_len), np.asarray(target_words), \ np.asarray(tar_len), np.asarray(y) else: return np.asarray(x), np.asarray(sen_len), np.asarray(y) def load_inputs_twitter_keep(input_file, y_onehot_mapping, word_id_file, sentence_len, type_='', is_r=True, target_len=10, encoding='utf8', pos_neu_neg=True): """ Method adapted from Trusca et al. (2020), no original docstring provided. :param input_file: :param y_onehot_mapping: one-hot mapping to keep :param word_id_file: :param sentence_len: :param type_: :param is_r: :param target_len: :param encoding: :param pos_neu_neg: True if three possible polarities (positive, neutral and negative) :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('Load word-to-id done!') x, y, sen_len = [], [], [] x_r, sen_len_r = [], [] target_words = [] tar_len = [] all_target, all_sent, all_y = [], [], [] # Read in txt file. lines = open(input_file).readlines() for i in range(0, len(lines), 3): # Targets. words = lines[i + 1].lower().split() target = words target_word = [] for w in words: if w in word_to_id: target_word.append(word_to_id[w]) l = min(len(target_word), target_len) tar_len.append(l) target_words.append(target_word[:l] + [0] * (target_len - l)) # Sentiment. y.append(lines[i + 2].strip().split()[0]) # Left and right context. words = lines[i].lower().split() sent = words words_l, words_r = [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: if word in word_to_id: words_l.append(word_to_id[word]) else: if word in word_to_id: words_r.append(word_to_id[word]) if type_ == 'TD' or type_ == 'TC': words_l = words_l[:sentence_len] words_r = words_r[:sentence_len] sen_len.append(len(words_l)) x.append(words_l + [0] * (sentence_len - len(words_l))) tmp = words_r if is_r: tmp.reverse() sen_len_r.append(len(tmp)) x_r.append(tmp + [0] * (sentence_len - len(tmp))) all_sent.append(sent) all_target.append(target) else: words = words_l + target_word + words_r words = words[:sentence_len] sen_len.append(len(words)) x.append(words + [0] * (sentence_len - len(words))) all_y = y y, y_onehot_mapping = change_y_to_onehot_keep(y, y_onehot_mapping, pos_neu_neg=pos_neu_neg) if type_ == 'TD': return np.asarray(x), np.asarray(sen_len),
np.asarray(x_r)
numpy.asarray
"""spec2nii module containing functions specific to interpreting Philips formats Author: <NAME> <<EMAIL>> Copyright (C) 2020 University of Oxford """ from datetime import datetime from ast import literal_eval import numpy as np from spec2nii.nifti_orientation import NIFTIOrient, calc_affine from spec2nii import nifti_mrs from spec2nii import __version__ as spec2nii_ver def read_sdat_spar_pair(sdat_file, spar_file, tag=None): spar_params = read_spar(spar_file) data = read_sdat(sdat_file, spar_params['samples'], spar_params['rows']) if data.ndim < 4: data = data.reshape((1, 1, 1) + data.shape) # Move to right handed frame data = data.conj() # Dwelltime dwelltime = 1.0 / float(spar_params["sample_frequency"]) # Meta meta = spar_to_nmrs_hdrext(spar_params) meta.set_standard_def('OriginalFile', [sdat_file.name]) if tag is not None: meta.set_dim_info(0, tag) # Orientation if spar_params["volume_selection_enable"] == "yes": affine = _philips_orientation(spar_params) else: # Use default affine affine = np.diag(np.array([10000, 10000, 10000, 1])) orientation = NIFTIOrient(affine) return [nifti_mrs.NIfTI_MRS(data, orientation.Q44, dwelltime, meta), ] def read_spar(filename): '''Read the .spar file. :param filename: file path :return: dict of parameters read from spar file :rtype: dict ''' parameter_dict = {} with open(filename, 'r') as f: for line in f: # ignore comments (!) and empty lines if line == "\n" or line.startswith("!"): continue # Handle key, value = map(str.strip, line.split(":", 1)) try: val = literal_eval(value) except (ValueError, SyntaxError): if value == '': val = None else: val = value parameter_dict.update({key: val}) return parameter_dict def read_sdat(filename, samples, rows): '''Read the .sdat file. :param filename: File path :param samples: Number of spectral points :param rows: Number of rows of data ''' with open(filename, 'rb') as f: raw = f.read() floats = _vax_to_ieee_single_float(raw) data_iter = iter(floats) complex_iter = (complex(r, i) for r, i in zip(data_iter, data_iter)) raw_data = np.fromiter(complex_iter, "complex64") raw_data =
np.reshape(raw_data, (rows, samples))
numpy.reshape
# -*- coding: utf-8 -*- __all__ = ['location_change', 'sondetype', 'metadata'] def location_change(lon, lat, dim='time', ilon=None, ilat=None, as_event=True, distance_threshold=10, window=180, dates=None, **kwargs): """ Convert location change to breakpoint series Args: lon (DataArray): longitudes lat (DataArray): latitudes dim (str): datetime dimension ilon (float): location longitude ilat (float): location latitude as_event (bool): calculate location change as event (distance_threshold) distance_threshold (float): distance threshold for events window (int): event influence in days **kwargs: Returns: DataArray : distances between locations Notes: distance_threshold : degree 0.1 == 11.1 km, 0.01 == 1.1 km changes """ import numpy as np from xarray import DataArray, full_like from ..fun.cal import distance # count occurence of each coordinate pair # use the most common (also the most recent?) # to estimate distance from, # era-interim has a distance of about 80km so only if larger it would make sense to split? if not isinstance(lon, DataArray): raise ValueError('requires a DataArray', type(lon)) if not isinstance(lat, DataArray): raise ValueError('requires a DataArray', type(lat)) lon = lon.copy() lat = lat.copy() lon = lon.bfill(dim) lat = lat.bfill(dim) dist = full_like(lon, 0, dtype=np.float) dist.name = 'distance' dist.attrs['units'] = 'km' fdistance = np.vectorize(distance) ishape = lon.values.shape lon = lon.values.flatten() lat = lat.values.flatten() if ilon is None and ilat is None: if lon.size > 1: # distance between more recent and less recent tmp = fdistance(lon[1:], lat[1:], lon[:-1], lat[:-1]) tmp = np.append(tmp, tmp[-1]) else: tmp =
np.array([0])
numpy.array
""" Copyright 2019 <NAME> <<EMAIL>> This file is part of localreg. localreg is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. localreg is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with localreg. If not, see <http://www.gnu.org/licenses/>. """ # TODO # # One could consider making the kernels callable objects. These objects could # then have a member function without if-testing, which is faster in case it # is known that all datapoints are to be included. This is the case when # frac!=None. It could also have a property for its width? # import numpy as np import logging logger = logging.getLogger("localreg") logging.basicConfig() def polyfit(x, y, x0, weights=None, degree=2): if len(x) == 0: return np.nan * np.ones_like(x0) if weights is None: weights = np.ones_like(x) s = np.sqrt(weights) X = x[:, None] ** np.arange(degree + 1) X0 = x0[:, None] ** np.arange(degree + 1) lhs = X * s[:, None] rhs = y * s # This is what NumPy uses for default from version 1.15 onwards, # and what 1.14 uses when rcond=None. Computing it here ensures # support for older versions of NumPy. rcond = np.finfo(lhs.dtype).eps * max(*lhs.shape) beta = np.linalg.lstsq(lhs, rhs, rcond=rcond)[0] rslt = {"beta_fit": beta, "y_fit": X0.dot(beta)} return rslt def rectangular(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 0.5 return res def triangular(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 1 - np.abs(t[ind]) return res def epanechnikov(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 0.75 * (1 - t[ind] ** 2) return res def biweight(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = (15 / 16) * (1 - t[ind] ** 2) ** 2 return res def triweight(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = (35 / 32) * (1 - t[ind] ** 2) ** 3 return res def tricube(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = (70 / 81) * (1 - np.abs(t[ind]) ** 3) ** 3 return res def gaussian(t): res = (1 / np.sqrt(2 * np.pi)) * np.exp(-0.5 * t ** 2) return res def cosine(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = (np.pi / 4) * np.cos(np.pi * t[ind] / 2) return res def logistic(t): res = 1 / (np.exp(t) + 2 +
np.exp(-t)
numpy.exp
import h5py import numpy as np from matplotlib import pyplot as plt, animation from numpy import conj from numpy.fft import fft, ifft, ifftshift def animate(i): print(f'On frame {i}') # Loading wavefunction data psi_plus = data_file['wavefunction/psi_plus'][:, i] psi_0 = data_file['wavefunction/psi_0'][:, i] psi_minus = data_file['wavefunction/psi_minus'][:, i] # Calculate densities n_plus = abs(psi_plus) ** 2 n_0 = abs(psi_0) ** 2 n_minus = abs(psi_minus) ** 2 n = abs(psi_plus) ** 2 + abs(psi_0) ** 2 + abs(psi_minus) ** 2 Q_xx = fft(np.real(conj(psi_plus) * psi_minus) - 0.5 * (n_plus + n_minus) + n / 3) Q_yy = fft(-np.real(conj(psi_plus) * psi_minus) - 0.5 * (n_plus + n_minus) + n / 3) Q_zz = fft(-n_0 + n / 3) Q_xy = fft(np.imag(conj(psi_plus) * psi_minus)) Q_xz = fft(-np.sqrt(2.) / 4 * (psi_0 * (
conj(psi_minus - psi_minus)
numpy.conj
# -*- coding: utf-8 -*- # # Copyright (c) 2020, the cclib development team # # This file is part of cclib (http://cclib.github.io) and is distributed under # the terms of the BSD 3-Clause License. """Calculation of DDEC charges based on data parsed by cclib.""" import copy import random import numpy import logging import math import os import sys from cclib.method.calculationmethod import Method from cclib.method.volume import electrondensity_spin from cclib.parser.utils import convertor from cclib.parser.utils import find_package from typing import List class MissingInputError(Exception): pass class DDEC6(Method): """DDEC6 charges.""" # All of these are required for DDEC6 charges. required_attrs = ("homos", "mocoeffs", "nbasis", "gbasis") def __init__( self, data, volume, proatom_path=None, progress=None, loglevel=logging.INFO, logname="Log" ): # Inputs are: # data -- ccData object that describe target molecule. # volume -- Volume object that describe target Cartesian grid. # proatom_path -- path to proatom densities # (directory containing atoms.h5 in horton or c2_001_001_000_400_075.txt in chargemol) super(DDEC6, self).__init__(data, progress, loglevel, logname) self.volume = volume self.fragresults = None self.proatom_path = proatom_path if numpy.sum(self.data.coreelectrons) != 0: # TODO: Pseudopotentials should be added back pass # Check whether proatom_path is a valid directory or not. assert os.path.isdir( proatom_path ), "Directory that contains proatom densities should be added as an input." # Read in reference charges. self.proatom_density = [] self.radial_grid_r = [] for atom_number in self.data.atomnos: density, r = self._read_proatom(proatom_path, atom_number, 0) self.proatom_density.append(density) self.radial_grid_r.append(r) def __str__(self): """Return a string representation of the object.""" return "DDEC6 charges of {}".format(self.data) def __repr__(self): """Return a representation of the object.""" return "DDEC6({})".format(self.data) def _check_required_attributes(self): super(DDEC6, self)._check_required_attributes() def _cartesian_dist(self, pt1, pt2): """ Small utility function that calculates Euclidian distance between two points pt1 and pt2 are numpy arrays representing a point in Cartesian coordinates. """ return numpy.sqrt(numpy.dot(pt1 - pt2, pt1 - pt2)) def _read_proatom( self, directory, atom_num, charge # type = str # type = int # type = float ): # type: (...) -> numpy.ndarray, numpy.ndarray """Return a list containing proatom reference densities.""" # TODO: Treat calculations with psuedopotentials # TODO: Modify so that proatom densities are read only once for horton # [https://github.com/cclib/cclib/pull/914#discussion_r464039991] # File name format: # ** Chargemol ** # c2_[atom number]_[nuclear charge]_[electron count]_[cutoff radius]_[# shells] # ** Horton ** # atoms.h5 # File format: # Starting from line 13, each line contains the charge densities for each shell # If `charge` is not an integer, proatom densities have to be linearly interpolated between # the densities of the ion/atom with floor(charge) and ceiling(charge) charge_floor = int(math.floor(charge)) charge_ceil = int(math.ceil(charge)) chargemol_path_floor = os.path.join( directory, "c2_{:03d}_{:03d}_{:03d}_500_100.txt".format( atom_num, atom_num, atom_num - charge_floor ), ) chargemol_path_ceil = os.path.join( directory, "c2_{:03d}_{:03d}_{:03d}_500_100.txt".format( atom_num, atom_num, atom_num - charge_ceil ), ) horton_path = os.path.join(directory, "atoms.h5") if os.path.isfile(chargemol_path_floor) or os.path.isfile(chargemol_path_ceil): # Use chargemol proatom densities # Each shell is .05 angstroms apart (uniform). # *scalefactor* = 10.58354497764173 bohrs in module_global_parameter.f08 if atom_num <= charge_floor: density_floor = numpy.array([0]) else: density_floor = numpy.loadtxt(chargemol_path_floor, skiprows=12, dtype=float) if atom_num >= charge_ceil: density_ceil = numpy.array([0]) else: density_ceil = numpy.loadtxt(chargemol_path_ceil, skiprows=12, dtype=float) density = (charge_ceil - charge) * density_floor + ( charge - charge_floor ) * density_ceil radiusgrid = numpy.arange(1, len(density) + 1) * 0.05 elif os.path.isfile(horton_path): # Use horton proatom densities assert find_package("h5py"), "h5py is needed to read in proatom densities from horton." import h5py with h5py.File(horton_path, "r") as proatomdb: if atom_num <= charge_floor: density_floor = numpy.array([0]) radiusgrid = numpy.array([0]) else: keystring_floor = "Z={}_Q={:+d}".format(atom_num, charge_floor) density_floor = numpy.asanyarray(list(proatomdb[keystring_floor]["rho"])) # gridspec is specification of integration grid for proatom densities in horton. # Example -- ['PowerRTransform', '1.1774580743206259e-07', '20.140888089596444', '41'] # is constructed using PowerRTransform grid # with rmin = 1.1774580743206259e-07 # rmax = 20.140888089596444 # and ngrid = 41 # PowerRTransform is default in horton-atomdb.py. gridtype, gridmin, gridmax, gridn = ( proatomdb[keystring_floor].attrs["rtransform"].split() ) gridmin = convertor(float(gridmin), "bohr", "Angstrom") gridmax = convertor(float(gridmax), "bohr", "Angstrom") gridn = int(gridn) # Convert byte to string in Python3 if sys.version[0] == "3": gridtype = gridtype.decode("UTF-8") # First verify that it is one of recognized grids assert gridtype in [ "LinearRTransform", "ExpRTransform", "PowerRTransform", ], "Grid type not recognized." if gridtype == "LinearRTransform": # Linear transformation. r(t) = rmin + t*(rmax - rmin)/(npoint - 1) gridcoeff = (gridmax - gridmin) / (gridn - 1) radiusgrid = gridmin + numpy.arange(1, gridn + 1) * gridcoeff elif gridtype == "ExpRTransform": # Exponential transformation. r(t) = rmin*exp(t*log(rmax/rmin)/(npoint - 1)) gridcoeff = math.log(gridmax / gridmin) / (gridn - 1) radiusgrid = gridmin * numpy.exp(numpy.arange(1, gridn + 1) * gridcoeff) elif gridtype == "PowerRTransform": # Power transformation. r(t) = rmin*t^power # with power = log(rmax/rmin)/log(npoint) gridcoeff = math.log(gridmax / gridmin) / math.log(gridn) radiusgrid = gridmin * numpy.power(numpy.arange(1, gridn + 1), gridcoeff) if atom_num <= charge_ceil: density_ceil =
numpy.array([0])
numpy.array
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.common.parameter import Parameter from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) class NetWithLossTwoInput(nn.Cell): def __init__(self, network): super(NetWithLossTwoInput, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class NetWithReduceLoss(nn.Cell): def __init__(self, network): super(NetWithReduceLoss, self).__init__() self.mean = P.ReduceMean(keep_dims=False) self.network = network def construct(self, x, y): predict = self.network(x, y) return self.mean(predict, ()) class GradWrapTwoInput(nn.Cell): def __init__(self, network): super(GradWrapTwoInput, self).__init__() self.network = network def construct(self, x, y): return grad_all(self.network)(x, y) def compile_graph(net, parallel_mode, device_num, x): context.set_auto_parallel_context(device_num=device_num, global_rank=0, parallel_mode=parallel_mode) net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def compile_graph_two_input(net, parallel_mode, device_num, x, y): context.set_auto_parallel_context(device_num=device_num, global_rank=0, parallel_mode=parallel_mode) net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x, y) def test_reshape_matmul(): """ Feature: distribute operator reshape in auto parallel. Description: reshape - matmul net in auto parallel. Expectation: compile done without error. """ class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.matmul = P.MatMul() self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") def construct(self, x): out = self.reshape(x, (64, 28)) out = self.matmul(out, self.matmul_weight) return out size = 8 x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) compile_graph(net, "auto_parallel", size, x) def test_reshape_reshape(): """ Feature: distribute operator reshape in auto parallel. Description: reshape - reshape net in auto parallel. Expectation: compile done without error. """ class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.relu = P.ReLU() def construct(self, x): x = self.relu(x) out = self.reshape(x, (64, 28)) out = self.reshape(out, (64, 28, 1)) return out size = 8 x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) compile_graph(net, "auto_parallel", size, x) def test_reshape_auto_1(): """ Feature: distribute operator reshape in auto parallel. Description: relu - reshape - matmul net in auto parallel. Expectation: compile done without error. """ class Net(nn.Cell): def __init__(self): super().__init__() self.relu = P.ReLU() self.reshape = P.Reshape() self.matmul = P.MatMul() self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") def construct(self, x): out = self.relu(x) out = self.reshape(out, (64, 28)) out = self.matmul(out, self.matmul_weight) return out size = 8 x = Tensor(np.ones([8 * size, 28, 1, 1]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) compile_graph(net, "auto_parallel", size, x) def test_reshape_auto_2(): """ Feature: distribute operator reshape in auto parallel. Description: reshape - matmul -reshape net in auto parallel. Expectation: compile done without error. """ class Net(nn.Cell): def __init__(self): super().__init__() self.relu = P.ReLU() self.reshape = P.Reshape() self.matmul = P.MatMul() self.add_weight = Parameter(Tensor(np.ones([128, 32]), dtype=ms.float32), name="weight1") self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") def construct(self, x): out = self.relu(x) out = self.reshape(out, (64, 28)) out = self.matmul(out, self.matmul_weight) out = self.reshape(out, (128, 32)) out = out + self.add_weight return out size = 8 x = Tensor(
np.ones([8 * size, 28, 1, 1])
numpy.ones
from typing import Tuple import numpy as np import pickle from tqdm.std import tqdm from QL.QLearning import QLearning from SetteEMezzoGame import SetteEMezzo ALPHA = 0.9 class SetteEMezzoQL(SetteEMezzo, QLearning): def __init__(self, n_episodes, eps_start=0.3, lr=0.001, policy=(-1, -1)) -> None: QLearning.__init__(self, n_episodes, eps_start, lr) SetteEMezzo.__init__(self) self.Q_values = self.init_q_values() self.state_action = [] self.done = False self.policy = policy def init_q_values(self): q_values = {} for cards_value in np.arange(0.5, 8.0, 0.5): for bust_prob in range(0, 105, 5): q_values[(cards_value, bust_prob)] = {} for action in self.actions: q_values[(cards_value, bust_prob)][action] = 0 return q_values def get_action(self, cards_value_bust_prob: Tuple[float, float]): if
np.random.uniform(0.1)
numpy.random.uniform
import os import sys import subprocess import time import importlib import numpy as np import fitsio from pyrecon.iterative_fft_particle import OriginalIterativeFFTParticleReconstruction, IterativeFFTParticleReconstruction from pyrecon.utils import distance from test_multigrid import get_random_catalog def test_no_nrandoms(): boxsize = 1000. data = get_random_catalog(boxsize=boxsize,seed=42) recon = IterativeFFTParticleReconstruction(f=0.8,bias=2.,los='x',nthreads=4,boxcenter=boxsize/2.,boxsize=boxsize,nmesh=8,dtype='f8') recon.assign_data(data['Position'],data['Weight']) assert not recon.has_randoms recon.set_density_contrast() assert np.allclose(np.mean(recon.mesh_delta), 0.) recon.run() assert np.all(np.abs(recon.read_shifts(data['Position'])) < 5.) for name in ['boxsize', 'boxcenter', 'offset', 'cellsize']: assert np.allclose(getattr(recon, name), getattr(recon.info, name)) def test_dtype(): data = get_random_catalog(seed=42) randoms = get_random_catalog(seed=84) for los in [None, 'x']: recon_f4 = IterativeFFTParticleReconstruction(f=0.8,bias=2.,nthreads=4,positions=randoms['Position'],nmesh=64,los=los,dtype='f4') recon_f4.assign_data(data['Position'],data['Weight']) recon_f4.assign_randoms(randoms['Position'],randoms['Weight']) recon_f4.set_density_contrast() assert recon_f4.mesh_delta.dtype.itemsize == 4 recon_f4.run() assert recon_f4.mesh_psi[0].dtype.itemsize == 4 shifts_f4 = recon_f4.read_shifts(data['Position'].astype('f8'),field='disp+rsd') assert shifts_f4.dtype.itemsize == 8 shifts_f4 = recon_f4.read_shifts(data['Position'].astype('f4'),field='disp+rsd') assert shifts_f4.dtype.itemsize == 4 recon_f8 = IterativeFFTParticleReconstruction(f=0.8,bias=2.,nthreads=4,positions=randoms['Position'],nmesh=64,los=los,dtype='f8') recon_f8.assign_data(data['Position'],data['Weight']) recon_f8.assign_randoms(randoms['Position'],randoms['Weight']) recon_f8.set_density_contrast() assert recon_f8.mesh_delta.dtype.itemsize == 8 recon_f8.run() assert recon_f8.mesh_psi[0].dtype.itemsize == 8 shifts_f8 = recon_f8.read_shifts(data['Position'],field='disp+rsd') assert shifts_f8.dtype.itemsize == 8 assert not np.all(shifts_f4 == shifts_f8) assert np.allclose(shifts_f4, shifts_f8, atol=1e-2, rtol=1e-2) def test_mem(): data = get_random_catalog(seed=42) randoms = get_random_catalog(seed=84) from pyrecon.utils import MemoryMonitor with MemoryMonitor() as mem: recon = IterativeFFTParticleReconstruction(f=0.8,bias=2.,nthreads=4,positions=randoms['Position'],nmesh=256,dtype='f8') mem('init') recon.assign_data(data['Position'],data['Weight']) mem('data') recon.assign_randoms(randoms['Position'],randoms['Weight']) mem('randoms') recon.set_density_contrast() mem('delta') recon.run() mem('recon') # 3 meshes def test_wisdom(): def remove(fn): try: os.remove(fn) except OSError: pass default_wisdom_fn = 'wisdom.shape-64-64-64.type-complex128.nthreads-1.npy' remove(default_wisdom_fn) recon = IterativeFFTParticleReconstruction(f=0.8, bias=2, los='z', boxsize=1000, boxcenter=500, nmesh=64, fft_engine='fftw', fft_plan='measure', nthreads=1) # Wisdom created and accessible assert getattr(recon, 'fft_wisdom', None) assert not os.path.isfile(default_wisdom_fn) recon = IterativeFFTParticleReconstruction(f=0.8, bias=2, los='z', boxsize=1000, boxcenter=500, nmesh=64, fft_engine='fftw', fft_plan='measure', save_fft_wisdom=True, nthreads=1) # Wisdom created and accessible # Wisdom was written to default wisdom file assert os.path.isfile(default_wisdom_fn) new_wisdom_fn = 'new_wisdomfile.npy' remove(new_wisdom_fn) recon = IterativeFFTParticleReconstruction(f=0.8, bias=2, los='z', boxsize=1000, boxcenter=500, nmesh=64, fft_engine='fftw', fft_plan='measure', save_fft_wisdom=new_wisdom_fn, nthreads=1) # Wisdom written to custom file assert os.path.isfile(new_wisdom_fn) # Wisdom written to both files is the same assert tuple(np.load(default_wisdom_fn)) == tuple(np.load(new_wisdom_fn)) remove(default_wisdom_fn) remove(new_wisdom_fn) def test_iterative_fft_particle_wrap(): size = 100000 boxsize = 1000 for origin in [-500, 0, 500]: boxcenter = boxsize/2 + origin data = get_random_catalog(size, boxsize, seed=42) # set one of the data positions to be outside the fiducial box by hand data['Position'][-1] = np.array([boxsize, boxsize, boxsize]) + 1 data['Position'] += boxcenter randoms = get_random_catalog(size, boxsize, seed=42) # set one of the random positions to be outside the fiducial box by hand randoms['Position'][-1] = np.array([0, 0, 0]) - 1 randoms['Position'] += boxcenter recon = IterativeFFTParticleReconstruction(f=0.8, bias=2, los='z', boxsize=boxsize, boxcenter=boxcenter, nmesh=64, wrap=True) # following steps should run without error if wrapping is correctly implemented recon.assign_data(data['Position'],data['Weight']) recon.assign_randoms(randoms['Position'],randoms['Weight']) recon.set_density_contrast() recon.run() # following steps test the implementation coded into standalone pyrecon code for field in ['rsd', 'disp', 'disp+rsd']: shifts = recon.read_shifts('data', field=field) diff = data['Position'] - shifts positions_rec = (diff - recon.offset) % recon.boxsize + recon.offset assert
np.all(positions_rec <= origin + boxsize)
numpy.all
#utils import os import random import numpy as np from shutil import copyfile import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plt 用于显示图片 from PIL import Image import cv2 as cv # TensorFlow and tf.keras import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.optimizers import RMSprop from tensorflow import keras from tensorflow.compat.v1.keras import backend as K from keras.layers import Input, Lambda from tensorflow.keras import layers from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.models import load_model, Model #yolo from yolo import YOLO, detect_video import yolo_utils from tensorflow.keras.preprocessing import image from yolo3.model import yolo_head, yolo_correct_boxes, preprocess_true_boxes, yolo_loss, yolo_body import os from yolo3.utils import get_random_data current_path = os.path.dirname(__file__) def yolo_non_max_suppression(scores, boxes, classes, max_boxes=10, iou_threshold=0.5): """ 为锚框实现非最大值抑制( Non-max suppression (NMS)) 参数: scores - tensor类型,维度为(None,),yolo_filter_boxes()的输出 boxes - tensor类型,维度为(None,4),yolo_filter_boxes()的输出,已缩放到图像大小(见下文) classes - tensor类型,维度为(None,),yolo_filter_boxes()的输出 max_boxes - 整数,预测的锚框数量的最大值 iou_threshold - 实数,交并比阈值。 返回: scores - tensor类型,维度为(,None),每个锚框的预测的可能值 boxes - tensor类型,维度为(4,None),预测的锚框的坐标 classes - tensor类型,维度为(,None),每个锚框的预测的分类 注意:"None"是明显小于max_boxes的,这个函数也会改变scores、boxes、classes的维度,这会为下一步操作提供方便。 """ # max_boxes_tensor = K.variable(max_boxes,dtype="int32") #用于tf.image.non_max_suppression() # # K.get_session().run(K.variable([max_boxes_tensor])) #初始化变量max_boxes_tensor #使用使用tf.image.non_max_suppression()来获取与我们保留的框相对应的索引列表 nms_indices = tf.image.non_max_suppression(boxes, scores,max_boxes,iou_threshold) #使用K.gather()来选择保留的锚框 scores = K.gather(scores, nms_indices) boxes = K.gather(boxes, nms_indices) classes = K.gather(classes, nms_indices) return scores, boxes, classes def yolo_filter_boxes(box_confidence , boxes, box_class_probs, threshold = 0.3): """ 通过阈值来过滤对象和分类的置信度。 参数: box_confidence - tensor类型,维度为(19,19,5,1),包含19x19单元格中每个单元格预测的5个锚框中的所有的锚框的pc (一些对象的置信概率)。 boxes - tensor类型,维度为(19,19,5,4),包含了所有的锚框的(px,py,ph,pw )。 box_class_probs - tensor类型,维度为(19,19,5,80),包含了所有单元格中所有锚框的所有对象( c1,c2,c3,···,c80 )检测的概率。 threshold - 实数,阈值,如果分类预测的概率高于它,那么这个分类预测的概率就会被保留。 返回: scores - tensor 类型,维度为(None,),包含了保留了的锚框的分类概率。 boxes - tensor 类型,维度为(None,4),包含了保留了的锚框的(b_x, b_y, b_h, b_w) classess - tensor 类型,维度为(None,),包含了保留了的锚框的索引 注意:"None"是因为你不知道所选框的确切数量,因为它取决于阈值。 比如:如果有10个锚框,scores的实际输出大小将是(10,) """ #第一步:计算锚框的得分 box_scores = box_confidence * box_class_probs #第二步:找到最大值的锚框的索引以及对应的最大值的锚框的分数 box_classes = K.argmax(box_scores, axis=-1)#(19*19*5*1) box_class_scores = K.max(box_scores, axis=-1)#找到最可能的类,是将最后一个维度进行展开(19*19*5*80)得到(19*19*5*1) #第三步:根据阈值创建掩码 filtering_mask = (box_class_scores >= threshold) #对scores, boxes 以及 classes使用掩码 scores = tf.boolean_mask(box_class_scores,filtering_mask) boxes = tf.boolean_mask(boxes,filtering_mask) classes = tf.boolean_mask(box_classes,filtering_mask) return scores , boxes , classes def yolo_boxes_to_corners(box_xy, box_wh): """Convert YOLO box predictions to bounding box corners.""" box_mins = box_xy - (box_wh / 2.) box_maxes = box_xy + (box_wh / 2.) return K.concatenate([ box_mins[..., 1:2], # y_min box_mins[..., 0:1], # x_min box_maxes[..., 1:2], # y_max box_maxes[..., 0:1] # x_max ]) def yolo_eval(box_xy, box_wh, box_confidence, box_class_probs,image_shape, max_boxes=15, score_threshold=0.2,iou_threshold=0.4): """ 将YOLO编码的输出(很多锚框)转换为预测框以及它们的分数,框坐标和类。 参数: yolo_outputs - 编码模型的输出(对于维度为(608,608,3)的图片),包含4个tensors类型的变量: box_confidence : tensor类型,维度为(None, 19, 19, 5, 1) box_xy : tensor类型,维度为(None, 19, 19, 5, 2) box_wh : tensor类型,维度为(None, 19, 19, 5, 2) box_class_probs: tensor类型,维度为(None, 19, 19, 5, 80) image_shape - tensor类型,维度为(2,),包含了输入的图像的维度,这里是(608.,608.) max_boxes - 整数,预测的锚框数量的最大值 score_threshold - 实数,可能性阈值。 iou_threshold - 实数,交并比阈值。 返回: scores - tensor类型,维度为(,None),每个锚框的预测的可能值 boxes - tensor类型,维度为(4,None),预测的锚框的坐标 classes - tensor类型,维度为(,None),每个锚框的预测的分类 """ #获取YOLO模型的输出 # image_input = Input(shape=(416,416, 3)) # print("box_xy, box_wh :") # print(box_xy, box_wh) #中心点转换为边角 boxes = yolo_boxes_to_corners(box_xy,box_wh) #可信度分值过滤 scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, score_threshold) #缩放锚框,以适应原始图像 boxes = yolo_utils.scale_boxes(boxes, image_shape) # #使用非最大值抑制 # scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, max_boxes, iou_threshold) return scores, boxes, classes def pridect(origin_img,images,model): result=model.predict(images,batch_size=1) # print(result[0].shape) # print(result[1].shape) # print(result[2].shape) anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] # num_layers = len(anchors)//3 # default setting # yolo_outputs = args[:num_layers] # y_true = args[num_layers:] # input_shape = K.cast(K.shape( result[0])[1:3] * 32, K.dtype(y_true[0])) # print(K.shape(result[0])[1:3] * 32) input_shape =K.shape(result[0])[1:3] * 32 colors = yolo_utils.generate_colors(class_names) box_xy, box_wh, box_confidence, box_class_probs = yolo_head(result[0], anchors[anchor_mask[0]], 20,input_shape) scores, boxes, classes=yolo_eval(box_xy, box_wh, box_confidence, box_class_probs,image_shape=(float(origin_img.size[1]),float(origin_img.size[0]))) for i in range(1,3): box_xy, box_wh, box_confidence, box_class_probs = yolo_head(result[i], anchors[anchor_mask[i]], 20,input_shape) tmp_scores, tmp_boxes, tmp_classes=yolo_eval(box_xy, box_wh, box_confidence, box_class_probs,image_shape=(float(origin_img.size[1]),float(origin_img.size[0]))) scores=tf.concat([scores,tmp_scores],axis=0) boxes=tf.concat([boxes,tmp_boxes],axis=0) classes=tf.concat([ classes, tmp_classes],axis=0) # yolo_utils.draw_boxes(origin_img, scores, boxes, classes, class_names, colors) #使用非最大值抑制 scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, 15, 0.4) yolo_utils.draw_boxes(origin_img, scores, boxes, classes, class_names, colors) # print("scores.shape = " + str(scores.shape)) # print("boxes.shape = " + str(boxes.shape)) # print("classes.shape = " + str(classes.shape)) return origin_img def camera_test(yolo_model): # 0是代表摄像头编号,只有一个的话默认为0 url = 'http://192.168.2.106:4747/video?640x480' capture =cv.VideoCapture(0) capture.set(cv.CAP_PROP_FRAME_WIDTH, 1920) capture.set(cv.CAP_PROP_FRAME_HEIGHT,1080) fourcc = cv.VideoWriter_fourcc(*'XVID') out = cv.VideoWriter('road_Test_output.MP4',-1,25, (1920,1080)) # capture.set(cv.CAP_PROP_FPS,30) while (True): ref, frame = capture.read() # frame = frame[:,::-1,:] img = cv.resize(frame, (int(416), int(416)), interpolation=cv.INTER_NEAREST) #cv2 frame to image img = Image.fromarray(np.uint8(img)) x = image.img_to_array(img)/255.0 x = np.expand_dims(x, axis=0) dec_image = np.vstack([x]) images=Image.fromarray(
np.uint8(frame)
numpy.uint8
from mpi4py import MPI import numpy as np import h5py import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.ioff() comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() # %% Set up grids, used for certain calculations nx = 2048 k1 = np.fft.fftfreq(nx, d=1.0/nx) k2 = np.fft.rfftfreq(nx, d=1.0/nx) k2g, k1g = np.meshgrid(k2,k1) lap = k2g**2 + k1g**2 #kd = (k2g>0)*(14.0**2) kd = 0.0 k2kd = lap+kd invlap = np.zeros(lap.shape) invlap[k2kd>0] = -1.0 / k2kd[k2kd>0] sqk = np.sqrt(-invlap) # Whether to use energy norm or enstrophy norm energyNorm = True compute_pods = True compute_dmd_modes = False # Total number of snapshots to use in the POD (need +1 for POD) totalsnaps = 256 snaps_per_rank = totalsnaps//size times =
np.empty(totalsnaps)
numpy.empty
import numpy as np from datetime import datetime import cv2 import os from PIL import Image import torch import torchvision from torchvision import datasets, transforms, models from dataset import Asbest_segmentation from tqdm import tqdm import matplotlib.pyplot as plt import rawpy from utils import parse_anno_file, create_mask_file, big_image_predict, AverageMeter from apex import amp lr = 1e-5 os.environ['CUDA_VISIBLE_DEVICES'] = '1' path_to_data = 'asbest' anno_stones = parse_anno_file(os.path.join(path_to_data, 'images', 'annotation.xml')) anno_tr_stones = parse_anno_file(os.path.join(path_to_data, 'tr_stones', 'annotation.xml')) transporter_file = os.path.join('asbest', 'transporter', '2020.03.16', 'TRANS_11:28:05_16-03-2020_36.png') img_tr_stones_shape = (int(anno_tr_stones[0]['height']), int(anno_tr_stones[0]['width'])) stones_valid_indexes =
np.array([3, 7, 12, 15, 20, 30, 40], dtype=int)
numpy.array
#!python3 import os import argparse import pandas as pd import numpy as np from glob import glob from plot_module import * def replace_grec(s): return s.replace("\\alpha", "\\Delta G_{\\mathrm{min}}").replace("\\gamma", "\\Delta \\Delta G") nbr_points = 100 if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-a', '--age', required=True, type=float, dest="age") parser.add_argument('-b', '--branches', required=True, type=int, dest="branches") parser.add_argument('-o', '--output', required=True, type=str, dest="output") parser.add_argument("--y_param_key", required=False, action='append', type=lambda kv: kv.split(":"), dest='y_param_dict') parser.add_argument('-i', '--input', required=True, type=str, nargs='+', dest="input") args = parser.parse_args() args.y_param_dict = dict(args.y_param_dict) if (args.y_param_dict is not None) else dict() fig = plt.figure(figsize=(1920 / my_dpi, 1080 / my_dpi), dpi=my_dpi) t_range = np.linspace(0, args.branches * args.age, nbr_points * args.branches) y_param = "<dN/dN0>" for prefix in args.input: print(prefix) array = [] for tsv_path in sorted(glob("{0}/*.substitutions.tsv".format(prefix))): df = pd.read_csv(tsv_path, sep='\t', usecols=["NodeName", "AbsoluteStartTime", "EndTime", y_param]) t_sample = np.searchsorted(df["AbsoluteStartTime"].values, t_range, side="right") - 1 array.append(df[y_param].values[t_sample]) n = prefix.split("/")[-1] label = args.y_param_dict[n] if (n in args.y_param_dict) else "n={0}".format(n) plt.plot(t_range, np.mean(array, axis=0), linewidth=3, label=replace_grec(label)) plt.fill_between(t_range,
np.percentile(array, 5, axis=0)
numpy.percentile
import numpy as np import roboverse.bullet as bullet class DrawerOpen: def __init__(self, env, xyz_action_scale=7.0, angle_action_scale = 0.1, return_origin_thresh=0.1): self.env = env self.xyz_action_scale = xyz_action_scale self.angle_action_scale = angle_action_scale self.gripper_dist_thresh = 0.06 self.gripper_xy_dist_thresh = 0.03 self.ending_height_thresh = 0.2 self.return_base_thresh = 0.4 self.open_angle = [90.0, 0.0, 0.0] self.done = False self.return_origin_thresh = return_origin_thresh self.reset() def reset(self): # self.dist_thresh = 0.06 + np.random.normal(scale=0.01) self.drawer_never_opened = True self.done = False offset_coeff = (-1) ** (1 - self.env.left_opening) self.handle_offset = np.array([offset_coeff * 0.01, 0.0, -0.0]) #-0.01 def get_action(self): ee_pos, ee_orientation = bullet.get_link_state( self.env.robot_id, self.env.end_effector_index) ee_deg = bullet.quat_to_deg(ee_orientation) handle_pos = self.env.get_drawer_handle_pos() + self.handle_offset gripper_handle_dist = np.linalg.norm(handle_pos - ee_pos) gripper_handle_xy_dist = np.linalg.norm(handle_pos[:2] - ee_pos[:2]) done = False noise = True # print(f"gripper_handle_xy_dist: {gripper_handle_xy_dist}") if (gripper_handle_xy_dist > self.gripper_xy_dist_thresh and not self.env.is_drawer_open()): # print('xy - approaching handle') action_xyz = (handle_pos - ee_pos) * self.xyz_action_scale action_xyz = list(action_xyz[:2]) + [0.] # don't droop down. # action_angles = [0., 0., 0.] action_angles = (self.open_angle - ee_deg) * self.angle_action_scale action_gripper = [0.0] elif (gripper_handle_dist > self.gripper_dist_thresh and not self.env.is_drawer_open()): # print("moving down toward handle") noise = False action_xyz = (handle_pos - ee_pos) * self.xyz_action_scale # action_angles = [0., 0., 0.] action_angles = (self.open_angle - ee_deg) * self.angle_action_scale action_gripper = [0.0] elif not self.env.is_drawer_open(): # print("opening drawer") noise = False x_command = (-1) ** (1 - self.env.left_opening) action_xyz = np.array([x_command, 0, 0]) # action = np.asarray([0., 0., 0.7]) # action_angles = (self.open_angle - ee_deg) * self.angle_action_scale action_angles = [0., 0., 0.] action_gripper = [0.0] elif (np.abs(ee_pos[2] - self.ending_height_thresh) > self.gripper_dist_thresh): # print("return") if (np.abs(ee_pos[2] - self.ending_height_thresh) < self.return_base_thresh): action_xyz = [0., 0., 0.] action_angles = [0., 0., 0.] action_gripper = [0.] done = True self.done = True else: self.drawer_never_opened = False action_xyz = np.array([0, 0, 0.7]) # force upward action # action_angles = [0., 0., 0.] noise = False action_angles = (self.open_angle - ee_deg) * self.angle_action_scale action_gripper = [0.0] else: action_xyz = [0., 0., 0.] action_angles = [0., 0., 0.] action_gripper = [0.0] # if done: # if np.linalg.norm(ee_pos - self.env.ee_pos_init) < self.return_origin_thresh: # self.done = done # else: # action_xyz = (self.env.ee_pos_init - ee_pos) * self.xyz_action_scale # # print(ee_pos, self.env.ee_pos_init) # # print(np.linalg.norm(ee_pos - self.env.ee_pos_init)) agent_info = dict(done=self.done) action = np.concatenate((action_xyz, action_angles, action_gripper)) return action, agent_info, noise class DrawerClose: def __init__(self, env, xyz_action_scale=3.0, return_origin_thresh=0.1,angle_action_scale = 0.1): self.env = env self.xyz_action_scale = xyz_action_scale self.gripper_dist_thresh = 0.06 self.gripper_xy_dist_thresh = 0.03 self.ending_z = -0.25 self.top_drawer_offset = np.array([0, 0, 0.02]) self.push_angle = [90.0, 5.0, 0.0] self.done = False self.begin_closing = False self.angle_action_scale = angle_action_scale self.return_origin_thresh = return_origin_thresh self.reset() def reset(self): self.drawer_never_opened = True offset_coeff = (-1) ** (1 - self.env.left_opening) self.handle_offset = np.array([offset_coeff * 0.01, 0.0, -0.01]) self.reached_pushing_region = False self.neutral_taken = False self.begin_closing = False self.done = False def get_action(self): ee_pos, ee_orientation = bullet.get_link_state( self.env.robot_id, self.env.end_effector_index) ee_deg = bullet.quat_to_deg(ee_orientation) handle_pos = self.env.get_drawer_handle_pos() + self.handle_offset gripper_handle_dist = np.linalg.norm(handle_pos - ee_pos) gripper_handle_xy_dist = np.linalg.norm(handle_pos[:2] - ee_pos[:2]) drawer_pos = self.env.get_drawer_pos("drawer") # drawer_push_target_pos = ( # drawer_pos + np.array([0.15, 0., 0.05])) # print(f"handle_pos: {handle_pos}, drawer_pos: {drawer_pos} ") drawer_push_target_pos = ( self.env.get_drawer_handle_pos() +
np.array([0.1, 0.0, 0.12])
numpy.array
import photutils from astropy.io import fits, ascii import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable import sys import os from pkg_resources import resource_filename if 'DISPLAY' not in os.environ: mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib import patches from matplotlib import gridspec import glob from photutils import CircularAperture, CircularAnnulus from photutils import RectangularAperture from photutils import aperture_photometry import photutils if photutils.__version__ > "1.0": from . import fit_2dgauss from photutils.centroids import centroid_2dg else: from photutils import centroid_2dg import numpy as np from astropy.time import Time import astropy.units as u import pdb from copy import deepcopy import yaml import warnings from scipy.stats import binned_statistic from astropy.table import Table import multiprocessing from multiprocessing import Pool import time import logging import urllib import tqdm maxCPUs = multiprocessing.cpu_count() // 3 try: import bokeh.plotting from bokeh.models import ColumnDataSource, HoverTool from bokeh.models import Range1d from bokeh.models import WheelZoomTool except ImportError as err2: print("Could not import bokeh plotting. Interactive plotting may not work") from .utils import robust_poly, robust_statistics from .utils import get_baseDir from .instrument_specific import rowamp_sub def run_one_phot_method(allInput): """ Do a photometry/spectroscopy method on one file For example, do aperture photometry on one file This is a slightly awkward workaround because multiprocessing doesn't work on object methods So it's a separate function that takes an object and runs the method Parameters ----------- allInput: 3 part tuple (object, int, string) This contains the object, file index to run (0-based) and name of the method to run """ photObj, ind, method = allInput photMethod = getattr(photObj,method) return photMethod(ind) def run_multiprocessing_phot(photObj,fileIndices,method='phot_for_one_file'): """ Run photometry/spectroscopy methods on all files using multiprocessing Awkward workaround because multiprocessing doesn't work on object methods Parameters ---------- photObj: Photometry object A photometry Object instance fileIndices: list List of file indices method: str Method on which to apply multiprocessing """ allInput = [] for oneInd in fileIndices: allInput.append([photObj,oneInd,method]) n_files = len(fileIndices) if n_files < maxCPUs: raise Exception("Fewer files to process than CPUs, this can confuse multiprocessing") p = Pool(maxCPUs) outputDat = list(tqdm.tqdm(p.imap(run_one_phot_method,allInput),total=n_files)) p.close() return outputDat def read_yaml(filePath): with open(filePath) as yamlFile: yamlStructure = yaml.safe_load(yamlFile) return yamlStructure path_to_example = "parameters/phot_params/example_phot_parameters.yaml" exampleParamPath = resource_filename('tshirt',path_to_example) class phot: def __init__(self,paramFile=exampleParamPath, directParam=None): """ Photometry class Parameters ------ paramFile: str Location of the YAML file that contains the photometry parameters as long as directParam is None. Otherwise, it uses directParam directParam: dict Rather than use the paramFile, you can put a dictionary here. This can be useful for running a batch of photometric extractions. Properties ------- paramFile: str Same as paramFile above param: dict The photometry parameters like file names, aperture sizes, guess locations fileL: list The files on which photometry will be performed nImg: int Number of images in the sequence directParam: dict Parameter dictionary rather than YAML file (useful for batch processing) """ self.pipeType = 'photometry' self.get_parameters(paramFile=paramFile,directParam=directParam) defaultParams = {'srcGeometry': 'Circular', 'bkgSub': True, 'isCube': False, 'cubePlane': 0, 'doCentering': True, 'bkgGeometry': 'CircularAnnulus', 'boxFindSize': 18,'backStart': 9, 'backEnd': 12, 'scaleAperture': False, 'apScale': 2.5, 'apRange': [0.01,9999], 'scaleBackground': False, 'nanTreatment': 'zero', 'backOffset': [0.0,0.0], 'srcName': 'WASP 62','srcNameShort': 'wasp62', 'refStarPos': [[50,50]],'procFiles': '*.fits', 'apRadius': 9,'FITSextension': 0, 'jdRef': 2458868, 'nightName': 'UT2020-01-20','srcName' 'FITSextension': 0, 'HEADextension': 0, 'refPhotCentering': None,'isSlope': False, 'itimeKeyword': 'INTTIME','readNoise': None, 'detectorGain': None,'cornerSubarray': False, 'subpixelMethod': 'exact','excludeList': None, 'dateFormat': 'Two Part','copyCentroidFile': None, 'bkgMethod': 'mean','diagnosticMode': False, 'bkgOrderX': 1, 'bkgOrderY': 1,'backsub_directions': ['Y','X'], 'readFromTshirtExamples': False, 'saturationVal': None, 'satNPix': 5, 'nanReplaceValue': 0.0, 'DATE-OBS': None, 'driftFile': None } for oneKey in defaultParams.keys(): if oneKey not in self.param: self.param[oneKey] = defaultParams[oneKey] xCoors, yCoors = [], [] positions = self.param['refStarPos'] self.nsrc = len(positions) ## Set up file names for output self.check_file_structure() self.dataFileDescrip = self.param['srcNameShort'] + '_'+ self.param['nightName'] self.photFile = os.path.join(self.baseDir,'tser_data','phot','phot_'+self.dataFileDescrip+'.fits') self.centroidFile = os.path.join(self.baseDir,'centroids','cen_'+self.dataFileDescrip+'.fits') self.refCorPhotFile = os.path.join(self.baseDir,'tser_data','refcor_phot','refcor_'+self.dataFileDescrip+'.fits') # Get the file list self.fileL = self.get_fileList() self.nImg = len(self.fileL) self.srcNames = np.array(np.arange(self.nsrc),dtype=str) self.srcNames[0] = 'src' self.set_up_apertures(positions) self.check_parameters() self.get_drift_dat() def get_parameters(self,paramFile,directParam=None): if directParam is None: self.paramFile = paramFile self.param = read_yaml(paramFile) else: self.paramFile = 'direct dictionary' self.param = directParam def check_file_structure(self): """ Check the file structure for plotting/saving data """ baseDir = get_baseDir() structure_file = resource_filename('tshirt','directory_info/directory_list.yaml') dirList = read_yaml(structure_file) for oneFile in dirList: fullPath = os.path.join(baseDir,oneFile) ensure_directories_are_in_place(fullPath) self.baseDir = baseDir def get_fileList(self): if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests search_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['procFiles']) if len(glob.glob(search_path)) == 0: print("Did not find example tshirt data. Now attempting to download...") get_tshirt_example_data() else: search_path = self.param['procFiles'] origList = np.sort(glob.glob(search_path)) if self.param['excludeList'] is not None: fileList = [] for oneFile in origList: if os.path.basename(oneFile) not in self.param['excludeList']: fileList.append(oneFile) else: fileList = origList if len(fileList) == 0: print("Note: File Search comes up empty") if os.path.exists(self.photFile): print("Note: Reading file list from previous phot file instead.") t1 = Table.read(self.photFile,hdu='FILENAMES') fileList = np.array(t1['File Path']) return fileList def check_parameters(self): assert type(self.param['backOffset']) == list,"Background offset is not a list" assert len(self.param['backOffset']) == 2,'Background offset must by a 2 element list' def set_up_apertures(self,positions): if self.param['srcGeometry'] == 'Circular': self.srcApertures = CircularAperture(positions,r=self.param['apRadius']) elif self.param['srcGeometry'] == 'Square': self.srcApertures = RectangularAperture(positions,w=self.param['apRadius'], h=self.param['apRadius'],theta=0) elif self.param['srcGeometry'] == 'Rectangular': self.srcApertures = RectangularAperture(positions,w=self.param['apWidth'], h=self.param['apHeight'],theta=0) else: print('Unrecognized aperture') self.xCoors = self.srcApertures.positions[:,0] self.yCoors = self.srcApertures.positions[:,1] if self.param['bkgSub'] == True: bkgPositions = np.array(deepcopy(positions)) bkgPositions[:,0] = bkgPositions[:,0] + self.param['backOffset'][0] bkgPositions[:,1] = bkgPositions[:,1] + self.param['backOffset'][1] if self.param['bkgGeometry'] == 'CircularAnnulus': self.bkgApertures = CircularAnnulus(bkgPositions,r_in=self.param['backStart'], r_out=self.param['backEnd']) elif self.param['bkgGeometry'] == 'Rectangular': self.bkgApertures = RectangularAperture(bkgPositions,w=self.param['backWidth'], h=self.param['backHeight'],theta=0) else: raise ValueError('Unrecognized background geometry') def get_default_index(self): """ Get the default index from the file list """ return self.nImg // 2 def get_default_im(self,img=None,head=None): """ Get the default image for postage stamps or star identification maps""" ## Get the data if img is None: img, head = self.getImg(self.fileL[self.get_default_index()]) return img, head def get_default_cen(self,custPos=None,ind=0): """ Get the default centroids for postage stamps or star identification maps Parameters ---------- custPos: numpy array Array of custom positions for the apertures. Otherwise it uses the guess position ind: int Image index. This is used to guess the position if a drift file is given """ if custPos is None: initialPos = deepcopy(self.srcApertures.positions) showApPos = np.zeros_like(initialPos) showApPos[:,0] = initialPos[:,0] + float(self.drift_dat['dx'][ind]) showApPos[:,1] = initialPos[:,1] + float(self.drift_dat['dy'][ind]) else: showApPos = custPos return showApPos def get_drift_dat(self): drift_dat_0 = Table() drift_dat_0['Index'] = np.arange(self.nImg) #drift_dat_0['File'] = self.fileL drift_dat_0['dx'] = np.zeros(self.nImg) drift_dat_0['dy'] = np.zeros(self.nImg) if self.param['driftFile'] == None: self.drift_dat = drift_dat_0 drift_file_found = False else: if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests drift_file_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['driftFile']) else: drift_file_path = self.param['driftFile'] if os.path.exists(drift_file_path) == False: drift_file_found = False warnings.warn("No Drift file found at {}".format(drift_file_path)) else: drift_file_found = True self.drift_dat = ascii.read(drift_file_path) return drift_file_found def make_drift_file(self,srcInd=0,refIndex=0): """ Use the centroids in photometry to generate a drift file of X/Y offsets Parameters ---------- srcInd: int The source index used for drifts refIndex: int Which file index corresponds to 0.0 drift """ HDUList = fits.open(self.photFile) cenData = HDUList['CENTROIDS'].data photHead = HDUList['PHOTOMETRY'].header nImg = photHead['NIMG'] drift_dat = Table() drift_dat['Index'] = np.arange(nImg) x = cenData[:,srcInd,0] drift_dat['dx'] = x - x[refIndex] y = cenData[:,srcInd,1] drift_dat['dy'] = y - y[refIndex] drift_dat['File'] = HDUList['FILENAMES'].data['File Path'] outPath = os.path.join(self.baseDir,'centroids','drift_'+self.dataFileDescrip+'.ecsv') drift_dat.meta['Zero Index'] = refIndex drift_dat.meta['Source Used'] = srcInd drift_dat.meta['Zero File'] = str(drift_dat['File'][refIndex]) print("Saving Drift file to {}".format(outPath)) drift_dat.write(outPath,overwrite=True,format='ascii.ecsv') def showStarChoices(self,img=None,head=None,custPos=None,showAps=False, srcLabel=None,figSize=None,showPlot=False, apColor='black',backColor='black', vmin=None,vmax=None,index=None, labelColor='white', xLim=None,yLim=None, txtOffset=20): """ Show the star choices for photometry Parameters ------------------ img : numpy 2D array, optional An image to plot head : astropy FITS header, optional header for image custPos : numpy 2D array or list of tuple coordinates, optional Custom positions showAps : bool, optional Show apertures rather than circle stars srcLabel : str or None, optional What should the source label be? The default is "src" srcLabel : list or None, optional Specify the size of the plot. This is useful for looking at high/lower resolution showPlot : bool Show the plot? If True, it will show, otherwise it is saved as a file apColor: str The color for the source apertures backColor: str The color for the background apertures vmin: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmin parameter vmax: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmax parameter index: int or None The index of the file name. If None, it uses the default labelColor: str Color for the text label for sources xLim: None or two element list Specify the minimum and maximum X for the plot. For example xLim=[40,60] yLim: None or two element list Specify the minimum and maximum Y for the plot. For example yLim=[40,60] txtOffset: float The X and Y offset to place the text label for a source """ fig, ax = plt.subplots(figsize=figSize) if index is None: index = self.get_default_index() if img is None: img, head = self.getImg(self.fileL[index]) else: img_other, head = self.get_default_im(img=img,head=None) if vmin is None: useVmin = np.nanpercentile(img,1) else: useVmin = vmin if vmax is None: useVmax = np.nanpercentile(img,99) else: useVmax = vmax imData = ax.imshow(img,cmap='viridis',vmin=useVmin,vmax=useVmax,interpolation='nearest') ax.invert_yaxis() rad = 50 ## the radius for the matplotlib scatter to show source centers showApPos = self.get_default_cen(custPos=custPos,ind=index) if showAps == True: apsShow = deepcopy(self.srcApertures) apsShow.positions = showApPos self.adjust_apertures(index) if photutils.__version__ >= "0.7": apsShow.plot(axes=ax,color=apColor) else: apsShow.plot(ax=ax,color=apColor) if self.param['bkgSub'] == True: backApsShow = deepcopy(self.bkgApertures) backApsShow.positions = showApPos backApsShow.positions[:,0] = backApsShow.positions[:,0] + self.param['backOffset'][0] backApsShow.positions[:,1] = backApsShow.positions[:,1] + self.param['backOffset'][1] if photutils.__version__ >= "0.7": backApsShow.plot(axes=ax,color=backColor) else: backApsShow.plot(ax=ax,color=backColor) outName = 'ap_labels_{}.pdf'.format(self.dataFileDescrip) else: ax.scatter(showApPos[:,0],showApPos[:,1], s=rad, facecolors='none', edgecolors='r') outName = 'st_labels_{}.pdf'.format(self.dataFileDescrip) for ind, onePos in enumerate(showApPos): #circ = plt.Circle((onePos[0], onePos[1]), rad, color='r') #ax.add_patch(circ) if ind == 0: if srcLabel is None: name='src' else: name=srcLabel else: name=str(ind) ax.text(onePos[0]+txtOffset,onePos[1]+txtOffset,name,color=labelColor) ax.set_xlabel('X (px)') ax.set_ylabel('Y (px)') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(imData,label='Counts',cax=cax) ax.set_xlim(xLim) ax.set_ylim(yLim) if showPlot == True: fig.show() else: outF = os.path.join(self.baseDir,'plots','photometry','star_labels',outName) fig.savefig(outF, bbox_inches='tight') plt.close(fig) def showStamps(self,img=None,head=None,custPos=None,custFWHM=None, vmin=None,vmax=None,showPlot=False,boxsize=None,index=None): """ Shows the fixed apertures on the image with postage stamps surrounding sources Parameters ----------- index: int Index of the file list. This is needed if scaling apertures """ ## Calculate approximately square numbers of X & Y positions in the grid numGridY = int(np.floor(np.sqrt(self.nsrc))) numGridX = int(np.ceil(float(self.nsrc) / float(numGridY))) fig, axArr = plt.subplots(numGridY, numGridX) img, head = self.get_default_im(img=img,head=head) if boxsize == None: boxsize = self.param['boxFindSize'] showApPos = self.get_default_cen(custPos=custPos) if index is None: index = self.get_default_index() self.adjust_apertures(index) for ind, onePos in enumerate(showApPos): if self.nsrc == 1: ax = axArr else: ax = axArr.ravel()[ind] yStamp_proposed = np.array(onePos[1] + np.array([-1,1]) * boxsize,dtype=np.int) xStamp_proposed = np.array(onePos[0] + np.array([-1,1]) * boxsize,dtype=np.int) xStamp, yStamp = ensure_coordinates_are_within_bounds(xStamp_proposed,yStamp_proposed,img) stamp = img[yStamp[0]:yStamp[1],xStamp[0]:xStamp[1]] if vmin == None: useVmin = np.nanpercentile(stamp,1) else: useVmin = vmin if vmax == None: useVmax = np.nanpercentile(stamp,99) else: useVmax = vmax imData = ax.imshow(stamp,cmap='viridis',vmin=useVmin,vmax=useVmax,interpolation='nearest') ax.invert_yaxis() ax.set_title(self.srcNames[ind]) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) srcX, srcY = onePos[0] - xStamp[0],onePos[1] - yStamp[0] circ = plt.Circle((srcX,srcY), self.srcApertures.r,edgecolor='red',facecolor='none') ax.add_patch(circ) if self.param['bkgSub'] == True: for oneRad in [self.bkgApertures.r_in, self.bkgApertures.r_out]: circ = plt.Circle((srcX + self.param['backOffset'][0],srcY + self.param['backOffset'][1]), oneRad,edgecolor='blue',facecolor='none') ax.add_patch(circ) if custFWHM is not None: circFWHM = plt.Circle((srcX,srcY), custFWHM[ind],edgecolor='orange',facecolor='none') ax.add_patch(circFWHM) fig.colorbar(imData,label='Counts') totStamps = numGridY * numGridX for ind in np.arange(self.nsrc,totStamps): ## Make any extra postage stamps blank ax = axArr.ravel()[ind] ax.set_frame_on(False) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) #self.srcApertures.plot(indices=ind,color='red') #ax.set_xlim(onePos[0] - boxsize,onePos[0] + boxsize) #ax.set_ylim(onePos[1] - boxsize,onePos[1] + boxsize) if showPlot == True: fig.show() else: outName = 'stamps_'+self.dataFileDescrip+'.pdf' outPath = os.path.join(self.baseDir,'plots','photometry','postage_stamps',outName) fig.savefig(outPath) plt.close(fig) def showCustSet(self,index=None,ptype='Stamps',defaultCen=False,vmin=None,vmax=None, boxsize=None,showPlot=False): """ Show a custom stamp or star identification plot for a given image index Parameters -------------- index: int Index of the image/centroid to show ptype: str Plot type - 'Stamps' for postage stamps 'Map' for star identification map defaultCen: bool Use the default centroid? If True, it will use the guess centroids to show the guess before centering. boxsize: int or None The size of the box to cut out for plotting postage stamps. If None, will use defaults. Only use when ptype is 'Stamps' showPlot: bool Show the plot in notebook or iPython session? If True, it will show the plot. If False, it will save the plot in the default directory. """ self.get_allimg_cen() if index == None: index = self.get_default_index() img, head = self.getImg(self.fileL[index]) if defaultCen == True: cen = self.srcApertures.positions else: cen = self.cenArr[index] if ptype == 'Stamps': self.showStamps(custPos=cen,img=img,head=head,vmin=vmin,vmax=vmax,showPlot=showPlot, boxsize=boxsize,index=index) elif ptype == 'Map': self.showStarChoices(custPos=cen,img=img,head=head,showAps=True,showPlot=showPlot, index=index) else: print('Unrecognized plot type') def make_filename_hdu(self,airmass=None): """ Makes a Header data unit (binary FITS table) for filenames """ fileLTable = Table() fileLTable['File Path'] = self.fileL if airmass is not None: fileLTable['Airmass'] = airmass hduFileNames = fits.BinTableHDU(fileLTable) hduFileNames.name = "FILENAMES" return hduFileNames def save_centroids(self,cenArr,fwhmArr,fixesApplied=True,origCen=None,origFWHM=None): """ Saves the image centroid data Parameters ----------- cenArr: numpy array 3d array of centroids (nImg x nsrc x 2 for x/y) fwhmArr: numpy array 3d array of fwhm (nImg x nsrc x 2 for x/y) fixesApplied: bool Are fixes applied to the centroids? origCen: None or numpy array Original array of centroids origFWHM: None or numpy array Original array of FWHMs """ hdu = fits.PrimaryHDU(cenArr) hdu.header['NSOURCE'] = (self.nsrc,'Number of sources with centroids') hdu.header['NIMG'] = (self.nImg,'Number of images') hdu.header['AXIS1'] = ('dimension','dimension axis X=0,Y=1') hdu.header['AXIS2'] = ('src','source axis') hdu.header['AXIS3'] = ('image','image axis') hdu.header['BOXSZ'] = (self.param['boxFindSize'],'half-width of the box used for source centroids') hdu.header['REFCENS'] = (self.param['refPhotCentering'],'Reference Photometry file used to shift the centroids (or empty if none)') hdu.header['FIXES'] = (fixesApplied, 'Have centroid fixes been applied from trends in other sources?') hdu.name = 'Centroids' hdu2 = fits.ImageHDU(fwhmArr) hdu2.header['NSOURCE'] = (self.nsrc,'Number of sources with centroids') hdu2.header['NIMG'] = (self.nImg,'Number of images') hdu2.header['AXIS1'] = ('dimension','dimension axis X=0,Y=1') hdu2.header['AXIS2'] = ('src','source axis') hdu2.header['AXIS3'] = ('image','image axis') hdu2.header['BOXSZ'] = (self.param['boxFindSize'],'half-width of the box used to fit 2D gaussian') hdu2.name = 'FWHM' hduFileNames = self.make_filename_hdu() HDUList = fits.HDUList([hdu,hdu2,hduFileNames]) if fixesApplied == True: if origCen is not None: hduCenOrig = fits.ImageHDU(origCen,hdu.header) hduCenOrig.header['FIXES'] = ('Unknown','Have centroid fixes been applied from trends in other sources?') hduCenOrig.name = 'ORIG CEN' HDUList.append(hduCenOrig) if origFWHM is not None: hduFWHMOrig = fits.ImageHDU(origFWHM,hdu2.header) hduFWHMOrig.name = '<NAME>' HDUList.append(hduFWHMOrig) HDUList.writeto(self.centroidFile,overwrite=True) head = hdu.header return head, hdu2.header def shift_centroids_from_other_file(self,refPhotFile,SWLW=True): """ Creates a centroid array where shifts are applied from another file. For example, Imaging data from another camera can be used to provide shifts to the apertures for grism data """ if SWLW == True: rotAngle = 0; ## set to zero for now scaling = 0.5 else: raise Exception("Still working on scaling and rotation params") HDUList = fits.open(refPhotFile) if "CENTROIDS" not in HDUList: raise Exception("Could not find CENTROIDS extension in {}".format(refPhotFile)) refCenArr, head = HDUList["CENTROIDS"].data, HDUList["CENTROIDS"].header xRefAbs, yRefAbs = refCenArr[:,0,0], refCenArr[:,0,1] xRef, yRef = xRefAbs - xRefAbs[0], yRefAbs - yRefAbs[0] HDUList.close() ndim=2 ## Number of dimensions in image (assuming 2D) cenArr = np.zeros((self.nImg,self.nsrc,ndim)) pos = self.get_default_cen() for ind, oneFile in enumerate(self.fileL): xVec = (xRef[ind] * np.cos(rotAngle) - yRef[ind] * np.sin(rotAngle)) * scaling yVec = (xRef[ind] * np.sin(rotAngle) + yRef[ind] * np.cos(rotAngle)) * scaling cenArr[ind,:,0] = pos[:,0] + xVec cenArr[ind,:,1] = pos[:,1] + yVec fwhmArr = np.zeros_like(cenArr) return cenArr, fwhmArr def fix_centroids(self,diagnostics=False,nsigma=10.): """ Fix the centroids for outlier positions for stars """ HDUList = fits.open(self.centroidFile) cenArr, head = HDUList["CENTROIDS"].data, HDUList["CENTROIDS"].header fwhmArr, headFWHM = HDUList["FWHM"].data, HDUList["FWHM"].header fixedCenArr = deepcopy(cenArr) fixedFWHMArr = deepcopy(fwhmArr) medCen = np.nanmedian(cenArr,0) medCen3D = np.tile(medCen,[self.nImg,1,1]) diffCen = cenArr - medCen3D ## differential motion fixedDiffCen = deepcopy(diffCen) if diagnostics == True: fig, axArr = plt.subplots(2,sharex=True) for oneAxis in [0,1]: trend = np.nanmedian(diffCen[:,:,oneAxis],1) ## median trend trend2D = np.tile(trend,[self.nsrc,1]).transpose() diffFromTrend = diffCen[:,:,oneAxis] - trend2D mad = np.nanmedian(np.abs(diffFromTrend)) badPt = np.abs(diffFromTrend) > nsigma * mad fixedDiffFromTrend = deepcopy(diffFromTrend) fixedDiffFromTrend[badPt] = 0 fwhmArr2D = fixedFWHMArr[:,:,oneAxis] fwhmArr2D[badPt] = np.nan ## w/ different position FWHM is no longer relvant fixedFWHMArr[:,:,oneAxis] = fwhmArr2D fixedDiffCen[:,:,oneAxis] = fixedDiffFromTrend + trend2D if diagnostics == True: for oneSrc in np.arange(self.nsrc): showData, = axArr[oneAxis].plot(diffCen[:,oneSrc,oneAxis],'o') axArr[oneAxis].plot(fixedDiffCen[:,oneSrc,oneAxis],color=showData.get_color()) fixedCenArr = fixedDiffCen + medCen3D if diagnostics == True: plt.show() self.save_centroids(fixedCenArr,fixedFWHMArr,fixesApplied=True,origCen=cenArr,origFWHM=fwhmArr) HDUList.close() def copy_centroids_from_file(self,fileName): HDUList = fits.open(fileName) cenArr, head = HDUList["CENTROIDS"].data, HDUList["CENTROIDS"].header if "FWHM" in HDUList: fwhmArr, headFWHM = HDUList["FWHM"].data, HDUList["FWHM"].header self.keepFWHM = True else: self.keepFWHM = False ## allow for legacy centroid files fwhmArr, headFWHM = None, None HDUList.close() return cenArr, head, fwhmArr, headFWHM def get_allimg_cen(self,recenter=False,useMultiprocessing=False): """ Get all image centroids If self.param['doCentering'] is False, it will just use the input aperture positions Parameters ---------- recenter: bool Recenter the apertures again? Especially after changing the sources in photometry parameters useMultiprocessing: bool Use multiprocessing for faster computation?s """ ndim=2 ## Number of dimensions in image (assuming 2D) if os.path.exists(self.centroidFile) and (recenter == False): cenArr, head, fwhmArr, headFWHM = self.copy_centroids_from_file(self.centroidFile) elif (self.param['copyCentroidFile'] is not None) and (recenter == False): cenArr, head, fwhmArr, headFWHM = self.copy_centroids_from_file(self.param['copyCentroidFile']) elif self.param['refPhotCentering'] is not None: cenArr, fwhmArr = self.shift_centroids_from_other_file(self.param['refPhotCentering']) head, headFWHM = self.save_centroids(cenArr,fwhmArr) self.keepFWHM = False elif self.param['doCentering'] == False: img, head = self.get_default_im() cenArr = np.zeros((self.nImg,self.nsrc,ndim)) pos = self.get_default_cen() for ind, oneFile in enumerate(self.fileL): cenArr[ind,:,0] = pos[:,0] cenArr[ind,:,1] = pos[:,1] fwhmArr = np.zeros_like(cenArr) head, headFWHM = self.save_centroids(cenArr,fwhmArr) self.keepFWHM = False else: cenArr = np.zeros((self.nImg,self.nsrc,ndim)) fwhmArr = np.zeros((self.nImg,self.nsrc,ndim)) if useMultiprocessing == True: fileCountArray = np.arange(len(self.fileL)) allOutput = run_multiprocessing_phot(self,fileCountArray,method='get_allcen_img') else: allOutput = [] for ind, oneFile in enumerate(self.fileL): allOutput.append(self.get_allcen_img(ind)) for ind, oneFile in enumerate(self.fileL): allX, allY, allfwhmX, allfwhmY = allOutput[ind] cenArr[ind,:,0] = allX cenArr[ind,:,1] = allY fwhmArr[ind,:,0] = allfwhmX fwhmArr[ind,:,1] = allfwhmY self.keepFWHM = True head, headFWHM = self.save_centroids(cenArr,fwhmArr) self.cenArr = cenArr self.cenHead = head if self.param['bkgSub'] == True: ## Make an array for the background offsets backgOffsetArr = np.zeros((self.nImg,self.nsrc,ndim)) backgOffsetArr[:,:,0] = self.param['backOffset'][0] backgOffsetArr[:,:,1] = self.param['backOffset'][1] self.backgOffsetArr = backgOffsetArr else: self.backgOffsetArr = np.zeros((self.nImg,self.nsrc,ndim)) if self.keepFWHM == True: self.fwhmArr = fwhmArr self.headFWHM = headFWHM def get_allcen_img(self,ind,showStamp=False): """ Gets the centroids for all sources in one image """ img, head = self.getImg(self.fileL[ind]) allX, allY = [], [] allfwhmX, allfwhmY = [], [] positions = self.get_default_cen(ind=ind) for srcInd, onePos in enumerate(positions): xcen, ycen, fwhmX, fwhmY = self.get_centroid(img,onePos[0],onePos[1]) allX.append(xcen) allY.append(ycen) allfwhmX.append(fwhmX) allfwhmY.append(fwhmY) if showStamp == True: posArr = np.vstack((allX,allY)).transpose() #fwhmArr = np.vstack((allfwhmX,allfwhmY)).transpose() quadFWHM = np.sqrt(np.array(allfwhmX)**2 + np.array(allfwhmY)**2) self.showStamps(img=img,custPos=posArr,custFWHM=quadFWHM) return allX, allY, allfwhmX, allfwhmY def get_centroid(self,img,xGuess,yGuess): """ Get the centroid of a source given an x and y guess Takes the self.param['boxFindSize'] to define the search box """ boxSize=self.param['boxFindSize'] shape = img.shape minX = int(np.max([xGuess - boxSize,0.])) maxX = int(np.min([xGuess + boxSize,shape[1]-1])) minY = int(np.max([yGuess - boxSize,0.])) maxY = int(np.min([yGuess + boxSize,shape[1]-1])) subimg = img[minY:maxY,minX:maxX] try: xcenSub,ycenSub = centroid_2dg(subimg) except ValueError: warnings.warn("Found value error for centroid. Putting in Guess value") xcenSub,ycenSub = xGuess, yGuess xcen = xcenSub + minX ycen = ycenSub + minY try: fwhmX, fwhmY = self.get_fwhm(subimg,xcenSub,ycenSub) except ValueError: warnings.warn("Found value error for FWHM. Putting in a Nan") fwhmX, fwhmY = np.nan, np.nan return xcen, ycen, fwhmX, fwhmY def get_fwhm(self,subimg,xCen,yCen): """ Get the FWHM of the source in a subarray surrounding it """ if photutils.__version__ >= "1.0": GaussFit = fit_2dgauss.centroid_2dg_w_sigmas(subimg) x_stddev = GaussFit[2] y_stddev = GaussFit[3] else: GaussModel = photutils.fit_2dgaussian(subimg) x_stddev = GaussModel.x_stddev.value y_stddev = GaussModel.y_stddev.value fwhmX = x_stddev * 2.35482005 fwhmY = y_stddev * 2.35482005 return fwhmX, fwhmY def add_filenames_to_header(self,hdu): """ Uses fits header cards to list the files This clutters up the header, so I have now moved the fileName list to a separate structure """ for ind, oneFile in enumerate(self.fileL): hdu.header['FIL'+str(ind)] = (os.path.basename(oneFile),'file name') def reset_phot(self): """ Reset the photometry A reminder to myself to write a script to clear the positions. Sometimes, if you get bad positions from a previous file, they will wind up being used again. Need to reset the srcAperture.positions! """ def get_date(self,head): if 'DATE-OBS' in head: useDate = head['DATE-OBS'] elif 'DATE_OBS' in head: useDate = head['DATE_OBS'] elif 'DATE' in head: warnings.warn('DATE-OBS not found in header. Using DATE instead') month1, day1, year1 = head['DATE'].split("/") useDate = "-".join([year1,month1,day1]) elif 'DATE-OBS' in self.param: warnings.warn('Using DATE-OBS from parameter file.') useDate = self.param['DATE-OBS'] else: warnings.warn('Date headers not found in header. Making it nan') useDate = np.nan if self.param['dateFormat'] == 'Two Part': t0 = Time(useDate+'T'+head['TIME-OBS']) elif self.param['dateFormat'] == 'One Part': t0 = Time(useDate) else: raise Exception("Date format {} not understdood".format(self.param['dateFormat'])) if 'timingMethod' in self.param: if self.param['timingMethod'] == 'JWSTint': if 'INTTIME' in head: int_time = head['INTTIME'] elif 'EFFINTTM' in head: int_time = head['EFFINTTM'] else: warnings.warn("Couldn't find inttime in header. Setting to 0") int_time = 0 t0 = t0 + (head['TFRAME'] + int_time) * (head['ON_NINT']) * u.second elif self.param['timingMethod'] == 'intCounter': t0 = t0 + (head['ON_NINT']) * 1.0 * u.min ## placeholder to spread out time return t0 def get_read_noise(self,head): if self.param['readNoise'] != None: readNoise = float(self.param['readNoise']) elif 'RDNOISE1' in head: readNoise = float(head['RDNOISE1']) else: readNoise = 1.0 warnings.warn('Warning, no read noise specified') return readNoise def adjust_apertures(self,ind): """ Adjust apertures, if scaling by FWHM Parameters ---------- ind: int the index of `self.fileList`. """ if self.param['scaleAperture'] == True: if self.nImg >= maxCPUs: useMultiprocessing = True else: useMultiprocessing = False self.get_allimg_cen(useMultiprocessing=useMultiprocessing) medianFWHM = np.median(self.fwhmArr[ind]) minFWHMallowed, maxFWHMallowed = self.param['apRange'] if medianFWHM < minFWHMallowed: warnings.warn("FWHM found was smaller than apRange ({}) px. Using {} for Image {}".format(minFWHMallowed,minFWHMallowed,self.fileL[ind])) medianFWHM = minFWHMallowed elif medianFWHM > maxFWHMallowed: warnings.warn("FWHM found was larger than apRange ({}) px. Using {} for Image {}".format(maxFWHMallowed,maxFWHMallowed,self.fileL[ind])) medianFWHM = maxFWHMallowed if self.param['bkgGeometry'] == 'CircularAnnulus': self.srcApertures.r = medianFWHM * self.param['apScale'] if self.param['scaleBackground'] == True: self.bkgApertures.r_in = (self.srcApertures.r + self.param['backStart'] - self.param['apRadius']) self.bkgApertures.r_out = (self.bkgApertures.r_in + self.param['backEnd'] - self.param['backStart']) else: warnings.warn('Background Aperture scaling not set up for non-annular geometry') def get_ap_area(self,aperture): """ A function go get the area of apertures This accommodates different versions of photutils """ if photutils.__version__ > '0.6': ## photutils changed area from a method to an attribute after this version area = aperture.area else: ## older photutils area = aperture.area() return area def phot_for_one_file(self,ind): """ Calculate aperture photometry using `photutils` Parameters ---------- ind: int index of the file list on which to read in and do photometry """ oneImg = self.fileL[ind] img, head = self.getImg(oneImg) t0 = self.get_date(head) self.srcApertures.positions = self.cenArr[ind] if self.param['scaleAperture'] == True: self.adjust_apertures(ind) readNoise = self.get_read_noise(head) err = np.sqrt(np.abs(img) + readNoise**2) ## Should already be gain-corrected rawPhot = aperture_photometry(img,self.srcApertures,error=err,method=self.param['subpixelMethod']) if self.param['saturationVal'] != None: src_masks = self.srcApertures.to_mask(method='center') for srcInd,mask in enumerate(src_masks): src_data = mask.multiply(img) src_data_1d = src_data[mask.data > 0] satPoints = (src_data_1d > self.param['saturationVal']) if np.sum(satPoints) >= self.param['satNPix']: ## set this source as NaN b/c it's saturated rawPhot['aperture_sum'][srcInd] = np.nan if self.param['bkgSub'] == True: self.bkgApertures.positions = self.cenArr[ind] + self.backgOffsetArr[ind] if self.param['bkgMethod'] == 'mean': bkgPhot = aperture_photometry(img,self.bkgApertures,error=err,method=self.param['subpixelMethod']) bkgArea = self.get_ap_area(self.bkgApertures) srcArea = self.get_ap_area(self.srcApertures) bkgVals = bkgPhot['aperture_sum'] / bkgArea * srcArea bkgValsErr = bkgPhot['aperture_sum_err'] / bkgArea * srcArea ## Background subtracted fluxes srcPhot = rawPhot['aperture_sum'] - bkgVals elif self.param['bkgMethod'] in ['median', 'robust mean']: bkgIntensity, bkgIntensityErr = [], [] bkg_masks = self.bkgApertures.to_mask(method='center') for mask in bkg_masks: bkg_data = mask.multiply(img) bkg_data_1d = bkg_data[mask.data > 0] oneIntensity, oneErr = robust_statistics(bkg_data_1d,method=self.param['bkgMethod']) bkgIntensity.append(oneIntensity) bkgIntensityErr.append(oneErr) bkgVals = np.array(bkgIntensity) * self.get_ap_area(self.srcApertures) bkgValsErr = np.array(bkgIntensityErr) * self.get_ap_area(self.srcApertures) srcPhot = rawPhot['aperture_sum'] - bkgVals elif self.param['bkgMethod'] == 'colrow': srcPhot, bkgVals, bkgValsErr = self.poly_sub_phot(img,head,err,ind) elif self.param['bkgMethod'] == 'rowAmp': srcPhot, bkgVals, bkgValsErr = self.rowamp_sub_phot(img,head,err,ind) else: raise Exception("Unrecognized background method {}".format(self.param['bkgMethod'])) else: ## No background subtraction srcPhot = rawPhot['aperture_sum'] bkgVals = np.nan bkgValsErr = 0. srcPhotErr = np.sqrt(rawPhot['aperture_sum_err']**2 + bkgValsErr**2) return [t0.jd,srcPhot,srcPhotErr, bkgVals] def show_cutout(self,img,aps=None,name='',percentScaling=False,src=None,ind=None): """ Plot the cutout around the source for diagnostic purposes""" fig, ax = plt.subplots() if percentScaling == True: vmin,vmax = np.nanpercentile(img,[3,97]) else: vmin,vmax = None, None ax.imshow(img,vmin=vmin,vmax=vmax) if aps is not None: if photutils.__version__ >= "0.7": aps.plot(axes=ax) else: aps.plot(ax=ax) ax.set_title(name) fig.show() print('Press c and enter to continue') print('or press q and enter to quit') pdb.set_trace() plt.close(fig) primHDU = fits.PrimaryHDU(img) primHDU.header['Name'] = name name_for_file = name.replace(" ","_") outName = "{}_{}_src_{}_ind_{}.fits".format(self.dataFileDescrip,name_for_file,src,ind) outPath = os.path.join("diagnostics","phot_poly_backsub",outName) primHDU.writeto(outPath,overwrite=True) def poly_sub_phot(self,img,head,err,ind,showEach=False,saveFits=False): """ Do a polynomial background subtraction use robust polynomials This is instead of using the mean or another statistic of the background aperture """ from . import spec_pipeline bkg_masks = self.bkgApertures.to_mask(method='center') spec = spec_pipeline.spec() spec.param['bkgOrderX'] = self.param['bkgOrderX'] spec.param['bkgOrderY'] = self.param['bkgOrderY'] spec.fileL = self.fileL srcPhot, bkgPhot = [], [] for ind,mask in enumerate(bkg_masks): backImg = mask.multiply(img,fill_value=np.nan) ## fill value doesn't appear to work so I manually will make them NaN nonBackPts = mask.data == 0 backImg[nonBackPts] = np.nan img_cutout = mask.cutout(img,fill_value=0.0) err_cutout = mask.cutout(err,fill_value=0.0) srcApSub = deepcopy(self.srcApertures) srcApSub.positions[:,0] = srcApSub.positions[:,0] - mask.bbox.ixmin srcApSub.positions[:,1] = srcApSub.positions[:,1] - mask.bbox.iymin spec.param['bkgRegionsX'] = [[0,backImg.shape[1]]] spec.param['bkgRegionsY'] = [[0,backImg.shape[0]]] if self.param['diagnosticMode'] == True: self.show_cutout(img_cutout,aps=srcApSub,name='Img Cutout',src=ind,ind=ind) self.show_cutout(backImg,aps=srcApSub,name='Background Cutout', percentScaling=True,src=ind,ind=ind) backImg_sub, bkgModelTotal, subHead = spec.do_backsub(backImg,head,ind=ind, directions=self.param['backsub_directions']) subImg = img_cutout - bkgModelTotal srcPhot1 = aperture_photometry(subImg,srcApSub,error=err_cutout, method=self.param['subpixelMethod']) srcPhot.append(srcPhot1['aperture_sum'][ind]) bkgPhot1 = aperture_photometry(bkgModelTotal,srcApSub,error=err_cutout, method=self.param['subpixelMethod']) bkgPhot.append(bkgPhot1['aperture_sum'][ind]) if self.param['diagnosticMode'] == True: self.show_cutout(subImg,aps=srcApSub,name='Backsub Img Cutout', percentScaling=True,src=ind,ind=ind) ## use the error in the mean background as an estimate for error bkgPhotTotal = aperture_photometry(img,self.bkgApertures,error=err,method=self.param['subpixelMethod']) bkgValsErr = (bkgPhotTotal['aperture_sum_err'] / self.get_ap_area(self.bkgApertures) * self.get_ap_area(self.srcApertures)) return np.array(srcPhot),np.array(bkgPhot),bkgValsErr def rowamp_sub_phot(self,img,head,err,ind): """ Do a row-by-row, amplifier-by-amplifier background subtraction This is instead of using the mean or another statistic of the background aperture """ saveD = self.param['diagnosticMode'] backsub_img, backg_img = rowamp_sub.do_backsub(img,self, saveDiagnostics=saveD) srcPhot_t = aperture_photometry(backsub_img, self.srcApertures,error=err, method=self.param['subpixelMethod']) bkgPhot_t = aperture_photometry(backg_img, self.srcApertures,error=err, method=self.param['subpixelMethod']) srcPhot = srcPhot_t['aperture_sum'] bkgPhot = bkgPhot_t['aperture_sum'] bkgValsErr = bkgPhot_t['aperture_sum_err'] return np.array(srcPhot),np.array(bkgPhot),np.array(bkgValsErr) def return_self(self): return self def do_phot(self,useMultiprocessing=False): """ Does photometry using the centroids found in get_allimg_cen """ self.get_allimg_cen(useMultiprocessing=useMultiprocessing) photArr = np.zeros((self.nImg,self.nsrc)) errArr = np.zeros_like(photArr) backArr = np.zeros_like(photArr) jdArr = [] fileCountArray = np.arange(len(self.fileL)) if useMultiprocessing == True: outputPhot = run_multiprocessing_phot(self,fileCountArray) else: outputPhot = [] for ind in tqdm.tqdm(fileCountArray): outputPhot.append(self.phot_for_one_file(ind)) ## unpack the results for ind,val in enumerate(outputPhot): jdArr.append(val[0]) photArr[ind,:] = val[1] errArr[ind,:] = val[2] backArr[ind,:] = val[3] ## Save the photometry results hdu = fits.PrimaryHDU(photArr) hdu.header['NSOURCE'] = (self.nsrc,'Number of sources with photometry') hdu.header['NIMG'] = (self.nImg,'Number of images') hdu.header['AXIS1'] = ('src','source axis') hdu.header['AXIS2'] = ('image','image axis') basicHeader = deepcopy(hdu.header) # hdu.header[''] = ' Source parameters ' hdu.header['SRCNAME'] = (self.param['srcName'], 'Source name') hdu.header['NIGHT'] = (self.param['nightName'], 'Night Name') hdu.header['SRCGEOM'] = (self.param['srcGeometry'], 'Source Aperture Geometry') hdu.header['BKGGEOM'] = (self.param['bkgGeometry'], 'Background Aperture Geometry') if 'apRadius' in self.param: hdu.header['APRADIUS'] = (self.param['apRadius'], 'Aperture radius (px)') elif 'apHeight' in self.param: hdu.header['APRADIUS'] = (self.param['apHeight'], 'Aperture radius (px)') hdu.header['APHEIGHT'] = (self.param['apHeight'], 'Aperture radius (px)') hdu.header['APWIDTH'] = (self.param['apWidth'], 'Aperture radius (px)') else: print("No apHeight or apRadius found in parameters") hdu.header['SCALEDAP'] = (self.param['scaleAperture'], 'Is the aperture scaled by the FWHM?') hdu.header['APSCALE'] = (self.param['apScale'], 'If scaling apertures, which scale factor?') # hdu.header[''] = ' Background Subtraction parameters ' hdu.header['BKGSUB'] = (self.param['bkgSub'], 'Do a background subtraction?') hdu.header['BKGSTART'] = (self.param['backStart'], 'Background Annulus start (px), if used') hdu.header['BKGEND'] = (self.param['backEnd'], 'Background Annulus end (px), if used') if 'backHeight' in self.param: hdu.header['BKHEIGHT'] = (self.param['backHeight'], 'Background Box Height (px)') hdu.header['BKWIDTH'] = (self.param['backWidth'], 'Background Box Width (px)') hdu.header['BKOFFSTX'] = (self.param['backOffset'][0], 'X Offset between background and source (px)') hdu.header['BKOFFSTY'] = (self.param['backOffset'][1], 'Y Offset between background and source (px)') hdu.header['BKGMETH'] = (self.param['bkgMethod'], 'Background subtraction method') if self.param['bkgMethod'] == 'colrow': hdu.header['BKGDIREC'] = (" ".join(self.param['backsub_directions']), 'The directions, in order, for polynomial background sub') hdu.header['BKGORDRX'] = (self.param['bkgOrderX'], 'X Background subtraction polynomial order') hdu.header['BKGORDRY'] = (self.param['bkgOrderY'], 'Y Background subtraction polynomial order') # hdu.header[''] = ' Centroiding Parameters ' hdu.header['BOXSZ'] = (self.param['boxFindSize'], 'half-width of the box used for centroiding') hdu.header['COPYCENT'] = (self.param['copyCentroidFile'], 'Name of the file where centroids are copied (if used)') # hdu.header[''] = ' Timing Parameters ' hdu.header['JDREF'] = (self.param['jdRef'], ' JD reference offset to subtract for plots') # hdu.header[''] = ' Image Parameters ' hdu.header['ISCUBE'] = (self.param['isCube'], 'Is the image data 3D?') hdu.header['CUBPLANE'] = (self.param['cubePlane'], 'Which plane of the cube is used?') hdu.header['DOCEN'] = (self.param['doCentering'], 'Is each aperture centered individually?') hdu.header['EXTNAMEU'] = (self.param['FITSextension'], 'FITS extension used of data') hdu.header['NANTREAT'] = (self.param['nanTreatment'], 'How are NaN pixels treated?') hdu.header['SLOPEIMG'] = (self.param['isSlope'], 'Are original images slopes, then multiplied by int time?') hdu.header['SUBPIXEL'] = (self.param['subpixelMethod'], 'Treatment of apertures at the subpixel level') hduFileNames = self.make_filename_hdu() hduTime = fits.ImageHDU(jdArr) hduTime.header['UNITS'] = ('days','JD time, UT') hduErr = fits.ImageHDU(data=errArr,header=basicHeader) hduErr.name = 'Phot Err' hduBack = fits.ImageHDU(data=backArr,header=basicHeader) hduBack.name = 'Backg Phot' hduCen = fits.ImageHDU(data=self.cenArr,header=self.cenHead) hdu.name = 'Photometry' hduTime.name = 'Time' hduCen.name = 'Centroids' ## hduFileName.name = 'Filenames' # already named by make_filename_hdu ## Get an example original header exImg, exHeader = self.get_default_im() hduOrigHeader = fits.ImageHDU(None,exHeader) hduOrigHeader.name = 'Orig Header' HDUList = fits.HDUList([hdu,hduErr,hduBack,hduTime,hduCen,hduFileNames,hduOrigHeader]) if self.keepFWHM == True: hduFWHM = fits.ImageHDU(self.fwhmArr,header=self.headFWHM) HDUList.append(hduFWHM) HDUList.writeto(self.photFile,overwrite=True) warnings.resetwarnings() def plot_phot(self,offset=0.,refCorrect=False,ax=None,fig=None,showLegend=True, normReg=None,doBin=None,doNorm=True,yLim=[None,None], excludeSrc=None,errBar=None,showPlot=False): """ Plots previously calculated photometry Parameters --------------------- offset : float y displacement for overlaying time series refCorrect : bool Use reference star-corrected photometry? ax : matplotlib axis object If the axis was created separately, use the input axis object fig : matplotlib figure object If the figure was created separately, use the input axis object showLegend : bool Show a legend? normReg: list with two items or None Relative region over which to fit a baseline and re-normalize. This only works on reference-corrected photometry for now doBin : float or None The bin size if showing binned data. This only works on reference-corrected photometry for now doNorm : bool Normalize the individual time series? yLim: List List of Y limit to show errBar : string or None Describes how error bars will be displayed. None=none, 'all'=every point,'one'=representative excludeSrc : List or None Custom sources to exclude in the averaging (to exclude specific sources in the reference time series). For example, for 5 sources, excludeSrc = [2] will use [1,3,4] for the reference showPlot: bool Show the plot? Otherwise, it saves it to a file """ HDUList = fits.open(self.photFile) photHDU = HDUList['PHOTOMETRY'] photArr = photHDU.data errArr = HDUList['PHOT ERR'].data head = photHDU.header jdHDU = HDUList['TIME'] jdArr = jdHDU.data timeHead = jdHDU.header jdRef = self.param['jdRef'] if ax == None: fig, ax = plt.subplots() if refCorrect == True: yCorrected, yCorrected_err = self.refSeries(photArr,errArr,excludeSrc=excludeSrc) x = jdArr - jdRef if normReg == None: yShow = yCorrected else: fitp = (x < normReg[0]) | (x > normReg[1]) polyBase = robust_poly(x[fitp],yCorrected[fitp],2,sigreject=2) yBase = np.polyval(polyBase,x) yShow = yCorrected / yBase if errBar == 'all': ax.errorbar(x,yShow,label='data',marker='o',linestyle='',markersize=3.,yerr=yCorrected_err) else: ax.plot(x,yShow,label='data',marker='o',linestyle='',markersize=3.) madY = np.nanmedian(np.abs(yShow - np.nanmedian(yShow))) if errBar == 'one': ax.errorbar([np.median(x)],[np.median(yShow) - 4. * madY], yerr=np.median(yCorrected_err),fmt='o',mfc='none') #pdb.set_trace() if doBin is not None: minValue, maxValue = 0.95, 1.05 ## clip for cosmic rays goodP = (yShow > minValue) & (yShow < maxValue) nBin = int(np.round((np.max(x[goodP]) - np.min(x[goodP]))/doBin)) if nBin > 1: yBins = Table() for oneStatistic in ['mean','std','count']: if oneStatistic == 'std': statUse = np.std else: statUse = oneStatistic yBin, xEdges, binNum = binned_statistic(x[goodP],yShow[goodP], statistic=statUse,bins=nBin) yBins[oneStatistic] = yBin ## Standard error in the mean stdErrM = yBins['std'] / np.sqrt(yBins['count']) xbin = (xEdges[:-1] + xEdges[1:])/2. ax.errorbar(xbin,yBins['mean'],yerr=stdErrM,marker='s',markersize=3., label='binned') else: for oneSrc in range(self.nsrc): yFlux = photArr[:,oneSrc] yNorm = yFlux / np.nanmedian(yFlux) if oneSrc == 0: pLabel = 'Src' else: pLabel = 'Ref '+str(oneSrc) if doNorm == True: yplot = yNorm - offset * oneSrc else: yplot = yFlux - offset * oneSrc ## To avoid repeat colors, switch to dashed lins if oneSrc >= 10: linestyle='dashed' else: linestyle= 'solid' ax.plot(jdArr - jdRef,yplot,label=pLabel,linestyle=linestyle) if head['SRCGEOM'] == 'Circular': ax.set_title('Src Ap='+str(head['APRADIUS'])+',Back=['+str(head['BKGSTART'])+','+ str(head['BKGEND'])+']') ax.set_xlabel('JD - '+str(jdRef)) ax.set_ylim(yLim[0],yLim[1]) if doNorm == True: ax.set_ylabel('Normalized Flux + Offset') else: ax.set_ylabel('Flux + Offset') #ax.set_ylim(0.94,1.06) if showLegend == True: ax.legend(loc='best',fontsize=10) if showPlot == True: fig.show() else: if refCorrect == True: outName = 'tser_refcor/refcor_{}.pdf'.format(self.dataFileDescrip) outPath = os.path.join(self.baseDir,'plots','photometry',outName) else: outName = 'raw_tser_{}.pdf'.format(self.dataFileDescrip) outPath = os.path.join(self.baseDir,'plots','photometry','tser_allstar',outName) fig.savefig(outPath) plt.close(fig) HDUList.close() def print_phot_statistics(self,refCorrect=True,excludeSrc=None,shorten=False, returnOnly=False,removeLinear=True, startInd=0,endInd=15): """ Print the calculated and theoretical noise as a table Parameters ---------- refCorrect: bool Use reference stars to correct target? If True, there is only one row in the table for the target. If False, there is a row for each star's absolute noise excludeSrc: list, or None A list of sources (or None) to exclude as reference stars Given by index number shorten: bool Shorten the number of points used the time series? Useful if analyzing the baseline befor transit, for example. returnOnly: bool If True, a table is returned. If False, a table is printed and another is returned removeLinear: bool Remove a linear trend from the data first? startInd: int If shorten is True, only uses a subset of the data starting with StartInd endInd: int If shorten is True, only uses a subset of the data ending with endInd """ HDUList = fits.open(self.photFile) photHDU = HDUList['PHOTOMETRY'] photArr = photHDU.data head = photHDU.header timeArr = HDUList['TIME'].data errArr = HDUList['PHOT ERR'].data t = Table() if (head['NSOURCE'] == 1) & (refCorrect == True): warnings.warn('Only once source, so defaulting to refCorrect=False') refCorrect = False if shorten == True: photArr = photArr[startInd:endInd,:] nImg = endInd - startInd else: nImg = self.nImg if refCorrect == True: yCorrected, yCorrected_err = self.refSeries(photArr,errArr, excludeSrc=excludeSrc) if removeLinear == True: xNorm = (timeArr - np.min(timeArr))/(np.max(timeArr) - np.min(timeArr)) poly_fit = robust_poly(xNorm,yCorrected,1) yCorrected = yCorrected / np.polyval(poly_fit,xNorm) if shorten == True: yCorrected = yCorrected[startInd:endInd] t['Stdev (%)'] = np.round([np.nanstd(yCorrected) * 100.],4) t['Theo Err (%)'] = np.round(np.nanmedian(yCorrected_err) * 100.,4) mad = np.nanmedian(np.abs(yCorrected - np.nanmedian(yCorrected))) t['MAD (%)'] = np.round(mad * 100.,4) else: t['Source #'] = np.arange(self.nsrc) medFlux = np.nanmedian(photArr,axis=0) t['Stdev (%)'] = np.round(np.nanstd(photArr,axis=0) / medFlux * 100.,4) t['Theo Err (%)'] = np.round(np.nanmedian(errArr,axis=0) / medFlux * 100.,4) tiledFlux = np.tile(medFlux,[nImg,1]) mad = np.nanmedian(np.abs(photArr - tiledFlux),axis=0) / medFlux t['MAD (%)'] = np.round(mad * 100.,4) if returnOnly: pass else: print(t) HDUList.close() return t def plot_state_params(self,excludeSrc=None): HDUList = fits.open(self.photFile) photHDU = HDUList['PHOTOMETRY'] photArr = photHDU.data head = photHDU.header errArr = HDUList['PHOT ERR'].data jdHDU = HDUList['TIME'] jdArr = jdHDU.data t = jdArr - np.round(np.min(jdArr)) timeHead = jdHDU.header cenData = HDUList['CENTROIDS'].data fwhmData = HDUList['FWHM'].data backData = HDUList['BACKG PHOT'].data fig, axArr = plt.subplots(7,sharex=True) yCorr, yCorr_err = self.refSeries(photArr,errArr,excludeSrc=excludeSrc) axArr[0].plot(t,yCorr) axArr[0].set_ylabel('Ref Cor F') for oneSrc in range(self.nsrc): yFlux = photArr[:,oneSrc] axArr[1].plot(t,yFlux / np.median(yFlux)) axArr[1].set_ylabel('Flux') xCen = cenData[:,oneSrc,0] backFlux = backData[:,oneSrc] axArr[2].plot(t,backFlux / np.median(backFlux)) axArr[2].set_ylabel('Back') axArr[3].plot(t,xCen - np.median(xCen)) axArr[3].set_ylabel('X Pos') yCen = cenData[:,oneSrc,1] axArr[4].plot(t,yCen - np.median(yCen)) axArr[4].set_ylabel('Y Pos') fwhm1 = fwhmData[:,oneSrc,0] axArr[5].plot(t,np.abs(fwhm1)) axArr[5].set_ylabel('FWHM 1') fwhm2 = fwhmData[:,oneSrc,1] axArr[6].plot(t,np.abs(fwhm1)) axArr[6].set_ylabel('FWHM 2') fig.show() def plot_flux_vs_pos(self,refCorrect=True): """ Plot flux versus centroid to look for flat fielding effects """ HDUList = fits.open(self.photFile) if refCorrect == True: yNorm, yErrNorm = self.refSeries(HDUList['PHOTOMETRY'].data,HDUList['PHOT ERR'].data) else: yFlux = HDUList['PHOTOMETRY'].data[:,0] yNorm = yFlux / np.median(yFlux) cenX = HDUList['CENTROIDS'].data[:,0,0] cenY = HDUList['CENTROIDS'].data[:,0,1] fig, axArr = plt.subplots(1,2,sharey=True,figsize=(9,4.5)) for ind,oneDir, coord in zip([0,1],['X','Y'],[cenX,cenY]): axArr[ind].plot(coord,yNorm,'o') axArr[ind].set_xlabel('{} (px)'.format(oneDir)) axArr[ind].set_ylabel('Norm F') #yPoly = fig.show() HDUList.close() def refSeries(self,photArr,errPhot,reNorm=False,excludeSrc=None,sigRej=5.): """ Average together the reference stars Parameters ------------- reNorm: bool Re-normalize all stars before averaging? If set all stars have equal weight. Otherwise, the stars are summed together, which weights by flux excludeSrc: arr Custom sources to use in the averaging (to exclude specific sources in the reference time series. For example, for 5 sources, excludeSrc = [2] will use [1,3,4] for the reference sigRej: int Sigma rejection threshold """ combRef = [] srcArray = np.arange(self.nsrc,dtype=np.int) if excludeSrc == None: maskOut = (srcArray == 0) else: maskOut = np.zeros(self.nsrc,dtype=bool) maskOut[0] = True for oneSrc in excludeSrc: if (oneSrc < 0) | (oneSrc >= self.nsrc): pdb.set_trace() raise Exception("{} is an invalid source among {}".format(oneSrc,self.nsrc)) else: maskOut[oneSrc] = True refMask2D = np.tile(maskOut,(self.nImg,1)) ## also mask points that are NaN nanPt = (np.isfinite(photArr) == False) refMask2D = refMask2D | nanPt refPhot = np.ma.array(photArr,mask=refMask2D) ## Normalize all time series norm1D_divisor = np.nanmedian(photArr,axis=0) norm2D_divisor = np.tile(norm1D_divisor,(self.nImg,1)) normPhot = refPhot / norm2D_divisor normErr = errPhot / norm2D_divisor ## Find outliers # Median time series medTimSeries1D = np.nanmedian(normPhot,axis=1) medTimSeries2D = np.tile(medTimSeries1D,(self.nsrc,1)).transpose() # Absolute deviation absDeviation = np.abs(normPhot - medTimSeries2D) # Median abs deviation of all reference photometry MADphot = np.nanmedian(absDeviation) # Points that deviate above threshold badP = (absDeviation > sigRej * np.ones((self.nImg,self.nsrc),dtype=np.float) * MADphot) normPhot.mask = refMask2D | badP refPhot.mask = refMask2D | badP if reNorm == True: ## Weight all stars equally combRef = np.nanmean(normPhot,axis=1) combErr = np.sqrt(np.nansum(normErr**2,axis=1)) / (self.nsrc - np.sum(maskOut)) else: ## Weight by the flux, but only for the valid points left weights = np.ma.array(norm2D_divisor,mask=normPhot.mask) ## Make sure weights sum to 1.0 for each time point (since some sources are missing) weightSums1D = np.nansum(weights,axis=1) weightSums2D = np.tile(weightSums1D,(self.nsrc,1)).transpose() weights = weights / weightSums2D combRef =
np.nansum(normPhot * weights,axis=1)
numpy.nansum
# -*- coding: utf-8 -*- # # Base class for all computational classes in Syncopy # # Builtin/3rd party package imports import os import sys import psutil import h5py import numpy as np from itertools import chain from abc import ABC, abstractmethod from copy import copy from numpy.lib.format import open_memmap from tqdm.auto import tqdm if sys.platform == "win32": # tqdm breaks term colors on Windows - fix that (tqdm issue #446) import colorama colorama.deinit() colorama.init(strip=False) # Local imports from .tools import get_defaults from syncopy import __storage__, __acme__, __path__ from syncopy.shared.errors import SPYValueError, SPYTypeError, SPYParallelError, SPYWarning if __acme__: from acme import ParallelMap import dask.distributed as dd import dask_jobqueue as dj # # In case of problems w/worker-stealing, uncomment the following lines # import dask # dask.config.set(distributed__scheduler__work_stealing=False) __all__ = [] class ComputationalRoutine(ABC): """Abstract class for encapsulating sequential/parallel algorithms A Syncopy compute class consists of a :class:`ComputationalRoutine`-subclass that binds a static :func:`computeFunction` and provides the class method :meth:`process_metadata`. Requirements for :meth:`computeFunction`: * First positional argument is a :class:`numpy.ndarray`, the keywords `chunkShape` and `noCompute` are supported * Returns a :class:`numpy.ndarray` if `noCompute` is `False` and expected shape and numerical type of output array otherwise. Requirements for :class:`ComputationalRoutine`: * Child of :class:`ComputationalRoutine`, binds :func:`computeFunction` as static method * Provides class method :func:`process_metadata` For details on writing compute classes and metafunctions for Syncopy, please refer to :doc:`/developer/compute_kernels`. """ # Placeholder: the actual workhorse @staticmethod def computeFunction(arr, *argv, chunkShape=None, noCompute=None, **kwargs): """Computational core routine Parameters ---------- arr : :class:`numpy.ndarray` Numerical data from a single trial *argv : tuple Arbitrary tuple of positional arguments chunkShape : None or tuple Mandatory keyword. If not `None`, represents global block-size of processed trial. noCompute : None or bool Preprocessing flag. If `True`, do not perform actual calculation but instead return expected shape and :class:`numpy.dtype` of output array. **kwargs: dict Other keyword arguments. Returns ------- out Shape : tuple, if ``noCompute == True`` expected shape of output array outDtype : :class:`numpy.dtype`, if ``noCompute == True`` expected numerical type of output array res : :class:`numpy.ndarray`, if ``noCompute == False`` Result of processing input `arr` Notes ----- This concrete method is a placeholder that is intended to be overloaded. See also -------- ComputationalRoutine : Developer documentation: :doc:`/developer/compute_kernels`. """ return None def __init__(self, *argv, **kwargs): """ Instantiate a :class:`ComputationalRoutine` subclass Parameters ---------- *argv : tuple Tuple of positional arguments passed on to :meth:`computeFunction` **kwargs : dict Keyword arguments passed on to :meth:`computeFunction` Returns ------- obj : instance of :class:`ComputationalRoutine`-subclass Usable class instance for processing Syncopy data objects. """ # list of positional arguments to `computeFunction` for all workers, format: # ``self.argv = [3, [0, 1, 1], ('a', 'b', 'c')]`` self.argv = list(argv) # dict of default keyword values accepted by `computeFunction` self.defaultCfg = get_defaults(self.computeFunction) # dict of actual keyword argument values to `computeFunction` provided by user self.cfg = copy(self.defaultCfg) for key in set(self.cfg.keys()).intersection(kwargs.keys()): self.cfg[key] = kwargs[key] # binary flag: if `True`, average across trials, do nothing otherwise self.keeptrials = None # full shape of final output dataset (all trials, all chunks, etc.) self.outputShape = None # numerical type of output dataset self.dtype = None # list of dicts encoding header info of raw binary input files (experimental!) self.hdr = None # list of trial numbers to process (either `data.trials` or `data.selection.trials`) self.trialList = None # number of trials to process (shortcut for `len(self.trialList)`) self.numTrials = None # number of channel blocks to process per Trial (1 by default, only > 1 if # `chan_per_worker` is not `None`) self.numBlocksPerTrial = None # actual number of parallel calls to `computeFunction` to perform # (if `chan_per_worker` is `None`, then `numCalls` = `numTrials`, otherwise # `numCalls` = `numBlocksPerTrial * numTrials`) self.numCalls = None # list of index-tuples for extracting trial-chunks from input HDF5 dataset # >>> MUST be ordered, no repetitions! <<< # indices are ABSOLUTE, i.e., wrt entire dataset, not just current trial! self.sourceLayout = None # list of shape-tuples of input trial-chunks (necessary to restore shape of # arrays that got inflated by scalar selection tuples)) self.sourceShapes = None # list of index-tuples for re-ordering NumPy arrays extracted w/`self.sourceLayout` # >>> can be unordered w/repetitions <<< # indices are RELATIVE, i.e., wrt current trial! self.sourceSelectors = None # list of index-tuples for storing trial-chunk result in output dataset # >>> MUST be ordered, no repetitions! <<< # indices are ABSOLUTE, i.e., wrt entire dataset, not just current trial self.targetLayout = None # list of shape-tuples of trial-chunk results self.targetShapes = None # binary flag: if `True`, use fancy array indexing via `np.ix_` to extract # data from input via `self.sourceLayout` + `self.sourceSelectors`; if `False`, # only use `self.sourceLayout` (selections ordered, no reps) self.useFancyIdx = None # integer, max. memory footprint of largest input array piece (in bytes) self.chunkMem = None # instance of ACME's `ParallelMap` to handle actual parallel computing workload self.pmap = None # directory for storing source-HDF5 files making up virtual output dataset self.virtualDatasetDir = None # h5py layout encoding shape/geometry of file sources within virtual output dataset self.VirtualDatasetLayout = None # name of temporary datasets (only relevant for virtual output datasets) self.virtualDatasetNames = "chk" # placeholder name for (temporary) output datasets self.tmpDsetName = None # Name of output HDF5 file self.outFileName = None # name of target HDF5 dataset in output object self.outDatasetName = "data" # tmp holding var for preserving original access mode of `data` self.dataMode = None # time (in seconds) b/w querying state of futures ('pending' -> 'finished') self.sleepTime = 0.1 # if `True`, enforces use of single-threaded scheduler in `compute_parallel` self.parallelDebug = False # format string for tqdm progress bars in sequential computation self.tqdmFormat = "{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]" # maximal acceptable size (in MB) of any provided positional argument self._maxArgSize = 100 # counter and maximal recursion depth for calling `self._sizeof` self._callMax = 10000 self._callCount = 0 def initialize(self, data, out_stackingdim, chan_per_worker=None, keeptrials=True): """ Perform dry-run of calculation to determine output shape Parameters ---------- data : syncopy data object Syncopy data object to be processed (has to be the same object that is passed to :meth:`compute` for the actual calculation). out_stackingdim : int Index of data dimension for stacking trials in output object chan_per_worker : None or int Number of channels to be processed by each worker (only relevant in case of concurrent processing). If `chan_per_worker` is `None` (default) by-trial parallelism is used, i.e., each worker processes data corresponding to a full trial. If `chan_per_worker > 0`, trials are split into channel-groups of size `chan_per_worker` (+ rest if the number of channels is not divisible by `chan_per_worker` without remainder) and workers are assigned by-trial channel-groups for processing. keeptrials : bool Flag indicating whether to return individual trials or average Returns ------- Nothing : None Notes ----- This class method **has** to be called prior to performing the actual computation realized in :meth:`computeFunction`. See also -------- compute : core routine performing the actual computation """ # First store `keeptrial` keyword value (important for output shapes below) self.keeptrials = keeptrials # Determine if data-selection was provided; if so, extract trials and check # whether selection requires fancy array indexing if data.selection is not None: self.trialList = data.selection.trials self.useFancyIdx = data.selection._useFancy else: self.trialList = list(range(len(data.trials))) self.useFancyIdx = False self.numTrials = len(self.trialList) # Prepare dryrun arguments and determine geometry of trials in output dryRunKwargs = copy(self.cfg) dryRunKwargs["noCompute"] = True chk_list = [] dtp_list = [] trials = [] for tk, trialno in enumerate(self.trialList): trial = data._preview_trial(trialno) trlArg = tuple(arg[tk] if isinstance(arg, (list, tuple, np.ndarray)) and len(arg) == self.numTrials \ else arg for arg in self.argv) chunkShape, dtype = self.computeFunction(trial, *trlArg, **dryRunKwargs) chk_list.append(list(chunkShape)) dtp_list.append(dtype) trials.append(trial) # Determine trial stacking dimension and compute aggregate shape of output stackingDim = out_stackingdim totalSize = sum(cShape[stackingDim] for cShape in chk_list) outputShape = list(chunkShape) if stackingDim < 0 or stackingDim >= len(outputShape): msg = "valid trial stacking dimension" raise SPYTypeError(out_stackingdim, varname="out_stackingdim", expected=msg) outputShape[stackingDim] = totalSize # The aggregate shape is computed as max across all chunks chk_arr = np.array(chk_list) chunkShape = tuple(chk_arr.max(axis=0)) if np.unique(chk_arr[:, stackingDim]).size > 1 and not self.keeptrials: err = "Averaging trials of unequal lengths in output currently not supported!" raise NotImplementedError(err) if np.any([dtp_list[0] != dtp for dtp in dtp_list]): lgl = "unique output dtype" act = "{} different output dtypes".format(np.unique(dtp_list).size) raise SPYValueError(legal=lgl, varname="dtype", actual=act) # Save determined shapes and data type self.outputShape = tuple(outputShape) self.cfg["chunkShape"] = chunkShape self.dtype =
np.dtype(dtp_list[0])
numpy.dtype
import numpy import six.moves import cellprofiler_core.image import cellprofiler_core.measurement from cellprofiler_core.constants.measurement import COLTYPE_FLOAT import cellprofiler.modules.measurecolocalization import cellprofiler_core.object import cellprofiler_core.pipeline import cellprofiler_core.workspace import tests.modules IMAGE1_NAME = "image1" IMAGE2_NAME = "image2" OBJECTS_NAME = "objects" def make_workspace(image1, image2, objects=None): """Make a workspace for testing Threshold""" module = cellprofiler.modules.measurecolocalization.MeasureColocalization() image_set_list = cellprofiler_core.image.ImageSetList() image_set = image_set_list.get_image_set(0) module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) for image_name, name, image in zip( module.images_list.value, (IMAGE1_NAME, IMAGE2_NAME), (image1, image2) ): image_set.add(name, image) object_set = cellprofiler_core.object.ObjectSet() if objects is None: module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_IMAGES ) else: module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) module.objects_list.value = OBJECTS_NAME object_set.add_objects(objects, OBJECTS_NAME) pipeline = cellprofiler_core.pipeline.Pipeline() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, object_set, cellprofiler_core.measurement.Measurements(), image_set_list, ) return workspace, module def test_load_v2(): file = tests.modules.get_test_resources_directory("measurecolocalization/v2.pipeline") with open(file, "r") as fd: data = fd.read() fd = six.moves.StringIO(data) pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(fd) assert len(pipeline.modules()) == 1 module = pipeline.modules()[-1] assert ( module.images_or_objects.value == cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) assert len(module.images_list.value) == 2 assert module.thr == 15.0 for name in module.images_list.value: assert name in ["DNA", "Cytoplasm"] assert len(module.objects_list.value) == 2 for name in module.objects_list.value: assert name in ["Nuclei", "Cells"] def test_load_v3(): file = tests.modules.get_test_resources_directory("measurecolocalization/v3.pipeline") with open(file, "r") as fd: data = fd.read() fd = six.moves.StringIO(data) pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(fd) assert len(pipeline.modules()) == 1 module = pipeline.modules()[-1] assert ( module.images_or_objects.value == cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) assert len(module.images_list.value) == 2 assert module.thr == 25.0 for name in module.images_list.value: assert name in ["DNA", "Cytoplasm"] assert len(module.objects_list.value) == 2 for name in module.objects_list.value: assert name in ["Nuclei", "Cells"] all_object_measurement_formats = [ cellprofiler.modules.measurecolocalization.F_CORRELATION_FORMAT, cellprofiler.modules.measurecolocalization.F_COSTES_FORMAT, cellprofiler.modules.measurecolocalization.F_K_FORMAT, cellprofiler.modules.measurecolocalization.F_MANDERS_FORMAT, cellprofiler.modules.measurecolocalization.F_OVERLAP_FORMAT, cellprofiler.modules.measurecolocalization.F_RWC_FORMAT, ] all_image_measurement_formats = all_object_measurement_formats + [ cellprofiler.modules.measurecolocalization.F_SLOPE_FORMAT ] asymmetrical_measurement_formats = [ cellprofiler.modules.measurecolocalization.F_COSTES_FORMAT, cellprofiler.modules.measurecolocalization.F_K_FORMAT, cellprofiler.modules.measurecolocalization.F_MANDERS_FORMAT, cellprofiler.modules.measurecolocalization.F_RWC_FORMAT, ] def test_get_categories(): """Test the get_categories function for some different cases""" module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = cellprofiler.modules.measurecolocalization.M_IMAGES def cat(name): return module.get_categories(None, name) == ["Correlation"] assert cat("Image") assert not cat(OBJECTS_NAME) module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_OBJECTS ) assert not cat("Image") assert cat(OBJECTS_NAME) module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) assert cat("Image") assert cat(OBJECTS_NAME) def test_get_measurements(): """Test the get_measurements function for some different cases""" module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = cellprofiler.modules.measurecolocalization.M_IMAGES def meas(name): ans = list(module.get_measurements(None, name, "Correlation")) ans.sort() if name == "Image": mf = all_image_measurement_formats else: mf = all_object_measurement_formats expected = sorted([_.split("_")[1] for _ in mf]) return ans == expected assert meas("Image") assert not meas(OBJECTS_NAME) module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_OBJECTS ) assert not meas("Image") assert meas(OBJECTS_NAME) module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) assert meas("Image") assert meas(OBJECTS_NAME) def test_get_measurement_images(): """Test the get_measurment_images function for some different cases""" for iocase, names in ( ( cellprofiler.modules.measurecolocalization.M_IMAGES, ["Image"], ), (cellprofiler.modules.measurecolocalization.M_OBJECTS, [OBJECTS_NAME]), ( cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS, ["Image", OBJECTS_NAME], ), ): module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = iocase for name, mfs in ( ("Image", all_image_measurement_formats), (OBJECTS_NAME, all_object_measurement_formats), ): if name not in names: continue for mf in mfs: ftr = mf.split("_")[1] ans = module.get_measurement_images(None, name, "Correlation", ftr) expected = [ "%s_%s" % (i1, i2) for i1, i2 in ( (IMAGE1_NAME, IMAGE2_NAME), (IMAGE2_NAME, IMAGE1_NAME), ) ] if mf in asymmetrical_measurement_formats: assert all([e in ans for e in expected]) else: assert any([e in ans for e in expected]) def test_01_get_measurement_columns_images(): module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = cellprofiler.modules.measurecolocalization.M_IMAGES columns = module.get_measurement_columns(None) expected = [ ( "Image", ftr % (IMAGE1_NAME, IMAGE2_NAME), COLTYPE_FLOAT, ) for ftr in all_image_measurement_formats ] + [ ( "Image", ftr % (IMAGE2_NAME, IMAGE1_NAME), COLTYPE_FLOAT, ) for ftr in asymmetrical_measurement_formats ] assert len(columns) == len(expected) for column in columns: assert any([all([cf == ef for cf, ef in zip(column, ex)]) for ex in expected]) def test_02_get_measurement_columns_objects(): module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_OBJECTS ) columns = module.get_measurement_columns(None) expected = [ ( OBJECTS_NAME, ftr % (IMAGE1_NAME, IMAGE2_NAME), COLTYPE_FLOAT, ) for ftr in all_object_measurement_formats ] + [ ( OBJECTS_NAME, ftr % (IMAGE2_NAME, IMAGE1_NAME), COLTYPE_FLOAT, ) for ftr in asymmetrical_measurement_formats ] assert len(columns) == len(expected) for column in columns: assert any([all([cf == ef for cf, ef in zip(column, ex)]) for ex in expected]) def test_03_get_measurement_columns_both(): module = cellprofiler.modules.measurecolocalization.MeasureColocalization() module.images_list.value = ", ".join((IMAGE1_NAME, IMAGE2_NAME)) module.objects_list.value = OBJECTS_NAME module.images_or_objects.value = ( cellprofiler.modules.measurecolocalization.M_IMAGES_AND_OBJECTS ) columns = module.get_measurement_columns(None) expected = ( [ ( "Image", ftr % (IMAGE1_NAME, IMAGE2_NAME), COLTYPE_FLOAT, ) for ftr in all_image_measurement_formats ] + [ ( "Image", ftr % (IMAGE2_NAME, IMAGE1_NAME), COLTYPE_FLOAT, ) for ftr in asymmetrical_measurement_formats ] + [ ( OBJECTS_NAME, ftr % (IMAGE1_NAME, IMAGE2_NAME), COLTYPE_FLOAT, ) for ftr in all_object_measurement_formats ] + [ ( OBJECTS_NAME, ftr % (IMAGE2_NAME, IMAGE1_NAME), COLTYPE_FLOAT, ) for ftr in asymmetrical_measurement_formats ] ) assert len(columns) == len(expected) for column in columns: assert any([all([cf == ef for cf, ef in zip(column, ex)]) for ex in expected]) def test_correlated(): numpy.random.seed(0) image = numpy.random.uniform(size=(10, 10)) i1 = cellprofiler_core.image.Image(image) i2 = cellprofiler_core.image.Image(image) workspace, module = make_workspace(i1, i2) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images( None, "Image", "Correlation", "Correlation" ) corr = m.get_current_measurement( "Image", "Correlation_Correlation_%s" % mi[0] ) assert round(abs(corr - 1), 7) == 0 assert len(m.get_object_names()) == 1 assert m.get_object_names()[0] == "Image" columns = module.get_measurement_columns(None) features = m.get_feature_names("Image") assert len(columns) == len(features) for column in columns: assert column[1] in features def test_anticorrelated(): """Test two anticorrelated images""" # # Make a checkerboard pattern and reverse it for one image # i, j = numpy.mgrid[0:10, 0:10] image1 = ((i + j) % 2).astype(float) image2 = 1 - image1 i1 = cellprofiler_core.image.Image(image1) i2 = cellprofiler_core.image.Image(image2) workspace, module = make_workspace(i1, i2) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images( None, "Image", "Correlation", "Correlation" ) corr = m.get_current_measurement( "Image", "Correlation_Correlation_%s" % mi[0] ) assert round(abs(corr - -1), 7) == 0 def test_slope(): """Test the slope measurement""" numpy.random.seed(0) image1 = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) image2 = image1 * 0.5 i1 = cellprofiler_core.image.Image(image1) i2 = cellprofiler_core.image.Image(image2) workspace, module = make_workspace(i1, i2) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images( None, "Image", "Correlation", "Slope" ) slope = m.get_current_measurement( "Image", "Correlation_Slope_%s" % mi[0] ) if mi[0] == "%s_%s" % (IMAGE1_NAME, IMAGE2_NAME): assert round(abs(slope - 0.5), 5) == 0 else: assert round(abs(slope - 2), 7) == 0 def test_crop(): """Test similarly cropping one image to another""" numpy.random.seed(0) image1 = numpy.random.uniform(size=(20, 20)) i1 = cellprofiler_core.image.Image(image1) crop_mask = numpy.zeros((20, 20), bool) crop_mask[5:16, 5:16] = True i2 = cellprofiler_core.image.Image(image1[5:16, 5:16], crop_mask=crop_mask) workspace, module = make_workspace(i1, i2) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images( None, "Image", "Correlation", "Correlation" ) corr = m.get_current_measurement( "Image", "Correlation_Correlation_%s" % mi[0] ) assert round(abs(corr - 1), 7) == 0 def test_mask(): """Test images with two different masks""" numpy.random.seed(0) image1 = numpy.random.uniform(size=(20, 20)) mask1 = numpy.ones((20, 20), bool) mask1[5:8, 8:12] = False mask2 = numpy.ones((20, 20), bool) mask2[14:18, 2:5] = False mask = mask1 & mask2 image2 = image1.copy() # # Try to confound the module by making masked points anti-correlated # image2[~mask] = 1 - image1[~mask] i1 = cellprofiler_core.image.Image(image1, mask=mask1) i2 = cellprofiler_core.image.Image(image2, mask=mask2) workspace, module = make_workspace(i1, i2) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images( None, "Image", "Correlation", "Correlation" ) corr = m.get_current_measurement( "Image", "Correlation_Correlation_%s" % mi[0] ) assert round(abs(corr - 1), 7) == 0 def test_objects(): """Test images with two objects""" labels = numpy.zeros((10, 10), int) labels[:4, :4] = 1 labels[6:, 6:] = 2 i, j = numpy.mgrid[0:10, 0:10] image1 = ((i + j) % 2).astype(float) image2 = image1.copy() # # Anti-correlate the second object # image2[labels == 2] = 1 - image1[labels == 2] i1 = cellprofiler_core.image.Image(image1) i2 = cellprofiler_core.image.Image(image2) o = cellprofiler_core.object.Objects() o.segmented = labels workspace, module = make_workspace(i1, i2, o) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images(None, OBJECTS_NAME, "Correlation", "Correlation") corr = m.get_current_measurement(OBJECTS_NAME, "Correlation_Correlation_%s" % mi[0]) assert len(corr) == 2 assert round(abs(corr[0] - 1), 7) == 0 assert round(abs(corr[1] - -1), 7) == 0 assert len(m.get_object_names()) == 2 assert OBJECTS_NAME in m.get_object_names() columns = module.get_measurement_columns(None) image_features = m.get_feature_names("Image") object_features = m.get_feature_names(OBJECTS_NAME) assert len(columns) == len(image_features) + len(object_features) for column in columns: if column[0] == "Image": assert column[1] in image_features else: assert column[0] == OBJECTS_NAME assert column[1] in object_features def test_cropped_objects(): """Test images and objects with a cropping mask""" numpy.random.seed(0) image1 = numpy.random.uniform(size=(20, 20)) i1 = cellprofiler_core.image.Image(image1) crop_mask = numpy.zeros((20, 20), bool) crop_mask[5:15, 5:15] = True i2 = cellprofiler_core.image.Image(image1[5:15, 5:15], crop_mask=crop_mask) labels = numpy.zeros((10, 10), int) labels[:4, :4] = 1 labels[6:, 6:] = 2 o = cellprofiler_core.object.Objects() o.segmented = labels # # Make the objects have the cropped image as a parent # o.parent_image = i2 workspace, module = make_workspace(i1, i2, o) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images(None, OBJECTS_NAME, "Correlation", "Correlation") corr = m.get_current_measurement(OBJECTS_NAME, "Correlation_Correlation_%s" % mi[0]) assert round(abs(corr[0] - 1), 7) == 0 assert round(abs(corr[1] - 1), 7) == 0 def test_no_objects(): """Test images with no objects""" labels = numpy.zeros((10, 10), int) i, j = numpy.mgrid[0:10, 0:10] image1 = ((i + j) % 2).astype(float) image2 = image1.copy() i1 = cellprofiler_core.image.Image(image1) i2 = cellprofiler_core.image.Image(image2) o = cellprofiler_core.object.Objects() o.segmented = labels workspace, module = make_workspace(i1, i2, o) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images(None, OBJECTS_NAME, "Correlation", "Correlation") corr = m.get_current_measurement(OBJECTS_NAME, "Correlation_Correlation_%s" % mi[0]) assert len(corr) == 0 assert len(m.get_object_names()) == 2 assert OBJECTS_NAME in m.get_object_names() columns = module.get_measurement_columns(None) image_features = m.get_feature_names("Image") object_features = m.get_feature_names(OBJECTS_NAME) assert len(columns) == len(image_features) + len(object_features) for column in columns: if column[0] == "Image": assert column[1] in image_features else: assert column[0] == OBJECTS_NAME assert column[1] in object_features def test_wrong_size(): """Regression test of IMG-961 - objects and images of different sizes""" numpy.random.seed(0) image1 = numpy.random.uniform(size=(20, 20)) i1 = cellprofiler_core.image.Image(image1) labels = numpy.zeros((10, 30), int) labels[:4, :4] = 1 labels[6:, 6:] = 2 o = cellprofiler_core.object.Objects() o.segmented = labels workspace, module = make_workspace(i1, i1, o) module.run(workspace) m = workspace.measurements mi = module.get_measurement_images(None, OBJECTS_NAME, "Correlation", "Correlation") corr = m.get_current_measurement(OBJECTS_NAME, "Correlation_Correlation_%s" % mi[0]) assert round(abs(corr[0] - 1), 7) == 0 assert round(abs(corr[1] - 1), 7) == 0 def test_last_object_masked(): # Regression test of issue #1553 # MeasureColocalization was truncating the measurements # if the last had no pixels or all pixels masked. # r = numpy.random.RandomState() r.seed(65) image1 = r.uniform(size=(20, 20)) image2 = r.uniform(size=(20, 20)) labels = numpy.zeros((20, 20), int) labels[3:8, 3:8] = 1 labels[13:18, 13:18] = 2 mask = labels != 2 objects = cellprofiler_core.object.Objects() objects.segmented = labels for mask1, mask2 in ((mask, None), (None, mask), (mask, mask)): workspace, module = make_workspace( cellprofiler_core.image.Image(image1, mask=mask1), cellprofiler_core.image.Image(image2, mask=mask2), objects, ) module.run(workspace) m = workspace.measurements feature = cellprofiler.modules.measurecolocalization.F_CORRELATION_FORMAT % ( IMAGE1_NAME, IMAGE2_NAME, ) values = m[OBJECTS_NAME, feature] assert len(values) == 2 assert numpy.isnan(values[1]) def test_zero_valued_intensity(): # https://github.com/CellProfiler/CellProfiler/issues/2680 image1 = numpy.zeros((10, 10), dtype=numpy.float32) image2 =
numpy.random.rand(10, 10)
numpy.random.rand
import numpy as np import random from random import randint, choice from gutfit import model, parameterlist def matrix_diag3(d1,d2,d3): return np.array([[d1, 0.0, 0.0], [0.0, d2, 0.0], [0.0, 0.0, d3]]) # Generic Rotations # def matrix_rot23(th23): return np.array([[1.0, 0.0 , 0.0], [0.0,
np.cos(th23)
numpy.cos
""" Class contains a pure-python/Numpy implementation for the layer of a feedforward network that learns using Hebbian/Anti-Hebbian (HAH) weight updates and a layer for Q-AQREL reinforcement learning """ import numpy as np import random from hebbnets import base_layer from hebbnets import utils class FeedforwardLayer(base_layer.BaseLayer): """Layer of neurons that use simple feedforward weights """ def __init__(self, num_nodes, prev_layer, **kwargs): """Initialize layer Args: num_nodes: Number of nodes in this layer prev_layer: The previous layer of the network If this is an input layer, set to with integer for input size act_type: String naming the type of activation function to use has_bias: Bool indicating whether layer has bias Returns: None """ super().__init__(num_nodes, prev_layer, **kwargs) self.input_weights = self.glorot_init( self.layer_input_size + self.params['bias'], self.num_nodes ) def _rescale_weights(self): np.clip( self.input_weights, -self.MAX_WEIGHT, self.MAX_WEIGHT, out=self.input_weights ) def update_activation(self, input_value=None): """Update activation in forward pass for Q-AGREL layer Args: input_value: set to list/numpy array being fed as input into this layer, otherwise input will be inferred from a previous layer Returns: None. Updates self.activation in place """ input_value = self._get_input_values(input_value) input_value_times_weights = np.matmul(self.input_weights.T, input_value) self.activation = self.activation_type.apply(input_value_times_weights) class QagrelLayer(FeedforwardLayer): """Layer of neurons that use simple feedforward weights and Q-AGREL weight updating """ def update_weights(self, gate_value, rew_prederr, learning_rate, layer_input_val=None): """Update weights using Q-AGREL rules Args: gate_value: vector with size matching number of units in this layer indicating gating strength rew_prederr: scalar prediction error learning_rate: scalar learning rate layer_input_val: input value for this layer (or none to use prev lyaer activation) Returns: None, updates weight in place """ target_vec = self.activation_type.apply_deriv(self.activation) * gate_value.reshape(-1, 1) outer_prod = np.matmul( self._get_input_values(layer_input_val), target_vec.T ) self.input_weights += learning_rate * rew_prederr * outer_prod self._rescale_weights() class HahLayer(base_layer.BaseLayer): """Layer of neurons that are activated and updated using a Hebbian/AntHebbian (HAH) pattern """ MAX_ACTIVATION_TIME_STEPS = 200 ACTIVATION_ERROR_TOL = 1.0e-2 CUMSCORE_LR = 0.01 def __init__(self, num_nodes, prev_layer, **kwargs): """Initialize layer Args: num_nodes: Number of nodes in this layer prev_layer: The previous layer of the network If this is an input layer, set to with integer for input size act_type: String naming the type of activation function to use has_bias: Bool indicating whether layer has bias noise_var: variance for guassian noise applied to all activations Returns: None """ super().__init__(num_nodes, prev_layer, **kwargs) self.input_weights = self.glorot_init( self.layer_input_size + self.params['bias'], self.num_nodes ) self.lateral_weights = self.glorot_init( self.num_nodes, self.num_nodes, ) np.fill_diagonal(self.lateral_weights, 0.0) self._cum_sqr_activation = np.tile(1000.0, (num_nodes, 1)) def update_activation(self, input_value=None): """Update activation value for Hebb/Antihebb layer Args: input_value: set to list/numpy array being fed as input into this layer, otherwise input will be inferred from a previous layer Returns: None. Upates self.activation in place """ input_value = self._get_input_values(input_value) self.activation = np.zeros((self.num_nodes, 1), dtype='float64') input_value_times_weights = np.matmul(self.input_weights.T, input_value) if self.params['act_type'] == 'linear': _lateral_inv = np.linalg.pinv(self.lateral_weights.T + np.eye(self.num_nodes)) self.activation = np.matmul(_lateral_inv, input_value_times_weights) else: for _ in range(self.MAX_ACTIVATION_TIME_STEPS): next_activation = self.activation_type.apply( input_value_times_weights -
np.matmul(self.lateral_weights.T, self.activation)
numpy.matmul
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for ReplicaExchangeMC.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.internal import test_case from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import def _set_seed(seed): """Helper which uses graph seed if using TFE.""" # TODO(b/68017812): Deprecate once TFE supports seed. if tf.executing_eagerly(): return None return seed @test_util.run_all_in_graph_and_eager_modes class DefaultExchangeProposedFnTest(test_case.TestCase): def setUp(self): tf1.set_random_seed(123) def generate_exchanges(self, exchange_proposed_fn, num_replica, seed): def _scan_fn(*_): exchange = exchange_proposed_fn(num_replica, seed) flat_replicas = tf.reshape(exchange, [-1]) with tf.control_dependencies([ tf1.assert_equal( tf.size(input=flat_replicas), tf.size(input=tf.unique(flat_replicas)[0])), tf1.assert_greater_equal(flat_replicas, 0), tf1.assert_less(flat_replicas, num_replica), ]): return tf.shape(input=exchange)[0] return self.evaluate( tf.scan(_scan_fn, tf.range(1000), initializer=0, parallel_iterations=1)) def testProbExchange0p5NumReplica2(self): prob_exchange = 0.5 num_replica = 2 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(123)) # All exchanges_lens, if proposed, will be 1. self.assertAllClose( prob_exchange, np.mean([e == 1 for e in exchanges_lens]), atol=0.05) self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) def testProbExchange0p5NumReplica4(self): prob_exchange = 0.5 num_replica = 4 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(312)) # No exchanges_lens 1 - prob_exchange of the time. self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) # All exchanges_lens, if proposed, will be 0 or 1. self.assertAllClose( prob_exchange / 2, np.mean([e == 1 for e in exchanges_lens]), atol=0.05) self.assertAllClose( prob_exchange / 2, np.mean([e == 2 for e in exchanges_lens]), atol=0.05) def testProbExchange0p5NumReplica3(self): prob_exchange = 0.5 num_replica = 3 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(42)) # All exchanges_lens, if proposed, will be 1. self.assertAllClose( prob_exchange, np.mean([e == 1 for e in exchanges_lens]), atol=0.05) self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) def testProbExchange0p5NumReplica5(self): prob_exchange = 0.5 num_replica = 5 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(1)) # All exchanges_lens, if proposed, will be 2. self.assertAllClose( prob_exchange, np.mean([e == 2 for e in exchanges_lens]), atol=0.05) self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) def testProbExchange1p0(self): prob_exchange = 1.0 num_replica = 15 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(667)) # All exchanges_lens, if proposed, will be 7. And prob_exchange is 1. self.assertAllClose( prob_exchange, np.mean([e == 7 for e in exchanges_lens]), atol=0.05) self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) def testProbExchange0p0(self): prob_exchange = 0.0 num_replica = 15 fn = tfp.mcmc.default_exchange_proposed_fn(prob_exchange) exchanges_lens = self.generate_exchanges( fn, num_replica=num_replica, seed=_set_seed(665)) # All exchanges_lens, if proposed, will be 7. And prob_exchange is 0. self.assertAllClose( prob_exchange, np.mean([e == 7 for e in exchanges_lens]), atol=0.05) self.assertAllClose( 1 - prob_exchange, np.mean([e == 0 for e in exchanges_lens]), atol=0.05) @test_util.run_all_in_graph_and_eager_modes class REMCTest(test_case.TestCase): def setUp(self): tf1.set_random_seed(123) def _getNormalREMCSamples(self, inverse_temperatures, num_results=1000, step_size=1., dtype=np.float32): """Sampling from standard normal with REMC.""" target = tfd.Normal(dtype(0.), dtype(1.)) def make_kernel_fn(target_log_prob_fn, seed): return tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, seed=seed, step_size=step_size, num_leapfrog_steps=3) remc = tfp.mcmc.ReplicaExchangeMC( target_log_prob_fn=tf.function(target.log_prob, autograph=False), inverse_temperatures=inverse_temperatures, make_kernel_fn=make_kernel_fn, seed=_set_seed(1)) samples = tfp.mcmc.sample_chain( num_results=num_results, current_state=target.sample(seed=_set_seed(1)), kernel=remc, num_burnin_steps=50, trace_fn=None, parallel_iterations=1) # For determinism. self.assertAllEqual((num_results,), samples.shape) return self.evaluate(samples) def testNormalOddNumReplicas(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[1., 0.3, 0.1, 0.03, 0.01]) self.assertAllClose(samps_.mean(), 0., atol=0.1, rtol=0.1) self.assertAllClose(samps_.std(), 1., atol=0.1, rtol=0.1) def testNormalEvenNumReplicas(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[1., 0.9, 0.8, 0.7],) self.assertAllClose(samps_.mean(), 0., atol=0.1, rtol=0.1) self.assertAllClose(samps_.std(), 1., atol=0.1, rtol=0.1) def testNormalOddNumReplicasLowTolerance(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[1., 0.3, 0.1, 0.03, 0.01], num_results=500) self.assertAllClose(samps_.mean(), 0., atol=0.3, rtol=0.1) self.assertAllClose(samps_.std(), 1., atol=0.3, rtol=0.1) def testNormalEvenNumReplicasLowTolerance(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[1., 0.9, 0.8, 0.7], num_results=500) self.assertAllClose(samps_.mean(), 0., atol=0.3, rtol=0.1) self.assertAllClose(samps_.std(), 1., atol=0.3, rtol=0.1) def testNormalHighTemperatureOnlyHasLargerStddev(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[0.2], step_size=3.) self.assertAllClose(samps_.mean(), 0., atol=0.2, rtol=0.1) self.assertGreater(samps_.std(), 2.) def testNormalLowTemperatureOnlyHasSmallerStddev(self): """Sampling from the Standard Normal Distribution.""" samps_ = self._getNormalREMCSamples( inverse_temperatures=[6.0], step_size=0.5) self.assertAllClose(samps_.mean(), 0., atol=0.2, rtol=0.1) self.assertLess(samps_.std(), 0.6) def testRWM2DMixNormal(self): """Sampling from a 2-D Mixture Normal Distribution.""" dtype = np.float32 # By symmetry, target has mean [0, 0] # Therefore, Var = E[X^2] = E[E[X^2 | c]], where c is the component. # Now..., for the first component, # E[X1^2] = Var[X1] + Mean[X1]^2 # = 0.3^2 + 1^2, # and similarly for the second. As a result, # Var[mixture] = 1.09. target = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(probs=[0.5, 0.5]), components_distribution=tfd.MultivariateNormalDiag( loc=[[-1., -1], [1., 1.]], scale_identity_multiplier=[0.3, 0.3])) inverse_temperatures = 10.**tf.linspace(0., -2., 4) step_sizes = tf.constant([0.3, 0.6, 1.2, 2.4]) def make_kernel_fn(target_log_prob_fn, seed): kernel = tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, seed=seed, step_size=step_sizes[make_kernel_fn.idx], num_leapfrog_steps=2) make_kernel_fn.idx += 1 return kernel # TODO(b/124770732): Remove this hack. make_kernel_fn.idx = 0 remc = tfp.mcmc.ReplicaExchangeMC( target_log_prob_fn=tf.function(target.log_prob, autograph=False), # Verified that test fails if inverse_temperatures = [1.] inverse_temperatures=inverse_temperatures, make_kernel_fn=make_kernel_fn, seed=_set_seed(888)) def _trace_log_accept_ratio(state, results): del state return [r.log_accept_ratio for r in results.sampled_replica_results] num_results = 1000 samples, log_accept_ratios = tfp.mcmc.sample_chain( num_results=num_results, # Start at one of the modes, in order to make mode jumping necessary # if we want to pass test. current_state=np.ones(2, dtype=dtype), kernel=remc, num_burnin_steps=500, trace_fn=_trace_log_accept_ratio, parallel_iterations=1) # For determinism. self.assertAllEqual((num_results, 2), samples.shape) log_accept_ratios = [ tf.reduce_mean(input_tensor=tf.exp(tf.minimum(0., lar))) for lar in log_accept_ratios ] sample_mean = tf.reduce_mean(input_tensor=samples, axis=0) sample_std = tf.sqrt( tf.reduce_mean( input_tensor=tf.math.squared_difference(samples, sample_mean), axis=0)) [sample_mean_, sample_std_, log_accept_ratios_] = self.evaluate( [sample_mean, sample_std, log_accept_ratios]) tf1.logging.vlog(1, 'log_accept_ratios: %s eager: %s', log_accept_ratios_, tf.executing_eagerly()) self.assertAllClose(sample_mean_, [0., 0.], atol=0.3, rtol=0.3) self.assertAllClose( sample_std_, [np.sqrt(1.09), np.sqrt(1.09)], atol=0.1, rtol=0.1) def testMultipleCorrelatedStatesWithNoBatchDims(self): dtype = np.float32 true_mean = dtype([0, 0]) true_cov = dtype([[1, 0.5], [0.5, 1]]) # Use LinearOperatorLowerTriangular to get broadcasting ability. linop = tf.linalg.LinearOperatorLowerTriangular( tf.linalg.cholesky(true_cov)) num_results = 1000 def target_log_prob(x, y): # Corresponds to unnormalized MVN. # z = matmul(inv(chol(true_cov)), [x, y] - true_mean) xy = tf.stack([x, y], axis=-1) - true_mean z = linop.solvevec(xy) return -0.5 * tf.reduce_sum(input_tensor=z**2., axis=-1) def make_kernel_fn(target_log_prob_fn, seed): return tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, seed=seed, step_size=[0.5, 0.5], num_leapfrog_steps=5) remc = tfp.mcmc.ReplicaExchangeMC( target_log_prob_fn=tf.function(target_log_prob, autograph=False), inverse_temperatures=[1., 0.9, 0.8], make_kernel_fn=make_kernel_fn, seed=_set_seed(3)) states = tfp.mcmc.sample_chain( num_results=num_results, # batch_shape = [] for each initial state current_state=[1., 1.], kernel=remc, num_burnin_steps=100, trace_fn=None, parallel_iterations=1) # For determinism. self.assertAllEqual((num_results,), states[0].shape) self.assertAllEqual((num_results,), states[1].shape) states = tf.stack(states, axis=-1) self.assertEqual(num_results, tf.compat.dimension_value(states.shape[0])) sample_mean = tf.reduce_mean(input_tensor=states, axis=0) x = states - sample_mean sample_cov = tf.matmul(x, x, transpose_a=True) / dtype(num_results) sample_mean_, sample_cov_ = self.evaluate([sample_mean, sample_cov]) self.assertAllClose(true_mean, sample_mean_, atol=0.06, rtol=0.) self.assertAllClose(true_cov, sample_cov_, atol=0., rtol=0.2) def testNormalWithTwoBatchDimsAndThreeReplicas(self): """Sampling from the Standard Normal Distribution.""" # Small scale and well-separated modes mean we need replica exchange to # work or else tests fail. loc = np.array( [ # Use 3-D normals, ensuring batch and event sizes don't broadcast. [-1., -1., -1.], # loc of first batch member [1., 1., 1.] # loc of second batch member ], dtype=np.float32) scale_identity_multiplier = [0.5, 0.8] target = tfd.MultivariateNormalDiag( loc=loc, scale_identity_multiplier=scale_identity_multiplier) def make_kernel_fn(target_log_prob_fn, seed): return tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, seed=seed, step_size=0.15, num_leapfrog_steps=5) remc = tfp.mcmc.ReplicaExchangeMC( target_log_prob_fn=tf.function( lambda x: target.copy().log_prob(x), autograph=False), inverse_temperatures=[1., 0.9, 0.8], make_kernel_fn=make_kernel_fn, seed=_set_seed(700)) num_results = 500 states = tfp.mcmc.sample_chain( num_results=num_results, current_state=loc[::-1], # Batch members start at wrong mode! kernel=remc, num_burnin_steps=50, trace_fn=None, parallel_iterations=1) # For determinism. self.assertAllEqual((num_results, 2, 3), states.shape) states_ = self.evaluate(states) self.assertAllClose(loc, states_.mean(axis=0), rtol=0.2) self.assertAllClose( [[0.5**2, 0., 0.], [0., 0.5**2, 0.], [0., 0., 0.5**2]], np.cov(states_[:, 0, :], rowvar=False), atol=0.2) self.assertAllClose( [[0.8**2, 0., 0.], [0., 0.8**2, 0.], [0., 0., 0.8**2]],
np.cov(states_[:, 1, :], rowvar=False)
numpy.cov
############################################################################### # Potential.py: top-level class for a full potential # # Evaluate by calling the instance: Pot(R,z,phi) # # API for Potentials: # function _evaluate(self,R,z,phi) returns Phi(R,z,phi) # for orbit integration you need # function _Rforce(self,R,z,phi) return -d Phi d R # function _zforce(self,R,z,phi) return - d Phi d Z # density # function _dens(self,R,z,phi) return BOVY?? # for epicycle frequency # function _R2deriv(self,R,z,phi) return d2 Phi dR2 ############################################################################### from __future__ import division, print_function import os, os.path import pickle from functools import wraps import warnings import numpy from scipy import optimize, integrate from ..util import plot, coords, conversion from ..util.conversion import velocity_in_kpcGyr, \ physical_conversion, potential_physical_input, freq_in_Gyr, \ get_physical from ..util import galpyWarning from .plotRotcurve import plotRotcurve, vcirc from .plotEscapecurve import _INF, plotEscapecurve from .DissipativeForce import DissipativeForce, _isDissipative from .Force import Force, _APY_LOADED if _APY_LOADED: from astropy import units def check_potential_inputs_not_arrays(func): """ NAME: check_potential_inputs_not_arrays PURPOSE: Decorator to check inputs and throw TypeError if any of the inputs are arrays for Potentials that do not support array evaluation HISTORY: 2017-summer - Written for SpiralArmsPotential - <NAME> (UBC) 2019-05-23 - Moved to Potential for more general use - Bovy (UofT) """ @wraps(func) def func_wrapper(self,R,z,phi,t): if (hasattr(R,'shape') and R.shape != () and len(R) > 1) \ or (hasattr(z,'shape') and z.shape != () and len(z) > 1) \ or (hasattr(phi,'shape') and phi.shape != () and len(phi) > 1) \ or (hasattr(t,'shape') and t.shape != () and len(t) > 1): raise TypeError('Methods in {} do not accept array inputs. Please input scalars'.format(self.__class__.__name__)) return func(self,R,z,phi,t) return func_wrapper class Potential(Force): """Top-level class for a potential""" def __init__(self,amp=1.,ro=None,vo=None,amp_units=None): """ NAME: __init__ PURPOSE: INPUT: amp - amplitude to be applied when evaluating the potential and its forces amp_units - ('mass', 'velocity2', 'density') type of units that amp should have if it has units OUTPUT: HISTORY: """ Force.__init__(self,amp=amp,ro=ro,vo=vo,amp_units=amp_units) self.dim= 3 self.isRZ= True self.isNonAxi= False self.hasC= False self.hasC_dxdv= False self.hasC_dens= False return None @potential_physical_input @physical_conversion('energy',pop=True) def __call__(self,R,z,phi=0.,t=0.,dR=0,dphi=0): """ NAME: __call__ PURPOSE: evaluate the potential at (R,z,phi,t) INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: Phi(R,z,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) """ return self._call_nodecorator(R,z,phi=phi,t=t,dR=dR,dphi=dphi) def _call_nodecorator(self,R,z,phi=0.,t=0.,dR=0.,dphi=0): if dR == 0 and dphi == 0: try: rawOut= self._evaluate(R,z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_evaluate' function not implemented for this potential") if rawOut is None: return rawOut else: return self._amp*rawOut elif dR == 1 and dphi == 0: return -self.Rforce(R,z,phi=phi,t=t,use_physical=False) elif dR == 0 and dphi == 1: return -self.phiforce(R,z,phi=phi,t=t,use_physical=False) elif dR == 2 and dphi == 0: return self.R2deriv(R,z,phi=phi,t=t,use_physical=False) elif dR == 0 and dphi == 2: return self.phi2deriv(R,z,phi=phi,t=t,use_physical=False) elif dR == 1 and dphi == 1: return self.Rphideriv(R,z,phi=phi,t=t,use_physical=False) elif dR != 0 or dphi != 0: raise NotImplementedError('Higher-order derivatives not implemented for this potential') @potential_physical_input @physical_conversion('force',pop=True) def Rforce(self,R,z,phi=0.,t=0.): """ NAME: Rforce PURPOSE: evaluate cylindrical radial force F_R (R,z) INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: F_R (R,z,phi,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) """ return self._Rforce_nodecorator(R,z,phi=phi,t=t) def _Rforce_nodecorator(self,R,z,phi=0.,t=0.): # Separate, so it can be used during orbit integration try: return self._amp*self._Rforce(R,z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_Rforce' function not implemented for this potential") @potential_physical_input @physical_conversion('force',pop=True) def zforce(self,R,z,phi=0.,t=0.): """ NAME: zforce PURPOSE: evaluate the vertical force F_z (R,z,t) INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: F_z (R,z,phi,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) """ return self._zforce_nodecorator(R,z,phi=phi,t=t) def _zforce_nodecorator(self,R,z,phi=0.,t=0.): # Separate, so it can be used during orbit integration try: return self._amp*self._zforce(R,z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_zforce' function not implemented for this potential") @potential_physical_input @physical_conversion('forcederivative',pop=True) def r2deriv(self,R,z,phi=0.,t=0.): """ NAME: r2deriv PURPOSE: evaluate the second spherical radial derivative INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2phi/dr2 HISTORY: 2018-03-21 - Written - Webb (UofT) """ r= numpy.sqrt(R**2.+z**2.) return (self.R2deriv(R,z,phi=phi,t=t,use_physical=False)*R/r\ +self.Rzderiv(R,z,phi=phi,t=t,use_physical=False)*z/r)*R/r\ +(self.Rzderiv(R,z,phi=phi,t=t,use_physical=False)*R/r\ +self.z2deriv(R,z,phi=phi,t=t,use_physical=False)*z/r)*z/r @potential_physical_input @physical_conversion('density',pop=True) def dens(self,R,z,phi=0.,t=0.,forcepoisson=False): """ NAME: dens PURPOSE: evaluate the density rho(R,z,t) INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) KEYWORDS: forcepoisson= if True, calculate the density through the Poisson equation, even if an explicit expression for the density exists OUTPUT: rho (R,z,phi,t) HISTORY: 2010-08-08 - Written - Bovy (NYU) """ try: if forcepoisson: raise AttributeError #Hack! return self._amp*self._dens(R,z,phi=phi,t=t) except AttributeError: #Use the Poisson equation to get the density return (-self.Rforce(R,z,phi=phi,t=t,use_physical=False)/R +self.R2deriv(R,z,phi=phi,t=t,use_physical=False) +self.phi2deriv(R,z,phi=phi,t=t,use_physical=False)/R**2. +self.z2deriv(R,z,phi=phi,t=t,use_physical=False))/4./numpy.pi @potential_physical_input @physical_conversion('surfacedensity',pop=True) def surfdens(self,R,z,phi=0.,t=0.,forcepoisson=False): """ NAME: surfdens PURPOSE: evaluate the surface density :math:`\\Sigma(R,z,\\phi,t) = \\int_{-z}^{+z} dz' \\rho(R,z',\\phi,t)` INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) KEYWORDS: forcepoisson= if True, calculate the surface density through the Poisson equation, even if an explicit expression for the surface density exists OUTPUT: Sigma (R,z,phi,t) HISTORY: 2018-08-19 - Written - Bovy (UofT) """ try: if forcepoisson: raise AttributeError #Hack! return self._amp*self._surfdens(R,z,phi=phi,t=t) except AttributeError: #Use the Poisson equation to get the surface density return (-self.zforce(R,numpy.fabs(z),phi=phi,t=t,use_physical=False) +integrate.quad(\ lambda x: -self.Rforce(R,x,phi=phi,t=t,use_physical=False)/R +self.R2deriv(R,x,phi=phi,t=t,use_physical=False) +self.phi2deriv(R,x,phi=phi,t=t,use_physical=False)/R**2., 0.,numpy.fabs(z))[0])/2./numpy.pi def _surfdens(self,R,z,phi=0.,t=0.): """ NAME: _surfdens PURPOSE: evaluate the surface density for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the surface density HISTORY: 2018-08-19 - Written - Bovy (UofT) """ return 2.*integrate.quad(lambda x: self._dens(R,x,phi=phi,t=t),0,z)[0] @potential_physical_input @physical_conversion('mass',pop=True) def mass(self,R,z=None,t=0.,forceint=False): """ NAME: mass PURPOSE: evaluate the mass enclosed INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z= (None) vertical height (can be Quantity) t - time (optional; can be Quantity) KEYWORDS: forceint= if True, calculate the mass through integration of the density, even if an explicit expression for the mass exists OUTPUT: 1) for spherical potentials: M(<R) [or if z is None], when the mass is implemented explicitly, the mass enclosed within r = sqrt(R^2+z^2) is returned when not z is None; forceint will integrate between -z and z, so the two are inconsistent (If you care to have this changed, raise an issue on github) 2) for axisymmetric potentials: M(<R,<fabs(Z)) HISTORY: 2014-01-29 - Written - Bovy (IAS) 2019-08-15 - Added spherical warning - Bovy (UofT) """ if self.isNonAxi: raise NotImplementedError('mass for non-axisymmetric potentials is not currently supported') try: if forceint: raise AttributeError #Hack! return self._amp*self._mass(R,z=z,t=t) except AttributeError: #Use numerical integration to get the mass if z is None: warnings.warn("Vertical height z not specified for mass " "calculation...assuming spherical potential" " (for the mass of axisymmetric potentials" ", specify z)",galpyWarning) return 4.*numpy.pi\ *integrate.quad(lambda x: x**2.\ *self.dens(x,0.,t=t, use_physical=False), 0.,R)[0] else: return 4.*numpy.pi\ *integrate.dblquad(lambda y,x: x\ *self.dens(x,y,t=t,use_physical=False), 0.,R,lambda x: 0., lambda x: z)[0] @physical_conversion('mass',pop=False) def mvir(self,H=70.,Om=0.3,t=0.,overdens=200.,wrtcrit=False, forceint=False,ro=None,vo=None, use_physical=False): # use_physical necessary bc of pop=False, does nothing inside """ NAME: mvir PURPOSE: calculate the virial mass INPUT: H= (default: 70) Hubble constant in km/s/Mpc Om= (default: 0.3) Omega matter overdens= (200) overdensity which defines the virial radius wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density ro= distance scale in kpc or as Quantity (default: object-wide, which if not set is 8 kpc)) vo= velocity scale in km/s or as Quantity (default: object-wide, which if not set is 220 km/s)) KEYWORDS: forceint= if True, calculate the mass through integration of the density, even if an explicit expression for the mass exists OUTPUT: M(<rvir) HISTORY: 2014-09-12 - Written - Bovy (IAS) """ if ro is None: ro= self._ro if vo is None: vo= self._vo #Evaluate the virial radius try: rvir= self.rvir(H=H,Om=Om,t=t,overdens=overdens,wrtcrit=wrtcrit, use_physical=False,ro=ro,vo=vo) except AttributeError: raise AttributeError("This potential does not have a '_scale' defined to base the concentration on or does not support calculating the virial radius") return self.mass(rvir,t=t,forceint=forceint,use_physical=False,ro=ro,vo=vo) @potential_physical_input @physical_conversion('forcederivative',pop=True) def R2deriv(self,R,Z,phi=0.,t=0.): """ NAME: R2deriv PURPOSE: evaluate the second radial derivative INPUT: R - Galactocentric radius (can be Quantity) Z - vertical height (can be Quantity) phi - Galactocentric azimuth (can be Quantity) t - time (can be Quantity) OUTPUT: d2phi/dR2 HISTORY: 2011-10-09 - Written - Bovy (IAS) """ try: return self._amp*self._R2deriv(R,Z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_R2deriv' function not implemented for this potential") @potential_physical_input @physical_conversion('forcederivative',pop=True) def z2deriv(self,R,Z,phi=0.,t=0.): """ NAME: z2deriv PURPOSE: evaluate the second vertical derivative INPUT: R - Galactocentric radius (can be Quantity) Z - vertical height (can be Quantity) phi - Galactocentric azimuth (can be Quantity) t - time (can be Quantity) OUTPUT: d2phi/dz2 HISTORY: 2012-07-25 - Written - Bovy (IAS@MPIA) """ try: return self._amp*self._z2deriv(R,Z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_z2deriv' function not implemented for this potential") @potential_physical_input @physical_conversion('forcederivative',pop=True) def Rzderiv(self,R,Z,phi=0.,t=0.): """ NAME: Rzderiv PURPOSE: evaluate the mixed R,z derivative INPUT: R - Galactocentric radius (can be Quantity) Z - vertical height (can be Quantity) phi - Galactocentric azimuth (can be Quantity) t - time (can be Quantity) OUTPUT: d2phi/dz/dR HISTORY: 2013-08-26 - Written - Bovy (IAS) """ try: return self._amp*self._Rzderiv(R,Z,phi=phi,t=t) except AttributeError: #pragma: no cover raise PotentialError("'_Rzderiv' function not implemented for this potential") def normalize(self,norm): """ NAME: normalize PURPOSE: normalize a potential in such a way that vc(R=1,z=0)=1., or a fraction of this INPUT: norm - normalize such that Rforce(R=1,z=0) is such that it is 'norm' of the force necessary to make vc(R=1,z=0)=1 (if True, norm=1) OUTPUT: (none) HISTORY: 2010-07-10 - Written - Bovy (NYU) """ self._amp*= norm/numpy.fabs(self.Rforce(1.,0.,use_physical=False)) @potential_physical_input @physical_conversion('energy',pop=True) def phiforce(self,R,z,phi=0.,t=0.): """ NAME: phiforce PURPOSE: evaluate the azimuthal force F_phi = -d Phi / d phi (R,z,phi,t) [note that this is a torque, not a force!) INPUT: R - Cylindrical Galactocentric radius (can be Quantity) z - vertical height (can be Quantity) phi - azimuth (rad; can be Quantity) t - time (optional; can be Quantity) OUTPUT: F_phi (R,z,phi,t) HISTORY: 2010-07-10 - Written - Bovy (NYU) """ return self._phiforce_nodecorator(R,z,phi=phi,t=t) def _phiforce_nodecorator(self,R,z,phi=0.,t=0.): # Separate, so it can be used during orbit integration try: return self._amp*self._phiforce(R,z,phi=phi,t=t) except AttributeError: #pragma: no cover if self.isNonAxi: raise PotentialError("'_phiforce' function not implemented for this non-axisymmetric potential") return 0. @potential_physical_input @physical_conversion('forcederivative',pop=True) def phi2deriv(self,R,Z,phi=0.,t=0.): """ NAME: phi2deriv PURPOSE: evaluate the second azimuthal derivative INPUT: R - Galactocentric radius (can be Quantity) Z - vertical height (can be Quantity) phi - Galactocentric azimuth (can be Quantity) t - time (can be Quantity) OUTPUT: d2Phi/dphi2 HISTORY: 2013-09-24 - Written - Bovy (IAS) """ try: return self._amp*self._phi2deriv(R,Z,phi=phi,t=t) except AttributeError: #pragma: no cover if self.isNonAxi: raise PotentialError("'_phi2deriv' function not implemented for this non-axisymmetric potential") return 0. @potential_physical_input @physical_conversion('forcederivative',pop=True) def Rphideriv(self,R,Z,phi=0.,t=0.): """ NAME: Rphideriv PURPOSE: evaluate the mixed radial, azimuthal derivative INPUT: R - Galactocentric radius (can be Quantity) Z - vertical height (can be Quantity) phi - Galactocentric azimuth (can be Quantity) t - time (can be Quantity) OUTPUT: d2Phi/dphidR HISTORY: 2014-06-30 - Written - Bovy (IAS) """ try: return self._amp*self._Rphideriv(R,Z,phi=phi,t=t) except AttributeError: #pragma: no cover if self.isNonAxi: raise PotentialError("'_Rphideriv' function not implemented for this non-axisymmetric potential") return 0. def toPlanar(self): """ NAME: toPlanar PURPOSE: convert a 3D potential into a planar potential in the mid-plane INPUT: (none) OUTPUT: planarPotential HISTORY: unknown """ from ..potential import toPlanarPotential return toPlanarPotential(self) def toVertical(self,R,phi=None,t0=0.): """ NAME: toVertical PURPOSE: convert a 3D potential into a linear (vertical) potential at R INPUT: R - Galactocentric radius at which to create the vertical potential (can be Quantity) phi= (None) Galactocentric azimuth at which to create the vertical potential (can be Quantity); required for non-axisymmetric potential t0= (0.) time at which to create the vertical potential (can be Quantity) OUTPUT: linear (vertical) potential: Phi(z,phi,t) = Phi(R,z,phi,t)-Phi(R,0.,phi0,t0) where phi0 and t0 are the phi and t inputs HISTORY unknown """ from ..potential import toVerticalPotential return toVerticalPotential(self,R,phi=phi,t0=t0) def plot(self,t=0.,rmin=0.,rmax=1.5,nrs=21,zmin=-0.5,zmax=0.5,nzs=21, effective=False,Lz=None,phi=None,xy=False, xrange=None,yrange=None, justcontours=False,levels=None,cntrcolors=None, ncontours=21,savefilename=None): """ NAME: plot PURPOSE: plot the potential INPUT: t= time to plot potential at rmin= minimum R (can be Quantity) [xmin if xy] rmax= maximum R (can be Quantity) [ymax if xy] nrs= grid in R zmin= minimum z (can be Quantity) [ymin if xy] zmax= maximum z (can be Quantity) [ymax if xy] nzs= grid in z phi= (None) azimuth to use for non-axisymmetric potentials xy= (False) if True, plot the potential in X-Y effective= (False) if True, plot the effective potential Phi + Lz^2/2/R^2 Lz= (None) angular momentum to use for the effective potential when effective=True justcontours= (False) if True, just plot contours savefilename - save to or restore from this savefile (pickle) xrange, yrange= can be specified independently from rmin,zmin, etc. levels= (None) contours to plot ncontours - number of contours when levels is None cntrcolors= (None) colors of the contours (single color or array with length ncontours) OUTPUT: plot to output device HISTORY: 2010-07-09 - Written - Bovy (NYU) 2014-04-08 - Added effective= - Bovy (IAS) """ rmin= conversion.parse_length(rmin,ro=self._ro) rmax= conversion.parse_length(rmax,ro=self._ro) zmin= conversion.parse_length(zmin,ro=self._ro) zmax= conversion.parse_length(zmax,ro=self._ro) if xrange is None: xrange= [rmin,rmax] if yrange is None: yrange= [zmin,zmax] if not savefilename is None and os.path.exists(savefilename): print("Restoring savefile "+savefilename+" ...") savefile= open(savefilename,'rb') potRz= pickle.load(savefile) Rs= pickle.load(savefile) zs= pickle.load(savefile) savefile.close() else: if effective and Lz is None: raise RuntimeError("When effective=True, you need to specify Lz=") Rs= numpy.linspace(xrange[0],xrange[1],nrs) zs= numpy.linspace(yrange[0],yrange[1],nzs) potRz= numpy.zeros((nrs,nzs)) for ii in range(nrs): for jj in range(nzs): if xy: R,phi,z= coords.rect_to_cyl(Rs[ii],zs[jj],0.) else: R,z= Rs[ii], zs[jj] potRz[ii,jj]= evaluatePotentials(self, R,z,t=t,phi=phi, use_physical=False) if effective: potRz[ii,:]+= 0.5*Lz**2/Rs[ii]**2. #Don't plot outside of the desired range potRz[Rs < rmin,:]= numpy.nan potRz[Rs > rmax,:]= numpy.nan potRz[:,zs < zmin]= numpy.nan potRz[:,zs > zmax]= numpy.nan if not savefilename == None: print("Writing savefile "+savefilename+" ...") savefile= open(savefilename,'wb') pickle.dump(potRz,savefile) pickle.dump(Rs,savefile) pickle.dump(zs,savefile) savefile.close() if xy: xlabel= r'$x/R_0$' ylabel= r'$y/R_0$' else: xlabel=r"$R/R_0$" ylabel=r"$z/R_0$" if levels is None: levels= numpy.linspace(numpy.nanmin(potRz),numpy.nanmax(potRz),ncontours) if cntrcolors is None: cntrcolors= 'k' return plot.dens2d(potRz.T,origin='lower',cmap='gist_gray',contours=True, xlabel=xlabel,ylabel=ylabel, xrange=xrange, yrange=yrange, aspect=.75*(rmax-rmin)/(zmax-zmin), cntrls='-', justcontours=justcontours, levels=levels,cntrcolors=cntrcolors) def plotDensity(self,t=0., rmin=0.,rmax=1.5,nrs=21,zmin=-0.5,zmax=0.5,nzs=21, phi=None,xy=False, ncontours=21,savefilename=None,aspect=None,log=False, justcontours=False): """ NAME: plotDensity PURPOSE: plot the density of this potential INPUT: t= time to plot potential at rmin= minimum R (can be Quantity) [xmin if xy] rmax= maximum R (can be Quantity) [ymax if xy] nrs= grid in R zmin= minimum z (can be Quantity) [ymin if xy] zmax= maximum z (can be Quantity) [ymax if xy] nzs= grid in z phi= (None) azimuth to use for non-axisymmetric potentials xy= (False) if True, plot the density in X-Y ncontours= number of contours justcontours= (False) if True, just plot contours savefilename= save to or restore from this savefile (pickle) log= if True, plot the log density OUTPUT: plot to output device HISTORY: 2014-01-05 - Written - Bovy (IAS) """ return plotDensities(self,rmin=rmin,rmax=rmax,nrs=nrs, zmin=zmin,zmax=zmax,nzs=nzs,phi=phi,xy=xy,t=t, ncontours=ncontours,savefilename=savefilename, justcontours=justcontours, aspect=aspect,log=log) def plotSurfaceDensity(self,t=0.,z=numpy.inf, xmin=0.,xmax=1.5,nxs=21,ymin=-0.5,ymax=0.5,nys=21, ncontours=21,savefilename=None,aspect=None, log=False,justcontours=False): """ NAME: plotSurfaceDensity PURPOSE: plot the surface density of this potential INPUT: t= time to plot potential at z= (inf) height between which to integrate the density (from -z to z; can be a Quantity) xmin= minimum x (can be Quantity) xmax= maximum x (can be Quantity) nxs= grid in x ymin= minimum y (can be Quantity) ymax= maximum y (can be Quantity) nys= grid in y ncontours= number of contours justcontours= (False) if True, just plot contours savefilename= save to or restore from this savefile (pickle) log= if True, plot the log density OUTPUT: plot to output device HISTORY: 2020-08-19 - Written - Bovy (UofT) """ return plotSurfaceDensities(self,xmin=xmin,xmax=xmax,nxs=nxs, ymin=ymin,ymax=ymax,nys=nys,t=t,z=z, ncontours=ncontours, savefilename=savefilename, justcontours=justcontours, aspect=aspect,log=log) @potential_physical_input @physical_conversion('velocity',pop=True) def vcirc(self,R,phi=None,t=0.): """ NAME: vcirc PURPOSE: calculate the circular velocity at R in this potential INPUT: R - Galactocentric radius (can be Quantity) phi= (None) azimuth to use for non-axisymmetric potentials t - time (optional; can be Quantity) OUTPUT: circular rotation velocity HISTORY: 2011-10-09 - Written - Bovy (IAS) 2016-06-15 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT) """ return numpy.sqrt(R*-self.Rforce(R,0.,phi=phi,t=t,use_physical=False)) @potential_physical_input @physical_conversion('frequency',pop=True) def dvcircdR(self,R,phi=None,t=0.): """ NAME: dvcircdR PURPOSE: calculate the derivative of the circular velocity at R wrt R in this potential INPUT: R - Galactocentric radius (can be Quantity) phi= (None) azimuth to use for non-axisymmetric potentials t - time (optional; can be Quantity) OUTPUT: derivative of the circular rotation velocity wrt R HISTORY: 2013-01-08 - Written - Bovy (IAS) 2016-06-28 - Added phi= keyword for non-axisymmetric potential - Bovy (UofT) """ return 0.5*(-self.Rforce(R,0.,phi=phi,t=t,use_physical=False)\ +R*self.R2deriv(R,0.,phi=phi,t=t,use_physical=False))\ /self.vcirc(R,phi=phi,t=t,use_physical=False) @potential_physical_input @physical_conversion('frequency',pop=True) def omegac(self,R,t=0.): """ NAME: omegac PURPOSE: calculate the circular angular speed at R in this potential INPUT: R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: circular angular speed HISTORY: 2011-10-09 - Written - Bovy (IAS) """ return numpy.sqrt(-self.Rforce(R,0.,t=t,use_physical=False)/R) @potential_physical_input @physical_conversion('frequency',pop=True) def epifreq(self,R,t=0.): """ NAME: epifreq PURPOSE: calculate the epicycle frequency at R in this potential INPUT: R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: epicycle frequency HISTORY: 2011-10-09 - Written - Bovy (IAS) """ return numpy.sqrt(self.R2deriv(R,0.,t=t,use_physical=False)\ -3./R*self.Rforce(R,0.,t=t,use_physical=False)) @potential_physical_input @physical_conversion('frequency',pop=True) def verticalfreq(self,R,t=0.): """ NAME: verticalfreq PURPOSE: calculate the vertical frequency at R in this potential INPUT: R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: vertical frequency HISTORY: 2012-07-25 - Written - Bovy (IAS@MPIA) """ return numpy.sqrt(self.z2deriv(R,0.,t=t,use_physical=False)) @physical_conversion('position',pop=True) def lindbladR(self,OmegaP,m=2,t=0.,**kwargs): """ NAME: lindbladR PURPOSE: calculate the radius of a Lindblad resonance INPUT: OmegaP - pattern speed (can be Quantity) m= order of the resonance (as in m(O-Op)=kappa (negative m for outer) use m='corotation' for corotation +scipy.optimize.brentq xtol,rtol,maxiter kwargs t - time (optional; can be Quantity) OUTPUT: radius of Linblad resonance, None if there is no resonance HISTORY: 2011-10-09 - Written - Bovy (IAS) """ OmegaP= conversion.parse_frequency(OmegaP,ro=self._ro,vo=self._vo) return lindbladR(self,OmegaP,m=m,t=t,use_physical=False,**kwargs) @potential_physical_input @physical_conversion('velocity',pop=True) def vesc(self,R,t=0.): """ NAME: vesc PURPOSE: calculate the escape velocity at R for this potential INPUT: R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: escape velocity HISTORY: 2011-10-09 - Written - Bovy (IAS) """ return numpy.sqrt(2.*(self(_INF,0.,t=t,use_physical=False)\ -self(R,0.,t=t,use_physical=False))) @physical_conversion('position',pop=True) def rl(self,lz,t=0.): """ NAME: rl PURPOSE: calculate the radius of a circular orbit of Lz INPUT: lz - Angular momentum (can be Quantity) t - time (optional; can be Quantity) OUTPUT: radius HISTORY: 2012-07-30 - Written - Bovy (IAS@MPIA) NOTE: seems to take about ~0.5 ms for a Miyamoto-Nagai potential; ~0.75 ms for a MWPotential """ lz= conversion.parse_angmom(lz,ro=self._ro,vo=self._vo) return rl(self,lz,t=t,use_physical=False) @potential_physical_input @physical_conversion('dimensionless',pop=True) def flattening(self,R,z,t=0.): """ NAME: flattening PURPOSE: calculate the potential flattening, defined as sqrt(fabs(z/R F_R/F_z)) INPUT: R - Galactocentric radius (can be Quantity) z - height (can be Quantity) t - time (optional; can be Quantity) OUTPUT: flattening HISTORY: 2012-09-13 - Written - Bovy (IAS) """ return numpy.sqrt(numpy.fabs(z/R*self.Rforce(R,z,t=t,use_physical=False)\ /self.zforce(R,z,t=t,use_physical=False))) @physical_conversion('velocity',pop=True) def vterm(self,l,t=0.,deg=True): """ NAME: vterm PURPOSE: calculate the terminal velocity at l in this potential INPUT: l - Galactic longitude [deg/rad; can be Quantity) t - time (optional; can be Quantity) deg= if True (default), l in deg OUTPUT: terminal velocity HISTORY: 2013-05-31 - Written - Bovy (IAS) """ if _APY_LOADED and isinstance(l,units.Quantity): l= conversion.parse_angle(l) deg= False if deg: sinl= numpy.sin(l/180.*numpy.pi) else: sinl= numpy.sin(l) return sinl*(self.omegac(numpy.fabs(sinl),t=t,use_physical=False)\ -self.omegac(1.,t=t,use_physical=False)) def plotRotcurve(self,*args,**kwargs): """ NAME: plotRotcurve PURPOSE: plot the rotation curve for this potential (in the z=0 plane for non-spherical potentials) INPUT: Rrange - range (can be Quantity) grid= number of points to plot savefilename=- save to or restore from this savefile (pickle) +galpy.util.plot.plot(*args,**kwargs) OUTPUT: plot to output device HISTORY: 2010-07-10 - Written - Bovy (NYU) """ return plotRotcurve(self,*args,**kwargs) def plotEscapecurve(self,*args,**kwargs): """ NAME: plotEscapecurve PURPOSE: plot the escape velocity curve for this potential (in the z=0 plane for non-spherical potentials) INPUT: Rrange - range (can be Quantity) grid= number of points to plot savefilename= save to or restore from this savefile (pickle) +galpy.util.plot.plot(*args,**kwargs) OUTPUT: plot to output device HISTORY: 2010-08-08 - Written - Bovy (NYU) """ return plotEscapecurve(self.toPlanar(),*args,**kwargs) def conc(self,H=70.,Om=0.3,t=0.,overdens=200.,wrtcrit=False, ro=None,vo=None): """ NAME: conc PURPOSE: return the concentration INPUT: H= (default: 70) Hubble constant in km/s/Mpc Om= (default: 0.3) Omega matter t - time (optional; can be Quantity) overdens= (200) overdensity which defines the virial radius wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density ro= distance scale in kpc or as Quantity (default: object-wide, which if not set is 8 kpc)) vo= velocity scale in km/s or as Quantity (default: object-wide, which if not set is 220 km/s)) OUTPUT: concentration (scale/rvir) HISTORY: 2014-04-03 - Written - Bovy (IAS) """ if ro is None: ro= self._ro if vo is None: vo= self._vo try: return self.rvir(H=H,Om=Om,t=t,overdens=overdens,wrtcrit=wrtcrit, ro=ro,vo=vo,use_physical=False)/self._scale except AttributeError: raise AttributeError("This potential does not have a '_scale' defined to base the concentration on or does not support calculating the virial radius") def nemo_accname(self): """ NAME: nemo_accname PURPOSE: return the accname potential name for use of this potential with NEMO INPUT: (none) OUTPUT: Acceleration name HISTORY: 2014-12-18 - Written - Bovy (IAS) """ try: return self._nemo_accname except AttributeError: raise AttributeError('NEMO acceleration name not supported for %s' % self.__class__.__name__) def nemo_accpars(self,vo,ro): """ NAME: nemo_accpars PURPOSE: return the accpars potential parameters for use of this potential with NEMO INPUT: vo - velocity unit in km/s ro - length unit in kpc OUTPUT: accpars string HISTORY: 2014-12-18 - Written - Bovy (IAS) """ try: return self._nemo_accpars(vo,ro) except AttributeError: raise AttributeError('NEMO acceleration parameters not supported for %s' % self.__class__.__name__) @potential_physical_input @physical_conversion('position',pop=True) def rtide(self,R,z,phi=0.,t=0.,M=None): """ NAME: rtide PURPOSE: Calculate the tidal radius for object of mass M assuming a circular orbit as .. math:: r_t^3 = \\frac{GM_s}{\\Omega^2-\\mathrm{d}^2\\Phi/\\mathrm{d}r^2} where :math:`M_s` is the cluster mass, :math:`\\Omega` is the circular frequency, and :math:`\Phi` is the gravitational potential. For non-spherical potentials, we evaluate :math:`\\Omega^2 = (1/r)(\\mathrm{d}\\Phi/\\mathrm{d}r)` and evaluate the derivatives at the given position of the cluster. INPUT: R - Galactocentric radius (can be Quantity) z - height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) M - (default = None) Mass of object (can be Quantity) OUTPUT: Tidal Radius HISTORY: 2018-03-21 - Written - Webb (UofT) """ if M is None: #Make sure an object mass is given raise PotentialError("Mass parameter M= needs to be set to compute tidal radius") r= numpy.sqrt(R**2.+z**2.) omegac2= -self.rforce(R,z,phi=phi,t=t,use_physical=False)/r d2phidr2= self.r2deriv(R,z,phi=phi,t=t,use_physical=False) return (M/(omegac2-d2phidr2))**(1./3.) @potential_physical_input @physical_conversion('forcederivative',pop=True) def ttensor(self,R,z,phi=0.,t=0.,eigenval=False): """ NAME: ttensor PURPOSE: Calculate the tidal tensor Tij=-d(Psi)(dxidxj) INPUT: R - Galactocentric radius (can be Quantity) z - height (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) eigenval - return eigenvalues if true (optional; boolean) OUTPUT: Tidal Tensor HISTORY: 2018-03-21 - Written - Webb (UofT) """ if self.isNonAxi: raise PotentialError("Tidal tensor calculation is currently only implemented for axisymmetric potentials") #Evaluate forces, angles and derivatives Rderiv= -self.Rforce(R,z,phi=phi,t=t,use_physical=False) phideriv= -self.phiforce(R,z,phi=phi,t=t,use_physical=False) R2deriv= self.R2deriv(R,z,phi=phi,t=t,use_physical=False) z2deriv= self.z2deriv(R,z,phi=phi,t=t,use_physical=False) phi2deriv= self.phi2deriv(R,z,phi=phi,t=t,use_physical=False) Rzderiv= self.Rzderiv(R,z,phi=phi,t=t,use_physical=False) Rphideriv= self.Rphideriv(R,z,phi=phi,t=t,use_physical=False) #Temporarily set zphideriv to zero until zphideriv is added to Class zphideriv=0.0 cosphi=numpy.cos(phi) sinphi=numpy.sin(phi) cos2phi=cosphi**2.0 sin2phi=sinphi**2.0 R2=R**2.0 R3=R**3.0 # Tidal tensor txx= R2deriv*cos2phi-Rphideriv*2.*cosphi*sinphi/R+Rderiv*sin2phi/R\ +phi2deriv*sin2phi/R2+phideriv*2.*cosphi*sinphi/R2 tyx= R2deriv*sinphi*cosphi+Rphideriv*(cos2phi-sin2phi)/R\ -Rderiv*sinphi*cosphi/R-phi2deriv*sinphi*cosphi/R2\ +phideriv*(sin2phi-cos2phi)/R2 tzx=Rzderiv*cosphi-zphideriv*sinphi/R tyy=R2deriv*sin2phi+Rphideriv*2.*cosphi*sinphi/R+Rderiv*cos2phi/R\ +phi2deriv*cos2phi/R2-phideriv*2.*sinphi*cosphi/R2 txy=tyx tzy=Rzderiv*sinphi+zphideriv*cosphi/R txz=tzx tyz=tzy tzz=z2deriv tij=-numpy.array([[txx,txy,txz],[tyx,tyy,tyz],[tzx,tzy,tzz]]) if eigenval: return numpy.linalg.eigvals(tij) else: return tij @physical_conversion('position',pop=True) def zvc(self,R,E,Lz,phi=0.,t=0.): """ NAME: zvc PURPOSE: Calculate the zero-velocity curve: z such that Phi(R,z) + Lz/[2R^2] = E (assumes that F_z(R,z) = negative at positive z such that there is a single solution) INPUT: R - Galactocentric radius (can be Quantity) E - Energy (can be Quantity) Lz - Angular momentum (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: z such that Phi(R,z) + Lz/[2R^2] = E HISTORY: 2020-08-20 - Written - Bovy (UofT) """ return zvc(self,R,E,Lz,phi=phi,t=t,use_physical=False) @physical_conversion('position',pop=True) def zvc_range(self,E,Lz,phi=0.,t=0.): """ NAME: zvc_range PURPOSE: Calculate the minimum and maximum radius for which the zero-velocity curve exists for this energy and angular momentum (R such that Phi(R,0) + Lz/[2R^2] = E) INPUT: E - Energy (can be Quantity) Lz - Angular momentum (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: Solutions R such that Phi(R,0) + Lz/[2R^2] = E HISTORY: 2020-08-20 - Written - Bovy (UofT) """ return zvc_range(self,E,Lz,phi=phi,t=t,use_physical=False) class PotentialError(Exception): #pragma: no cover def __init__(self, value): self.value = value def __str__(self): return repr(self.value) @potential_physical_input @physical_conversion('energy',pop=True) def evaluatePotentials(Pot,R,z,phi=None,t=0.,dR=0,dphi=0): """ NAME: evaluatePotentials PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (can be Quantity) t - time (can be Quantity) dR= dphi=, if set to non-zero integers, return the dR, dphi't derivative instead OUTPUT: Phi(R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) """ return _evaluatePotentials(Pot,R,z,phi=phi,t=t,dR=dR,dphi=dphi) def _evaluatePotentials(Pot,R,z,phi=None,t=0.,dR=0,dphi=0): """Raw, undecorated function for internal use""" nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") isList= isinstance(Pot,list) if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot._call_nodecorator(R,z,phi=phi,t=t,dR=dR,dphi=dphi) return sum elif isinstance(Pot,Potential): return Pot._call_nodecorator(R,z,phi=phi,t=t,dR=dR,dphi=dphi) else: #pragma: no cover raise PotentialError("Input to 'evaluatePotentials' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('density',pop=True) def evaluateDensities(Pot,R,z,phi=None,t=0.,forcepoisson=False): """ NAME: evaluateDensities PURPOSE: convenience function to evaluate a possible sum of densities INPUT: Pot - potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (can be Quantity) t - time (can be Quantity) forcepoisson= if True, calculate the density through the Poisson equation, even if an explicit expression for the density exists OUTPUT: rho(R,z) HISTORY: 2010-08-08 - Written - Bovy (NYU) 2013-12-28 - Added forcepoisson - Bovy (IAS) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.dens(R,z,phi=phi,t=t,forcepoisson=forcepoisson, use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.dens(R,z,phi=phi,t=t,forcepoisson=forcepoisson, use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluateDensities' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('surfacedensity',pop=True) def evaluateSurfaceDensities(Pot,R,z,phi=None,t=0.,forcepoisson=False): """ NAME: evaluateSurfaceDensities PURPOSE: convenience function to evaluate a possible sum of surface densities INPUT: Pot - potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (can be Quantity) t - time (can be Quantity) forcepoisson= if True, calculate the surface density through the Poisson equation, even if an explicit expression for the surface density exists OUTPUT: Sigma(R,z) HISTORY: 2018-08-20 - Written - Bovy (UofT) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.surfdens(R,z,phi=phi,t=t,forcepoisson=forcepoisson, use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.surfdens(R,z,phi=phi,t=t,forcepoisson=forcepoisson, use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluateSurfaceDensities' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('force',pop=True) def evaluateRforces(Pot,R,z,phi=None,t=0.,v=None): """ NAME: evaluateRforce PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity)) t - time (optional; can be Quantity) v - current velocity in cylindrical coordinates (optional, but required when including dissipative forces; can be a Quantity) OUTPUT: F_R(R,z,phi,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) 2018-03-16 - Added velocity input for dissipative forces - Bovy (UofT) """ return _evaluateRforces(Pot,R,z,phi=phi,t=t,v=v) def _evaluateRforces(Pot,R,z,phi=None,t=0.,v=None): """Raw, undecorated function for internal use""" isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") dissipative= _isDissipative(Pot) if dissipative and v is None: raise PotentialError("The (list of) Potential instances includes dissipative, but you did not provide the 3D velocity (required for dissipative forces") if isList: sum= 0. for pot in Pot: if isinstance(pot,DissipativeForce): sum+= pot._Rforce_nodecorator(R,z,phi=phi,t=t,v=v) else: sum+= pot._Rforce_nodecorator(R,z,phi=phi,t=t) return sum elif isinstance(Pot,Potential): return Pot._Rforce_nodecorator(R,z,phi=phi,t=t) elif isinstance(Pot,DissipativeForce): return Pot._Rforce_nodecorator(R,z,phi=phi,t=t,v=v) else: #pragma: no cover raise PotentialError("Input to 'evaluateRforces' is neither a Potential-instance, DissipativeForce-instance or a list of such instances") @potential_physical_input @physical_conversion('energy',pop=True) def evaluatephiforces(Pot,R,z,phi=None,t=0.,v=None): """ NAME: evaluatephiforces PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) v - current velocity in cylindrical coordinates (optional, but required when including dissipative forces; can be a Quantity) OUTPUT: F_phi(R,z,phi,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) 2018-03-16 - Added velocity input for dissipative forces - Bovy (UofT) """ return _evaluatephiforces(Pot,R,z,phi=phi,t=t,v=v) def _evaluatephiforces(Pot,R,z,phi=None,t=0.,v=None): """Raw, undecorated function for internal use""" isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") dissipative= _isDissipative(Pot) if dissipative and v is None: raise PotentialError("The (list of) Potential instances includes dissipative, but you did not provide the 3D velocity (required for dissipative forces") if isList: sum= 0. for pot in Pot: if isinstance(pot,DissipativeForce): sum+= pot._phiforce_nodecorator(R,z,phi=phi,t=t,v=v) else: sum+= pot._phiforce_nodecorator(R,z,phi=phi,t=t) return sum elif isinstance(Pot,Potential): return Pot._phiforce_nodecorator(R,z,phi=phi,t=t) elif isinstance(Pot,DissipativeForce): return Pot._phiforce_nodecorator(R,z,phi=phi,t=t,v=v) else: #pragma: no cover raise PotentialError("Input to 'evaluatephiforces' is neither a Potential-instance, DissipativeForce-instance or a list of such instances") @potential_physical_input @physical_conversion('force',pop=True) def evaluatezforces(Pot,R,z,phi=None,t=0.,v=None): """ NAME: evaluatezforces PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) v - current velocity in cylindrical coordinates (optional, but required when including dissipative forces; can be a Quantity) OUTPUT: F_z(R,z,phi,t) HISTORY: 2010-04-16 - Written - Bovy (NYU) 2018-03-16 - Added velocity input for dissipative forces - Bovy (UofT) """ return _evaluatezforces(Pot,R,z,phi=phi,t=t,v=v) def _evaluatezforces(Pot,R,z,phi=None,t=0.,v=None): """Raw, undecorated function for internal use""" isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") dissipative= _isDissipative(Pot) if dissipative and v is None: raise PotentialError("The (list of) Potential instances includes dissipative, but you did not provide the 3D velocity (required for dissipative forces") if isList: sum= 0. for pot in Pot: if isinstance(pot,DissipativeForce): sum+= pot._zforce_nodecorator(R,z,phi=phi,t=t,v=v) else: sum+= pot._zforce_nodecorator(R,z,phi=phi,t=t) return sum elif isinstance(Pot,Potential): return Pot._zforce_nodecorator(R,z,phi=phi,t=t) elif isinstance(Pot,DissipativeForce): return Pot._zforce_nodecorator(R,z,phi=phi,t=t,v=v) else: #pragma: no cover raise PotentialError("Input to 'evaluatezforces' is neither a Potential-instance, DissipativeForce-instance or a list of such instances") @potential_physical_input @physical_conversion('force',pop=True) def evaluaterforces(Pot,R,z,phi=None,t=0.,v=None): """ NAME: evaluaterforces PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) v - current velocity in cylindrical coordinates (optional, but required when including dissipative forces; can be a Quantity) OUTPUT: F_r(R,z,phi,t) HISTORY: 2016-06-10 - Written - Bovy (UofT) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") dissipative= _isDissipative(Pot) if dissipative and v is None: raise PotentialError("The (list of) Potential instances includes dissipative, but you did not provide the 3D velocity (required for dissipative forces") if isList: sum= 0. for pot in Pot: if isinstance(pot,DissipativeForce): sum+= pot.rforce(R,z,phi=phi,t=t,v=v,use_physical=False) else: sum+= pot.rforce(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.rforce(R,z,phi=phi,t=t,use_physical=False) elif isinstance(Pot,DissipativeForce): return Pot.rforce(R,z,phi=phi,t=t,v=v,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluaterforces' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluateR2derivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluateR2derivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2Phi/d2R(R,z,phi,t) HISTORY: 2012-07-25 - Written - Bovy (IAS) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.R2deriv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.R2deriv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluateR2derivs' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluatez2derivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluatez2derivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2Phi/d2z(R,z,phi,t) HISTORY: 2012-07-25 - Written - Bovy (IAS) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.z2deriv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.z2deriv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluatez2derivs' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluateRzderivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluateRzderivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials (dissipative forces in such a list are ignored) R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2Phi/dz/dR(R,z,phi,t) HISTORY: 2013-08-28 - Written - Bovy (IAS) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.Rzderiv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.Rzderiv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluateRzderivs' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluatephi2derivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluatephi2derivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2Phi/d2phi(R,z,phi,t) HISTORY: 2018-03-28 - Written - Bovy (UofT) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.phi2deriv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.phi2deriv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluatephi2derivs' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluateRphiderivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluateRphiderivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2Phi/d2R(R,z,phi,t) HISTORY: 2012-07-25 - Written - Bovy (IAS) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.Rphideriv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.Rphideriv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluateRphiderivs' is neither a Potential-instance or a list of such instances") @potential_physical_input @physical_conversion('forcederivative',pop=True) def evaluater2derivs(Pot,R,z,phi=None,t=0.): """ NAME: evaluater2derivs PURPOSE: convenience function to evaluate a possible sum of potentials INPUT: Pot - a potential or list of potentials R - cylindrical Galactocentric distance (can be Quantity) z - distance above the plane (can be Quantity) phi - azimuth (optional; can be Quantity) t - time (optional; can be Quantity) OUTPUT: d2phi/dr2(R,z,phi,t) HISTORY: 2018-03-28 - Written - Bovy (UofT) """ isList= isinstance(Pot,list) nonAxi= _isNonAxi(Pot) if nonAxi and phi is None: raise PotentialError("The (list of) Potential instances is non-axisymmetric, but you did not provide phi") if isList: sum= 0. for pot in Pot: if not isinstance(pot,DissipativeForce): sum+= pot.r2deriv(R,z,phi=phi,t=t,use_physical=False) return sum elif isinstance(Pot,Potential): return Pot.r2deriv(R,z,phi=phi,t=t,use_physical=False) else: #pragma: no cover raise PotentialError("Input to 'evaluater2derivs' is neither a Potential-instance or a list of such instances") def plotPotentials(Pot,rmin=0.,rmax=1.5,nrs=21,zmin=-0.5,zmax=0.5,nzs=21, phi=None,xy=False,t=0.,effective=False,Lz=None, ncontours=21,savefilename=None,aspect=None, justcontours=False,levels=None,cntrcolors=None): """ NAME: plotPotentials PURPOSE: plot a set of potentials INPUT: Pot - Potential or list of Potential instances rmin= minimum R (can be Quantity) [xmin if xy] rmax= maximum R (can be Quantity) [ymax if xy] nrs= grid in R zmin= minimum z (can be Quantity) [ymin if xy] zmax= maximum z (can be Quantity) [ymax if xy] nzs= grid in z phi= (None) azimuth to use for non-axisymmetric potentials t= (0.) time to use to evaluate potential xy= (False) if True, plot the potential in X-Y effective= (False) if True, plot the effective potential Phi + Lz^2/2/R^2 Lz= (None) angular momentum to use for the effective potential when effective=True justcontours= (False) if True, just plot contours levels= (None) contours to plot ncontours - number of contours when levels is None cntrcolors= (None) colors of the contours (single color or array with length ncontours) savefilename= save to or restore from this savefile (pickle) OUTPUT: plot to output device HISTORY: 2010-07-09 - Written - Bovy (NYU) """ Pot= flatten(Pot) rmin= conversion.parse_length(rmin,**get_physical(Pot)) rmax= conversion.parse_length(rmax,**get_physical(Pot)) zmin= conversion.parse_length(zmin,**get_physical(Pot)) zmax= conversion.parse_length(zmax,**get_physical(Pot)) if not savefilename == None and os.path.exists(savefilename): print("Restoring savefile "+savefilename+" ...") savefile= open(savefilename,'rb') potRz= pickle.load(savefile) Rs= pickle.load(savefile) zs= pickle.load(savefile) savefile.close() else: if effective and Lz is None: raise RuntimeError("When effective=True, you need to specify Lz=") Rs= numpy.linspace(rmin,rmax,nrs) zs= numpy.linspace(zmin,zmax,nzs) potRz= numpy.zeros((nrs,nzs)) for ii in range(nrs): for jj in range(nzs): if xy: R,phi,z= coords.rect_to_cyl(Rs[ii],zs[jj],0.) else: R,z= Rs[ii], zs[jj] potRz[ii,jj]= evaluatePotentials(Pot,numpy.fabs(R), z,phi=phi,t=t, use_physical=False) if effective: potRz[ii,:]+= 0.5*Lz**2/Rs[ii]**2. if not savefilename == None: print("Writing savefile "+savefilename+" ...") savefile= open(savefilename,'wb') pickle.dump(potRz,savefile) pickle.dump(Rs,savefile) pickle.dump(zs,savefile) savefile.close() if aspect is None: aspect=.75*(rmax-rmin)/(zmax-zmin) if xy: xlabel= r'$x/R_0$' ylabel= r'$y/R_0$' else: xlabel=r"$R/R_0$" ylabel=r"$z/R_0$" if levels is None: levels= numpy.linspace(numpy.nanmin(potRz),numpy.nanmax(potRz),ncontours) if cntrcolors is None: cntrcolors= 'k' return plot.dens2d(potRz.T,origin='lower',cmap='gist_gray',contours=True, xlabel=xlabel,ylabel=ylabel, aspect=aspect, xrange=[rmin,rmax], yrange=[zmin,zmax], cntrls='-', justcontours=justcontours, levels=levels,cntrcolors=cntrcolors) def plotDensities(Pot,rmin=0.,rmax=1.5,nrs=21,zmin=-0.5,zmax=0.5,nzs=21, phi=None,xy=False,t=0., ncontours=21,savefilename=None,aspect=None,log=False, justcontours=False): """ NAME: plotDensities PURPOSE: plot the density a set of potentials INPUT: Pot - Potential or list of Potential instances rmin= minimum R (can be Quantity) [xmin if xy] rmax= maximum R (can be Quantity) [ymax if xy] nrs= grid in R zmin= minimum z (can be Quantity) [ymin if xy] zmax= maximum z (can be Quantity) [ymax if xy] nzs= grid in z phi= (None) azimuth to use for non-axisymmetric potentials t= (0.) time to use to evaluate potential xy= (False) if True, plot the density in X-Y ncontours= number of contours justcontours= (False) if True, just plot contours savefilename= save to or restore from this savefile (pickle) log= if True, plot the log density OUTPUT: plot to output device HISTORY: 2013-07-05 - Written - Bovy (IAS) """ Pot= flatten(Pot) rmin= conversion.parse_length(rmin,**get_physical(Pot)) rmax= conversion.parse_length(rmax,**get_physical(Pot)) zmin= conversion.parse_length(zmin,**get_physical(Pot)) zmax= conversion.parse_length(zmax,**get_physical(Pot)) if not savefilename == None and os.path.exists(savefilename): print("Restoring savefile "+savefilename+" ...") savefile= open(savefilename,'rb') potRz= pickle.load(savefile) Rs= pickle.load(savefile) zs= pickle.load(savefile) savefile.close() else: Rs= numpy.linspace(rmin,rmax,nrs) zs= numpy.linspace(zmin,zmax,nzs) potRz= numpy.zeros((nrs,nzs)) for ii in range(nrs): for jj in range(nzs): if xy: R,phi,z= coords.rect_to_cyl(Rs[ii],zs[jj],0.) else: R,z= Rs[ii], zs[jj] potRz[ii,jj]= evaluateDensities(Pot,numpy.fabs(R),z,phi=phi, t=t, use_physical=False) if not savefilename == None: print("Writing savefile "+savefilename+" ...") savefile= open(savefilename,'wb') pickle.dump(potRz,savefile) pickle.dump(Rs,savefile) pickle.dump(zs,savefile) savefile.close() if aspect is None: aspect=.75*(rmax-rmin)/(zmax-zmin) if log: potRz= numpy.log(potRz) if xy: xlabel= r'$x/R_0$' ylabel= r'$y/R_0$' else: xlabel=r"$R/R_0$" ylabel=r"$z/R_0$" return plot.dens2d(potRz.T,origin='lower', cmap='gist_yarg',contours=True, xlabel=xlabel,ylabel=ylabel, aspect=aspect, xrange=[rmin,rmax], yrange=[zmin,zmax], cntrls='-', justcontours=justcontours, levels=numpy.linspace(numpy.nanmin(potRz),numpy.nanmax(potRz), ncontours)) def plotSurfaceDensities(Pot, xmin=-1.5,xmax=1.5,nxs=21,ymin=-1.5,ymax=1.5,nys=21, z=numpy.inf,t=0., ncontours=21,savefilename=None,aspect=None, log=False,justcontours=False): """ NAME: plotSurfaceDensities PURPOSE: plot the surface density a set of potentials INPUT: Pot - Potential or list of Potential instances xmin= minimum x (can be Quantity) xmax= maximum x (can be Quantity) nxs= grid in x ymin= minimum y (can be Quantity) ymax= maximum y (can be Quantity) nys= grid in y z= (inf) height between which to integrate the density (from -z to z; can be a Quantity) t= (0.) time to use to evaluate potential ncontours= number of contours justcontours= (False) if True, just plot contours savefilename= save to or restore from this savefile (pickle) log= if True, plot the log density OUTPUT: plot to output device HISTORY: 2020-08-19 - Written - Bovy (UofT) """ Pot= flatten(Pot) xmin= conversion.parse_length(xmin,**get_physical(Pot)) xmax= conversion.parse_length(xmax,**get_physical(Pot)) ymin= conversion.parse_length(ymin,**get_physical(Pot)) ymax= conversion.parse_length(ymax,**get_physical(Pot)) if not savefilename == None and os.path.exists(savefilename): print("Restoring savefile "+savefilename+" ...") savefile= open(savefilename,'rb') surfxy= pickle.load(savefile) xs= pickle.load(savefile) ys= pickle.load(savefile) savefile.close() else: xs= numpy.linspace(xmin,xmax,nxs) ys= numpy.linspace(ymin,ymax,nys) surfxy= numpy.zeros((nxs,nys)) for ii in range(nxs): for jj in range(nys): R,phi,_= coords.rect_to_cyl(xs[ii],ys[jj],0.) surfxy[ii,jj]= evaluateSurfaceDensities(Pot, numpy.fabs(R),z, phi=phi, t=t, use_physical=False) if not savefilename == None: print("Writing savefile "+savefilename+" ...") savefile= open(savefilename,'wb') pickle.dump(surfxy,savefile) pickle.dump(xs,savefile) pickle.dump(ys,savefile) savefile.close() if aspect is None: aspect= 1. if log: surfxy= numpy.log(surfxy) xlabel= r'$x/R_0$' ylabel= r'$y/R_0$' return plot.dens2d(surfxy.T,origin='lower', cmap='gist_yarg',contours=True, xlabel=xlabel,ylabel=ylabel, aspect=aspect, xrange=[xmin,xmax], yrange=[ymin,ymax], cntrls='-', justcontours=justcontours, levels=numpy.linspace(numpy.nanmin(surfxy), numpy.nanmax(surfxy), ncontours)) @potential_physical_input @physical_conversion('frequency',pop=True) def epifreq(Pot,R,t=0.): """ NAME: epifreq PURPOSE: calculate the epicycle frequency at R in the potential Pot INPUT: Pot - Potential instance or list thereof R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: epicycle frequency HISTORY: 2012-07-25 - Written - Bovy (IAS) """ from .planarPotential import planarPotential if isinstance(Pot,(Potential,planarPotential)): return Pot.epifreq(R,t=t,use_physical=False) from ..potential import evaluateplanarRforces, evaluateplanarR2derivs from ..potential import PotentialError try: return numpy.sqrt(evaluateplanarR2derivs(Pot,R,t=t,use_physical=False) -3./R*evaluateplanarRforces(Pot,R,t=t,use_physical=False)) except PotentialError: from ..potential import RZToplanarPotential Pot= RZToplanarPotential(Pot) return numpy.sqrt(evaluateplanarR2derivs(Pot,R,t=t,use_physical=False) -3./R*evaluateplanarRforces(Pot,R,t=t,use_physical=False)) @potential_physical_input @physical_conversion('frequency',pop=True) def verticalfreq(Pot,R,t=0.): """ NAME: verticalfreq PURPOSE: calculate the vertical frequency at R in the potential Pot INPUT: Pot - Potential instance or list thereof R - Galactocentric radius (can be Quantity) t - time (optional; can be Quantity) OUTPUT: vertical frequency HISTORY: 2012-07-25 - Written - Bovy (IAS@MPIA) """ from .planarPotential import planarPotential if isinstance(Pot,(Potential,planarPotential)): return Pot.verticalfreq(R,t=t,use_physical=False) return numpy.sqrt(evaluatez2derivs(Pot,R,0.,t=t,use_physical=False)) @potential_physical_input @physical_conversion('dimensionless',pop=True) def flattening(Pot,R,z,t=0.): """ NAME: flattening PURPOSE: calculate the potential flattening, defined as sqrt(fabs(z/R F_R/F_z)) INPUT: Pot - Potential instance or list thereof R - Galactocentric radius (can be Quantity) z - height (can be Quantity) t - time (optional; can be Quantity) OUTPUT: flattening HISTORY: 2012-09-13 - Written - Bovy (IAS) """ return numpy.sqrt(numpy.fabs(z/R*evaluateRforces(Pot,R,z,t=t,use_physical=False)\ /evaluatezforces(Pot,R,z,t=t,use_physical=False))) @physical_conversion('velocity',pop=True) def vterm(Pot,l,t=0.,deg=True): """ NAME: vterm PURPOSE: calculate the terminal velocity at l in this potential INPUT: Pot - Potential instance l - Galactic longitude [deg/rad; can be Quantity) t - time (optional; can be Quantity) deg= if True (default), l in deg OUTPUT: terminal velocity HISTORY: 2013-05-31 - Written - Bovy (IAS) """ Pot= flatten(Pot) if _APY_LOADED and isinstance(l,units.Quantity): l= conversion.parse_angle(l) deg= False if deg: sinl= numpy.sin(l/180.*numpy.pi) else: sinl= numpy.sin(l) return sinl*(omegac(Pot,sinl,t=t,use_physical=False) -omegac(Pot,1.,t=t,use_physical=False)) @physical_conversion('position',pop=True) def rl(Pot,lz,t=0.): """ NAME: rl PURPOSE: calculate the radius of a circular orbit of Lz INPUT: Pot - Potential instance or list thereof lz - Angular momentum (can be Quantity) t - time (optional; can be Quantity) OUTPUT: radius HISTORY: 2012-07-30 - Written - Bovy (IAS@MPIA) NOTE: seems to take about ~0.5 ms for a Miyamoto-Nagai potential; ~0.75 ms for a MWPotential """ Pot= flatten(Pot) lz= conversion.parse_angmom(lz,**conversion.get_physical(Pot)) #Find interval rstart= _rlFindStart(numpy.fabs(lz),#assumes vo=1. numpy.fabs(lz), Pot, t=t) try: return optimize.brentq(_rlfunc,10.**-5.,rstart, args=(numpy.fabs(lz), Pot, t), maxiter=200,disp=False) except ValueError: #Probably lz small and starting lz to great rlower= _rlFindStart(10.**-5., numpy.fabs(lz), Pot,t=t,lower=True) return optimize.brentq(_rlfunc,rlower,rstart, args=(
numpy.fabs(lz)
numpy.fabs
'''Partial Regression plot and residual plots to find misspecification Author: <NAME> License: BSD-3 Created: 2011-01-23 update 2011-06-05 : start to convert example to usable functions 2011-10-27 : docstrings ''' from statsmodels.compat.python import lrange, lzip from statsmodels.compat.pandas import Appender import numpy as np import pandas as pd from patsy import dmatrix from statsmodels.regression.linear_model import OLS, GLS, WLS from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.generalized_estimating_equations import GEE from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.graphics import utils from statsmodels.nonparametric.smoothers_lowess import lowess from statsmodels.tools.tools import maybe_unwrap_results from ._regressionplots_doc import ( _plot_added_variable_doc, _plot_partial_residuals_doc, _plot_ceres_residuals_doc, _plot_influence_doc, _plot_leverage_resid2_doc) __all__ = ['plot_fit', 'plot_regress_exog', 'plot_partregress', 'plot_ccpr', 'plot_regress_exog', 'plot_partregress_grid', 'plot_ccpr_grid', 'add_lowess', 'abline_plot', 'influence_plot', 'plot_leverage_resid2', 'added_variable_resids', 'partial_resids', 'ceres_resids', 'plot_added_variable', 'plot_partial_residuals', 'plot_ceres_residuals'] #TODO: consider moving to influence module def _high_leverage(results): #TODO: replace 1 with k_constant return 2. * (results.df_model + 1)/results.nobs def add_lowess(ax, lines_idx=0, frac=.2, **lowess_kwargs): """ Add Lowess line to a plot. Parameters ---------- ax : AxesSubplot The Axes to which to add the plot lines_idx : int This is the line on the existing plot to which you want to add a smoothed lowess line. frac : float The fraction of the points to use when doing the lowess fit. lowess_kwargs Additional keyword arguments are passes to lowess. Returns ------- Figure The figure that holds the instance. """ y0 = ax.get_lines()[lines_idx]._y x0 = ax.get_lines()[lines_idx]._x lres = lowess(y0, x0, frac=frac, **lowess_kwargs) ax.plot(lres[:, 0], lres[:, 1], 'r', lw=1.5) return ax.figure def plot_fit(results, exog_idx, y_true=None, ax=None, vlines=True, **kwargs): """ Plot fit against one regressor. This creates one graph with the scatterplot of observed values compared to fitted values. Parameters ---------- results : Results A result instance with resid, model.endog and model.exog as attributes. exog_idx : {int, str} Name or index of regressor in exog matrix. y_true : array_like. optional If this is not None, then the array is added to the plot. ax : AxesSubplot, optional If given, this subplot is used to plot in instead of a new figure being created. vlines : bool, optional If this not True, then the uncertainty of the fit is not plotted. **kwargs The keyword arguments are passed to the plot command for the fitted values points. Returns ------- Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. Examples -------- Load the Statewide Crime data set and perform linear regression with `poverty` and `hs_grad` as variables and `murder` as the response >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> data = sm.datasets.statecrime.load_pandas().data >>> murder = data['murder'] >>> X = data[['poverty', 'hs_grad']] >>> X["constant"] = 1 >>> y = murder >>> model = sm.OLS(y, X) >>> results = model.fit() Create a plot just for the variable 'Poverty': >>> fig, ax = plt.subplots() >>> fig = sm.graphics.plot_fit(results, 0, ax=ax) >>> ax.set_ylabel("Murder Rate") >>> ax.set_xlabel("Poverty Level") >>> ax.set_title("Linear Regression") >>> plt.show() .. plot:: plots/graphics_plot_fit_ex.py """ fig, ax = utils.create_mpl_ax(ax) exog_name, exog_idx = utils.maybe_name_or_idx(exog_idx, results.model) results = maybe_unwrap_results(results) #maybe add option for wendog, wexog y = results.model.endog x1 = results.model.exog[:, exog_idx] x1_argsort = np.argsort(x1) y = y[x1_argsort] x1 = x1[x1_argsort] ax.plot(x1, y, 'bo', label=results.model.endog_names) if y_true is not None: ax.plot(x1, y_true[x1_argsort], 'b-', label='True values') title = 'Fitted values versus %s' % exog_name ax.plot(x1, results.fittedvalues[x1_argsort], 'D', color='r', label='fitted', **kwargs) if vlines is True: _, iv_l, iv_u = wls_prediction_std(results) ax.vlines(x1, iv_l[x1_argsort], iv_u[x1_argsort], linewidth=1, color='k', alpha=.7) #ax.fill_between(x1, iv_l[x1_argsort], iv_u[x1_argsort], alpha=0.1, # color='k') ax.set_title(title) ax.set_xlabel(exog_name) ax.set_ylabel(results.model.endog_names) ax.legend(loc='best', numpoints=1) return fig def plot_regress_exog(results, exog_idx, fig=None): """Plot regression results against one regressor. This plots four graphs in a 2 by 2 figure: 'endog versus exog', 'residuals versus exog', 'fitted versus exog' and 'fitted plus residual versus exog' Parameters ---------- results : result instance A result instance with resid, model.endog and model.exog as attributes. exog_idx : int or str Name or index of regressor in exog matrix. fig : Figure, optional If given, this figure is simply returned. Otherwise a new figure is created. Returns ------- Figure The value of `fig` if provided. Otherwise a new instance. Examples -------- Load the Statewide Crime data set and build a model with regressors including the rate of high school graduation (hs_grad), population in urban areas (urban), households below poverty line (poverty), and single person households (single). Outcome variable is the murder rate (murder). Build a 2 by 2 figure based on poverty showing fitted versus actual murder rate, residuals versus the poverty rate, partial regression plot of poverty, and CCPR plot for poverty rate. >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plot >>> import statsmodels.formula.api as smf >>> fig = plt.figure(figsize=(8, 6)) >>> crime_data = sm.datasets.statecrime.load_pandas() >>> results = smf.ols('murder ~ hs_grad + urban + poverty + single', ... data=crime_data.data).fit() >>> sm.graphics.plot_regress_exog(results, 'poverty', fig=fig) >>> plt.show() .. plot:: plots/graphics_regression_regress_exog.py """ fig = utils.create_mpl_fig(fig) exog_name, exog_idx = utils.maybe_name_or_idx(exog_idx, results.model) results = maybe_unwrap_results(results) #maybe add option for wendog, wexog y_name = results.model.endog_names x1 = results.model.exog[:, exog_idx] prstd, iv_l, iv_u = wls_prediction_std(results) ax = fig.add_subplot(2, 2, 1) ax.plot(x1, results.model.endog, 'o', color='b', alpha=0.9, label=y_name) ax.plot(x1, results.fittedvalues, 'D', color='r', label='fitted', alpha=.5) ax.vlines(x1, iv_l, iv_u, linewidth=1, color='k', alpha=.7) ax.set_title('Y and Fitted vs. X', fontsize='large') ax.set_xlabel(exog_name) ax.set_ylabel(y_name) ax.legend(loc='best') ax = fig.add_subplot(2, 2, 2) ax.plot(x1, results.resid, 'o') ax.axhline(y=0, color='black') ax.set_title('Residuals versus %s' % exog_name, fontsize='large') ax.set_xlabel(exog_name) ax.set_ylabel("resid") ax = fig.add_subplot(2, 2, 3) exog_noti = np.ones(results.model.exog.shape[1], bool) exog_noti[exog_idx] = False exog_others = results.model.exog[:, exog_noti] from pandas import Series fig = plot_partregress(results.model.data.orig_endog, Series(x1, name=exog_name, index=results.model.data.row_labels), exog_others, obs_labels=False, ax=ax) ax.set_title('Partial regression plot', fontsize='large') #ax.set_ylabel("Fitted values") #ax.set_xlabel(exog_name) ax = fig.add_subplot(2, 2, 4) fig = plot_ccpr(results, exog_idx, ax=ax) ax.set_title('CCPR Plot', fontsize='large') #ax.set_xlabel(exog_name) #ax.set_ylabel("Fitted values + resids") fig.suptitle('Regression Plots for %s' % exog_name, fontsize="large") fig.tight_layout() fig.subplots_adjust(top=.90) return fig def _partial_regression(endog, exog_i, exog_others): """Partial regression. regress endog on exog_i conditional on exog_others uses OLS Parameters ---------- endog : array_like exog : array_like exog_others : array_like Returns ------- res1c : OLS results instance (res1a, res1b) : tuple of OLS results instances results from regression of endog on exog_others and of exog_i on exog_others """ #FIXME: This function does not appear to be used. res1a = OLS(endog, exog_others).fit() res1b = OLS(exog_i, exog_others).fit() res1c = OLS(res1a.resid, res1b.resid).fit() return res1c, (res1a, res1b) def plot_partregress(endog, exog_i, exog_others, data=None, title_kwargs={}, obs_labels=True, label_kwargs={}, ax=None, ret_coords=False, **kwargs): """Plot partial regression for a single regressor. Parameters ---------- endog : {ndarray, str} The endogenous or response variable. If string is given, you can use a arbitrary translations as with a formula. exog_i : {ndarray, str} The exogenous, explanatory variable. If string is given, you can use a arbitrary translations as with a formula. exog_others : {ndarray, list[str]} Any other exogenous, explanatory variables. If a list of strings is given, each item is a term in formula. You can use a arbitrary translations as with a formula. The effect of these variables will be removed by OLS regression. data : {DataFrame, dict} Some kind of data structure with names if the other variables are given as strings. title_kwargs : dict Keyword arguments to pass on for the title. The key to control the fonts is fontdict. obs_labels : {bool, array_like} Whether or not to annotate the plot points with their observation labels. If obs_labels is a boolean, the point labels will try to do the right thing. First it will try to use the index of data, then fall back to the index of exog_i. Alternatively, you may give an array-like object corresponding to the observation numbers. label_kwargs : dict Keyword arguments that control annotate for the observation labels. ax : AxesSubplot, optional If given, this subplot is used to plot in instead of a new figure being created. ret_coords : bool If True will return the coordinates of the points in the plot. You can use this to add your own annotations. **kwargs The keyword arguments passed to plot for the points. Returns ------- fig : Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. coords : list, optional If ret_coords is True, return a tuple of arrays (x_coords, y_coords). See Also -------- plot_partregress_grid : Plot partial regression for a set of regressors. Notes ----- The slope of the fitted line is the that of `exog_i` in the full multiple regression. The individual points can be used to assess the influence of points on the estimated coefficient. Examples -------- Load the Statewide Crime data set and plot partial regression of the rate of high school graduation (hs_grad) on the murder rate(murder). The effects of the percent of the population living in urban areas (urban), below the poverty line (poverty) , and in a single person household (single) are removed by OLS regression. >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> crime_data = sm.datasets.statecrime.load_pandas() >>> sm.graphics.plot_partregress(endog='murder', exog_i='hs_grad', ... exog_others=['urban', 'poverty', 'single'], ... data=crime_data.data, obs_labels=False) >>> plt.show() .. plot:: plots/graphics_regression_partregress.py More detailed examples can be found in the Regression Plots notebook on the examples page. """ #NOTE: there is no interaction between possible missing data and #obs_labels yet, so this will need to be tweaked a bit for this case fig, ax = utils.create_mpl_ax(ax) # strings, use patsy to transform to data if isinstance(endog, str): endog = dmatrix(endog + "-1", data) if isinstance(exog_others, str): RHS = dmatrix(exog_others, data) elif isinstance(exog_others, list): RHS = "+".join(exog_others) RHS = dmatrix(RHS, data) else: RHS = exog_others RHS_isemtpy = False if isinstance(RHS, np.ndarray) and RHS.size==0: RHS_isemtpy = True elif isinstance(RHS, pd.DataFrame) and RHS.empty: RHS_isemtpy = True if isinstance(exog_i, str): exog_i = dmatrix(exog_i + "-1", data) # all arrays or pandas-like if RHS_isemtpy: endog = np.asarray(endog) exog_i = np.asarray(exog_i) ax.plot(endog, exog_i, 'o', **kwargs) fitted_line = OLS(endog, exog_i).fit() x_axis_endog_name = 'x' if isinstance(exog_i, np.ndarray) else exog_i.name y_axis_endog_name = 'y' if isinstance(endog, np.ndarray) else endog.design_info.column_names[0] else: res_yaxis = OLS(endog, RHS).fit() res_xaxis = OLS(exog_i, RHS).fit() xaxis_resid = res_xaxis.resid yaxis_resid = res_yaxis.resid x_axis_endog_name = res_xaxis.model.endog_names y_axis_endog_name = res_yaxis.model.endog_names ax.plot(xaxis_resid, yaxis_resid, 'o', **kwargs) fitted_line = OLS(yaxis_resid, xaxis_resid).fit() fig = abline_plot(0, fitted_line.params[0], color='k', ax=ax) if x_axis_endog_name == 'y': # for no names regression will just get a y x_axis_endog_name = 'x' # this is misleading, so use x ax.set_xlabel("e(%s | X)" % x_axis_endog_name) ax.set_ylabel("e(%s | X)" % y_axis_endog_name) ax.set_title('Partial Regression Plot', **title_kwargs) # NOTE: if we want to get super fancy, we could annotate if a point is # clicked using this widget # http://stackoverflow.com/questions/4652439/ # is-there-a-matplotlib-equivalent-of-matlabs-datacursormode/ # 4674445#4674445 if obs_labels is True: if data is not None: obs_labels = data.index elif hasattr(exog_i, "index"): obs_labels = exog_i.index else: obs_labels = res_xaxis.model.data.row_labels #NOTE: row_labels can be None. #Maybe we should fix this to never be the case. if obs_labels is None: obs_labels = lrange(len(exog_i)) if obs_labels is not False: # could be array_like if len(obs_labels) != len(exog_i): raise ValueError("obs_labels does not match length of exog_i") label_kwargs.update(dict(ha="center", va="bottom")) ax = utils.annotate_axes(lrange(len(obs_labels)), obs_labels, lzip(res_xaxis.resid, res_yaxis.resid), [(0, 5)] * len(obs_labels), "x-large", ax=ax, **label_kwargs) if ret_coords: return fig, (res_xaxis.resid, res_yaxis.resid) else: return fig def plot_partregress_grid(results, exog_idx=None, grid=None, fig=None): """ Plot partial regression for a set of regressors. Parameters ---------- results : Results instance A regression model results instance. exog_idx : {None, list[int], list[str]} The indices or column names of the exog used in the plot, default is all. grid : {None, tuple[int]} If grid is given, then it is used for the arrangement of the subplots. The format of grid is (nrows, ncols). If grid is None, then ncol is one, if there are only 2 subplots, and the number of columns is two otherwise. fig : Figure, optional If given, this figure is simply returned. Otherwise a new figure is created. Returns ------- Figure If `fig` is None, the created figure. Otherwise `fig` itself. See Also -------- plot_partregress : Plot partial regression for a single regressor. plot_ccpr : Plot CCPR against one regressor Notes ----- A subplot is created for each explanatory variable given by exog_idx. The partial regression plot shows the relationship between the response and the given explanatory variable after removing the effect of all other explanatory variables in exog. References ---------- See http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/partregr.htm Examples -------- Using the state crime dataset separately plot the effect of the each variable on the on the outcome, murder rate while accounting for the effect of all other variables in the model visualized with a grid of partial regression plots. >>> from statsmodels.graphics.regressionplots import plot_partregress_grid >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import statsmodels.formula.api as smf >>> fig = plt.figure(figsize=(8, 6)) >>> crime_data = sm.datasets.statecrime.load_pandas() >>> results = smf.ols('murder ~ hs_grad + urban + poverty + single', ... data=crime_data.data).fit() >>> plot_partregress_grid(results, fig=fig) >>> plt.show() .. plot:: plots/graphics_regression_partregress_grid.py """ import pandas fig = utils.create_mpl_fig(fig) exog_name, exog_idx = utils.maybe_name_or_idx(exog_idx, results.model) # TODO: maybe add option for using wendog, wexog instead y = pandas.Series(results.model.endog, name=results.model.endog_names) exog = results.model.exog k_vars = exog.shape[1] # this function does not make sense if k_vars=1 nrows = (len(exog_idx) + 1) // 2 ncols = 1 if nrows == len(exog_idx) else 2 if grid is not None: nrows, ncols = grid if ncols > 1: title_kwargs = {"fontdict": {"fontsize": 'small'}} # for indexing purposes other_names = np.array(results.model.exog_names) for i, idx in enumerate(exog_idx): others = lrange(k_vars) others.pop(idx) exog_others = pandas.DataFrame(exog[:, others], columns=other_names[others]) ax = fig.add_subplot(nrows, ncols, i + 1) plot_partregress(y, pandas.Series(exog[:, idx], name=other_names[idx]), exog_others, ax=ax, title_kwargs=title_kwargs, obs_labels=False) ax.set_title("") fig.suptitle("Partial Regression Plot", fontsize="large") fig.tight_layout() fig.subplots_adjust(top=.95) return fig def plot_ccpr(results, exog_idx, ax=None): """ Plot CCPR against one regressor. Generates a component and component-plus-residual (CCPR) plot. Parameters ---------- results : result instance A regression results instance. exog_idx : {int, str} Exogenous, explanatory variable. If string is given, it should be the variable name that you want to use, and you can use arbitrary translations as with a formula. ax : AxesSubplot, optional If given, it is used to plot in instead of a new figure being created. Returns ------- Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- plot_ccpr_grid : Creates CCPR plot for multiple regressors in a plot grid. Notes ----- The CCPR plot provides a way to judge the effect of one regressor on the response variable by taking into account the effects of the other independent variables. The partial residuals plot is defined as Residuals + B_i*X_i versus X_i. The component adds the B_i*X_i versus X_i to show where the fitted line would lie. Care should be taken if X_i is highly correlated with any of the other independent variables. If this is the case, the variance evident in the plot will be an underestimate of the true variance. References ---------- http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ccpr.htm Examples -------- Using the state crime dataset plot the effect of the rate of single households ('single') on the murder rate while accounting for high school graduation rate ('hs_grad'), percentage of people in an urban area, and rate of poverty ('poverty'). >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plot >>> import statsmodels.formula.api as smf >>> crime_data = sm.datasets.statecrime.load_pandas() >>> results = smf.ols('murder ~ hs_grad + urban + poverty + single', ... data=crime_data.data).fit() >>> sm.graphics.plot_ccpr(results, 'single') >>> plt.show() .. plot:: plots/graphics_regression_ccpr.py """ fig, ax = utils.create_mpl_ax(ax) exog_name, exog_idx = utils.maybe_name_or_idx(exog_idx, results.model) results = maybe_unwrap_results(results) x1 = results.model.exog[:, exog_idx] #namestr = ' for %s' % self.name if self.name else '' x1beta = x1*results.params[exog_idx] ax.plot(x1, x1beta + results.resid, 'o') from statsmodels.tools.tools import add_constant mod = OLS(x1beta, add_constant(x1)).fit() params = mod.params fig = abline_plot(*params, **dict(ax=ax)) #ax.plot(x1, x1beta, '-') ax.set_title('Component and component plus residual plot') ax.set_ylabel("Residual + %s*beta_%d" % (exog_name, exog_idx)) ax.set_xlabel("%s" % exog_name) return fig def plot_ccpr_grid(results, exog_idx=None, grid=None, fig=None): """ Generate CCPR plots against a set of regressors, plot in a grid. Generates a grid of component and component-plus-residual (CCPR) plots. Parameters ---------- results : result instance A results instance with exog and params. exog_idx : None or list of int The indices or column names of the exog used in the plot. grid : None or tuple of int (nrows, ncols) If grid is given, then it is used for the arrangement of the subplots. If grid is None, then ncol is one, if there are only 2 subplots, and the number of columns is two otherwise. fig : Figure, optional If given, this figure is simply returned. Otherwise a new figure is created. Returns ------- Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- plot_ccpr : Creates CCPR plot for a single regressor. Notes ----- Partial residual plots are formed as:: Res + Betahat(i)*Xi versus Xi and CCPR adds:: Betahat(i)*Xi versus Xi References ---------- See http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ccpr.htm Examples -------- Using the state crime dataset separately plot the effect of the each variable on the on the outcome, murder rate while accounting for the effect of all other variables in the model. >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import statsmodels.formula.api as smf >>> fig = plt.figure(figsize=(8, 8)) >>> crime_data = sm.datasets.statecrime.load_pandas() >>> results = smf.ols('murder ~ hs_grad + urban + poverty + single', ... data=crime_data.data).fit() >>> sm.graphics.plot_ccpr_grid(results, fig=fig) >>> plt.show() .. plot:: plots/graphics_regression_ccpr_grid.py """ fig = utils.create_mpl_fig(fig) exog_name, exog_idx = utils.maybe_name_or_idx(exog_idx, results.model) if grid is not None: nrows, ncols = grid else: if len(exog_idx) > 2: nrows = int(np.ceil(len(exog_idx)/2.)) ncols = 2 else: nrows = len(exog_idx) ncols = 1 seen_constant = 0 for i, idx in enumerate(exog_idx): if results.model.exog[:, idx].var() == 0: seen_constant = 1 continue ax = fig.add_subplot(nrows, ncols, i+1-seen_constant) fig = plot_ccpr(results, exog_idx=idx, ax=ax) ax.set_title("") fig.suptitle("Component-Component Plus Residual Plot", fontsize="large") fig.tight_layout() fig.subplots_adjust(top=.95) return fig def abline_plot(intercept=None, slope=None, horiz=None, vert=None, model_results=None, ax=None, **kwargs): """ Plot a line given an intercept and slope. Parameters ---------- intercept : float The intercept of the line. slope : float The slope of the line. horiz : float or array_like Data for horizontal lines on the y-axis. vert : array_like Data for verterical lines on the x-axis. model_results : statsmodels results instance Any object that has a two-value `params` attribute. Assumed that it is (intercept, slope). ax : axes, optional Matplotlib axes instance. **kwargs Options passed to matplotlib.pyplot.plt. Returns ------- Figure The figure given by `ax.figure` or a new instance. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> np.random.seed(12345) >>> X = sm.add_constant(np.random.normal(0, 20, size=30)) >>> y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30) >>> mod = sm.OLS(y,X).fit() >>> fig = sm.graphics.abline_plot(model_results=mod) >>> ax = fig.axes[0] >>> ax.scatter(X[:,1], y) >>> ax.margins(.1) >>> import matplotlib.pyplot as plt >>> plt.show() .. plot:: plots/graphics_regression_abline.py """ if ax is not None: # get axis limits first thing, do not change these x = ax.get_xlim() else: x = None fig, ax = utils.create_mpl_ax(ax) if model_results: intercept, slope = model_results.params if x is None: x = [model_results.model.exog[:, 1].min(), model_results.model.exog[:, 1].max()] else: if not (intercept is not None and slope is not None): raise ValueError("specify slope and intercepty or model_results") if x is None: x = ax.get_xlim() data_y = [x[0]*slope+intercept, x[1]*slope+intercept] ax.set_xlim(x) #ax.set_ylim(y) from matplotlib.lines import Line2D class ABLine2D(Line2D): def __init__(self, *args, **kwargs): super(ABLine2D, self).__init__(*args, **kwargs) self.id_xlim_callback = None self.id_ylim_callback = None def remove(self): ax = self.axes if self.id_xlim_callback: ax.callbacks.disconnect(self.id_xlim_callback) if self.id_ylim_callback: ax.callbacks.disconnect(self.id_ylim_callback) super(ABLine2D, self).remove() def update_datalim(self, ax): ax.set_autoscale_on(False) children = ax.get_children() ablines = [child for child in children if child is self] abline = ablines[0] x = ax.get_xlim() y = [x[0] * slope + intercept, x[1] * slope + intercept] abline.set_data(x, y) ax.figure.canvas.draw() # TODO: how to intercept something like a margins call and adjust? line = ABLine2D(x, data_y, **kwargs) ax.add_line(line) line.id_xlim_callback = ax.callbacks.connect('xlim_changed', line.update_datalim) line.id_ylim_callback = ax.callbacks.connect('ylim_changed', line.update_datalim) if horiz: ax.hline(horiz) if vert: ax.vline(vert) return fig @Appender(_plot_influence_doc.format(**{ 'extra_params_doc': "results: object\n" " Results for a fitted regression model.\n" " influence: instance\n" " The instance of Influence for model."})) def _influence_plot(results, influence, external=True, alpha=.05, criterion="cooks", size=48, plot_alpha=.75, ax=None, **kwargs): infl = influence fig, ax = utils.create_mpl_ax(ax) if criterion.lower().startswith('coo'): psize = infl.cooks_distance[0] elif criterion.lower().startswith('dff'): psize = np.abs(infl.dffits[0]) else: raise ValueError("Criterion %s not understood" % criterion) # scale the variables #TODO: what is the correct scaling and the assumption here? #we want plots to be comparable across different plots #so we would need to use the expected distribution of criterion probably old_range = np.ptp(psize) new_range = size**2 - 8**2 psize = (psize - psize.min()) * new_range/old_range + 8**2 leverage = infl.hat_matrix_diag if external: resids = infl.resid_studentized_external else: resids = infl.resid_studentized from scipy import stats cutoff = stats.t.ppf(1.-alpha/2, results.df_resid) large_resid =
np.abs(resids)
numpy.abs
import json import numpy as np import wandb from matplotlib import pyplot as plt from src.utils import draw_digit, load_data class LeakyReLU: # The Leaky Rectifier function will serve as our activation function def __init__(self, alpha): self.alpha = alpha # Parameter for the function def f(self, z): # The Leaky Rectifier is computed as: # f(z) = { z, z >= 0 # {alpha * z, z < 0 return np.where(z >= 0, z, self.alpha * z) def d(self, a): # The derivative of the function is given by: # f'(z) = { 1, z >= 0 which implies f(z) >= 0 # {alpha, z < 0 which implies f(z) < 0 return np.where(a >= 0, 1, self.alpha) def log_loss(y, a): # Our chosen error function is the Log Loss function. # This is also called the "Cross Entropy Loss" and is computed as: # f(a) = -y * log(a) - (1 - y) * log(1 - a) # i.e, -log(a) if y is 1, and -log(1 - a) if y is 0. return np.where(y, -np.log(a), -np.log(1 - a)).sum() def softmax(z): # We offset each element of z by the maximum to prevent overflows. # nan_to_num is used to handle extremely small values. These are # made 0. z = np.nan_to_num(np.exp(z - np.max(z))) z_sum = np.sum(z) return np.nan_to_num(z / z_sum) class NeuralNetwork: def __init__(self, ns, eta=0.5, lmbda=0, alpha=0.05): print(f'ns: {ns}, eta: {eta}, lambda: {lmbda}, alpha: {alpha}') # Network Structure self.n = len(ns) # Number of layers self.ns = ns # Number of neurons in each layer # Hyper Parameters self.eta = eta # Learning rate self.lmbda = lmbda # Coefficient of Regularization # Note: The coefficient is called "lmbda" as "lambda" is a keyword. # Activation Function Object self.act_fn = LeakyReLU(alpha) # Parameter for LReLU # Log hyperparameters in wandb to analyze later. wandb.config.update({ 'architecture': ns, 'eta': eta, 'lambda': lmbda, 'alpha': alpha }) # Randomly initialize thetas (weights) with a normal distribution # of mean zero and variance as the reciprocal of the number of inputs # received by the particular neuron. self.thetas = [ np.random.randn(ns[i], ns[i - 1]) / np.sqrt(ns[i - 1]) for i in range(1, self.n) ] # Similarly, initialize the biases with a distribution of mean zero # and standard deviation and variance 1 self.biases = [np.random.randn(x) for x in ns[1:]] # We use this performance variable to keep a track of how # the network is performing. We will use it plot graph(s) between # the number of correct predictions on the validation data and epochs. self.performance = [] def predict(self, x): # Our prediction is simply the activations of the output (last) layer. return self.get_activations(x)[-1] def train(self, data, validation_data=None, epochs=10, batch_size=20): # We generate all the indices for the training data. # We will shuffle these indices each epoch to randomly order the data. # This is more efficient than zipping and shuffling the arrays directly perm = np.arange(len(data)) self.performance = [] n_validation = len(validation_data) # Log hyperparameters in wandb to analyze later. wandb.config.update({'epochs': epochs, 'batch_size': batch_size}) if validation_data is not None: correct = self.validate(validation_data) percentage = 100 * correct / n_validation print(f'Initial: {correct} / {n_validation} ({percentage}%)') wandb.log({'epoch': 0, 'accuracy': percentage}) for i in range(1, epochs + 1): np.random.shuffle(perm) # We split the training data in batches, each of size batch_size. for j in range(0, len(data), batch_size): # From the shuffled indices, we select a range # and pick all the examples in that range. batch = [data[x] for x in perm[j:j + batch_size]] # Each batch is then used to train the network self.train_batch(batch) if validation_data is not None: correct = self.validate(validation_data) percentage = 100 * correct / n_validation # Log the data in wandb and also locally. wandb.log({'epoch': i, 'accuracy': percentage}) self.performance.append(percentage) print(f'Epoch {i}: {correct} / {n_validation} ({percentage}%)') def plot(self, filename=None): if not self.performance: return plt.figure() plt.plot( range(1, len(self.performance) + 1), self.performance, 'r' ) plt.title( f'ns: {self.ns}, eta: {self.eta}, ' f'lambda: {self.lmbda}, alpha: {self.act_fn.alpha}.') plt.xlabel('Number of Epochs') plt.ylabel('Prediction Accuracy (%)') if filename: plt.tight_layout() plt.savefig(filename) plt.show() def save(self, filename): # This function will save all parameters of our network. # We use this elaborate setup instead of simply pickling and dumping # the network object so that we can still use this data, # even if we change the architecture of our class. # Unpickling and loading will not work in that case. data = { 'ns': self.ns, 'eta': self.eta, 'lmbda': self.lmbda, 'alpha': self.act_fn.alpha, 'performance': self.performance, 'thetas': [t.tolist() for t in self.thetas], 'biases': [b.tolist() for b in self.biases] } with open(filename, 'w') as f: json.dump(data, f) wandb.save(filename) @staticmethod def load(filename): with open(filename) as f: data = json.load(f) n = NeuralNetwork( data['ns'], data['eta'], data['lmbda'], data['alpha'] ) n.thetas = [np.array(t) for t in data['thetas']] n.biases = [np.array(b) for b in data['biases']] n.performance = data['performance'] return n def validate(self, validation_data): # Returns the number of correct predictions return sum( np.argmax(y) == np.argmax(self.predict(x)) for x, y in validation_data ) def get_activations(self, x): # Validate the size of the input. self.validate_input(x) # We scale down the input to be in [0, 1]. # Also, we add a 1 to the end to account for the bias. activations = [x] # Iterate over each layer, excluding the output layer for theta, bias in zip(self.thetas[:-1], self.biases[:-1]): # The input to this layer is the matrix product of the weights # associated with this layer and the activations of the previous # layer plus the biases. z = np.array( np.dot(theta, activations[-1]) + bias, dtype='float64' ) # Apply the activation (LReLU) function to get the activations # for this layer, and add a 1 to the end for the bias. activations.append(self.act_fn.f(z)) # For the output layer, we apply the softmax function, computed as: # exp(z) / sum(exp(z in zs)) # The sum of outputs is clearly 1, which gives us # a useful interpretation as the 'confidence' for each possible output. z = np.dot(self.thetas[-1], activations[-1]) + self.biases[-1] activations.append(softmax(z)) return activations def train_batch(self, batch): delta_thetas = [ np.zeros((self.ns[i], self.ns[i - 1])) for i in range(1, self.n) ] delta_biases = [np.zeros((x,)) for x in self.ns[1:]] # Iterate over all examples in the batch for x, y in batch: # Activations for the current training example activations = self.get_activations(x) # We can trivially compute the bias and weight derivatives # for the last layer with the help of y and the prediction. # These formulae are derived by applying the chain rule to # the softmax (activation) and the log loss (error) functions. difference =
np.array(activations[-1] - y)
numpy.array
# -*- coding: utf-8 -*- """Saraga Dataset Loader This repository contains time aligned melody, rhythm and structural annotations for two large open corpora of Indian Art Music (Carnatic and Hindustani music). The repository contains the following manual annotations referring to audio files: Section and tempo annotations stored as start and end timestamps together with the name of the section and tempo during the section (in a separate file). Sama annotations referring to rhythmic cycle boundaries stored as timestamps. Phrase annotations stored as timestamps and transcription of the phrases using solfège symbols ({S, r, R, g, G, m, M, P, d, D, n, N}). Audio features automatically extracted and stored: pitch and tonic. The annotations are stored in text files, named as the audio filename but with the respective extension at the end, for instance: "<NAME> - Bhuvini Dasudane.tempo-manual.txt". The dataset contains a total of 197 tracks from the carnatic corpus and 108 track from the hindustani corpus. A total of 163 tracks from the carnatic dataset have multitrack audio, which is not currently available in this loader version. New version of the loader is coming soon with the multitrack audio support. The files of this dataset are shared with the following license: Creative Commons Attribution Non Commercial Share Alike 4.0 International Dataset compiled by: <NAME>.; <NAME>.; <NAME>. and <NAME>. For more information about the dataset as well as IAM and annotations, please refer to: https://mtg.github.io/saraga/, where a really detailed explanation of the data and annotations is published. """ import librosa import numpy as np import os import json import logging from mirdata import download_utils from mirdata import jams_utils from mirdata import core from mirdata import utils BIBTEX = """ @dataset{bozkurt_b_2018_1256127, author = {<NAME>. and <NAME>. and <NAME>. and <NAME>.}, title = {Saraga: research datasets of Indian Art Music}, month = may, year = 2018, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.1256127}, url = {https://doi.org/10.5281/zenodo.1256127} } """ REMOTES = { 'all': download_utils.RemoteFileMetadata( filename='saraga_1.0.zip', url='https://zenodo.org/record/1256127/files/saraga_1.0.zip?download=1', checksum='c8471e55bd55e060bde6cfacc555e1b1', destination_dir=None, ) } def _load_metadata(metadata_path): if not os.path.exists(metadata_path): logging.info('Metadata file {} not found.'.format(metadata_path)) return None with open(metadata_path) as f: metadata = json.load(f) data_home = metadata_path.split('/' + metadata_path.split('/')[-3])[0] metadata['track_id'] = ( str(metadata_path.split('/')[-3]) + '_' + str(metadata_path.split('/')[-2]) ) metadata['data_home'] = data_home return metadata DATA = utils.LargeData('saraga_index.json', _load_metadata) class Track(core.Track): """Saraga Track class Args: track_id (str): track id of the track data_home (str): Local path where the dataset is stored. default=None If `None`, looks for the data in the default directory, `~/mir_datasets` Common attributes: iam_style (str): flag to identify if track belongs to hindustani or carnatic collection title (str): Title of the piece in the track mbid (str): MusicBrainz ID of the track album_artists (list, dicts): list of dicts containing the album artists present in the track and its mbid artists (list, dicts): list of dicts containing information of the featuring artists in the track Carnatic attributes: raaga (list, dict): list of dicts containing information about the raagas present in the track form (list, dict): list of dicts containing information about the forms present in the track work (list, dicts): list of dicts containing the work present in the piece, and its mbid taala (list, dicts): list of dicts containing the talas present in the track and its uuid concert (list, dicts): list of dicts containing the concert where the track is present and its mbid Hindustani attributes: raags (list, dict): list of dicts containing information about the raags present in the track form (list, dict): list of dicts containing information about the forms present in the track release (list, dicts): list of dicts containing information of the release where the track is found work (list, dicts): list of dicts containing the work present in the piece, and its mbid taals (list, dicts): list of dicts containing the taals present in the track and its uuid layas (list, dicts): list of dicts containing the layas present in the track and its uuid """ def __init__(self, track_id, data_home): if track_id not in DATA.index['tracks']: raise ValueError('{} is not a valid track ID in Saraga'.format(track_id)) self.track_id = track_id self._data_home = data_home self._track_paths = DATA.index['tracks'][track_id] # Audio path self.audio_path = os.path.join(self._data_home, self._track_paths['audio'][0]) # Annotation paths self.ctonic_path = utils.none_path_join( [self._data_home, self._track_paths['ctonic'][0]] ) self.pitch_path = utils.none_path_join( [self._data_home, self._track_paths['pitch'][0]] ) self.pitch_vocal_path = utils.none_path_join( [self._data_home, self._track_paths['pitch_vocal'][0]] ) self.tempo_path = utils.none_path_join( [self._data_home, self._track_paths['tempo'][0]] ) self.sama_path = utils.none_path_join( [self._data_home, self._track_paths['sama'][0]] ) self.sections_path = utils.none_path_join( [self._data_home, self._track_paths['sections'][0]] ) self.phrases_path = utils.none_path_join( [self._data_home, self._track_paths['phrases'][0]] ) self.metadata_path = utils.none_path_join( [self._data_home, self._track_paths['metadata'][0]] ) # Flag to separate between carnatinc and hindustani tracks self.iam_style = str(self.track_id.split('_')[0]) # CARNATIC MUSIC TRACKS if self.iam_style == 'carnatic': metadata = DATA.metadata(self.metadata_path) if metadata is not None and track_id == metadata['track_id']: self._track_metadata = metadata else: # annotations with missing metadata self._track_metadata = { 'raaga': None, 'form': None, 'title': None, 'work': None, 'length': None, 'taala': None, 'album_artists': None, 'mbid': None, 'artists': None, 'concert': None, } # HINDUSTANI MUSIC TRACKS if self.iam_style == 'hindustani': metadata = DATA.metadata(self.metadata_path) if metadata is not None and track_id == metadata['track_id']: self._track_metadata = metadata else: # annotations with missing metadata self._track_metadata = { 'title': None, 'raags': None, 'length': None, 'album_artists': None, 'forms': None, 'mbid': None, 'artists': None, 'release': None, 'works': None, 'taals': None, 'layas': None, } # Common attributes for Hindustani and Carnatic tracks self.title = self._track_metadata['title'] self.artists = self._track_metadata['artists'] self.album_artists = self._track_metadata['album_artists'] self.mbid = self._track_metadata['mbid'] # Carnatic specific attributes self.raaga = ( self._track_metadata['raaga'] if 'raaga' in self._track_metadata.keys() is not None else None ) self.form = ( self._track_metadata['form'] if 'form' in self._track_metadata.keys() is not None else None ) self.work = ( self._track_metadata['work'] if 'work' in self._track_metadata.keys() is not None else None ) self.taala = ( self._track_metadata['taala'] if 'taala' in self._track_metadata.keys() is not None else None ) self.concert = ( self._track_metadata['concert'] if 'concert' in self._track_metadata.keys() is not None else None ) # Hindustani specific attributes self.raags = ( self._track_metadata['raags'] if 'raags' in self._track_metadata.keys() is not None else None ) self.forms = ( self._track_metadata['forms'] if 'forms' in self._track_metadata.keys() is not None else None ) self.release = ( self._track_metadata['release'] if 'release' in self._track_metadata.keys() is not None else None ) self.works = ( self._track_metadata['works'] if 'works' in self._track_metadata.keys() is not None else None ) self.taals = ( self._track_metadata['taals'] if 'taals' in self._track_metadata.keys() is not None else None ) self.layas = ( self._track_metadata['layas'] if 'layas' in self._track_metadata.keys() is not None else None ) @utils.cached_property def tonic(self): """Float: tonic annotation""" return load_tonic(self.ctonic_path) @utils.cached_property def pitch(self): """F0Data: pitch annotation""" return load_pitch(self.pitch_path) @utils.cached_property def pitch_vocal(self): """F0Data: pitch vocal annotations""" return load_pitch(self.pitch_vocal_path) @utils.cached_property def tempo(self): """Dict: tempo annotations""" return load_tempo(self.tempo_path, self.iam_style) @utils.cached_property def sama(self): """SectionData: sama section annotations""" return load_sama(self.sama_path) @utils.cached_property def sections(self): """SectionData: track section annotations""" return load_sections(self.sections_path, self.iam_style) @utils.cached_property def phrases(self): """EventData: phrase annotations""" return load_phrases(self.phrases_path) @property def audio(self): """(np.ndarray, float): audio signal, sample rate""" return load_audio(self.audio_path) def to_jams(self): """Jams: the track's data in jams format""" return jams_utils.jams_converter( audio_path=self.audio_path, f0_data=[(self.pitch, 'pitch'), (self.pitch_vocal, 'pitch_vocal')], section_data=[(self.sama, 'sama'), (self.sections, 'sections')], event_data=[(self.phrases, 'phrases')], metadata={ 'tempo': self.tempo, 'tonic': self.tonic, 'metadata': self._track_metadata, }, ) def load_audio(audio_path): """Load a Saraga audio file. Args: audio_path (str): path to audio file Returns: y (np.ndarray): the mono audio signal sr (float): The sample rate of the audio file """ if audio_path is None: return None if not os.path.exists(audio_path): raise IOError("audio_path {} does not exist".format(audio_path)) return librosa.load(audio_path, sr=44100, mono=False) def load_tonic(tonic_path): """Load tonic Args: tonic_path (str): Local path where the tonic path is stored. If `None`, returns None. Returns: (int): Tonic annotation in Hz """ if tonic_path is None: return None if not os.path.exists(tonic_path): raise IOError("tonic_path {} does not exist".format(tonic_path)) with open(tonic_path, 'r') as reader: return float(reader.readline().split('\n')[0]) def load_pitch(pitch_path): """Load pitch Args: pitch path (str): Local path where the pitch annotation is stored. If `None`, returns None. Returns: F0Data: pitch annotation """ if pitch_path is None: return None if not os.path.exists(pitch_path): raise IOError("melody_path {} does not exist".format(pitch_path)) times = [] freqs = [] with open(pitch_path, 'r') as reader: for line in reader.readlines(): times.append(float(line.split('\t')[0])) freqs.append(float(line.split('\t')[1])) if not times: return None times =
np.array(times)
numpy.array
#!/usr/bin/python3 import numpy as np import pdb import torch from multiobjective_opt.dist_mgda_utils import ( reduce_to_dict_per_dataset, scaled_reduce_dict_to_tensor, normalize_tensor_list ) def test_all_gather_create_tensor_list(): """ NOT EASY TO TEST SINCE MUST BE ON SEPARATE cpus/GPUS FOR IT TO WORK """ pass def test_scaled_reduce_dict_to_tensor(): """ """ dataset_grad_p_dict = { 'coco': torch.tensor([1.,2.]), 'ade20k': torch.tensor([3.,4.]), 'mapillary': torch.tensor([5.,6.]) } dataset_names = ['coco', 'ade20k', 'mapillary'] scales = {'coco': 1., 'ade20k': 5., 'mapillary': 2.} tensor = scaled_reduce_dict_to_tensor(dataset_grad_p_dict, dataset_names, scales=scales) gt_tensor = torch.tensor([26., 34.]) assert torch.allclose(tensor, gt_tensor) def test_reduce_to_dict_per_dataset(): """ """ ngpus_per_node = 8 tensor_list = [torch.ones(1) * i for i in range(ngpus_per_node) ] dataset_gpu_mapping = { 'coco':[0,1,2], 'mapillary': [3,4,5], 'ade20k': [6,7] } dataset_loss_dict = reduce_to_dict_per_dataset(tensor_list, dataset_gpu_mapping) gt_dataset_loss_dict = { 'coco': torch.tensor([3./3]), # (0 + 1 + 2 ) / 3 'mapillary': torch.tensor([12./3.]), # (3 + 4 + 5) / 3 'ade20k': torch.tensor([13./2.]) # (6 + 7) / 2 } assert_tensor_dicts_are_equal(dataset_loss_dict, gt_dataset_loss_dict) print(dataset_loss_dict) def assert_tensor_dicts_are_equal(dict1, dict2): """ """ assert set(dict1.keys()) == set(dict2.keys()) for k, v1 in dict1.items(): assert torch.allclose(v1, dict2[k]) def test_normalize_tensor_list(): """ """ tensor_list = [ torch.arange(5).type(torch.float32), torch.ones(3).type(torch.float32), torch.ones(2).type(torch.float32) * 2 ] print('Unnormalized: ', tensor_list) normalized_tensor_list, norm = normalize_tensor_list(tensor_list) gt_tensor_list = np.array([0,1,2,3,4,1,1,1,2,2.]) gt_norm =
np.linalg.norm(gt_tensor_list)
numpy.linalg.norm
#!/usr/bin/env python """experiments.py: experiments python program for different experiment applications""" __author__ = "<NAME>." __copyright__ = "Copyright 2020, SuperDARN@VT" __credits__ = [] __license__ = "MIT" __version__ = "1.0." __maintainer__ = "<NAME>." __email__ = "<EMAIL>" __status__ = "Research" import matplotlib matplotlib.use("Agg") import matplotlib.dates as mdates import matplotlib.pyplot as plt plt.style.use("config/alt.mplstyle") import sys sys.path.append("models/") sys.path.append("models/experiments/") import os import numpy as np import argparse import pandas as pd import datetime as dt from netCDF4 import Dataset, num2date from dateutil import parser as dparser import glob import xarray import statsmodels.api as sm from statsmodels.formula.api import ols from constant import * import utils from absorption import * import case0 from model import Model fontT = {"family": "serif", "color": "k", "weight": "normal", "size": 8} font = {"family": "serif", "color": "black", "weight": "normal", "size": 10} from matplotlib import font_manager ticks_font = font_manager.FontProperties(family="serif", size=10, weight="normal") matplotlib.rcParams["xtick.color"] = "k" matplotlib.rcParams["ytick.color"] = "k" matplotlib.rcParams["xtick.labelsize"] = 10 matplotlib.rcParams["ytick.labelsize"] = 10 matplotlib.rcParams["mathtext.default"] = "default" def coloring_axes(ax, atype="left", col="red", fmtr="%H", ivl=60): ax.spines[atype].set_color(col) ax.tick_params(axis="y", which="both", colors=col) ax.yaxis.label.set_color(col) fmt = matplotlib.dates.DateFormatter(fmtr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=ivl)) return ax def coloring_twaxes(ax, atype="left", col="red", twcol="k", fmtr="%H", ivl=60): ax.spines[atype].set_color(col) ax.tick_params(axis="y", which="both", colors=twcol) ax.yaxis.label.set_color(twcol) fmt = matplotlib.dates.DateFormatter(fmtr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=ivl)) return ax def _case0_(args): """ Impact of the I0 and frequency """ chi = np.deg2rad(np.linspace(0,90,91)) f0 = 10**np.linspace(-6,-1,31) * 1e3 fo = 10**np.linspace(np.log10(.1), np.log10(200), 100) ev, start, end = dt.datetime(2015,3,11,16,22), dt.datetime(2015,3,11,15,30), dt.datetime(2015,3,11,17,30) l, r = 52, 53 _f0_ = case0._Case0_(start, end)[40:53] fname = "data/sim/case0.nc.gz" os.system("gzip -d "+fname) _nc = Dataset(fname.replace(".gz", "")) os.system("gzip "+fname.replace(".gz", "")) pg = utils.PointGrid("ott", ev, start, end, 30, v=False) _lo_,_qo_ = [],[] b = pg.igrf["B"][l:r,:] pg._col_.nu_FT = pg._col_.nu_FT[l:r,:] pg._col_.nu_av_CC = pg._col_.nu_av_CC[l:r,:] pg._col_.nu_av_MB = pg._col_.nu_av_MB[l:r,:] pg._col_.nu_SN["total"] = pg._col_.nu_SN["total"][l:r,:] ne = _nc.variables["ne"][l:r,:] for _f_ in fo: print(" Frequency - ", _f_, " MHz") u = Absorption(b, pg._col_, ne, fo=_f_*1e6) _lo_.append([utils.int_absorption(u.AH["SN"]["O"], pg.alts, extpoint=68, llim = 60, ulim = 110), utils.int_absorption(u.AH["AV_CC"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110), utils.int_absorption(u.AH["AV_MB"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110), utils.int_absorption(u.SW["FT"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110)]) continue _lo_ = np.array(_lo_) ne = _nc.variables["ne"][40:53,:] nfo = np.linspace(1,70,50) for i, _ in enumerate(_f0_): _k_ = [] for _f_ in nfo: print(" Frequency, I - ", _f_, " MHz,", _f0_[i], "W/m2") u = Absorption(b, pg._col_, ne[i:i+1,:], fo=_f_*1e6) _k_.append([utils.int_absorption(u.AH["SN"]["O"], pg.alts, extpoint=68, llim = 60, ulim = 110), utils.int_absorption(u.AH["AV_CC"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110), utils.int_absorption(u.AH["AV_MB"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110), utils.int_absorption(u.SW["FT"]["O"], pg.alts, extpoint=64, llim = 60, ulim = 110)]) _k_ = np.array(_k_)[:,:,0] _qo_.append([10**utils.extrap1d(_k_[:,0], np.log10(nfo))([1])[0], 10**utils.extrap1d(_k_[:,1], np.log10(nfo))([1])[0], 10**utils.extrap1d(_k_[:,2], np.log10(nfo))([1])[0], 10**utils.extrap1d(_k_[:,3],
np.log10(nfo)
numpy.log10
""" This module solves for the orbit of the planet given Keplerian parameters. """ import numpy as np import astropy.units as u import astropy.constants as consts try: from . import _kepler cext = True except ImportError: print("WARNING: KEPLER: Unable to import C-based Kepler's \ equation solver. Falling back to the slower NumPy implementation.") cext = False def calc_orbit(epochs, sma, ecc, inc, aop, pan, tau, plx, mtot, mass_for_Kamp=None, tau_ref_epoch=0, tolerance=1e-9, max_iter=100): """ Returns the separation and radial velocity of the body given array of orbital parameters (size n_orbs) at given epochs (array of size n_dates) Based on orbit solvers from <NAME> and <NAME>. Adapted by <NAME> and <NAME>. Args: epochs (np.array): MJD times for which we want the positions of the planet sma (np.array): semi-major axis of orbit [au] ecc (np.array): eccentricity of the orbit [0,1] inc (np.array): inclination [radians] aop (np.array): argument of periastron [radians] pan (np.array): longitude of the ascending node [radians] tau (np.array): epoch of periastron passage in fraction of orbital period past MJD=0 [0,1] plx (np.array): parallax [mas] mtot (np.array): total mass of the two-body orbit (M_* + M_planet) [Solar masses] mass_for_Kamp (np.array, optional): mass of the body that causes the RV signal. For example, if you want to return the stellar RV, this is the planet mass. If you want to return the planetary RV, this is the stellar mass. [Solar masses]. For planet mass ~ 0, mass_for_Kamp ~ M_tot, and function returns planetary RV (default). tau_ref_epoch (float, optional): reference date that tau is defined with respect to (i.e., tau=0) tolerance (float, optional): absolute tolerance of iterative computation. Defaults to 1e-9. max_iter (int, optional): maximum number of iterations before switching. Defaults to 100. Return: 3-tuple: raoff (np.array): array-like (n_dates x n_orbs) of RA offsets between the bodies (origin is at the other body) [mas] deoff (np.array): array-like (n_dates x n_orbs) of Dec offsets between the bodies [mas] vz (np.array): array-like (n_dates x n_orbs) of radial velocity of one of the bodies (see `mass_for_Kamp` description) [km/s] Written: <NAME>, <NAME>, 2018 """ n_orbs = np.size(sma) # num sets of input orbital parameters n_dates = np.size(epochs) # number of dates to compute offsets and vz # return planetary RV if `mass_for_Kamp` is not defined if mass_for_Kamp is None: mass_for_Kamp = mtot # Necessary for _calc_ecc_anom, for now if np.isscalar(epochs): # just in case epochs is given as a scalar epochs = np.array([epochs]) ecc_arr = np.tile(ecc, (n_dates, 1)) # Compute period (from Kepler's third law) and mean motion period = np.sqrt(4*np.pi**2.0*(sma*u.AU)**3/(consts.G*(mtot*u.Msun))) period = period.to(u.day).value mean_motion = 2*np.pi/(period) # in rad/day # # compute mean anomaly (size: n_orbs x n_dates) manom = (mean_motion*(epochs[:, None] - tau_ref_epoch) - 2*np.pi*tau) % (2.0*np.pi) # compute eccentric anomalies (size: n_orbs x n_dates) eanom = _calc_ecc_anom(manom, ecc_arr, tolerance=tolerance, max_iter=max_iter) # compute the true anomalies (size: n_orbs x n_dates) # Note: matrix multiplication makes the shapes work out here and below tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom)) # compute 3-D orbital radius of second body (size: n_orbs x n_dates) radius = sma * (1.0 - ecc * np.cos(eanom)) # compute ra/dec offsets (size: n_orbs x n_dates) # math from <NAME>. Lots of trig c2i2 = np.cos(0.5*inc)**2 s2i2 = np.sin(0.5*inc)**2 arg1 = tanom + aop + pan arg2 = tanom + aop - pan c1 = np.cos(arg1) c2 = np.cos(arg2) s1 = np.sin(arg1) s2 = np.sin(arg2) # updated sign convention for Green Eq. 19.4-19.7 raoff = radius * (c2i2*s1 - s2i2*s2) * plx deoff = radius * (c2i2*c1 + s2i2*c2) * plx # compute the radial velocity (vz) of the body (size: n_orbs x n_dates) # first comptue the RV semi-amplitude (size: n_orbs x n_dates) Kv = np.sqrt(consts.G / (1.0 - ecc**2)) * (mass_for_Kamp * u.Msun * np.sin(inc)) / np.sqrt(mtot * u.Msun) / np.sqrt(sma * u.au) # Convert to km/s Kv = Kv.to(u.km/u.s) # compute the vz vz = Kv.value * (ecc*np.cos(aop) + np.cos(aop + tanom)) # Squeeze out extra dimension (useful if n_orbs = 1, does nothing if n_orbs > 1) vz = np.squeeze(vz)[()] return raoff, deoff, vz def _calc_ecc_anom(manom, ecc, tolerance=1e-9, max_iter=100, use_c=False): """ Computes the eccentric anomaly from the mean anomlay. Code from <NAME>'s orbit solver (e < 0.95 use Newton, e >= 0.95 use Mikkola) Args: manom (float/np.array): mean anomaly, either a scalar or np.array of any shape ecc (float/np.array): eccentricity, either a scalar or np.array of the same shape as manom tolerance (float, optional): absolute tolerance of iterative computation. Defaults to 1e-9. max_iter (int, optional): maximum number of iterations before switching. Defaults to 100. Return: eanom (float/np.array): eccentric anomalies, same shape as manom Written: <NAME>, 2018 """ if np.isscalar(ecc) or (np.shape(manom) == np.shape(ecc)): pass else: raise ValueError("ecc must be a scalar, or ecc.shape == manom.shape") # If manom is a scalar, make it into a one-element array if np.isscalar(manom): manom = np.array((manom, )) # If ecc is a scalar, make it the same shape as manom if np.isscalar(ecc): ecc = np.full(np.shape(manom), ecc) # Initialize eanom array eanom = np.full(np.shape(manom), np.nan) # Save some boolean arrays ecc_zero = ecc == 0.0 ecc_low = ecc < 0.95 # First deal with e == 0 elements ind_zero = np.where(ecc_zero) if len(ind_zero[0]) > 0: eanom[ind_zero] = manom[ind_zero] # Now low eccentricities ind_low = np.where(~ecc_zero & ecc_low) if cext and use_c: if len(ind_low[0]) > 0: eanom[ind_low] = _kepler._c_newton_solver(manom[ind_low], ecc[ind_low], tolerance=tolerance, max_iter=max_iter) # the C solver returns eanom = -1 if it doesnt converge after max_iter iterations m_one = eanom == -1 ind_high = np.where(~ecc_zero & ~ecc_low | m_one) else: if len(ind_low[0]) > 0: eanom[ind_low] = _newton_solver( manom[ind_low], ecc[ind_low], tolerance=tolerance, max_iter=max_iter) ind_high = np.where(~ecc_zero & ~ecc_low) # Now high eccentricities if len(ind_high[0]) > 0: eanom[ind_high] = _mikkola_solver_wrapper(manom[ind_high], ecc[ind_high], use_c) return np.squeeze(eanom)[()] def _newton_solver(manom, ecc, tolerance=1e-9, max_iter=100, eanom0=None): """ Newton-Raphson solver for eccentric anomaly. Args: manom (np.array): array of mean anomalies ecc (np.array): array of eccentricities eanom0 (np.array): array of first guess for eccentric anomaly, same shape as manom (optional) Return: eanom (np.array): array of eccentric anomalies Written: <NAME>, 2018 """ # Ensure manom and ecc are np.array (might get passed as astropy.Table Columns instead) manom = np.array(manom) ecc = np.array(ecc) # Initialize at E=M, E=pi is better at very high eccentricities if eanom0 is None: eanom = np.copy(manom) else: eanom = np.copy(eanom0) # Let's do one iteration to start with eanom -= (eanom - (ecc * np.sin(eanom)) - manom) / (1.0 - (ecc * np.cos(eanom))) diff = (eanom - (ecc * np.sin(eanom)) - manom) / (1.0 - (ecc * np.cos(eanom))) abs_diff = np.abs(diff) ind = np.where(abs_diff > tolerance) niter = 0 while ((ind[0].size > 0) and (niter <= max_iter)): eanom[ind] -= diff[ind] # If it hasn't converged after half the iterations are done, try starting from pi if niter == (max_iter//2): eanom[ind] = np.pi diff[ind] = (eanom[ind] - (ecc[ind] *
np.sin(eanom[ind])
numpy.sin
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2019 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) """This module contains algorithms for the empirical interpolation of |Operators|. The main work for generating the necessary interpolation data is handled by the :func:`ei_greedy` method. The objects returned by this method can be used to instantiate an |EmpiricalInterpolatedOperator|. As a convenience, the :func:`interpolate_operators` method allows to perform the empirical interpolation of the |Operators| of a given model with a single function call. """ import numpy as np from scipy.linalg import solve from pymor.core.logger import getLogger from pymor.algorithms.pod import pod as pod_alg from pymor.operators.ei import EmpiricalInterpolatedOperator from pymor.parallel.dummy import dummy_pool from pymor.parallel.interfaces import RemoteObjectInterface from pymor.parallel.manager import RemoteObjectManager from pymor.vectorarrays.interfaces import VectorArrayInterface def ei_greedy(U, error_norm=None, atol=None, rtol=None, max_interpolation_dofs=None, copy=True, pool=dummy_pool): """Generate data for empirical interpolation using EI-Greedy algorithm. Given a |VectorArray| `U`, this method generates a collateral basis and interpolation DOFs for empirical interpolation of the vectors contained in `U`. The returned objects can be used to instantiate an |EmpiricalInterpolatedOperator| (with `triangular=True`). The interpolation data is generated by a greedy search algorithm, where in each loop iteration the worst approximated vector in `U` is added to the collateral basis. Parameters ---------- U A |VectorArray| of vectors to interpolate. error_norm Norm w.r.t. which to calculate the interpolation error. If `None`, the Euclidean norm is used. atol Stop the greedy search if the largest approximation error is below this threshold. rtol Stop the greedy search if the largest relative approximation error is below this threshold. max_interpolation_dofs Stop the greedy search if the number of interpolation DOF (= dimension of the collateral basis) reaches this value. copy If `False`, `U` will be modified during executing of the algorithm. pool If not `None`, the |WorkerPool| to use for parallelization. Returns ------- interpolation_dofs |NumPy array| of the DOFs at which the vectors are evaluated. collateral_basis |VectorArray| containing the generated collateral basis. data Dict containing the following fields: :errors: Sequence of maximum approximation errors during greedy search. :triangularity_errors: Sequence of maximum absolute values of interoplation matrix coefficients in the upper triangle (should be near zero). """ if pool: # dispatch to parallel implemenation assert isinstance(U, (VectorArrayInterface, RemoteObjectInterface)) with RemoteObjectManager() as rom: if isinstance(U, VectorArrayInterface): U = rom.manage(pool.scatter_array(U)) return _parallel_ei_greedy(U, error_norm=error_norm, atol=atol, rtol=rtol, max_interpolation_dofs=max_interpolation_dofs, copy=copy, pool=pool) assert isinstance(U, VectorArrayInterface) logger = getLogger('pymor.algorithms.ei.ei_greedy') logger.info('Generating Interpolation Data ...') interpolation_dofs = np.zeros((0,), dtype=np.int32) collateral_basis = U.empty() max_errs = [] triangularity_errs = [] if copy: U = U.copy() ERR = U errs = ERR.l2_norm() if error_norm is None else error_norm(ERR) max_err_ind = np.argmax(errs) initial_max_err = max_err = errs[max_err_ind] # main loop while True: if max_interpolation_dofs is not None and len(interpolation_dofs) >= max_interpolation_dofs: logger.info('Maximum number of interpolation DOFs reached. Stopping extension loop.') logger.info(f'Final maximum interpolation error with' f'{len(interpolation_dofs)} interpolation DOFs: {max_err}') break logger.info(f'Maximum interpolation error with ' f'{len(interpolation_dofs)} interpolation DOFs: {max_err}') if atol is not None and max_err <= atol: logger.info('Absolute error tolerance reached! Stopping extension loop.') break if rtol is not None and max_err / initial_max_err <= rtol: logger.info('Relative error tolerance reached! Stopping extension loop.') break # compute new interpolation dof and collateral basis vector new_vec = U[max_err_ind].copy() new_dof = new_vec.amax()[0][0] if new_dof in interpolation_dofs: logger.info(f'DOF {new_dof} selected twice for interplation! Stopping extension loop.') break new_dof_value = new_vec.dofs([new_dof])[0, 0] if new_dof_value == 0.: logger.info(f'DOF {new_dof} selected for interpolation has zero maximum error! Stopping extension loop.') break new_vec *= 1 / new_dof_value interpolation_dofs = np.hstack((interpolation_dofs, new_dof)) collateral_basis.append(new_vec) max_errs.append(max_err) # update U and ERR new_dof_values = U.dofs([new_dof]) U.axpy(-new_dof_values[:, 0], new_vec) errs = ERR.l2_norm() if error_norm is None else error_norm(ERR) max_err_ind = np.argmax(errs) max_err = errs[max_err_ind] interpolation_matrix = collateral_basis.dofs(interpolation_dofs).T triangularity_errors = np.abs(interpolation_matrix - np.tril(interpolation_matrix)) for d in range(1, len(interpolation_matrix) + 1): triangularity_errs.append(np.max(triangularity_errors[:d, :d])) if len(triangularity_errs) > 0: logger.info(f'Interpolation matrix is not lower triangular with maximum error of {triangularity_errs[-1]}') data = {'errors': max_errs, 'triangularity_errors': triangularity_errs} return interpolation_dofs, collateral_basis, data def deim(U, modes=None, pod=True, atol=None, rtol=None, product=None, pod_options={}): """Generate data for empirical interpolation using DEIM algorithm. Given a |VectorArray| `U`, this method generates a collateral basis and interpolation DOFs for empirical interpolation of the vectors contained in `U`. The returned objects can be used to instantiate an |EmpiricalInterpolatedOperator| (with `triangular=False`). The collateral basis is determined by the first :func:`~pymor.algorithms.pod.pod` modes of `U`. Parameters ---------- U A |VectorArray| of vectors to interpolate. modes Dimension of the collateral basis i.e. number of POD modes of the vectors in `U`. pod If `True`, perform a POD of `U` to obtain the collateral basis. If `False`, `U` is used as collateral basis. atol Absolute POD tolerance. rtol Relative POD tolerance. product Inner product |Operator| used for the POD. pod_options Dictionary of additional options to pass to the :func:`~pymor.algorithms.pod.pod` algorithm. Returns ------- interpolation_dofs |NumPy array| of the DOFs at which the vectors are interpolated. collateral_basis |VectorArray| containing the generated collateral basis. data Dict containing the following fields: :svals: POD singular values. """ assert isinstance(U, VectorArrayInterface) logger = getLogger('pymor.algorithms.ei.deim') logger.info('Generating Interpolation Data ...') data = {} if pod: collateral_basis, svals = pod_alg(U, modes=modes, atol=atol, rtol=rtol, product=product, **pod_options) data['svals'] = svals else: collateral_basis = U interpolation_dofs = np.zeros((0,), dtype=np.int32) interpolation_matrix = np.zeros((0, 0)) for i in range(len(collateral_basis)): logger.info(f'Choosing interpolation point for basis vector {i}.') if len(interpolation_dofs) > 0: coefficients = solve(interpolation_matrix, collateral_basis[i].dofs(interpolation_dofs).T).T U_interpolated = collateral_basis[:len(interpolation_dofs)].lincomb(coefficients) ERR = collateral_basis[i] - U_interpolated else: ERR = collateral_basis[i] # compute new interpolation dof and collateral basis vector new_dof = ERR.amax()[0][0] if new_dof in interpolation_dofs: logger.info(f'DOF {new_dof} selected twice for interplation! Stopping extension loop.') break interpolation_dofs =
np.hstack((interpolation_dofs, new_dof))
numpy.hstack
import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import os import os.path as osp import numpy as np import json import provider from sklearn.model_selection import train_test_split BASE_DIR = os.path.dirname(os.path.abspath(__file__)) TRAIN_FILES_MODELNET = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt')) TEST_FILES_MODELNET = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt')) MODELNET10_TRAIN_FILE = 'data/ModelNet10/trainShuffled_Relabel.h5' MODELNET10_TEST_FILE = 'data/ModelNet10/testShuffled_Relabel.h5' CHAIR_PATH = 'data/Chair' KEYPOINT_CHAIR_PATH = 'data/Chair/keypts_chair.mat' CHAIR_FILES = os.listdir(CHAIR_PATH) TRAIN_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'train' in f] VAL_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'val' in f] TEST_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'test' in f] KEYPOINTNET_PATH = "/media/tianxing/Samsung 1T/ShapeNetCore/" def naive_read_pcd(path): lines = open(path, 'r').readlines() idx = -1 for i, line in enumerate(lines): if line.startswith('DATA ascii'): idx = i + 1 break lines = lines[idx:] lines = [line.rstrip().split(' ') for line in lines] data = np.asarray(lines) pc = np.array(data[:, :3], dtype=np.float) return pc def get_pointcloud(dataset, NUM_POINT=2048, shuffle=True): """ Load the dataset into memory """ if dataset == 'modelnet': train_file_idxs = np.arange(0, len(TRAIN_FILES_MODELNET)) data_train = [] label_train = [] for fn in range(len(TRAIN_FILES_MODELNET)): print('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TRAIN_FILES_MODELNET[fn]) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) data_train.append(current_data) label_train.append(current_label) result_train = np.vstack(data_train) label_train = np.concatenate(label_train, axis=None) if shuffle: X_train, y_train, _ = provider.shuffle_data(result_train, np.squeeze(label_train)) else: X_train, y_train = result_train, np.squeeze(label_train) data_test = [] label_test = [] for fn in range(len(TEST_FILES_MODELNET)): print('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES_MODELNET[fn]) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) data_test.append(current_data) label_test.append(current_label) result_test = np.vstack(data_test) label_test = np.concatenate(label_test, axis=None) if shuffle: X_test, y_test, _ = provider.shuffle_data(result_test, np.squeeze(label_test)) else: X_test, y_test = result_test, np.squeeze(label_test) elif dataset == 'shapenet': shapenet_data, shapenet_label = provider.get_shapenet_data() shapenet_data = shapenet_data[:,0:NUM_POINT,:] X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle) elif dataset == 'shapenet_chair': shapenet_data, shapenet_label = provider.get_shapenet_data() shapenet_data = shapenet_data[:,0:NUM_POINT,:] shapenet_data, shapenet_label = shapenet_data[shapenet_label==17], shapenet_label[shapenet_label==17] X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle) elif dataset == 'modelnet10': current_data, current_label = provider.loadDataFile(MODELNET10_TRAIN_FILE) current_data = current_data[:,0:NUM_POINT,:] if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.loadDataFile(MODELNET10_TEST_FILE) current_data = current_data[:,0:NUM_POINT,:] if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == 'keypoint': current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == 'keypoint_10class': current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) current_label[:, -10:] = np.arange(1, 11) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) current_label[:, -10:] = np.arange(1, 11) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == "keypointnet": json_path = osp.join(KEYPOINTNET_PATH, "annotations/all.json") annots = json.load(open(json_path)) X = [] y = [] for annot in annots: class_id = annot["class_id"] model_id = annot["model_id"] kpts = [] for kpt in annot["keypoints"]: kpts.append(kpt["xyz"]) pcd_path = osp.join(KEYPOINTNET_PATH, f"pcds/{class_id}/{model_id}.pcd") if os.path.exists(pcd_path): pcd = naive_read_pcd(pcd_path) pcd = pcd[0:NUM_POINT, :] else: continue if len(kpts) != 10: continue pcd = np.concatenate((pcd[:-10], kpts)) label = np.zeros(NUM_POINT-10) label = np.concatenate((label,
np.ones(10)
numpy.ones
import itertools import logging import time from typing import Callable, Dict, Optional, Tuple import numpy as np import torch import torch.nn as nn from kaggle_environments.envs.hungry_geese.hungry_geese \ import Action, Configuration, Observation from numba import njit from config import INPUT_AREA_SIZE, INPUT_CHANNELS, MAX_SEARCH from config import EAST, INVALID, NORTH, SOUTH, WEST ''' World class contains following attributes: field: [00] player1 head [01] player1 tail1 [02] player1 tail2 [03] player1 tail3 [04] player1 tail4 [05] player1 tail5 [06] player1 tail6 [07] player1 tail7 [08] player1 tail8.. [09] player1 nexts [10] player1 bodies [11] certain collision [12] potential collision [13-51] repeat for each player [52] food input: [00] my head [01] my tail 1 [02] my tail 2 [03] my tail 3 [04] my tail 4 [05] my tail 5 [06] my tail 6 [07] my tail 7 [08] my tail 8.. [09] opponent1 head [10] opponent1 tail 1 [11] opponent1 tail 2 [12] opponent1 tail 3 [13] opponent1 tail 4 [14] opponent1 tail 5 [15] opponent1 tail 6 [16] opponent1 tail 7 [17] opponent1 tails 8.. [18] opponent1 nexts [19] opponent2 head [20] opponent2 tail 1 [21] opponent2 tail 2 [22] opponent2 tail 3 [23] opponent2 tail 4 [24] opponent2 tail 5 [25] opponent2 tail 6 [26] opponent2 tail 7 [27] opponent2 tails 8.. [28] opponent2 nexts [29] opponent3 head [30] opponent3 tail 1 [31] opponent3 tail 2 [32] opponent3 tail 3 [33] opponent3 tail 4 [34] opponent3 tail 5 [35] opponent3 tail 6 [36] opponent3 tail 7 [37] opponent3 tails 8.. [38] opponent3 nexts [39] any opponent head [40] any opponent tail 1 [41] any opponent tail 2 [42] any opponent tail 3 [43] any opponent tail 4 [44] any opponent tail 5 [45] any opponent tail 6 [46] any opponent tail 7 [47] any opponent tails 8.. [48] any opponent nexts [49] certain collisions (include myself) [50] potential collisions [51] length difference (-7..) (set flag at the head) [52] length difference (-6) [53] length difference (-5) [54] length difference (-4) [55] length difference (-3) [56] length difference (-2) [57] length difference (-1) [58] length difference (0) [59] length difference (+1) [60] length difference (+2) [61] length difference (+3) [62] length difference (+4) [63] length difference (+5) [64] length difference (+6) [65] length difference (+7..) [66] food [67] remaining steps to hungry [1] [68] remaining steps to hungry [2] [69] remaining steps to hungry [3] [70] remaining steps to hungry [4] [71] remaining steps to hungry [5] [72] remaining steps to hungry [6] [73] remaining steps to hungry [7] [74] remaining steps to hungry [8..] [75] remaining steps to the end [1] [76] remaining steps to the end [2] [77] remaining steps to the end [3] [78] remaining steps to the end [4] [79] remaining steps to the end [5] [80] remaining steps to the end [6] [81] remaining steps to the end [7] [82] remaining steps to the end [8..] [83] step (000-019) [84] step (020-039) [85] step (040-059) [86] step (060-079) [87] step (080-099) [88] step (100-119) [89] step (120-139) [90] step (140-159) [91] step (160-179) [92] step (180-199) [93] direction (vertical) [94] direction (horizontal) [95] remaining players [2] [96] remaining players [3] [97] remaining players [4] ouptut: [00] move left [01] move straight [02] move right [03] value of 1st place [04] value of 2nd place [05] value of 3rd place moves: [NORTH, EAST, SOUTH, WEST] [00] value 1st [01] value 2nd [02] value 3rd [03] value^2 1st (for ucb1-tuned) [04] value^2 2nd (for ucb1-tuned) [05] value^2 3rd (for ucb1-tuned) [06] visit [07] alive [08] enabled [09] policy (for puct or zero) [10] expanded (1: not expanded, 0: expanded) ''' LOGGER = logging.getLogger(__name__) # _BEGIN_AGENT_ FIELD_FOOD = 52 FS = 13 # field size FN = 9 # field offset of next heads FB = 10 # field offset of bodies FC = 11 # field offset of certain collision FP = 12 # field offset of potential collisioin INPUT_COLLISION = 49 INPUT_DIFFERENCE = 58 INPUT_FOOD = 66 INPUT_HUNGRY = 67 INPUT_END = 75 INPUT_STEP = 83 INPUT_DIRECTION = 93 INPUT_PLAYERS = 95 MOVE_VISIT = 6 MOVE_ALIVE = 7 MOVE_ENABLED = 8 MOVE_POLICY = 9 MOVE_EXPANDED = 10 # stack(for lookahead): [step, y, x, direction, move, backup]: AS_Y = 4 AS_X = 5 AS_NMOVE = 6 AS_PMOVE = 7 AS_BACK = 8 @njit def get_direction(prev: int, current: int, rows: int, columns: int) -> int: prev_y, prev_x = row_col(prev, columns) curr_y, curr_x = row_col(current, columns) move_x = (curr_x - prev_x) % columns move_y = (curr_y - prev_y) % rows if move_y == rows - 1: return NORTH elif move_x == 1: return EAST elif move_y == 1: return SOUTH elif move_x == columns - 1: return WEST else: return INVALID @njit def row_col(position: int, columns: int) -> Tuple[int, int]: return position // columns, position % columns @njit def get_next_posision(position: int, direction: int, rows: int, columns: int) -> int: y, x = row_col(position, columns) if direction == NORTH: y -= 1 y %= rows elif direction == EAST: x += 1 x %= columns elif direction == SOUTH: y += 1 y %= rows elif direction == WEST: x -= 1 x %= columns return y * columns + x def get_move_values(moves: np.ndarray, safe: float, player: int) -> np.ndarray: return (moves[:, :, 0] * (1.0 - safe)) + (moves[:, :, max(player - 2, 0)] * safe) def get_move_values2(moves: np.ndarray, safe: float, player: int) -> np.ndarray: return (moves[:, :, 3] * (1.0 - safe)) + (moves[:, :, max(player + 1, 3)] * safe) def select_action_by_policy(moves: np.ndarray) -> np.ndarray: return np.argmax((moves[:, :, MOVE_POLICY]) * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_beta(moves: np.ndarray, safe: float, player: int) -> np.ndarray: values = get_move_values(moves, safe, player) alpha = np.minimum(values, moves[:, :, MOVE_VISIT]) beta = moves[:, :, MOVE_VISIT] - alpha values = np.random.beta(alpha + 1e-6, beta + 1e-6) return np.argmax(values * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_ucbm(moves: np.ndarray, safe: float, player: int) -> np.ndarray: '''Modified UCB (not UCB1)''' values = get_move_values(moves, safe, player) / (moves[:, :, MOVE_VISIT] + 1e-6) visits = np.sqrt(1.0 / (moves[:, :, MOVE_VISIT] + 1e-6)) return np.argmax(values * visits * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_ucbr(moves: np.ndarray, safe: float, player: int) -> np.ndarray: '''Randamized-Modified UCB (not UCB1)''' values = get_move_values(moves, safe, player) / (moves[:, :, MOVE_VISIT] + 1e-6) visits = np.sqrt((1.0 + np.random.rand(4, 1)) / (moves[:, :, MOVE_VISIT] + 1e-6)) return np.argmax(values * visits * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_ucb1(moves: np.ndarray, safe: float, player: int) -> np.ndarray: values = get_move_values(moves, safe, player) / (moves[:, :, MOVE_VISIT] + 1e-6) totals = (moves[:, :, MOVE_VISIT].sum(axis=1) + 1)[:, None] visits = np.sqrt(2 * np.log(totals) / (moves[:, :, MOVE_VISIT] + 1e-6)) return np.argmax((values + visits) * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_puct(moves: np.ndarray, safe: float, player: int) -> np.ndarray: '''PUCT(modified)''' values = get_move_values(moves, safe, player) / (moves[:, :, MOVE_VISIT] + 1e-6) totals = np.log(moves[:, :, MOVE_VISIT].sum(axis=1) + 1)[:, None] visits = 1.0 * np.sqrt(totals / (moves[:, :, MOVE_VISIT] + 1e-6)) priority = values + moves[:, :, MOVE_POLICY] * visits return np.argmax(priority * moves[:, :, MOVE_ENABLED], axis=1) def select_actions_by_zero(moves: np.ndarray, safe: float, player: int) -> np.ndarray: '''AlphaZero''' values = get_move_values(moves, safe, player) / (moves[:, :, MOVE_VISIT] + 1e-6) totals = moves[:, :, MOVE_VISIT].sum(axis=1, keepdims=True) visits = 5.0 * np.sqrt(totals) / (moves[:, :, MOVE_VISIT] + 1) priority = values + moves[:, :, MOVE_POLICY] * visits return np.argmax(priority * moves[:, :, MOVE_ENABLED], axis=1) class Setting(object): def __init__(self, **kwargs) -> None: self.timelimit = 'auto' # time limit of search moves ('auto', 'zero', 'none' or visit count) self.depthlimit = 20 # depth limit of search moves (simulation only at more than the specified depth) self.decision = 'hybrid' # value for move decisions ('hybrid', 'value', 'visit') self.normalize = True # normalize values self.collision = 0.0 # penalty of potetial collision moves (ignore potential collisions at 0.0) self.eating = 0.0 # value of eating a food (ignore foods at 0.0) self.search = 'ucbm' # algrithm of next move selections self.safe = 0.0 # safe parameter at move decisions. self.strict = False # evaluate a value of the root node with other edge and leaf nodes. self.lookahead = 4 # depth of look-ahead by depth-first search (not inference by NN or MCTS). self.policybase = 0.1 # base of policy self.valuebase = 0.0 # base of value self.valuetail = 0.0 # base at neighbor of own tail self.usepolicy = True # use policy model self.usevalue = True # use value model self.random = 0.0 # probability of random decision (for reinforced learning) self.gpu = -1 # use gpu (use cpu at -1) for key, value in kwargs.items(): setattr(self, key, value) def __and__(self, s: 'Setting') -> 'Setting': return Setting(**{ k: v if v == getattr(s, k) else None for k, v in self.__dict__.items()}) def __sub__(self, s: 'Setting') -> 'Setting': return Setting(**{ k: None if v == getattr(s, k) else v for k, v in self.__dict__.items()}) def __str__(self) -> str: return ', '.join(f'{k}={v}' for k, v in self.__dict__.items() if v is not None) class World(object): def __init__(self, model: nn.Module, config: Configuration, setting: Setting) -> None: self.model = model self.config = config self.setting = setting # node depth self.depth = 0 # visit count self.visit = 0 # number of steps self.step = -1 # game status self.finished = False # values after the end of the game self.rewards = np.zeros([4], dtype=np.int16) # previous head positions self.prevs = np.zeros([4], dtype=np.int16) # head directions self.directions = np.zeros([4], dtype=np.int16) # geese length self.lengths = np.zeros([4], dtype=np.int16) # geese segments self.segments = np.zeros([4, config.rows * config.columns], dtype=np.int16) # food positions self.foods = np.zeros([2], dtype=np.int16) # field map self.field =
np.zeros([53, config.rows, config.columns], dtype=np.float32)
numpy.zeros
import os import sys sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), '../..')) from assignments.toolcalibration import calibration if __name__ == "__main__": import csv import numpy as np np.set_printoptions(suppress=True) transforms = list() with open('data/pivot_calibration/Tpointer2Cam.csv', 'r') as csvfile: datareader = csv.reader(csvfile) for row in datareader: T = np.eye(4) data =
np.loadtxt(row, delimiter=',')
numpy.loadtxt
#! /usr/bin/env python # Copyright 2021 <NAME> # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL import os import sys import yt sys.path.insert(1, '../../../../warpx/Regression/Checksum/') import checksumAPI import numpy as np import scipy.constants as scc ## This script performs various checks for the proton boron nuclear fusion module. The simulation ## that we check is made of 5 different tests, each with different proton, boron and alpha species. ## ## The first test is performed in the proton-boron center of mass frame. It could correspond to the ## physical case of a proton beam colliding with a boron beam. The kinetic energy of the colliding ## particles depends on the cell number in the z direction and varies in the few keV to few MeV ## range. All the particles within a cell have the exact same momentum, which allows detailed ## checks of the energy of produced alpha particles. The proton and boron species have the same ## density and number of particles in this test. The number of produced alphas is much smaller than ## the initial number of protons and borons. ## ## The second test is performed in the boron rest frame. It corresponds to the physical case of a ## low density proton beam colliding with a high-density proton+boron target. The energy of the ## proton beam is varied in the few keV to few MeV range, depending on the cell number in the z ## direction. As in the previous case, all the particles within a cell have the exact same ## momentum, which allows detailed checks of the energy of produced alpha particles. In this test, ## there are 100 immobile boron and 100 immobile proton macroparticles per cell, as well as 900 ## beam proton macroparticles per cell. The density of the immobile particles is 6 orders of ## magnitude higher than the number of beam particles, which means that they have a much higher ## weight. This test is similar to the example given in section 3 of Higginson et al., ## Journal of Computation Physics, 388 439–453 (2019), which was found to be sensitive to the way ## unsampled pairs are accounted for. As before, the number of produced alphas is much smaller than ## the initial number of protons and borons. ## ## The third test corresponds to a Maxwellian plasma with a 44 keV temperature. The alpha yield is ## directly compared to the analytical fits of <NAME> and <NAME>, Nuclear Fusion, 40, 865 ## (2000) for a thermal plasma. ## ## The fourth test corresponds to a plasma with an extremely small boron density, so that all boron ## macroparticles should have disappeared by the end of the simulation, which we verify. ## ## The fifth test is exactly the same as the fourth test, except that the ## fusion_probability_threshold parameter is increased to an excessive value. Because of that, we ## severely underestimate the fusion yield and boron macroparticles remain at the end of the ## simulation, which we verify. ## ## In all simulations, we check particle number, charge, momentum and energy conservation and ## perform basic checks regarding the produced particles. When possible, we also compare the number ## of produced macroparticles, fusion yield and energy of the produced particles to theoretical ## values. ## ## Please be aware that the relative tolerances are often set empirically in this analysis script, ## so it would not be surprising that some tolerances need to be increased in the future. default_tol = 1.e-12 # Default relative tolerance ## Some physical parameters keV_to_Joule = scc.e*1e3 MeV_to_Joule = scc.e*1e6 barn_to_square_meter = 1.e-28 m_p = scc.m_p # Proton mass m_b = 10.9298*m_p # Boron 11 mass m_reduced = m_p*m_b/(m_p+m_b) m_a = 3.97369*m_p # Alpha mass m_be = 7.94748*m_p # Beryllium 8 mass Z_boron = 5. Z_proton = 1. E_Gamow = (Z_boron*Z_proton*np.pi*scc.fine_structure)**2*2.*m_reduced*scc.c**2 E_Gamow_MeV = E_Gamow/MeV_to_Joule E_Gamow_keV = E_Gamow/keV_to_Joule E_fusion = 8.59009*MeV_to_Joule # Energy released during p + B -> alpha + Be E_decay = 0.0918984*MeV_to_Joule # Energy released during Be -> 2*alpha E_fusion_total = E_fusion + E_decay # Energy released during p + B -> 3*alpha ## Some numerical parameters for this test size_x = 8 size_y = 8 size_z = 16 dV_total = size_x*size_y*size_z # Total simulation volume # Volume of a slice corresponding to a single cell in the z direction. In tests 1 and 2, all the # particles of a given species in the same slice have the exact same momentum dV_slice = size_x*size_y dt = 1./(scc.c*np.sqrt(3.)) # In test 1 and 2, the energy in cells number i (in z direction) is typically Energy_step * i**2 Energy_step = 22.*keV_to_Joule def is_close(val1, val2, rtol=default_tol, atol=0.): ## Wrapper around numpy.isclose, used to override the default tolerances. return np.isclose(val1, val2, rtol=rtol, atol=atol) def add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix): data_dict[prefix+"_px_"+suffix] = yt_ad[species_name, "particle_momentum_x"].v data_dict[prefix+"_py_"+suffix] = yt_ad[species_name, "particle_momentum_y"].v data_dict[prefix+"_pz_"+suffix] = yt_ad[species_name, "particle_momentum_z"].v data_dict[prefix+"_w_"+suffix] = yt_ad[species_name, "particle_weight"].v data_dict[prefix+"_id_"+suffix] = yt_ad[species_name, "particle_id"].v data_dict[prefix+"_cpu_"+suffix] = yt_ad[species_name, "particle_cpu"].v data_dict[prefix+"_z_"+suffix] = yt_ad[species_name, "particle_position_z"].v def add_empty_species_to_dict(data_dict, species_name, prefix, suffix): data_dict[prefix+"_px_"+suffix] = np.empty(0) data_dict[prefix+"_py_"+suffix] = np.empty(0) data_dict[prefix+"_pz_"+suffix] = np.empty(0) data_dict[prefix+"_w_"+suffix] = np.empty(0) data_dict[prefix+"_id_"+suffix] = np.empty(0) data_dict[prefix+"_cpu_"+suffix] = np.empty(0) data_dict[prefix+"_z_"+suffix] = np.empty(0) def add_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix): try: ## If species exist, we add its data to the dictionary add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix) except yt.utilities.exceptions.YTFieldNotFound: ## If species does not exist, we avoid python crash and add empty arrays to the ## dictionnary. Currently, this happens for the boron species in test number 4, which ## entirely fuses into alphas. add_empty_species_to_dict(data_dict, species_name, prefix, suffix) def check_particle_number_conservation(data): total_w_proton_start = np.sum(data["proton_w_start"]) total_w_proton_end = np.sum(data["proton_w_end"]) total_w_boron_start = np.sum(data["boron_w_start"]) total_w_boron_end = np.sum(data["boron_w_end"]) consumed_proton = total_w_proton_start - total_w_proton_end consumed_boron = total_w_boron_start - total_w_boron_end created_alpha = np.sum(data["alpha_w_end"]) assert(consumed_proton >= 0.) assert(consumed_boron >= 0.) assert(created_alpha >= 0.) ## Check that number of consumed proton and consumed boron are equal assert_scale = max(total_w_proton_start, total_w_boron_start) assert(is_close(consumed_proton, consumed_boron, rtol = 0., atol = default_tol*assert_scale)) ## Check that number of consumed particles corresponds to number of produced alpha ## Factor 3 is here because each nuclear fusion reaction produces 3 alphas assert(is_close(total_w_proton_start, total_w_proton_end + created_alpha/3.)) assert(is_close(total_w_boron_start, total_w_boron_end + created_alpha/3.)) def compute_energy_array(data, species_name, suffix, m): ## Relativistic computation of kinetic energy for a given species psq_array = data[species_name+'_px_'+suffix]**2 + data[species_name+'_py_'+suffix]**2 + \ data[species_name+'_pz_'+suffix]**2 rest_energy = m*scc.c**2 return np.sqrt(psq_array*scc.c**2 + rest_energy**2) - rest_energy def check_energy_conservation(data): proton_energy_start = compute_energy_array(data, "proton", "start", m_p) proton_energy_end = compute_energy_array(data, "proton", "end", m_p) boron_energy_start = compute_energy_array(data, "boron", "start", m_b) boron_energy_end = compute_energy_array(data, "boron", "end", m_b) alpha_energy_end = compute_energy_array(data, "alpha", "end", m_a) total_energy_start = np.sum(proton_energy_start*data["proton_w_start"]) + \ np.sum(boron_energy_start*data["boron_w_start"]) total_energy_end = np.sum(proton_energy_end*data["proton_w_end"]) + \ np.sum(boron_energy_end*data["boron_w_end"]) + \ np.sum(alpha_energy_end*data["alpha_w_end"]) ## Factor 3 is here because each nuclear fusion reaction produces 3 alphas n_fusion_reaction = np.sum(data["alpha_w_end"])/3. assert(is_close(total_energy_end, total_energy_start + n_fusion_reaction*E_fusion_total, rtol = 1.e-8)) def check_momentum_conservation(data): proton_total_px_start = np.sum(data["proton_px_start"]*data["proton_w_start"]) proton_total_py_start = np.sum(data["proton_py_start"]*data["proton_w_start"]) proton_total_pz_start = np.sum(data["proton_pz_start"]*data["proton_w_start"]) proton_total_px_end = np.sum(data["proton_px_end"]*data["proton_w_end"]) proton_total_py_end = np.sum(data["proton_py_end"]*data["proton_w_end"]) proton_total_pz_end = np.sum(data["proton_pz_end"]*data["proton_w_end"]) boron_total_px_start = np.sum(data["boron_px_start"]*data["boron_w_start"]) boron_total_py_start = np.sum(data["boron_py_start"]*data["boron_w_start"]) boron_total_pz_start = np.sum(data["boron_pz_start"]*data["boron_w_start"]) boron_total_px_end = np.sum(data["boron_px_end"]*data["boron_w_end"]) boron_total_py_end = np.sum(data["boron_py_end"]*data["boron_w_end"]) boron_total_pz_end = np.sum(data["boron_pz_end"]*data["boron_w_end"]) alpha_total_px_end =
np.sum(data["alpha_px_end"]*data["alpha_w_end"])
numpy.sum
#!/usr/bin/env python3 # Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @title :split_cifar.py # @author :jvo # @contact :<EMAIL> # @created :05/13/2019 # @version :1.0 # @python_version :3.7.3 """ Split CIFAR-10/100 Dataset ^^^^^^^^^^^^^^^^^^^^^^^^^^ The module :mod:`data.special.split_cifar` contains a wrapper for data handlers for the Split-CIFAR10/CIFAR100 task. """ # FIXME The code in this module is mostly a copy of the code in the # corresponding `split_mnist` module. import numpy as np from data.cifar100_data import CIFAR100Data from data.cifar10_data import CIFAR10Data # DELETEME def get_split_CIFAR_handlers(data_path, use_one_hot=True, validation_size=0, use_data_augmentation=False): """Function has been removed. Use :func:`get_split_cifar_handlers` instead. """ raise NotImplementedError('Function has been removed. Use function ' + '"get_split_cifar_handlers" instead.') def get_split_cifar_handlers(data_path, use_one_hot=True, validation_size=0, use_data_augmentation=False, num_tasks=6): """This method will combine 1 object of the class :class:`data.cifar10_data.CIFAR10Data` and 5 objects of the class :class:`SplitCIFAR100Data`. The SplitCIFAR benchmark consists of 6 tasks, corresponding to the images in CIFAR-10 and 5 tasks from CIFAR-100 corresponding to the images with labels [0-10], [10-20], [20-30], [30-40], [40-50]. Args: data_path: Where should the CIFAR-10 and CIFAR-100 datasets be read from? If not existing, the datasets will be downloaded into this folder. use_one_hot (bool): Whether the class labels should be represented in a one-hot encoding. validation_size: The size of the validation set of each individual data handler. use_data_augmentation (optional): Note, this option currently only applies to input batches that are transformed using the class member :meth:`data.dataset.Dataset.input_to_torch_tensor` (hence, **only available for PyTorch**). num_tasks (int): A number between 1 and 11, specifying the number of data handlers to be returned. If ``num_tasks=6``, then there will be the CIFAR-10 data handler and the first 5 splits of the CIFAR-100 dataset (as in the usual CIFAR benchmark for CL). Returns: (list) A list of data handlers. The first being an instance of class :class:`data.cifar10_data.CIFAR10Data` and the remaining ones being an instance of class :class:`SplitCIFAR100Data`. """ assert (num_tasks >= 1 and num_tasks <= 11) print('Creating data handlers for SplitCIFAR tasks ...') handlers = [] handlers.append(CIFAR10Data(data_path, use_one_hot=use_one_hot, validation_size=validation_size, use_data_augmentation=use_data_augmentation)) for i in range(0, (num_tasks - 1) * 10, 10): handlers.append(SplitCIFAR100Data(data_path, use_one_hot=use_one_hot, validation_size=validation_size, use_data_augmentation=use_data_augmentation, labels=range(i, i + 10))) print('Creating data handlers for SplitCIFAR tasks ... Done') return handlers class SplitCIFAR100Data(CIFAR100Data): """An instance of the class shall represent a single SplitCIFAR-100 task. Args: data_path: Where should the dataset be read from? If not existing, the dataset will be downloaded into this folder. use_one_hot (bool): Whether the class labels should be represented in a one-hot encoding. validation_size: The number of validation samples. Validation samples will be taking from the training set (the first :math:`n` samples). use_data_augmentation (optional): Note, this option currently only applies to input batches that are transformed using the class member :meth:`data.dataset.Dataset.input_to_torch_tensor` (hence, **only available for PyTorch**). Note, we are using the same data augmentation pipeline as for CIFAR-10. labels: The labels that should be part of this task. full_out_dim: Choose the original CIFAR instead of the the new task output dimension. This option will affect the attributes :attr:`data.dataset.Dataset.num_classes` and :attr:`data.dataset.Dataset.out_shape`. """ def __init__(self, data_path, use_one_hot=False, validation_size=1000, use_data_augmentation=False, labels=range(0, 10), full_out_dim=False): super().__init__(data_path, use_one_hot=use_one_hot, validation_size=0, use_data_augmentation=use_data_augmentation) K = len(labels) self._labels = labels train_ins = self.get_train_inputs() test_ins = self.get_test_inputs() train_outs = self.get_train_outputs() test_outs = self.get_test_outputs() # Get labels. if self.is_one_hot: train_labels = self._to_one_hot(train_outs, reverse=True) test_labels = self._to_one_hot(test_outs, reverse=True) else: train_labels = train_outs test_labels = test_outs train_labels = train_labels.squeeze() test_labels = test_labels.squeeze() train_mask = train_labels == labels[0] test_mask = test_labels == labels[0] for k in range(1, K): train_mask = np.logical_or(train_mask, train_labels == labels[k]) test_mask = np.logical_or(test_mask, test_labels == labels[k]) train_ins = train_ins[train_mask, :] test_ins = test_ins[test_mask, :] train_outs = train_outs[train_mask, :] test_outs = test_outs[test_mask, :] if validation_size > 0: assert (validation_size < train_outs.shape[0]) val_inds = np.arange(validation_size) train_inds =
np.arange(validation_size, train_outs.shape[0])
numpy.arange
import os import json import torch import numpy as np from torch.utils.data import Dataset from PIL import Image from torchvision.transforms.functional import to_tensor from learning.inputs.pose import Pose from learning.inputs.vision import standardize_image from learning.models.semantic_map.pinhole_camera_inv import PinholeCameraProjection from data_io.env import get_landmark_locations_airsim from learning.datasets.fpv_data_augmentation import data_augmentation from data_io.paths import get_poses_dir, get_fpv_img_flight_dir, load_config_files from utils.simple_profiler import SimpleProfiler import parameters.parameter_server as P PROFILE = False class FpvImageDataset(Dataset): def __init__(self, env_ids, dataset_name, eval, real, real_poses=None): self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.real = real if real_poses: self.real_poses = real_poses else: self.real_poses = real self.eval = eval self.dataset_name = dataset_name self.env_ids = env_ids # Assume that these parameters include cam_h_fov, img_w, img_h self.model_params = P.get_current_parameters()["Model"] self.cam_h_fov = self.model_params["cam_h_fov"] self.img_w = self.model_params["img_w"] self.img_h = self.model_params["img_h"] self.data_params = P.get_current_parameters()["Data"] self.load_img_w = self.data_params["load_img_w"] self.load_img_h = self.data_params["load_img_h"] self.prof.tick("out") self.instructions, self.poses, self.images, self.env_ids_decompressed = self.data_from_env_ids(env_ids) self.prof.tick("data from env") self.lm_pos_fpv, self.lm_idx, self.lm_pos_map = self.compute_pos_idx(add_null=0) self.prof.tick("compute pos idx") self.filter_none() self.prof.tick("filter none") self.update_dic() self.prof.tick("update dic") self.prof.print_stats() def __len__(self): return len(self.env_ids_decompressed) def __getitem__(self, index): prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) prof.tick("out") if type(index) == int: image = self.images[index] lm_pos_fpv = self.lm_pos_fpv[index] lm_indices = self.lm_idx[index] lm_pos_map = self.lm_pos_map[index] prof.tick("retrieve data") # data augmentation. If eval no data augmentation. out_img, out_lm_indices, out_lm_pos_fpv = data_augmentation( image, lm_indices, lm_pos_fpv, self.img_h, self.img_w, self.eval, prof) if (len(out_lm_indices) == 0) | (out_lm_indices is None): out_img, out_lm_indices, out_lm_pos_fpv = data_augmentation( image, lm_indices, lm_pos_fpv, self.img_h, self.img_w, True, prof) out_img = standardize_image(np.array(out_img)) out_img = torch.from_numpy(out_img) out_lm_indices = torch.tensor(out_lm_indices) out_lm_pos_fpv = torch.tensor(out_lm_pos_fpv) sample = {"poses": self.poses[index], "instructions": [], # self.instructions[index], "images": out_img, "env_ids": self.env_ids_decompressed[index], "lm_pos_fpv": out_lm_pos_fpv, "lm_indices": out_lm_indices, "lm_pos_map": lm_pos_map} prof.tick("dic") prof.print_stats() """ elif type(index) == list: out_images_list, out_lm_indices_list, out_lm_pos_fpv_list = [], [], [] for i in index: image = self.images[i] lm_pos_fpv = self.lm_pos_fpv[i] lm_indices = self.lm_idx[i] out_img, out_lm_indices, out_lm_pos_fpv = data_augmentation(image, lm_indices, lm_pos_fpv, IMG_HEIGHT, IMG_WIDTH, self.eval, prof) if (len(out_lm_indices) == 0) | (out_lm_indices is None): out_img, out_lm_indices, out_lm_pos_fpv = data_augmentation(image, lm_indices, lm_pos_fpv, IMG_HEIGHT, IMG_WIDTH, True, prof) out_images_list.append(out_img) out_lm_indices_list.append(out_lm_indices) out_lm_pos_fpv_list.append(out_lm_pos_fpv) sample = {"poses": [self.poses[i] for i in index], "instructions": [], # self.instructions[index], "lm_mentioned": [], "images": out_images_list, "env_ids": [self.env_ids_decompressed[i] for i in index], "lm_pos_fpv": out_lm_pos_fpv_list, "lm_idx": out_lm_indices_list} """ return sample def data_from_env_ids(self, env_ids, proba_selection=1.0): images = [] poses = [] # list of all env_ids (with duplicates) env_ids_decompressed = [] # TODO: fill instructions instructions = [] print("Using {} images".format("real" if self.real else "simulated")) for env_id in env_ids: poses_dir = get_poses_dir(env_id) images_dir = get_fpv_img_flight_dir(env_id, self.real) pose_filenames = [f for f in os.listdir(poses_dir) if f.endswith('.json')] image_filenames = [f for f in os.listdir(images_dir) if (f.endswith('.jpg') | f.endswith('.png'))] try: assert len(image_filenames) == len(pose_filenames) except: print("error {}: different count of poses and images".format(env_id)) if not(os.listdir(images_dir)): print(images_dir+"is empty") assert(not(not(os.listdir(images_dir)))) img_ids = np.sort( [int(f.replace('.', '_').split('_')[-2]) for f in os.listdir(images_dir) if (f.endswith('.jpg') | f.endswith('.png'))]) try: selected = np.random.choice(img_ids, int(len(image_filenames) * proba_selection), replace=False) except: print(img_ids) selected_ids = np.sort(selected) for img_id in selected_ids: filename_pose = "pose_{}.json".format(img_id) gen_imgpath = lambda id,ext: os.path.join(images_dir, f"usb_cam_{img_id}.{ext}") img_path = gen_imgpath(img_id, "jpg") if not os.path.exists(img_path): img_path = gen_imgpath(img_id, "png") #print(filename_pose, filename_img) with open(os.path.join(poses_dir, filename_pose), 'r') as f: try: pose = json.load(f)["camera"] poses.append(pose) read_success = True except: read_success = False if read_success: # Images are resized in bigger shape. They will be resized to 256*144 after data augmentation img = Image.open(img_path).resize((self.load_img_w, self.load_img_h)) images.append(img) env_ids_decompressed.append((env_id, img_id)) return instructions, poses, images, env_ids_decompressed def update_dic(self): self.dic = {"poses": self.poses, "instructions": self.instructions, "images": self.images, "env_ids": self.env_ids_decompressed, "lm_pos_fpv": self.lm_pos_fpv, "lm_indices": self.lm_idx, "lm_pos_map": self.lm_pos_map} def provider_lm_pos_lm_indices_fpv(self, env_ids, add_null=0): """ Data provider that gives the positions and indices of all landmarks visible in the FPV image. :param pose_list: B*7 list of poses decomposed in 3 position and 4 orientation floats [x,y,z, orient_x, orient_y, orient_z, orient_w] img_x, img_y: shape of images env_ids: list of environments. :return: ("lm_pos", lm_pos) - lm_pos is a list (over timesteps) of lists (over landmarks visible in image) of the landmark locations in image pixel coordinates ("lm_indices", lm_indices) - lm_indices is a list (over timesteps) of lists (over landmarks visible in image) of the landmark indices for every landmark included in lm_pos. These are the landmark classifier labels """ list_of_conf = load_config_files(np.unique(env_ids))#, perception=True) # add add_null empty objects on each config. if add_null > 0: for i, conf in enumerate(list_of_conf): zpos = conf["zPos"] xpos = conf["xPos"] lm_positions = np.stack([xpos, zpos], 1) for _ in range(add_null): # add 2 empty objects on configuration i_null = 0 while i_null < 100: xnull = np.random.rand() * 4.7 znull = np.random.rand() * 4.7 distances_to_lm = np.linalg.norm(lm_positions - np.array([xnull, znull]), axis=1) min_dist_to_lm =
np.min(distances_to_lm)
numpy.min
import cv2 import numpy as np # TODO: detect windows # TODO: detect doors # Calculate (actual) size of appartment # TODO: text detection """ Detect This file contains functions used when detecting and calculating shapes in images. FloorplanToBlender3d Copyright (C) 2019 <NAME> """ def wall_filter(gray): """ Filter walls Filter out walls from a grayscale image @Param image @Return image of walls """ ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # noise removal kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2) sure_bg = cv2.dilate(opening,kernel,iterations=3) dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5) ret, sure_fg = cv2.threshold(0.5*dist_transform,0.2*dist_transform.max(),255,0) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg,sure_fg) return unknown def detectPreciseBoxes(detect_img, output_img = None, color = [100,100,0]): """ Detect corners with boxes in image with high precision @Param detect_img image to detect from @mandatory @Param output_img image for output @Param color to set on output @Return corners(list of boxes), output image @source https://stackoverflow.com/questions/50930033/drawing-lines-and-distance-to-them-on-image-opencv-python """ res = [] contours, hierarchy = cv2.findContours(detect_img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #area = sorted(contours, key=cv2.contourArea, reverse=True) largest_contour_area = 0 for cnt in contours: largest_contour_area = cv2.contourArea(cnt) largest_contour = cnt epsilon = 0.001*cv2.arcLength(largest_contour,True) approx = cv2.approxPolyDP(largest_contour,epsilon,True) if output_img is not None: final = cv2.drawContours(output_img, [approx], 0, color) res.append(approx) return res, output_img def remove_noise(img, noise_removal_threshold): """ Remove noise from image and return mask Help function for finding room @Param img @mandatory image to remove noise from @Param noise_removal_threshold @mandatory threshold for noise @Return return new mask of image """ img[img < 128] = 0 img[img > 128] = 255 contours, _ = cv2.findContours(~img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) mask = np.zeros_like(img) for contour in contours: area = cv2.contourArea(contour) if area > noise_removal_threshold: cv2.fillPoly(mask, [contour], 255) return mask def find_corners_and_draw_lines(img, corners_threshold, room_closing_max_length): """ Finds corners and draw lines from them Help function for finding room @Param image input image @Param corners_threshold threshold for corner distance @Param room_closing_max_length threshold for room max size @Return output image """ # Detect corners (you can play with the parameters here) kernel = np.ones((1,1),np.uint8) dst = cv2.cornerHarris(img ,2,3,0.04) dst = cv2.erode(dst,kernel, iterations = 10) corners = dst > corners_threshold * dst.max() # Draw lines to close the rooms off by adding a line between corners on the same x or y coordinate # This gets some false positives. # You could try to disallow drawing through other existing lines for example. for y,row in enumerate(corners): x_same_y =
np.argwhere(row)
numpy.argwhere
""" :Author: <NAME> <<EMAIL>> :Author: <NAME> <<EMAIL>> :Author: <NAME> <<EMAIL>> :Date: 2018-06-06 :Copyright: 2018, Karr Lab :License: MIT """ import Bio.SeqIO import Bio.SeqRecord import math import numpy import random import scipy.constants import wc_kb import wc_kb_gen from Bio.Data import CodonTable from Bio.Seq import Seq, Alphabet from numpy import random from scipy import stats from wc_utils.util.units import unit_registry from wc_onto import onto as wcOntology from wc_utils.util.ontology import are_terms_equivalent class GenomeGenerator(wc_kb_gen.KbComponentGenerator): """ Generate synthetic chromosome with randomized genes/intergenic regions. Creates RNA and protein objects corresponding to the genes this chromosome. Associates the chromosome, RNAs, proteins with a knowledge base object (and its Cell attribute). Options: * num_chromosomes (:obj:`int`): number of chromosomes * mean_gc_frac (:obj:`float`): fraction of nucleotides which are G or C * num_genes (:obj:`float`): mean number of genes * mean_gene_len (:obj:`float`): mean codon length of a gene * mean_coding_frac (:obj:`float`): mean coding fraction of the genome * translation_table (:obj:`int`): The NCBI standard genetic code used * num_ncRNA (:obj:`float`): The proportion of non coding RNAs * num_rRNA (:obj:`float`): The proportion of ribosomal RNAs * tRNA_prop (:obj:`float`): The proportion of transfer RNAs * five_prime_len (:obj:`int`): Average 5' UTR length for transcription units * three_prime_len (:obj:`int`): Average 3' UTR length for transcription units * operon_prop (:obj:`float`): Proportion of genes that should be in an operon (polycistronic mRNA) * operon_gen_num (:obj:`int`): Average number of genes in an operon * mean_copy_number (:obj:`float`): mean copy number of each RNA * mean_half_life (:obj:`float`): mean half-life of RNAs * genetic_code (:obj:`str`): 'normal' / 'reduced', if reduced only 'I': ['ATC'], 'L': ['CTG'], 'M': ['ATG'], 'T': ['ACG'] codons in genome * seq_path (:obj:`str`): path to save genome sequence """ def clean_and_validate_options(self): """ Apply default options and validate options """ # Default options are loosely based on <NAME> K-12 # Nucleic Acids Research 41:D605-12 2013 options = self.options genetic_code = options.get('genetic_code', 'normal') assert(genetic_code in ['normal', 'reduced']) options['genetic_code'] = genetic_code num_chromosomes = options.get('num_chromosomes', 1) assert(num_chromosomes >= 1 and int(num_chromosomes) == num_chromosomes) options['num_chromosomes'] = num_chromosomes chromosome_topology = options.get('chromosome_topology', 'circular') assert(chromosome_topology in ['circular', 'linear']) options['chromosome_topology'] = chromosome_topology num_genes = options.get('num_genes', 4500) assert(num_genes >= 1) options['num_genes'] = int(num_genes) num_ncRNA = options.get('num_ncRNA', 10) # not sure assert(isinstance(num_ncRNA, int)) options['num_ncRNA'] = num_ncRNA # http://book.bionumbers.org/how-many-ribosomal-rna-gene-copies-are-in-the-genome/ num_rRNA = options.get('num_rRNA', 7) assert(isinstance(num_rRNA, int)) options['num_rRNA'] = num_rRNA num_tRNA = options.get('num_tRNA', 20) assert(isinstance(num_tRNA, int)) options['num_tRNA'] = num_tRNA min_prots = options.get('min_prots', 8) assert(isinstance(min_prots, int)) options['min_prots'] = min_prots assert((num_ncRNA + num_rRNA + num_tRNA + min_prots) <= num_genes) mean_gc_frac = options.get('mean_gc_frac', 0.58) assert(mean_gc_frac >= 0 and mean_gc_frac <= 1) options['mean_gc_frac'] = mean_gc_frac # DOI: 10.1093/molbev/msk019 mean_gene_len = options.get('mean_gene_len', 308) # codon length (924 bp) assert(mean_gene_len >= 1) options['mean_gene_len'] = mean_gene_len # DOI: 10.1007/s10142-015-0433-4 mean_coding_frac = options.get('mean_coding_frac', 0.88) assert(mean_coding_frac > 0 and mean_coding_frac < 1) options['mean_coding_frac'] = mean_coding_frac translation_table = int(options.get('translation_table', 1)) assert(translation_table in range(1, 32)) options['translation_table'] = translation_table five_prime_len = int(options.get('five_prime_len', 7)) assert(five_prime_len >= 0) options['five_prime_len'] = five_prime_len three_prime_len = int(options.get('three_prime_len', 5)) # guess assert(three_prime_len >= 0) options['three_prime_len'] = three_prime_len operon_prop = (options.get('operon_prop', 0.2)) # guess assert(operon_prop >= 0 and operon_prop <= 1) options['operon_prop'] = operon_prop operon_gen_num = int(options.get('operon_gen_num', 3)) assert(operon_gen_num >= 2) options['operon_gen_num'] = operon_gen_num mean_rna_half_life = options.get('mean_rna_half_life', 8 * 60) assert(mean_rna_half_life > 0) options['mean_rna_half_life'] = mean_rna_half_life # DOI: 10.1073/pnas.0308747101 mean_protein_half_life = options.get('mean_protein_half_life', 750 * 60) assert(mean_protein_half_life > 0) options['mean_protein_half_life'] = mean_protein_half_life # DOI: 10.1038/ismej.2012.94 mean_rna_copy_number = options.get('mean_rna_copy_number', 0.4) assert(mean_rna_copy_number > 0) options['mean_rna_copy_number'] = mean_rna_copy_number # DOI: 10.1038/ismej.2012.94 mean_protein_copy_number = options.get('mean_protein_copy_number', 75) assert(mean_protein_copy_number > 0) options['mean_protein_copy_number'] = mean_protein_copy_number seq_path = options.get('seq_path', 'rand_seq.fna') options['seq_path'] = seq_path def gen_components(self): self.gen_genome() self.gen_tus() self.gen_rnas_proteins() self.gen_concentrations() self.reduce_model() def gen_genome(self): '''Construct knowledge base components and generate the DNA sequence''' # get options options = self.options genetic_code = options.get('genetic_code') num_chromosomes = options.get('num_chromosomes') mean_gene_len = options.get('mean_gene_len') translation_table = options.get('translation_table') num_genes = options.get('num_genes') mean_coding_frac = options.get('mean_coding_frac') mean_gc_frac = options.get('mean_gc_frac') chromosome_topology = options.get('chromosome_topology') num_ncRNA = options.get('num_ncRNA') num_rRNA = options.get('num_rRNA') num_tRNA = options.get('num_tRNA') min_prots = options.get('min_prots') seq_path = options.get('seq_path') cell = self.knowledge_base.cell self.knowledge_base.translation_table = translation_table codon_table = CodonTable.unambiguous_dna_by_id[translation_table] BASES = ['A', 'C', 'G', 'T'] PROB_BASES = [(1 - mean_gc_frac) / 2, mean_gc_frac /2, mean_gc_frac/2, (1-mean_gc_frac)/2] if genetic_code == 'normal': START_CODONS = codon_table.start_codons STOP_CODONS = codon_table.stop_codons elif genetic_code == 'reduced': START_CODONS = ['TTA'] STOP_CODONS = ['TAA'] num_genes_all = num_genes assignList = num_tRNA*[wcOntology['WC:tRNA']] + \ num_rRNA*[wcOntology['WC:rRNA']] + \ num_ncRNA*[wcOntology['WC:ncRNA']] + \ (num_genes_all-(num_ncRNA + num_tRNA + num_rRNA))*[wcOntology['WC:mRNA']] random.shuffle(assignList) # Create a chromosome n times dna_seqs = [] for i_chr in range(num_chromosomes): num_genes = math.ceil(num_genes_all / num_chromosomes) gene_lens = 3 * self.rand(mean_gene_len, count=num_genes, min=2) intergene_lens = 3 * self.rand(mean_gene_len / mean_coding_frac * (1 - mean_coding_frac), count=num_genes) seq_len = numpy.sum(gene_lens) + numpy.sum(intergene_lens) # Generate seq based on random codons (NOT start/stop codons) seq_str = [] if genetic_code=='normal': for i in range(0, seq_len, 3): codon_i = random.choice(STOP_CODONS) codon_i = "".join(random.choice(BASES, p=PROB_BASES, size=(3,))) seq_str.append(codon_i) elif genetic_code=='reduced': for i in range(0, seq_len, 3): codon_i = STOP_CODONS[0] codon_i = "".join(random.choice(['ATC', 'CTG', 'ATG', 'ACG'])) seq_str.append(codon_i) seq_str = "".join(seq_str) seq = Seq(seq_str, Alphabet.DNAAlphabet()) chro = cell.species_types.get_or_create(id='chr_{}'.format(i_chr + 1), __type=wc_kb.core.DnaSpeciesType) chro.name = 'Chromosome {}'.format(i_chr + 1) chro.circular = chromosome_topology == 'circular' chro.double_stranded = True chro.sequence_path = seq_path gene_starts = numpy.int64(numpy.cumsum(numpy.concatenate(([0], gene_lens[0:-1])) + numpy.concatenate((numpy.round(intergene_lens[0:1] / 2), intergene_lens[1:])))) # creates GeneLocus objects for the genes and labels their GeneType (which type of RNA they transcribe) for i_gene, gene_start in enumerate(gene_starts): gene = self.knowledge_base.cell.loci.get_or_create( id='gene_{}_{}'.format(i_chr + 1, i_gene + 1), __type=wc_kb.prokaryote.GeneLocus) gene.start = gene_start + 1 # 1-indexed gene.polymer = chro gene.end = gene.start + gene_lens[i_gene] - 1 # 1-indexed gene.name = 'gene {} {}'.format(i_chr+1, i_gene+1) if len(assignList) > 0: gene.type = assignList.pop() else: gene.type = wcOntology['WC:mRNA'] if gene.type == wcOntology['WC:mRNA']: # if mRNA, then set up start/stop codons in the gene start_codon = random.choice(START_CODONS) stop_codon = random.choice(STOP_CODONS) seq_str = str(seq) seq_str = seq_str[:gene.start-1] + \ start_codon + \ seq_str[gene.start+2: gene.end-3] + \ stop_codon + seq_str[gene.end:] for i in range(gene.start+2, gene.end-3, 3): while seq_str[i:i+3] in START_CODONS or seq_str[i:i+3] in STOP_CODONS: if genetic_code == 'normal': codon_i = "".join(random.choice(BASES, p=PROB_BASES, size=(3,))) elif genetic_code == 'reduced': codon_i = "".join(random.choice(['ATC', 'CTG', 'ATG', 'ACG'])) seq_str = seq_str[:i]+codon_i+seq_str[i+3:] seq = Seq(seq_str, Alphabet.DNAAlphabet()) dna_seqs.append(Bio.SeqRecord.SeqRecord(seq, chro.id)) with open(seq_path, 'w') as file: writer = Bio.SeqIO.FastaIO.FastaWriter( file, wrap=70, record2title=lambda record: record.id) writer.write_file(dna_seqs) def gen_tus(self): """ Creates transcription units with 5'/3' UTRs, polycistronic mRNAs, and other types of RNA (tRNA, rRNA, sRNA) """ options = self.options five_prime_len = options.get('five_prime_len') # 7 bp default (E. coli, wikipedia) three_prime_len = options.get('three_prime_len') # 5 bp default guess operon_prop = options.get('operon_prop') # 0.2 default guess operon_gen_num = options.get('operon_gen_num') # 3 genes default (https://academic.oup.com/gbe/article/5/11/2242/653613) for i_chr, chromosome in enumerate(self.knowledge_base.cell.species_types.get(__type=wc_kb.core.DnaSpeciesType)): seq = chromosome.get_seq() i_gene = 0 transcription_loci = [] # Todo make this into a proper for loop that deals with repeats/additional loci while i_gene < len(chromosome.loci): gene = chromosome.loci[i_gene] if gene.type == wcOntology['WC:mRNA']: # polycistronic mRNA (multiple GeneLocus objects per TranscriptionUnitLocus) five_prime = self.rand(five_prime_len)[0] three_prime = self.rand(three_prime_len)[0] operon_prob = random.random() # make an operon (polycistronic mRNA, put multiple genes in one TransUnitLocus) if operon_prob <= operon_prop: operon_genes = self.rand(operon_gen_num, min=2)[0] # add 3', 5' UTRs to the ends of the transcription unit (upstream of first gene, downstream of last gene) tu = self.knowledge_base.cell.loci.get_or_create( id='tu_{}_{}'.format(i_chr + 1, i_gene + 1), __type=wc_kb.prokaryote.TranscriptionUnitLocus) tu.name = 'tu {} {}'.format(i_chr+1, i_gene+1) five_prime_start = gene.start - five_prime if five_prime_start < 0: five_prime_start = 0 tu.genes.append(gene) tu.start = five_prime_start for k in range(operon_genes-1): i_gene += 1 if i_gene >= len(chromosome.loci): break if (chromosome.loci[i_gene]).type == wcOntology['WC:mRNA']: gene = chromosome.loci[i_gene] tu.genes.append(gene) else: break three_prime_end = gene.end + three_prime if three_prime_end >= len(seq): three_prime_end = len(seq) - 1 tu.end = three_prime_end transcription_loci.append(tu) else: # make an individual transcription unit for the gene five_prime_start = gene.start - five_prime three_prime_end = gene.end + three_prime if five_prime_start < 0: five_prime_start = 0 if three_prime_end >= len(seq): three_prime_end = len(seq) - 1 tu = self.knowledge_base.cell.loci.get_or_create( id='tu_{}_{}'.format(i_chr + 1, i_gene + 1), __type=wc_kb.prokaryote.TranscriptionUnitLocus) tu.start = five_prime_start tu.end = three_prime_end tu.name = 'tu {} {}'.format(i_chr+1, i_gene+1) tu.genes.append(gene) transcription_loci.append(tu) i_gene += 1 # make a transcription unit that transcribes other types of RNA (tRNA, rRNA, sRNA) else: tu = self.knowledge_base.cell.loci.get_or_create( id='tu_{}_{}'.format(i_chr + 1, i_gene + 1), __type=wc_kb.prokaryote.TranscriptionUnitLocus) tu.name = 'tu {} {}'.format(i_chr+1, i_gene+1) tu.start = gene.start tu.end = gene.end tu.genes.append(gene) transcription_loci.append(tu) i_gene += 1 for locus in transcription_loci: locus.polymer = chromosome def gen_rnas_proteins(self): """ Creates RNA and protein objects corresponding to genes on chromosome. """ cell = self.knowledge_base.cell options = self.options mean_rna_half_life = options.get('mean_rna_half_life') mean_protein_half_life = options.get('mean_protein_half_life') for chromosome in self.knowledge_base.cell.species_types.get(__type=wc_kb.core.DnaSpeciesType): for i in range(len(chromosome.loci)): locus = chromosome.loci[i] if type(locus) == wc_kb.prokaryote.TranscriptionUnitLocus: tu = locus # creates RnaSpeciesType for RNA sequence corresponding to gene rna = self.knowledge_base.cell.species_types.get_or_create(id='rna_{}'.format(tu.id), __type=wc_kb.prokaryote.RnaSpeciesType) rna.name = 'rna {}'.format(tu.id) # GeneLocus object for gene sequence, attribute of ProteinSpeciesType object if are_terms_equivalent(tu.genes[0].type, wcOntology['WC:mRNA']): rna.type = wcOntology['WC:mRNA'] elif are_terms_equivalent(tu.genes[0].type, wcOntology['WC:rRNA']): rna.type = wcOntology['WC:rRNA'] elif are_terms_equivalent(tu.genes[0].type, wcOntology['WC:tRNA']): rna.type = wcOntology['WC:tRNA'] elif are_terms_equivalent(tu.genes[0].type, wcOntology['WC:ncRNA']): rna.type = wcOntology['WC:ncRNA'] rna.half_life = random.normal(mean_rna_half_life, numpy.sqrt(mean_rna_half_life)) rna.transcription_units.append(tu) if are_terms_equivalent(rna.type, wcOntology['WC:mRNA']): for gene in tu.genes: # creates ProteinSpecipe object for corresponding protein sequence(s) prot = self.knowledge_base.cell.species_types.get_or_create( id='prot_{}'.format(gene.id), __type=wc_kb.prokaryote.ProteinSpeciesType) prot.name = 'prot_{}'.format(gene.id) prot.cell = cell prot.cell.knowledge_base = self.knowledge_base prot.gene = gene prot.rna = rna prot.half_life = random.normal(mean_protein_half_life, numpy.sqrt(mean_protein_half_life)) def gen_concentrations(self): """ Creates the concentration objects of RNA and protein objects """ options = self.options cell = self.knowledge_base.cell cytosol = cell.compartments.get_one(id='c') mean_rna_copy_number = options.get('mean_rna_copy_number') mean_protein_copy_number = options.get('mean_protein_copy_number') if self.knowledge_base.cell.parameters.get_one(id='mean_volume') is not None: mean_volume = self.knowledge_base.cell.parameters.get_one(id='mean_volume').value else: mean_volume = 0.000000000000000067 print('"mean_volume" parameter is missing, using Mycoplasma pneumoniae value (6.7E-17L).') for rna in cell.species_types.get(__type=wc_kb.prokaryote.RnaSpeciesType): rna_specie = rna.species.get_or_create(compartment=cytosol) conc = round(abs(random.normal(loc=mean_rna_copy_number,scale=15))) / scipy.constants.Avogadro / mean_volume cell.concentrations.get_or_create(id='CONC({})'.format(rna_specie.id), species=rna_specie, value=conc, units=unit_registry.parse_units('M')) for prot in cell.species_types.get(__type=wc_kb.prokaryote.ProteinSpeciesType): prot_specie = prot.species.get_or_create(compartment=cytosol) conc = round(abs(random.normal(loc=mean_protein_copy_number,scale=15))) / scipy.constants.Avogadro / mean_volume cell.concentrations.get_or_create(id='CONC({})'.format(prot_specie.id), species=prot_specie, value=conc, units=unit_registry.parse_units('M')) def reduce_model(self): options = self.options genetic_code = options.get('genetic_code') seq_path = options.get('seq_path') if genetic_code == 'normal': pass elif genetic_code == 'reduced': cell = self.knowledge_base.cell kb = self.knowledge_base bases = "TCAG" codons = [a + b + c for a in bases for b in bases for c in bases] dna = kb.cell.species_types.get(__type = wc_kb.core.DnaSpeciesType)[0] seq_str = str(dna.get_seq()) seq_list = list(seq_str) for prot in kb.cell.species_types.get(__type = wc_kb.prokaryote.ProteinSpeciesType): for base_num in range(prot.gene.start+2,prot.gene.end-3,3): new_codon = random.choice(['ATC', 'CTG', 'ATG', 'ACG']) seq_list[base_num]=new_codon[0] seq_list[base_num+1]=new_codon[1] seq_list[base_num+2]=new_codon[2] seq_str_new = ''.join(seq_list) seq=Seq(seq_str_new) dna_seqs = [Bio.SeqRecord.SeqRecord(seq, dna.id)] with open(seq_path, 'w') as file: writer = Bio.SeqIO.FastaIO.FastaWriter( file, wrap=70, record2title=lambda record: record.id) writer.write_file(dna_seqs) def rand(self, mean, count=1, min=0, max=numpy.inf): """ Generated 1 or more random normally distributed integer(s) with standard deviation equal to the square root of the mean value. Args: mean (:obj:`float`): mean value count (:obj:`int`): number of random numbers to generate Returns: :obj:`int` or :obj:`numpy.ndarray` of :obj:`int`: random normally distributed integer(s) """ a = (min-mean)/
numpy.sqrt(mean)
numpy.sqrt
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.sparse import coo_matrix, csr_matrix, csc_matrix class SBiScale(object): ''' A sparse approach to scaling and centering, row-wise and column-wise, for input to a SoftImpute algorithm. maxit: int the maximum number of iterations allowed for obtaining the ideal scaling and centering levels. thresh: int the threshold for convergence row_center, row_scale, col_center, col_scale: bool a boolean indicating whether or not the task should be completed. trace: bool whether or not a verbose output should be provided. ''' def __init__(self, maxit=20, thresh=1e-9, row_center=True, row_scale=False, col_center=True, col_scale=False, trace=False): self.maxit = maxit self.thresh = 1e-9 self.row_center = row_center self.row_scale = row_scale self.col_center = col_center self.col_scale = col_scale self.trace = trace self.x = None self.m = None self.n = None self.a = None self.b = None self.tau = None self.gamma = None self.xhat = None self.critmat = [] def _prepare_suvc(self): a = self.a.copy() a = a.reshape(-1,1) b = self.b.copy() b = b.reshape(-1,1) a = np.hstack((a, np.ones(a.shape[0]).reshape(-1,1))) b = np.hstack((np.ones(b.shape[0]).reshape(-1,1), b)) return a, b def _pred_one(self, u, v, row, col): u_data = np.expand_dims(u[row,:], 0) return float(u_data.dot(v[col, :].T)) def _c_suvc(self, u, v, irow, icol): nomega = len(irow) res = np.zeros(nomega) targets = zip(irow, icol) for idx, (r,c) in enumerate(targets): res[idx] = self._pred_one(u, v, r, c) return res def _center_scale_I(self): x = self.x.data a, b = self._prepare_suvc() coo_x = coo_matrix(self.x) irow = coo_x.row icol = coo_x.col suvc1 = self._c_suvc(a, b, irow, icol) suvc2 = self._c_suvc(self.tau.reshape(-1,1), self.gamma.reshape(-1,1), irow, icol) self.xhat.data = (x-suvc1) / suvc2 return self def _col_sum_along(self, a, x): x = (self.x != 0) a = csc_matrix(a.T) return a.dot(x).toarray() def _row_sum_along(self, b, x): x = (self.x != 0) return x.dot(b) def _add_variables(self, x): self.x = x self.m = x.shape[0] self.n = x.shape[1] self.a = np.zeros(self.m) self.b = np.zeros(self.n) self.tau = np.ones(self.m) self.gamma = np.ones(self.n) self.xhat = self.x.copy() return self def fit(self, x): ''' Fits data to provide ideal scaling/centering levels. Runs until convergence is achieved or maximum iterations are reached. x: scipy.sparse matrix type The data to fit. Returns: scipy.sparse type matrix The scaled/centered matrix. ''' self._add_variables(x) self._center_scale_I() for i in xrange(self.maxit): # Centering ## Column mean if self.col_center: colsums = np.sum(self.xhat, axis=0) gamma_by_sum = np.multiply(colsums,(self.gamma)) dbeta = gamma_by_sum / self._col_sum_along(1 / self.tau, self.x) self.b = self.b + dbeta self.b[np.isnan(self.b)] = 0 self._center_scale_I() else: dbeta = 0 ## Row Mean if self.row_center: rowsums = np.sum(self.xhat, axis=1).T tau_by_sum = np.multiply(self.tau, rowsums) dalpha = tau_by_sum / self._row_sum_along(1 / self.gamma, self.x) self.a = self.a + dalpha self.a[np.isnan(self.a)] = 0 self._center_scale_I() else: dalpha = 0 #Leaving out scaling for now; not required for SoftImputeALS algorithm dalpha[np.isnan(dalpha)] = 0 dbeta[np.isnan(dbeta)] = 0 convergence_level =
np.square(dalpha)
numpy.square
from __future__ import print_function, division import numpy as np import matplotlib.pylab as plt import astropy.units as u from astropy import log from astropy.utils.console import ProgressBar import pyspeckit import os # imports for the test fiteach redefinition import time import itertools from astropy.extern.six import string_types # gotta catch 'em all! class AllFixedException(Exception): """ Zero degrees of freedom. """ pass class NanGuessesException(Exception): """ Guesses have NaN values.""" pass class SnrCutException(Exception): """ Pixel is below SNR threshold. """ pass class NanSnrAtPixel(Exception): """ S/N at pixel has a NaN value. """ pass class SubCube(pyspeckit.Cube): """ An extension of Cube, tinkered to be an instance of MultiCube, from which it receives references to instances of pyspeckit.Cube that do not depend on a spectral model chosen (so that parent MultiCube doesn't weigh so much) Is designed to have methods that operate within a single spectral model. """ def __init__(self, *args, **kwargs): super(SubCube, self).__init__(*args, **kwargs) # because that UnitConversionError pops up way too often if self.xarr.velocity_convention is None: self.xarr.velocity_convention = 'radio' # so I either define some things as `None` # or I'll have to call hasattr or them... # TODO: which is a more Pythonic approach? # A: probably the hasattr method, see here: # http://programmers.stackexchange.com/questions/ # 254576/is-it-a-good-practice-to-declare-instance # -variables-as-none-in-a-class-in-python self.guess_grid = None self.model_grid = None # TODO: investigate whether pyspeckit's #179 needs to be hacked # around inside either update_model or make_guess_grid methods def update_model(self, fit_type='gaussian'): """ Tie a model to a SubCube. Should work for all the standard fitters; others can be added with Cube.add_fitter method. """ try: allowed_fitters = self.specfit.Registry.multifitters self.specfit.fitter = allowed_fitters[fit_type] except KeyError: raise ValueError('Unsupported fit type: %s\n' 'Choose one from %s' % (fit_type, allowed_fitters.keys())) log.info("Selected %s model" % fit_type) self.specfit.fittype = fit_type self.fittype = fit_type def make_guess_grid(self, minpars, maxpars, finesse, fixed=None, limitedmin=None, limitedmax=None, **kwargs): """ Given parameter ranges and a finesse parameter, generate a grid of guesses in a parameter space to be iterated upon in self.best_guess Maybe if parlimits arg is None we can look into parinfo? Parameters ---------- minpars : an iterable containing minimal parameter values maxpars : an iterable containing maximal parameter values finesse : an integer or 1xNpars list/array setting the size of cells between minimal and maximal values in the resulting guess grid fixed : an iterable of booleans setting whether or not to fix the fitting parameters. Will be passed to Cube.fiteach, defaults to an array of False-s. limitedmin : an iterable of booleans controlling if the fit fixed the minimal boundary of from minpars. limitedmax : an iterable of booleans controlling if the fit fixed the maximal boundary of from maxpars. Returns ------- guess_grid : a grid of guesses to use for SubCube.generate_model In addition, it saves a number of variables under self as a dictionary passed later to Cube.fiteach as additional arguments, with keywords: ['fixed', 'limitedmin', 'limitedmax', 'minpars', 'maxpars'] """ minpars, maxpars = np.asarray([minpars, maxpars]) truths, falses = (np.ones(minpars.shape, dtype=bool), np.zeros(minpars.shape, dtype=bool)) fixed = falses if fixed is None else fixed limitedmin = truths if limitedmin is None else limitedmin limitedmax = truths if limitedmax is None else limitedmax self.fiteach_args = {'fixed' : fixed, 'limitedmin': limitedmin, 'limitedmax': limitedmax, 'minpars' : minpars, 'maxpars' : maxpars } # TODO: why does 'fixed' break the gaussian fitter? # update as of 1.08.2016: this doesn't happen anymore #if self.fittype is 'gaussian': # self.fiteach_args.pop('fixed') guess_grid = self._grid_parspace(minpars, maxpars, finesse, **kwargs) guess_grid = self._remove_close_peaks(guess_grid, **kwargs) self.fiteach_arg_grid = {key: np.repeat([val], guess_grid.shape[0], axis=0) for key, val in self.fiteach_args.items()} self.guess_grid = guess_grid return guess_grid def expand_guess_grid(self, minpars, maxpars, finesse, fixed=None, limitedmin=None, limitedmax=None, **kwargs): """ Useful for "chunky" discontinuities in parameter space. Works as SubCube.make_guess_grid, but instead of creating guess_grid from scratch, the new guess grid is appended to an existing one. Parameter limits information is extended to accommodate the new grid. Returns ------- guess_grid : an updated grid of guesses """ minpars, maxpars = np.asarray([minpars, maxpars]) guess_grid = self._grid_parspace(minpars, maxpars, finesse, **kwargs) guess_grid = self._remove_close_peaks(guess_grid, **kwargs) # expanding the parameter boundaries minpars, maxpars = ( np.vstack([self.fiteach_args['minpars'], minpars]).min(axis=0), np.vstack([self.fiteach_args['maxpars'], maxpars]).max(axis=0) ) self.fiteach_args['minpars'] = minpars self.fiteach_args['maxpars'] = maxpars # updating the fiteach_arg grid truths, falses = (np.ones(minpars.shape, dtype=bool), np.zeros(minpars.shape, dtype=bool)) fixed = falses if fixed is None else fixed limitedmin = truths if limitedmin is None else limitedmin limitedmax = truths if limitedmax is None else limitedmax expand_dict = {'fixed' : fixed, 'limitedmin': limitedmin, 'limitedmax': limitedmax, 'minpars' : minpars, 'maxpars' : maxpars } for key, val in expand_dict.items(): expander = np.repeat([expand_dict[key]], np.prod(
np.atleast_1d(finesse)
numpy.atleast_1d
import numpy as np import matplotlib matplotlib.use("Agg") # Must be before importing matplotlib.pyplot or pylab! from matplotlib import pyplot as plt from matplotlib.colors import to_rgb from matplotlib import cm from mpl_toolkits.mplot3d import proj3d, Axes3D from tqdm import tqdm from typing import Dict, Sequence def plot_video_with_surface( rods_history: Sequence[Dict], video_name="video.mp4", fps=60, step=1, vis2D=True, **kwargs, ): plt.rcParams.update({"font.size": 22}) folder_name = kwargs.get("folder_name", "") # 2d case <always 2d case for now> import matplotlib.animation as animation # simulation time sim_time = np.array(rods_history[0]["time"]) # Rod n_visualized_rods = len(rods_history) # should be one for now # Rod info rod_history_unpacker = lambda rod_idx, t_idx: ( rods_history[rod_idx]["position"][t_idx], rods_history[rod_idx]["radius"][t_idx], ) # Rod center of mass com_history_unpacker = lambda rod_idx, t_idx: rods_history[rod_idx]["com"][time_idx] # Generate target sphere data sphere_flag = False if kwargs.__contains__("sphere_history"): sphere_flag = True sphere_history = kwargs.get("sphere_history") n_visualized_spheres = len(sphere_history) # should be one for now sphere_history_unpacker = lambda sph_idx, t_idx: ( sphere_history[sph_idx]["position"][t_idx], sphere_history[sph_idx]["radius"][t_idx], ) # color mapping sphere_cmap = cm.get_cmap("Spectral", n_visualized_spheres) # video pre-processing print("plot scene visualization video") FFMpegWriter = animation.writers["ffmpeg"] metadata = dict(title="Movie Test", artist="Matplotlib", comment="Movie support!") writer = FFMpegWriter(fps=fps, metadata=metadata) dpi = kwargs.get("dpi", 100) xlim = kwargs.get("x_limits", (-1.0, 1.0)) ylim = kwargs.get("y_limits", (-1.0, 1.0)) zlim = kwargs.get("z_limits", (-0.05, 1.0)) difference = lambda x: x[1] - x[0] max_axis_length = max(difference(xlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis if kwargs.get("vis3D", True): fig = plt.figure(1, figsize=(10, 8), frameon=True, dpi=dpi) ax = plt.axes(projection="3d") ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.set_xlim(*xlim) ax.set_ylim(*ylim) ax.set_zlim(*zlim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[1], inst_position[2], s=np.pi * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = ax.scatter( sphere_position[0], sphere_position[1], sphere_position[2], s=np.pi * (scaling_factor * sphere_radius) ** 2, ) # sphere_radius, # color=sphere_cmap(sphere_idx),) ax.add_artist(sphere_artists[sphere_idx]) # ax.set_aspect("equal") video_name_3D = folder_name + "3D_" + video_name with writer.saving(fig, video_name_3D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_scatters[rod_idx]._offsets3d = ( inst_position[0], inst_position[1], inst_position[2], ) # rod_scatters[rod_idx].set_offsets(inst_position[:2].T) rod_scatters[rod_idx].set_sizes( np.pi * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx]._offsets3d = ( sphere_position[0], sphere_position[1], sphere_position[2], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) if kwargs.get("vis2D", True): max_axis_length = max(difference(xlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*xlim) ax.set_ylim(*ylim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[0], inst_position[1], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[0], inst_com[1], "k--", lw=2.0)[0] rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[1], s=np.pi * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[0], sphere_position[1]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_xy_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[0]) rod_lines[rod_idx].set_ydata(inst_position[1]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[0]) rod_com_lines[rod_idx].set_ydata(com[1]) rod_scatters[rod_idx].set_offsets(inst_position[:2].T) rod_scatters[rod_idx].set_sizes( np.pi * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[0], sphere_position[1], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) # Plot zy max_axis_length = max(difference(zlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*zlim) ax.set_ylim(*ylim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[2], inst_position[1], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[2], inst_com[1], "k--", lw=2.0)[0] rod_scatters[rod_idx] = ax.scatter( inst_position[2], inst_position[1], s=np.pi * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[2], sphere_position[1]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_zy_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[2]) rod_lines[rod_idx].set_ydata(inst_position[1]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[2]) rod_com_lines[rod_idx].set_ydata(com[1]) rod_scatters[rod_idx].set_offsets( np.vstack((inst_position[2], inst_position[1])).T ) rod_scatters[rod_idx].set_sizes( np.pi * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[2], sphere_position[1], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) # Plot xz fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*xlim) ax.set_ylim(*zlim) # The scaling factor from physical space to matplotlib space max_axis_length = max(difference(zlim), difference(xlim)) scaling_factor = (2 * 0.1) / (max_axis_length) # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[0], inst_position[2], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[0], inst_com[2], "k--", lw=2.0)[0] rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[2], s=np.pi * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[0], sphere_position[2]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_xz_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[0]) rod_lines[rod_idx].set_ydata(inst_position[2]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[0]) rod_com_lines[rod_idx].set_ydata(com[2]) rod_scatters[rod_idx].set_offsets( np.vstack((inst_position[0], inst_position[2])).T ) rod_scatters[rod_idx].set_sizes( np.pi * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[0], sphere_position[2], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) def plot_snake_velocity( plot_params: dict, period, filename="slithering_snake_velocity.png", ): time_per_period = np.array(plot_params["time"]) / period avg_velocity = np.array(plot_params["avg_velocity"]) [ velocity_in_direction_of_rod, velocity_in_rod_roll_dir, _, _, ] = compute_projected_velocity(plot_params, period) fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150) ax = fig.add_subplot(111) ax.grid(b=True, which="minor", color="k", linestyle="--") ax.grid(b=True, which="major", color="k", linestyle="-") ax.plot( time_per_period[:], velocity_in_direction_of_rod[:, 0], "r-", label="forward" ) ax.plot( time_per_period[:], velocity_in_rod_roll_dir[:, 1], c=to_rgb("xkcd:bluish"), label="lateral", ) ax.plot(time_per_period[:], avg_velocity[:, 2], "k-", label="normal") fig.legend(prop={"size": 20}) fig.savefig(filename) def compute_projected_velocity(plot_params: dict, period): time_per_period = np.array(plot_params["time"]) / period avg_velocity =
np.array(plot_params["avg_velocity"])
numpy.array
import sys from typing import List, Tuple import numpy as np import pandas as pd def get_valid_gene_info( genes: List[str], release=102, species='homo sapiens' ) -> Tuple[List[str], List[int], List[int], List[int]]: """Returns gene locations for all genes in ensembl release 93 --S Markson 3 June 2020 Parameters ---------- genes : A list of genes genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes: List[str] : Returns ------- """ from pyensembl import EnsemblRelease assembly = EnsemblRelease(release, species=species) gene_names = [] gene_contigs = [] gene_starts = [] gene_ends = [] for gene in np.intersect1d(genes, [ gene.gene_name for gene in assembly.genes() if gene.contig.isnumeric() or gene.contig == 'X' ]): # Toss genes not in hg38 release 93 gene_info = assembly.genes_by_name(gene) gene_info = gene_info[0] gene_names.append(gene) gene_contigs.append(gene_info.contig) gene_starts.append(gene_info.start) gene_ends.append(gene_info.end) return gene_names, gene_contigs, gene_starts, gene_ends def seurat_to_loom(seuratrds, patient_id_column, celltype_column, complexity_column, loomfile): """ Parameters ---------- seuratrds : patient_id_column : celltype_column : complexity_column : loomfile : Returns ------- """ import rpy2.robjects as robjects from scipy import sparse from rpy2.robjects import pandas2ri import loompy robjects.r(''' library(Seurat) seurat2rawandmeta <- function(seuratrds) { seuratobj <- readRDS(seuratrds) return(list(genes=rownames(seuratobj@data), metadata=<EMAIL>, data=as.data.frame(summary(seuratobj@data)))) } ''') seurat_grab = robjects.r['seurat2rawandmeta'](seuratrds) genes = pd.DataFrame(np.array(seurat_grab.rx2('genes'))) genes.columns = ['gene'] metadata = pandas2ri.rpy2py_dataframe(seurat_grab.rx2('metadata')) if patient_id_column != 'patient_ID': metadata['patient_ID'] = metadata[patient_id_column] metadata.drop(patient_id_column, inplace=True) if celltype_column != 'cell_type': metadata['cell_type'] = metadata[celltype_column] metadata.drop(celltype_column, inplace=True) if complexity_column != 'complexity': metadata['complexity'] = metadata[complexity_column] metadata.drop(complexity_column, inplace=True) data_df = pandas2ri.rpy2py_dataframe(seurat_grab.rx2('data')) sparsedata = sparse.coo_matrix( (data_df['x'], (data_df['i'] - 1, data_df['j'] - 1))).tocsc() sparsedata.resize((genes.shape[0], metadata.shape[0])) loompy.create(loomfile, sparsedata, genes.to_dict("list"), metadata.to_dict("list")) def intify(df_init): """ Parameters ---------- df_init : Returns ------- """ import binascii df = df_init.copy() for col in df.columns: if col.endswith('_ad'): raise Exception( "Don't append you column names with _ad! -- Samuel") df[col] = df[col].apply( lambda x: int(binascii.hexlify(x.encode()), 16)) while np.sum(df.max() > sys.maxsize) > 0: for col in df.columns: if df[col].max() > sys.maxsize: df[col + '_ad'] = df[col] // sys.maxsize df[col] = df[col] % sys.maxsize return df.astype(np.int64) def deintify(df_init): """ Parameters ---------- df_init : Returns ------- """ import binascii df = df_init.copy() while np.sum([x.endswith('_ad') for x in df.columns]) > 0: for col in df.columns: if col.endswith('_ad') and col + '_ad' not in df.columns: df[col[0:-3]] = df[col[0:-3]].astype(object) df[col] = df[col].astype(object) df[col[0:-3]] = df[col[0:-3]] + sys.maxsize * df[col] df.drop(col, axis=1, inplace=True) for col in df.columns: try: df[col] = df[col].apply( lambda x: binascii.unhexlify(hex(x)[2::].encode()).decode()) except: print(df[col].apply( lambda x: binascii.unhexlify(hex(x)[2::].encode()).decode())) raise Exception("whoops") return df def recover_meta(db, do_deint=False): """ Parameters ---------- db : do_deint : (Default value = False) Returns ------- """ colmeta = None for key in db.ca.keys(): if colmeta is None: colmeta = pd.DataFrame(db.ca[key]) colmeta.columns = [key] else: colmeta[key] = db.ca[key] if do_deint: colmeta = deintify(colmeta.astype(np.int64)) rowmeta = None for key in db.ra.keys(): if rowmeta is None: rowmeta = pd.DataFrame(db.ra[key]) rowmeta.columns = [key] else: rowmeta[key] = db.ra[key] if do_deint: rowmeta = deintify(rowmeta.astype(np.int64)) return rowmeta, colmeta def we_can_pickle_it(thing, thingname: str): """ Parameters ---------- thing : thingname : str : thingname : str : thingname : str : thingname : str : thingname: str : Returns ------- """ import pickle with open(thingname, 'wb') as f: pickle.dump(thing, f, pickle.HIGHEST_PROTOCOL) def we_can_unpickle_it(thingname: str): """ Parameters ---------- thingname : str : thingname : str : thingname : str : thingname : str : thingname: str : Returns ------- """ import pickle with open(thingname, 'rb') as f: thing = pickle.load(f) return thing def get_alpha_concave_hull_polygon(xcoords, ycoords, alpha=0.1, buffer=1): """Much credit to https://thehumangeo.wordpress.com/2014/05/12/drawing-boundaries-in-python/ Parameters ---------- xcoords : ycoords : alpha : (Default value = 0.1) buffer : (Default value = 1) Returns ------- """ from shapely.ops import cascaded_union, polygonize import shapely.geometry as geometry from scipy.spatial import Delaunay import numpy as np import math def alpha_shape(points, alpha): """Compute the alpha shape (concave hull) of a set of points. Parameters ---------- points : Iterable container of points. alpha : alpha value to influence the gooeyness of the border. Smaller numbers don't fall inward as much as larger numbers. Too large, and you lose everything! Returns ------- """ if len(points) < 4: # When you have a triangle, there is no sense # in computing an alpha shape. return geometry.MultiPoint(list(points)).convex_hull def add_edge(edges, edge_points, coords, i, j): """Add a line between the i-th and j-th points, if not in the list already Parameters ---------- edges : edge_points : coords : i : j : Returns ------- """ if (i, j) in edges or (j, i) in edges: # already added return edges.add((i, j)) edge_points.append(coords[[i, j]]) coords = np.array([point.coords[0] for point in points]) tri = Delaunay(coords) edges = set() edge_points = [] # loop over triangles: # ia, ib, ic = indices of corner points of the # triangle for ia, ib, ic in tri.vertices: pa = coords[ia] pb = coords[ib] pc = coords[ic] # Lengths of sides of triangle a = math.sqrt((pa[0] - pb[0])**2 + (pa[1] - pb[1])**2) b = math.sqrt((pb[0] - pc[0])**2 + (pb[1] - pc[1])**2) c = math.sqrt((pc[0] - pa[0])**2 + (pc[1] - pa[1])**2) # Semiperimeter of triangle s = (a + b + c) / 2.0 # Area of triangle by Heron's formula area = math.sqrt(s * (s - a) * (s - b) * (s - c)) circum_r = a * b * c / (4.0 * area) # Here's the radius filter. #print circum_r if circum_r < 1.0 / alpha: add_edge(edges, edge_points, coords, ia, ib) add_edge(edges, edge_points, coords, ib, ic) add_edge(edges, edge_points, coords, ic, ia) m = geometry.MultiLineString(edge_points) triangles = list(polygonize(m)) return cascaded_union(triangles), edge_points points = [] for x, y in zip(xcoords, ycoords): points.append(geometry.shape({'type': 'Point', 'coordinates': [x, y]})) concave_hull, edge_points = alpha_shape(points, alpha=alpha) return concave_hull.buffer(buffer) def get_outlier_removal_mask(xcoords, ycoords, nth_neighbor=10, quantile=.9): """ Parameters ---------- xcoords : ycoords : nth_neighbor : (Default value = 10) quantile : (Default value = .9) Returns ------- """ from scipy.spatial.distance import pdist, squareform D = squareform(pdist(np.vstack((xcoords, ycoords)).T)) distances = D[np.argsort(D, axis=0)[nth_neighbor - 1, :], 0] return distances <= np.quantile(distances, quantile) def cohensd(g1, g2): """ Returns Cohen's D for the effect size of group 1 values (g1) over group 2 values (g2). Parameters ---------- g1 : group 1 values (list or numpy vector) g2 : group 2 values (list or numpy vector) Returns ------- (mean(g1) - mean(g2) )/s, where s is the pooled standard deviation of the two groups with Bessel's correction """ n1 = len(g1) n2 = len(g2) s1 = np.std(g1, ddof=1) s2 = np.std(g2, ddof=1) s = np.sqrt(((n1 - 1) * s1 * s1 + (n2 - 1) * s2 * s2) / (n1 + n2 - 2)) return (np.mean(g1) - np.mean(g2)) / s def phi_coefficient(contingency_table): """ Returns the phi-coefficient for a contingency table. Paramenters ----------- contingency_table : contingency table, identical in format to scipy.stats.fisher_exact Returns ------- phi coefficient """ table1 = contingency_table[0] table2 = contingency_table[1] table = np.vstack([table1, table2]) phitop = (table1[0] * table2[1] - table1[1] * table2[0]) phibottom = np.sqrt((table2[1]+table2[0])*\ (table1[1]+table1[0])*\ (table1[0]+table2[0])*\ (table2[1]+table1[1])) phi = phitop / phibottom return phi def get_igraph_from_adjacency(adjacency, directed=None): """This is taken from scanpy._utils.__init__.py as of 12 August 2021 Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except KeyError: pass if g.vcount() != adjacency.shape[0]: logg.warning(f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.') return g def convert_10x_h5(path_10x_h5, output_file, labelkey=None, label='', genes_as_ca=[], gene_whitelist=None, output_type='loom'): import cellranger.matrix as cr_matrix import loompy output_type = output_file.split('.')[-1] if output_type not in ['loom', 'pkl']: raise Exception( "output_file must be have suffix loom or pkl, denoting an output type of loom of pickle respectively" ) filtered_feature_bc_matrix = cr_matrix.CountMatrix.load_h5_file( path_10x_h5) id2feature = { val: key for key, val in filtered_feature_bc_matrix.feature_ids_map.items() } features = [ id2feature[x].decode("utf-8") for x in range(filtered_feature_bc_matrix.features_dim) ] features_common_names = filtered_feature_bc_matrix.feature_ref.get_feature_names( ) barcodes = filtered_feature_bc_matrix.bcs.astype(str) ca = {'cellname': barcodes} if labelkey is not None: ca[labelkey] = [label] * len(barcodes) m = filtered_feature_bc_matrix.m if gene_whitelist is not None: if len(gene_whitelist) > 0: mask = np.isin(features, gene_whitelist) m = m[mask, :] features = list(np.array(features)[mask]) features_common_names = list(np.array(features_common_names)[mask]) if type(genes_as_ca) == str: genes_as_ca = [genes_as_ca] else: genes_as_ca = list(genes_as_ca) if len(genes_as_ca) > 0: mask = np.isin(features, genes_as_ca) if len(genes_as_ca) != mask.sum(): raise Exception( "Improper mapping of row attributes; perhaps gene of interest not in loom.ra[\'gene\']?" ) for gene in genes_as_ca: submask = np.array(features) == gene if np.sum(submask) > 1: raise Exception("Two or more features with this name") elif np.sum(submask) == 0: raise Exception("No features with this name") ca[gene] = list(m[submask, :].toarray()[0]) m = m[~mask, :] features = list(np.array(features)[~mask]) features_common_names = list(np.array(features_common_names)[~mask]) ra = {'gene': features, 'gene_common_name': features_common_names} if output_type == 'loom': loompy.create(output_file, m, ra, ca) if output_type == 'pkl': if gene_whitelist is None: raise Exception( "pkl output intended only for saving a small subsetted geneset of interest. Please select a whitelist before saving as dataframe pkl." ) mask = np.isin(features, gene_whitelist) features = np.array(features)[mask] features_common_names = np.array(features_common_names)[mask] df = pd.DataFrame(m[mask, :].toarray()) df.index = features if labelkey is not None: df.columns = [labelkey + '_' + x for x in barcodes] else: df.columns = barcodes df.to_pickle(output_file) def create_split_exon_gtf(input_gtf, output_gtf, gene): gtf = pd.read_table(input_gtf, header=None, comment='#') gtf.columns = [ 'seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame', 'attribute' ] gtf = gtf[gtf['feature'] == 'exon'] if type(gene) == str: mask = gtf['attribute'].apply( lambda x: 'gene_name "{}"'.format(gene) in x) elif type(gene) in [list, tuple, np.array]: mask = np.array([False] * len(gtf)) for g in gene: mask = mask | gtf['attribute'].apply( lambda x: 'gene_name "{}"'.format(g) in x) gtf_unchanged = gtf[~mask] gtf_changed = gtf[mask] def append_exon_number_to_id_and_name(attribute): exon_number = attribute.split('exon_number')[1].split(';')[0].split( '\"')[-2] old_gene_id_str = 'gene_id' + attribute.split('gene_id')[1].split( ';')[0] new_gene_id_str = '\"'.join( old_gene_id_str.split('\"')[0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_gene_id_str, new_gene_id_str) old_gene_name_str = 'gene_name' + attribute.split( 'gene_name')[1].split(';')[0] new_gene_name_str = '\"'.join( old_gene_name_str.split('\"')[0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_gene_name_str, new_gene_name_str) old_transcript_id_str = 'transcript_id' + attribute.split( 'transcript_id')[1].split(';')[0] new_transcript_id_str = '\"'.join( old_transcript_id_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_transcript_id_str, new_transcript_id_str) old_transcript_name_str = 'transcript_name' + attribute.split( 'transcript_name')[1].split(';')[0] new_transcript_name_str = '\"'.join( old_transcript_name_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_transcript_name_str, new_transcript_name_str) if 'ccds_id' in attribute: old_ccds_id_str = 'ccds_id' + attribute.split('ccds_id')[1].split( ';')[0] new_ccds_id_str = '\"'.join(old_ccds_id_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_ccds_id_str, new_ccds_id_str) return attribute gtf_changed['attribute'] = gtf_changed['attribute'].apply( append_exon_number_to_id_and_name) gtf = pd.concat([gtf_changed, gtf_unchanged]) gtf.to_csv(output_gtf, sep='\t', index=False, header=None) def get_umap_from_matrix(X, random_state=17, verbose=True, min_dist=0.001, n_neighbors=20, metric='correlation'): import umap reducer = umap.UMAP(random_state=random_state, verbose=verbose, min_dist=min_dist, n_neighbors=n_neighbors, metric=metric) return reducer.fit_transform(X) def convert_h5ad(h5ad, output_loom, convert_obsm=True, convert_varm=True, convert_uns=True, convert_layers=True): import scanpy import loompy h5ad = scanpy.read_h5ad(h5ad) ra = {'gene': np.array(h5ad.var.index)} for col in h5ad.var.columns: if col == 'gene': raise Exception( "var column of h5ad is \"gene\". This conflicts with panopticon loom format. You must rename before converting." ) else: ra[col] = np.array(h5ad.var[col].values) ca = {'cellname': np.array(h5ad.obs.index)} for col in h5ad.obs.columns: if col == 'cellname': raise Exception( "obs column of h5ad is \"cellname\". This conflicts with panopticon loom format. You must rename before converting." ) else: ca[col] = np.array(h5ad.obs[col].values) if convert_obsm: for obsm_key in h5ad.obsm.keys(): for i in range(h5ad.obsm[obsm_key].shape[1]): ca_key = "{}_{}".format( obsm_key, i + 1) # one added so that these are 1-indexed by default if ca_key in ca.keys(): raise Exception( "key\"{}\" already present as column attribute key. Please rename to avoid." ) else: ca[ca_key] = h5ad.obsm[obsm_key][:, i] if convert_varm: for varm_key in h5ad.varm.keys(): for i in range(h5ad.varm[varm_key].shape[1]): ra_key = "{}_{}".format( varm_key, i + 1) # one added so that these are 1-indexed by default if ra_key in ra.keys(): raise Exception( "key\"{}\" already present as row attribute key. Please rename to avoid." ) else: ra[ra_key] = h5ad.varm[varm_key][:, i] loompy.create(output_loom, h5ad.X.T, ra, ca) if convert_uns: loom = loompy.connect(output_loom) for uns_key in h5ad.uns.keys(): loom.attrs[uns_key] = h5ad.uns[uns_key] loom.close() if convert_layers: loom = loompy.connect(output_loom) for layer_key in h5ad.layers.keys(): loom.layers[layer_key] = h5ad.layers[key].T loom.close() def get_UMI_curve_from_10x_h5(path_10x_h5, save_to_file=None): import cellranger.matrix as cr_matrix import matplotlib.pyplot as plt bc_matrix = cr_matrix.CountMatrix.load_h5_file(path_10x_h5) fig, ax = plt.subplots(figsize=(5, 5)) ax.plot(np.sort(bc_matrix.get_counts_per_bc())[::-1]) ax.set_title('UMI counts per barcode, sorted') ax.set_ylabel('UMI counts') ax.set_xlabel('cell rank, UMI counts (most to fewest)') ax.set_xscale('log') ax.set_yscale('log') if save_to_file is None: plt.show() else: plt.savefig(save_to_file) plt.cla() def get_dsb_normalization(cell_antibody_counts, empty_droplet_antibody_counts, use_isotype_control=True, denoise_counts=True, isotype_control_name_vec=None, define_pseudocount=False, pseudocount_use=10, quantile_clipping=False, quantile_clip=[0.001, 0.9995], return_stats=False): import rpy2.robjects as robjects import rpy2.robjects.numpy2ri if isotype_control_name_vec is None: isotype_control_name_vec = robjects.r("NULL") if (pseudocount_use != 10) and (not define_pseudocount): raise Exception( "\"define_pseudocount\" must be set to True to use pseudocount_use" ) rpy2.robjects.numpy2ri.activate() robjects.r(''' library(mclust) library(dsb) dsb <- function(cells, empty, use.isotype.control=TRUE, denoise.counts=TRUE, isotype.control.name.vec = NULL, define.pseudocount = FALSE, pseudocount.use = 10, quantile.clipping = FALSE, quantile.clip = c(0.001, 0.9995), return.stats = FALSE){ DSBNormalizeProtein(cells, empty, use.isotype.control=use.isotype.control, isotype.control.name.vec = isotype.control.name.vec, denoise.counts=denoise.counts, define.pseudocount = define.pseudocount, pseudocount.use = pseudocount.use, quantile.clipping = quantile.clipping, quantile.clip = quantile.clip, return.stats = return.stats) } ''') dsb = robjects.r['dsb'] return dsb(cell_antibody_counts, empty_droplet_antibody_counts, use_isotype_control=use_isotype_control, denoise_counts=denoise_counts, isotype_control_name_vec=isotype_control_name_vec, define_pseudocount=define_pseudocount, pseudocount_use=pseudocount_use, quantile_clipping=quantile_clipping, quantile_clip=quantile_clip, return_stats=return_stats) def get_cellphonedb_compatible_counts_and_meta(loom, layername, celltype_ca, gene_ra='gene', cellname_ca='cellname', return_df=False, output_prefix=None, mouse_to_human=False): if output_prefix is None and not return_df: raise Exception( "either output_prefix must be specified, or return_df must be True" ) counts = pd.DataFrame(loom[layername][:, :]) counts.columns = loom.ca[cellname_ca] #counts.insert(0, 'Gene', np.array([x.upper() for x in loom.ra[gene_ra]])) genes = loom.ra[gene_ra] if mouse_to_human: from pybiomart import Server server = Server(host="http://www.ensembl.org") mouse_dataset = (server.marts['ENSEMBL_MART_ENSEMBL']. datasets['mmusculus_gene_ensembl']) mouse_data = mouse_dataset.query( attributes=['ensembl_gene_id', 'external_gene_name']) mouse_data['Gene upper'] = mouse_data['Gene name'].apply( lambda x: str(x).upper()) human_dataset = (server.marts['ENSEMBL_MART_ENSEMBL']. datasets['hsapiens_gene_ensembl']) human_data = human_dataset.query( attributes=['ensembl_gene_id', 'external_gene_name']) conversion_dict = pd.merge( mouse_data, human_data, left_on='Gene upper', right_on='Gene name').set_index( 'Gene stable ID_x')['Gene stable ID_y'].to_dict() convertible_mask = np.array( [x in conversion_dict.keys() for x in genes]) genes = [ conversion_dict[x] if x in conversion_dict.keys() else np.nan for x in genes ] counts.insert(0, 'Gene', genes) if mouse_to_human: counts = counts.iloc[convertible_mask, :] counts = counts.groupby('Gene').first().reset_index() meta = pd.DataFrame(loom.ca[cellname_ca]) meta.columns = ['Cell'] meta['cell_type'] = loom.ca[celltype_ca] if output_prefix is not None: counts.to_csv(output_prefix + '_counts.txt', sep='\t', index=False) meta.to_csv(output_prefix + '_meta.txt', sep='\t', index=False) command = 'cellphonedb method statistical_analysis {0}_meta.txt {0}_counts.txt'.format( output_prefix) print("Run cellphonedb on command line with \"{}\"".format(command)) elif return_df: return meta, counts def create_gsea_txt_and_cls(loom, layername, output_prefix, phenotypes, cellmask=None, gene_ra='gene', cellname_ca='cellname'): import os if cellmask is None: cellmask = np.array([True] * loom.shape[1]) if type(phenotypes) == str: phenotypes = loom.ca[phenotypes] if len(phenotypes) != cellmask.sum(): raise Exception( "length of phenotypes vector must be equal to number of samples (cells)" ) txt = pd.DataFrame(loom.ra[gene_ra]) txt.columns = ['NAME'] txt['DESCRIPTION'] = 'na' #txt = pd.concat([txt,pd.DataFrame(loom[layername][:,cellmask])],axis=1) #txt.columns = ['NAME','DESCRIPTION'] + list(loom.ca[cellname_ca][cellmask]) #txt.to_csv(output_prefix+'.txt',index=False,sep='\t') total = cellmask.sum() nphenotypes = len(np.unique(phenotypes)) outcls = output_prefix + '.cls' if os.path.exists(outcls): os.system("rm {}".format(outcls)) #raise Exception("cls file already present--cannot overwrite") line1 = "{} {} 1".format(total, nphenotypes) line2 = '# ' + ' '.join(np.unique(phenotypes)) phenotype2index = { phenotype: i for i, phenotype in enumerate(np.unique(phenotypes)) } #print(phenotype2index) #print([phenotype2index[x] for x in phenotypes]) line3 = ' '.join([str(phenotype2index[x]) for x in phenotypes]) for line in [line1, line2, line3]: os.system('echo \"{}\">>{}'.format(line, outcls)) def get_cross_column_attribute_heatmap(loom, ca1, ca2, normalization_axis=None): #if type(normalization_axis) == list: # outdfs = [] # for axis in normalization_axis: # outdfs.append(get_cross_column_attribute_heatmap(loom, ca1, ca2, normalization_axis=axis)) # return outdfs df = pd.DataFrame(loom.ca[ca1], copy=True) df.columns = [ca1] df[ca2] = loom.ca[ca2] df = pd.DataFrame(df.groupby(ca1, )[ca2].value_counts()) df.columns = ['counts'] dfs = [] for i, df_group in df.reset_index().groupby(ca1): dfs.append( df_group.rename(columns={ 'counts': 'counts_' + i }).set_index(ca2)['counts_' + i]) outdf = pd.concat(dfs, axis=1) if normalization_axis is None: return outdf elif normalization_axis == 0: return np.divide(outdf, outdf.sum(axis=0).values) elif normalization_axis == 1: return np.divide(outdf.T, outdf.sum(axis=1).values).T else: raise Exception("normalization axis must be one of \"None\", 0, or 1") def get_complement_contigency_tables(df): if type(df) != pd.core.frame.DataFrame: raise Exception("pandas dataframe expected input") complement_contigency_table_dict = {} for col in df.columns: complement_contigency_table_dict[col] = {} for index in df.index.values: a = df.loc[index][col].sum() b = df.loc[index][[x for x in df.columns if x != col]].sum() c = df.loc[[x for x in df.index if x != index]][col].sum() d = np.sum(df.loc[[x for x in df.index if x != index ]][[x for x in df.columns if x != col]].sum()) complement_contigency_table_dict[col][index] = [[a, b], [c, d]] return complement_contigency_table_dict def get_cluster_differential_expression_heatmap_df(loom, layer, clusteringlevel, diffex={}, gene_name='gene', cell_name='cellname'): """ Returns ------- """ from panopticon.analysis import get_cluster_differential_expression import seaborn as sns import pandas as pd clusteredmask = [] for cluster in np.unique(loom.ca[clusteringlevel]): mask = loom.ca[clusteringlevel] == cluster if mask.sum() > 2: clusteredmask.append(np.where(mask)[0]) clusteredmask = np.hstack(clusteredmask) allgenes = [] allgeneindices = [] rawX = [] clusters = [ x for x in np.unique(loom.ca[clusteringlevel]) if x in diffex.keys() ] for cluster in clusters: mask = loom.ca[clusteringlevel] == cluster genes = diffex[cluster][~diffex[cluster]['gene'].isin(allgenes)].query( 'MeanExpr1 > MeanExpr2').query('FracExpr2<.9').head( 10)['gene'].values genemask =
np.isin(loom.ra['gene'], genes)
numpy.isin
import subprocess as _subprocess import numpy as _np import os as _os _full = lambda x: _os.path.sep.join(x) default_track_version = 'trackcpp' _commom_keys = ['flat_filename','energy','harmonic_number', 'cavity_state','radiation_state','vchamber_state'] def _prepare_args(dynap_type, mand_keys, **kwargs): args = [kwargs.pop('track_version',default_track_version),dynap_type] for key in mand_keys: args.append(str(kwargs.pop(key))) if kwargs: print('Keys : '+', '.join(sorted(kwargs.keys()))+ ' were not used.') return args # -- dynap_xy -- def load_dynap_xy(path, var_plane='x'): # Carrego os dados: nr_header_lines = 13 fname = _full([path, 'dynap_xy_out.txt']) turn,plane,x,y = _np.loadtxt(fname,skiprows=nr_header_lines,usecols=(1,3,5,6),unpack=True) # Identifico quantos x e y existem: nx = len(_np.unique(x)) ny = x.shape[0]//nx # Redimensiono para que todos os x iguais fiquem na mesma coluna: # o flipud é usado porque y é decrescente: fun = lambda x: _np.flipud(x.reshape((nx,ny)).T) turn, plane, x, y = fun(turn), fun(plane), fun(x), fun(y) dados = dict(x=x,y=y,plane=plane,turn=turn) # E identifico a borda da DA: if var_plane =='y': lost = plane != 0 ind = lost.argmax(axis=0) # Caso a abertura vertical seja maior que o espaço calculado: anyloss = lost.any(axis=0) ind = ind*anyloss + (~anyloss)*(y.shape[0]-1) # por fim, defino a DA: h = x[0] v = y[:,0][ind] aper = _np.vstack([h,v]) area = _np.trapz(v,x=h) else: idx = x > 0 # para x negativo: x_mi = _np.fliplr(x[~idx].reshape((ny,-1))) plane_mi = _np.fliplr(plane[~idx].reshape((ny,-1))) lost = plane_mi != 0 ind_neg = lost.argmax(axis=1) # Caso a abertura horizontal seja maior que o espaço calculado: anyloss = lost.any(axis=1) ind_neg = ind_neg*anyloss + (~anyloss)*(x_mi.shape[1]-1) h_neg = x_mi[0][ind_neg] v_neg = y[:,0] aper_neg = _np.vstack([h_neg,v_neg]) area_neg = _np.trapz(h_neg,x=v_neg) #para x positivo x_ma = x[idx].reshape((ny,-1)) plane_ma = plane[idx].reshape((ny,-1)) lost = plane_ma != 0 ind_pos = lost.argmax(axis=1) # Caso a abertura horizontal seja maior que o espaço calculado: anyloss = lost.any(axis=1) ind_pos = ind_pos*anyloss + (~anyloss)*(x_ma.shape[1]-1) # por fim, defino a DA em x positivo: h_pos = x_ma[0][ind_pos] v_pos = y[:,0] aper_pos = _np.fliplr(_np.vstack([h_pos,v_pos])) area_pos = _np.trapz(h_pos,x=v_pos) aper = _np.hstack([aper_neg,aper_pos]) area = -
_np.trapz(aper[0],x=aper[1])
numpy.trapz
import os import sys import time import numpy as np import scipy.interpolate as intpl from PyQt5.QtCore import QObject, QThread, pyqtSlot, pyqtSignal path = os.path.realpath('../') if not path in sys.path: sys.path.insert(0, path) from pyNiDAQ import DAQ import ipdb import threading class DcScan(QThread): ''' --------------------------------------------------------- tw = DcScan(laser = <class>, wavemeter = <class>, *args, **kwargs) Class for DC Transmission characterization of nanodevices. For a full description of the algorithm , go please check the alogorigram in the Docs ---------------------------------------------------------- Args: laser: laser object to control the equipement (c.f. pyNFLaser package) wavemeter: wavemeter object to controll the equipement (c.f. pyWavemeter package) If no wavemeter if passed, the class will work without it and will trust the wavelength provided by the laser internal detector param: dictionary with 'laserParam', 'daqParam' and 'wlmParam' keys laserParam keys (cf laser properties): - scan_speed - scan_limit wlmParam keys (cf wavemeter properties): - channel - exposure daqParam keys: - read_ch - write_ch - dev Methods: self.run: See method doc string pyQtSlot emissions: self._DCscan <tupple>: [0] Code for where the program is in the algorithm: -1 : no scan / end of scan 0 : setting up the start of scan 1 : scanning 2: return wavemeter of begining of scan 3: return wavemeter at end of scan [1] Laser current wavelength [2] Progress bar current % [3] Blinking State ------------------------------------------------------ <NAME> - NIST - 2018 ------------------------------------------------------ ''' __author__ = "<NAME>" __copyright__ = "Copyright 2018, NIST" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" _DCscan = pyqtSignal(tuple) def __init__(self, **kwargs): QThread.__init__(self) self.laser = kwargs.get('laser', None) self.wavemeter = kwargs.get('wavemeter',None) self.param = kwargs.get('param',None) self._debug = kwargs.get('debug', False) # Misc self._is_Running = False def run(self): # -- Fetch main parameters -- laser = self.laser param = self.param wavemeter = self.wavemeter scan_limit = laser.scan_limit if self._debug: print("Scan limit: {}nm - {}nm".format(scan_limit[0], scan_limit[1])) # -- More user friendly notation -- daqParam = param['daqParam'] wlmParam = param.get('wlmParam', None) # -- Wait until lbd start of scan -- while True: lbd = laser.lbd changing = laser._is_changing_lbd delta = lbd - scan_limit[0] cdt = not(changing) and np.abs(delta)<0.2 if self._debug: print('-'*30) print('Is Changing: {}'.format(changing)) print('Wavelength : {}nm'.format(lbd)) print('Wavelength Difference: {:.3f}nm'.format(delta)) print("Stop loop: {}".format(cdt)) print('-'*30) if cdt: break time.sleep(0.25) # -- Wait for stabilization -- time.sleep(2) # -- start the wavemeter if connected -- if wavemeter: # check connect if not wavemeter.connected: if self._debug: wavemeter.connected = 'show' else: wavemeter.connected = 'hide' time.sleep(5) wavemeter.pulsemode = False wavemeter.widemode = False wavemeter.fastmode = False wavemeter.channel = wlmParam['channel'] wavemeter.exposure = 'auto' # -- Get First wavelength of the scan -- if wavemeter: # get it through the wavemeter wavemeter.acquire = True print('Getting wavemeter') time.sleep(2.5) lbd_start = wavemeter.lbd wavemeter.acquire = False print("Wavelength end {:.3f}".format(lbd_start)) self._DCscan.emit((2, lbd_start, 0, None)) if self._debug: print('Wavemeter start scan: {}nm'.format(lbd_start)) else: self._DCscan.emit((2, laser.lbd, 0, None)) # -- Setup DAQ for acquisition and create the reading #. THread -- scan_time = np.diff(scan_limit)[0]/laser.scan_speed if self._debug: print('Scan time: {}s'.format(scan_time)) daq = DAQ(t_end = scan_time, dev = daqParam['dev']) daq.SetupRead(read_ch=daqParam['read_ch']) self._done_get_data = False def _GetData(): self.time_start_daq = time.time() self.data = daq.readtask.read(number_of_samples_per_channel=int(daq.Npts)) self.time_stop_daq = time.time() self._done_get_data = True daq.readtask.stop() daq.readtask.close() self.threadDAQdata = threading.Thread(target=_GetData, args=()) self.threadDAQdata.daemon = True # -- Fetch wavelength and progress of scan -- lbd_probe = [] time_probe = [] t_step = scan_time/1000 if self._debug: print('Begining of Scan: '+ '-'*30) print('Time sleeping between steps: {}'.format(t_step)) # -- Start laser scan -- self._is_Running = True laser.scan = True self.threadDAQdata.start() while laser._is_scaning: lbd_scan = laser._lbdscan lbd_probe.append(lbd_scan) time_probe.append(time.time()) prgs = np.floor(100*(lbd_scan-scan_limit[0])/np.diff(scan_limit)[0]) if self._debug: print('Wavelength: {}nm'.format(lbd_scan)) print('Progress: {}%'.format(prgs)) self._DCscan.emit((1, lbd_scan, prgs, None)) time.sleep(t_step) if self._debug: print('End of Scan: '+ '-'*30) # -- Scan Finished, get Data -- while not self._done_get_data: if self._debug: print('Waiting for daq') time.sleep(0.1) # -- Get Last wavelength of the scan -- if wavemeter: wavemeter.acquire = True time.sleep(2) lbd_end = wavemeter.lbd wavemeter.acquire = False self._DCscan.emit((3, lbd_end, 100, None)) if self._debug: print('Wavemeter end scan: {}nm'.format(lbd_end)) else: self._DCscan.emit((3, laser.lbd, 100, None)) # -- Processing of the Data -- # ----------------------------------------------------------------- # -- Better notation of Data -- data =
np.array(self.data)
numpy.array
""" :mod:`operalib.ridge` implements Operator-valued Naive Online Regularised Risk Minimization Algorithm (ONORMA) """ # Author: <NAME> <<EMAIL>> with help from # the scikit-learn community. # License: MIT from numpy import eye, empty, ravel, vstack, zeros from sklearn.base import BaseEstimator, RegressorMixin from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_X_y, check_array from sklearn.utils.validation import check_is_fitted from .metrics import first_periodic_kernel from .kernels import DecomposableKernel, DotProductKernel from .learningrate import Constant, InvScaling # When adding a new kernel, update this table and the _get_kernel_map # method PAIRWISE_KERNEL_FUNCTIONS = { 'DGauss': DecomposableKernel, 'DotProduct': DotProductKernel, 'DPeriodic': DecomposableKernel, 'DotProduct': DotProductKernel} # When adding a new learning rate, update this table and the _get_learning_rate # method LEARNING_RATE_FUNCTIONS = { 'constant': Constant, 'invscaling': InvScaling} class ONORMA(BaseEstimator, RegressorMixin): """Operator-valued Naive Online Regularised Risk Minimization Algorithm . Operator-Valued kernel Operator-valued Naive Online Regularised Risk Minimization Algorithm (ONORMA) extends the standard kernel-based online learning algorithm NORMA from scalar-valued to operator-valued setting. The truncation is currently not implemented. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space linop_ : callable Callable which associate to the training points X the Gram matrix (the Gram matrix being a LinearOperator) A_ : array, shape = [n_targets, n_targets] Set when Linear operator used by the decomposable kernel is default or None. T_ : integer Total number of iterations n_ : integer Total number of datapoints p_ : integer Dimensionality of the outputs References ---------- * Audiffren, Julien, and <NAME>. "Online learning with multiple operator-valued kernels." arXiv preprint arXiv:1311.0222 (2013). * Kivinen, Jyrki, <NAME>, and <NAME>. "Online learning with kernels." IEEE transactions on signal processing 52.8 (2004): 2165-2176. See also -------- sklearn.Ridge Linear ridge regression. sklearn.KernelRidge Kernel ridge regression. sklearn.SVR Support Vector Regression implemented using libsvm. Examples -------- >>> import operalib as ovk >>> import numpy as np >>> n_samples, n_features, n_targets = 10, 5, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples, n_targets) >>> X = rng.randn(n_samples, n_features) >>> clf = ovk.ONORMA('DGauss', lbda=1.) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS ONORMA(A=None, T=None, eta=1.0, gamma=None, kernel='DGauss', lbda=1.0, learning_rate='invscaling', mu=0.2, power=0.5, random_state=0, shuffle=True, truncation=None) """ def __init__(self, kernel='DGauss', lbda=1e-5, T=None, A=None, learning_rate='invscaling', truncation=None, gamma=None, mu=0.2, eta=1., power=.5, shuffle=True, random_state=0): """Initialize ONORMA. Parameters ---------- kernel : {string, callable}, default='DGauss' Kernel mapping used internally. A callable should accept two arguments, and should return a LinearOperator. lbda : {float}, default=1e-5 Small positive values of lbda improve the conditioning of the problem and reduce the variance of the estimates. Lbda corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. T : {integer}, default=None Number of iterations. A : {LinearOperator, array-like, sparse matrix}, default=None Linear operator used by the decomposable kernel. If default is None, wich is set to identity matrix of size y.shape[1] when fitting. mu : {array, LinearOperator}, shape = [n_targets, n_targets] Tradeoff between shared and independant components in the Dot Product kernel. learning_rate : {Callable} Learning rate, a function that return the step size at given step truncation : learning_rate : {Callable} TODO gamma : {float}, default=None. Gamma parameter for the Decomposable Gaussian kernel. Ignored by other kernels. """ self.kernel = kernel self.lbda = lbda self.T = T self.A = A self.learning_rate = learning_rate self.truncation = truncation self.gamma = gamma self.mu = mu self.shuffle = shuffle self.random_state = random_state self.eta = eta self.power = power def _validate_params(self): # check on self.kernel is performed in method __get_kernel if self.lbda < 0: raise ValueError('lbda must be a positive scalar') if self.mu < 0 or self.mu > 1: raise ValueError('mu must be a scalar between 0. and 1.') if self.T is not None: if self.T <= 0: raise ValueError('T must be a positive integer') # if self.A < 0: # Check whether A is S PD would be really expensive # raise ValueError('A must be a symmetric positive operator') if self.gamma is not None: if self.gamma < 0: raise ValueError('gamma must be positive or default (None)') def _default_decomposable_op(self, y): if self.A is not None: return self.A elif y.ndim == 2: return eye(y.shape[1]) else: return eye(1) def _get_kernel_map(self, X, y): # When adding a new kernel, update this table and the _get_kernel_map # method if callable(self.kernel): ov_kernel = self.kernel elif type(self.kernel) is str: # 1) check string and assign the right parameters if self.kernel == 'DGauss': self.A_ = self._default_decomposable_op(y) kernel_params = {'A': self.A_, 'scalar_kernel': rbf_kernel, 'scalar_kernel_params': {'gamma': self.gamma}} elif self.kernel == 'DotProduct': kernel_params = {'mu': self.mu, 'p': y.shape[1]} elif self.kernel == 'DPeriodic': self.A_ = self._default_decomposable_op(y) self.period_ = self._default_period(X, y) kernel_params = {'A': self.A_, 'scalar_kernel': first_periodic_kernel, 'scalar_kernel_params': {'gamma': self.theta, 'period': self.period_}, } else: raise NotImplemented('unsupported kernel') # 2) Uses lookup table to select the right kernel from string ov_kernel = PAIRWISE_KERNEL_FUNCTIONS[self.kernel](**kernel_params) else: raise NotImplemented('unsupported kernel') return ov_kernel def _get_learning_rate(self): if callable(self.learning_rate): return self.learning_rate elif type(self.learning_rate) is str: # 1) check string and assign the right parameters if self.learning_rate == 'constant': lr_params = {'eta': self.eta} elif self.learning_rate == 'invscaling': lr_params = {'eta': self.eta, 'power': self.power} else: raise NotImplemented('unsupported kernel') lr = LEARNING_RATE_FUNCTIONS[self.learning_rate](**lr_params) else: raise NotImplemented('unsupported learning rate') return lr def _decision_function(self, X): self.linop_ = self.ov_kernel_(self.X_seen_) pred = self.linop_(X) * self.coefs_[:self.t_ * self.p_] return pred.reshape(X.shape[0], -1) if self.linop_.p > 1 else pred def predict(self, X): """Predict using ONORMA model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : {array}, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ['coefs_', 't_', 'p_', 'X_seen_', 'y_seen_'], all_or_any=all) X = check_array(X) linop = self.ov_kernel_(self.X_seen_) pred = linop(X) * self.coefs_[:self.t_ * self.p_] return pred.reshape(X.shape[0], -1) if linop.p > 1 else pred def partial_fit(self, X, y): """Partial fit of ONORMA model. This method is usefull for online learning for instance. Must call Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data. y : {array-like}, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- self : returns an instance of self. """ n = 1 if X.ndim <= 1 else X.shape[0] Xt = X.reshape(n, -1) if X.ndim <= 1 else X yt = y.reshape(n, -1) if y.ndim <= 1 else y init = not (hasattr(self, 'coefs_') and hasattr(self, 't_')) if hasattr(self, 't_'): init = self.t_ == 0 if init: Xtt = Xt[0, :].reshape(1, -1) ytt = yt[0, :].reshape(1, -1) self.d_ = Xtt.shape[1] self.p_ = ytt.shape[1] self.learning_rate_ = self._get_learning_rate() self.coefs_ = empty(self.p_) eta_t = self.learning_rate_(1) self.coefs_[:self.p_] = -ravel(eta_t * (0 - ytt)) self.X_seen_ = Xtt self.y_seen_ = ytt self.ov_kernel_ = self._get_kernel_map(self.X_seen_, self.y_seen_) self.t_ = 1 # Reshape if self.coefs_ has not been preallocated self.coefs_.resize((self.t_ + (n - 1 if init else n)) * self.p_) for idx in range(1 if init else 0, n): Xtt = Xt[idx, :].reshape(1, -1) ytt = yt[idx, :].reshape(1, -1) eta_t = self.learning_rate_(self.t_ + 1) # Update weights self.coefs_[self.t_ * self.p_:(self.t_ + 1) * self.p_] = -ravel( eta_t * (self._decision_function(Xtt) - ytt)) self.coefs_[:self.t_ * self.p_] *= (1. - eta_t * self.lbda / 2) # Update seen data self.X_seen_ =
vstack((self.X_seen_, Xtt))
numpy.vstack
"""Test CZT package. To run: pytest test_czt.py -v To run (with coverage): pytest --cov . --cov-report html test_czt.py """ import numpy as np import matplotlib.pyplot as plt import pytest import scipy import czt def test_compare_different_czt_methods(debug=False): print("Compare different CZT calculation methods") # Create time-domain signal t = np.arange(0, 20e-3, 1e-4) x = _signal_model(t) # Calculate CZT using different methods X_czt0 = _czt(x) X_czt1 = czt.czt(x, simple=True) X_czt2 = czt.czt(x, t_method='ce') X_czt3 = czt.czt(x, t_method='pd') X_czt4 = czt.czt(x, t_method='mm') X_czt5 = czt.czt(x, t_method='scipy') X_czt6 = czt.czt(x, t_method='ce', f_method='recursive') X_czt7 = czt.czt(x, t_method='pd', f_method='recursive') # Try unsupported t_method with pytest.raises(ValueError): czt.czt(x, t_method='unsupported_t_method') # Try unsupported f_method with pytest.raises(ValueError): czt.czt(x, t_method='ce', f_method='unsupported_f_method') # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary component") plt.plot(X_czt1.imag, label="simple") plt.plot(X_czt2.imag, label="ce") plt.plot(X_czt3.imag, label="pd") plt.plot(X_czt4.imag, label="mm") plt.plot(X_czt5.imag, label="scipy") plt.plot(X_czt6.imag, label="ce / recursive") plt.plot(X_czt7.imag, label="pd / recursive") plt.legend() plt.figure() plt.title("Real component") plt.plot(X_czt1.real, label="simple") plt.plot(X_czt2.real, label="ce") plt.plot(X_czt3.real, label="pd") plt.plot(X_czt4.real, label="mm") plt.plot(X_czt5.real, label="scipy") plt.plot(X_czt6.real, label="ce / recursive") plt.plot(X_czt7.real, label="pd / recursive") plt.legend() plt.figure() plt.title("Absolute value") plt.plot(np.abs(X_czt1), label="simple") plt.plot(np.abs(X_czt2), label="ce") plt.plot(np.abs(X_czt3), label="pd") plt.plot(np.abs(X_czt4), label="mm") plt.plot(np.abs(X_czt5), label="scipy") plt.plot(np.abs(X_czt6), label="ce / recursive") plt.plot(np.abs(X_czt7), label="pd / recursive") plt.legend() plt.show() # Compare Toeplitz matrix multiplication methods np.testing.assert_almost_equal(X_czt0, X_czt1, decimal=12) np.testing.assert_almost_equal(X_czt0, X_czt2, decimal=12) np.testing.assert_almost_equal(X_czt0, X_czt3, decimal=12) np.testing.assert_almost_equal(X_czt0, X_czt4, decimal=12) np.testing.assert_almost_equal(X_czt0, X_czt5, decimal=12) # Compare FFT methods np.testing.assert_almost_equal(X_czt1, X_czt6, decimal=12) np.testing.assert_almost_equal(X_czt1, X_czt7, decimal=12) def test_compare_czt_fft_dft(debug=False): print("Compare CZT, FFT and DFT") # Create time-domain signal t = np.arange(0, 20e-3 + 1e-10, 1e-4) x = _signal_model(t) dt = t[1] - t[0] fs = 1 / dt # Frequency sweep f = np.fft.fftshift(np.fft.fftfreq(len(t)) * fs) # CZT (defaults to FFT settings) X_czt = np.fft.fftshift(czt.czt(x)) # FFT X_fft = np.fft.fftshift(np.fft.fft(x)) # DFT (defaults to FFT settings) _, X_dft = czt.dft(t, x) # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary") plt.plot(f, X_czt.imag, label='CZT') plt.plot(f, X_fft.imag, label='FFT', ls='--') plt.plot(f, X_dft.imag, label='DFT', ls='--') plt.legend() plt.figure() plt.title("Real") plt.plot(f, X_czt.real, label='CZT') plt.plot(f, X_fft.real, label='FFT', ls='--') plt.plot(f, X_dft.real, label='DFT', ls='--') plt.legend() plt.figure() plt.title("Absolute") plt.plot(f, np.abs(X_czt), label='CZT') plt.plot(f, np.abs(X_fft), label='FFT', ls='--') plt.plot(f, np.abs(X_dft), label='DFT', ls='--') plt.legend() plt.show() # Compare np.testing.assert_almost_equal(X_czt, X_fft, decimal=12) np.testing.assert_almost_equal(X_czt, X_dft, decimal=12) def test_czt_to_iczt(debug=False): print("Test CZT -> ICZT") # Create time-domain signal t = np.arange(0, 20e-3, 1e-4) x = _signal_model(t) # CZT (defaults to FFT) X_czt = czt.czt(x) # ICZT x_iczt1 = czt.iczt(X_czt) x_iczt2 = czt.iczt(X_czt, simple=False) # Try unsupported t_method with pytest.raises(ValueError): czt.iczt(X_czt, simple=False, t_method='unsupported_t_method') # Try M != N with pytest.raises(ValueError): czt.iczt(X_czt, simple=False, N=len(X_czt)+1) # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary") plt.plot(t*1e3, x.imag) plt.plot(t*1e3, x_iczt1.imag) plt.plot(t*1e3, x_iczt2.imag) plt.figure() plt.title("Real") plt.plot(t*1e3, x.real) plt.plot(t*1e3, x_iczt1.real) plt.plot(t*1e3, x_iczt2.real) plt.show() # Compare np.testing.assert_almost_equal(x, x_iczt1, decimal=12) np.testing.assert_almost_equal(x, x_iczt2, decimal=12) def test_time_to_freq_to_time(debug=False): print("Test time -> freq -> time") # Create time-domain data t1 = np.arange(0, 20e-3, 1e-4) x1 = _signal_model(t1) # Frequency domain f, X = czt.time2freq(t1, x1) # Back to time domain t2, x2 = czt.freq2time(f, X, t=t1) # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary") plt.plot(t1, x1.imag, 'k', label='Original') plt.plot(t2, x2.imag, 'r', label='Recovered') plt.legend() plt.figure() plt.title("Real") plt.plot(t1, x1.real, 'k', label='Original') plt.plot(t2, x2.real, 'r', label='Recovered') plt.legend() plt.show() # Compare np.testing.assert_almost_equal(x1, x2, decimal=12) def test_compare_iczt_idft(debug=False): print("Compare ICZT and IDFT") # Create time-domain signal t = np.arange(0, 20e-3, 1e-4) x = _signal_model(t) # Frequency domain using DFT f, X = czt.dft(t, x) # Get time-domain using ICZT _, x_iczt = czt.freq2time(f, X, t) # Get time-domain using IDFT _, x_idft = czt.idft(f, X, t) # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary") plt.plot(t, x.imag, 'k', label="Original") plt.plot(t, x_iczt.imag, 'g:', label="ICZT") plt.plot(t, x_idft.imag, 'r--', label="IDFT") plt.legend() plt.figure() plt.title("Real") plt.plot(t, x.real, 'k', label="Original") plt.plot(t, x_iczt.real, 'g:', label="ICZT") plt.plot(t, x_idft.real, 'r--', label="IDFT") plt.legend() plt.figure() plt.title("Real: error") plt.plot(t, x_iczt.real - x.real, 'k', label="Original") plt.show() # Compare np.testing.assert_almost_equal(x_iczt, x, decimal=12) np.testing.assert_almost_equal(x_idft, x, decimal=12) np.testing.assert_almost_equal(x_iczt, x_idft, decimal=12) def test_frequency_zoom(debug=False): print("Test frequency-domain zoom") # Create time-domain signal t = np.arange(0, 20e-3 + 1e-10, 1e-4) x = _signal_model(t) dt = t[1] - t[0] # Standard FFT frequency range f = np.fft.fftshift(np.fft.fftfreq(len(t), dt)) # DFT f, X_dft1 = czt.dft(t, x, f=f) # CZT f, X_czt1 = czt.time2freq(t, x, f=f) # Truncate idx1, idx2 = 110, 180 f_zoom = f[idx1:idx2] X_czt1, X_dft1 = X_czt1[idx1:idx2], X_dft1[idx1:idx2] # Zoom DFT _, X_dft2 = czt.dft(t, x, f_zoom) # Zoom CZT _, X_czt2 = czt.time2freq(t, x, f_zoom) # Plot for debugging purposes if debug: plt.figure() plt.title("Imaginary") plt.plot(f_zoom, np.imag(X_czt1), 'c', label='CZT') plt.plot(f_zoom, np.imag(X_dft1), 'k--', label='DFT') plt.plot(f_zoom, np.imag(X_czt2), 'r--', label='CZT (zoom)') plt.plot(f_zoom, np.imag(X_dft2), 'b:', label='DFT (zoom)') plt.legend() plt.figure() plt.title("Real") plt.plot(f_zoom, np.real(X_czt1), 'c', label='CZT') plt.plot(f_zoom, np.real(X_dft1), 'k--', label='DFT') plt.plot(f_zoom, np.real(X_czt2), 'r--', label='CZT (zoom)') plt.plot(f_zoom, np.real(X_dft2), 'b:', label='DFT (zoom)') plt.legend() plt.figure() plt.title("Absolute") plt.plot(f_zoom, np.abs(X_czt1), 'c', label='CZT') plt.plot(f_zoom, np.abs(X_dft1), 'k--', label='DFT') plt.plot(f_zoom, np.abs(X_czt2), 'r--', label='CZT (zoom)') plt.plot(f_zoom,
np.abs(X_dft2)
numpy.abs
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import scipy.io as sio import tensorflow as tf import numpy as np import matplotlib import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.callbacks import History from keras import optimizers #Load data ------------------------------------------------------ def loadMATData(file1): return sio.loadmat(file1) #Load Data------------------------------------------------------- data = loadMATData('ex3data1.mat') features = data['X'] labels = data['y'] filter = labels ==10 labels[filter] = 0 #shuffle data--------------------------------------------------- ran =
np.arange(features.shape[0])
numpy.arange
from pymc import * import numpy as np with Model() as model: lam = Exponential('lam', 1) failure = np.array([0, 1]) value =
np.array([1, 0])
numpy.array
import ray from ray.data.extensions import TensorArray, TensorDtype import torchvision from torchvision import transforms as T import numpy as np import pandas as pd from .dataset_tools import * from torch.utils.data import DataLoader import math from tqdm.auto import tqdm import torch from .embeddings import make_clip_transform, ImTransform, XEmbedding from .vloop_dataset_loaders import get_class_ev from .dataset_search_terms import * import pyroaring as pr from operator import itemgetter import PIL def _postprocess_results(acc): flat_acc = {'iis':[], 'jjs':[], 'dbidx':[], 'vecs':[], 'zoom_factor':[], 'zoom_level':[]} flat_vecs = [] #{'accs':accs, 'sf':sf, 'dbidx':dbidx, 'zoom_level':zoom_level} for item in acc: acc0,sf,dbidx,zl = itemgetter('accs', 'sf', 'dbidx', 'zoom_level')(item) acc0 = acc0.squeeze(0) acc0 = acc0.transpose((1,2,0)) iis, jjs = np.meshgrid(range(acc0.shape[0]), range(acc0.shape[1]), indexing='ij') #iis = iis.reshape(-1, acc0) iis = iis.reshape(-1) jjs = jjs.reshape(-1) acc0 = acc0.reshape(-1,acc0.shape[-1]) imids = np.ones_like(iis)*dbidx zf = np.ones_like(iis)*(1./sf) zl = np.ones_like(iis)*zl flat_acc['iis'].append(iis) flat_acc['jjs'].append(jjs) flat_acc['dbidx'].append(imids) flat_acc['vecs'].append(acc0) flat_acc['zoom_factor'].append(zf) flat_acc['zoom_level'].append(zl) flat = {} for k,v in flat_acc.items(): flat[k] = np.concatenate(v) vecs = flat['vecs'] del flat['vecs'] vec_meta = pd.DataFrame(flat) vecs = vecs.astype('float32') vecs = vecs/(np.linalg.norm(vecs, axis=-1, keepdims=True) + 1e-6) vec_meta = vec_meta.assign(file_path=item['file_path']) vec_meta = vec_meta.assign(vectors=TensorArray(vecs)) return vec_meta def preprocess_ds(localxclip, ds, debug=False): txds = TxDataset(ds, tx=pyramid_tx(non_resized_transform(224))) acc = [] if debug: num_workers=0 else: num_workers=4 for dbidx,tup in enumerate(tqdm(DataLoader(txds, num_workers=num_workers, shuffle=False, batch_size=1, collate_fn=lambda x : x), total=len(txds))): [(ims, sfs)] = tup for zoom_level,(im,sf) in enumerate(zip(ims,sfs),start=1): accs= localxclip.from_image(preprocessed_image=im, pooled=False) acc.append((accs, sf, dbidx, zoom_level)) return _postprocess_results(acc) def pyramid_centered(im,i,j): cy=(i+1)*112. cx=(j+1)*112. scales = [112,224,448] crs = [] w,h = im.size for s in scales: tup = (np.clip(cx-s,0,w), np.clip(cy-s,0,h), np.clip(cx+s,0,w), np.clip(cy+s,0,h)) crs.append(im.crop(tup)) return crs def zoom_out(im : PIL.Image, factor=.5, abs_min=224): """ returns image one zoom level out, and the scale factor used """ w,h=im.size mindim = min(w,h) target_size = max(math.floor(mindim*factor), abs_min) if target_size * math.sqrt(factor) <= abs_min: # if the target size is almost as large as the image, # jump to that scale instead target_size = abs_min target_factor = target_size/mindim target_w = max(math.floor(w*target_factor),224) # corrects any rounding effects that make the size 223 target_h = max(math.floor(h*target_factor),224) im1 = im.resize((target_w, target_h)) assert min(im1.size) >= abs_min return im1, target_factor def rescale(im, scale, min_size): (w,h) = im.size target_w = max(math.floor(w*scale),min_size) target_h = max(math.floor(h*scale),min_size) return im.resize(size=(target_w, target_h), resample=PIL.Image.BILINEAR) def pyramid(im, factor=.71, abs_min=224): ## if im size is less tha the minimum, expand image to fit minimum ## try following: orig size and abs min size give you bounds assert factor < 1. factor = 1./factor size = min(im.size) end_size = abs_min start_size = max(size, abs_min) start_scale = start_size/size end_scale = end_size/size ## adjust start scale ntimes = math.ceil(math.log(start_scale/end_scale)/math.log(factor)) start_size = math.ceil(math.exp(ntimes*math.log(factor) + math.log(abs_min))) start_scale = start_size/size factors = np.geomspace(start=start_scale, stop=end_scale, num=ntimes+1, endpoint=True).tolist() ims = [] for sf in factors: imout = rescale(im, scale=sf, min_size=abs_min) ims.append(imout) assert len(ims) > 0 assert min(ims[0].size) >= abs_min assert min(ims[-1].size) == abs_min return ims, factors def trim_edge(target_divisor=112): def fun(im1): w1,h1 = im1.size spare_h = h1 % target_divisor spare_w = w1 % target_divisor im1 = im1.crop((0,0,w1-spare_w, h1-spare_h)) return im1 return fun class TrimEdge: def __init__(self, target_divisor=112): self.target_divisor = target_divisor def __call__(self, im1): w1,h1 = im1.size spare_h = h1 % self.target_divisor spare_w = w1 % self.target_divisor im1 = im1.crop((0,0,w1-spare_w, h1-spare_h)) return im1 def torgb(image): return image.convert('RGB') def tofloat16(x): return x.type(torch.float16) def non_resized_transform(base_size): return ImTransform(visual_xforms=[torgb], tensor_xforms=[T.ToTensor(), T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), tofloat16]) class PyramidTx: def __init__(self, tx, factor, min_size): self.tx = tx self.factor = factor self.min_size = min_size def __call__(self, im): ims,sfs= pyramid(im, factor=self.factor, abs_min=self.min_size) ppims = [] for im in ims: ppims.append(self.tx(im)) return ppims, sfs def pyramid_tx(tx): def fn(im): ims,sfs= pyramid(im) ppims = [] for im in ims: ppims.append(tx(im)) return ppims, sfs return fn def augment_score(db,tup,qvec): im = db.raw[tup.dbidx] ims = pyramid(im, tup.iis, tup.jjs) tx = make_clip_transform(n_px=224, square_crop=True) vecs = [] for im in ims: pim = tx(im) emb = db.embedding.from_image(preprocessed_image=pim.float()) emb = emb/np.linalg.norm(emb, axis=-1) vecs.append(emb) vecs = np.concatenate(vecs) #print(np.linalg.norm(vecs,axis=-1)) augscore = (vecs @ qvec.reshape(-1)).mean() return augscore import torchvision.ops #torchvision.ops.box_iou() def box_iou(tup, boxes): b1 = torch.from_numpy(np.stack([tup.x1.values, tup.y1.values, tup.x2.values, tup.y2.values], axis=1)) bxdata =
np.stack([boxes.x1.values, boxes.y1.values, boxes.x2.values,boxes.y2.values], axis=1)
numpy.stack
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 2020 Class to read and manipulate CryoSat-2 waveform data Reads CryoSat Level-1b data products from baselines A, B and C Reads CryoSat Level-1b netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python http://www.numpy.org http://www.scipy.org/NumPy_for_Matlab_Users netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 08/2020: flake8 compatible binary regular expression strings Forked 02/2020 from read_cryosat_L1b.py Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D Updated 04/2019: USO correction signed 32 bit int Updated 10/2018: updated header read functions for python3 Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import numpy as np import pointCollection as pc import netCDF4 import re import os class data(pc.data): np.seterr(invalid='ignore') def __default_field_dict__(self): """ Define the default fields that get read from the CryoSat-2 file """ field_dict = {} field_dict['Location'] = ['days_J2k','Day','Second','Micsec','USO_Corr', 'Mode_ID','SSC','Inst_config','Rec_Count','Lat','Lon','Alt','Alt_rate', 'Sat_velocity','Real_beam','Baseline','ST_ID','Roll','Pitch','Yaw','MCD'] field_dict['Data'] = ['TD', 'H_0','COR2','LAI','FAI','AGC_CH1','AGC_CH2', 'TR_gain_CH1','TR_gain_CH2','TX_Power','Doppler_range','TR_inst_range', 'R_inst_range','TR_inst_gain','R_inst_gain','Internal_phase', 'External_phase','Noise_power','Phase_slope'] field_dict['Geometry'] = ['dryTrop','wetTrop','InvBar','DAC','Iono_GIM', 'Iono_model','ocTideElv','lpeTideElv','olTideElv','seTideElv','gpTideElv', 'Surf_type','Corr_status','Corr_error'] field_dict['Waveform_20Hz'] = ['Waveform','Linear_Wfm_Multiplier', 'Power2_Wfm_Multiplier','N_avg_echoes'] field_dict['METADATA'] = ['MPH','SPH'] return field_dict def from_dbl(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from binary formats """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() # CryoSat-2 Mode record sizes i_size_timestamp = 12 n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 125 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # check baseline from file to set i_record_size and allocation function if (BASELINE == 'C'): # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2 + 6*4 + 3*3*4 + 3*2 + 4*4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_BC_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_BC_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_BC_RW*2 + \ n_SARIN_BC_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baseline C read_cryosat_variables = self.cryosat_baseline_C else: # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2+ 6*4 + 3*3*4 + 4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_RW*2 + \ n_SARIN_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baselines A and B read_cryosat_variables = self.cryosat_baseline_AB # get dataset MODE from PRODUCT portion of file name # set record sizes and DS_TYPE for read_DSD function self.MODE = re.findall('(LRM|SAR|SIN)', PRODUCT).pop() if (self.MODE == 'LRM'): i_record_size = i_record_size_LRM_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SAR'): i_record_size = i_record_size_SAR_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SIN'): i_record_size = i_record_size_SARIN_L1b DS_TYPE = 'CS_L1B' # read the input file to get file information fid = os.open(os.path.expanduser(full_filename),os.O_RDONLY) file_info = os.fstat(fid) os.close(fid) # num DSRs from SPH j_num_DSR = np.int32(file_info.st_size//i_record_size) # print file information if verbose: print(full_filename) print('{0:d} {1:d} {2:d}'.format(j_num_DSR,file_info.st_size,i_record_size)) # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size == file_info.st_size): print('No Header on file') print('The number of DSRs is: {0:d}'.format(j_num_DSR)) else: print('Header on file') # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size != file_info.st_size): # If there are MPH/SPH/DSD headers s_MPH_fields = self.read_MPH(full_filename) j_sph_size = np.int32(re.findall(r'[-+]?\d+',s_MPH_fields['SPH_SIZE']).pop()) s_SPH_fields = self.read_SPH(full_filename, j_sph_size) # extract information from DSD fields s_DSD_fields = self.read_DSD(full_filename, DS_TYPE=DS_TYPE) # extract DS_OFFSET j_DS_start = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DS_OFFSET']).pop()) # extract number of DSR in the file j_num_DSR = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['NUM_DSR']).pop()) # check the record size j_DSR_size = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DSR_SIZE']).pop()) # minimum size is start of the read plus number of records to read j_check_size = j_DS_start + (j_DSR_size*j_num_DSR) if verbose: print('The offset of the DSD is: {0:d} bytes'.format(j_DS_start)) print('The number of DSRs is {0:d}'.format(j_num_DSR)) print('The size of the DSR is {0:d}'.format(j_DSR_size)) # check if invalid file size if (j_check_size > file_info.st_size): raise IOError('File size error') # extract binary data from input CryoSat data file (skip headers) fid = open(os.path.expanduser(full_filename), 'rb') cryosat_header = fid.read(j_DS_start) # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # add headers to output dictionary as METADATA CS_L1b_mds['METADATA'] = {} CS_L1b_mds['METADATA']['MPH'] = s_MPH_fields CS_L1b_mds['METADATA']['SPH'] = s_SPH_fields CS_L1b_mds['METADATA']['DSD'] = s_DSD_fields # close the input CryoSat binary file fid.close() else: # If there are not MPH/SPH/DSD headers # extract binary data from input CryoSat data file fid = open(os.path.expanduser(full_filename), 'rb') # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # close the input CryoSat binary file fid.close() # if unpacking the units if unpack: CS_l1b_scale = self.cryosat_scaling_factors() # for each dictionary key for group in CS_l1b_scale.keys(): # for each variable for key,val in CS_L1b_mds[group].items(): # check if val is the 20Hz waveform beam variables if isinstance(val, dict): # for each waveform beam variable for k,v in val.items(): # scale variable CS_L1b_mds[group][key][k] = CS_l1b_scale[group][key][k]*v.copy() else: # scale variable CS_L1b_mds[group][key] = CS_l1b_scale[group][key]*val.copy() # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def from_nc(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from netCDF4 format data """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() print(full_filename) if verbose else None # get dataset MODE from PRODUCT portion of file name self.MODE = re.findall(r'(LRM|FDM|SAR|SIN)', PRODUCT).pop() # read level-2 CryoSat-2 data from netCDF4 file CS_L1b_mds = self.cryosat_baseline_D(full_filename, unpack=unpack) # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def calc_GPS_time(self, day, second, micsec): """ Calculate the GPS time (seconds since Jan 6, 1980 00:00:00) """ # TAI time is ahead of GPS by 19 seconds return (day + 7300.0)*86400.0 + second.astype('f') + micsec/1e6 - 19 def count_leap_seconds(self, GPS_Time): """ Count number of leap seconds that have passed for given GPS times """ # GPS times for leap seconds leaps = [46828800, 78364801, 109900802, 173059203, 252028804, 315187205, 346723206, 393984007, 425520008, 457056009, 504489610, 551750411, 599184012, 820108813, 914803214, 1025136015, 1119744016, 1167264017] # number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= leap) if (count > 0): i_records,i_blocks = np.nonzero(GPS_Time >= leap) n_leaps[i_records,i_blocks] += 1.0 return n_leaps def read_MPH(self, full_filename): """ Read ASCII Main Product Header (MPH) block from an ESA PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # check that first line of header matches PRODUCT if not bool(re.match(br'PRODUCT\=\"(.*)(?=\")',file_contents[0])): raise IOError('File does not start with a valid PDS MPH') # read MPH header text s_MPH_fields = {} for i in range(n_MPH_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_MPH_fields def read_SPH(self, full_filename, j_sph_size): """ Read ASCII Specific Product Header (SPH) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # compile regular expression operator for reading headers rx = re.compile(br'(.*?)\=\"?(.*)',re.VERBOSE) # check first line of header matches SPH_DESCRIPTOR if not bool(re.match(br'SPH\_DESCRIPTOR\=',file_contents[n_MPH_lines+1])): raise IOError('File does not have a valid PDS DSD') # read SPH header text (no binary control characters) s_SPH_lines = [li for li in file_contents[n_MPH_lines+1:] if rx.match(li) and not re.search(br'[^\x20-\x7e]+',li)] # extract SPH header text s_SPH_fields = {} c = 0 while (c < len(s_SPH_lines)): # check if line is within DS_NAME portion of SPH header if bool(re.match(br'DS_NAME',s_SPH_lines[c])): # add dictionary for DS_NAME field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() key = value.decode('utf-8').rstrip() s_SPH_fields[key] = {} for line in s_SPH_lines[c+1:c+7]: if bool(re.match(br'(.*?)\=\"(.*)(?=\")',line)): # data fields within quotes dsfield,dsvalue=re.findall(br'(.*?)\=\"(.*)(?=\")',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',line)): # data fields without quotes dsfield,dsvalue=re.findall(br'(.*?)\=(.*)',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() # add 6 to counter to go to next entry c += 6 # use regular expression operators to read headers elif bool(re.match(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',s_SPH_lines[c])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # add 1 to counter to go to next line c += 1 # Return block name array to calling function return s_SPH_fields def read_DSD(self, full_filename, DS_TYPE=None): """ Read ASCII Data Set Descriptors (DSD) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # number of text lines in a DSD header n_DSD_lines = 8 # Level-1b CryoSat DS_NAMES within files regex_patterns = [] if (DS_TYPE == 'CS_L1B'): regex_patterns.append(br'DS_NAME\="SIR_L1B_LRM[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SAR[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SARIN[\s+]*"') elif (DS_TYPE == 'SIR_L1B_FDM'): regex_patterns.append(br'DS_NAME\="SIR_L1B_FDM[\s+]*"') # find the DSD starting line within the SPH header c = 0 Flag = False while ((Flag is False) and (c < len(regex_patterns))): # find indice within indice = [i for i,line in enumerate(file_contents[n_MPH_lines+1:]) if re.search(regex_patterns[c],line)] if indice: Flag = True else: c+=1 # check that valid indice was found within header if not indice: raise IOError('Can not find correct DSD field') # extract s_DSD_fields info DSD_START = n_MPH_lines + indice[0] + 1 s_DSD_fields = {} for i in range(DSD_START,DSD_START+n_DSD_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_DSD_fields def cryosat_baseline_AB(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baselines A and B """ n_SARIN_RW = 512 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100): converted from telemetry units to be # the noise floor of FBR measurement echoes. # Set to -9999.99 when the telemetry contains zero. CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-5),dtype=np.int16) # CryoSat-2 mode specific waveforms CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [512] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [512]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int16) # Phase Difference [512]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'].data[r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters for b in range(n_blocks): CS_l1b_mds['Data']['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Data']['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry']['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) CS_l1b_mds['Geometry']['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 Average Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SIN'): # SARIN Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] =
np.fromfile(fid,dtype='>i4',count=1)
numpy.fromfile
"""Module for remapping complex data for display.""" from inspect import getmembers, isfunction import sys import numpy as np from scipy.stats import scoreatpercentile as prctile __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" def get_remap_list(): """ Create list of remap functions accessible from this module. Returns ------- List[Tuple[str, callable], ...] List of tuples of the form `(<function name>, <function>)`. """ # We specifically list these as the only funtions in is this module that are # not remaps. If we later add other utility functions to this module, we # will have to manually add them to this list as well. However, we don't # have to do anything if we are just adding more remap functions. names_nonremap_funs = ['get_remap_list', 'amplitude_to_density', '_clip_cast'] # Get all functions from this module all_funs = getmembers(sys.modules[__name__], isfunction) # all_funs is list of (function name, function object) tuples. fun[0] is name. just_remap_funs = [fun for fun in all_funs if fun[0] not in names_nonremap_funs] return just_remap_funs def amplitude_to_density(a, dmin=30, mmult=40, data_mean=None): """ Convert to density data for remap. Parameters ---------- a : numpy.ndarray dmin : float|int mmult : float|int data_mean : None|float|int Returns ------- numpy.ndarray """ EPS = 1e-5 if (a==0).all(): return np.zeros(a.shape) else: a = abs(a) if not data_mean: data_mean = np.mean(a[np.isfinite(a)]) cl = 0.8 * data_mean ch = mmult * cl m = (255 - dmin)/np.log10(ch/cl) b = dmin - (m * np.log10(cl)) return (m * np.log10(np.maximum(a, EPS))) + b # Does Python not have a builtin way to do this fundamental operation??? def _clip_cast(x, dtype='uint8'): """ Cast by clipping values outside of valid range, rather than wrapping. Parameters ---------- x : numpy.ndarray dtype : str|numpy.dtype Returns ------- numpy.ndarray """ np_type = np.dtype(dtype) return np.clip(x, np.iinfo(np_type).min, np.iinfo(np_type).max).astype(dtype) def density(x): """ Standard set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x)) def brighter(x): """ Brighter set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 60, 40)) def darker(x): """ Darker set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 0, 40)) def highcontrast(x): """ Increased contrast set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 30, 4)) def linear(x): """ Linear remap - just the magnitude. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ if np.iscomplexobj(x): return np.abs(x) else: return x def log(x): """ Logarithmic remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ out = np.log(np.abs(x)) out[np.logical_not(np.isfinite(out))] = np.min(out[
np.isfinite(out)
numpy.isfinite
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
# =============================================================================== # Copyright 2012 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= import logging from numpy import asarray, column_stack, sqrt, dot, linalg, zeros_like, hstack, ones_like, array from statsmodels.api import OLS from traits.api import Int, Property # ============= local library imports ========================== from pychron.core.helpers.fits import FITS from pychron.core.regression.base_regressor import BaseRegressor from pychron.pychron_constants import MSEM, SEM logger = logging.getLogger('Regressor') class OLSRegressor(BaseRegressor): degree = Property(depends_on='_degree') _degree = Int constant = None _ols = None def set_degree(self, d, refresh=True): if isinstance(d, str): d = d.lower() fits = ['linear', 'parabolic', 'cubic'] if d in fits: d = fits.index(d) + 1 else: d = None if d is None: d = 1 self._degree = d if refresh: self.dirty = True def get_exog(self, x): return self._get_X(x) def fast_predict(self, endog, pexog, exog=None): ols = self._ols ols.wendog = ols.whiten(endog) if exog is not None: ols.wexog = ols.whiten(exog) # force recalculation del ols.pinv_wexog result = ols.fit() return result.predict(pexog) def fast_predict2(self, endog, exog): """ this function is less flexible than fast_predict but is 2x faster. it doesn't use RegressionResults class simple does the lin algebra to predict values. currently useful for monte_carlo_estimation """ if not hasattr(self, 'pinv_wexog'): self.pinv_wexog = linalg.pinv(self._ols.wexog) beta = dot(self.pinv_wexog, endog) return dot(exog, beta) def calculate(self, filtering=False): cxs = self.clean_xs cys = self.clean_ys integrity_check = True if not self._check_integrity(cxs, cys): if len(cxs) == 1 and len(cys) == 1: cxs = hstack((cxs, cxs[0])) cys =
hstack((cys, cys[0]))
numpy.hstack
# base.py # Author: <NAME> <<EMAIL>> """ This file contains code that implements the core of the submodular selection algorithms. """ import numpy from tqdm import tqdm from ..optimizers import BaseOptimizer from ..optimizers import NaiveGreedy from ..optimizers import LazyGreedy from ..optimizers import ApproximateLazyGreedy from ..optimizers import TwoStageGreedy from ..optimizers import StochasticGreedy from ..optimizers import BidirectionalGreedy from ..optimizers import GreeDi from ..optimizers import SieveGreedy from ..optimizers import OPTIMIZERS from ..utils import PriorityQueue from ..utils import check_random_state from ..utils import _calculate_pairwise_distances from scipy.sparse import csr_matrix class BaseSelection(object): """The base selection object. This object defines the structures that all submodular selection algorithms should follow. All algorithms will have the same public methods and the same attributes. Parameters ---------- n_samples : int The number of samples to return. initial_subset : list, numpy.ndarray or None, optional If provided, this should be a list of indices into the data matrix to use as the initial subset, or a group of examples that may not be in the provided data should beused as the initial subset. If indices, the provided array should be one-dimensional. If a group of examples, the data should be 2 dimensional. optimizer : string or optimizers.BaseOptimizer, optional The optimization approach to use for the selection. Default is 'two-stage', which makes selections using the naive greedy algorithm initially and then switches to the lazy greedy algorithm. Must be one of 'naive' : the naive greedy algorithm 'lazy' : the lazy (or accelerated) greedy algorithm 'approximate-lazy' : the approximate lazy greedy algorithm 'two-stage' : starts with naive and switches to lazy 'stochastic' : the stochastic greedy algorithm 'greedi' : the GreeDi distributed algorithm 'bidirectional' : the bidirectional greedy algorithm Default is 'naive'. optimizer_kwds : dict or None A dictionary of arguments to pass into the optimizer object. The keys of this dictionary should be the names of the parameters in the optimizer and the values in the dictionary should be the values that these parameters take. Default is None. reservoir : numpy.ndarray or None The reservoir to use when calculating gains in the sieve greedy streaming optimization algorithm in the `partial_fit` method. Currently only used for graph-based functions. If a numpy array is passed in, it will be used as the reservoir. If None is passed in, will use reservoir sampling to collect a reservoir. Default is None. max_reservoir_size : int The maximum size that the reservoir can take. If a reservoir is passed in, this value is set to the size of that array. Default is 1000. n_jobs : int The number of threads to use when performing computation in parallel. Currently, this parameter is exposed but does not actually do anything. This will be fixed soon. random_state : int or RandomState or None, optional The random seed to use for the random selection process. Only used for stochastic greedy. verbose : bool Whether to print output during the selection process. Attributes ---------- n_samples : int The number of samples to select. ranking : numpy.array int The selected samples in the order of their gain with the first number in the ranking corresponding to the index of the first sample that was selected by the greedy procedure. gains : numpy.array float The gain of each sample in the returned set when it was added to the growing subset. The first number corresponds to the gain of the first added sample, the second corresponds to the gain of the second added sample, and so forth. """ def __init__(self, n_samples, initial_subset=None, optimizer='lazy', optimizer_kwds={}, reservoir=None, max_reservoir_size=1000, n_jobs=1, random_state=None, verbose=False): if n_samples <= 0: raise ValueError("n_samples must be a positive value.") if not isinstance(initial_subset, (list, numpy.ndarray)) and initial_subset is not None: raise ValueError("initial_subset must be a list, numpy array, or None") if isinstance(initial_subset, (list, numpy.ndarray)): initial_subset = numpy.array(initial_subset) if not isinstance(optimizer, BaseOptimizer): if optimizer not in OPTIMIZERS.keys(): raise ValueError("Optimizer must be an optimizer object or " \ "a str in {}.".format(str(OPTIMIZERS.keys()))) if isinstance(optimizer, BaseOptimizer): optimizer.function = self if verbose not in (True, False): raise ValueError("verbosity must be True or False") self.n_samples = n_samples self.metric = 'ignore' self.random_state = check_random_state(random_state) self.optimizer = optimizer self.optimizer_kwds = optimizer_kwds self.n_jobs = n_jobs self.verbose = verbose self.initial_subset = initial_subset self.ranking = None self.idxs = None self.gains = None self.subset = None self.sparse = None self._X = None self.sieve_current_values_ = None self.n_seen_ = 0 self.reservoir_size = 0 if reservoir is None else reservoir.shape[0] self.reservoir = reservoir self.max_reservoir_size = max_reservoir_size if reservoir is None else reservoir.shape[0] self.update_reservoir_ = reservoir is None def fit(self, X, y=None, sample_weight=None, sample_cost=None): """Run submodular optimization to select a subset of examples. This method is a wrapper for the full submodular optimization process. It takes in some data set (and optionally labels that are ignored during this process) and selects `n_samples` from it in the greedy manner specified by the optimizer. This method will return the selector object itself, not the transformed data set. The `transform` method will then transform a data set to the selected points, or alternatively one can use the ranking stored in the `self.ranking` attribute. The `fit_transform` method will perform both optimization and selection and return the selected items. Parameters ---------- X : list or numpy.ndarray, shape=(n, d) The data set to transform. Must be numeric. y : list or numpy.ndarray or None, shape=(n,), optional The labels to transform. If passed in this function will return both the data and th corresponding labels for the rows that have been selected. sample_weight : list or numpy.ndarray or None, shape=(n,), optional The weight of each example. Currently ignored in apricot but included to maintain compatibility with sklearn pipelines. sample_cost : list or numpy.ndarray or None, shape=(n,), optional The cost of each item. If set, indicates that optimization should be performed with respect to a knapsack constraint. Returns ------- self : BaseGraphSelection The fit step returns this selector object. """ allowed_dtypes = list, numpy.ndarray, csr_matrix if not isinstance(X, allowed_dtypes): raise ValueError("X must be either a list of lists, a 2D numpy " \ "array, or a scipy.sparse.csr_matrix.") if isinstance(X, numpy.ndarray) and len(X.shape) != 2: raise ValueError("X must have exactly two dimensions.") if numpy.min(X) < 0.0 and numpy.max(X) > 0.: raise ValueError("X cannot contain negative values or must be entirely "\ "negative values.") if self.n_samples > X.shape[0]: raise ValueError("Cannot select more examples than the number in" \ " the data set.") if not self.sparse: if X.dtype != 'float64': X = X.astype('float64') if isinstance(self.optimizer, str): optimizer = OPTIMIZERS[self.optimizer](function=self, verbose=self.verbose, random_state=self.random_state, **self.optimizer_kwds) else: optimizer = self.optimizer self._X = X if self._X is None else self._X self._initialize(X) if self.verbose: self.pbar = tqdm(total=self.n_samples, unit_scale=True) optimizer.select(X, self.n_samples, sample_cost=sample_cost) if self.verbose == True: self.pbar.close() self.ranking = numpy.array(self.ranking) self.gains = numpy.array(self.gains) return self def partial_fit(self, X, y=None, sample_weight=None, sample_cost=None): allowed_dtypes = list, numpy.ndarray, csr_matrix if not isinstance(X, allowed_dtypes): raise ValueError("X must be either a list of lists, a 2D numpy " \ "array, or a scipy.sparse.csr_matrix.") if isinstance(X, numpy.ndarray) and len(X.shape) != 2: raise ValueError("X must have exactly two dimensions.") if not self.sparse: if X.dtype != 'float64': X = X.astype('float64') if not isinstance(self.optimizer, SieveGreedy): self.optimizer = OPTIMIZERS['sieve'](function=self, verbose=self.verbose, random_state=self.random_state, **self.optimizer_kwds) self._X = X if self._X is None else self._X self._initialize(X) if self.verbose: self.pbar = tqdm(total=self.n_samples, unit_scale=True) self.optimizer.select(X, self.n_samples, sample_cost=sample_cost) if self.verbose == True: self.pbar.close() self.ranking = numpy.array(self.ranking) self.gains = numpy.array(self.gains) self._X = None return self def transform(self, X, y=None, sample_weight=None): """Transform a data set to include only the selected examples. This method will return a selection of X and optionally selections of y and sample_weight. The default setting is to select items based on the ranking determined in the `fit` step with examples in the same order as that ranking. Optionally, the whole data set can be returned, with the weights corresponding to samples that were not selected set to 0. This setting can be controlled by setting `pipeline=True`. Parameters ---------- X : list or numpy.ndarray, shape=(n, d) The data set to transform. Must be numeric. y : list or numpy.ndarray or None, shape=(n,), optional The labels to transform. If passed in this function will return both the data and the corresponding labels for the rows that have been selected. Default is None. sample_weight : list or numpy.ndarray or None, shape=(n,), optional The sample weights to transform. If passed in this function will return the selected labels (y) and the selected samples, even if no labels were passed in. Default is None. Returns ------- X_subset : numpy.ndarray, shape=(n_samples, d) A subset of the data such that n_samples < n and n_samples is the integer provided at initialization. y_subset : numpy.ndarray, shape=(n_samples,), optional The labels that match with the indices of the samples if y is passed in. Only returned if passed in. sample_weight_subset : numpy.ndarray, shape=(n_samples,), optional The weight of each example. """ r = self.ranking if sample_weight is not None: if y is None: return X[r], None, sample_weight[r] else: return X[r], y[r], sample_weight[r] else: if y is None: return X[r] else: return X[r], y[r] def fit_transform(self, X, y=None, sample_weight=None, sample_cost=None): """Run optimization and select a subset of examples. This method will first perform the `fit` step and then perform the `transform` step, returning a transformed data set. Parameters ---------- X : list or numpy.ndarray, shape=(n, d) The data set to transform. Must be numeric. y : list or numpy.ndarray or None, shape=(n,), optional The labels to transform. If passed in this function will return both the data and the corresponding labels for the rows that have been selected. Default is None. sample_weight : list or numpy.ndarray or None, shape=(n,), optional The sample weights to transform. If passed in this function will return the selected labels (y) and the selected samples, even if no labels were passed in. Default is None. sample_cost : list or numpy.ndarray or None, shape=(n,), optional The cost of each item. If set, indicates that optimization should be performed with respect to a knapsack constraint. Returns ------- X_subset : numpy.ndarray, shape=(n_samples, d) A subset of the data such that n_samples < n and n_samples is the integer provided at initialization. y_subset : numpy.ndarray, shape=(n_samples,), optional The labels that match with the indices of the samples if y is passed in. Only returned if passed in. sample_weight_subset : numpy.ndarray, shape=(n_samples,), optional The weight of each example. """ return self.fit(X, y=y, sample_weight=sample_weight, sample_cost=sample_cost).transform(X, y=y, sample_weight=sample_weight) def _initialize(self, X, idxs=None): n, d = X.shape self._X = X if self._X is None else self._X self.sparse = isinstance(X, csr_matrix) self.ranking = [] self.gains = [] self.subset = numpy.zeros((0, self._X.shape[1]), dtype='float64') self.current_values = numpy.zeros(d, dtype='float64') self.current_concave_values = numpy.zeros(d, dtype='float64') self.mask = numpy.zeros(n, dtype='int8') if self.initial_subset is not None: if self.initial_subset.ndim == 1: if self.initial_subset.dtype == bool: self.initial_subset = numpy.where(self.initial_subset == 1)[0] if len(self.initial_subset) + self.n_samples > X.shape[0]: raise ValueError("When using a mask for the initial subset" \ " must selected fewer than the size of the subset minus" \ " the initial subset size, i.e., n_samples < X.shape[0] -"\ " initial_subset.shape[0].") if self.initial_subset.max() > X.shape[0]: raise ValueError("When passing in an integer mask for the initial subset"\ " the maximum value cannot exceed the size of the data set.") elif self.initial_subset.min() < 0: raise ValueError("When passing in an integer mask for the initial subset"\ " the minimum value cannot be negative.") self.mask[self.initial_subset] = 1 self.idxs = numpy.where(self.mask == 0)[0] def _calculate_gains(self, X, idxs=None): raise NotImplementedError def _calculate_sieve_gains(self, X, thresholds, idxs): n = X.shape[0] d = X.shape[1] if self.reservoir is None else self.max_reservoir_size l = len(thresholds) if self.sieve_current_values_ is None: self.sieve_current_values_ = numpy.zeros((l, d), dtype='float64') self.sieve_selections_ = numpy.zeros((l, self.n_samples), dtype='int64') - 1 self.sieve_gains_ = numpy.zeros((l, self.n_samples), dtype='float64') - 1 self.sieve_n_selected_ = numpy.zeros(l, dtype='int64') self.sieve_total_gains_ = numpy.zeros(l, dtype='float64') self.sieve_subsets_ = numpy.zeros((l, self.n_samples, self._X.shape[1]), dtype='float64') else: j = l - self.sieve_current_values_.shape[0] if j > 0: self.sieve_current_values_ = numpy.vstack([ self.sieve_current_values_, numpy.zeros((j, d), dtype='float64')]) self.sieve_selections_ = numpy.vstack([ self.sieve_selections_, numpy.zeros((j, self.n_samples), dtype='int64') - 1]) self.sieve_gains_ = numpy.vstack([self.sieve_gains_, numpy.zeros((j, self.n_samples), dtype='float64')]) self.sieve_n_selected_ = numpy.concatenate([ self.sieve_n_selected_, numpy.zeros(j, dtype='int64')]) self.sieve_total_gains_ = numpy.concatenate([ self.sieve_total_gains_, numpy.zeros(j, dtype='float64')]) self.sieve_subsets_ = numpy.concatenate([self.sieve_subsets_, numpy.zeros((j, self.n_samples, self._X.shape[1]), dtype='float64')]) def _select_next(self, X, gain, idx): self.ranking.append(idx) self.gains.append(gain) self.mask[idx] = True self.idxs =
numpy.where(self.mask == 0)
numpy.where
# -*- coding: utf-8 -*- #try: # from Numeric import * #except ImportError: from numpy import * import copy import numpy outerproduct = outer PI2 = pi*2.0 # for debuging set a seed #random.seed(42) def make_vec(l): return array(l, "d") def scal_prod(v1, v2): return sum(v1*v2,axis=-1) def length(v): return sqrt(sum(v*v),axis=-1) def norm(v1): return sqrt(scal_prod(v1,v1)) def normalize(v1): n = norm(v1) if isscalar(n): if isclose(n,0): return v1 else: return v1/n else: return v1/n[:,newaxis] def angle(v1, v2): _nv1 = normalize(v1) _nv2 = normalize(v2) d = scal_prod(_nv1, _nv2) if d < -1.0: d=-1.0 if d > 1.0 : d= 1.0 return arccos(d) def project(v1, v2): _nv2 = normalize(v2) l = scal_prod(v1, _nv2) return _nv2*l def cross_prod(a, b): return array( [a[1]*b[2] - a[2]*b[1], \ a[2]*b[0] - a[0]*b[2], \ a[0]*b[1] - a[1]*b[0]], "d") def rotmat(v, theta): Q = array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]], "d") Q *= sin(theta) uut = outerproduct(v,v) Q += (identity(3,"d") - uut)*cos(theta) Q += uut return Q def rotate(xyz, v, theta): return dot(xyz, transpose(rotmat(v, theta))) def rotmat_from_euler(euler): R = zeros([3,3],"d") sa = sin(euler[0]) ca = cos(euler[0]) sb = sin(euler[1]) cb = cos(euler[1]) sg = sin(euler[2]) cg = cos(euler[2]) R[0, 0] = cb * cg R[1, 0] = cb * sg R[2, 0] = -sb R[0, 1] = -ca * sg + sa * sb * cg R[1, 1] = ca * cg + sa * sb * sg R[2, 1] = sa * cb R[0, 2] = sa * sg + ca * sb * cg R[1, 2] = -sa * cg + ca * sb * sg R[2, 2] = ca * cb return R def rotate_by_euler(xyz, euler): return dot(xyz, transpose(rotmat_from_euler(euler))) def random_quat(): rand = random.random(3) r1 = sqrt(1.0 - rand[0]) r2 = sqrt(rand[0]) t1 = PI2 * rand[1] t2 = PI2 * rand[2] return array([cos(t2)*r2, sin(t1)*r1, cos(t1)*r1, sin(t2)*r2]) def rotation_quat(triple): # with an input of three numbers between zero and one we scan the rotational space in an equal fashion t0 = triple[0] if t0>1.0:t0=1.0 if t0<0.0:t0=0.0 r1 = sqrt(1.0 - t0) r2 = sqrt(t0) t1 = PI2 * (triple[1]%1.0) t2 = PI2 * (triple[2]%1.0) return array([cos(t2)*r2, sin(t1)*r1, cos(t1)*r1, sin(t2)*r2]) def quat_to_mat(quat): q = array(quat, copy=True) n = dot(q, q) if n < 1.0e-15: return identity(3) q *= sqrt(2.0 / n) q = outer(q, q) return array([ [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0]], [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0]], [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2]]]) def apply_mat(m,v): return dot(v,m) def rotate_by_triple(xyz, triple): rotmat = quat_to_mat(rotation_quat(triple)) return dot(xyz, rotmat) def rotate_random(v): return apply_mat(quat_to_mat(random_quat()),v) def moi2(rs, ms=None): """Moment of inertia""" if ms is None: ms = numpy.ones(len(rs)) else: ms = numpy.asarray(ms) rs = numpy.asarray(rs) N = rs.shape[1] # Matrix is symmetric, so inner/outer loop doesn't matter return [[(ms*rs[:,i]*rs[:,j]).sum()/ms.sum() for i in range(N)] for j in range(N)] def moi(rs,ms=None): if ms is None: ms = numpy.ones(len(rs)) else: ms = numpy.asarray(ms) rs = numpy.asarray(rs) Ixx = (ms* (rs[:,1]*rs[:,1] + rs[:,2]*rs[:,2])).sum() Iyy = (ms* (rs[:,0]*rs[:,0] + rs[:,2]*rs[:,2])).sum() Izz = (ms* (rs[:,0]*rs[:,0] + rs[:,1]*rs[:,1])).sum() Ixy =-(ms* rs[:,0] * rs[:,1]).sum() Ixz =-(ms* rs[:,0] * rs[:,2]).sum() Iyz =-(ms* rs[:,1] * rs[:,2]).sum() I = [[Ixx,Ixy,Ixy],[Ixy,Iyy,Iyz],[Ixz,Iyz,Izz]] return
numpy.array(I)
numpy.array
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Unit tests for the Strawberry Fields utils.py module""" import pytest pytestmark = pytest.mark.frontend import numpy as np from numpy.polynomial.hermite import hermval as H from scipy.special import factorial as fac import strawberryfields as sf from strawberryfields.program_utils import RegRef from strawberryfields.ops import Sgate, BSgate, LossChannel, MeasureX, Squeezed import strawberryfields.utils as utils R_D = np.linspace(-2.00562, 1.0198, 4) PHI_D = np.linspace(-1.64566, 1.3734, 4) PHI = np.linspace(0, 1.43, 4) R = np.linspace(0, 0.21, 4) PHI = np.linspace(0, 1.43, 4) # =================================================================================== # Convert function tests # =================================================================================== @pytest.fixture def rr(): """RegRef fixture.""" return RegRef(0) @pytest.fixture def prog(): """Program fixture.""" return sf.Program(2) # =================================================================================== # Initial states tests # =================================================================================== class TestInitialStates: """unit tests for the initial state function utilities""" @pytest.mark.parametrize("r, phi", zip(R, PHI)) def test_squeezed_cov(self, hbar, r, phi, tol): """test squeezed covariance utility function returns correct covariance""" cov = utils.squeezed_cov(r, phi, hbar=hbar) expected = (hbar / 2) * np.array( [ [ np.cosh(2 * r) - np.cos(phi) * np.sinh(2 * r), -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), ], [ -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), np.cosh(2 * r) + np.cos(phi) * np.sinh(2 * r), ], ] ) assert np.allclose(cov, expected, atol=tol, rtol=0) def test_vacuum_state_gaussian(self, hbar): """test vacuum state returns correct means and covariance""" means, cov = utils.vacuum_state(basis="gaussian", hbar=hbar) assert np.all(means == np.zeros(2)) assert np.all(cov == np.identity(2) * hbar / 2) def test_vacuum_state_fock(self, cutoff, hbar): """test vacuum state returns correct state vector""" state = utils.vacuum_state(basis="fock", hbar=hbar, fock_dim=cutoff) assert np.all(state == np.eye(1, cutoff, 0)) @pytest.mark.parametrize("r_d, phi_d", zip(R_D, PHI_D)) def test_coherent_state_gaussian(self, r_d, phi_d, hbar): """test coherent state returns correct means and covariance""" means, cov = utils.coherent_state(r_d, phi_d, basis="gaussian", hbar=hbar) alpha = r_d * np.exp(1j * phi_d) means_expected = np.array([alpha.real, alpha.imag]) * np.sqrt(2 * hbar) assert np.all(means == means_expected) assert np.all(cov == np.identity(2) * hbar / 2) @pytest.mark.parametrize("r_d, phi_d", zip(R_D, PHI_D)) def test_coherent_state_fock(self, r_d, phi_d, cutoff, hbar, tol): """test coherent state returns correct Fock basis state vector""" state = utils.coherent_state(r_d, phi_d, basis="fock", fock_dim=cutoff, hbar=hbar) n = np.arange(cutoff) alpha = r_d * np.exp(1j * phi_d) expected = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) assert np.allclose(state, expected, atol=tol, rtol=0) @pytest.mark.parametrize("r, phi", zip(R, PHI)) def test_squeezed_state_gaussian(self, r, phi, hbar, tol): """test squeezed state returns correct means and covariance""" means, cov = utils.squeezed_state(r, phi, basis="gaussian", hbar=hbar) cov_expected = (hbar / 2) * np.array( [ [ np.cosh(2 * r) - np.cos(phi) * np.sinh(2 * r), -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), ], [ -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), np.cosh(2 * r) + np.cos(phi) * np.sinh(2 * r), ], ] ) assert np.all(means == np.zeros([2])) assert np.allclose(cov, cov_expected, atol=tol, rtol=0) @pytest.mark.parametrize("r, phi", zip(R, PHI)) def test_squeezed_state_fock(self, r, phi, cutoff, hbar, tol): """test squeezed state returns correct Fock basis state vector""" state = utils.squeezed_state(r, phi, basis="fock", fock_dim=cutoff, hbar=hbar) n = np.arange(cutoff) kets = (np.sqrt(fac(2 * (n // 2))) / (2 ** (n // 2) * fac(n // 2))) * ( -np.exp(1j * phi) * np.tanh(r) ) ** (n // 2) expected = np.where(n % 2 == 0, np.sqrt(1 / np.cosh(r)) * kets, 0) assert np.allclose(state, expected, atol=tol, rtol=0) @pytest.mark.parametrize("r_d, phi_d, r_s, phi_s", zip(R_D, PHI_D, R, PHI)) def test_displaced_squeezed_state_gaussian(self, r_d, phi_d, r_s, phi_s, hbar, tol): """test displaced squeezed state returns correct means and covariance""" means, cov = utils.displaced_squeezed_state( r_d, phi_d, r_s, phi_s, basis="gaussian", hbar=hbar ) a = r_d * np.exp(1j * phi_d) means_expected = np.array([[a.real, a.imag]]) * np.sqrt(2 * hbar) cov_expected = (hbar / 2) * np.array( [ [ np.cosh(2 * r_s) - np.cos(phi_s) * np.sinh(2 * r_s), -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s), ], [ -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s), np.cosh(2 * r_s) + np.cos(phi_s) * np.sinh(2 * r_s), ], ] ) assert np.allclose(means, means_expected, atol=tol, rtol=0) assert np.allclose(cov, cov_expected, atol=tol, rtol=0) @pytest.mark.parametrize("r_d, phi_d, r_s, phi_s", zip(R_D, PHI_D, R, PHI)) def test_displaced_squeezed_state_fock(self, r_d, phi_d, r_s, phi_s, hbar, cutoff, tol): """test displaced squeezed state returns correct Fock basis state vector""" state = utils.displaced_squeezed_state( r_d, phi_d, r_s, phi_s, basis="fock", fock_dim=cutoff, hbar=hbar ) a = r_d * np.exp(1j * phi_d) if r_s == 0: pytest.skip("test only non-zero squeezing") n = np.arange(cutoff) gamma = a * np.cosh(r_s) + np.conj(a) * np.exp(1j * phi_s) * np.sinh(r_s) coeff = np.diag( (0.5 * np.exp(1j * phi_s) * np.tanh(r_s)) ** (n / 2) / np.sqrt(fac(n) * np.cosh(r_s)) ) expected = H(gamma / np.sqrt(np.exp(1j * phi_s) * np.sinh(2 * r_s)), coeff) expected *= np.exp( -0.5 * np.abs(a) ** 2 - 0.5 * np.conj(a) ** 2 * np.exp(1j * phi_s) * np.tanh(r_s) ) assert np.allclose(state, expected, atol=tol, rtol=0) @pytest.mark.parametrize("r_d, phi_d, phi_s", zip(R_D, PHI_D, PHI)) def test_displaced_squeezed_fock_no_squeezing(self, r_d, phi_d, phi_s, hbar, cutoff, tol): """test displaced squeezed state returns coherent state when there is no squeezing""" state = utils.displaced_squeezed_state( r_d, phi_d, 0, phi_s, basis="fock", fock_dim=cutoff, hbar=hbar ) a = r_d * np.exp(1j * phi_d) n = np.arange(cutoff) expected = np.exp(-0.5 * np.abs(a) ** 2) * a ** n / np.sqrt(fac(n)) assert np.allclose(state, expected, atol=tol, rtol=0) @pytest.mark.parametrize("r, phi", zip(R, PHI)) def test_displaced_squeezed_fock_no_displacement(self, r, phi, hbar, cutoff, tol): """test displaced squeezed state returns squeezed state when there is no displacement""" state = utils.displaced_squeezed_state( 0, 0, r, phi, basis="fock", fock_dim=cutoff, hbar=hbar ) n = np.arange(cutoff) kets = (np.sqrt(fac(2 * (n // 2))) / (2 ** (n // 2) * fac(n // 2))) * ( -np.exp(1j * phi) * np.tanh(r) ) ** (n // 2) expected = np.where(n % 2 == 0, np.sqrt(1 / np.cosh(r)) * kets, 0) assert np.allclose(state, expected, atol=tol, rtol=0) def test_fock_state(self): """test correct fock state returned""" n = 3 cutoff = 10 state = utils.fock_state(n, fock_dim=cutoff) assert np.all(state == np.eye(1, cutoff, n)) @pytest.mark.parametrize("a, cutoff", [(0.212, 10), (4, 50)]) def test_even_cat_state(self, a, cutoff, tol): """test correct even cat state returned""" p = 0 state = utils.cat_state(a, 0, p, fock_dim=cutoff) # For the analytic expression, cast the integer parameter to float so # that there's no overflow a = float(a) n = np.arange(cutoff) expected = np.exp(-0.5 * np.abs(a) ** 2) * a ** n / np.sqrt(fac(n)) + np.exp( -0.5 * np.abs(-a) ** 2 ) * (-a) ** n / np.sqrt(fac(n)) expected /= np.linalg.norm(expected) assert np.allclose(state, expected, atol=tol, rtol=0) @pytest.mark.parametrize("a, cutoff", [(0.212, 10), (4, 50)]) def test_odd_cat_state(self, a, cutoff, tol): """test correct odd cat state returned""" p = 1 state = utils.cat_state(a, 0, p, fock_dim=cutoff) # For the analytic expression, cast the integer parameter to float so # that there's no overflow a = float(a) n = np.arange(cutoff) expected = np.exp(-0.5 * np.abs(a) ** 2) * a ** n / np.sqrt(fac(n)) - np.exp( -0.5 * np.abs(-a) ** 2 ) * (-a) ** n / np.sqrt(fac(n)) expected /= np.linalg.norm(expected) assert np.allclose(state, expected, atol=tol, rtol=0) # =================================================================================== # Random matrix tests # =================================================================================== class TestRandomMatrices: """Unit tests for random matrices""" @pytest.fixture def modes(self): """Number of modes to use when creating matrices""" return 3 @pytest.mark.parametrize("pure_state", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_covariance_square(self, modes, hbar, pure_state, block_diag): """Test that a random covariance matrix is the right shape""" V = utils.random_covariance(modes, hbar=hbar, pure=pure_state, block_diag=block_diag) assert np.all(V.shape == np.array([2 * modes, 2 * modes])) @pytest.mark.parametrize("pure_state", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_covariance_symmetric(self, modes, hbar, pure_state, tol, block_diag): """Test that a random covariance matrix is symmetric""" V = utils.random_covariance(modes, hbar=hbar, pure=pure_state, block_diag=block_diag) assert np.allclose(V.T, V, atol=tol, rtol=0) @pytest.mark.parametrize("pure_state", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_covariance_valid(self, modes, hbar, pure_state, tol, block_diag): """Test that a random covariance matrix satisfies the uncertainty principle V+i hbar O/2 >=0""" V = utils.random_covariance(modes, hbar=hbar, pure=pure_state, block_diag=block_diag) idm = np.identity(modes) omega = np.concatenate( (np.concatenate((0 * idm, idm), axis=1), np.concatenate((-idm, 0 * idm), axis=1)), axis=0, ) eigs = np.linalg.eigvalsh(V + 1j * (hbar / 2) * omega) eigs[np.abs(eigs) < tol] = 0 assert np.all(eigs >= 0) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_covariance_pure(self, modes, hbar, tol, block_diag): """Test that a pure random covariance matrix has correct purity""" V = utils.random_covariance(modes, hbar=hbar, pure=True, block_diag=block_diag) det = np.linalg.det(V) - (hbar / 2) ** (2 * modes) assert np.allclose(det, 0, atol=tol, rtol=0) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_covariance_mixed(self, modes, hbar, tol, block_diag): """Test that a mixed random covariance matrix has correct purity""" V = utils.random_covariance(modes, hbar=hbar, pure=False, block_diag=block_diag) det = np.linalg.det(V) - (hbar / 2) ** (2 * modes) assert not np.allclose(det, 0, atol=tol, rtol=0) @pytest.mark.parametrize("passive", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_symplectic_square(self, modes, hbar, passive, block_diag): """Test that a random symplectic matrix on is the right shape""" S = utils.random_symplectic(modes, passive=passive, block_diag=block_diag) assert np.all(S.shape == np.array([2 * modes, 2 * modes])) @pytest.mark.parametrize("passive", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_symplectic_symplectic(self, modes, hbar, passive, tol, block_diag): """Test that a random symplectic matrix is symplectic""" S = utils.random_symplectic(modes, passive=passive, block_diag=block_diag) idm = np.identity(modes) omega = np.concatenate( (np.concatenate((0 * idm, idm), axis=1), np.concatenate((-idm, 0 * idm), axis=1)), axis=0, ) assert np.allclose(S @ omega @ S.T, omega, atol=tol, rtol=0) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_symplectic_passive_orthogonal(self, modes, hbar, tol, block_diag): """Test that a passive random symplectic matrix is orthogonal""" S = utils.random_symplectic(modes, passive=True, block_diag=block_diag) assert np.allclose(S @ S.T, np.identity(2 * modes), atol=tol, rtol=0) @pytest.mark.parametrize("block_diag", [True, False]) def test_random_symplectic_active_not_orthogonal(self, modes, hbar, tol, block_diag): """Test that an active random symplectic matrix is not orthogonal""" S = utils.random_symplectic(modes, passive=False, block_diag=block_diag) assert not np.allclose(S @ S.T,
np.identity(2 * modes)
numpy.identity
# Copyright 2020 resspect software # Author: <NAME> # # created on 23 March 2020 # # Licensed GNU General Public License v3.0; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.gnu.org/licenses/gpl-3.0.en.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import astropy as ap import numpy as np import pandas as pd from astropy.cosmology import Planck15, Flatw0waCDM from astropy.cosmology import w0waCDM from astropy import constants as const __all__ = ['assign_cosmo', 'fish_deriv_m', 'fisher_results', 'column_deriv_m', 'update_matrix', 'find_most_useful', 'compare_two_fishers'] def assign_cosmo(cosmo, model=[70, 0.3, 0.7, -0.9, 0.0]): """Define a new cosmology model. Parameters ---------- cosmo: astropy.cosmology Cosmology Object Assumes original cosmology was astropy.cosmology.w0waCDM. model: list (optional) Cosmology parameters: [H0, Om, Ode, w0, wa]. Default is [70, 0.3, 0.7, -0.9, 0.0]. Hard code Ob0 (Omega baryons) = 0.022 Returns ------- newcosmo: astropy.cosmology Cosmology Object New Cosmology Object with updated cosmology parameters """ ob0=0.022 om0=model[1] ode0 =model[2] newcosmo = cosmo.clone(name='temp cosmo', H0=model[0], Ob0=ob0, Om0=om0, Ode0=ode0, w0=model[3], wa=model[4]) return newcosmo def fish_deriv_m(redshift, model, step, screen=False): """Calculates the derivatives and the base function at given redshifts. Parameters ---------- redshift: float or list Redshift where derivatives will be calculated. model: list List of cosmological model parameters. Order is [H0, Om, Ode, w0, wa]. step: list List of steps the cosmological model parameter will take when determining the derivative. If a given entry is zero, that parameter will be kept constant. Length must match the number of parameters in "model" variable. screen: bool (optional) Print debug options to screen. Default is False. Returns ------- m: list List of theoretical distance modulus (mu) at a given redshift from the base cosmology. m_deriv: list [len(redshift), len(model)] List of parameter derivatives of the likelihood function at given redshifts. """ Ob0=0.022 Om0=model[1] Ode0 =model[2] cosmo = w0waCDM(model[0], Ob0, Om0, Ode0, model[3],model[4]) cosmo=assign_cosmo(cosmo, model) m = [] m_deriv = [] c = const.c.to('km/s') base_theory = cosmo.distmod(redshift) m = base_theory.value step_inds = np.where(step)[0] # look for non-zero step indices deriv = np.zeros((len(base_theory), len(model))) if (step_inds.size==0): print('No steps taken, abort') exit else: if screen: print('\n') print('Computing Fisher derivatives...') for i, stepp in enumerate(step_inds): if screen: print('we are stepping in :', model[stepp], ' with step size', step[stepp]) cosmo = assign_cosmo(cosmo, model) theory = np.zeros((len(base_theory),2)) for count,j in enumerate([-1,1]): tempmodel = list(model) tempmodel[stepp] = model[stepp] + j*step[stepp] c = const.c.to('km/s') cosmo = assign_cosmo(cosmo, tempmodel) tmp = cosmo.distmod(redshift) theory[:,count] = tmp deriv[:,stepp] = (theory[:,1] - theory[:,0])/(2.*step[stepp]) m_deriv = deriv return m, m_deriv def fisher_results(redshift, mu_err): """Computes the Fisher Matrix. Assumes we only care about Om and w0. TBD: make stepvec an input. TBD: Priors as inputs? Parameters ---------- redshift: list [float] Redshift. mu_err: list [float] Error in distance modulus. Returns ------- sigma: list Error/Standard deviation of Om and w0, respectively. covmat: np.array [2, 2] Covariance matrix of Om and w0. Om is first row, w0 is second. """ if any(np.array(redshift) < 0): raise ValueError('Redshift must be greater than zero! Galaxies must be moving away.') stepvec = np.array([0, 0.001, 0.00, 0.1, 0., 0.0, 0.0, 0.0]) model = [70., 0.3, 0.7, -1.0, 0.] names = ['hubble', 'omega_m', 'omega_de', 'w0', 'wa'] step_inds = np.where(stepvec)[0] fishermu, deriv = fish_deriv_m(redshift, model, stepvec) cov = np.diag(mu_err**2) inv_cov = np.diag(1./mu_err**2.) # Initialising the Fisher Matrix FM = np.zeros((len(step_inds), len(step_inds), len(mu_err) )) # Compute the Fisher matrix for i in range(len(step_inds)): # loop over variables for j in range(len(step_inds)): # loop over variables for k in range(len(redshift)): # loop over redshifts invcov = inv_cov[k,k] FM[i,j,k] = np.dot(np.dot(deriv[k, step_inds[i]], invcov), deriv[k, step_inds[j]]) # sum over the redshift direction fishmat = np.sum(FM,axis=2) # Compute the prior matrix prior_vec = np.array([0.1, 0.02, 0.0006, 0.2, 0.2]) priormat = np.diag(1./prior_vec[step_inds]**2.) final_FM = fishmat + priormat covmat = np.linalg.inv(final_FM) sigma = np.sqrt(covmat.diagonal()) return sigma, covmat def column_deriv_m(redshift, mu_err, model, step): """Calculate a column derivative of your model. Define a matrix P such that P_ik = 1/sigma_i del(M(i, params)/del(param_k) and M=model. This column matrix holds k constant. Parameters ---------- redshift: float or list Redshift. mu_err: float or list Error in distance modulus. model: list List of cosmological model parameters. Order is [H0, om, ol, w0, wa]. step: list List of steps the cosmological model paramter will take when determining the derivative. If a given entry is zero, that parameter will be kept constant. Length must match the number of parameters in "model" variable. Returns ------- m: list List of theoretical distance modulus (mu) at a given redshift from the base cosmology. m_deriv: list List of derivatives for one parameter of the likelihood function at given redshifts. """ Ob0=0.022 Om0=model[1] Ode0 =model[2] cosmo = w0waCDM(model[0], Ob0, Om0, Ode0, model[3],model[4]) cosmo=assign_cosmo(cosmo, model) m = [] m_deriv = [] c = const.c.to('km/s') base_theory = cosmo.distmod(redshift) m = base_theory.value step_inds = np.where(step)[0] # look for non-zero step indices deriv = np.zeros(len(model)) if (step_inds.size==0): print('No steps taken, abort') exit else: for i, stepp in enumerate(step_inds): cosmo = assign_cosmo(cosmo, model) theory = np.zeros((1,2)) for count,j in enumerate([-1,1]): tempmodel = list(model) tempmodel[stepp] = model[stepp] + j*step[stepp] c = const.c.to('km/s') cosmo = assign_cosmo(cosmo, tempmodel) tmp = cosmo.distmod(redshift) theory[:,count] = tmp.value deriv[stepp] = (theory[:,1] - theory[:,0])/(2.*step[stepp]) m_deriv = 1.0/mu_err * deriv return m, m_deriv def update_matrix(redshift, mu_err, covmat): """Update matrix calculated from Hees et al (2019). https://ui.adsabs.harvard.edu/abs/2019ApJ...880...87H/abstract How much the Fisher Matrix changed given a new set of observations. TBD: make stepvec an input. Parameters ---------- redshift: float or list Redshift. mu_err: float or list Error in distance modulus. covmat: np.array Covariance matrix from running the full Fisher Matrix analysis. Returns ------- u: np.array (2, 2) Update to the Fisher Matrix covariance matrix given new observations. """ stepvec =
np.array([0, 0.001, 0.00, 0.1, 0.])
numpy.array
# -*- coding: utf-8 -*- """ Tests for abagen.correct module """ import itertools import numpy as np import pandas as pd import pytest import scipy.stats as sstats from abagen import allen, correct, io from abagen.utils import flatten_dict @pytest.fixture(scope='module') def donor_expression(testfiles, atlas): return allen.get_expression_data(atlas['image'], atlas['info'], exact=False, return_donors=True, donors=['12876', '15496']) def test__unpack_tuple(): assert correct._unpack_tuple((3,)) == 3 assert correct._unpack_tuple((3, 3)) == (3, 3) assert correct._unpack_tuple([2]) == 2 assert correct._unpack_tuple([2, 4]) == [2, 4] assert correct._unpack_tuple(np.array([3])) == 3 assert np.all(correct._unpack_tuple(np.array([3, 3])) == [3, 3]) def test__batch(): rs = np.random.RandomState(1234) # p-values for ANOVA should all be ~0 (large group differences) before # batch correction y = [rs.normal(size=(100, 1000)) + f for f in [5, 0, 0]] assert np.allclose(sstats.f_oneway(*y)[1], 0) # F-values for ANOVA should all be ~0 (no group differences) after batch # correction; p-values returned here are sometimes NaN so not a good test out = correct._batch_correct(y) assert np.allclose(sstats.f_oneway(*out)[0], 0) # mean expressions after correction should be ~equal assert np.allclose([o.mean() for o in out], 1.24871965683026) with pytest.raises(ValueError): correct._batch_correct([y[0]]) def test__rescale(): rs = np.random.RandomState(1234) y = rs.normal(size=(100, 1000)) + 10 out = correct._rescale(y) # default max = 1, min =0 assert np.allclose(out.max(axis=0), 1) and np.allclose(out.min(axis=0), 0) # can specify alternative min/max out = correct._rescale(y, low=5, high=6) assert np.allclose(out.max(axis=0), 6) and np.allclose(out.min(axis=0), 5) # different axis works, too! out = correct._rescale(y, axis=1) assert np.allclose(out.max(axis=1), 1) and np.allclose(out.min(axis=1), 0) @pytest.mark.parametrize('a', [0, 1]) def test__rs(a): rs = np.random.RandomState(1234) # create an array with a pretty ridiculous outlier effect to try and fix y = rs.normal(size=(100, 1000)) y[0] += 1000 y[:, 0] += 1000 out = correct._rs(y, axis=a) # max will always be less than one, min will always be greater than zero assert np.all(out.max(axis=a) <= 1) and np.all(out.min(axis=a) >= 0) # we should have reduced skewness / kurtosis compared to the original assert np.all(sstats.skew(out, axis=a) < sstats.skew(y, axis=a)) assert np.all(sstats.kurtosis(out, axis=a) < sstats.kurtosis(y, axis=a)) # this is a weird test; we're gonna bin the data at 0.2 intervals and make # sure no bins are empty. if one is something probably went wrong, right? for low in np.arange(0, 1, 0.2): hi = low + 0.2 + np.spacing(1) # include 1 assert np.all(np.sum(
np.logical_and(out >= low, out < hi)
numpy.logical_and
import pandas as pd import numpy as np import sklearn as sk import os import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix from sklearn.model_selection import StratifiedShuffleSplit from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import OneHotEncoder, LabelBinarizer, StandardScaler from data_preparation import data_reader, save_data, load_data import periodictable as pt import matplotlib import re from mendeleev import elements as el from numpy.linalg import norm from mendeleev import get_table # from mendeleev.fetch import fetch_table pd.options.mode.chained_assignment = None matplotlib.use('TKAgg') pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # To initialize the periodic elemental table for the further calculation element_dict = {} for i, j in enumerate(pt.elements): element_dict.update({'{}'.format(i): j}) element_df = get_table('elements') e_conf = element_df['electronic_configuration'] def stratified_data(raw_df): # data = raw_df.iloc[:, [i for i in range(28, 108)] + [24, 20, 21, 22, 23]] data = raw_df data.loc[:, 'YEAR_cat'] = np.ceil( (data.loc[:, 'Year']-data.loc[:, 'Year'].min()+1)/ (data.loc[:, 'Year'].max()-data.loc[:, 'Year'].min()+1)*5 ) data.loc[:, 'Na_cat'] = np.ceil(data.loc[:, '11'] / data.loc[:, '11'].max()*5) return data def stratify_split(data_cat_added): split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(data_cat_added, data_cat_added['Na_cat']): strat_train_data = data_cat_added.loc[train_index] strat_test_data = data_cat_added.loc[test_index] # for set in (strat_train_data, strat_test_data): # set.drop(['Na_cat'], axis=1, inplace=True) # set.drop(['Year'], axis=1, inplace=True) return strat_train_data, strat_test_data class DataframeSelector(BaseEstimator, TransformerMixin): # transform the data from pd.df to array def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X, y=None): return X[self.attribute_names].values class CombinedAttributesAdderNBO(BaseEstimator, TransformerMixin): # ADD NBO ratio def __init__(self, X_list, add_total_alkali=True, ): self.add_total_alkali = add_total_alkali self.X_list = np.array(X_list).astype('object') def fit(self, X, y=None): return self def transform(self, X, y=None): Li = np.where(self.X_list == '3')[0][0] # (array([i], dtype=int64))[0][0] Na = np.where(self.X_list == '11')[0][0] K = np.where(self.X_list == '19')[0][0] Rb = np.where(self.X_list == '37')[0][0] Cs = np.where(self.X_list == '55')[0][0] Mg = np.where(self.X_list == '12')[0][0] Ca = np.where(self.X_list == '20')[0][0] Sr = np.where(self.X_list == '38')[0][0] Ba = np.where(self.X_list == '56')[0][0] Si = np.where(self.X_list == '14')[0][0] Al = np.where(self.X_list == '13')[0][0] B = np.where(self.X_list == '5')[0][0] if self.add_total_alkali: NBO_T_temp = (X[:, Li] + X[:, Na] + X[:, K] + X[:, Rb] +X[:, Cs] + 2*X[:, Mg] + 2*X[:, Ca] + 2*X[:, Sr] + 2*X[:, Ba] -X[:, Al]-X[:, B])/(X[:, Si]+X[:, Al]+X[:, B]) NBO_T = np.where(NBO_T_temp < 0, 0, NBO_T_temp) return np.c_[X, NBO_T] else: return X class CombinedAttributesAdderAtomicNumber(BaseEstimator, TransformerMixin): # the order of features added is max, min, mean, std, mode1, mode2 def __init__(self, X_list, el_list, add_atomic_number=True): self.add_atomic_number = add_atomic_number self.X_list = np.array(X_list).astype('object') self.el_list = el_list self.atomic_number_list = np.array( [ self.el_list[i].atomic_number for i in range(len(self.el_list)) ] ) def fit(self, X, y=None): return self def transform(self, X, y=None): if self.add_atomic_number: # x[i, :80] select all elements except other features atomic_number_max = np.array( [ int(self.X_list[max(np.where(X[i, :80] > 0)[0])]) for i in range(X.shape[0]) ] ) atomic_number_min = np.array( [ int(self.X_list[min(np.where(X[i, :80] > 0)[0])]) for i in range(X.shape[0]) ] ) atomic_number_mean = np.matmul(X[:, :80], self.atomic_number_list) atomic_number_std = np.array( [ np.matmul(X[i, :80], abs(self.atomic_number_list-atomic_number_mean[i])) for i in range(X.shape[0]) ] ) atomic_mode_1 = np.array( [ self.atomic_number_list[np.where(X[i, :80]==np.sort(X[i, :80])[-1])[0][0]] for i in range(X.shape[0]) ] ) atomic_mode_2 = np.array( [ self.atomic_number_list[np.where(X[i, :80]==np.sort(X[i, :80])[-2])[0][0]] for i in range(X.shape[0]) ] ) return np.c_[X, atomic_number_max, atomic_number_min, atomic_number_mean, atomic_number_std, atomic_mode_1, atomic_mode_2] else: return X ''' the order of atomic property we used is: 'atomic_number', 'atomic_radius', 'mendeleev_number', 'atomic_weight', 'melting_point', 'period', 'series_id', 'covalent_radius_cordero', 'en_allen', ''' class CombinedAttributesAdderAtomicProperty(BaseEstimator, TransformerMixin): # the order of features added is max, min, mean, std, mode1, mode2 def __init__(self, X_list, property_id, mendeleev_df, add_atomic_property=True): self.add_atomic_property = add_atomic_property self.X_list = np.array(X_list).astype('object') # in X_list, the number of H is '1' self.mendeleev_df = mendeleev_df self.property_id = property_id self.atomic_property_list_full = self.mendeleev_df[self.property_id].fillna(method='pad') self.atomic_property_list = self.atomic_property_list_full.iloc[ self.X_list.astype('int')-1 # the row start with 0, e.g. row number of H is zero ] def fit(self, X, y=None): return self def transform(self, X, y=None): if self.add_atomic_property: # x[i, :80] select all elements except other features atomic_property_max = np.array( [ self.atomic_property_list.iloc[ np.where(X[i, :80] > 0)[0] ].max() for i in range(X.shape[0]) ] ) atomic_property_min = np.array( [ self.atomic_property_list.iloc[ np.where(X[i, :80] > 0)[0] ].min() for i in range(X.shape[0]) ] ) atomic_property_mean = np.matmul(X[:, :80], self.atomic_property_list) atomic_property_std = np.array( [ np.matmul(X[i, :80], abs(self.atomic_property_list - atomic_property_mean[i])) for i in range(X.shape[0]) ] ) atomic_mode_1 = np.array( [ self.atomic_property_list.iloc[np.where(X[i, :80] == np.sort(X[i, :80])[-1])[0][0]] for i in range(X.shape[0]) ] ) atomic_mode_2 = np.array( [ self.atomic_property_list.iloc[np.where(X[i, :80] == np.sort(X[i, :80])[-2])[0][0]] for i in range(X.shape[0]) ] ) return np.c_[X, atomic_property_max, atomic_property_min, atomic_property_mean, atomic_property_std, atomic_mode_1, atomic_mode_2] else: return X ''' CombinedAttributesAdderElectronProperty property id for electron configuration is 's', 'd', 'p', 'f', if filled=True, return valence electrons, if filled=False, return unfilled states ''' class CombinedAttributesAdderElectronProperty(BaseEstimator, TransformerMixin): def __init__(self, X_list, property_id, mendeleev_df, add_electron_property=True, filled=True): self.add_electron_property = add_electron_property self.filled = filled self.X_list = np.array(X_list).astype('object') # in X_list, the number of H is '1' self.mendeleev_df = mendeleev_df self.e_conf = mendeleev_df['electronic_configuration'] self.property_id = property_id self.electron_dict = {'s': 2, 'd': 10, 'p': 6, 'f': 14} self.electron_list_full = [] for element in self.e_conf: if re.findall(r'{}'.format(self.property_id), element): if re.findall(r'{}\d+'.format(self.property_id), element): self.electron_list_full.append( int(re.findall(r'{}\d+'.format(self.property_id), element)[0][1:]) ) else: self.electron_list_full.append(1) else: self.electron_list_full.append(0) self.electron_list = np.array(self.electron_list_full)[self.X_list.astype('int')-1] self.unfilled_electron_list = self.electron_dict.get(self.property_id)-self.electron_list def fit(self, X, y=None): return self def transform(self, X, y=None): if self.add_electron_property: # x[i, :80] select all elements except other features if self.filled: electron_property_max = np.array( [ self.electron_list[ np.where(X[i, :80] > 0)[0] ].max() for i in range(X.shape[0]) ] ) electron_property_min = np.array( [ self.electron_list[ np.where(X[i, :80] > 0)[0] ].min() for i in range(X.shape[0]) ] ) electron_property_mean = np.matmul(X[:, :80], self.electron_list) electron_property_std = np.array( [ np.matmul(X[i, :80], abs(self.electron_list - electron_property_mean[i])) for i in range(X.shape[0]) ] ) electron_mode_1 = np.array( [ self.electron_list[np.where(X[i, :80] == np.sort(X[i, :80])[-1])[0][0]] for i in range(X.shape[0]) ] ) electron_mode_2 = np.array( [ self.electron_list[np.where(X[i, :80] == np.sort(X[i, :80])[-2])[0][0]] for i in range(X.shape[0]) ] ) return np.c_[X, electron_property_max, electron_property_min, electron_property_mean, electron_property_std, electron_mode_1, electron_mode_2] else: electron_property_max = np.array( [ self.unfilled_electron_list[ np.where(X[i, :80] > 0)[0] ].max() for i in range(X.shape[0]) ] ) electron_property_min = np.array( [ self.unfilled_electron_list[ np.where(X[i, :80] > 0)[0] ].min() for i in range(X.shape[0]) ] ) electron_property_mean = np.matmul(X[:, :80], self.unfilled_electron_list) electron_property_std = np.array( [ np.matmul(X[i, :80], abs(self.unfilled_electron_list - electron_property_mean[i])) for i in range(X.shape[0]) ] ) electron_mode_1 = np.array( [ self.unfilled_electron_list[np.where(X[i, :80] == np.sort(X[i, :80])[-1])[0][0]] for i in range(X.shape[0]) ] ) electron_mode_2 = np.array( [ self.unfilled_electron_list[np.where(X[i, :80] == np.sort(X[i, :80])[-2])[0][0]] for i in range(X.shape[0]) ] ) return np.c_[X, electron_property_max, electron_property_min, electron_property_mean, electron_property_std, electron_mode_1, electron_mode_2] else: return X ''' add Lp norm features using np.linarg.norm(). p_list = [0, 2, 3, 5, 7, 10] ''' class CombinedAttributesAdderLpNorm(BaseEstimator, TransformerMixin): def __init__(self, X_list, p_list, add_Lp_Norm=True): self.X_list = np.array(X_list).astype('object') # in X_list, the number of H is '1' self.p_list = p_list self.add_Lp_Norm = add_Lp_Norm def fit(self, X, y=None): return self def transform(self, X, y=None): if self.add_Lp_Norm: Lp_Norm = np.zeros([X.shape[0], len(self.p_list)]) for num, i in enumerate(self.p_list): Lp_Norm[:, num] = norm(X[:, :80], i, axis=1) return np.c_[X, Lp_Norm] else: return X class CombinedAttributesAdderOrbitalOccupation(BaseEstimator, TransformerMixin): def __init__(self, X_list, mendeleev_df, add_orbital_occupation=True): self.X_list = np.array(X_list).astype('object') # in X_list, the number of H is '1' self.add_orbital_occupation = add_orbital_occupation self.mendeleev_df = mendeleev_df self.property_ids = ['s', 'p', 'd', 'f'] self.e_conf = mendeleev_df['electronic_configuration'] self.electron_list_s_full = [] self.electron_list_p_full = [] self.electron_list_d_full = [] self.electron_list_f_full = [] for list, id in zip( ( self.electron_list_s_full, self.electron_list_p_full, self.electron_list_d_full, self.electron_list_f_full ), self.property_ids ): for element in self.e_conf: if re.findall(r'{}'.format(id), element): if re.findall(r'{}\d+'.format(id), element): list.append( int(re.findall(r'{}\d+'.format(id), element)[0][1:]) ) else: list.append(1) else: list.append(0) self.electron_list_s = np.array(self.electron_list_s_full)[self.X_list.astype('int')-1] self.electron_list_p = np.array(self.electron_list_p_full)[self.X_list.astype('int')-1] self.electron_list_d = np.array(self.electron_list_d_full)[self.X_list.astype('int')-1] self.electron_list_f = np.array(self.electron_list_f_full)[self.X_list.astype('int')-1] self.electron_list_total = self.electron_list_s + self.electron_list_p + \ self.electron_list_d + self.electron_list_f def fit(self, X, y=None): return self def transform(self, X, y=None): if self.add_orbital_occupation: s = np.matmul(X[:, :80], self.electron_list_s)/\ np.matmul(X[:, :80], self.electron_list_total) p = np.matmul(X[:, :80], self.electron_list_p)/\ np.matmul(X[:, :80], self.electron_list_total) d = np.matmul(X[:, :80], self.electron_list_d)/\ np.matmul(X[:, :80], self.electron_list_total) f = np.matmul(X[:, :80], self.electron_list_f)/\ np.matmul(X[:, :80], self.electron_list_total) return np.c_[X, s, p, d, f] else: return X class NumAttributesDropper(BaseEstimator, TransformerMixin): def __init__(self, X_list, drop_element_conc=True): self.X_list =
np.array(X_list)
numpy.array
from smt_solver.tq_solver.linear_solver.alebgra_utils.lu_factorization import LUFactorization import numpy as np class TestLUFactorization: MATRIX1 = np.array([[3., 1., 0.], [1., 1., 0.], [4., 3., 1.]]) @staticmethod def test_generate_pivot_list(): matrix = TestLUFactorization.MATRIX1 pivot_list = LUFactorization.generate_pivot_list(matrix) assert np.all(LUFactorization.pivot_array(pivot_list, matrix) == np.array([[4, 3, 1], [3, 1, 0], [1, 1, 0]])) @staticmethod def test_pivoting(): matrix = np.copy(TestLUFactorization.MATRIX1) pivot_list = LUFactorization.generate_pivot_list(matrix) assert np.all(LUFactorization.pivot_array(pivot_list, matrix) ==
np.array([[4, 3, 1], [3, 1, 0], [1, 1, 0]])
numpy.array
import numpy as np, os import pickle from code.train_data_preprocessing.vectorize_dataset import get_vectorized_dataset from code.dataset_preparation.data_prep_util import replace_punctuations from code.train_data_preprocessing.preprocess_util import lemmatizer, get_candidate_query_phrases def get_all_available_actions(activity_name, node_DB, para_DB): action_desc_set = set() action_names = set() for action_desc in node_DB['action']: if action_desc.startswith(activity_name+'->'): action_desc_set.add(action_desc) if len(action_desc_set) > 0: for action_desc in action_desc_set: for action_id in node_DB['action'][action_desc]: for para in para_DB[action_id]: if para['Type'] == 'ACTION': action_names.add(action_desc +'#'+ para['description']) return action_names def add_to_vocab(phrase, vocab_to_id, id_to_vocab): for wd in replace_punctuations(phrase).lower().split(): wd = lemmatizer.lemmatize(wd) if wd not in vocab_to_id: vocab_to_id[wd] = len(vocab_to_id) id_to_vocab[vocab_to_id[wd]] = wd def generate_pos_neg_examples(data, vocab_to_id, id_to_vocab, node_DB, para_DB, p_DB, update_vocab): if update_vocab: # add wild card .... add_to_vocab('null_action', vocab_to_id, id_to_vocab) add_to_vocab('null_para', vocab_to_id, id_to_vocab) add_to_vocab('null_val', vocab_to_id, id_to_vocab) add_to_vocab('stop', vocab_to_id, id_to_vocab) data_query_DB = [] for q_inst, path_inst_set in data.items(): act_path_seq = [] para_path_seq = [] all_pos_actions = set() for path_seq_inst in path_inst_set: for action, _ in path_seq_inst: all_pos_actions.add(action) un_inst_para_name_set = set() # positive training set ... for path_seq_inst in path_inst_set: for pos_action, pos_para_dict in path_seq_inst: ''' For action intent learning ...''' pos_action_name = pos_action.split("#")[1].strip() # update vocab if update_vocab: add_to_vocab(pos_action_name, vocab_to_id, id_to_vocab) inst_para_name_set = set(pos_para_dict.keys()) if pos_action in p_DB: pos_para_name_set = set(p_DB[pos_action].keys()) else: pos_para_name_set = set() un_inst_para_name_set = un_inst_para_name_set.union(pos_para_name_set.difference(inst_para_name_set)) # update vocab if update_vocab: for pos_para_name in pos_para_name_set: add_to_vocab(pos_para_name, vocab_to_id, id_to_vocab) curr_node = pos_action.split("->")[0].strip() # get all negative actions ... neg_act_list1 = [] # other available actions in curr_node ... all_actions = get_all_available_actions(curr_node, node_DB, para_DB) neg_action_set = all_actions.difference(all_pos_actions) if len(neg_action_set) == 0: neg_action_set.add(curr_node + '#null_action') for neg_action in neg_action_set: neg_action_name = neg_action.split("#")[1].strip() # update vocab if update_vocab: add_to_vocab(neg_action_name, vocab_to_id, id_to_vocab) neg_para_name_set = [] if neg_action in p_DB: for neg_para_name, _ in p_DB[neg_action].items(): neg_para_name_set.append(neg_para_name) if len(neg_para_name_set) == 0: neg_para_name_set.append('null_para') # update vocab if update_vocab: for neg_para_name in neg_para_name_set: add_to_vocab(neg_para_name, vocab_to_id, id_to_vocab) neg_act_list1.append((neg_action, neg_para_name_set)) act_path_seq.append((curr_node, pos_action, pos_para_name_set, neg_act_list1)) ''' For parameter value learning ... ''' for pos_para_name, pos_para_tup in pos_para_dict.items(): pos_para_val = pos_para_tup[0] pos_para_type = pos_para_tup[1] pos_para_sample_val = pos_para_tup[2] if pos_para_type == 0: all_fixed_val = get_candidate_query_phrases(q_inst) # get candidate noun phrases else: all_fixed_val = set([fixed_val for fixed_val, _, para_type in p_DB[pos_action][pos_para_name]]) neg_para_val_set = all_fixed_val.difference({pos_para_val}) if update_vocab: add_to_vocab(pos_para_name, vocab_to_id, id_to_vocab) add_to_vocab(pos_para_val, vocab_to_id, id_to_vocab) for neg_val in neg_para_val_set: add_to_vocab(neg_val, vocab_to_id, id_to_vocab) if len(neg_para_val_set) == 0: neg_para_val_set = {'null_val'} para_path_seq.append((pos_action, pos_para_name, pos_para_val, pos_para_type, pos_para_sample_val, neg_para_val_set)) add_to_vocab(q_inst.strip(), vocab_to_id, id_to_vocab) data_query_DB.append((q_inst, act_path_seq, para_path_seq, un_inst_para_name_set)) return data_query_DB def prepare_vectorized_dataset(trace_id, dataset_dump): vocab_to_id = {} id_to_vocab = {} train_data, valid_data, test_data, node_DB, para_DB, p_DB = dataset_dump # expand training dataset with pos and neg examples ... train_data_pos_neg = generate_pos_neg_examples(train_data, vocab_to_id, id_to_vocab, node_DB, para_DB, p_DB, update_vocab=True) print('pos neg example generation done for training ....') assert len(train_data_pos_neg) == len(train_data) valid_data_pos_neg = generate_pos_neg_examples(valid_data, vocab_to_id, id_to_vocab, node_DB, para_DB, p_DB, update_vocab=False) print('pos neg example generation done for valid ....') # generate dataset .. train = get_vectorized_dataset(train_data_pos_neg, vocab_to_id, p_DB) print('training data vectorized ....') valid = get_vectorized_dataset(valid_data_pos_neg, vocab_to_id, p_DB) print('valid data vectorized ....') print(np.array(train[0]).shape, '----\n') print(np.array(train[1]).shape, '----\n') print(np.array(train[2]).shape, '----\n') print('action training data shapes ----\n') for i in range(7): print(np.array(train[0][0][i]).shape, '----\n') print('para training data ..tag shapes ----\n') for i in range(9): print(np.array(train[1][0][i]).shape, '----\n') print('para training data ...match shapes ----\n') for i in range(10): print(np.array(train[2][0][i]).shape, '----\n') print('valid data stats ----\n') print(np.array(valid[0]).shape, '----\n') print(
np.array(valid[1])
numpy.array
# BSD 3-Clause License # # Copyright (c) 2021, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import annotations import numpy as np from .type_aliases import NPF, NPI __all__ = ["region", "split"] def region(low: NPF, high: NPF) -> tuple[NPF, ...]: """Compute the hyper-rectangular region parameters from given limits of integration.""" # :::::::::::::::: Shapes :::::::::::::::::: # {low, high}.shape [ domain_dim, events ] # centers.shape [ domain_dim, regions_events ] # halfwidth.shape [ domain_dim, regions_events ] # vol.shape [ regions_events ] if low.shape != high.shape: raise RuntimeError( "Vector limits of integration must be equivalent.", low.shape, high.shape ) if low.ndim == 1: low = np.expand_dims(low, 0) high = np.expand_dims(high, 0) if low.ndim != 2: raise RuntimeError("Input limits shape not supported.") centers = (high + low) * 0.5 halfwidth = (high - low) * 0.5 vol = np.prod(2 * halfwidth, axis=0) return centers, halfwidth, vol def split(centers: NPF, halfwidth: NPF, volumes: NPF, split_dim: NPI): # centers.shape [ domain_dim, regions_events ] # split_dim.shape [ 1, regions_events ] if np.amin(split_dim) < 0 or np.amax(split_dim) >= (centers.shape[0]): raise IndexError("split dimension invalid") if split_dim.ndim < centers.ndim: split_dim = np.expand_dims(split_dim, 0) ## {center, hwidth} [ domain_dim, (regions, events) ] mask = np.zeros_like(centers, dtype=np.bool_) np.put_along_axis(mask, split_dim, True, 0) h = np.copy(halfwidth) h[mask] *= 0.5 v = np.copy(volumes) v *= 0.5 c1 = np.copy(centers) c2 = np.copy(centers) c1[mask] -= h[mask] c2[mask] += h[mask] c =
np.concatenate((c1, c2), axis=1)
numpy.concatenate
from __future__ import division import itertools import warnings import numpy as np scipy_gaussian_filter = None # expensive from .base import ndfeature, winitfeature, imgfeature from ._gradient import gradient_cython from .windowiterator import WindowIterator, WindowIteratorResult def _np_gradient(pixels): """ This method is used in the case of multi-channel images (not 2D images). The output ordering is identical to the gradient() method, returning a 2 * n_channels image with gradients in order of the first axis derivative over all the channels, then the second etc. For example, in the case of a 3D image with 2 channels, the ordering would be: I[:, 0, 0, 0] = [A_0, B_0, A_1, B_1, A_2, B_2] where A and B are the 'channel' labels (synonymous with RGB for a colour image) and 0,1,2 are the axis labels (synonymous with y,x for a 2D image). """ n_dims = pixels.ndim - 1 grad_per_dim_per_channel = [np.gradient(g, edge_order=1) for g in pixels] # Flatten out the separate dims grad_per_channel = list(itertools.chain.from_iterable( grad_per_dim_per_channel)) # Add a channel axis for broadcasting grad_per_channel = [g[None, ...] for g in grad_per_channel] # Permute the list so it is first axis, second axis, etc grad_per_channel = [grad_per_channel[i::n_dims] for i in range(n_dims)] grad_per_channel = list(itertools.chain.from_iterable(grad_per_channel)) # Concatenate gradient list into an array (the new_image) return np.concatenate(grad_per_channel, axis=0) @ndfeature def gradient(pixels): r""" Calculates the gradient of an input image. The image is assumed to have channel information on the first axis. In the case of multiple channels, it returns the gradient over each axis over each channel as the first axis. The gradient is computed using second order accurate central differences in the interior and first order accurate one-side (forward or backwards) differences at the boundaries. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array where the first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. If the image is 2-dimensional the pixels should be of type float/double (int is not supported). Returns ------- gradient : `ndarray` The gradient over each axis over each channel. Therefore, the first axis of the gradient of a 2D, single channel image, will have length `2`. The first axis of the gradient of a 2D, 3-channel image, will have length `6`, the ordering being ``I[:, 0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]``. To be clear, all the ``y``-gradients are returned over each channel, then all the ``x``-gradients. """ if (pixels.ndim - 1) == 2: # 2D Image return gradient_cython(pixels) else: return _np_gradient(pixels) @ndfeature def gaussian_filter(pixels, sigma): r""" Calculates the convolution of the input image with a multidimensional Gaussian filter. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. sigma : `float` or `list` of `float` The standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a `list`, or as a single `float`, in which case it is equal for all axes. Returns ------- output_image : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The filtered image has the same type and size as the input ``pixels``. """ global scipy_gaussian_filter if scipy_gaussian_filter is None: from scipy.ndimage import gaussian_filter as scipy_gaussian_filter output = np.empty(pixels.shape, dtype=pixels.dtype) for dim in range(pixels.shape[0]): scipy_gaussian_filter(pixels[dim], sigma, output=output[dim]) return output @winitfeature def hog(pixels, mode='dense', algorithm='dalaltriggs', num_bins=9, cell_size=8, block_size=2, signed_gradient=True, l2_norm_clip=0.2, window_height=1, window_width=1, window_unit='blocks', window_step_vertical=1, window_step_horizontal=1, window_step_unit='pixels', padding=True, verbose=False): r""" Extracts Histograms of Oriented Gradients (HOG) features from the input image. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. mode : {``dense``, ``sparse``}, optional The ``sparse`` case refers to the traditional usage of HOGs, so predefined parameters values are used. The ``sparse`` case of ``dalaltriggs`` algorithm sets ``window_height = window_width = block_size`` and ``window_step_horizontal = window_step_vertical = cell_size``. The ``sparse`` case of ``zhuramanan`` algorithm sets ``window_height = window_width = 3 * cell_size`` and ``window_step_horizontal = window_step_vertical = cell_size``. In the ``dense`` case, the user can choose values for `window_height`, `window_width`, `window_unit`, `window_step_vertical`, `window_step_horizontal`, `window_step_unit` and `padding` to customize the HOG calculation. window_height : `float`, optional Defines the height of the window. The metric unit is defined by `window_unit`. window_width : `float`, optional Defines the width of the window. The metric unit is defined by `window_unit`. window_unit : {``blocks``, ``pixels``}, optional Defines the metric unit of the `window_height` and `window_width` parameters. window_step_vertical : `float`, optional Defines the vertical step by which the window is moved, thus it controls the features' density. The metric unit is defined by `window_step_unit`. window_step_horizontal : `float`, optional Defines the horizontal step by which the window is moved, thus it controls the features' density. The metric unit is defined by `window_step_unit`. window_step_unit : {``pixels``, ``cells``}, optional Defines the metric unit of the `window_step_vertical` and `window_step_horizontal` parameters. padding : `bool`, optional If ``True``, the output image is padded with zeros to match the input image's size. algorithm : {``dalaltriggs``, ``zhuramanan``}, optional Specifies the algorithm used to compute HOGs. ``dalaltriggs`` is the implementation of [1] and ``zhuramanan`` is the implementation of [2]. cell_size : `float`, optional Defines the cell size in pixels. This value is set to both the width and height of the cell. This option is valid for both algorithms. block_size : `float`, optional Defines the block size in cells. This value is set to both the width and height of the block. This option is valid only for the ``dalaltriggs`` algorithm. num_bins : `float`, optional Defines the number of orientation histogram bins. This option is valid only for the ``dalaltriggs`` algorithm. signed_gradient : `bool`, optional Flag that defines whether we use signed or unsigned gradient angles. This option is valid only for the ``dalaltriggs`` algorithm. l2_norm_clip : `float`, optional Defines the clipping value of the gradients' L2-norm. This option is valid only for the ``dalaltriggs`` algorithm. verbose : `bool`, optional Flag to print HOG related information. Returns ------- hog : :map:`Image` or subclass or ``(X, Y, ..., Z, K)`` `ndarray` The HOG features image. It has the same type as the input ``pixels``. The output number of channels in the case of ``dalaltriggs`` is ``K = num_bins * block_size *block_size`` and ``K = 31`` in the case of ``zhuramanan``. Raises ------ ValueError HOG features mode must be either dense or sparse ValueError Algorithm must be either dalaltriggs or zhuramanan ValueError Number of orientation bins must be > 0 ValueError Cell size (in pixels) must be > 0 ValueError Block size (in cells) must be > 0 ValueError Value for L2-norm clipping must be > 0.0 ValueError Window height must be >= block size and <= image height ValueError Window width must be >= block size and <= image width ValueError Window unit must be either pixels or blocks ValueError Horizontal window step must be > 0 ValueError Vertical window step must be > 0 ValueError Window step unit must be either pixels or cells References ---------- .. [1] <NAME> and <NAME>, "Histograms of oriented gradients for human detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. .. [2] <NAME>, <NAME>. "Face detection, pose estimation and landmark localization in the wild", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012. """ # TODO: This is a temporary fix # flip axis pixels = np.rollaxis(pixels, 0, len(pixels.shape)) # Parse options if mode not in ['dense', 'sparse']: raise ValueError("HOG features mode must be either dense or sparse") if algorithm not in ['dalaltriggs', 'zhuramanan']: raise ValueError("Algorithm must be either dalaltriggs or zhuramanan") if num_bins <= 0: raise ValueError("Number of orientation bins must be > 0") if cell_size <= 0: raise ValueError("Cell size (in pixels) must be > 0") if block_size <= 0: raise ValueError("Block size (in cells) must be > 0") if l2_norm_clip <= 0.0: raise ValueError("Value for L2-norm clipping must be > 0.0") if mode == 'dense': if window_unit not in ['pixels', 'blocks']: raise ValueError("Window unit must be either pixels or blocks") window_height_temp = window_height window_width_temp = window_width if window_unit == 'blocks': window_height_temp = window_height * block_size * cell_size window_width_temp = window_width * block_size * cell_size if (window_height_temp < block_size * cell_size or window_height_temp > pixels.shape[0]): raise ValueError("Window height must be >= block size and <= " "image height") if (window_width_temp < block_size*cell_size or window_width_temp > pixels.shape[1]): raise ValueError("Window width must be >= block size and <= " "image width") if window_step_horizontal <= 0: raise ValueError("Horizontal window step must be > 0") if window_step_vertical <= 0: raise ValueError("Vertical window step must be > 0") if window_step_unit not in ['pixels', 'cells']: raise ValueError("Window step unit must be either pixels or cells") # Correct input image_data pixels = np.asfortranarray(pixels) pixels *= 255. # Dense case if mode == 'dense': # Iterator parameters if algorithm == 'dalaltriggs': algorithm = 1 if window_unit == 'blocks': block_in_pixels = cell_size * block_size window_height = np.uint32(window_height * block_in_pixels) window_width = np.uint32(window_width * block_in_pixels) if window_step_unit == 'cells': window_step_vertical = np.uint32(window_step_vertical * cell_size) window_step_horizontal = np.uint32(window_step_horizontal * cell_size) elif algorithm == 'zhuramanan': algorithm = 2 if window_unit == 'blocks': block_in_pixels = 3 * cell_size window_height = np.uint32(window_height * block_in_pixels) window_width = np.uint32(window_width * block_in_pixels) if window_step_unit == 'cells': window_step_vertical = np.uint32(window_step_vertical * cell_size) window_step_horizontal = np.uint32(window_step_horizontal * cell_size) iterator = WindowIterator(pixels, window_height, window_width, window_step_horizontal, window_step_vertical, padding) # Sparse case else: # Create iterator if algorithm == 'dalaltriggs': algorithm = 1 window_size = cell_size * block_size step = cell_size else: algorithm = 2 window_size = 3 * cell_size step = cell_size iterator = WindowIterator(pixels, window_size, window_size, step, step, False) # Print iterator's info if verbose: print(iterator) # Compute HOG hog_descriptor = iterator.HOG(algorithm, num_bins, cell_size, block_size, signed_gradient, l2_norm_clip, verbose) # TODO: This is a temporal fix # flip axis hog_descriptor = WindowIteratorResult( np.ascontiguousarray(np.rollaxis(hog_descriptor.pixels, -1)), hog_descriptor.centres) return hog_descriptor @ndfeature def igo(pixels, double_angles=False, verbose=False): r""" Extracts Image Gradient Orientation (IGO) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C = 2`` or ``C = 4`` depending on whether double angles are used. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. double_angles : `bool`, optional Assume that ``phi`` represents the gradient orientations. If this flag is ``False``, the features image is the concatenation of ``cos(phi)`` and ``sin(phi)``, thus 2 channels. If ``True``, the features image is the concatenation of ``cos(phi)``, ``sin(phi)``, ``cos(2 * phi)``, ``sin(2 * phi)``, thus 4 channels. verbose : `bool`, optional Flag to print IGO related information. Returns ------- igo : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The IGO features image. It has the same type and shape as the input ``pixels``. The output number of channels depends on the ``double_angles`` flag. Raises ------ ValueError Image has to be 2D in order to extract IGOs. References ---------- .. [1] <NAME>, <NAME> and <NAME>, "Subspace learning from image gradient orientations", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, num. 12, p. 2454--2466, 2012. """ # check number of dimensions if len(pixels.shape) != 3: raise ValueError('IGOs only work on 2D images. Expects image data ' 'to be 3D, channels + shape.') n_img_chnls = pixels.shape[0] # feature channels per image channel feat_chnls = 2 if double_angles: feat_chnls = 4 # compute gradients grad = gradient(pixels) # compute angles grad_orient = np.angle(grad[:n_img_chnls] + 1j * grad[n_img_chnls:]) # compute igo image igo_pixels = np.empty((n_img_chnls * feat_chnls, pixels.shape[1], pixels.shape[2]), dtype=pixels.dtype) if double_angles: dbl_grad_orient = 2 * grad_orient # y angles igo_pixels[:n_img_chnls] = np.sin(grad_orient) igo_pixels[n_img_chnls:n_img_chnls*2] = np.sin(dbl_grad_orient) # x angles igo_pixels[n_img_chnls*2:n_img_chnls*3] = np.cos(grad_orient) igo_pixels[n_img_chnls*3:] = np.cos(dbl_grad_orient) else: igo_pixels[:n_img_chnls] = np.sin(grad_orient) # y igo_pixels[n_img_chnls:] = np.cos(grad_orient) # x # print information if verbose: info_str = "IGO Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], n_img_chnls) info_str = "{} - Double angles are {}.\n".format( info_str, 'enabled' if double_angles else 'disabled') info_str = "{}Output image size {}W x {}H with {} channels.".format( info_str, igo_pixels.shape[2], igo_pixels.shape[1], n_img_chnls) print(info_str) return igo_pixels @ndfeature def es(pixels, verbose=False): r""" Extracts Edge Structure (ES) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C = 2``. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either an image object itself or an array where the first axis represents the number of channels. This means an N-dimensional image is represented by an N+1 dimensional array. verbose : `bool`, optional Flag to print ES related information. Returns ------- es : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = 2``. Raises ------ ValueError Image has to be 2D in order to extract ES features. References ---------- .. [1] <NAME>, <NAME>, "On representing edge structure for model matching", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001. """ # check number of dimensions if len(pixels.shape) != 3: raise ValueError('ES features only work on 2D images. Expects ' 'image data to be 3D, channels + shape.') n_img_chnls = pixels.shape[0] # feature channels per image channel feat_channels = 2 # compute gradients grad = gradient(pixels) # compute magnitude grad_abs = np.abs(grad[:n_img_chnls] + 1j * grad[n_img_chnls:]) # compute es image grad_abs = grad_abs + np.median(grad_abs) es_pixels = np.empty((pixels.shape[0] * feat_channels, pixels.shape[1], pixels.shape[2]), dtype=pixels.dtype) es_pixels[:n_img_chnls] = grad[:n_img_chnls] / grad_abs es_pixels[n_img_chnls:] = grad[n_img_chnls:] / grad_abs # print information if verbose: info_str = "ES Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], n_img_chnls) info_str = "{}Output image size {}W x {}H with {} channels.".format( info_str, es_pixels.shape[2], es_pixels.shape[1], n_img_chnls) print(info_str) return es_pixels @ndfeature def daisy(pixels, step=1, radius=15, rings=2, histograms=2, orientations=8, normalization='l1', sigmas=None, ring_radii=None, verbose=False): r""" Extracts Daisy features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C`` is the feature channels determined by the input options. Specifically, ``C = (rings * histograms + 1) * orientations``. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. step : `int`, optional The sampling step that defines the density of the output image. radius : `int`, optional The radius (in pixels) of the outermost ring. rings : `int`, optional The number of rings to be used. histograms : `int`, optional The number of histograms sampled per ring. orientations : `int`, optional The number of orientations (bins) per histogram. normalization : [ 'l1', 'l2', 'daisy', None ], optional It defines how to normalize the descriptors If 'l1' then L1-normalization is applied at each descriptor. If 'l2' then L2-normalization is applied at each descriptor. If 'daisy' then L2-normalization is applied at individual histograms. If None then no normalization is employed. sigmas : `list` of `float` or ``None``, optional Standard deviation of spatial Gaussian smoothing for the centre histogram and for each ring of histograms. The `list` of sigmas should be sorted from the centre and out. I.e. the first sigma value defines the spatial smoothing of the centre histogram and the last sigma value defines the spatial smoothing of the outermost ring. Specifying sigmas overrides the `rings` parameter by setting ``rings = len(sigmas) - 1``. ring_radii : `list` of `float` or ``None``, optional Radius (in pixels) for each ring. Specifying `ring_radii` overrides the `rings` and `radius` parameters by setting ``rings = len(ring_radii)`` and ``radius = ring_radii[-1]``. If both sigmas and ring_radii are given, they must satisfy :: len(ring_radii) == len(sigmas) + 1 since no radius is needed for the centre histogram. verbose : `bool` Flag to print Daisy related information. Returns ------- daisy : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = (rings * histograms + 1) * orientations``. Raises ------ ValueError len(sigmas)-1 != len(ring_radii) ValueError Invalid normalization method. References ---------- .. [1] <NAME>, <NAME> and <NAME>, "Daisy: An efficient dense descriptor applied to wide-baseline stereo", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010. """ from menpo.external.skimage._daisy import _daisy # Parse options if sigmas is not None and ring_radii is not None \ and len(sigmas) - 1 != len(ring_radii): raise ValueError('`len(sigmas)-1 != len(ring_radii)`') if ring_radii is not None: rings = len(ring_radii) radius = ring_radii[-1] if sigmas is not None: rings = len(sigmas) - 1 if sigmas is None: sigmas = [radius * (i + 1) / float(2 * rings) for i in range(rings)] if ring_radii is None: ring_radii = [radius * (i + 1) / float(rings) for i in range(rings)] if normalization is None: normalization = 'off' if normalization not in ['l1', 'l2', 'daisy', 'off']: raise ValueError('Invalid normalization method.') # Compute daisy features daisy_descriptor = _daisy(pixels, step=step, radius=radius, rings=rings, histograms=histograms, orientations=orientations, normalization=normalization, sigmas=sigmas, ring_radii=ring_radii) # print information if verbose: info_str = "Daisy Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], pixels.shape[0]) info_str = "{} - Sampling step is {}.\n".format(info_str, step) info_str = "{} - Radius of {} pixels, {} rings and {} histograms " \ "with {} orientations.\n".format( info_str, radius, rings, histograms, orientations) if not normalization == 'off': info_str = "{} - Using {} normalization.\n".format(info_str, normalization) else: info_str = "{} - No normalization emplyed.\n".format(info_str) info_str = "{}Output image size {}W x {}H x {}.".format( info_str, daisy_descriptor.shape[2], daisy_descriptor.shape[1], daisy_descriptor.shape[0]) print(info_str) return daisy_descriptor # TODO: Needs fixing ... @winitfeature def lbp(pixels, radius=None, samples=None, mapping_type='riu2', window_step_vertical=1, window_step_horizontal=1, window_step_unit='pixels', padding=True, verbose=False, skip_checks=False): r""" Extracts Local Binary Pattern (LBP) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C`` is the number of radius/samples values combinations that are used in the LBP computation. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. radius : `int` or `list` of `int` or ``None``, optional It defines the radius of the circle (or circles) at which the sampling points will be extracted. The radius (or radii) values must be greater than zero. There must be a radius value for each samples value, thus they both need to have the same length. If ``None``, then ``[1, 2, 3, 4]`` is used. samples : `int` or `list` of `int` or ``None``, optional It defines the number of sampling points that will be extracted at each circle. The samples value (or values) must be greater than zero. There must be a samples value for each radius value, thus they both need to have the same length. If ``None``, then ``[8, 8, 8, 8]`` is used. mapping_type : {``u2``, ``ri``, ``riu2``, ``none``}, optional It defines the mapping type of the LBP codes. Select ``u2`` for uniform-2 mapping, ``ri`` for rotation-invariant mapping, ``riu2`` for uniform-2 and rotation-invariant mapping and ``none`` to use no mapping and only the decimal values instead. window_step_vertical : `float`, optional Defines the vertical step by which the window is moved, thus it controls the features density. The metric unit is defined by `window_step_unit`. window_step_horizontal : `float`, optional Defines the horizontal step by which the window is moved, thus it controls the features density. The metric unit is defined by `window_step_unit`. window_step_unit : {``pixels``, ``window``}, optional Defines the metric unit of the `window_step_vertical` and `window_step_horizontal` parameters. padding : `bool`, optional If ``True``, the output image is padded with zeros to match the input image's size. verbose : `bool`, optional Flag to print LBP related information. skip_checks : `bool`, optional If ``True``, do not perform any validation of the parameters. Returns ------- lbp : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = len(radius) * len(samples)``. Raises ------ ValueError Radius and samples must both be either integers or lists ValueError Radius and samples must have the same length ValueError Radius must be > 0 ValueError Radii must be > 0 ValueError Samples must be > 0 ValueError Mapping type must be u2, ri, riu2 or none ValueError Horizontal window step must be > 0 ValueError Vertical window step must be > 0 ValueError Window step unit must be either pixels or window References ---------- .. [1] <NAME>, <NAME>, and <NAME>, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, num. 7, p. 971-987, 2002. """ if radius is None: radius = range(1, 5) if samples is None: samples = [8]*4 # TODO: This is a temporal fix # flip axis pixels = np.rollaxis(pixels, 0, len(pixels.shape)) if not skip_checks: # Check parameters if ((isinstance(radius, int) and isinstance(samples, list)) or (isinstance(radius, list) and isinstance(samples, int))): raise ValueError("Radius and samples must both be either integers " "or lists") elif isinstance(radius, list) and isinstance(samples, list): if len(radius) != len(samples): raise ValueError("Radius and samples must have the same " "length") if isinstance(radius, int) and radius < 1: raise ValueError("Radius must be > 0") elif isinstance(radius, list) and sum(r < 1 for r in radius) > 0: raise ValueError("Radii must be > 0") if isinstance(samples, int) and samples < 1: raise ValueError("Samples must be > 0") elif isinstance(samples, list) and sum(s < 1 for s in samples) > 0: raise ValueError("Samples must be > 0") if mapping_type not in ['u2', 'ri', 'riu2', 'none']: raise ValueError("Mapping type must be u2, ri, riu2 or " "none") if window_step_horizontal <= 0: raise ValueError("Horizontal window step must be > 0") if window_step_vertical <= 0: raise ValueError("Vertical window step must be > 0") if window_step_unit not in ['pixels', 'window']: raise ValueError("Window step unit must be either pixels or " "window") # Correct input image_data pixels = np.asfortranarray(pixels) # Parse options radius = np.asfortranarray(radius) samples = np.asfortranarray(samples) window_height = np.uint32(2 * radius.max() + 1) window_width = window_height if window_step_unit == 'window': window_step_vertical = np.uint32(window_step_vertical * window_height) window_step_horizontal = np.uint32(window_step_horizontal * window_width) if mapping_type == 'u2': mapping_type = 1 elif mapping_type == 'ri': mapping_type = 2 elif mapping_type == 'riu2': mapping_type = 3 else: mapping_type = 0 # Create iterator object iterator = WindowIterator(pixels, window_height, window_width, window_step_horizontal, window_step_vertical, padding) # Print iterator's info if verbose: print(iterator) # Compute LBP lbp_descriptor = iterator.LBP(radius, samples, mapping_type, verbose) # TODO: This is a temporary fix # flip axis lbp_descriptor = WindowIteratorResult( np.ascontiguousarray(np.rollaxis(lbp_descriptor.pixels, -1)), lbp_descriptor.centres) return lbp_descriptor @imgfeature def normalize(img, scale_func=None, mode='all', error_on_divide_by_zero=True): r""" Normalize the pixel values via mean centering and an optional scaling. By default the scaling will be ``1.0``. The ``mode`` parameter selects whether the normalisation is computed across all pixels in the image or per-channel. Parameters ---------- img : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. scale_func : `callable`, optional Compute the scaling factor. Expects a single parameter and an optional `axis` keyword argument and will be passed the entire pixel array. Should return a 1D numpy array of one or more values. mode : ``{all, per_channel}``, optional If ``all``, the normalization is over all channels. If ``per_channel``, each channel individually is mean centred and normalized in variance. error_on_divide_by_zero : `bool`, optional If ``True``, will raise a ``ValueError`` on dividing by zero. If ``False``, will merely raise a warning and only those values with non-zero denominators will be normalized. Returns ------- pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` A normalized copy of the image that was passed in. Raises ------ ValueError If any of the denominators are 0 and ``error_on_divide_by_zero`` is ``True``. """ if scale_func is None: def scale_func(_, axis=None): return np.array([1.0]) pixels = img.as_vector(keep_channels=True) if mode == 'all': centered_pixels = pixels - np.mean(pixels) scale_factor = scale_func(centered_pixels) elif mode == 'per_channel': centered_pixels = pixels - np.mean(pixels, axis=1, keepdims=1) scale_factor = scale_func(centered_pixels, axis=1).reshape([-1, 1]) else: raise ValueError("Supported modes are {{'all', 'per_channel'}} - '{}' " "is not known".format(mode)) zero_denom = (scale_factor == 0).ravel() any_non_zero = np.any(zero_denom) if error_on_divide_by_zero and any_non_zero: raise ValueError("Computed scale factor cannot be 0.0") elif any_non_zero: warnings.warn('One or more the scale factors are 0.0 and thus these' 'entries will be skipped during normalization.') non_zero_denom = ~zero_denom centered_pixels[non_zero_denom] = (centered_pixels[non_zero_denom] / scale_factor[non_zero_denom]) return img.from_vector(centered_pixels) else: return img.from_vector(centered_pixels / scale_factor) @ndfeature def normalize_norm(pixels, mode='all', error_on_divide_by_zero=True): r""" Normalize the pixels to be mean centred and have unit norm. The ``mode`` parameter selects whether the normalisation is computed across all pixels in the image or per-channel. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. mode : ``{all, per_channel}``, optional If ``all``, the normalization is over all channels. If ``per_channel``, each channel individually is mean centred and normalized in variance. error_on_divide_by_zero : `bool`, optional If ``True``, will raise a ``ValueError`` on dividing by zero. If ``False``, will merely raise a warning and only those values with non-zero denominators will be normalized. Returns ------- pixels : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` A normalized copy of the image that was passed in. Raises ------ ValueError If any of the denominators are 0 and ``error_on_divide_by_zero`` is ``True``. """ def unit_norm(x, axis=None): return
np.linalg.norm(x, axis=axis)
numpy.linalg.norm
# -*- coding: utf-8 -*- """ Various utilities, converters etc., to help video calibration. """ # pylint:disable=invalid-name,logging-not-lazy import collections import logging import numpy as np import cv2 import sksurgerycore.transforms.matrix as skcm LOGGER = logging.getLogger(__name__) def convert_numpy2d_to_opencv(image_points): """ Converts numpy array to Vector of 1x2 vectors containing float32. :param image_points: numpy [Mx2] array. :return: vector (length M), of 1x2 vectors of float32. """ return np.reshape(image_points, (-1, 1, 2)).astype(np.float32) def convert_numpy3d_to_opencv(object_points): """ Converts numpy array to Vector of 1x3 vectors containing float32. :param object_points: numpy [Mx3] array. :return: vector (length M), of 1x3 vectors of float32. """ return np.reshape(object_points, (-1, 1, 3)).astype(np.float32) def extrinsic_vecs_to_matrix(rvec, tvec): """ Method to convert rvec and tvec to a 4x4 matrix. :param rvec: [3x1] ndarray, Rodrigues rotation params :param rvec: [3x1] ndarray, translation params :return: [3x3] ndarray, Rotation Matrix """ rotation_matrix = (cv2.Rodrigues(rvec))[0] transformation_matrix = \ skcm.construct_rigid_transformation(rotation_matrix, tvec) return transformation_matrix def extrinsic_matrix_to_vecs(transformation_matrix): """ Method to convert a [4x4] rigid body matrix to an rvec and tvec. :param transformation_matrix: [4x4] rigid body matrix. :return [3x1] Rodrigues rotation vec, [3x1] translation vec """ rmat = transformation_matrix[0:3, 0:3] rvec = (cv2.Rodrigues(rmat))[0] tvec = np.ones((3, 1)) tvec[0:3, 0] = transformation_matrix[0:3, 3] return rvec, tvec def filter_common_points_per_image(left_ids, left_object_points, left_image_points, right_ids, right_image_points, minimum_points ): """ For stereo calibration, we need common points in left and right. Remember that a point detector, may provide different numbers of points for left and right, and they may not be sorted. :param left_ids: ndarray of integer point ids :param left_object_points: Vector of Vector of 1x3 float 32 :param left_image_points: Vector of Vector of 1x2 float 32 :param right_ids: ndarray of integer point ids :param right_image_points: Vector of Vector of 1x2 float 32 :param minimum_points: the number of minimum common points to accept :return: common ids, object_points, left_image_points, right_image_points """ # Filter obvious duplicates first. non_duplicate_left = np.asarray( [item for item, count in collections.Counter(left_ids).items() if count == 1]) non_duplicate_right = np.asarray( [item for item, count in collections.Counter(right_ids).items() if count == 1]) filtered_left = left_ids[ np.isin(left_ids, non_duplicate_left)] filtered_right = right_ids[ np.isin(right_ids, non_duplicate_right)] # Now find common points in left and right. ids = np.intersect1d(filtered_left, filtered_right) ids = np.sort(ids) if len(ids) < minimum_points: raise ValueError("Not enough common points in left and right images.") common_ids = \ np.zeros((len(ids), 1), dtype=np.int) common_object_points = \ np.zeros((len(ids), 1, 3), dtype=np.float32) common_left_image_points = \ np.zeros((len(ids), 1, 2), dtype=np.float32) common_right_image_points = \ np.zeros((len(ids), 1, 2), dtype=np.float32) counter = 0 for position in ids: left_location = np.where(left_ids == position) common_ids[counter] = left_ids[left_location[0][0]] common_object_points[counter] \ = left_object_points[left_location[0][0]] common_left_image_points[counter] \ = left_image_points[left_location[0][0]] right_location = np.where(right_ids == position) common_right_image_points[counter] \ = right_image_points[right_location[0][0]] counter = counter + 1 number_of_left = len(common_left_image_points) number_of_right = len(common_right_image_points) if number_of_left != number_of_right: raise ValueError("Unequal number of common points in left and right.") return common_ids, common_object_points, common_left_image_points, \ common_right_image_points def filter_common_points_all_images(left_ids, left_object_points, left_image_points, right_ids, right_image_points, minimum_points ): """ Loops over each images's data, filtering per image. See: filter_common_points_per_image :return: Vectors of outputs from filter_common_points_per_image """ common_ids = [] common_object_points = [] common_left_image_points = [] common_right_image_points = [] # pylint:disable=consider-using-enumerate for counter in range(len(left_ids)): c_i, c_o, c_l, c_r = \ filter_common_points_per_image(left_ids[counter], left_object_points[counter], left_image_points[counter], right_ids[counter], right_image_points[counter], minimum_points ) common_ids.append(c_i) common_object_points.append(c_o) common_left_image_points.append(c_l) common_right_image_points.append(c_r) return common_ids, common_object_points, common_left_image_points, \ common_right_image_points def convert_pd_to_opencv(ids, object_points, image_points): """ The PointDetectors from scikit-surgeryimage aren't quite compatible with OpenCV. """ dims = np.shape(image_points) ids = np.reshape(ids, dims[0]) image_points = np.reshape(image_points, (dims[0], 1, 2)) image_points = image_points.astype(np.float32) object_points = np.reshape(object_points, (-1, 1, 3)) object_points = object_points.astype(np.float32) return ids, image_points, object_points def array_contains_tracking_data(array_to_check): """ Returns True if the array contains some tracking data. """ result = False if array_to_check is not None: number_of_items = len(array_to_check) if number_of_items > 0: found_none = False for i in range(0, number_of_items): if array_to_check[i] is None: found_none = True if not found_none: result = True return result def match_points_by_id(ids_1, points_1, ids_2, points_2): """ Returns an ndarray of matched points, matching by their identifier. :param ids_1: ndarray [Mx1] list of ids for points_1 :param points_1: ndarray [Mx2 or 3] of 2D or 3D points :param ids_2: ndarray [Nx1] list of ids for points_2 :param points_2: ndarray [Nx2 or 3] of 2D or 3D points :return: ndarray. Number of rows is the number of common points by ids. """ common_ids = np.intersect1d(ids_1, ids_2) common_ids = np.sort(common_ids) indexes_1 = np.isin(ids_1, common_ids).reshape(-1) indexes_2 = np.isin(ids_2, common_ids).reshape(-1) points_1_selected = points_1[indexes_1, :] points_2_selected = points_2[indexes_2, :] result = np.zeros((common_ids.shape[0], points_1_selected.shape[1] + points_2_selected.shape[1])) result[:, 0:points_1_selected.shape[1]] \ = points_1_selected[:, :] result[:, points_1_selected.shape[1]:points_1_selected.shape[1] + points_2_selected.shape[1]] = points_2_selected[:, :] return result def distort_points(image_points, camera_matrix, distortion_coeffs): """ Distorts image points, reversing the effects of cv2.undistortPoints. Slow, but should do for now, for offline calibration at least. :param image_points: undistorted image points. :param camera_matrix: [3x3] camera matrix :param distortion_coeffs: [1x5] distortion coefficients :return: distorted points """ distorted_pts = np.zeros(image_points.shape) number_of_points = image_points.shape[0] # pylint: disable=invalid-name for counter in range(number_of_points): relative_x = (image_points[counter][0] - camera_matrix[0][2]) \ / camera_matrix[0][0] relative_y = (image_points[counter][1] - camera_matrix[1][2]) \ / camera_matrix[1][1] r2 = relative_x * relative_x + relative_y * relative_y radial = ( 1 + distortion_coeffs[0][0] * r2 + distortion_coeffs[0][1] * r2 * r2 + distortion_coeffs[0][4] * r2 * r2 * r2 ) distorted_x = relative_x * radial distorted_y = relative_y * radial distorted_x = distorted_x + ( 2 * distortion_coeffs[0][2] * relative_x * relative_y + distortion_coeffs[0][3] * (r2 + 2 * relative_x * relative_x)) distorted_y = distorted_y + ( distortion_coeffs[0][2] * (r2 + 2 * relative_y * relative_y) + 2 * distortion_coeffs[0][3] * relative_x * relative_y) distorted_x = distorted_x * camera_matrix[0][0] + camera_matrix[0][2] distorted_y = distorted_y * camera_matrix[1][1] + camera_matrix[1][2] distorted_pts[counter][0] = distorted_x distorted_pts[counter][1] = distorted_y return distorted_pts def map_points_from_canonical_to_original(images_array, image_index, video_data, ids, object_points, image_points, homography, camera_matrix, distortion_coeffs): """ Utility method to map image points, detected in a canonical face on image, back to the original image space. :param images_array: :param image_index: :param video_data: :param ids: :param object_points: :param image_points: :param homography: :param camera_matrix: :param distortion_coeffs: :return: """ inverted_points = \ cv2.perspectiveTransform( image_points.astype(np.float32).reshape(-1, 1, 2),
np.linalg.inv(homography)
numpy.linalg.inv
import unittest import numpy as np from aitoolbox.torchtrain.train_loop.components.pred_collate_fns import * class TestBatchPredCollateFns(unittest.TestCase): def test_append_predictions(self): preds = [] preds_ep_1 = np.random.rand(100, 1) preds = append_predictions(preds_ep_1, preds) self.assertEqual([preds_ep_1], preds) preds_ep_2 = np.random.rand(45, 1) preds = append_predictions(preds_ep_2, preds) self.assertEqual([preds_ep_1, preds_ep_2], preds) def test_append_concat_predictions(self): preds = [] preds_ep_1 = np.random.rand(100, 1) preds = append_predictions(preds_ep_1, preds) self.assertEqual([preds_ep_1], preds) preds_ep_2 = np.random.rand(45, 1) preds = append_predictions(preds_ep_2, preds) self.assertEqual([preds_ep_1, preds_ep_2], preds) preds_list = [] preds_list_ep_1 =
np.random.rand(100)
numpy.random.rand
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import time import unittest import numpy as np from arch.api import eggroll eggroll.init("123") from federatedml.feature.binning import QuantileBinning from federatedml.feature.instance import Instance from federatedml.param.param import FeatureBinningParam class TestQuantileBinning(unittest.TestCase): def setUp(self): # eggroll.init("123") self.data_num = 1000 self.feature_num = 200 final_result = [] numpy_array = [] for i in range(self.data_num): tmp = np.random.randn(self.feature_num) inst = Instance(inst_id=i, features=tmp, label=0) tmp_pair = (str(i), inst) final_result.append(tmp_pair) numpy_array.append(tmp) table = eggroll.parallelize(final_result, include_key=True, partition=10) self.table = table self.numpy_table = np.array(numpy_array) self.cols = [1] def test_quantile_binning(self): compress_thres = 10000 head_size = 5000 error = 0.01 bin_num = 10 bin_param = FeatureBinningParam(method='quantile', compress_thres=compress_thres, head_size=head_size, error=error, bin_num=bin_num) quan_bin = QuantileBinning(bin_param) split_points = quan_bin.binning(self.table, cols=self.cols) for col_idx, col in enumerate(self.cols): bin_percent = [i * (1.0 / bin_num) for i in range(1, bin_num)] x = self.numpy_table[:, col] x = sorted(x) for bin_idx, percent in enumerate(bin_percent): min_rank = int(math.floor(percent * self.data_num - self.data_num * error)) max_rank = int(math.ceil(percent * self.data_num + self.data_num * error)) if min_rank < 0: min_rank = 0 if max_rank > len(x) - 1: max_rank = len(x) - 1 try: self.assertTrue(x[min_rank] <= split_points[col_idx][bin_idx] <= x[max_rank]) except: print(x[min_rank], x[max_rank], split_points[col_idx][bin_idx]) found_index = x.index(split_points[col_idx][bin_idx]) print("min_rank: {}, found_rank: {}, max_rank: {}".format( min_rank, found_index, max_rank )) self.assertTrue(x[min_rank] <= split_points[col_idx][bin_idx] <= x[max_rank]) def tearDown(self): self.table.destroy() class TestQuantileBinningSpeed(unittest.TestCase): def setUp(self): # eggroll.init("123") self.data_num = 100000 self.feature_num = 200 final_result = [] numpy_array = [] for i in range(self.data_num): tmp = np.random.randn(self.feature_num) inst = Instance(inst_id=i, features=tmp, label=0) tmp_pair = (str(i), inst) final_result.append(tmp_pair) numpy_array.append(tmp) table = eggroll.parallelize(final_result, include_key=True, partition=10) self.table = table self.numpy_table = np.array(numpy_array) self.cols = [1, 2, 3] def test_quantile_binning(self): error = 0.01 compress_thres = int(self.data_num / (self.data_num * error)) head_size = 5000 bin_num = 10 bin_percent = [int(i * (100.0 / bin_num)) for i in range(1, bin_num)] bin_param = FeatureBinningParam(method='quantile', compress_thres=compress_thres, head_size=head_size, error=error, bin_num=bin_num) quan_bin = QuantileBinning(bin_param) t0 = time.time() split_points = quan_bin.binning(self.table, cols=self.cols) t1 = time.time() print('Spend time: {}'.format(t1 - t0)) # collect and test numpy quantile speed local_table = self.table.collect() total_data = [] for _, data_inst in local_table: total_data.append(data_inst.features) total_data =
np.array(total_data)
numpy.array
import numpy as np import matplotlib.pyplot as plt from numpy.linalg import inv N = 25 X = np.reshape(
np.linspace(0, 0.9, N)
numpy.linspace
""" Experimenting with assorted code in this package. Can run with python -m neuroconnect.playground """ import os from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt import mpmath import seaborn as sns import pandas as pd def test_hyper_eg(total, bad, draws): """Demonstrates that expected overlap between two sets is formula.""" from .connect_math import ( hypergeometric_pmf, expected_non_overlapping, expected_overlapping, ) exp = 0 for k in range(draws + 1): res = hypergeometric_pmf(total, total - bad, draws, k) exp = exp + (k * res) other = expected_non_overlapping(total, bad, draws) other2 = expected_overlapping(total, bad, draws) return (exp, other, other2) def test_unique(total, draws, n_senders): """Test the calculation of expected unique.""" from .connect_math import expected_unique from .monte_carlo import monte_carlo total_a = np.array([i for i in range(total)]) def gen_random(i): random = np.random.choice(total_a, draws) return (random,) def check_random(random): unique = np.unique(random) return (len(unique),) result = monte_carlo(check_random, gen_random, 50000) avg = 0 for val in result: avg += val[0] / 50000 ab = expected_unique(total, draws) print("Stats", ab, "MC", avg) senders = np.random.choice(total, size=(n_senders, draws), replace=True) connections = {} for i in range(n_senders): num_choices = np.random.randint(1, draws + 1, dtype=np.int32) forward_connection = senders[i, :num_choices] connections[i] = forward_connection avg = 0 for k, v in connections.items(): avg += len(np.unique(v)) / n_senders connections = 0 for val in range(1, 301): connections += expected_unique(1000, val) / draws print("Stats", connections, "MC", avg) def test_uniform( n_dists, min_val, max_val, n_dists2=20, n_iters=100000, N=1000, plot=True, n_senders=200, ): """Test the distribution of uniform distribution sums and functions of this.""" # NOTE: of course, sum of uniform dists approaches normal dist # However, taking a function of the sum of uniform dists not necessarily from .connect_math import ( nfold_conv, create_uniform, get_dist_mean, expected_unique, apply_fn_to_dist, alt_way, ) from .monte_carlo import get_distribution from .mpf_connection import CombProb alt_full, alt_final = alt_way(N, n_dists, n_senders, min_val, max_val) uni = create_uniform(min_val, max_val) dists = [ uni, ] * n_dists dist = nfold_conv(dists) print("Expected value: {}".format(get_dist_mean(dist))) def fn_to_apply(k): return float(expected_unique(N, k)) fn_dist = apply_fn_to_dist(dist, fn_to_apply) print("Expected value fn: {}".format(get_dist_mean(fn_dist))) print("Old expected value dist: {}".format(expected_unique(N, get_dist_mean(dist)))) print( "Old expected value: {}".format( expected_unique(N, n_dists * (max_val + min_val) / 2) ) ) randoms =
np.random.randint(min_val, max_val + 1, size=(n_iters, n_dists))
numpy.random.randint
import pandas as pd from lifelines import KaplanMeierFitter, CoxPHFitter import numpy as np from sklearn.exceptions import ConvergenceWarning from multiprocessing import Pool import numpy as np import functools from .correlation import intersection, header_list import plotly import plotly.offline as opy from sklearn.preprocessing import StandardScaler from sklearn.model_selection import ShuffleSplit, GridSearchCV import warnings ####################### ### Sklearn Survival ## ####################### class EarlyStoppingMonitor: def __init__(self, window_size, max_iter_without_improvement): self.window_size = window_size self.max_iter_without_improvement = max_iter_without_improvement self._best_step = -1 def __call__(self, iteration, estimator, args): # continue training for first self.window_size iterations if iteration < self.window_size: return False # compute average improvement in last self.window_size iterations. # oob_improvement_ is the different in negative log partial likelihood # between the previous and current iteration. start = iteration - self.window_size + 1 end = iteration + 1 improvement = np.mean(estimator.oob_improvement_[start:end]) if improvement > 1e-6: self._best_step = iteration return False # continue fitting # stop fitting if there was no improvement # in last max_iter_without_improvement iterations diff = iteration - self._best_step return diff >= self.max_iter_without_improvement def IPC_RIDGE(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.linear_model import IPCRidge from sklearn.pipeline import make_pipeline # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) y_train_log = y_train.copy() y_train_log["time"] = np.log1p(y_train["time"]) y_test_log = y_test.copy() y_test_log["time"] = np.log1p(y_test["time"]) #https://github.com/sebp/scikit-survival/issues/41 n_alphas = 50 alphas = np.logspace(-10, 1, n_alphas) gcv = GridSearchCV(IPCRidge(max_iter=100000), {"alpha":alphas}, cv = 2, n_jobs=10).fit(X_train,y_train_log) best_model = gcv.best_estimator_.named_steps["IPCRidge"] alpha = best_model.alphas_ scoreTraining = best_model.score(X_train,y_train_log) scoreTest = best_model.score(X_test,y_test_log) feature = pd.DataFrame(best_model.coef_, index=lFeature)[0] return scoreTraining, scoreTest, feature def score_survival_model(model, X, y): from sksurv.metrics import concordance_index_censored prediction = model.predict(X) result = concordance_index_censored(y['event'], y['time'], prediction) return result[0] def SurvivalSVM(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.svm import FastSurvivalSVM import numpy as np # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) ssvm = FastSurvivalSVM(max_iter=100, tol=1e-5, random_state=seed) param_grid = {'alpha': 2. ** np.arange(-12, 13, 4)} cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=seed) gcv = GridSearchCV(ssvm, param_grid, scoring=score_survival_model, n_jobs = n_core , refit=False, cv=cv) warnings.filterwarnings("ignore", category=FutureWarning) gcv = gcv.fit(X_train, y_train) ssvm.set_params(**gcv.best_params_) ssvm.fit(X_train, y_train) scoreTraining = ssvm.score(X_train,y_train) scoreTest = ssvm.score(X_test,y_test) feature = pd.Series(ssvm.coef_, index=lFeature) return scoreTraining, scoreTest, feature def PenaltyCox(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.linear_model import CoxPHSurvivalAnalysis, CoxnetSurvivalAnalysis from sklearn.pipeline import make_pipeline seed = np.random.RandomState(seed) # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = CoxnetSurvivalAnalysis(alpha_min_ratio=0.12, l1_ratio=0.9, max_iter=100) #https://github.com/sebp/scikit-survival/issues/41 model.set_params(max_iter = 100, n_alphas = 50) model.fit(X_train, y_train) warnings.simplefilter("ignore", ConvergenceWarning) alphas = model.alphas_ gcv = GridSearchCV( make_pipeline(CoxnetSurvivalAnalysis(l1_ratio=0.9, max_iter=1000)), param_grid={"coxnetsurvivalanalysis__alphas": [[v] for v in alphas]}, cv = 2, n_jobs= n_core).fit(X_train,y_train) best_model = gcv.best_estimator_.named_steps["coxnetsurvivalanalysis"] alpha = best_model.alphas_ scoreTraining = best_model.score(X_train,y_train) scoreTest = best_model.score(X_test,y_test) feature = pd.DataFrame(best_model.coef_, index=lFeature)[0] return scoreTraining, scoreTest, feature def SurvivalForest(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.ensemble import RandomSurvivalForest from eli5.formatters import format_as_dataframe from eli5.sklearn import explain_weights_sklearn from eli5.sklearn import PermutationImportance # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) rsf = RandomSurvivalForest(n_estimators=300, min_samples_split=10, min_samples_leaf=15, max_features="sqrt", n_jobs= n_core, random_state=seed) rsf.fit(X_train, y_train) scoreTraining = rsf.score(X_train,y_train) scoreTest = rsf.score(X_test,y_test) perm = PermutationImportance(rsf, n_iter=3, random_state=seed) perm.fit(X_test, y_test) feature = format_as_dataframe(explain_weights_sklearn(perm, feature_names=lFeature, top = len(lFeature) )) feature = pd.Series(feature["weight"].tolist(), index=feature["feature"].tolist()) #feature = pd.DataFrame(rsf.feature_importances_, index=lFeature) return scoreTraining, scoreTest, feature def gradient_boosted_models(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.ensemble import GradientBoostingSurvivalAnalysis # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed =
np.random.RandomState(seed)
numpy.random.RandomState
# -*- coding: utf-8 -*- import numpy as np from typing import Callable from scipy.integrate import nquad def coupled_logarithm(value: [int, float, np.ndarray], kappa: [int, float] = 0.0, dim: int = 1 ) -> [float, np.ndarray]: """ Generalization of the logarithm function, which defines smooth transition to power functions. Parameters ---------- value : Input variable in which the coupled logarithm is applied to. Accepts int, float, and np.ndarray data types. kappa : Coupling parameter which modifies the coupled logarithm function. Accepts int and float data types. dim : The dimension (or rank) of value. If value is scalar, then dim = 1. Accepts only int data type. """ # convert value into np.ndarray (if scalar) to keep consistency value =
np.array(value)
numpy.array
########################################################## # @author: pkc/Vincent # -------------------------------------------------------- # Based on the MATLAB code by <NAME> # modification of python code by sajid # import numpy as np import numpy.fft as fft import matplotlib.pyplot as plt import itertools import sys def diagonal_split(x): ''' pre-processing steps interms of cropping to enable the diagonal splitting of the input image ''' h, w = x.shape cp_x = x ''' cropping the rows ''' if (np.mod(h, 4)==1): cp_x = cp_x[:-1] elif(np.mod(h, 4)==2): cp_x = cp_x[1:-1] elif(np.mod(h, 4)==3): cp_x = cp_x[1:-2] ''' cropping the columns''' if (np.mod(w, 4)==1): cp_x = cp_x[:, :-1] elif(np.mod(w, 4)==2): cp_x = cp_x[:,1:-1] elif(np.mod(w, 4)==3): cp_x = cp_x[:, 1:-2] x = cp_x h, w = x.shape if((np.mod(h, 4)!=0) or (np.mod(w, 4)!=0)): print('[!] diagonal splitting not possible due to cropping issue') print('[!] re-check the cropping portion') end() row_indices = np.arange(0, h) col_indices = np.arange(0, w) row_split_u = row_indices[::2] row_split_d = np.asanyarray(list(set(row_indices)-set(row_split_u))) col_split_l = col_indices[::2] col_split_r = np.asanyarray(list(set(col_indices)-set(col_split_l))) ''' ordered pair of pre-processing of the diagonal elements and sub-sequent splits of the image ''' op1 = list(itertools.product(row_split_u, col_split_l)) ind = [np.asanyarray([fo for fo, _ in op1]), np.asanyarray([so for _, so in op1])] s_a1 = x[ind] s_a1 = s_a1.reshape((len(row_split_u), len(col_split_l))) op2 = list(itertools.product(row_split_d, col_split_r)) ind = [np.asanyarray([fo for fo, _ in op2]), np.asanyarray([so for _, so in op2])] s_a2 = x[ind] s_a2 = s_a2.reshape((len(row_split_d), len(col_split_r))) op3 = list(itertools.product(row_split_d, col_split_l)) ind = [np.asanyarray([fo for fo, _ in op3]), np.asanyarray([so for _, so in op3])] s_b1 = x[ind] s_b1 = s_b1.reshape((len(row_split_d), len(col_split_l))) op4 = list(itertools.product(row_split_u, col_split_r)) ind = [np.asanyarray([fo for fo, _ in op4]), np.asanyarray([so for _, so in op4])] s_b2 = x[ind] s_b2 = s_b2.reshape((len(row_split_u), len(col_split_r))) return(s_a1, s_a2, s_b1, s_b2) def get_frc_img(img, frc_img_lx, center=None): ''' Returns a cropped image version of input image "img" img: input image center: cropping is performed with center a reference point to calculate length in x and y direction. Unless otherwise stated center is basically center of input image "img" frc_img_lx: length of cropped image in x as well as y. Also the cropped image is made to be square image for the FRC calculation ''' h, w = img.shape cy = round(min(h, w)/2) if center is None: cy = cy else: cy = cy + center ep = cy + round(frc_img_lx/2) sp = ep - frc_img_lx frc_img = img[sp:ep, sp:ep] return frc_img def ring_indices(x, inscribed_rings=True, plot=False): print("ring plots is:", plot) #read the shape and dimensions of the input image shape = np.shape(x) dim = np.size(shape) '''Depending on the dimension of the image 2D/3D, create an array of integers which increase with distance from the center of the array ''' if dim == 2 : nr,nc = shape nrdc = np.floor(nr/2) ncdc = np.floor(nc/2) r = np.arange(nr)-nrdc c = np.arange(nc)-ncdc [R,C] = np.meshgrid(r,c) index = np.round(np.sqrt(R**2+C**2)) elif dim == 3 : nr,nc,nz = shape nrdc = np.floor(nr/2)+1 ncdc = np.floor(nc/2)+1 nzdc = np.floor(nz/2)+1 r = np.arange(nr)-nrdc + 1 c = np.arange(nc)-ncdc + 1 z = np.arange(nc)-nzdc + 1 [R,C,Z] = np.meshgrid(r,c,z) index = np.round(np.sqrt(R**2+C**2+Z**2))+1 else : print('input is neither a 2d or 3d array') ''' if inscribed_rings is True then the outmost ring use to evaluate the FRC will be the circle inscribed in the square input image of size L. (i.e. FRC_r <= L/2). Else the arcs of the rings beyond the inscribed circle will also be considered while determining FRC (i.e. FRC_r<=sqrt((L/2)^2 + (L/2)^2)) ''' if (inscribed_rings == True): maxindex = nr/2 else: maxindex = np.max(index) #output = np.zeros(int(maxindex),dtype = complex) ''' In the next step the output is generated. The output is an array of length maxindex. The elements in this array corresponds to the sum of all the elements in the original array correponding to the integer position of the output array divided by the number of elements in the index array with the same value as the integer position. Depening on the size of the input array, use either the pixel or index method. By-pixel method for large arrays and by-index method for smaller ones. ''' print('performed by index method') indices = [] for i in np.arange(int(maxindex)): indices.append(np.where(index == i)) if plot is True: img_plane = np.zeros((nr, nc)) for i in range(int(maxindex)): if ((i%20)==0): img_plane[indices[i]]=1.0 plt.imshow(img_plane,cmap="summer") if inscribed_rings is True: plt.title(' FRC rings with the max radius as that\ \n of the inscribed circle in the image (spacing of 20 [px] between rings)') else: plt.title(' FRC rings extending beyond the radius of\ \n the inscribed circle in the image (spacing of 20 [px] between rings)') return(indices) def spinavej(x, inscribed_rings=True): ''' modification of code by sajid an Based on the MATLAB code by <NAME> ''' shape = np.shape(x) dim = np.size(shape) ''' Depending on the dimension of the image 2D/3D, create an array of integers which increase with distance from the center of the array ''' if dim == 2 : nr,nc = shape nrdc = np.floor(nr/2) ncdc = np.floor(nc/2) r = np.arange(nr)-nrdc c = np.arange(nc)-ncdc [R,C] =
np.meshgrid(r,c)
numpy.meshgrid
import torch import numpy as np import cv2 import os from torch.utils.data import Dataset import matplotlib.pyplot as plt import random class ToTensor(object): def __call__(self, sample): entry = {} for k in sample: if k == 'rect': entry[k] = torch.IntTensor(sample[k]) else: entry[k] = torch.FloatTensor(sample[k]) return entry class InpaintingDataset(Dataset): def __init__(self, info_list, root_dir='', im_size=(256, 256), transform=None): self.filenames = open(info_list, 'rt').read().splitlines() self.root_dir = root_dir self.transform = transform self.im_size = im_size np.random.seed(2018) def __len__(self): return len(self.filenames) def read_image(self, filepath): image = cv2.imread(filepath) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) h, w, c = image.shape if h != self.im_size[0] or w != self.im_size[1]: ratio = max(1.0*self.im_size[0]/h, 1.0*self.im_size[1]/w) im_scaled = cv2.resize(image, None, fx=ratio, fy=ratio) h, w, _ = im_scaled.shape h_idx = (h-self.im_size[0]) // 2 w_idx = (w-self.im_size[1]) // 2 im_scaled = im_scaled[h_idx:h_idx+self.im_size[0], w_idx:w_idx+self.im_size[1],:] im_scaled = np.transpose(im_scaled, [2, 0, 1]) else: im_scaled = np.transpose(image, [2, 0, 1]) return im_scaled def __getitem__(self, idx): image = self.read_image(os.path.join(self.root_dir, self.filenames[idx])) #print("image path:", os.path.join(self.root_dir, self.filenames[idx])) sample = {'gt': image} if self.transform: sample = self.transform(sample) return sample #============================ # Modified versiion by Vajira # To load image and mask from segmented images of Hyper-kvasir #============================ class InpaintingDataset_WithMask(Dataset): def __init__(self, info_list, root_dir='', im_size=(256, 256), transform=None): self.filenames= open(info_list, 'rt').read().splitlines() self.root_dir = root_dir self.root_dir_img = os.path.join(self.root_dir, "images") self.root_dir_mask = os.path.join(self.root_dir, "masks") self.transform = transform self.im_size = im_size np.random.seed(2018) def __len__(self): return len(self.filenames) def read_image(self, filepath): #print(filepath) image = cv2.imread(filepath) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #print(image.shape) h, w, c = image.shape if h != self.im_size[0] or w != self.im_size[1]: ratio = max(1.0*self.im_size[0]/h, 1.0*self.im_size[1]/w) im_scaled = cv2.resize(image, None, fx=ratio, fy=ratio) #print(im_scaled.shape) h, w, _ = im_scaled.shape h_idx = (h-self.im_size[0]) // 2 w_idx = (w-self.im_size[1]) // 2 im_scaled = im_scaled[h_idx:h_idx+self.im_size[0], w_idx:w_idx+self.im_size[1],:] plt.imsave("test_img.jpeg",im_scaled) im_scaled = np.transpose(im_scaled, [2, 0, 1]) else: im_scaled = np.transpose(image, [2, 0, 1]) #print("This is running") return im_scaled # added by vajira # To read mask def read_mask(self, filepath): #print(filepath) image = cv2.imread(filepath) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #image = np.expand_dims(image, axis=2) #print(image.shape) #image = np.where(image > 0, 1, 0) # print(image.shape) h, w = image.shape if h != self.im_size[0] or w != self.im_size[1]: ratio = max(1.0*self.im_size[0]/h, 1.0*self.im_size[1]/w) im_scaled = cv2.resize(image, None, fx=ratio, fy=ratio) #print(im_scaled.shape) h, w = im_scaled.shape h_idx = (h-self.im_size[0]) // 2 w_idx = (w-self.im_size[1]) // 2 im_scaled = im_scaled[h_idx:h_idx+self.im_size[0], w_idx:w_idx+self.im_size[1]] im_scaled = np.expand_dims(im_scaled, axis=2) #plt.imsave("test_mask.jpeg",im_scaled, cmap="gray") im_scaled = np.transpose(im_scaled, [2, 0, 1]) im_scaled = np.where(im_scaled > 0, 1, 0) # convert into 0 and 1 else: im_scaled = np.expand_dims(im_scaled, axis=2) im_scaled =
np.transpose(image, [2, 0, 1])
numpy.transpose
'''run a linear q learning network on a grid world do the weight update by hand (w/o any autodiff machinery) for edu purpose ''' from envs.GridWorld import GridWorld, ACTIONS import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle import seaborn as sns sns.set(style='white', context='talk', palette='colorblind') np.random.seed(0) # define env and agent env = GridWorld() state_dim = env.height * env.width n_actions = len(ACTIONS) # weights (i.e. the agent) W = np.zeros((state_dim, n_actions)) # training params n_trials = 150 max_steps = 50 epsilon = 0.2 alpha = 0.1 gamma = .9 '''train ''' log_return = [] log_steps = [] log_actions = [] log_states = [] for i in range(n_trials): env.reset() cumulative_reward = 0 step = 0 log_actions_i = [] log_states_i = [] while step < max_steps: # get current state s_t = env.get_agent_loc().reshape(1, -1) log_states_i.append(s_t) # compute q val q_t = np.dot(s_t, W) # epsilon greedy action selection if np.random.uniform() > epsilon: a_t = np.argmax(q_t) else: a_t = np.random.randint(n_actions) # transition and get reward r_t = env.step(a_t) # get next states info s_next = env.get_agent_loc().reshape(1, -1) max_q_next = np.max(np.dot(s_next, W)) # compute TD target q_target = r_t + gamma * max_q_next # update weights w_delta = alpha * q_target * s_t W[:, a_t] += np.squeeze(w_delta) # update R and n steps step += 1 cumulative_reward += r_t * gamma**step log_actions_i.append(a_t) # termination condition if env.is_terminal(): break log_states_i.append(s_t) log_states.append(log_states_i) log_actions.append(log_actions_i) log_return.append(cumulative_reward) log_steps.append(step) ''' learning curve ''' f, axes = plt.subplots(2, 1, figsize=(6, 6), sharex=True) axes[0].plot(log_return) axes[0].axhline(0, color='grey', linestyle='--') axes[0].set_title('Learning curve') axes[0].set_ylabel('Return') axes[1].plot(log_steps) axes[1].set_title(' ') axes[1].axhline(0, color='grey', linestyle='--') axes[1].set_ylabel('n steps taken') axes[1].set_xlabel('Epoch') axes[1].set_ylim([0, None]) sns.despine() f.tight_layout() '''weights''' f, axes = plt.subplots(4, 1, figsize=(5, 11)) for i, ax in enumerate(axes): sns.heatmap( W[:, i].reshape(5, 5), cmap='viridis', square=True, vmin=
np.min(W)
numpy.min
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops import composite as C import mindspore.nn as nn import mindspore.context as context class NetSoftmax(nn.Cell): def __init__(self): super(NetSoftmax, self).__init__() axis = -2 self.softmax1 = P.Softmax() self.softmax2 = P.Softmax(axis) def construct(self, x): return self.softmax1(x), self.softmax2(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_softmax(): x = Tensor(np.array([[0.1, 0.3, 0.6, -0.3], [0.2, -0.6, 0.8, 0.6], [0.6, -1.2, 0.4, 0.6]]).astype(np.float32)) expect1 = np.ones(3) expect2 = np.ones(4) error1 = expect1 * 1.0e-6 error2 = expect2 * 1.0e-6 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") Softmax = NetSoftmax() output = Softmax(x) outputSum1 = output[0].asnumpy().sum(axis=1) outputSum2 = output[1].asnumpy().sum(axis=0) diff1 = np.abs(outputSum1 - expect1) diff2 = np.abs(outputSum2 - expect2) assert
np.all(diff1 < error1)
numpy.all
import json import unittest from glob import glob from os import remove, path from shutil import rmtree from uuid import uuid4 import anndata import numpy as np from pandas import Series, DataFrame import tiledb from backend.czi_hosted.common.corpora import CorporaConstants from backend.czi_hosted.converters.h5ad_data_file import H5ADDataFile from backend.test import PROJECT_ROOT class TestH5ADDataFile(unittest.TestCase): def setUp(self): self.sample_anndata = self._create_sample_anndata_dataset() self.sample_h5ad_filename = self._write_anndata_to_file(self.sample_anndata) self.sample_output_directory = path.splitext(self.sample_h5ad_filename)[0] + ".cxg" def tearDown(self): if self.sample_h5ad_filename: remove(self.sample_h5ad_filename) if path.isdir(self.sample_output_directory): rmtree(self.sample_output_directory) def test__create_h5ad_data_file__non_h5ad_raises_exception(self): non_h5ad_filename = "my_fancy_dataset.csv" with self.assertRaises(Exception) as exception_context: H5ADDataFile(non_h5ad_filename) self.assertIn("File must be an H5AD", str(exception_context.exception)) def test__create_h5ad_data_file__assert_warning_outputted_if_dataset_title_or_about_given(self): with self.assertLogs(level="WARN") as logger: H5ADDataFile( self.sample_h5ad_filename, dataset_title="My Awesome Dataset", dataset_about="http://www.awesomedataset.com", use_corpora_schema=False, ) self.assertIn("will override any metadata that is extracted", logger.output[0]) def test__create_h5ad_data_file__reads_anndata_successfully(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename, use_corpora_schema=False) self.assertTrue((h5ad_file.anndata.X == self.sample_anndata.X).all()) self.assertEqual( h5ad_file.anndata.obs.sort_index(inplace=True), self.sample_anndata.obs.sort_index(inplace=True) ) self.assertEqual( h5ad_file.anndata.var.sort_index(inplace=True), self.sample_anndata.var.sort_index(inplace=True) ) for key in h5ad_file.anndata.obsm.keys(): self.assertIn(key, self.sample_anndata.obsm.keys()) self.assertTrue((h5ad_file.anndata.obsm[key] == self.sample_anndata.obsm[key]).all()) for key in self.sample_anndata.obsm.keys(): self.assertIn(key, h5ad_file.anndata.obsm.keys()) self.assertTrue((h5ad_file.anndata.obsm[key] == self.sample_anndata.obsm[key]).all()) def test__create_h5ad_data_file__copies_index_of_obs_and_var_to_column(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename, use_corpora_schema=False) # The automatic name chosen for the index should be "name_0" self.assertNotIn("name_0", self.sample_anndata.obs.columns) self.assertIn("name_0", h5ad_file.obs.columns) self.assertNotIn("name_0", self.sample_anndata.var.columns) self.assertIn("name_0", h5ad_file.var.columns) def test__create_h5ad_data_file__no_copy_if_obs_and_var_index_names_specified(self): h5ad_file = H5ADDataFile( self.sample_h5ad_filename, use_corpora_schema=False, obs_index_column_name="float_category", vars_index_column_name="int_category", ) self.assertNotIn("name_0", h5ad_file.obs.columns) self.assertNotIn("name_0", h5ad_file.var.columns) def test__create_h5ad_data_file__obs_and_var_index_names_specified_not_unique_raises_exception(self): with self.assertRaises(Exception) as exception_context: H5ADDataFile( self.sample_h5ad_filename, use_corpora_schema=False, obs_index_column_name="float_category", vars_index_column_name="bool_category", ) self.assertIn("Please prepare data to contain unique values", str(exception_context.exception)) def test__create_h5ad_data_file__obs_and_var_index_names_specified_doesnt_exist_raises_exception(self): with self.assertRaises(Exception) as exception_context: H5ADDataFile( self.sample_h5ad_filename, use_corpora_schema=False, obs_index_column_name="unknown_category", vars_index_column_name="i_dont_exist", ) self.assertIn("does not exist", str(exception_context.exception)) def test__create_h5ad_data_file__extract_about_and_title_from_dataset(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename) self.assertEqual(h5ad_file.dataset_title, "random_link_name") self.assertEqual(h5ad_file.dataset_about, "www.link.com") def test__create_h5ad_data_file__inputted_dataset_title_and_about_overrides_extracted(self): h5ad_file = H5ADDataFile( self.sample_h5ad_filename, dataset_about="override_about", dataset_title="override_title" ) self.assertEqual(h5ad_file.dataset_title, "override_title") self.assertEqual(h5ad_file.dataset_about, "override_about") def test__to_cxg__simple_anndata_no_corpora_and_sparse(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename, use_corpora_schema=False) h5ad_file.to_cxg(self.sample_output_directory, 100) self._validate_cxg_and_h5ad_content_match(self.sample_h5ad_filename, self.sample_output_directory, True) def test__to_cxg__simple_anndata_with_corpora_and_sparse(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename) h5ad_file.to_cxg(self.sample_output_directory, 100) self._validate_cxg_and_h5ad_content_match(self.sample_h5ad_filename, self.sample_output_directory, True) def test__to_cxg__simple_anndata_no_corpora_and_dense(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename, use_corpora_schema=False) h5ad_file.to_cxg(self.sample_output_directory, 0) self._validate_cxg_and_h5ad_content_match(self.sample_h5ad_filename, self.sample_output_directory, False) def test__to_cxg__simple_anndata_with_corpora_and_dense(self): h5ad_file = H5ADDataFile(self.sample_h5ad_filename) h5ad_file.to_cxg(self.sample_output_directory, 0) self._validate_cxg_and_h5ad_content_match(self.sample_h5ad_filename, self.sample_output_directory, False) def test__to_cxg__with_sparse_column_encoding(self): anndata = self._create_sample_anndata_dataset() anndata.X = np.ones((3, 4)) sparse_with_column_shift_filename = self._write_anndata_to_file(anndata) h5ad_file = H5ADDataFile(sparse_with_column_shift_filename) h5ad_file.to_cxg(self.sample_output_directory, 50) self._validate_cxg_and_h5ad_content_match( sparse_with_column_shift_filename, self.sample_output_directory, False, has_column_encoding=True ) # Clean up remove(sparse_with_column_shift_filename) def _validate_cxg_and_h5ad_content_match(self, h5ad_filename, cxg_directory, is_sparse, has_column_encoding=False): anndata_object = anndata.read_h5ad(h5ad_filename) # Array locations metadata_array_location = f"{cxg_directory}/cxg_group_metadata" main_x_array_location = f"{cxg_directory}/X" embedding_array_location = f"{cxg_directory}/emb" specific_embedding_array_location = f"{self.sample_output_directory}/emb/awesome_embedding" obs_array_location = f"{cxg_directory}/obs" var_array_location = f"{cxg_directory}/var" x_col_shift_array_location = f"{cxg_directory}/X_col_shift" # Assert CXG structure self.assertEqual(tiledb.object_type(cxg_directory), "group") self.assertEqual(tiledb.object_type(obs_array_location), "array") self.assertEqual(tiledb.object_type(var_array_location), "array") self.assertEqual(tiledb.object_type(main_x_array_location), "array") self.assertEqual(tiledb.object_type(embedding_array_location), "group") self.assertEqual(tiledb.object_type(specific_embedding_array_location), "array") if has_column_encoding: self.assertEqual(tiledb.object_type(x_col_shift_array_location), "array") # Validate metadata metadata_array = tiledb.DenseArray(metadata_array_location, mode="r") self.assertIn("cxg_version", metadata_array.meta) # Validate obs index obs_array = tiledb.DenseArray(obs_array_location, mode="r") expected_index_data = anndata_object.obs.index.to_numpy() index_name = json.loads(obs_array.meta["cxg_schema"])["index"] actual_index_data = obs_array.query(attrs=[index_name])[:][index_name] self.assertTrue(np.array_equal(expected_index_data, actual_index_data)) # Validate obs columns expected_columns = list(anndata_object.obs.columns.values) for column_name in expected_columns: expected_data = anndata_object.obs[column_name].to_numpy() actual_data = obs_array.query(attrs=[column_name])[:][column_name] self.assertTrue(np.array_equal(expected_data, actual_data)) # Validate var index var_array = tiledb.DenseArray(var_array_location, mode="r") expected_index_data = anndata_object.var.index.to_numpy() index_name = json.loads(var_array.meta["cxg_schema"])["index"] actual_index_data = var_array.query(attrs=[index_name])[:][index_name] self.assertTrue(np.array_equal(expected_index_data, actual_index_data)) # Validate var columns expected_columns = anndata_object.var.columns.values for column_name in expected_columns: expected_data = anndata_object.var[column_name].to_numpy() actual_data = var_array.query(attrs=[column_name])[:][column_name] self.assertTrue(np.array_equal(expected_data, actual_data)) # Validate embedding expected_embedding_data = anndata_object.obsm.get("X_awesome_embedding") embedding_array = tiledb.DenseArray(specific_embedding_array_location, mode="r") actual_embedding_data = embedding_array[:, 0:2] self.assertTrue(np.array_equal(expected_embedding_data, actual_embedding_data)) # Validate X matrix if not column shifted if not has_column_encoding: expected_x_data = anndata_object.X if is_sparse: x_array = tiledb.SparseArray(main_x_array_location, mode="r") actual_x_data = np.reshape(x_array[:, :][""], expected_x_data.shape) else: x_array = tiledb.DenseArray(main_x_array_location, mode="r") actual_x_data = x_array[:, :] self.assertTrue(np.array_equal(expected_x_data, actual_x_data)) def _write_anndata_to_file(self, anndata): temporary_filename = f"{PROJECT_ROOT}/backend/test/fixtures/{uuid4()}.h5ad" anndata.write(temporary_filename) return temporary_filename def _create_sample_anndata_dataset(self): # Create X X = np.random.rand(3, 4) # Create obs random_string_category = Series(data=["a", "b", "b"], dtype="category") random_float_category = Series(data=[3.2, 1.1, 2.2], dtype=np.float32) obs_dataframe = DataFrame( data={"string_category": random_string_category, "float_category": random_float_category} ) obs = obs_dataframe # Create vars random_int_category = Series(data=[3, 1, 2, 4], dtype=np.int32) random_bool_category = Series(data=[True, True, False, True], dtype=np.bool_) var_dataframe = DataFrame(data={"int_category": random_int_category, "bool_category": random_bool_category}) var = var_dataframe # Create embeddings random_embedding =
np.random.rand(3, 2)
numpy.random.rand
import numpy as np import openmdao.api as om import wisdem.commonse.utilities as util import wisdem.pyframe3dd.pyframe3dd as pyframe3dd import wisdem.commonse.utilization_dnvgl as util_dnvgl import wisdem.commonse.utilization_constraints as util_con from wisdem.commonse import NFREQ, gravity from wisdem.floatingse.member import NULL, MEMMAX, Member NNODES_MAX = 1000 NELEM_MAX = 1000 RIGID = 1e30 EPS = 1e-6 class PlatformFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] for k in range(n_member): self.add_input(f"member{k}:nodes_xyz", NULL * np.ones((MEMMAX, 3)), units="m") self.add_input(f"member{k}:nodes_r", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_D", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_t", NULL * np.ones(MEMMAX), units="m") self.add_input(f"member{k}:section_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input(f"member{k}:section_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input(f"member{k}:section_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input(f"member{k}:section_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:section_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input(f"member{k}:idx_cb", 0) self.add_input(f"member{k}:buoyancy_force", 0.0, units="N") self.add_input(f"member{k}:displacement", 0.0, units="m**3") self.add_input(f"member{k}:center_of_buoyancy", np.zeros(3), units="m") self.add_input(f"member{k}:center_of_mass", np.zeros(3), units="m") self.add_input(f"member{k}:ballast_mass", 0.0, units="kg") self.add_input(f"member{k}:total_mass", 0.0, units="kg") self.add_input(f"member{k}:total_cost", 0.0, units="USD") self.add_input(f"member{k}:I_total", np.zeros(6), units="kg*m**2") self.add_input(f"member{k}:Awater", 0.0, units="m**2") self.add_input(f"member{k}:Iwater", 0.0, units="m**4") self.add_input(f"member{k}:added_mass", np.zeros(6), units="kg") self.add_input(f"member{k}:waterline_centroid", np.zeros(2), units="m") self.add_input(f"member{k}:variable_ballast_capacity", val=0.0, units="m**3") self.add_input(f"member{k}:Px", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Py", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:Pz", np.zeros(MEMMAX), units="N/m") self.add_input(f"member{k}:qdyn", np.zeros(MEMMAX), units="Pa") self.add_input("transition_node", np.zeros(3), units="m") self.add_input("transition_piece_mass", 0.0, units="kg") self.add_input("transition_piece_cost", 0.0, units="USD") self.add_output("transition_piece_I", np.zeros(6), units="kg*m**2") self.add_output("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_output("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_output("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_output("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_output("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_output("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_output("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_output("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_output("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_output("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_output("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_discrete_output("platform_elem_memid", [-1] * NELEM_MAX) self.add_output("platform_displacement", 0.0, units="m**3") self.add_output("platform_center_of_buoyancy", np.zeros(3), units="m") self.add_output("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_output("platform_centroid", np.zeros(3), units="m") self.add_output("platform_ballast_mass", 0.0, units="kg") self.add_output("platform_hull_mass", 0.0, units="kg") self.add_output("platform_mass", 0.0, units="kg") self.add_output("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_output("platform_cost", 0.0, units="USD") self.add_output("platform_Awater", 0.0, units="m**2") self.add_output("platform_Iwater", 0.0, units="m**4") self.add_output("platform_added_mass", np.zeros(6), units="kg") self.add_output("platform_variable_capacity", np.zeros(n_member), units="m**3") self.node_mem2glob = {} def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Seems like we have to run this each time as numbering can change during optimization self.node_mem2glob = {} self.set_connectivity(inputs, outputs) self.set_node_props(inputs, outputs) self.set_element_props(inputs, outputs, discrete_inputs, discrete_outputs) def set_connectivity(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members nodes_temp = np.empty((0, 3)) elem_n1 = np.array([], dtype=np.int_) elem_n2 = np.array([], dtype=np.int_) # Look over members and grab all nodes and internal connections for k in range(n_member): inode_xyz = inputs[f"member{k}:nodes_xyz"] inodes = np.where(inode_xyz[:, 0] == NULL)[0][0] inode_xyz = inode_xyz[:inodes, :] inode_range = np.arange(inodes - 1) n = nodes_temp.shape[0] for ii in range(inodes): self.node_mem2glob[(k, ii)] = n + ii elem_n1 = np.append(elem_n1, n + inode_range) elem_n2 = np.append(elem_n2, n + inode_range + 1) nodes_temp = np.append(nodes_temp, inode_xyz, axis=0) # Reveal connectivity by using mapping to unique node positions nodes, idx, inv = np.unique(nodes_temp.round(8), axis=0, return_index=True, return_inverse=True) nnode = nodes.shape[0] outputs["platform_nodes"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_nodes"][:nnode, :] = nodes outputs["platform_centroid"] = nodes.mean(axis=0) # Use mapping to set references to node joints nelem = elem_n1.size outputs["platform_elem_n1"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n2"] = NULL * np.ones(NELEM_MAX, dtype=np.int_) outputs["platform_elem_n1"][:nelem] = inv[elem_n1] outputs["platform_elem_n2"][:nelem] = inv[elem_n2] # Update global 2 member mappings for k in self.node_mem2glob.keys(): self.node_mem2glob[k] = inv[self.node_mem2glob[k]] def set_node_props(self, inputs, outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Number of valid nodes node_platform = outputs["platform_nodes"] nnode = np.where(node_platform[:, 0] == NULL)[0][0] node_platform = node_platform[:nnode, :] # Find greatest radius of all members at node intersections Rnode = np.zeros(nnode) for k in range(n_member): irnode = inputs[f"member{k}:nodes_r"] n = np.where(irnode == NULL)[0][0] for ii in range(n): iglob = self.node_mem2glob[(k, ii)] Rnode[iglob] = np.array([Rnode[iglob], irnode[ii]]).max() # Find forces on nodes Fnode = np.zeros((nnode, 3)) for k in range(n_member): icb = int(inputs[f"member{k}:idx_cb"]) iglob = self.node_mem2glob[(k, icb)] Fnode[iglob, 2] += inputs[f"member{k}:buoyancy_force"] # Get transition piece inertial properties itrans_platform = util.closest_node(node_platform, inputs["transition_node"]) m_trans = float(inputs["transition_piece_mass"]) r_trans = Rnode[itrans_platform] I_trans = m_trans * r_trans ** 2.0 * np.r_[0.5, 0.5, 1.0, np.zeros(3)] outputs["transition_piece_I"] = I_trans # Store outputs outputs["platform_Rnode"] = NULL * np.ones(NNODES_MAX) outputs["platform_Rnode"][:nnode] = Rnode outputs["platform_Fnode"] = NULL * np.ones((NNODES_MAX, 3)) outputs["platform_Fnode"][:nnode, :] = Fnode def set_element_props(self, inputs, outputs, discrete_inputs, discrete_outputs): # Load in number of members opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] # Initialize running lists across all members elem_D = np.array([]) elem_t = np.array([]) elem_A = np.array([]) elem_Asx = np.array([]) elem_Asy = np.array([]) elem_Ixx = np.array([]) elem_Iyy = np.array([]) elem_Izz = np.array([]) elem_rho = np.array([]) elem_E = np.array([]) elem_G = np.array([]) elem_sigy = np.array([]) elem_Px1 = np.array([]) elem_Px2 = np.array([]) elem_Py1 = np.array([]) elem_Py2 = np.array([]) elem_Pz1 = np.array([]) elem_Pz2 = np.array([]) elem_qdyn = np.array([]) elem_memid = np.array([], dtype=np.int_) mass = 0.0 m_ball = 0.0 cost = 0.0 volume = 0.0 Awater = 0.0 Iwater = 0.0 m_added = np.zeros(6) cg_plat = np.zeros(3) cb_plat = np.zeros(3) centroid = outputs["platform_centroid"][:2] variable_capacity = np.zeros(n_member) # Append all member data for k in range(n_member): n = np.where(inputs[f"member{k}:section_A"] == NULL)[0][0] elem_D = np.append(elem_D, inputs[f"member{k}:section_D"][:n]) elem_t = np.append(elem_t, inputs[f"member{k}:section_t"][:n]) elem_A = np.append(elem_A, inputs[f"member{k}:section_A"][:n]) elem_Asx = np.append(elem_Asx, inputs[f"member{k}:section_Asx"][:n]) elem_Asy = np.append(elem_Asy, inputs[f"member{k}:section_Asy"][:n]) elem_Ixx = np.append(elem_Ixx, inputs[f"member{k}:section_Ixx"][:n]) elem_Iyy = np.append(elem_Iyy, inputs[f"member{k}:section_Iyy"][:n]) elem_Izz = np.append(elem_Izz, inputs[f"member{k}:section_Izz"][:n]) elem_rho = np.append(elem_rho, inputs[f"member{k}:section_rho"][:n]) elem_E = np.append(elem_E, inputs[f"member{k}:section_E"][:n]) elem_G = np.append(elem_G, inputs[f"member{k}:section_G"][:n]) elem_sigy = np.append(elem_sigy, inputs[f"member{k}:section_sigma_y"][:n]) elem_qdyn = np.append(elem_qdyn, inputs[f"member{k}:qdyn"][:n]) elem_memid = np.append(elem_memid, k * np.ones(n, dtype=np.int_)) # The loads should come in with length n+1 elem_Px1 = np.append(elem_Px1, inputs[f"member{k}:Px"][:n]) elem_Px2 = np.append(elem_Px2, inputs[f"member{k}:Px"][1 : (n + 1)]) elem_Py1 = np.append(elem_Py1, inputs[f"member{k}:Py"][:n]) elem_Py2 = np.append(elem_Py2, inputs[f"member{k}:Py"][1 : (n + 1)]) elem_Pz1 = np.append(elem_Pz1, inputs[f"member{k}:Pz"][:n]) elem_Pz2 = np.append(elem_Pz2, inputs[f"member{k}:Pz"][1 : (n + 1)]) # Mass, volume, cost tallies imass = inputs[f"member{k}:total_mass"] ivol = inputs[f"member{k}:displacement"] mass += imass volume += ivol cost += inputs[f"member{k}:total_cost"] m_ball += inputs[f"member{k}:ballast_mass"] Awater_k = inputs[f"member{k}:Awater"] Awater += Awater_k Rwater2 = np.sum((inputs[f"member{k}:waterline_centroid"] - centroid) ** 2) Iwater += inputs[f"member{k}:Iwater"] + Awater_k * Rwater2 m_added += inputs[f"member{k}:added_mass"] variable_capacity[k] = inputs[f"member{k}:variable_ballast_capacity"] # Center of mass / buoyancy tallies cg_plat += imass * inputs[f"member{k}:center_of_mass"] cb_plat += ivol * inputs[f"member{k}:center_of_buoyancy"] # Add transition piece m_trans = inputs["transition_piece_mass"] cg_trans = inputs["transition_node"] I_trans = util.assembleI(outputs["transition_piece_I"]) mass += m_trans cost += inputs["transition_piece_cost"] cg_plat += m_trans * cg_trans # Finalize outputs cg_plat /= mass cb_plat /= volume # With CG known, loop back through to compute platform I unit_z = np.array([0.0, 0.0, 1.0]) I_hull = np.zeros((3, 3)) for k in range(n_member): xyz_k = inputs[f"member{k}:nodes_xyz"] inodes = np.where(xyz_k[:, 0] == NULL)[0][0] xyz_k = xyz_k[:inodes, :] imass = inputs[f"member{k}:total_mass"] cg_k = inputs[f"member{k}:center_of_mass"] R = cg_plat - cg_k # Figure out angle to make member parallel to global c.s. vec_k = xyz_k[-1, :] - xyz_k[0, :] T = util.rotate_align_vectors(vec_k, unit_z) # Rotate member inertia tensor I_k = util.assembleI(inputs[f"member{k}:I_total"]) I_k_rot = T @ I_k @ T.T # Now do parallel axis theorem I_hull += np.array(I_k_rot) + imass * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Add in transition piece R = cg_plat - cg_trans I_hull += I_trans + m_trans * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) # Store outputs nelem = elem_A.size outputs["platform_elem_D"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_t"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_A"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Asy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Ixx"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Iyy"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Izz"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_rho"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_E"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_G"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_sigma_y"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Px2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Py2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz1"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_Pz2"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_qdyn"] = NULL * np.ones(NELEM_MAX) outputs["platform_elem_D"][:nelem] = elem_D outputs["platform_elem_t"][:nelem] = elem_t outputs["platform_elem_A"][:nelem] = elem_A outputs["platform_elem_Asx"][:nelem] = elem_Asx outputs["platform_elem_Asy"][:nelem] = elem_Asy outputs["platform_elem_Ixx"][:nelem] = elem_Ixx outputs["platform_elem_Iyy"][:nelem] = elem_Iyy outputs["platform_elem_Izz"][:nelem] = elem_Izz outputs["platform_elem_rho"][:nelem] = elem_rho outputs["platform_elem_E"][:nelem] = elem_E outputs["platform_elem_G"][:nelem] = elem_G outputs["platform_elem_sigma_y"][:nelem] = elem_sigy outputs["platform_elem_Px1"][:nelem] = elem_Px1 outputs["platform_elem_Px2"][:nelem] = elem_Px2 outputs["platform_elem_Py1"][:nelem] = elem_Py1 outputs["platform_elem_Py2"][:nelem] = elem_Py2 outputs["platform_elem_Pz1"][:nelem] = elem_Pz1 outputs["platform_elem_Pz2"][:nelem] = elem_Pz2 outputs["platform_elem_qdyn"][:nelem] = elem_qdyn discrete_outputs["platform_elem_memid"] = elem_memid outputs["platform_mass"] = mass outputs["platform_ballast_mass"] = m_ball outputs["platform_hull_mass"] = mass - m_ball outputs["platform_cost"] = cost outputs["platform_displacement"] = volume outputs["platform_hull_center_of_mass"] = cg_plat outputs["platform_center_of_buoyancy"] = cb_plat outputs["platform_I_hull"] = util.unassembleI(I_hull) outputs["platform_Awater"] = Awater outputs["platform_Iwater"] = Iwater outputs["platform_added_mass"] = m_added outputs["platform_variable_capacity"] = variable_capacity class TowerPreMember(om.ExplicitComponent): def setup(self): self.add_input("transition_node", np.zeros(3), units="m") self.add_input("tower_height", 0.0, units="m") self.add_output("tower_top_node", np.zeros(3), units="m") def compute(self, inputs, outputs): transition_node = inputs["transition_node"] tower_top_node = 0 # previous code altered the original definition of transition_node tower_top_node += transition_node tower_top_node[2] += float(inputs["tower_height"]) outputs["tower_top_node"] = tower_top_node class PlatformTowerFrame(om.ExplicitComponent): def initialize(self): self.options.declare("options") def setup(self): opt = self.options["options"] n_member = opt["floating"]["members"]["n_members"] n_attach = opt["mooring"]["n_attach"] self.add_input("platform_nodes", NULL * np.ones((NNODES_MAX, 3)), units="m") self.add_input("platform_Fnode", NULL * np.ones((NNODES_MAX, 3)), units="N") self.add_input("platform_Rnode", NULL * np.ones(NNODES_MAX), units="m") self.add_input("platform_elem_n1", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_n2", NULL * np.ones(NELEM_MAX, dtype=np.int_)) self.add_input("platform_elem_D", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_t", NULL * np.ones(NELEM_MAX), units="m") self.add_input("platform_elem_A", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asx", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Asy", NULL * np.ones(NELEM_MAX), units="m**2") self.add_input("platform_elem_Ixx", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Iyy", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_Izz", NULL * np.ones(NELEM_MAX), units="kg*m**2") self.add_input("platform_elem_rho", NULL * np.ones(NELEM_MAX), units="kg/m**3") self.add_input("platform_elem_E", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_G", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_sigma_y", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_elem_Px1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Px2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Py2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz1", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_Pz2", NULL * np.ones(NELEM_MAX), units="N/m") self.add_input("platform_elem_qdyn", NULL * np.ones(NELEM_MAX), units="Pa") self.add_input("platform_hull_center_of_mass", np.zeros(3), units="m") self.add_input("platform_mass", 0.0, units="kg") self.add_input("platform_I_hull", np.zeros(6), units="kg*m**2") self.add_input("platform_displacement", 0.0, units="m**3") self.add_input("tower_nodes", NULL * np.ones((MEMMAX, 3)), units="m") self.add_output("tower_Fnode", copy_shape="tower_nodes", units="N") self.add_input("tower_Rnode", NULL * np.ones(MEMMAX), units="m") self.add_output("tower_elem_n1", copy_shape="tower_elem_A") self.add_output("tower_elem_n2", copy_shape="tower_elem_A") self.add_output("tower_elem_L", copy_shape="tower_elem_A", units="m") self.add_input("tower_elem_D", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_t", NULL * np.ones(MEMMAX), units="m") self.add_input("tower_elem_A", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asx", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Asy", NULL * np.ones(MEMMAX), units="m**2") self.add_input("tower_elem_Ixx", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Iyy", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_Izz", NULL * np.ones(MEMMAX), units="kg*m**2") self.add_input("tower_elem_rho", NULL * np.ones(MEMMAX), units="kg/m**3") self.add_input("tower_elem_E", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_G", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_sigma_y", NULL * np.ones(MEMMAX), units="Pa") self.add_input("tower_elem_Px", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Px2", NULL * np.ones(MEMMAX), units="N/m") self.add_input("tower_elem_Py", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py1", NULL * np.ones(MEMMAX), units="N/m") self.add_output("tower_elem_Py2", NULL *
np.ones(MEMMAX)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Tue Nov 15 12:05:40 2016 @author: sjjoo """ #%% #import sys import mne #import imageio from mne.utils import run_subprocess, logger import os from os import path as op import copy #import shutil import numpy as np from numpy.random import randn from scipy import stats as stats #import scipy.io as sio import time from functools import partial from mne.stats import (spatio_temporal_cluster_1samp_test, summarize_clusters_stc) from mne import set_config import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from pandas import DataFrame from sklearn import linear_model import statsmodels.api as sm #import csv os.chdir(os.path.join("D:\\", "git","BrainTools","projects","NLR_MEG")) from plotit3 import plotit3 from plotsig3 import plotsig3 from plotit2 import plotit2 from plotsig2 import plotsig2 from plotcorr3 import plotcorr3 set_config('MNE_MEMMAP_MIN_SIZE', '1M') set_config('MNE_CACHE_DIR', '.tmp') mne.set_config('MNE_USE_CUDA', 'true') this_env = copy.copy(os.environ) fs_dir = 'D://subjects' this_env['SUBJECTS_DIR'] = fs_dir raw_dir = os.path.join("D:\\","NLR_MEG") os.chdir(raw_dir) import seaborn as sns sns.set(style="darkgrid") #%% subs = ['NLR_102_RS','NLR_103_AC','NLR_105_BB','NLR_110_HH','NLR_127_AM', 'NLR_130_RW','NLR_132_WP','NLR_133_ML','NLR_145_AC','NLR_150_MG', 'NLR_151_RD','NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_163_LF', 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', 'NLR_180_ZD','NLR_187_NB','NLR_201_GS','NLR_203_AM', 'NLR_204_AM','NLR_205_AC','NLR_206_LM','NLR_207_AH','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_JB423','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_197_BK','NLR_GB355','NLR_GB387','NLR_HB205', 'NLR_IB217','NLR_IB319','NLR_JB227','NLR_JB486','NLR_KB396', 'NLR_IB357'] session1 = ['102_rs160618','103_ac150609','105_bb150713','110_hh160608','127_am151022', '130_rw151221','132_wp160919','133_ml151124','145_ac160621','150_mg160606', '151_rd160620','152_tc160422','160_ek160627','161_ak160627','163_lf160707', '164_sf160707','170_gm160613','172_th160614','174_hs160620','179_gm160701', '180_zd160621','187_nb161017','201_gs150818','203_am150831', '204_am150829','205_ac151123','206_lm151119','207_ah160608','211_lb160617', 'nlr_gb310170614','nlr_kb218170619','nlr_jb423170620','nlr_gb267170620','nlr_jb420170621', 'nlr_hb275170622','197_bk170622','nlr_gb355170606','nlr_gb387170608','nlr_hb205170825', 'nlr_ib217170831','nlr_ib319170825','nlr_jb227170811','nlr_jb486170803','nlr_kb396170808', 'nlr_ib357170912'] subs2 = ['NLR_102_RS','NLR_110_HH','NLR_145_AC','NLR_150_MG', 'NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_162_EF','NLR_163_LF', # 162, 201 only had the second session 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', # 'NLR_170_GM': no EOG channel 'NLR_180_ZD','NLR_201_GS', 'NLR_204_AM','NLR_205_AC','NLR_207_AH','NLR_210_SB','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_GB355'] session2 = ['102_rs160815','110_hh160809','145_ac160823','150_mg160825', '152_tc160623','160_ek160915','161_ak160916','162_ef160829','163_lf160920', '164_sf160920','170_gm160822','172_th160825','174_hs160829','179_gm160913', '180_zd160826','201_gs150925', '204_am151120','205_ac160202','207_ah160809','210_sb160822','211_lb160823', 'nlr_gb310170829','nlr_kb218170829','nlr_gb267170911','nlr_jb420170828','nlr_hb275170828','nlr_gb355170907'] subIndex1 = np.nonzero(np.in1d(subs,subs2))[0] subIndex2 = np.empty([1,len(subIndex1)],dtype=int)[0] for i in range(0,len(subIndex1)): subIndex2[i] = np.nonzero(np.in1d(subs2,subs[subIndex1[i]]))[0] twre_index = [87,93,108,66,116,85,110,71,84,92,87,86,63,81,60,55,71,63,68,67,64,127,79, 73,59,84,79,91,57,67,77,57,80,53,72,58,85,79,116,117,107,78,66,101,67] twre_index = np.array(twre_index) brs = [87,102,108,78,122,91,121,77,91,93,93,88,75,90,66,59,81,84,81,72,71,121, 81,75,66,90,93,101,56,78,83,69,88,60,88,73,82,81,115,127,124,88,68,110,96] brs = np.array(brs) twre_index1 = twre_index[subIndex1] twre_index2_all = [90,76,94,115, 85,75,82,64,75, 63,83,77,84,75, 68,79, 62,90,105,75,71, 69,83,76,62,73,94] twre_index2_all = np.array(twre_index2_all) twre_index2 = twre_index2_all[subIndex2] brs1 = brs[subIndex1] brs2_all = [98,88,102,110,99,91,88,79,105,86,81,88,89,77,83,81,86,98,116,104,86,90,91,97,57,99,102] brs2_all = np.array(brs2_all) brs2 = brs2_all[subIndex2] twre_diff = np.subtract(twre_index2,twre_index1) brs_diff = np.subtract(brs2,brs1) swe_raw = [62, 76, 74, 42, 75, 67, 76, 21, 54, 35, 21, 61, 45, 48, 17, 11, 70, 19, 10, 57, 12, 86, 53, 51, 13, 28, 54, 25, 27, 10, 66, 18, 18, 20, 37, 23, 17, 36, 79, 82, 74, 64, 42, 78, 35] swe_raw = np.array(swe_raw) lwid = [49,60,60,51,62,54,65,23,44,35,31,52,44,39,27,30,57,33,24,48,19,66,45, 43,22,33,51,36,35,25,55,34,26,26,39,27,24,29,61,71,65,56,36,62,51] lwid = np.array(lwid) rf = [88,103,95,67,120,85,108,71,91,87,88,76,76,93,60,40,86,61,66,81,59,130,93,85,49,76,90,96,42,64,74,49,84,56, 76,61,80,89,111,120,132,88,65,102,72] rf = np.array(rf) age = [125.6885, 132.9501, 122.0434, 138.4349, 97.6347, 138.1420, 108.2457, 98.0631, 105.8147, 89.9132, 87.6465, 131.8660, 123.7174, 95.959, 112.416, 133.8042, 152.4639, 103.4823, 89.8475, 138.4020, 93.8568, 117.0814, 123.6202, 122.9304, 109.1656, 90.6058, 111.9593,86.0381,147.2063,95.8699,148.0802,122.5896,88.7162,123.0495,110.6645,105.3069,88.9143,95.2879,106.2852, 122.2915,114.4389,136.1496,128.6246,137.9216,122.7528] age = np.divide(age, 12) wasi_vocab = [51,62,52,39,80,59,56,np.nan,52,47,64,44,49,48,55,53,44,44,53,45,62, 76,45,55,48,56,41,43,40,52,54,50,62,67,59,48,60,60,62,79,74,44,49,50,60] wasi_mr = [47,64,44,58,60,51,56,np.nan,56,43,37,37,51,55,36,33,52,48,49,41,51, 56,56,53,42,41,46,51,34,51,50,51,55,53,44,44,47,59,66,74,65,53,54,47,60] n_subjects = len(subs) c_table = ( (0.6510, 0.8078, 0.8902), # Blue, Green, Red, Orange, Purple, yellow (0.1216, 0.4706, 0.7059), (0.6980, 0.8745, 0.5412), (0.2000, 0.6275, 0.1725), (0.9843, 0.6039, 0.6000), (0.8902, 0.1020, 0.1098), (0.9922, 0.7490, 0.4353), (1.0000, 0.4980, 0), (0.7922, 0.6980, 0.8392), (0.4157, 0.2392, 0.6039), (1.0000, 1.0000, 0.6000), (0.6941, 0.3490, 0.1569)) fname_data = op.join(raw_dir, 'session1_data_loose_depth8_normal.npy') #%% """ Here we load the data for Session 1 """ t0 = time.time() os.chdir(raw_dir) X13 = np.load(fname_data) orig_times = np.load('session1_times.npy') tstep = np.load('session1_tstep.npy') n_epochs = np.load('session1_n_averages.npy') tmin = -0.1 """ Downsample the data """ ss = 3 # was originally 2 sample = np.arange(0,len(orig_times),ss) sRate = 600 / ss times = orig_times[sample] tstep = ss*tstep X11 = X13[:,sample,:,:] del X13 X11 = np.abs(X11) print("\n\nElasped time: %0.2d mins %0.2d secs\n\n" % (divmod(time.time()-t0, 60))) #%% """ Grouping subjects """ reading_thresh = 80 m1 = np.logical_and(np.transpose(twre_index) > reading_thresh, np.transpose(age) <= 13) m2 = np.logical_and(np.transpose(twre_index) <= reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(brs) >= reading_thresh, np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(brs) < reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(swe_raw) >= np.median(swe_raw), np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(swe_raw) < np.median(swe_raw), np.transpose(age) <= 13) orig_twre = twre_index orig_age = age orig_swe = swe_raw m3 = np.mean(n_epochs,axis=1) < 40 m1[np.where(m3)] = False m2[np.where(m3)] = False twre_index = twre_index[np.where(~m3)[0]] age = age[np.where(~m3)[0]] #swe_raw = swe_raw[np.where(~m3)[0]] good_readers = np.where(m1)[0] poor_readers = np.where(m2)[0] a1 = np.transpose(age) > np.mean(age) a2 = np.logical_not(a1) a1[np.where(m3)] = False a2[np.where(m3)] = False old_readers = np.where(a1)[0] young_readers = np.where(a2)[0] #wasi_vocab_G = [wasi_vocab[i] for i in good_readers] #wasi_vocab_P = [wasi_vocab[i] for i in poor_readers] #wasi_mr_G = [wasi_mr[i] for i in good_readers] #wasi_mr_P = [wasi_mr[i] for i in poor_readers] #age_G = [orig_age[i] for i in good_readers] #age_P = [orig_age[i] for i in poor_readers] #twre_G = [orig_twre[i] for i in good_readers] #twre_P = [orig_twre[i] for i in poor_readers] # #n,p = stats.ttest_ind(wasi_vocab_G,wasi_vocab_P,nan_policy='omit') #n,p = stats.ttest_ind(wasi_mr_G,wasi_mr_P,nan_policy='omit') #n,p = stats.ttest_ind(age_G,age_P,nan_policy='omit') #n,p = stats.ttest_ind(twre_G,twre_P,nan_policy='omit') all_subject = [] all_subject.extend(good_readers) all_subject.extend(poor_readers) all_subject.sort() fs_vertices = [np.arange(10242)] * 2 n_epoch = np.empty((45,4)) n_epoch[:,0] = [np.int(n_epochs[i,0]) for i in range(0,45)] n_epoch[:,1] = [np.int(n_epochs[i,3]) for i in range(0,45)] n_epoch[:,2] = [np.int(n_epochs[i,5]) for i in range(0,45)] n_epoch[:,3] = [np.int(n_epochs[i,8]) for i in range(0,45)] removal = np.sum(60 - n_epoch, axis = 1) a = [removal[i] for i in zip(good_readers)] b = [removal[i] for i in zip(poor_readers)] c = [removal[i] for i in zip(all_subject)] d = [removal[i] for i in zip(young_readers)] e = [removal[i] for i in zip(old_readers)] stats.ttest_ind(a,b) stats.ttest_ind(d,e) stats.pearsonr(c,age) stats.pearsonr(c,twre_index) figureDir = '%s/figures' % raw_dir plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(age, c, deg=1) ax.plot(age, fit[0] * age + fit[1], color=[0,0,0]) ax.plot(age, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Age') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_age.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_age.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(twre_index, c, deg=1) ax.plot(twre_index, fit[0] * twre_index + fit[1], color=[0,0,0]) ax.plot(twre_index, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Reading skill') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_reading.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_reading.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Read HCP labels """ labels = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir) #regexp=aparc_label_name #aparc_label_name = 'PHT_ROI'#'_IP'#'IFSp_ROI'#'STSvp_ROI'#'STSdp_ROI'#'PH_ROI'#'TE2p_ROI' #'SFL_ROI' #'IFSp_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc.a2009s',surf_name='white', subjects_dir=fs_dir) #, regexp=aparc_label_name) #%% #TE2p_mask_lh = mne.Label.get_vertices_used(TE2p_label[0]) #TE2p_mask_rh = mne.Label.get_vertices_used(TE2p_label[1]) PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] TE2a_label_lh = [label for label in labels if label.name == 'L_TE2a_ROI-lh'][0] TE2a_label_rh = [label for label in labels if label.name == 'R_TE2a_ROI-rh'][0] TF_label_lh = [label for label in labels if label.name == 'L_TF_ROI-lh'][0] TF_label_rh = [label for label in labels if label.name == 'R_TF_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] a8C_label_lh = [label for label in labels if label.name == 'L_8C_ROI-lh'][0] a8C_label_rh = [label for label in labels if label.name == 'R_8C_ROI-rh'][0] p946v_label_lh = [label for label in labels if label.name == 'L_p9-46v_ROI-lh'][0] p946v_label_rh = [label for label in labels if label.name == 'R_p9-46v_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFSa_label_lh = [label for label in labels if label.name == 'L_IFSa_ROI-lh'][0] IFSa_label_rh = [label for label in labels if label.name == 'R_IFSa_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] a43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] a43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] a9_46v_lh = [label for label in labels if label.name == 'L_a9-46v_ROI-lh'][0] a9_46v_rh = [label for label in labels if label.name == 'R_a9-46v_ROI-rh'][0] PGi_label_lh = [label for label in labels if label.name == 'L_PGi_ROI-lh'][0] PGi_label_rh = [label for label in labels if label.name == 'R_PGi_ROI-rh'][0] PGs_label_lh = [label for label in labels if label.name == 'L_PGs_ROI-lh'][0] PGs_label_rh = [label for label in labels if label.name == 'R_PGs_ROI-rh'][0] STSvp_label_lh = [label for label in labels if label.name == 'L_STSvp_ROI-lh'][0] STSvp_label_rh = [label for label in labels if label.name == 'R_STSvp_ROI-rh'][0] STSdp_label_lh = [label for label in labels if label.name == 'L_STSdp_ROI-lh'][0] STSdp_label_rh = [label for label in labels if label.name == 'R_STSdp_ROI-rh'][0] STSva_label_lh = [label for label in labels if label.name == 'L_STSva_ROI-lh'][0] STSva_label_rh = [label for label in labels if label.name == 'R_STSva_ROI-rh'][0] STSda_label_lh = [label for label in labels if label.name == 'L_STSda_ROI-lh'][0] STSda_label_rh = [label for label in labels if label.name == 'R_STSda_ROI-rh'][0] TPOJ1_label_lh = [label for label in labels if label.name == 'L_TPOJ1_ROI-lh'][0] TPOJ1_label_rh = [label for label in labels if label.name == 'R_TPOJ1_ROI-rh'][0] TPOJ2_label_lh = [label for label in labels if label.name == 'L_TPOJ2_ROI-lh'][0] TPOJ2_label_rh = [label for label in labels if label.name == 'R_TPOJ2_ROI-rh'][0] V1_label_lh = [label for label in labels if label.name == 'L_V1_ROI-lh'][0] V1_label_rh = [label for label in labels if label.name == 'R_V1_ROI-rh'][0] V4_label_lh = [label for label in labels if label.name == 'L_V4_ROI-lh'][0] V4_label_rh = [label for label in labels if label.name == 'R_V4_ROI-rh'][0] LIPd_label_lh = [label for label in labels if label.name == 'L_LIPd_ROI-lh'][0] LIPd_label_rh = [label for label in labels if label.name == 'R_LIPd_ROI-rh'][0] LIPv_label_lh = [label for label in labels if label.name == 'L_LIPv_ROI-lh'][0] LIPv_label_rh = [label for label in labels if label.name == 'R_LIPv_ROI-rh'][0] IPS1_label_lh = [label for label in labels if label.name == 'L_IPS1_ROI-lh'][0] IPS1_label_rh = [label for label in labels if label.name == 'R_IPS1_ROI-rh'][0] _7Am_label_lh = [label for label in labels if label.name == 'L_7Am_ROI-lh'][0] _7Am_label_rh = [label for label in labels if label.name == 'R_7Am_ROI-rh'][0] VIP_label_lh = [label for label in labels if label.name == 'L_VIP_ROI-lh'][0] VIP_label_rh = [label for label in labels if label.name == 'R_VIP_ROI-rh'][0] _7AL_label_lh = [label for label in labels if label.name == 'L_7AL_ROI-lh'][0] _7AL_label_rh = [label for label in labels if label.name == 'R_7AL_ROI-rh'][0] PBelt_label_lh = [label for label in labels if label.name == 'L_PBelt_ROI-lh'][0] PBelt_label_rh = [label for label in labels if label.name == 'R_PBelt_ROI-rh'][0] PSL_label_lh = [label for label in labels if label.name == 'L_PSL_ROI-lh'][0] PSL_label_rh = [label for label in labels if label.name == 'R_PSL_ROI-rh'][0] LBelt_label_lh = [label for label in labels if label.name == 'L_LBelt_ROI-lh'][0] LBelt_label_rh = [label for label in labels if label.name == 'R_LBelt_ROI-rh'][0] A1_label_lh = [label for label in labels if label.name == 'L_A1_ROI-lh'][0] A1_label_rh = [label for label in labels if label.name == 'R_A1_ROI-rh'][0] MBelt_label_lh = [label for label in labels if label.name == 'L_MBelt_ROI-lh'][0] MBelt_label_rh = [label for label in labels if label.name == 'R_MBelt_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] A4_label_lh = [label for label in labels if label.name == 'L_A4_ROI-lh'][0] A4_label_rh = [label for label in labels if label.name == 'R_A4_ROI-rh'][0] PFcm_label_lh = [label for label in labels if label.name == 'L_PFcm_ROI-lh'][0] PFcm_label_rh = [label for label in labels if label.name == 'R_PFcm_ROI-rh'][0] PFm_label_lh = [label for label in labels if label.name == 'L_PFm_ROI-lh'][0] PFm_label_rh = [label for label in labels if label.name == 'R_PFm_ROI-rh'][0] _4_label_lh = [label for label in labels if label.name == 'L_4_ROI-lh'][0] _4_label_rh = [label for label in labels if label.name == 'R_4_ROI-rh'][0] _1_label_lh = [label for label in labels if label.name == 'L_1_ROI-lh'][0] _1_label_rh = [label for label in labels if label.name == 'R_1_ROI-rh'][0] _2_label_lh = [label for label in labels if label.name == 'L_2_ROI-lh'][0] _2_label_rh = [label for label in labels if label.name == 'R_2_ROI-rh'][0] _3a_label_lh = [label for label in labels if label.name == 'L_3a_ROI-lh'][0] _3a_label_rh = [label for label in labels if label.name == 'R_3a_ROI-rh'][0] _3b_label_lh = [label for label in labels if label.name == 'L_3b_ROI-lh'][0] _3b_label_rh = [label for label in labels if label.name == 'R_3b_ROI-rh'][0] _43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] _43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] _6r_label_lh = [label for label in labels if label.name == 'L_6r_ROI-lh'][0] _6r_label_rh = [label for label in labels if label.name == 'R_6r_ROI-rh'][0] OP1_label_lh = [label for label in labels if label.name == 'L_OP1_ROI-lh'][0] OP1_label_rh = [label for label in labels if label.name == 'R_OP1_ROI-rh'][0] OP23_label_lh = [label for label in labels if label.name == 'L_OP2-3_ROI-lh'][0] OP23_label_rh = [label for label in labels if label.name == 'R_OP2-3_ROI-rh'][0] OP4_label_lh = [label for label in labels if label.name == 'L_OP4_ROI-lh'][0] OP4_label_rh = [label for label in labels if label.name == 'R_OP4_ROI-rh'][0] PFop_label_lh = [label for label in labels if label.name == 'L_PFop_ROI-lh'][0] PFop_label_rh = [label for label in labels if label.name == 'R_PFop_ROI-rh'][0] A5_label_lh = [label for label in labels if label.name == 'L_A5_ROI-lh'][0] A5_label_rh = [label for label in labels if label.name == 'R_A5_ROI-rh'][0] STV_label_lh = [label for label in labels if label.name == 'L_STV_ROI-lh'][0] STV_label_rh = [label for label in labels if label.name == 'R_STV_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] PF_label_lh = [label for label in labels if label.name == 'L_PF_ROI-lh'][0] PF_label_rh = [label for label in labels if label.name == 'R_PF_ROI-rh'][0] PFt_label_lh = [label for label in labels if label.name == 'L_PFt_ROI-lh'][0] PFt_label_rh = [label for label in labels if label.name == 'R_PFt_ROI-rh'][0] p47r_label_lh = [label for label in labels if label.name == 'L_p47r_ROI-lh'][0] p47r_label_rh = [label for label in labels if label.name == 'R_p47r_ROI-rh'][0] FOP5_label_lh = [label for label in labels if label.name == 'L_FOP5_ROI-lh'][0] FOP5_label_rh = [label for label in labels if label.name == 'R_FOP5_ROI-rh'][0] FOP4_label_lh = [label for label in labels if label.name == 'L_FOP4_ROI-lh'][0] FOP4_label_rh = [label for label in labels if label.name == 'R_FOP4_ROI-rh'][0] FOP3_label_lh = [label for label in labels if label.name == 'L_FOP3_ROI-lh'][0] FOP3_label_rh = [label for label in labels if label.name == 'R_FOP3_ROI-rh'][0] FOP2_label_lh = [label for label in labels if label.name == 'L_FOP2_ROI-lh'][0] FOP2_label_rh = [label for label in labels if label.name == 'R_FOP2_ROI-rh'][0] Ig_label_lh = [label for label in labels if label.name == 'L_Ig_ROI-lh'][0] Ig_label_rh = [label for label in labels if label.name == 'R_Ig_ROI-rh'][0] AVI_label_lh = [label for label in labels if label.name == 'L_AVI_ROI-lh'][0] AVI_label_rh = [label for label in labels if label.name == 'R_AVI_ROI-rh'][0] _47l_label_lh = [label for label in labels if label.name == 'L_47l_ROI-lh'][0] _47l_label_rh = [label for label in labels if label.name == 'R_47l_ROI-rh'][0] temp1_label_lh = [label for label in anat_label if label.name == 'Pole_occipital-lh'][0] #temp1_label_rh = [label for label in anat_label if label.name == 'parsopercularis-rh'][0] temp2_label_lh = [label for label in anat_label if label.name == 'S_occipital_ant-lh'][0] #temp2_label_rh = [label for label in anat_label if label.name == 'parsorbitalis-rh'][0] temp3_label_lh = [label for label in anat_label if label.name == 'G_and_S_occipital_inf-lh'][0] #temp3_label_rh = [label for label in anat_label if label.name == 'parstriangularis-rh'][0] temp4_label_lh = [label for label in anat_label if label.name == 'S_calcarine-lh'][0] #temp4_label_rh = [label for label in anat_label if label.name == 'precentral-rh'][0] #%% """ Lexical task: Word - Noise """ data11 = X11[:,:,all_subject,5] - X11[:,:,all_subject,8] data11 = np.transpose(data11,[2,1,0]) data11_good = X11[:,:,good_readers,5] - X11[:,:,good_readers,8] data11_good = np.transpose(data11_good,[2,1,0]) data11_poor = X11[:,:,poor_readers,5] - X11[:,:,poor_readers,8] data11_poor = np.transpose(data11_poor,[2,1,0]) """ Dot task: Word - Noise """ data12 = X11[:,:,all_subject,0] - X11[:,:,all_subject,3] data12 = np.transpose(data12,[2,1,0]) data12_good = X11[:,:,good_readers,0] - X11[:,:,good_readers,3] data12_good = np.transpose(data12_good,[2,1,0]) data12_poor = X11[:,:,poor_readers,0] - X11[:,:,poor_readers,3] data12_poor = np.transpose(data12_poor,[2,1,0]) """ Lexical task: High contrast - Low contrast """ #data12 = X11[:,31:65,all_subject,5] - X11[:,31:65,all_subject,7] #data12 = np.transpose(data12,[2,1,0]) #data12[:,:,medial_vertices] = 0. #%% """ Spatio-temporal clustering: session 1 Lexical task""" t0 = time.time() print("\n\n Start time: %s \n\n" % time.ctime()) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1) s_space = mne.grade_to_tris(5) # Left hemisphere s_space_lh = s_space[s_space[:,0] < 10242] #connectivity = mne.spatial_tris_connectivity(s_space_lh, remap_vertices = True) connectivity = mne.spatial_tris_connectivity(s_space) T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.spatio_temporal_cluster_1samp_test(data11[:,:,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < p_threshold)[0] #fsave_vertices = [np.arange(10242), np.array([], int)] fsave_vertices = [np.arange(10242), np.arange(10242)] #fsave_vertices = [np.arange(10242), np.array([], int)] stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\n Elasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) #%% """ Just source estimates """ stat_fun = partial(mne.stats.ttest_1samp_no_p) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., len(good_readers) - 1) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data12_good[:,:,:])), fs_vertices, tmin, tstep, subject='fsaverage') brain3_1 = temp3.plot(hemi='both', subjects_dir=fs_dir, views = 'lat', initial_time=0.35, #['lat','ven','med'] clim=dict(kind='value', lims=[1.7, t_threshold, 3.5]))#clim=dict(kind='value', lims=[2, t_threshold, 7]), size=(800,800)) #%% """ Spatio-temporal clustering: session 1 Dot task""" dur_thresh = 100 t0 = time.time() T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.permutation_cluster_1samp_test(data12[:,166:199,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < 0.05)[0] fsave_vertices = [np.arange(10242), np.arange(10242)] dot_stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) brain3 = dot_stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[0, 10, 50]),background='white',foreground='black') #%% """ ROI definition """ dur_thresh = 100 """ plot(self, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=None, alpha=1.0, time_viewer=False, subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground='white', initial_time=None, time_unit='s') """ brain1 = stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') """ Sort out vertices here """ #temp_frontal_label_l = mne.Label(FOP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP4_label_lh.pos, \ # values= FOP4_label_lh.values) # #brain1.add_label(temp_frontal_label_l, borders=True, color=c_table[8]) # #lh_label = stc_all_cluster_vis.in_label(temp_frontal_label_l) #data = lh_label.data #lh_label.data[data < dur_thresh] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = stc_all_cluster_vis.in_label(temp_labels) #frontal_vertices_l = temp.vertices[0] # #new_label = mne.Label(frontal_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color=c_table[8]) """ Done """ os.chdir('figures') #brain1.save_image('Lexical_LH_STClustering.pdf', antialiased=True) #brain1.save_image('Lexical_LH_STClustering.png', antialiased=True) os.chdir('..') brain1.add_label(A1_label_lh, borders=True, color=[0,0,0]) # Show A1 temp_auditory_label_l = mne.Label(A4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A4_label_lh.pos,values= A4_label_lh.values) + \ mne.Label(A5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A5_label_lh.pos,values= A5_label_lh.values) + \ mne.Label(STSdp_label_lh.vertices, hemi='lh',name=u'sts_l',pos=STSdp_label_lh.pos,values= STSdp_label_lh.values)+ \ mne.Label(TPOJ1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=TPOJ1_label_lh.pos,values= TPOJ1_label_lh.values)+ \ mne.Label(PBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PBelt_label_lh.pos,values= PBelt_label_lh.values)+ \ mne.Label(LBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=LBelt_label_lh.pos,values= LBelt_label_lh.values) #brain1.add_label(temp_auditory_label_l, borders=True, color=c_table[2]) lh_label = stc_all_cluster_vis.in_label(temp_auditory_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) stg_vertices_l = temp.vertices[0] new_label = mne.Label(stg_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[1]) #brain1.remove_labels() temp_auditory2_label_l = mne.Label(PFcm_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PFcm_label_lh.pos,values= PFcm_label_lh.values) + \ mne.Label(RI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=RI_label_lh.pos,values= RI_label_lh.values)+ \ mne.Label(PF_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PF_label_lh.pos,values= PF_label_lh.values) #brain1.add_label(temp_auditory2_label_l, borders=True, color=c_table[0]) lh_label = stc_all_cluster_vis.in_label(temp_auditory2_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) tpj_vertices_l = temp.vertices[0] tpj_vertices_l = np.sort(np.concatenate((tpj_vertices_l, \ [16, 2051, 2677, 2678, 2679, 5042, 8296, 8297, 8299, 8722, 8723, 9376]))) new_label = mne.Label(tpj_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[0]) #brain1.add_label(_1_label_lh, borders=True, color=c_table[4]) temp_motor_label_l = mne.Label(_3a_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3a_label_lh.pos,values= _3a_label_lh.values) + \ mne.Label(_3b_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3b_label_lh.pos,values= _3b_label_lh.values) + \ mne.Label(_4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_4_label_lh.pos,values= _4_label_lh.values) + \ mne.Label(_1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_1_label_lh.pos,values= _1_label_lh.values) #brain1.add_label(temp_motor_label_l, borders=True, color=c_table[4]) lh_label = stc_all_cluster_vis.in_label(temp_motor_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) motor_vertices_l = temp.vertices[0] new_label = mne.Label(motor_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[4]) temp_broca_label_l = \ mne.Label(a44_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a44_label_lh.pos,values= a44_label_lh.values) + \ mne.Label(a45_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a45_label_lh.pos,values= a45_label_lh.values) + \ mne.Label(AVI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=AVI_label_lh.pos,values= AVI_label_lh.values) + \ mne.Label(FOP5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP5_label_lh.pos,values= FOP5_label_lh.values) + \ mne.Label(_47l_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_47l_label_lh.pos,values= _47l_label_lh.values) #brain1.add_label(temp_broca_label_l, borders=True, color=c_table[6]) lh_label = stc_all_cluster_vis.in_label(temp_broca_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) broca_vertices_l = temp.vertices[0] broca_vertices_l = np.sort(np.concatenate((broca_vertices_l,[1187,3107,3108,3109,6745,7690,7691]))) new_label = mne.Label(broca_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[6]) temp_sylvian_label_l = mne.Label(OP23_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP23_label_lh.pos,values= OP23_label_lh.values) + \ mne.Label(Ig_label_lh.vertices, hemi='lh',name=u'sts_l',pos=Ig_label_lh.pos,values= Ig_label_lh.values) + \ mne.Label(OP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP4_label_lh.pos,values= OP4_label_lh.values) + \ mne.Label(OP1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP1_label_lh.pos,values= OP1_label_lh.values) + \ mne.Label(FOP2_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP2_label_lh.pos,values= FOP2_label_lh.values) + \ mne.Label(_6r_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_6r_label_lh.pos,values= _6r_label_lh.values) #brain1.add_label(temp_sylvian_label_l, borders=True, color=c_table[8]) lh_label = stc_all_cluster_vis.in_label(temp_sylvian_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) sylvian_vertices_l = temp.vertices[0] sylvian_vertices_l = np.sort(np.concatenate((sylvian_vertices_l,[905,1892,2825,2526,4157,4158,4159,6239,8290,8293,9194,9203]))) new_label = mne.Label(sylvian_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[8]) # right hemisphere #brain2 = stc_all_cluster_vis.plot( # hemi='rh', views='lateral', subjects_dir=fs_dir, # time_label='Duration significant (ms)', size=(800, 800), # smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') # #stg_vertices_r = A5_label_rh.vertices #stg_vertices_r = np.sort([2001,2002,2419,2420,2421,2418,2754,2417,13075,13076,13077,13078,\ # 13079,13080,13081,12069,12070,12071,12072]) #new_label = mne.Label(stg_vertices_r, hemi='rh') #brain2.add_label(new_label, borders=True, color=c_table[5]) # #os.chdir('figures') #brain2.save_image('RH_STClustering.pdf', antialiased=True) #brain2.save_image('RH_STClustering.png', antialiased=True) #os.chdir('..') # V1 #lh_label = dot_stc_all_cluster_vis.in_label(V1_label_lh) #data = lh_label.data #lh_label.data[data < 50] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = dot_stc_all_cluster_vis.in_label(temp_labels) #tV1_vertices_l = temp.vertices[0] #new_label = mne.Label(tV1_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color='r') # #M = np.mean(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) #errM = np.std(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) #t0 = time.time() #plotit2(times, M, errM, 5, 0, yMin=0, yMax=2.7, subject = 'all') #plotsig2(times,nReps,X, 5, 0, all_subject, boot_pVal) np.save('STG_Vert', stg_vertices_l) np.save('IFG_Vert', broca_vertices_l) np.save('TPJ_Vert', tpj_vertices_l) np.save('Motor_Vert', motor_vertices_l) np.save('Sylvian_Vert', sylvian_vertices_l) np.save('STG_Vert_r', stg_vertices_r) #%% figureDir = '%s/figures' % raw_dir nReps = 3000 boot_pVal = 0.05 #%% """ Left STG: Word vs. Noise """ stg_vertices_l = np.load('STG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) MM = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) diffScore = np.mean((MM[:,:,5]-MM[:,:,8]), axis = 1) diffScore2 = np.mean((MM[:,:,0]-MM[:,:,3]), axis = 1) del temp1 plt.figure() plt.clf() plt.plot(times, diffScore) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Lexical task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, diffScore2) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Fixation task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[stg_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[stg_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """ Plot """ t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t1 = 300 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+100],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4.5]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('STG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Equivalence test""" import statsmodels sstep = 10 p = np.empty((int(len(range(0,800,sstep))),1)) lower_p = np.empty((int(len(range(0,800,sstep))),1)) upper_p = np.empty((int(len(range(0,800,sstep))),1)) for tt, ttime in zip(range(0, len(range(0,800,sstep))),range(0,800,sstep)): t_window1 = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t_window1_dot = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_fix = temp_meg err = 0.8 * np.std(temp_meg_lex - temp_meg_fix) # p[tt], a, b = statsmodels.stats.weightstats.ttost_paired(temp_meg_lex, temp_meg_fix, err, -err) xx, lower_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,-err) xx, upper_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,err) p[tt] = max(lower_p[tt], upper_p[tt])*2 plt.figure() plt.clf() plt.plot(range(0,800,sstep), p) plt.plot([0, 800],[0.05,0.05],'--') plt.xlabel('Time after stimulus onset (ms)') plt.ylabel('P-value from the equivalence test') os.chdir(figureDir) plt.savefig('STG_equivalence.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_equivalence.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #tempa = np.random.normal(100,5,(1,100)) #tempb = np.random.normal(10,5,(1,100)) #err = 0.8*5 #tempp, fjsdk, fjdskl = statsmodels.stats.weightstats.ttost_paired(tempa[0], tempb[0], err, -err) #xxx, xxxx = stats.ttest_rel(tempa[0],tempb[0]) #%% """Correlation over time""" sstep = 10 tstart = 0 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+10],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('STG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% del M, M1, M2 #%% """ Broca """ broca_vertices_l = np.load('IFG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 plt.figure() plt.clf() plt.plot(times, M[:,5]-M[:,8]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Lexical task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, M[:,0]-M[:,3]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Fixation task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[broca_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """Plot""" t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-2,3]) os.chdir('figures') plt.savefig('IFG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ #t1 = 400 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4]) os.chdir('figures') plt.savefig('IFG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('IFG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Correlation over time""" """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 sstep = 10 tstart = 200 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+50],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('IFG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ TPJ """ tpj_vertices_l = np.load('TPJ_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(
np.mean(temp1[tpj_vertices_l,:,:,:],axis=0)
numpy.mean
import os from mms import MMS import numpy as np import scipy.sparse as sp import iast class SysParams: def __init__(self): self.spatial_discretization_method = 0 self.u_0 = 0 self.t_end = 0 self.dt = 0 self.nt = 0 self.p_in = 0 self.p_out = 0 self.n_points = 0 self.y_in = 0 self.temp = 0 self.void_frac = 0 self.rho_p = 0 self.kl = 0 self.disp = 0 self.c_len = 0 self.dz = 0 self.dp_dz = 0 self.v_in = 0 self.n_components = 0 self.p_total = 0 self.p_partial_in = 0 self.use_mms = 0 self.mms_mode = 0 self.mms_conv_factor = 0 self.ms_pt_distribution = 0 self.outlet_boundary_type = 0 self.void_frac_term = 0 self.atol = 0 self.time_stepping_scheme = 0 self.isotherms = 0 self.R = 0 self.t_samples = 0 self.MMS = 0 # Initializing matrices self.kl_matrix = 0 self.disp_matrix = 0 self.g_matrix = 0 self.f_matrix = 0 self.l_matrix = 0 self.d_matrix = 0 self.b_v_vector = 0 self.e_vector = 0 self.xi = 0 def init_params(self, y_in, n_points, p_in, temp, c_len, u_in, void_frac, disp, kl, rho_p, t_end, dt, y_fill_gas, disp_fill_gas, kl_fill_gas, time_stepping_method, atol, dimensionless=True, mms=False, mms_mode="transient", mms_convergence_factor=1000, spatial_discretization_method="central"): """ Initializes the solver with the parameters that remain constant throughout the calculations and the initial conditions. Depending on the dimensionless parameter, the variables might turned into the dimensionless equivalents. The presence of helium is implicit. It means that it is always present no matter what parameters are passed. Its pressure is equal to the pressure of all components at the inlet. Therefore, the number of components is always len(y_in)+1. :param spatial_discretization_method: Sets whether to use upwind or central method :param atol: Absolute error for linear solvers and time stepping schemes :param t_end: Final time point. :param dt: Length of one time step. :param dimensionless: Boolean that specifies whether dimensionless numbers are used. :param time_stepping_method: String that specifies the time of stepping methods. :param y_in: Array containing mole fractions at the start. :param n_points: Number of grid points. :param p_in: Total pressure at the inlet. :param temp: Temperature of the system in Kelvins. :param c_len: Column length. :param u_in: Speed at the inlet. :param void_frac: Void fraction (epsilon). :param disp: Array containing dispersion coefficient for every component. :param kl: Array containing effective mass transport coefficient of every component. :param rho_p: Density of the adsorbent. :param kl_fill_gas: mass transfer coefficient of helium, should be 0 by default :param disp_fill_gas: dispersion coefficient of helium :param y_fill_gas: mole fraction of helium at the inlet, should be 0 by default :param mms: Choose if dynamic code testing is switched on. :param mms_mode: Choose if MMS is to be used to steady state or transient simulation. :param mms_convergence_factor: Choose how quickly MMS is supposed to reach steady state. """ p_out = p_in # This could be changed to user input if discretization and vectorization is ever fixed. ms_pt_distribution = "constant" # Same as above self.R = 8.314 if dimensionless: # Dimensionless quantities self.t_end = t_end * u_in / c_len self.dt = dt * u_in / c_len self.nt = int(self.t_end / self.dt) self.y_in = np.asarray(y_in) self.kl = np.asarray(kl) * c_len / u_in self.disp = np.asarray(disp) / (c_len * u_in) else: # Quantities with dimensions self.t_end = t_end self.dt = dt self.nt = int(self.t_end / self.dt) self.y_in = np.asarray(y_in) self.kl =
np.asarray(kl)
numpy.asarray
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, print_function, division from itertools import product import pytest import numpy as np from numpy.testing import assert_equal, assert_allclose from astropy import units as u from astropy.coordinates.angle_utilities import angular_separation from ..core import nside_to_pixel_resolution from .. import core_cython NSIDE_POWERS = range(0, 21) ORDERS = ('nested', 'ring') def get_test_indices(nside): # For large number of pixels, we only compute a random subset of points if nside > 2 ** 8: try: return np.random.randint(0, 12 * nside ** 2, 12 * 8 ** 2, dtype=np.int64) except TypeError: # Numpy 1.9 and 1.10 return (np.random.random(12 * 8 ** 2) * (12 * float(nside) ** 2)).astype(np.int64, copy=False) else: return np.arange(12 * nside ** 2, dtype=np.int64) # NOTE: we use capfd in all tests here to make sure no errors/warnings are being # raised by the C code. @pytest.mark.parametrize(('order', 'nside_power'), product(ORDERS, NSIDE_POWERS)) def test_roundtrip_healpix_no_offsets(order, nside_power, capfd): nside = 2 ** nside_power index = get_test_indices(nside) lon, lat = core_cython.healpix_to_lonlat(index, nside, order) index_new = core_cython.lonlat_to_healpix(lon, lat, nside, order) assert_equal(index, index_new) out, err = capfd.readouterr() assert out == "" and err == "" @pytest.mark.parametrize(('order', 'nside_power'), product(ORDERS, NSIDE_POWERS)) def test_roundtrip_healpix_with_offsets(order, nside_power, capfd): nside = 2 ** nside_power index = get_test_indices(nside) dx = np.random.random(index.shape) dy = np.random.random(index.shape) lon, lat = core_cython.healpix_with_offset_to_lonlat(index, dx, dy, nside, order) index_new, dx_new, dy_new = core_cython.lonlat_to_healpix_with_offset(lon, lat, nside, order) assert_equal(index, index_new) assert_allclose(dx, dx_new, atol=1e-8)
assert_allclose(dy, dy_new, atol=1e-8)
numpy.testing.assert_allclose
import numpy as np from itertools import product from sklearn.model_selection import train_test_split def get_mask(pairs, shape, row_g2i, col_g2i, sym=True): ''' Convert a list of pairs, into a boolean indicator matrix, m, where (a,b) in pairs, is indexed into m[ai, bj] and m[bi, aj] where possible. if sym = False, then a pair is indicated only once so either m[ai, bj] == True xor m[bi, aj] == True ''' mask = np.zeros(shape, dtype=bool) for i, (a, b) in enumerate(pairs): inserted=False if a in row_g2i and b in col_g2i: mask[row_g2i[a], col_g2i[b]] = True inserted = True if not sym and inserted: assert(inserted) continue if a in col_g2i and b in row_g2i: mask[row_g2i[b], col_g2i[a]] = True inserted = True assert(inserted) return mask def get_eval_pair_list(pairs, row_g2i, col_g2i, gi_data): values = gi_data['values'] pairlist_1 = [] pairlist_2 = [] for A, B in pairs: A_r = row_g2i.get(A) B_c = col_g2i.get(B) A_c = col_g2i.get(A) B_r = row_g2i.get(B) if (A_r is not None) and \ (B_c is not None) and \ (A_c is not None) and \ (B_r is not None): v_ab = values[A_r, B_c] v_ba = values[B_r, A_c] if not (np.isnan(v_ab) or np.isnan(v_ba)): pairlist_1.append((A_r, B_c)) pairlist_2.append((B_r, A_c)) else: pass elif (A_r is not None) and \ (B_c is not None): if not np.isnan(values[A_r, B_c]): pairlist_1.append((A_r, B_c)) pairlist_2.append((A_r, B_c)) else: pass elif (A_c is not None) and \ (B_r is not None): if not np.isnan(values[B_r, A_c]): pairlist_1.append((B_r, A_c)) pairlist_2.append((B_r, A_c)) else: pass else: continue pairlist_1 = tuple(zip(*pairlist_1)) pairlist_2 = tuple(zip(*pairlist_2)) return pairlist_1, pairlist_2 def gi_train_test_split_w_pairlists(gi_data, hf): ''' Sample train/test set but return lists of indices whose indexed values should be averaged for evaluation [(A,B), ...], [(B,A),...] ''' rows = gi_data['rows'] cols = gi_data['cols'] values = gi_data['values'] col_g2i = dict((n, i) for i, n in enumerate(cols)) row_g2i = dict((n, i) for i, n in enumerate(rows)) rowset = set(rows) colset = set(cols) pairs = product(rows, cols) pairs = set(frozenset((a,b)) for a,b in pairs if a != b) pairs = [tuple(p) for p in pairs] train_pairs, test_pairs = train_test_split(pairs, test_size=hf) test_mask = get_mask(test_pairs, values.shape, row_g2i, col_g2i) # This implements train/test over *all* possible pairs, # in expectation is equivalent to CV over observed pairs value_mask = ~np.isnan(values) test_mask = np.logical_and(value_mask, test_mask) train_mask = np.logical_and(value_mask, ~test_mask) train_X = np.where(train_mask, values, np.nan) test_X = np.where(test_mask, values, np.nan) eval_pairs1, eval_pairs2 = get_eval_pair_list(test_pairs, row_g2i, col_g2i, gi_data) assert(np.all(~
np.isnan(test_X[test_mask])
numpy.isnan
# coding:utf-8 import femm from math import tan, pi, atan, cos, sin, sqrt, copysign, exp import numpy as np from csv import reader as csv_reader import logging import os from collections import OrderedDict import sys import subprocess # from utility import * # import utility # will not create new list as zip does from time import sleep from time import time as clock_time from .VanGogh import VanGogh # from . import VanGogh from .winding_layout_im import winding_layout_v2 SELECT_ALL = 4 EPS = 1e-2 # unit mm __all__ = ['FEMM_Solver'] class VanGogh_FEMM(VanGogh): def __init__(self, im, child_index=0): super(VanGogh_FEMM, self).__init__(im, child_index) @staticmethod def mirror_and_copyrotate(Q, Radius, fraction): # Mirror femm.mi_selectcircle(0, 0, Radius + EPS, SELECT_ALL) # this EPS is sometime necessary to selece the arc at Radius. femm.mi_mirror2(0, 0, -Radius, 0, SELECT_ALL) # Rotate femm.mi_selectcircle(0, 0, Radius + EPS, SELECT_ALL) femm.mi_copyrotate2(0, 0, 360. / Q, int(Q) / fraction, SELECT_ALL) @staticmethod def draw_arc(p1, p2, angle, maxseg=1, center=None, **kwarg): femm.mi_drawarc(p1[0], p1[1], p2[0], p2[1], angle / pi * 180, maxseg) # [deg] @staticmethod def add_arc(p1, p2, angle, maxseg=1, center=None, **kwarg): femm.mi_addarc(p1[0], p1[1], p2[0], p2[1], angle / pi * 180, maxseg) # [deg] @staticmethod def draw_line(p1, p2): femm.mi_drawline(p1[0], p1[1], p2[0], p2[1]) @staticmethod def add_line(p1, p2): femm.mi_addsegment(p1[0], p1[1], p2[0], p2[1]) def some_solver_related_operations_rotor_before_mirror_rotation(self, im, P6, P8): if im.use_drop_shape_rotor_bar == True: # constraint to reduce element number @rotor-P6 femm.mi_selectarcsegment(P6[0], P6[1]) femm.mi_setarcsegmentprop(8, "<None>", False, 100) femm.mi_clearselected() # constraint to reduce element number @rotor-P8 femm.mi_selectarcsegment(P8[0], P8[1]) femm.mi_setarcsegmentprop(8, "<None>", False, 100) femm.mi_clearselected() else: # constraint to reduce element number @rotor-P8 femm.mi_selectarcsegment(P8[0], P8[1]) femm.mi_setarcsegmentprop(8, "<None>", False, 100) femm.mi_clearselected() def some_solver_related_operations_fraction(self, im, fraction): # Boundary if fraction == 1: femm.mi_drawarc(im.Radius_Shaft, 0, -im.Radius_Shaft, 0, 180, 20) # 边界不要用太小的segment咯!避免剖分过细(这里设置无效) femm.mi_drawarc(-im.Radius_Shaft, 0, im.Radius_Shaft, 0, 180, 20) femm.mi_drawarc(im.Radius_OuterStatorYoke, 0, -im.Radius_OuterStatorYoke, 0, 180, 20) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, im.Radius_OuterStatorYoke, 0, 180, 20) elif fraction == 4: femm.mi_drawarc(-im.Radius_Shaft, 0, 0, -im.Radius_Shaft, 90, 10) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, 0, -im.Radius_OuterStatorYoke, 90, 10) femm.mi_selectrectangle(-EPS - im.Radius_Shaft, EPS, EPS - im.Radius_OuterStatorYoke, im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_selectrectangle(EPS, -EPS - im.Radius_Shaft, im.Radius_OuterStatorYoke, EPS - im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_deleteselected() # between 2rd and 3th quarters p1 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) p2 = (-im.Radius_Shaft, 0) self.add_line(p1, p2) p2 = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) self.add_line(p1, p2) p1 = (-im.Radius_OuterRotor - 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition self.draw_line(p1, p2) p2 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) self.draw_line(p1, p2) p1 = (-im.Radius_OuterStatorYoke, 0) self.add_line(p1, p2) # between 3rd and 4th quarters p1 = (0, -im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2) p2 = (0, -im.Radius_Shaft) self.add_line(p1, p2) p2 = (0, -im.Location_RotorBarCenter - im.Radius_of_RotorSlot) self.add_line(p1, p2) p1 = (0, -im.Radius_OuterRotor - 0.5 * im.Length_AirGap) self.draw_line(p1, p2) p2 = (0, -im.Radius_OuterRotor - im.Length_AirGap) self.draw_line(p1, p2) p1 = (0, -im.Radius_OuterStatorYoke) self.add_line(p1, p2) elif fraction == 2: femm.mi_drawarc(-im.Radius_Shaft, 0, im.Radius_Shaft, 0, 180, 15) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, im.Radius_OuterStatorYoke, 0, 180, 15) femm.mi_selectrectangle(EPS - im.Radius_OuterStatorYoke, EPS, -EPS + im.Radius_OuterStatorYoke, EPS + im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_deleteselected() # between 2rd and 3th quarters p1 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) p2 = (-im.Radius_Shaft, 0) self.add_line(p1, p2) p2 = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) self.add_line(p1, p2) p1 = (-im.Radius_OuterRotor - 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition self.draw_line(p1, p2) p2 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) self.draw_line(p1, p2) p1 = (-im.Radius_OuterStatorYoke, 0) self.add_line(p1, p2) # between 1rd and 4th quarters p1 = (+im.Location_RotorBarCenter2 - im.Radius_of_RotorSlot2, 0) p2 = (+im.Radius_Shaft, 0) self.add_line(p1, p2) p2 = (+im.Location_RotorBarCenter + im.Radius_of_RotorSlot, 0) self.add_line(p1, p2) p1 = (+im.Radius_OuterRotor + 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition self.draw_line(p1, p2) p2 = (+im.Radius_OuterRotor + im.Length_AirGap, 0) self.draw_line(p1, p2) p1 = (+im.Radius_OuterStatorYoke, 0) self.add_line(p1, p2) else: raise Exception('not supported fraction = %d' % (fraction)) # Air Gap Boundary for Rotor Motion #1 # R = im.Radius_OuterRotor+0.6*im.Length_AirGap # femm.mi_drawarc(R,0, -R,0, 180, 5) # femm.mi_drawarc(-R,0, R,0, 180, 5) # R = im.Radius_OuterRotor+0.4*im.Length_AirGap # femm.mi_drawarc(R,0, -R,0, 180, 5) # femm.mi_drawarc(-R,0, R,0, 180, 5) class FEMM_Solver(object): def __init__(self, im, flag_read_from_jmag=True, freq=0, individual_index=None, bool_static_fea_loss=False): self.bool_static_fea_loss = bool_static_fea_loss self.individual_index = individual_index self.vangogh = VanGogh_FEMM(im) self.deg_per_step = im.fea_config_dict['femm.deg_per_step'] # deg, we need this for show_results self.flag_read_from_jmag = flag_read_from_jmag # read the pre-determined rotor currents from the eddy current FEA of jmag or femm self.freq = freq if freq == 0: self.flag_eddycurrent_solver = False self.flag_static_solver = not self.flag_eddycurrent_solver self.fraction = 1 else: self.flag_eddycurrent_solver = True self.flag_static_solver = not self.flag_eddycurrent_solver self.fraction = 2 self.stack_length = im.l_st self.im = im self.dir_codes = im.fea_config_dict['run_folder'] # evaluate initial design only or optimize if im.bool_initial_design == True: raise Exception('这里好像基本上运行不到了???') # self.dir_run = im.fea_config_dict['dir.femm_files'] + im.fea_config_dict['model_name_prefix'] + '/' self.dir_run = im.fea_config_dict['model_name_prefix'] + '/' if not os.path.exists(self.dir_run): logging.getLogger(__name__).debug('FEMM: There is no run yet. Generate the run folder under %s.', self.dir_run) os.makedirs(self.dir_run) if flag_read_from_jmag == True: if self.individual_index is not None: self.dir_run += 'static-jmag/' + 'ind#%04d/' % (self.individual_index) else: self.dir_run += 'static-jmag/' if not os.path.exists(self.dir_run): os.makedirs(self.dir_run) else: if self.individual_index is not None: self.dir_run += 'static-femm/' + 'ind#%04d/' % (self.individual_index) else: self.dir_run += 'static-femm/' if not os.path.exists(self.dir_run): os.makedirs(self.dir_run) else: if self.individual_index is not None: # self.dir_run = im.fea_config_dict['dir.femm_files'] + im.fea_config_dict['run_folder'] + 'ind#%04d/'%(self.individual_index) self.dir_run = im.fea_config_dict['run_folder'] + 'ind#%04d/' % (self.individual_index) else: # self.dir_run = im.fea_config_dict['dir.femm_files'] + im.fea_config_dict['run_folder'] self.dir_run = im.fea_config_dict['run_folder'] if not os.path.exists(self.dir_run): logger = logging.getLogger(__name__) logger.debug('FEMM: There is no run yet. Generate the run folder as %s.', self.dir_run) os.makedirs(self.dir_run) self.dir_run_sweeping = self.dir_run + 'femm_temp/' # 'sweeping/' if not os.path.isdir(self.dir_run_sweeping): os.makedirs(self.dir_run_sweeping) self.output_file_name = self.get_output_file_name() self.rotor_slot_per_pole = int(im.Qr / im.DriveW_poles) self.rotor_phase_name_list = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def add_block_labels(self, fraction=1): im = self.im SERIES_CONNECTED = 1 PARALLEL_CONNECTED = 0 if self.im.fea_config_dict['femm.Coarse_Mesh'] == True: # Coarse mesh if self.im.fea_config_dict['femm.Coarse_Mesh_Level'] == 2: MESH_SIZE_ALUMINUM = 2 * 6 # 3 MESH_SIZE_STEEL = 2 * 6 # 4 MESH_SIZE_AIR = 2 * 0.75 # 0.5 MESH_SIZE_COPPER = 2 * 10 # 8 elif self.im.fea_config_dict['femm.Coarse_Mesh_Level'] == 3: MESH_SIZE_ALUMINUM = 1 * 6 # 3 MESH_SIZE_STEEL = 1 * 6 # 4 MESH_SIZE_AIR = 1 * 0.75 # 0.5 MESH_SIZE_COPPER = 1 * 10 # 8 else: raise Exception('Invalid femm.Coarse_Mesh_Level.') else: MESH_SIZE_ALUMINUM = 3 MESH_SIZE_STEEL = 4 MESH_SIZE_AIR = 0.5 MESH_SIZE_COPPER = 8 def block_label(group_no, material_name, p, meshsize_if_no_automesh, incircuit='<None>', turns=0, automesh=True, magdir=0): femm.mi_addblocklabel(p[0], p[1]) femm.mi_selectlabel(p[0], p[1]) femm.mi_setblockprop(material_name, automesh, meshsize_if_no_automesh, incircuit, magdir, group_no, turns) femm.mi_clearselected() # air region @225deg X = Y = -(im.Radius_OuterRotor + 0.5 * im.Length_AirGap) / 1.4142135623730951 block_label(9, 'Air', (X, Y), MESH_SIZE_AIR, automesh=self.bool_automesh) # # Air Gap Boundary for Rotor Motion #2 # block_label(9, '<No Mesh>', (0, im.Radius_OuterRotor+0.5*im.Length_AirGap), 5, automesh=self.bool_automesh) # block_label(9, 'Air', (0, im.Radius_OuterRotor+0.7*im.Length_AirGap), 0.5, automesh=self.bool_automesh) # block_label(9, 'Air', (0, im.Radius_OuterRotor+0.3*im.Length_AirGap), 0.5, automesh=self.bool_automesh) # shaft if fraction == 1: block_label(102, '<No Mesh>', (0, 0), 20) # block_label(101, 'Air', (0, 0), 10, automesh=True) # for deeply-saturated rotor yoke # Iron Core @225deg if 'M19' in self.im.stator_iron_mat['core_material']: steel_name = 'M19Gauge29' elif self.im.spec_input_dict['Steel'] == 'M15': steel_name = 'My M-15 Steel' elif self.im.spec_input_dict['Steel'] == 'Arnon5': steel_name = 'Arnon5-final' X = Y = -(im.Radius_Shaft + EPS * 10) / 1.4142135623730951 block_label(100, steel_name, (X, Y), MESH_SIZE_STEEL, automesh=self.bool_automesh) X = Y = -(0.5 * (im.Radius_InnerStatorYoke + im.Radius_OuterStatorYoke)) / 1.4142135623730951 block_label(10, steel_name, (X, Y), MESH_SIZE_STEEL, automesh=self.bool_automesh) # Circuit Configuration # Rotor Winding Part # Our proposed pole-specific winidng with a neutral plate (this case we ignore fraction and always draw whole model!) if self.im.PoleSpecificNeutral == True: R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr # THETA_BAR = pi - angle_per_slot wily_Qr = winding_layout_v2.pole_specific_winding_with_neutral(self.im.Qr, self.im.DriveW_poles / 2, self.im.BeariW_poles / 2, self.im.pitch) for ind, pair in enumerate(wily_Qr.pairs): circuit_name = 'r%s' % (self.rotor_phase_name_list[ind]) # add excitation for the rotor circuit (which is only seen in FEMM static solver) if self.flag_static_solver == True: # self.freq == 0: # Static FEA femm.mi_addcircprop(circuit_name, self.dict_rotor_current_function[i](0.0), SERIES_CONNECTED) # print self.dict_rotor_current_function[i](0.0) else: # Eddy Current FEA (with multi-phase 4-bar cage... haha this is practically nothing) femm.mi_addcircprop(circuit_name, 0, PARALLEL_CONNECTED) # PARALLEL for PS circuit # THETA_BAR += angle_per_slot # The general implmentation of any pole PS rotor winding print('Circuit Configuration') for index, j in enumerate(pair): print(f'|FEMM_Solver.{circuit_name}|', j, 'in', pair) THETA = angle_per_slot * j X = R * cos(THETA); Y = R * sin(THETA) if index % 2 == 0: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) else: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) else: # Chiba's conventional pole specific winding if fraction == 1: # Any pole Pole-Specific Rotor Winding # R = 0.5*(im.Location_RotorBarCenter + im.Location_RotorBarCenter2) R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr THETA_BAR = pi - angle_per_slot for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) if self.flag_static_solver == True: # self.freq == 0: # Static FEA femm.mi_addcircprop(circuit_name, self.dict_rotor_current_function[i](0.0), SERIES_CONNECTED) # print self.dict_rotor_current_function[i](0.0) else: # Eddy Current FEA (with multi-phase 4-bar cage... haha this is practically nothing) femm.mi_addcircprop(circuit_name, 0, PARALLEL_CONNECTED) # PARALLEL for PS circuit THETA_BAR += angle_per_slot # The general implmentation of any pole PS rotor winding for j in range(im.DriveW_poles): THETA = THETA_BAR + angle_per_slot * j * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) if j % 2 == 0: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) else: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) elif fraction == 4 or fraction == 2: # 2 pole Pole-Specific Rotor Winding with fraction # poly-four-bar-Cage + no bearing current excitated <=> pole specific winding # R = 0.5*(im.Location_RotorBarCenter + im.Location_RotorBarCenter2) R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr THETA_BAR = pi - angle_per_slot + EPS # add EPS for the half bar for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) # Eddy Current FEA (with multi-phase 4-bar cage behave the same with PS rotor winding when no bearing current is excited! femm.mi_addcircprop(circuit_name, 0, PARALLEL_CONNECTED) # PARALLEL for PS circuit (valid only if there is no 2-pole field) THETA_BAR += angle_per_slot THETA = THETA_BAR X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) # rA+ ~ rH+ if fraction == 2: THETA = THETA_BAR + angle_per_slot * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) # rA- However, this turns=-1 is not effective for PARALLEL_CONNECTED circuit # the other half bar # THETA_BAR += angle_per_slot THETA = THETA + angle_per_slot - 2 * EPS X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit='r%s' % (self.rotor_phase_name_list[0]), turns=-1) # However, this turns=-1 is not effective for PARALLEL_CONNECTED circuit # Stator Winding npb = im.number_parallel_branch nwl = im.no_of_layers # number of windign layers if self.flag_static_solver == True: # self.freq == 0: # static solver femm.mi_addcircprop('dU', self.dict_stator_current_function[3](0.0), SERIES_CONNECTED) femm.mi_addcircprop('dV', self.dict_stator_current_function[4](0.0), SERIES_CONNECTED) femm.mi_addcircprop('dW', self.dict_stator_current_function[5](0.0), SERIES_CONNECTED) femm.mi_addcircprop('bU', self.dict_stator_current_function[0](0.0), SERIES_CONNECTED) femm.mi_addcircprop('bV', self.dict_stator_current_function[1](0.0), SERIES_CONNECTED) femm.mi_addcircprop('bW', self.dict_stator_current_function[2](0.0), SERIES_CONNECTED) else: # eddy current solver # if im.fea_config_dict['DPNV_separate_winding_implementation'] == True or im.fea_config_dict['DPNV'] == False: if im.DPNV_or_SEPA == False: # either a separate winding or a DPNV winding implemented as a separate winding ampD = im.DriveW_CurrentAmp / npb ampB = im.BeariW_CurrentAmp else: # case: DPNV as an actual two layer winding ampD = im.DriveW_CurrentAmp / npb ampB = ampD # 2020/07/07: Does comutating sequence even matter for frequency analysis??? Simply delege this if-else statement will do no harm. (to be tested) if im.CommutatingSequenceD == 1: MyCommutatingSequence = ['-', '+'] # 2 pole else: # raise MyCommutatingSequence = ['+', '-'] # 4 pole legacy femm.mi_addcircprop('dU', '%g' % (ampD), SERIES_CONNECTED) femm.mi_addcircprop('dV', '%g*(-0.5%sI*0.8660254037844386)' % (ampD, MyCommutatingSequence[0]), SERIES_CONNECTED) femm.mi_addcircprop('dW', '%g*(-0.5%sI*0.8660254037844386)' % (ampD, MyCommutatingSequence[1]), SERIES_CONNECTED) femm.mi_addcircprop('bU', '%g' % (ampB), SERIES_CONNECTED) femm.mi_addcircprop('bV', '%g*(-0.5%sI*0.8660254037844386)' % (ampB, MyCommutatingSequence[0]), SERIES_CONNECTED) femm.mi_addcircprop('bW', '%g*(-0.5%sI*0.8660254037844386)' % (ampB, MyCommutatingSequence[1]), SERIES_CONNECTED) # if fraction == 1: # I thought PS can be realized in FEMM but I was wrong, this fraction==1 case should be deleted! # # femm.mi_addcircprop('bA', '%g' %(im.BeariW_CurrentAmp), SERIES_CONNECTED) # # femm.mi_addcircprop('bB', '%g*(-0.5+I*0.8660254037844386)'%(im.BeariW_CurrentAmp), SERIES_CONNECTED) # # femm.mi_addcircprop('bC', '%g*(-0.5-I*0.8660254037844386)'%(im.BeariW_CurrentAmp), SERIES_CONNECTED) # femm.mi_addcircprop('bU', '%g' %(ampB), SERIES_CONNECTED) # femm.mi_addcircprop('bV', '%g*(-0.5%sI*0.8660254037844386)'%(ampB, MyCommutatingSequence[0]), SERIES_CONNECTED) # femm.mi_addcircprop('bW', '%g*(-0.5%sI*0.8660254037844386)'%(ampB, MyCommutatingSequence[1]), SERIES_CONNECTED) # elif fraction == 4 or fraction == 2: # no bearing current # femm.mi_addcircprop('bU', 0, SERIES_CONNECTED) # femm.mi_addcircprop('bV', 0, SERIES_CONNECTED) # femm.mi_addcircprop('bW', 0, SERIES_CONNECTED) # dict_dir = {'+':1, '-':-1} # wrong (not consistent with JMAG) dict_dir = {'+': -1, '-': 1, 'o': 0} R = 0.5 * (im.Radius_OuterRotor + im.Radius_InnerStatorYoke) angle_per_slot = 2 * pi / im.Qs # torque winding's blocks THETA = pi - angle_per_slot + 0.5 * angle_per_slot - 3.0 / 360 # This 3 deg must be less than 360/Qs/2,取这么大是为了在GUI上看得清楚点。 count = 0 # for phase, up_or_down in zip(im.l_rightlayer1,im.l_rightlayer2): for phase, up_or_down in zip(im.layer_phases[0], im.layer_polarity[0]): circuit_name = 'd' + phase THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) count += 1 if fraction == 4: if not (count > im.Qs * 0.5 + EPS and count <= im.Qs * 0.75 + EPS): continue if fraction == 2: if not (count > im.Qs * 0.5 + EPS): continue block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.DriveW_zQ / nwl * dict_dir[up_or_down]) # bearing winding's blocks if fraction == 1: THETA = pi - angle_per_slot + 0.5 * angle_per_slot + 3.0 / 360 # for phase, up_or_down in zip(im.l_leftlayer1,im.l_leftlayer2): for phase, up_or_down in zip(im.layer_phases[1], im.layer_polarity[1]): circuit_name = 'b' + phase THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) # if self.im.fea_config_dict['DPNV'] == True: # else: # separate winding (e.g., Chiba's) block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.BeariW_turns / nwl * dict_dir[up_or_down]) elif fraction == 4 or fraction == 2: # 危险!FEMM默认把没有设置incircuit的导体都在无限远短接在一起——也就是说,你可能把定子悬浮绕组也短接到鼠笼上去了! # 所以,一定要设置好悬浮绕组,而且要用serial-connected,电流给定为 0 A。 THETA = pi - angle_per_slot + 0.5 * angle_per_slot + 3.0 / 360 count = 0 # for phase, up_or_down in zip(im.l_leftlayer1,im.l_leftlayer2): for phase, up_or_down in zip(im.wily.layer_Y_phases, im.wily.layer_Y_signs): circuit_name = 'b' + phase THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) count += 1 if fraction == 4: if not (count > im.Qs * 0.5 + EPS and count <= im.Qs * 0.75 + EPS): continue elif fraction == 2: if not (count > im.Qs * 0.5 + EPS): continue block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.BeariW_turns / nwl * dict_dir[up_or_down]) # Boundary Conditions # femm.mi_makeABC() # open boundary if fraction == 1: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) femm.mi_selectarcsegment(0, -im.Radius_OuterStatorYoke) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() femm.mi_selectarcsegment(0, im.Radius_OuterStatorYoke) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 10) femm.mi_clearselected() femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_selectarcsegment(0, im.Radius_Shaft) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 100) femm.mi_clearselected() elif fraction == 4: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) X = Y = -(im.Radius_OuterStatorYoke) / 1.4142135623730951 femm.mi_selectarcsegment(X, Y) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() X = Y = -(im.Radius_Shaft) / 1.4142135623730951 femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_addboundprop('apbc1', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc2', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc3', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc5', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc6', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) # http://www.femm.info/wiki/periodicboundaries R = im.Radius_Shaft + EPS femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc1", 4, False, False, 100) femm.mi_clearselected() R = im.Location_RotorBarCenter femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc2", 3, False, False, 100) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.25 * im.Length_AirGap femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc3", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.75 * im.Length_AirGap femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc5", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterStatorYoke - EPS femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc6", 4, False, False, 10) femm.mi_clearselected() elif fraction == 2: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) X = Y = -(im.Radius_OuterStatorYoke) / 1.4142135623730951 femm.mi_selectarcsegment(X, Y) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() X = Y = -(im.Radius_Shaft) / 1.4142135623730951 femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_addboundprop('pbc1', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc2', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc3', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc5', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc6', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) R = im.Radius_Shaft + EPS femm.mi_selectsegment(-R, 0) femm.mi_selectsegment(+R, 0) femm.mi_setsegmentprop("pbc1", 4, False, False, 100) femm.mi_clearselected() R = im.Location_RotorBarCenter femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc2", 3, False, False, 100) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.25 * im.Length_AirGap femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc3", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.75 * im.Length_AirGap femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc5", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterStatorYoke - EPS femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc6", 4, False, False, 10) femm.mi_clearselected() # Air Gap Boundary for Rotor Motion #3 # inner_angle = 0; outer_angle = 0 # femm.mi_addboundprop('AGB4RM', 0,0,0, 0,0,0,0,0, 6, inner_angle, outer_angle) # R = im.Radius_OuterRotor+0.6*im.Length_AirGap # femm.mi_selectarcsegment(0,-R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # femm.mi_selectarcsegment(0,R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # R = im.Radius_OuterRotor+0.4*im.Length_AirGap # femm.mi_selectarcsegment(0,-R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # femm.mi_selectarcsegment(0,R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # Other arc-segment-specific mesh constraints are already done in draw_model() def add_block_labels_static_solver(self, fraction=1): # add_block_labels_static_solver is implemented with the new general DPNV winding implementation im = self.im SERIES_CONNECTED = 1 PARALLEL_CONNECTED = 0 if self.im.fea_config_dict['femm.Coarse_Mesh'] == True: # Coarse mesh if self.im.fea_config_dict['femm.Coarse_Mesh_Level'] == 2: MESH_SIZE_ALUMINUM = 2 * 6 # 3 MESH_SIZE_STEEL = 2 * 6 # 4 MESH_SIZE_AIR = 2 * 0.75 # 0.5 MESH_SIZE_COPPER = 2 * 10 # 8 elif self.im.fea_config_dict['femm.Coarse_Mesh_Level'] == 3: MESH_SIZE_ALUMINUM = 1 * 6 # 3 MESH_SIZE_STEEL = 1 * 6 # 4 MESH_SIZE_AIR = 1 * 0.75 # 0.5 MESH_SIZE_COPPER = 1 * 10 # 8 else: raise Exception('Invalid femm.Coarse_Mesh_Level.') else: MESH_SIZE_ALUMINUM = 3 MESH_SIZE_STEEL = 4 MESH_SIZE_AIR = 0.5 MESH_SIZE_COPPER = 8 def block_label(group_no, material_name, p, meshsize_if_no_automesh, incircuit='<None>', turns=0, automesh=True, magdir=0): femm.mi_addblocklabel(p[0], p[1]) femm.mi_selectlabel(p[0], p[1]) femm.mi_setblockprop(material_name, automesh, meshsize_if_no_automesh, incircuit, magdir, group_no, turns) femm.mi_clearselected() # air region @225deg X = Y = -(im.Radius_OuterRotor + 0.5 * im.Length_AirGap) / 1.4142135623730951 block_label(9, 'Air', (X, Y), MESH_SIZE_AIR, automesh=self.bool_automesh) # # Air Gap Boundary for Rotor Motion #2 # block_label(9, '<No Mesh>', (0, im.Radius_OuterRotor+0.5*im.Length_AirGap), 5, automesh=self.bool_automesh) # block_label(9, 'Air', (0, im.Radius_OuterRotor+0.7*im.Length_AirGap), 0.5, automesh=self.bool_automesh) # block_label(9, 'Air', (0, im.Radius_OuterRotor+0.3*im.Length_AirGap), 0.5, automesh=self.bool_automesh) # shaft if fraction == 1: block_label(102, '<No Mesh>', (0, 0), 20) # block_label(101, 'Air', (0, 0), 10, automesh=True) # for deeply-saturated rotor yoke # Iron Core @225deg if 'M19' in self.im.spec_input_dict['Steel']: steel_name = 'M19Gauge29' elif self.im.spec_input_dict['Steel'] == 'M15': steel_name = 'My M-15 Steel' elif self.im.spec_input_dict['Steel'] == 'Arnon5': steel_name = 'Arnon5-final' X = Y = -(im.Radius_Shaft + EPS * 10) / 1.4142135623730951 block_label(100, steel_name, (X, Y), MESH_SIZE_STEEL, automesh=self.bool_automesh) X = Y = -(0.5 * (im.Radius_InnerStatorYoke + im.Radius_OuterStatorYoke)) / 1.4142135623730951 block_label(10, steel_name, (X, Y), MESH_SIZE_STEEL, automesh=self.bool_automesh) # Circuit Configuration # Rotor Winding if fraction == 1: # 4 pole Pole-Specific Rotor Winding # R = 0.5*(im.Location_RotorBarCenter + im.Location_RotorBarCenter2) R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr THETA_BAR = pi - angle_per_slot for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) if self.flag_static_solver == True: # self.freq == 0: # Static FEA femm.mi_addcircprop(circuit_name, self.dict_rotor_current_function[i](0.0), SERIES_CONNECTED) # print self.dict_rotor_current_function[i](0.0) else: # Eddy Current FEA (with multi-phase 4-bar cage... haha this is practically nothing) femm.mi_addcircprop(circuit_name, 0, PARALLEL_CONNECTED) # PARALLEL for PS circuit THETA_BAR += angle_per_slot if True: # The general implmentation of any pole PS rotor winding for j in range(im.DriveW_poles): THETA = THETA_BAR + angle_per_slot * j * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) if j % 2 == 0: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) else: block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) elif im.DriveW_poles == 4: # The explict implementation only working for 4 pole PS rotor winding THETA = THETA_BAR X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) THETA = THETA_BAR + angle_per_slot * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) THETA = THETA_BAR + angle_per_slot * 2 * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) THETA = THETA_BAR + angle_per_slot * 3 * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) elif fraction == 4 or fraction == 2: # 2 pole Pole-Specific Rotor Winding with fraction # poly-four-bar-Cage + no bearing current excitated <=> pole specific winding # R = 0.5*(im.Location_RotorBarCenter + im.Location_RotorBarCenter2) R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr THETA_BAR = pi - angle_per_slot + EPS # add EPS for the half bar for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) # Eddy Current FEA (with multi-phase 4-bar cage behave the same with PS rotor winding when no bearing current is excited! femm.mi_addcircprop(circuit_name, 0, PARALLEL_CONNECTED) # PARALLEL for PS circuit (valid only if there is no 2-pole field) THETA_BAR += angle_per_slot THETA = THETA_BAR X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=1) # rA+ ~ rH+ if fraction == 2: THETA = THETA_BAR + angle_per_slot * self.rotor_slot_per_pole X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit=circuit_name, turns=-1) # rA- However, this turns=-1 is not effective for PARALLEL_CONNECTED circuit # the other half bar # THETA_BAR += angle_per_slot THETA = THETA + angle_per_slot - 2 * EPS X = R * cos(THETA); Y = R * sin(THETA) block_label(101, 'Aluminum', (X, Y), MESH_SIZE_ALUMINUM, automesh=self.bool_automesh, incircuit='r%s' % (self.rotor_phase_name_list[0]), turns=-1) # However, this turns=-1 is not effective for PARALLEL_CONNECTED circuit # Stator Winding npb = im.wily.number_parallel_branch nwl = im.wily.number_winding_layer # number of windign layers if self.flag_static_solver == True: # self.freq == 0: # static solver femm.mi_addcircprop('U-GrpAC', self.dict_stator_current_function[0](0.0), SERIES_CONNECTED) femm.mi_addcircprop('V-GrpAC', self.dict_stator_current_function[1](0.0), SERIES_CONNECTED) femm.mi_addcircprop('W-GrpAC', self.dict_stator_current_function[2](0.0), SERIES_CONNECTED) femm.mi_addcircprop('U-GrpBD', self.dict_stator_current_function[3](0.0), SERIES_CONNECTED) femm.mi_addcircprop('V-GrpBD', self.dict_stator_current_function[4](0.0), SERIES_CONNECTED) femm.mi_addcircprop('W-GrpBD', self.dict_stator_current_function[5](0.0), SERIES_CONNECTED) else: # eddy current solver # if im.fea_config_dict['DPNV_separate_winding_implementation'] == True or im.fea_config_dict['DPNV'] == False: if im.spec_input_dict['DPNV_or_SEPA'] == False: # either a separate winding or a DPNV winding implemented as a separate winding ampD = im.DriveW_CurrentAmp / npb ampB = im.BeariW_CurrentAmp else: # case: DPNV as an actual two layer winding ampD = im.DriveW_CurrentAmp / npb ampB = ampD if im.wily.CommutatingSequenceD == 1: MyCommutatingSequence = ['-', '+'] # 2 pole else: # raise MyCommutatingSequence = ['+', '-'] # 4 pole legacy femm.mi_addcircprop('dU', '%g' % (ampD), SERIES_CONNECTED) femm.mi_addcircprop('dV', '%g*(-0.5%sI*0.8660254037844386)' % (ampD, MyCommutatingSequence[0]), SERIES_CONNECTED) femm.mi_addcircprop('dW', '%g*(-0.5%sI*0.8660254037844386)' % (ampD, MyCommutatingSequence[1]), SERIES_CONNECTED) femm.mi_addcircprop('bU', '%g' % (ampB), SERIES_CONNECTED) femm.mi_addcircprop('bV', '%g*(-0.5%sI*0.8660254037844386)' % (ampB, MyCommutatingSequence[0]), SERIES_CONNECTED) femm.mi_addcircprop('bW', '%g*(-0.5%sI*0.8660254037844386)' % (ampB, MyCommutatingSequence[1]), SERIES_CONNECTED) # if fraction == 1: # I thought PS can be realized in FEMM but I was wrong, this fraction==1 case should be deleted! # # femm.mi_addcircprop('bA', '%g' %(im.BeariW_CurrentAmp), SERIES_CONNECTED) # # femm.mi_addcircprop('bB', '%g*(-0.5+I*0.8660254037844386)'%(im.BeariW_CurrentAmp), SERIES_CONNECTED) # # femm.mi_addcircprop('bC', '%g*(-0.5-I*0.8660254037844386)'%(im.BeariW_CurrentAmp), SERIES_CONNECTED) # femm.mi_addcircprop('bU', '%g' %(ampB), SERIES_CONNECTED) # femm.mi_addcircprop('bV', '%g*(-0.5%sI*0.8660254037844386)'%(ampB, MyCommutatingSequence[0]), SERIES_CONNECTED) # femm.mi_addcircprop('bW', '%g*(-0.5%sI*0.8660254037844386)'%(ampB, MyCommutatingSequence[1]), SERIES_CONNECTED) # elif fraction == 4 or fraction == 2: # no bearing current # femm.mi_addcircprop('bU', 0, SERIES_CONNECTED) # femm.mi_addcircprop('bV', 0, SERIES_CONNECTED) # femm.mi_addcircprop('bW', 0, SERIES_CONNECTED) # dict_dir = {'+':1, '-':-1} # wrong (not consistent with JMAG) dict_dir = {'+': -1, '-': 1, 'o': 0} R = 0.5 * (im.Radius_OuterRotor + im.Radius_InnerStatorYoke) angle_per_slot = 2 * pi / im.Qs # X layer winding's blocks THETA = - angle_per_slot + 0.5 * angle_per_slot - 3.0 / 360 # This 3 deg must be less than 360/Qs/2,取这么大是为了在GUI上看得清楚点。 count = 0 # for phase, up_or_down in zip(im.l_rightlayer1,im.l_rightlayer2): for phase, up_or_down, AC_or_BD in zip(im.wily.layer_X_phases, im.wily.layer_X_signs, im.wily.grouping_AC): # circuit_name = 'd' + phase circuit_name = phase + '-Grp' + ('AC' if AC_or_BD else 'BD') THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) count += 1 if fraction == 4: if not (count > im.Qs * 0.5 + EPS and count <= im.Qs * 0.75 + EPS): continue if fraction == 2: if not (count > im.Qs * 0.5 + EPS): continue # if phase == 'U': block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.DriveW_zQ / nwl * dict_dir[up_or_down]) # print('|||', circuit_name, phase, up_or_down, AC_or_BD, X, Y) # print(im.wily.grouping_AC) # print('End of X layer') # Y layer winding's blocks if fraction == 1: THETA = - angle_per_slot + 0.5 * angle_per_slot + 3.0 / 360 grouping_AC_of_Y_layer = winding_layout_v2.infer_Y_layer_grpAC_from_X_layer_and_coil_pitch_y( im.wily.grouping_AC, im.wily.coil_pitch_y) # print('-'*100) # print(im.wily.grouping_AC) # print(grouping_AC_of_Y_layer) # quit() # for phase, up_or_down in zip(im.l_leftlayer1,im.l_leftlayer2): for phase, up_or_down, AC_or_BD in zip(im.wily.layer_Y_phases, im.wily.layer_Y_signs, grouping_AC_of_Y_layer): # circuit_name = 'b' + phase circuit_name = phase + '-Grp' + ('AC' if AC_or_BD else 'BD') THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) # if self.im.fea_config_dict['DPNV'] == True: # else: # separate winding (e.g., Chiba's) # if phase == 'U': block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.BeariW_turns / nwl * dict_dir[up_or_down]) # print('|||', circuit_name, phase, up_or_down, AC_or_BD, X, Y) # print(grouping_AC_of_Y_layer) # print('End of Y layer') elif fraction == 4 or fraction == 2: # 危险!FEMM默认把没有设置incircuit的导体都在无限远短接在一起——也就是说,你可能把定子悬浮绕组也短接到鼠笼上去了! # 所以,一定要设置好悬浮绕组,而且要用serial-connected,电流给定为 0 A。 THETA = - angle_per_slot + 0.5 * angle_per_slot + 3.0 / 360 count = 0 # for phase, up_or_down in zip(im.l_leftlayer1,im.l_leftlayer2): for phase, up_or_down in zip(im.wily.layer_Y_phases, im.wily.layer_Y_signs): circuit_name = 'b' + phase THETA += angle_per_slot X = R * cos(THETA); Y = R * sin(THETA) count += 1 if fraction == 4: if not (count > im.Qs * 0.5 + EPS and count <= im.Qs * 0.75 + EPS): continue elif fraction == 2: if not (count > im.Qs * 0.5 + EPS): continue block_label(11, 'Copper', (X, Y), MESH_SIZE_COPPER, automesh=self.bool_automesh, incircuit=circuit_name, turns=im.BeariW_turns / nwl * dict_dir[up_or_down]) # Boundary Conditions # femm.mi_makeABC() # open boundary if fraction == 1: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) femm.mi_selectarcsegment(0, -im.Radius_OuterStatorYoke) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() femm.mi_selectarcsegment(0, im.Radius_OuterStatorYoke) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 10) femm.mi_clearselected() femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_selectarcsegment(0, im.Radius_Shaft) femm.mi_setarcsegmentprop(20, "BC:A=0", False, 100) femm.mi_clearselected() elif fraction == 4: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) X = Y = -(im.Radius_OuterStatorYoke) / 1.4142135623730951 femm.mi_selectarcsegment(X, Y) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() X = Y = -(im.Radius_Shaft) / 1.4142135623730951 femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_addboundprop('apbc1', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc2', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc3', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc5', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) femm.mi_addboundprop('apbc6', 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0) # http://www.femm.info/wiki/periodicboundaries R = im.Radius_Shaft + EPS femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc1", 4, False, False, 100) femm.mi_clearselected() R = im.Location_RotorBarCenter femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc2", 3, False, False, 100) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.25 * im.Length_AirGap femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc3", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.75 * im.Length_AirGap femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc5", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterStatorYoke - EPS femm.mi_selectsegment(0, -R) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("apbc6", 4, False, False, 10) femm.mi_clearselected() elif fraction == 2: femm.mi_addboundprop('BC:A=0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) X = Y = -(im.Radius_OuterStatorYoke) / 1.4142135623730951 femm.mi_selectarcsegment(X, Y) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 10) # maxseg = 20 deg (only this is found effective) femm.mi_clearselected() X = Y = -(im.Radius_Shaft) / 1.4142135623730951 femm.mi_selectarcsegment(0, -im.Radius_Shaft) femm.mi_setarcsegmentprop(10, "BC:A=0", False, 100) femm.mi_clearselected() femm.mi_addboundprop('pbc1', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc2', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc3', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc5', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) femm.mi_addboundprop('pbc6', 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0) R = im.Radius_Shaft + EPS femm.mi_selectsegment(-R, 0) femm.mi_selectsegment(+R, 0) femm.mi_setsegmentprop("pbc1", 4, False, False, 100) femm.mi_clearselected() R = im.Location_RotorBarCenter femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc2", 3, False, False, 100) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.25 * im.Length_AirGap femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc3", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterRotor + 0.75 * im.Length_AirGap femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc5", 0.5, False, False, 9) femm.mi_clearselected() R = im.Radius_OuterStatorYoke - EPS femm.mi_selectsegment(+R, 0) femm.mi_selectsegment(-R, 0) femm.mi_setsegmentprop("pbc6", 4, False, False, 10) femm.mi_clearselected() # Air Gap Boundary for Rotor Motion #3 # inner_angle = 0; outer_angle = 0 # femm.mi_addboundprop('AGB4RM', 0,0,0, 0,0,0,0,0, 6, inner_angle, outer_angle) # R = im.Radius_OuterRotor+0.6*im.Length_AirGap # femm.mi_selectarcsegment(0,-R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # femm.mi_selectarcsegment(0,R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # R = im.Radius_OuterRotor+0.4*im.Length_AirGap # femm.mi_selectarcsegment(0,-R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # femm.mi_selectarcsegment(0,R) # femm.mi_setarcsegmentprop(5, "AGB4RM", False, 9) # femm.mi_clearselected() # Other arc-segment-specific mesh constraints are already done in draw_model() def draw_model(self, fraction=1): from shapely.geometry import LineString from shapely.geometry import Point im = self.im origin = Point(0, 0) Stator_Sector_Angle = 2 * pi / im.Qs * 0.5 Rotor_Sector_Angle = 2 * pi / im.Qr * 0.5 def mirror_and_copyrotate(Q, Radius, fraction): # Mirror femm.mi_selectcircle(0, 0, Radius + EPS, SELECT_ALL) # this EPS is sometime necessary to selece the arc at Radius. femm.mi_mirror2(0, 0, -Radius, 0, SELECT_ALL) # Rotate femm.mi_selectcircle(0, 0, Radius + EPS, SELECT_ALL) femm.mi_copyrotate2(0, 0, 360. / Q, int(Q) / fraction, SELECT_ALL) def create_circle(p, radius): return p.buffer(radius).boundary def get_node_at_intersection(c, l): # this works for c and l having one intersection only i = c.intersection(l) # femm.mi_addnode(i.coords[0][0], i.coords[0][1]) return i.coords[0][0], i.coords[0][1] def draw_arc(p1, p2, angle, maxseg=1): femm.mi_drawarc(p1[0], p1[1], p2[0], p2[1], angle / pi * 180, maxseg) # [deg] def add_arc(p1, p2, angle, maxseg=1): femm.mi_addarc(p1[0], p1[1], p2[0], p2[1], angle / pi * 180, maxseg) # [deg] def draw_line(p1, p2): femm.mi_drawline(p1[0], p1[1], p2[0], p2[1]) def add_line(p1, p2): femm.mi_addsegment(p1[0], p1[1], p2[0], p2[1]) def get_postive_angle(p, origin=(0, 0)): # using atan loses info about the quadrant return atan(abs((p[1] - origin[1]) / (p[0] - origin[0]))) ''' Part: Stator ''' # Draw Points as direction of CCW # P1 P1 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) # P2 # Parallel to Line? No they are actually not parallel P2_angle = Stator_Sector_Angle - im.Angle_StatorSlotOpen * 0.5 / 180 * pi k = -tan(P2_angle) # slope l_sector_parallel = LineString([(0, 0), (-im.Radius_OuterStatorYoke, -im.Radius_OuterStatorYoke * k)]) c = create_circle(origin, im.Radius_OuterRotor + im.Length_AirGap) P2 = get_node_at_intersection(c, l_sector_parallel) draw_arc(P2, P1, get_postive_angle(P2)) # P3 c = create_circle(origin, im.Radius_OuterRotor + im.Length_AirGap + im.Width_StatorTeethHeadThickness) P3 = get_node_at_intersection(c, l_sector_parallel) draw_line(P2, P3) # P4 c = create_circle(origin, im.Radius_OuterRotor + im.Length_AirGap + im.Width_StatorTeethHeadThickness + im.Width_StatorTeethNeck) l = LineString( [(0, 0.5 * im.Width_StatorTeethBody), (-im.Radius_OuterStatorYoke, 0.5 * im.Width_StatorTeethBody)]) P4 = get_node_at_intersection(c, l) draw_line(P3, P4) # P5 c = create_circle(origin, im.Radius_InnerStatorYoke) P5 = get_node_at_intersection(c, l) draw_line(P4, P5) # P6 k = -tan(Stator_Sector_Angle) l_sector = LineString([(0, 0), (-im.Radius_OuterStatorYoke, -im.Radius_OuterStatorYoke * k)]) P6 = get_node_at_intersection(c, l_sector) draw_arc(P6, P5, Stator_Sector_Angle - get_postive_angle(P5)) # P7 c = create_circle(origin, im.Radius_OuterStatorYoke) P7 = get_node_at_intersection(c, l_sector) # draw_line(P6, P7) # P8 P8 = (-im.Radius_OuterStatorYoke, 0) # draw_arc(P7, P8, Stator_Sector_Angle) # draw_line(P8, P1) # P_Coil l = LineString([(P3[0], P3[1]), (P3[0], im.Radius_OuterStatorYoke)]) P_Coil = get_node_at_intersection(l_sector, l) draw_line(P4, P_Coil) draw_line(P6, P_Coil) mirror_and_copyrotate(im.Qs, im.Radius_OuterStatorYoke, fraction) ''' Part: Rotor ''' # Draw Points as direction of CCW # P1 # femm.mi_addnode(-im.Radius_Shaft, 0) P1 = (-im.Radius_Shaft, 0) # P2 c = create_circle(origin, im.Radius_Shaft) # Line: y = k*x, with k = -tan(2*pi/im.Qr*0.5) P2_angle = P3_anlge = Rotor_Sector_Angle k = -tan(P2_angle) l_sector = LineString([(0, 0), (-im.Radius_OuterStatorYoke, -im.Radius_OuterStatorYoke * k)]) P2 = get_node_at_intersection(c, l_sector) # draw_arc(P2, P1, P2_angle) # P3 c = create_circle(origin, im.Radius_OuterRotor) P3 = get_node_at_intersection(c, l_sector) # draw_line(P2, P3) # P4 l = LineString([(-im.Location_RotorBarCenter, 0.5 * im.Width_RotorSlotOpen), (-im.Radius_OuterRotor, 0.5 * im.Width_RotorSlotOpen)]) P4 = get_node_at_intersection(c, l) draw_arc(P3, P4, P3_anlge - get_postive_angle(P4)) # P5 p = Point(-im.Location_RotorBarCenter, 0) c = create_circle(p, im.Radius_of_RotorSlot) P5 = get_node_at_intersection(c, l) draw_line(P4, P5) # P6 # femm.mi_addnode(-im.Location_RotorBarCenter, im.Radius_of_RotorSlot) P6 = (-im.Location_RotorBarCenter, im.Radius_of_RotorSlot) draw_arc(P6, P5, 0.5 * pi - get_postive_angle(P5, c.centroid.coords[0])) # constraint to reduce element number femm.mi_selectarcsegment(P6[0], P6[1]) femm.mi_setarcsegmentprop(8, "<None>", False, 100) femm.mi_clearselected() # P7 # femm.mi_addnode(-im.Location_RotorBarCenter2, im.Radius_of_RotorSlot2) P7 = (-im.Location_RotorBarCenter2, im.Radius_of_RotorSlot2) draw_line(P6, P7) # P8 # femm.mi_addnode(-im.Location_RotorBarCenter2+im.Radius_of_RotorSlot2, 0) P8 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) draw_arc(P8, P7, 0.5 * pi) # draw_line(P8, P1) # constraint to reduce element number femm.mi_selectarcsegment(P8[0], P8[1]) femm.mi_setarcsegmentprop(8, "<None>", False, 100) femm.mi_clearselected() # P_Bar P_Bar = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) draw_arc(P5, P_Bar, get_postive_angle(P5)) # add_line(P_Bar, P8) mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction) # Boundary if fraction == 1: femm.mi_drawarc(im.Radius_Shaft, 0, -im.Radius_Shaft, 0, 180, 20) # 边界不要用太小的segment咯!避免剖分过细(这里设置无效) femm.mi_drawarc(-im.Radius_Shaft, 0, im.Radius_Shaft, 0, 180, 20) femm.mi_drawarc(im.Radius_OuterStatorYoke, 0, -im.Radius_OuterStatorYoke, 0, 180, 20) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, im.Radius_OuterStatorYoke, 0, 180, 20) elif fraction == 4: femm.mi_drawarc(-im.Radius_Shaft, 0, 0, -im.Radius_Shaft, 90, 10) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, 0, -im.Radius_OuterStatorYoke, 90, 10) femm.mi_selectrectangle(-EPS - im.Radius_Shaft, EPS, EPS - im.Radius_OuterStatorYoke, im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_selectrectangle(EPS, -EPS - im.Radius_Shaft, im.Radius_OuterStatorYoke, EPS - im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_deleteselected() # between 2rd and 3th quarters p1 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) p2 = (-im.Radius_Shaft, 0) add_line(p1, p2) p2 = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) add_line(p1, p2) p1 = (-im.Radius_OuterRotor - 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition draw_line(p1, p2) p2 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) draw_line(p1, p2) p1 = (-im.Radius_OuterStatorYoke, 0) add_line(p1, p2) # between 3rd and 4th quarters p1 = (0, -im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2) p2 = (0, -im.Radius_Shaft) add_line(p1, p2) p2 = (0, -im.Location_RotorBarCenter - im.Radius_of_RotorSlot) add_line(p1, p2) p1 = (0, -im.Radius_OuterRotor - 0.5 * im.Length_AirGap) draw_line(p1, p2) p2 = (0, -im.Radius_OuterRotor - im.Length_AirGap) draw_line(p1, p2) p1 = (0, -im.Radius_OuterStatorYoke) add_line(p1, p2) elif fraction == 2: femm.mi_drawarc(-im.Radius_Shaft, 0, im.Radius_Shaft, 0, 180, 15) femm.mi_drawarc(-im.Radius_OuterStatorYoke, 0, im.Radius_OuterStatorYoke, 0, 180, 15) femm.mi_selectrectangle(EPS - im.Radius_OuterStatorYoke, EPS, -EPS + im.Radius_OuterStatorYoke, EPS + im.Radius_OuterStatorYoke, SELECT_ALL) femm.mi_deleteselected() # between 2rd and 3th quarters p1 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) p2 = (-im.Radius_Shaft, 0) add_line(p1, p2) p2 = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) add_line(p1, p2) p1 = (-im.Radius_OuterRotor - 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition draw_line(p1, p2) p2 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) draw_line(p1, p2) p1 = (-im.Radius_OuterStatorYoke, 0) add_line(p1, p2) # between 1rd and 4th quarters p1 = (+im.Location_RotorBarCenter2 - im.Radius_of_RotorSlot2, 0) p2 = (+im.Radius_Shaft, 0) add_line(p1, p2) p2 = (+im.Location_RotorBarCenter + im.Radius_of_RotorSlot, 0) add_line(p1, p2) p1 = (+im.Radius_OuterRotor + 0.5 * im.Length_AirGap, 0) # for later extending for moverotate with anti-periodic boundary condition draw_line(p1, p2) p2 = (+im.Radius_OuterRotor + im.Length_AirGap, 0) draw_line(p1, p2) p1 = (+im.Radius_OuterStatorYoke, 0) add_line(p1, p2) else: raise Exception('not supported fraction = %d' % (fraction)) # Air Gap Boundary for Rotor Motion #1 # R = im.Radius_OuterRotor+0.6*im.Length_AirGap # femm.mi_drawarc(R,0, -R,0, 180, 5) # femm.mi_drawarc(-R,0, R,0, 180, 5) # R = im.Radius_OuterRotor+0.4*im.Length_AirGap # femm.mi_drawarc(R,0, -R,0, 180, 5) # femm.mi_drawarc(-R,0, R,0, 180, 5) def model_rotor_rotate(self, time): if self.deg_per_step != 0.0: # 之前用的方法是打开上一个FEM文件,然后将其模型旋转deg_per_step,用不到rotor_position_in_deg的! # 当然,我们也试过AirGapBoundary(<NAME>推荐的),转动转子不需要重复剖分,但是计算出来的力不准(转矩是准的) # 现在,我们打开在0位置的fem文件,然后转动,saveas。这样,就不用不断地打开文件了 femm.mi_selectgroup(100) # this only select the block labels femm.mi_selectgroup(101) femm.mi_selectcircle(0, 0, self.im.Radius_OuterRotor + EPS, SELECT_ALL) # this selects the nodes, segments, arcs femm.mi_moverotate(0, 0, self.deg_per_step) # femm.mi_zoomnatural() # rotor current for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) femm.mi_modifycircprop(circuit_name, 1, self.dict_rotor_current_function[i](time)) # stator current femm.mi_modifycircprop('U-GrpAC', 1, self.dict_stator_current_function[0](time)) femm.mi_modifycircprop('V-GrpAC', 1, self.dict_stator_current_function[1](time)) femm.mi_modifycircprop('W-GrpAC', 1, self.dict_stator_current_function[2](time)) femm.mi_modifycircprop('U-GrpBD', 1, self.dict_stator_current_function[3](time)) femm.mi_modifycircprop('V-GrpBD', 1, self.dict_stator_current_function[4](time)) femm.mi_modifycircprop('W-GrpBD', 1, self.dict_stator_current_function[5](time)) def run_rotating_static_FEA(self): # deg_per_step is key parameter for this function # STATIC_RUN_PERIOD = 180 # deg # STATIC_RUN_PERIOD = 4*4*900 # deg STATIC_RUN_PERIOD = 2 * 90 # deg self.flag_static_solver = True self.flag_eddycurrent_solver = False femm.openfemm(True) # bHide # False for debug femm.newdocument(0) # magnetic self.freq = 0 # static self.stack_length = self.im.l_st * 1 self.probdef() if self.deg_per_step == 0.0: print('Locked Rotor! Run 40 stEPS for one slip period.') self.im.update_mechanical_parameters(syn_freq=0.0) # read currents from previous ec solve self.dict_rotor_current_function, self.dict_stator_current_function = self.read_current_from_EC_FEA() # DriveW_Freq and slip_freq_breakdown_torque are used here # debug current waveform # from pylab import plt # t = np.arange(0, 0.0005*STATIC_RUN_PERIOD/90, 0.000005) # plt.figure() # for ir in self.dict_rotor_current_function: # plt.plot(t, [ir(el) for el in t]) # plt.figure() # plt.plot(t, [self.dict_stator_current_function[0](el) for el in t]) # plt.plot(t, [self.dict_stator_current_function[3](el) for el in t]) # plt.show() # quit() # self.time = 0.0 # self.rotor_position_in_deg = 0.0 self.add_material() # self.draw_model() self.vangogh.draw_model() self.add_block_labels_static_solver() # # debug here # femm.mi_maximize() # femm.mi_zoomnatural() # return self.output_file_name = self.get_output_file_name() if self.deg_per_step == 0.0: for i in range(40): # don't forget there time += 1.0 / self.im.DriveW_Freq / 40. # don't forget here # self.rotor_position_in_deg = i # used in file naming print(i, time, 's') last_out_file_name = output_file_name output_file_name = self.output_file_name + '%04d' % (i) if os.path.exists(output_file_name + '.ans'): print('.ans file exists. skip this fem file: %s' % (output_file_name)) continue if last_out_file_name != None: femm.opendocument(last_out_file_name + '.fem') self.model_rotor_rotate(0.0) femm.mi_saveas(output_file_name + '.fem') # locked-rotor test else: # rotating static FEA self.list_rotor_position_in_deg = np.arange(0, STATIC_RUN_PERIOD, self.deg_per_step) self.list_name = ['%04d' % (10 * el) for el in self.list_rotor_position_in_deg] # with no suffix femm.mi_saveas(self.output_file_name + self.list_name[0] + '.fem') for rotor_position_in_deg, name in zip(self.list_rotor_position_in_deg[1:], # skip the intial position self.list_name[1:]): fem_file = self.output_file_name + name + '.fem' time = np.abs(rotor_position_in_deg / 180 * pi / self.im.Omega) # DEBUG: 查了这么久的BUG,原来就是转速用错了!应该用机械转速啊! self.model_rotor_rotate(time) femm.mi_saveas(fem_file) print(time * 1e3, 'ms', rotor_position_in_deg, 'deg', self.im.Omega, 'rad/s', self.im.Omega / 2 / np.pi, 's^-1') femm.closefemm() def parallel_solve(self, dir_run=None, number_of_instantces=5, bool_watchdog_postproc=True, bool_run_in_JMAG_Script_Editor=False): '''[并行求解] 当初没想好,旋转转子竟然不是并行的。。。 Keyword Arguments: dir_run {[type]} -- [静态场用self.dir_run,涡流场用self.dir_run_sweeping] (default: {None}) Not not use space in dir_run!!! Not not use space in dir_run!!! Not not use space in dir_run!!! number_of_instantces {number} -- [几个?] (default: {5}) bool_watchdog_postproc {bool} -- [有些时候我们不喜欢用看门狗,后面看了就知道] (default: {True}) ''' if dir_run == None: dir_run = self.dir_run if bool_run_in_JMAG_Script_Editor: # for running script in JMAG, we need a .bat file wrapper for the subprocess calls. # os.system('python "%smethod_parallel_solve_4jmag.py" %s' % (self.dir_codes, dir_run)) with open('temp.bat', 'w') as f: if '01' in self.im.fea_config_dict['pc_name']: # python is not added to path in Severson01 f.write( '"C:/Program Files/JMAG-Designer17.1/python2.7/python" "%smethod_parallel_solve_4jmag.py" %s %d' % ( self.dir_codes, dir_run, number_of_instantces)) else: f.write('python "%smethod_parallel_solve_4jmag.py" %s %d' % ( self.dir_codes, dir_run, number_of_instantces)) os.startfile('temp.bat') # os.remove('temp.bat') else: # run script in other platforms such as command prompt # raise Exception('Please explicitly specify bool_run_in_JMAG_Script_Editor.') procs = [] for i in range(number_of_instantces): # proc = subprocess.Popen([sys.executable, 'parasolve.py', '{}in.csv'.format(i), '{}out.csv'.format(i)], bufsize=-1) proc = subprocess.Popen([sys.executable, 'parasolve.py', str(i), str(number_of_instantces), dir_run], bufsize=-1) procs.append(proc) for proc in procs: proc.wait() # return exit code # To collct static results, use while instead, it is more straightforward if self.flag_static_solver == True: if self.im.fea_config_dict['flag_optimization'] == False: # 优化的话,还是不要用这种看门狗的后处理了,直接求解完就并行后处理。 self.keep_collecting_static_results_for_optimization(self.list_name, self.list_rotor_position_in_deg) return # TODO: loop for post_process results # search for python: constently check for new ans file if self.im.fea_config_dict['pc_name'] == 'Y730': print('Initialize watchdog...') else: print('watchdog is not installed on servers, quit.') return return 'Testing JMAG with no watchdog' if bool_watchdog_postproc: import time from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class MyHandler(FileSystemEventHandler): def __init__(self, solver): self.count_ans = 0 self.bool_stop = False self.solver = solver super(FileSystemEventHandler, self).__init__() def on_created(self, event): if '.ans' in event.src_path: self.count_ans += 1 if self.solver.flag_eddycurrent_solver == True: if self.count_ans == len(self.solver.freq_range): print('\t[Eddy Current Solver] count_ans matches.') self.solver.show_results(bool_plot=True) self.bool_stop = True if self.solver.flag_static_solver == True: # write data to file per 10 .ans files if self.count_ans == self.solver.number_ans or self.count_ans == int( 0.5 * self.solver.number_ans): print('[Static Solver] count_ans matches for %d' % (self.count_ans)) if self.solver.has_results(): self.solver.show_results(bool_plot=True) self.bool_stop = True else: self.solver.show_results(bool_plot=False) event_handler = MyHandler(self) observer = Observer() observer.schedule(event_handler, path=dir_run, recursive=False) observer.start() try: while not event_handler.bool_stop: time.sleep(1) except KeyboardInterrupt: observer.stop() else: print('after viewing the plot, watchdog is killed.') observer.stop() observer.join() def read_current_from_EC_FEA(self): print('Read rotor current conditions from %s...' % ('JMAG' if self.flag_read_from_jmag else 'FEMM')) if self.flag_read_from_jmag == True: return self.read_current_conditions_from_JMAG() else: return self.read_current_conditions_from_FEMM() def read_current_conditions_from_FEMM(self): self.list_rotor_current_amp = [] # print 'femm_rotor_current_conditions000' # for noBar test (iron loss with only stator current excitation) # data = np.loadtxt(self.dir_run_sweeping + 'femm_rotor_current_conditions.txt', unpack=True, usecols=(0,1)) data = np.loadtxt(self.dir_run_sweeping + 'ind999Freq.csv', unpack=True, skiprows=4, delimiter=",") print(data) # quit() dict_rotor_current_function = [] print('[FEMM] Rotor Current') for item in zip(data[0], data[1]): item = item[0] + 1j * item[1] item *= -1j # -1j is added to be consistent with JMAG (whose Current Source uses sine function) amp = np.sqrt(item.imag ** 2 + item.real ** 2) phase = np.arctan2(item.real, -item.imag) # atan2(y, x), y=a, x=-b print('\tDEBUG:', amp, self.im.slip_freq_breakdown_torque, phase) dict_rotor_current_function.append( lambda t, amp=amp, phase=phase: amp * sin(2 * pi * self.im.slip_freq_breakdown_torque * t + phase)) print('\t', item, amp, phase / pi * 180) self.list_rotor_current_amp.append(amp) dict_stator_current_function = [None] * 6 # Old way (only valid for p=2, ps=1 full pitch DPNV winding) # print('[FEMM] Stator Current') # -1j is added to be consistent with JMAG # self.dict_stator_current_from_EC_FEA = [ ('bU', complex(eval( '-1j*%g' %(self.im.BeariW_CurrentAmp) )) ), # ('bV', complex(eval( '-1j*%g*(-0.5+1j*0.8660254037844386)'%(self.im.BeariW_CurrentAmp) )) ), # ('bW', complex(eval( '-1j*%g*(-0.5-1j*0.8660254037844386)'%(self.im.BeariW_CurrentAmp) )) ), # ('dU', complex(eval( '-1j*%g' %(self.im.DriveW_CurrentAmp) )) ), # ('dV', complex(eval( '-1j*%g*(-0.5+1j*0.8660254037844386)'%(self.im.DriveW_CurrentAmp) )) ), # ('dW', complex(eval( '-1j*%g*(-0.5-1j*0.8660254037844386)'%(self.im.DriveW_CurrentAmp) )) )] # self.dict_stator_current_from_EC_FEA = OrderedDict(self.dict_stator_current_from_EC_FEA) # dict_stator_current_function = [] # for key, item in self.dict_stator_current_from_EC_FEA.items(): # amp = np.sqrt(item.imag**2 + item.real**2) # phase = np.arctan2(item.real, -item.imag) # atan2(y, x), y=a, x=-b # dict_stator_current_function.append(lambda t, amp=amp, phase=phase: amp * sin(2*pi*self.im.DriveW_Freq*t + phase)) # print('\t', key, item, amp, phase/pi*180) # New way (General DPNV implementation) npb = self.im.wily.number_parallel_branch nwl = self.im.wily.number_winding_layer # number of windign layers if self.im.spec_input_dict['DPNV_or_SEPA'] == False: # either a separate winding or a (4 pole) DPNV winding implemented as a separate winding ampD = 0.5 * (self.DriveW_CurrentAmp / npb + self.BeariW_CurrentAmp) # 为了代码能被四极电机和二极电机通用,代入看看就知道啦。 ampB = -0.5 * ( self.DriveW_CurrentAmp / npb - self.BeariW_CurrentAmp) # 关于符号,注意下面的DriveW对应的circuit调用时的ampB前还有个负号! if self.im.wily.bool_3PhaseCurrentSource != True: raise Exception('Logic Error Detected.') else: '[B]: DriveW_CurrentAmp is set.' # case: DPNV as an actual two layer winding ampD = self.im.DriveW_CurrentAmp / npb ampB = self.im.BeariW_CurrentAmp if self.im.wily.bool_3PhaseCurrentSource != False: raise Exception('Logic Error Detected.') phase_shift_drive = -120 / 180. * np.pi if self.im.wily.CommutatingSequenceD == 1 else 120 / 180. * np.pi phase_shift_beari = -120 / 180. * np.pi if self.im.wily.CommutatingSequenceB == 1 else 120 / 180. * np.pi freq = self.im.DriveW_Freq # DPNV Group A/C dict_stator_current_function[0] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=0 * phase_shift_drive, phaseB=0 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) - ampB * sin(2 * pi * freq * t + phaseB) dict_stator_current_function[1] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=1 * phase_shift_drive, phaseB=1 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) - ampB * sin(2 * pi * freq * t + phaseB) dict_stator_current_function[2] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=2 * phase_shift_drive, phaseB=2 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) - ampB * sin(2 * pi * freq * t + phaseB) # DPNV Group B/D dict_stator_current_function[3] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=0 * phase_shift_drive, phaseB=0 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) + ampB * sin(2 * pi * freq * t + phaseB) dict_stator_current_function[4] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=1 * phase_shift_drive, phaseB=1 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) + ampB * sin(2 * pi * freq * t + phaseB) dict_stator_current_function[5] = lambda t, freq=freq, ampD=ampD, ampB=ampB, phaseD=2 * phase_shift_drive, phaseB=2 * phase_shift_beari: ampD * sin(2 * pi * freq * t + phaseD) + ampB * sin(2 * pi * freq * t + phaseB) return dict_rotor_current_function, dict_stator_current_function def read_current_conditions_from_JMAG(self): try: print('The breakdown torque slip frequency is', self.im.slip_freq_breakdown_torque) except: raise Exception('no breakdown torque slip freqeuncy available.') self.dict_rotor_current_from_EC_FEA = [] self.dict_stator_current_from_EC_FEA = [] rotor_phase_name_list = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" with open(self.im.csv_previous_solve, 'r') as f: read_iterator = csv_reader(f, skipinitialspace=True) for row in self.whole_row_reader(read_iterator): try: float(row[0]) except: continue else: if np.abs(self.im.slip_freq_breakdown_torque - float(row[0])) < 1e-3: # print row ''' Rotor Current ''' beginning_column = 1 + 2 * 3 * 2 # title + drive/bearing * 3 phase * real/imag for i in range(0, int(self.im.Qr / self.im.DriveW_poles)): natural_i = i + 1 current_phase_column = beginning_column + i * int(self.im.DriveW_poles) * 2 for j in range(int(self.im.DriveW_poles)): natural_j = j + 1 re = float(row[current_phase_column + 2 * j]) im = float(row[current_phase_column + 2 * j + 1]) self.dict_rotor_current_from_EC_FEA.append( ("r%s%d" % (rotor_phase_name_list[i], natural_j), (re, im))) ''' Stator Current ''' beginning_column = 1 # title column is not needed for i, str_phase in zip(list(range(0, 12, 2)), ['2A', '2B', '2C', '4A', '4B', '4C']): # 3 phase natural_i = i + 1 current_phase_column = beginning_column + i re = float(row[current_phase_column]) im = float(row[current_phase_column + 1]) self.dict_stator_current_from_EC_FEA.append((str_phase, (re, im))) print('[JMAG] Rotor Current') self.list_rotor_current_amp = [] self.dict_rotor_current_from_EC_FEA = OrderedDict(self.dict_rotor_current_from_EC_FEA) dict_rotor_current_function = [] for key, item in self.dict_rotor_current_from_EC_FEA.items(): amp = np.sqrt(item[1] ** 2 + item[0] ** 2) phase = np.arctan2(item[0], -item[1]) # atan2(y, x), y=a, x=-b if '1' in key: dict_rotor_current_function.append( lambda t, amp=amp, phase=phase: amp * sin(2 * pi * self.im.slip_freq_breakdown_torque * t + phase)) print('\t', key, item, amp, phase / pi * 180) self.list_rotor_current_amp.append(amp) print('[JMAG] Stator Current') self.dict_stator_current_from_EC_FEA = OrderedDict(self.dict_stator_current_from_EC_FEA) self.dict_stator_current_function_wrong = [] dict_stator_current_function = [] for key, item in self.dict_stator_current_from_EC_FEA.items(): amp = np.sqrt(item[1] ** 2 + item[0] ** 2) phase = np.arctan2(item[0], -item[1]) # atan2(y, x), y=a, x=-b self.dict_stator_current_function_wrong.append( lambda t, amp=amp, phase=phase: amp * sin(2 * pi * self.im.DriveW_Freq * t + phase)) # dict_stator_current_function.append(lambda t, amp=amp, phase=phase: amp * sin(2*pi*self.im.slip_freq_breakdown_torque*t + phase)) dict_stator_current_function.append( lambda t, amp=amp, phase=phase: amp * sin(2 * pi * self.im.DriveW_Freq * t + phase)) print('\t', key, item, amp, phase / pi * 180) # dict_stator_current_function =[self.dict_stator_current_function_wrong[0], # self.dict_stator_current_function_wrong[2], # self.dict_stator_current_function_wrong[1], # self.dict_stator_current_function_wrong[3], # self.dict_stator_current_function_wrong[5], # self.dict_stator_current_function_wrong[4],] # print dict_stator_current_function if False: from pylab import show, figure t = np.arange(0, 0.5, 1e-4) # t = np.arange(0, 0.5, 1e-3) # down sampling effect of TranFEAwi2TSS. 5e-2 is too less ax1 = figure(1).gca() ax2 = figure(2).gca() ax = ax1 rotor_current_one_pole = np.zeros(t.__len__()) for ind, func in enumerate(dict_rotor_current_function): ax.plot(t, [func(el) for el in t], label=ind) rotor_current_one_pole += np.array([func(el) for el in t]) ax.plot(t, rotor_current_one_pole, label='one pole') ax = ax2 iabc_wrong = [] for ind, func in enumerate(self.dict_stator_current_function_wrong): if ind == 3 or ind == 0: ax.plot(t, [-func(el) for el in t], label=str(ind) + 'wrong-reversed') iabc_wrong.append(np.array([func(el) for el in t])) ax = ax1 iabc = [] for ind, func in enumerate(self.dict_stator_current_function): ax.plot(t, [func(el) for el in t], label=ind) iabc.append(np.array([func(el) for el in t])) # amplitude-invariant transform - the alpha-beta frame is actually rotating, because iabs is in rotor ref frame (slip frequency) ialbe = 2 / 3. * np.dot(np.array([[1, -0.5, -0.5], [0, sqrt(3) / 2, -sqrt(3) / 2]]), np.array([iabc[3], iabc[4], iabc[5]])) print(np.shape(np.array([iabc[3], iabc[4], iabc[5]]))) print(np.shape(ialbe)) print(self.im.omega / 2 / pi) ids = [] iqs = [] ''' Speed negation is done by ? ''' iabc_stationary_2_tor = [] iabc_stationary_2_sus = [] for i in range(len(t)): # theta = -self.im.omega * t[i] # theta = -self.im.DriveW_Freq*2*pi * t[i] # theta = self.im.omega * t[i] theta = self.im.DriveW_Freq * 2 * pi * t[i] # turn into stationary dq frame temp = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([[ialbe[0][i]], [ialbe[1][i]]])) ids.append(temp[0]) iqs.append(temp[1]) iabc_stationary_2_tor.append(self.transformed_dict_stator_current_function(3, t[i], theta)) iabc_stationary_2_sus.append(self.transformed_dict_stator_current_function(0, t[i], theta)) ids = np.array(ids).T[0] iqs = np.array(iqs).T[0] # print ids # print iqs print('idq', np.shape(ids), np.shape(iqs)) # ax_r.plot(t, idq[0], label='i_ds') # ax_r.plot(t, idq[1], label='i_qs') # ax_r.plot(t, ialbe[0], label='alpha') # ax_r.plot(t, ialbe[1], label='beta') # tansform to phase coordinates ax = ax2 iabc_stationary = 1.5 * np.dot(np.array([[2 / 3., 0], [-1 / 3., sqrt(3) / 3], [-1 / 3., -sqrt(3) / 3]]), np.array([ids, iqs])) ax.plot(t, iabc_stationary[0], label='i_a') # ax.plot(t, iabc_stationary[1], label='i_b') # ax.plot(t, iabc_stationary[2], label='i_c') ax.plot(t, [el[0] for el in iabc_stationary_2_sus], label='i_a_2_sus') ax.plot(t, [el[0] for el in iabc_stationary_2_tor], label='i_a_2_tor') # ax.plot(t, [el[1]+5 for el in iabc_stationary_2_tor], label='i_b_2') # ax.plot(t, [el[2]+5 for el in iabc_stationary_2_tor], label='i_c_2') ax1.legend() ax2.legend() show() quit() return dict_rotor_current_function, dict_stator_current_function def transformed_dict_stator_current_function(self, index_phase_A, time, theta): ia_slip_freq = self.dict_stator_current_function[index_phase_A](time) ib_slip_freq = self.dict_stator_current_function[index_phase_A + 1](time) ic_slip_freq = self.dict_stator_current_function[index_phase_A + 2](time) iabc_vector_slip_freq = np.array([[ia_slip_freq, ib_slip_freq, ic_slip_freq]]).T ialbe = 2 / 3. * np.dot(np.array([[1, -0.5, -0.5], [0, sqrt(3) / 2, -sqrt(3) / 2]]), iabc_vector_slip_freq) # print 'ialbe', ialbe # turn into stationary dq frame idq = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), ialbe) # print 'idq', idq iabc_stationary = 1.5 * np.dot(np.array([[2 / 3., 0], [-1 / 3., sqrt(3) / 3], [-1 / 3., -sqrt(3) / 3]]), idq) return iabc_stationary[0][0], iabc_stationary[1][0], iabc_stationary[2][0] def get_air_gap_B(self, number_of_points=360): im = self.im femm.opendocument(self.output_file_name + '.fem') femm.mi_loadsolution() list_B_magitude = [] R = im.Radius_OuterRotor + 0.25 * im.Length_AirGap for i in range(number_of_points): THETA = i / 180.0 * pi X = R * cos(THETA) Y = R * sin(THETA) B_vector_complex = femm.mo_getb(X, Y) B_X_complex = B_vector_complex[0] B_Y_complex = B_vector_complex[1] B_X_real = np.real(B_X_complex) B_Y_real = np.real(B_Y_complex) # Assume the magnitude is all due to radial component B_magitude = sqrt(B_X_real ** 2 + B_Y_real ** 2) inner_product = B_X_real * X + B_Y_real * Y list_B_magitude.append(B_magitude * copysign(1, inner_product)) return list_B_magitude def probdef(self): # femm.smartmesh(False) <- This will not work due to bug of femm.__init__ # let mi_smartmesh deside. You must turn it off in parasolver.py femm.callfemm_noeval('smartmesh(0)') # call this after probdef femm.mi_probdef(self.freq, 'millimeters', 'planar', 1e-8, # must < 1e-8 self.stack_length, 18, 1) # The acsolver parameter (default: 0) specifies which solver is to be used for AC problems: 0 for successive approximation, 1 for Newton. # 1 for 'I intend to try the acsolver of Newton, as this is the default for JMAG@[Nonlinear Calculation] Setting Panel in the [Study Properties] Dialog Box' # femm.callfemm_noeval('mi_smartmesh(0)') # call this after probdef self.bool_automesh = False # setting to false gives no effect? # femm.smartmesh(True) # let mi_smartmesh deside. You must turn it off in parasolver.py # self.bool_automesh = True # setting to false gives no effect? def add_material(self): # mi_addmaterial('matname', mu x, mu y, H c, J, Cduct, Lam d, Phi hmax, lam fill, LamType, Phi hx, Phi hy, nstr, dwire) femm.mi_getmaterial('Air') femm.mi_getmaterial('Copper') # for coil # femm.mi_getmaterial('18 AWG') # for coil # femm.mi_getmaterial('Aluminum, 1100') # for bar? # femm.mi_getmaterial('304 Stainless Steel') # for shaft? # femm.mi_addmaterial('Air', 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0); # femm.mi_addmaterial('Aluminum', 1, 1, 0, 0, 35, 0, 0, 1, 0, 0, 0) femm.mi_addmaterial('Aluminum', 1, 1, 0, 0, 47619047.61904761 * 1e-6, 0, 0, 1, 0, 0, 0) # femm.mi_addmaterial('Aluminum', 1, 1, 0, 0, self.im.Bar_Conductivity * 1e-6, 0, 0, 1, 0, 0, # 0) # [MS/m] # femm.mi_addmaterial('Aluminum', 1, 1, 0, 0, 1/1.673e-2, 0, 0, 1, 0, 0, 0) # femm.mi_addmaterial('LinearIron', 2000, 2000, 0, 0, 0, 0, 0, 1, 0, 0, 0); if self.im.stator_iron_mat['core_material'] == 'M19Gauge29': # femm.mi_getmaterial('M-19 Steel') # for Stator & Rotor Iron Cores (Nonlinear with B-H curve) femm.mi_addmaterial('M19Gauge29', 0, 0, 0, 0, 0, 0.3556, 0, 0.95) # no lamination for testing consistency with JMAG hdata, bdata = np.loadtxt(self.im.stator_iron_mat['core_bh_file'], unpack=True, usecols=(0, 1)) for n in range(0, len(bdata)): femm.mi_addbhpoint('M19Gauge29', bdata[n], hdata[n]) elif self.im.spec_input_dict['Steel'] == 'Arnon5': # Arnon5 is 1/5 thick as M15, which is too thin to use and it is expensive as well femm.mi_addmaterial('Arnon5-final', 0, 0, 0, 0, 0.0, 0.127, 0, 0.96) BH = np.loadtxt(self.dir_codes + '../Arnon5/Arnon5-final.txt', unpack=True, usecols=(0, 1)) bdata = BH[1][1:] # if not skip the first point, there will be two (0,0) in FEMM software, reason unknown. hdata = BH[0][1:] # if not skip the first point, there will be two (0,0) in FEMM software, reason unknown. for n in range(0, len(bdata)): femm.mi_addbhpoint('Arnon5-final', bdata[n], hdata[n]) elif self.im.spec_input_dict['Steel'] == 'M15': femm.mi_addmaterial('My M-15 Steel', 0, 0, 0, 0, 0, 0.635, 0, 0.98) BH = np.loadtxt(self.dir_codes + '../Arnon5/M-15-Steel-BH-Curve.txt', unpack=True, usecols=(0, 1)) bdata = BH[1] hdata = BH[0] for n in range(0, len(bdata)): femm.mi_addbhpoint('My M-15 Steel', bdata[n], hdata[n]) if False: # A more interesting material to add is the iron with a nonlinear # BH curve. First, we create a material in the same way as if we # were creating a linear material, except the values used for # permeability are merely placeholders. femm.mi_addmaterial('Arnon5', 0, 0, 0, 0, 0.0, 0.127, 0, 0.96) # A set of points defining the BH curve is then specified. BH = np.loadtxt(self.dir_codes + 'Arnon5_Kang_after_JMAG_Smoothed.txt', unpack=True, usecols=(0, 1)) bdata = BH[1] hdata = BH[0] for n in range(0, len(bdata)): femm.mi_addbhpoint('Arnon5', bdata[n], hdata[n]) def get_output_file_name(self, booL_dir=True): fname = '%s-%gHz' % (self.im.ID, self.freq) if booL_dir == True: self.output_file_name = self.dir_run + fname return self.output_file_name else: return fname def whole_row_reader(self, reader): for row in reader: yield row[:] def has_results(self, dir_run=None): # print 'self.freq', self.freq if dir_run == None: dir_run = self.dir_run a = [f for f in os.listdir(dir_run) if '.ans' in f].__len__() b = [f for f in os.listdir(dir_run) if '.fem' in f].__len__() if a == 0: if 'no_duplicates.txt' in os.listdir(dir_run): return True # 直接把femm的结果从服务器上拷过来也行 else: return False print('[FEMM.has_results] ans count: %d. fem count: %d.' % (a, b)) return a == b def show_results(self, bool_plot=True): if self.flag_eddycurrent_solver == True: print('show results for eddy current solver') return self.show_results_eddycurrent(bool_plot=bool_plot) if self.flag_static_solver == True: print('show results for static solver') return self.show_results_static(bool_plot=bool_plot) return None def show_results_eddycurrent(self, bool_plot): if self.fraction == 1: self.fraction = 2 # this fixes a bug calling femm_integrate_4_current without calling run_frequency_sweeping before raise Exception('You should initialize FEMM Solver with freq!=0') ans_file_list = os.listdir(self.dir_run_sweeping) ans_file_list = [f for f in ans_file_list if '.ans' in f] femm.openfemm(True) list_ans_file = [] list_torque = [] # write results to a data file str_results = '' for ind, f in enumerate(ans_file_list): # femm.opendocument(self.dir_run_sweeping + f[:-4] + '.fem') # femm.mi_loadsolution() femm.opendocument(self.dir_run_sweeping + f) # physical amount on rotor femm.mo_groupselectblock(100) femm.mo_groupselectblock(101) Fx = femm.mo_blockintegral(18) # -- 18 x (or r) part of steady-state weighted stress tensor force Fy = femm.mo_blockintegral(19) # --19 y (or z) part of steady-state weighted stress tensor force torque = femm.mo_blockintegral(22) # -- 22 = Steady-state weighted stress tensor torque femm.mo_clearblock() # rotor current # _ = self.femm_integrate_4_current() # # TODO: this is for testing phase # if float(f[3:-6]) == 3: # print '\n', f[3:-6], 'Hz' # for el in vals_results_rotor_current: # print abs(el) str_results += "%s %g %g %g\n" % (f[3:-6], torque, Fx, Fy) list_ans_file.append(f) list_torque.append(torque) femm.mo_close() with open(self.dir_run_sweeping + "eddycurrent_results.txt", "w") as stream: stream.write(str_results) # find breakdown torque and slip frequency that we are interested # index, breakdown_torque = utility.get_max_and_index(list_torque) # slip_freq_breakdown_torque = list_ans_file[index][3:-6] # print("FEMM's breakdown data: %s Hz, %g Nm" % (slip_freq_breakdown_torque, breakdown_torque)) # self.im.update_mechanical_parameters(float(slip_freq_breakdown_torque)) # if self.im.slip_freq_breakdown_torque != float(slip_freq_breakdown_torque): # raise Exception('[DEBUG] JMAG disagrees with FEMM (!= 3 Hz).') # write rotor currents to file self.femm_integrate_4_current(self.dir_run_sweeping + list_ans_file[index], self.fraction) femm.closefemm() def femm_integrate_4_current(self, fname, fraction, dir_output=None, returnData=False): '''Make sure femm is opened Returns: [type] -- [list of complex number of rotor currents from FEMM] ''' # get corresponding rotor current conditions for later static FEA femm.opendocument(fname) if True: # physical amount of Cage im = self.im vals_results_rotor_current = [] # R = 0.5*(im.Location_RotorBarCenter + im.Location_RotorBarCenter2) R = im.Location_RotorBarCenter # Since 5/23/2019 angle_per_slot = 2 * pi / im.Qr THETA_BAR = pi - angle_per_slot + EPS # add EPS for the half bar # print 'number of rotor_slot per partial model', self.rotor_slot_per_pole * int(4/fraction) for i in range(self.rotor_slot_per_pole * int(4 / fraction)): THETA_BAR += angle_per_slot THETA = THETA_BAR X = R * cos(THETA); Y = R * sin(THETA) femm.mo_selectblock(X, Y) # or you can select circuit rA rB ... vals_results_rotor_current.append(femm.mo_blockintegral(7)) # integrate for current femm.mo_clearblock() # the other half bar of rA THETA_BAR += angle_per_slot THETA = THETA_BAR - 2 * EPS X = R * cos(THETA); Y = R * sin(THETA) femm.mo_selectblock(X, Y) vals_results_rotor_current.append(femm.mo_blockintegral(7)) # integrate for current femm.mo_clearblock() ################################################################ # Also collect slot area information for loss evaluation in JMAG optimization ################################################################ if True: # get stator slot area for copper loss calculation femm.mo_groupselectblock(11) stator_slot_area = femm.mo_blockintegral(5) / ( im.Qs / fraction) # unit: m^2 (verified by GUI operation) femm.mo_clearblock() # get rotor slot area for copper loss calculation femm.mo_groupselectblock(101) rotor_slot_area = femm.mo_blockintegral(5) / (im.Qs / fraction) femm.mo_clearblock() femm.mo_close() # return [-el for el in vals_results_rotor_current[self.rotor_slot_per_pole:2*self.rotor_slot_per_pole]] # 用第四象限的转子电流,因为第三象限的被切了一半,麻烦! # vals_results_rotor_current[self.rotor_slot_per_pole:2*self.rotor_slot_per_pole]这里用的都是第四象限的转子电流了,我们后面默认用的是第三象限的转子电流,即rA1 rB1 ...,所以要反相一下(-el) vals_results_rotor_current = [-el for el in vals_results_rotor_current[ self.rotor_slot_per_pole:2 * self.rotor_slot_per_pole]] # vals_results_rotor_current = self.femm_integrate_4_current(self.fraction) if dir_output is None: dir_output = self.dir_run_sweeping if returnData == False: # no return then write to file with open(dir_output + "femm_rotor_current_conditions.txt", "w") as stream: str_results = '' for el in vals_results_rotor_current: stream.write("%g %g \n" % (el.real, el.imag)) print('done. append to eddycurrent_results.txt.') return None else: return vals_results_rotor_current, stator_slot_area, rotor_slot_area def show_results_static(self, bool_plot=True): # Collect results from all the .ans file in the dir_run folder of FEMM. # recall that for static FEA, you call show_results once when half .ans files are generated from watchdog self.freq = 0 # needed for # TODO 判断,如果文件存在,且不是空的! # if exists .txt file, then load it missed_ans_file_list = [] if os.path.exists(self.dir_run + "static_results.txt"): data = np.loadtxt(self.dir_run + "static_results.txt", unpack=True, usecols=(0, 1, 2, 3)) # use dict to eliminate duplicates results_dict = {} for i in range(len(data[0])): results_dict[data[0][i]] = (data[1][i], data[2][i], data[3][i]) keys_without_duplicates = list( OrderedDict.fromkeys(data[0])) # remove duplicated item because it is a dict now! keys_without_duplicates.sort() # check for missed .ans files if len(np.arange(0, 180, self.deg_per_step)) == len(keys_without_duplicates): pass else: for self.rotor_position_in_deg in np.arange(0, 180, self.deg_per_step): flag_missed = True for key in keys_without_duplicates: if int('%04d' % (10 * self.rotor_position_in_deg)) == key: flag_missed = False break if flag_missed == True: missed_ans_file_list.append(self.get_output_file_name(booL_dir=False) + '%04d' % ( 10 * self.rotor_position_in_deg) + '.ans') print('missed:', missed_ans_file_list) # typical print gives: 5 1813 1795 1799.0 # print len(missed_ans_file_list), len(data[0]), len(keys_without_duplicates), keys_without_duplicates[-1] # quit() # write data without duplicates to file with open(self.dir_run + "static_results_no_duplicates.txt", 'w') as f: for key in keys_without_duplicates: f.writelines( '%g %g %g %g\n' % (key, results_dict[key][0], results_dict[key][1], results_dict[key][2])) print('[FEMM.show_results_static] the last key is', max(keys_without_duplicates), '[begin from 0]. the length of keys is', len(keys_without_duplicates)) data = np.loadtxt(self.dir_run + "static_results_no_duplicates.txt", unpack=True, usecols=(0, 1, 2, 3)) last_index = len(data[0]) else: last_index = 0 ans_file_list = os.listdir(self.dir_run) ans_file_list = [f for f in ans_file_list if '.ans' in f] # last_index == 0 则说明是第一次运行后处理 if last_index > 0: if len(ans_file_list) <= last_index: if bool_plot == True: self.plot_results(data) return data else: print('There are new .ans files. Now append them') # iter ans_file_list and missed_ans_file_list, and write to .txt femm.openfemm(True) # bHide print('there are total %d .ans files' % (len(ans_file_list))) print('I am going to append the rest %d ones.' % (len(ans_file_list) - last_index)) for ind, f in enumerate(ans_file_list[last_index:] + missed_ans_file_list): if ind >= len(ans_file_list[last_index:]): print('...open missed .ans files') if os.path.exists(self.dir_run + f) == False: print('run mi_analyze for %s' % (f)) femm.opendocument(self.dir_run + f[:-4] + '.fem') femm.mi_analyze(1) else: femm.opendocument(self.dir_run + f[:-4] + '.fem') else: print(last_index + ind, end=' ') femm.opendocument(self.dir_run + f[:-4] + '.fem') # load solution (if corrupted, re-run) try: femm.mi_loadsolution() except Exception as e: logger = logging.getLogger(__name__) logger.error('The .ans file to this .fem file is corrupted. re-run the .fem file %s' % (f), exc_info=True) femm.opendocument(self.dir_run + f[:-4] + '.fem') femm.mi_analyze(1) femm.mi_loadsolution() # get the physical amounts on the rotor try: femm.mo_groupselectblock(100) femm.mo_groupselectblock(101) Fx = femm.mo_blockintegral(18) # -- 18 x (or r) part of steady-state weighted stress tensor force Fy = femm.mo_blockintegral(19) # --19 y (or z) part of steady-state weighted stress tensor force torque = femm.mo_blockintegral(22) # -- 22 = Steady-state weighted stress tensor torque femm.mo_clearblock() # Air Gap Boundary for Rotor Motion #5 # gap_torque = femm.mo_gapintegral("AGB4RM", 0) # gap_force = femm.mo_gapintegral("AGB4RM", 1) # print gap_force, gap_torque, torque, Fx, Fy # write results to a data file with open(self.dir_run + "static_results.txt", "a") as stream: stream.write("%s %g %g %g\n" % (f[-8:-4], torque, Fx, Fy)) except Exception as e: logger = logging.getLogger(__name__) logger.error('Encounter error while post-processing (integrating, etc.).', exc_info=True) raise e # avoid run out of RAM when there are a thousand of ans files loaded into femm... # if ind % 10 == 0: # femm.closefemm() # femm.openfemm(True) femm.mo_close() # use mo_ to close .ans file femm.mi_close() # use mi_ to close .fem file print('done. append to static_results.txt.') femm.closefemm() try: data except: print('call this method again to plot...') return None if bool_plot == True: self.plot_results(data) return data def write_physical_data(self, results_list): with open(self.dir_run + "static_results.txt", "a") as f: results_rotor = '' for ind, row in enumerate(results_list): results_rotor += "%s %g %g %g\n" \ % (row[0][-8:-4], row[1], row[2], row[3]) f.write(results_rotor) def plot_results(self, data): from pylab import subplots, legend, show try: self.fig except: fig, axes = subplots(3, 1, sharex=True) self.fig = fig self.axes = axes else: fig = self.fig axes = self.axes if self.flag_eddycurrent_solver: ax = axes[0]; ax.plot(data[0], data[1], label='torque'); ax.legend(); ax.grid() ax = axes[1]; ax.plot(data[0], data[2], label='Fx'); ax.legend(); ax.grid() ax = axes[2]; ax.plot(data[0], data[3], label='Fy'); ax.legend(); ax.grid() if self.flag_static_solver: ax = axes[0]; ax.plot(data[0] * 0.1, data[1], label='torque'); ax.legend(); ax.grid() ax = axes[1]; ax.plot(data[0] * 0.1, data[2], label='Fx'); ax.legend(); ax.grid() ax = axes[2]; ax.plot(data[0] * 0.1, data[3], label='Fy'); ax.legend(); ax.grid() def run_frequency_sweeping(self, freq_range, fraction=2): if self.has_results(dir_run=self.dir_run_sweeping): return self.flag_static_solver = False self.flag_eddycurrent_solver = True self.fraction = fraction for f in os.listdir(self.dir_run_sweeping): os.remove(self.dir_run_sweeping + f) femm.openfemm(True) # bHide # False for debug femm.newdocument(0) # magnetic self.freq_range = freq_range self.freq = freq_range[0] # Alternatively, the length of the machine could be scaled by the number of segments to make this correction automatically. self.stack_length = self.im.stack_length * fraction self.probdef() # is coarse mesh causing biased rotor current? # femm.smartmesh(True) # self.bool_automesh = True self.add_material() # self.draw_model(fraction=fraction) self.vangogh.draw_model(fraction=fraction) self.add_block_labels(fraction=fraction) # # debug here # femm.mi_maximize() # femm.mi_zoomnatural() # return list_ans_file = [] for freq in freq_range: self.freq = freq temp = self.get_output_file_name(booL_dir=False) list_ans_file.append(temp + '.ans') self.output_file_name = self.dir_run_sweeping + temp print(temp) if os.path.exists(self.output_file_name + '.ans'): continue self.probdef() femm.mi_saveas(self.output_file_name + '.fem') self.parallel_solve(dir_run=self.dir_run_sweeping, number_of_instantces=5) # subprocess will wait for cmd but not the pytho script self.wait(list_ans_file) # flux and current of circuit can be used for parameter identification if False: dict_circuits = {} # i = femm.mo_getprobleminfo() logging.getLogger().info('Sweeping: %g Hz.' % (self.freq)) femm.mi_analyze(1) # None for inherited. 1 for a minimized window, femm.mi_loadsolution() # circuit # i1_re,i1_im, v1_re,v1_im, flux1_re,flux1_im = femm.mo_getcircuitproperties("dA") # i2_re,i2_im, v2_re,v2_im, flux2_re,flux2_im = femm.mo_getcircuitproperties("bA") # i3_re,i3_im, v3_re,v3_im, flux3_re,flux3_im = femm.mo_getcircuitproperties("rA") dict_circuits['dU'] = femm.mo_getcircuitproperties("dU") dict_circuits['dV'] = femm.mo_getcircuitproperties("dV") dict_circuits['dW'] = femm.mo_getcircuitproperties("dW") dict_circuits['bU'] = femm.mo_getcircuitproperties("bU") dict_circuits['bV'] = femm.mo_getcircuitproperties("bV") dict_circuits['bW'] = femm.mo_getcircuitproperties("bW") for i in range(self.rotor_slot_per_pole): circuit_name = 'r%s' % (self.rotor_phase_name_list[i]) dict_circuits[circuit_name] = femm.mo_getcircuitproperties(circuit_name) # write results to a data file, multiplying by ? to get # the results for all ? poles of the machine. # 如果只分析了对称场,记得乘回少掉的那部分。 with open(self.dir_run_sweeping + "results.txt", "a") as f: results_circuits = "[DW] %g + j%g A. %g + j%g V. %g + j%g Wb. [BW] %g + j%g A. %g + j%g V. %g + j%g Wb. [BAR] %g + j%g A. %g + j%g V. %g + j%g Wb. " \ % (np.real(dict_circuits['dU'][0]), np.imag(dict_circuits['dU'][0]), np.real(dict_circuits['dU'][1]), np.imag(dict_circuits['dU'][1]),
np.real(dict_circuits['dU'][2])
numpy.real
# coding=utf-8 # Copyright 2021 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from datasets import load_dataset from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from .test_modeling_bert import BertModelTester from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from .test_modeling_deit import DeiTModelTester from .test_modeling_trocr import TrOCRStandaloneDecoderModelTester from .test_modeling_vit import ViTModelTester if is_torch_available(): import numpy as np import torch from transformers import ( AutoTokenizer, BertLMHeadModel, DeiTModel, TrOCRForCausalLM, VisionEncoderDecoderConfig, VisionEncoderDecoderModel, ViTModel, ) from transformers.modeling_outputs import BaseModelOutput from transformers.models.vit.modeling_vit import to_2tuple if is_vision_available(): from PIL import Image from transformers import TrOCRProcessor, ViTFeatureExtractor @require_torch class EncoderDecoderMixin: def get_encoder_decoder_model(self, config, decoder_config): pass def prepare_config_and_inputs(self): pass def get_pretrained_model_and_inputs(self): pass def check_encoder_decoder_model_from_pretrained_configs( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs ): encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) self.assertTrue(encoder_decoder_config.decoder.is_decoder) enc_dec_model = VisionEncoderDecoderModel(encoder_decoder_config) enc_dec_model.to(torch_device) enc_dec_model.eval() self.assertTrue(enc_dec_model.config.is_encoder_decoder) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) self.assertTrue(enc_dec_model.config.decoder.is_decoder) self.assertTrue(enc_dec_model.config.decoder.add_cross_attention) self.assertTrue(enc_dec_model.config.is_encoder_decoder) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1]) outputs_encoder_decoder = enc_dec_model( encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model_from_pretrained( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, return_dict, pixel_values=None, **kwargs ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict} enc_dec_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, return_dict=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_save_and_load( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) enc_dec_model.eval() with torch.no_grad(): outputs = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: enc_dec_model.save_pretrained(tmpdirname) enc_dec_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname) enc_dec_model.to(torch_device) after_outputs = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def check_save_and_load_encoder_decoder_model( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, pixel_values=None, **kwargs ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) enc_dec_model.eval() with torch.no_grad(): outputs = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) out_2 = outputs[0].cpu().numpy() out_2[
np.isnan(out_2)
numpy.isnan
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import copy import numpy from functools import reduce from pyscf import gto, lib from pyscf import scf, dft from pyscf import mp from pyscf import cc from pyscf import ao2mo from pyscf.cc import uccsd from pyscf.cc import gccsd from pyscf.cc import addons from pyscf.cc import uccsd_rdm from pyscf.fci import direct_uhf mol = gto.Mole() mol.verbose = 7 mol.output = '/dev/null' mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]] mol.basis = '631g' mol.build() rhf = scf.RHF(mol) rhf.conv_tol_grad = 1e-8 rhf.kernel() mf = scf.addons.convert_to_uhf(rhf) myucc = cc.UCCSD(mf).run(conv_tol=1e-10) mol_s2 = gto.Mole() mol_s2.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]] mol_s2.basis = '631g' mol_s2.spin = 2 mol_s2.verbose = 5 mol_s2.output = '/dev/null' mol_s2.build() mf_s2 = scf.UHF(mol_s2).run() eris = uccsd.UCCSD(mf_s2).ao2mo() def tearDownModule(): global mol, rhf, mf, myucc, mol_s2, mf_s2, eris mol.stdout.close() mol_s2.stdout.close() del mol, rhf, mf, myucc, mol_s2, mf_s2, eris class KnownValues(unittest.TestCase): # def test_with_df(self): # mf = scf.UHF(mol).density_fit(auxbasis='weigend').run() # mycc = cc.UCCSD(mf).run() # self.assertAlmostEqual(mycc.e_tot, -76.118403942938741, 7) def test_ERIS(self): ucc1 = cc.UCCSD(mf) nao,nmo = mf.mo_coeff[0].shape numpy.random.seed(1) mo_coeff = numpy.random.random((2,nao,nmo)) eris = cc.uccsd._make_eris_incore(ucc1, mo_coeff) self.assertAlmostEqual(lib.finger(eris.oooo), 4.9638849382825754, 11) self.assertAlmostEqual(lib.finger(eris.ovoo),-1.3623681896983584, 11) self.assertAlmostEqual(lib.finger(eris.ovov), 125.81550684442163, 11) self.assertAlmostEqual(lib.finger(eris.oovv), 55.123681017639598, 11) self.assertAlmostEqual(lib.finger(eris.ovvo), 133.48083527898248, 11) self.assertAlmostEqual(lib.finger(eris.ovvv), 59.421927525288183, 11) self.assertAlmostEqual(lib.finger(eris.vvvv), 43.556602622204778, 11) self.assertAlmostEqual(lib.finger(eris.OOOO),-407.05319440524585, 11) self.assertAlmostEqual(lib.finger(eris.OVOO), 56.284299937160796, 11) self.assertAlmostEqual(lib.finger(eris.OVOV),-287.72899895597448, 11) self.assertAlmostEqual(lib.finger(eris.OOVV),-85.484299959144522, 11) self.assertAlmostEqual(lib.finger(eris.OVVO),-228.18996145476956, 11) self.assertAlmostEqual(lib.finger(eris.OVVV),-10.715902258877399, 11) self.assertAlmostEqual(lib.finger(eris.VVVV),-89.908425473958303, 11) self.assertAlmostEqual(lib.finger(eris.ooOO),-336.65979260175226, 11) self.assertAlmostEqual(lib.finger(eris.ovOO),-16.405125847288176, 11) self.assertAlmostEqual(lib.finger(eris.ovOV), 231.59042209500075, 11) self.assertAlmostEqual(lib.finger(eris.ooVV), 20.338077193028354, 11) self.assertAlmostEqual(lib.finger(eris.ovVO), 206.48662856981386, 11) self.assertAlmostEqual(lib.finger(eris.ovVV),-71.273249852220516, 11) self.assertAlmostEqual(lib.finger(eris.vvVV), 172.47130671068496, 11) self.assertAlmostEqual(lib.finger(eris.OVoo),-19.927660309103977, 11) self.assertAlmostEqual(lib.finger(eris.OOvv),-27.761433381797019, 11) self.assertAlmostEqual(lib.finger(eris.OVvo),-140.09648311337384, 11) self.assertAlmostEqual(lib.finger(eris.OVvv), 40.700983950220547, 11) uccsd.MEMORYMIN, bak = 0, uccsd.MEMORYMIN ucc1.max_memory = 0 eris1 = ucc1.ao2mo(mo_coeff) uccsd.MEMORYMIN = bak self.assertAlmostEqual(abs(numpy.array(eris1.oooo)-eris.oooo).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovoo)-eris.ovoo).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovov)-eris.ovov).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.oovv)-eris.oovv).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovvo)-eris.ovvo).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovvv)-eris.ovvv).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.vvvv)-eris.vvvv).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OOOO)-eris.OOOO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVOO)-eris.OVOO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVOV)-eris.OVOV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OOVV)-eris.OOVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVVO)-eris.OVVO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVVV)-eris.OVVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.VVVV)-eris.VVVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ooOO)-eris.ooOO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovOO)-eris.ovOO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovOV)-eris.ovOV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ooVV)-eris.ooVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovVO)-eris.ovVO).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.ovVV)-eris.ovVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.vvVV)-eris.vvVV).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVoo)-eris.OVoo).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OOvv)-eris.OOvv).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVvo)-eris.OVvo).max(), 0, 11) self.assertAlmostEqual(abs(numpy.array(eris1.OVvv)-eris.OVvv).max(), 0, 11) # Testing the complex MO integrals def ao2mofn(mos): if isinstance(mos, numpy.ndarray) and mos.ndim == 2: mos = [mos]*4 nmos = [mo.shape[1] for mo in mos] eri_mo = ao2mo.kernel(mf._eri, mos, compact=False).reshape(nmos) return eri_mo * 1j eris1 = cc.uccsd._make_eris_incore(ucc1, mo_coeff, ao2mofn=ao2mofn) self.assertAlmostEqual(abs(eris1.oooo.imag-eris.oooo).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovoo.imag-eris.ovoo).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovov.imag-eris.ovov).max(), 0, 11) self.assertAlmostEqual(abs(eris1.oovv.imag-eris.oovv).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovvo.imag-eris.ovvo).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.ovvv.imag-eris.ovvv).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.vvvv.imag-eris.vvvv).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OOOO.imag-eris.OOOO).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OVOO.imag-eris.OVOO).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OVOV.imag-eris.OVOV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OOVV.imag-eris.OOVV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OVVO.imag-eris.OVVO).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.OVVV.imag-eris.OVVV).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.VVVV.imag-eris.VVVV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ooOO.imag-eris.ooOO).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovOO.imag-eris.ovOO).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovOV.imag-eris.ovOV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ooVV.imag-eris.ooVV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.ovVO.imag-eris.ovVO).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.ovVV.imag-eris.ovVV).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.vvVV.imag-eris.vvVV).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OVoo.imag-eris.OVoo).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OOvv.imag-eris.OOvv).max(), 0, 11) self.assertAlmostEqual(abs(eris1.OVvo.imag-eris.OVvo).max(), 0, 11) #self.assertAlmostEqual(abs(eris1.OVvv.imag-eris.OVvv).max(), 0, 11) def test_amplitudes_from_rccsd(self): e, t1, t2 = cc.RCCSD(rhf).set(conv_tol=1e-10).kernel() t1, t2 = myucc.amplitudes_from_rccsd(t1, t2) self.assertAlmostEqual(abs(t1[0]-myucc.t1[0]).max(), 0, 6) self.assertAlmostEqual(abs(t1[1]-myucc.t1[1]).max(), 0, 6) self.assertAlmostEqual(abs(t2[0]-myucc.t2[0]).max(), 0, 6) self.assertAlmostEqual(abs(t2[1]-myucc.t2[1]).max(), 0, 6) self.assertAlmostEqual(abs(t2[2]-myucc.t2[2]).max(), 0, 6) def test_uccsd_frozen(self): ucc1 = copy.copy(myucc) ucc1.frozen = 1 self.assertEqual(ucc1.nmo, (12,12)) self.assertEqual(ucc1.nocc, (4,4)) ucc1.frozen = [0,1] self.assertEqual(ucc1.nmo, (11,11)) self.assertEqual(ucc1.nocc, (3,3)) ucc1.frozen = [[0,1], [0,1]] self.assertEqual(ucc1.nmo, (11,11)) self.assertEqual(ucc1.nocc, (3,3)) ucc1.frozen = [1,9] self.assertEqual(ucc1.nmo, (11,11)) self.assertEqual(ucc1.nocc, (4,4)) ucc1.frozen = [[1,9], [1,9]] self.assertEqual(ucc1.nmo, (11,11)) self.assertEqual(ucc1.nocc, (4,4)) ucc1.frozen = [9,10,12] self.assertEqual(ucc1.nmo, (10,10)) self.assertEqual(ucc1.nocc, (5,5)) ucc1.nmo = (13,12) ucc1.nocc = (5,4) self.assertEqual(ucc1.nmo, (13,12)) self.assertEqual(ucc1.nocc, (5,4)) def test_uccsd_frozen(self): # Freeze 1s electrons frozen = [[0,1], [0,1]] ucc = cc.UCCSD(mf_s2, frozen=frozen) ucc.diis_start_cycle = 1 ecc, t1, t2 = ucc.kernel() self.assertAlmostEqual(ecc, -0.07414978284611283, 8) def test_rdm(self): nocc = 5 nvir = 7 mol = gto.M() mf = scf.UHF(mol) mf.mo_occ = numpy.zeros((2,nocc+nvir)) mf.mo_occ[:,:nocc] = 1 mycc = uccsd.UCCSD(mf) def antisym(t2): t2 = t2 - t2.transpose(0,1,3,2) t2 = t2 - t2.transpose(1,0,2,3) return t2 orbspin = numpy.zeros((nocc+nvir)*2, dtype=int) orbspin[1::2] = 1 numpy.random.seed(1) t1 = numpy.random.random((2,nocc,nvir))*.1 - .1 t2ab = numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1 t2aa = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1) t2bb = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1) t2 = (t2aa,t2ab,t2bb) l1 = numpy.random.random((2,nocc,nvir))*.1 - .1 l2ab = numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1 l2aa = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1) l2bb = antisym(numpy.random.random((nocc,nocc,nvir,nvir))*.1 - .1) l2 = (l2aa,l2ab,l2bb) dm1a, dm1b = mycc.make_rdm1(t1, t2, l1, l2) dm2aa, dm2ab, dm2bb = mycc.make_rdm2(t1, t2, l1, l2) ia = orbspin == 0 ib = orbspin == 1 oa = orbspin[:nocc*2] == 0 ob = orbspin[:nocc*2] == 1 va = orbspin[nocc*2:] == 0 vb = orbspin[nocc*2:] == 1 t1 = addons.spatial2spin(t1, orbspin) t2 = addons.spatial2spin(t2, orbspin) l1 = addons.spatial2spin(l1, orbspin) l2 = addons.spatial2spin(l2, orbspin) mf1 = scf.GHF(mol) mf1.mo_occ = numpy.zeros((nocc+nvir)*2) mf.mo_occ[:,:nocc*2] = 1 mycc1 = gccsd.GCCSD(mf1) dm1 = mycc1.make_rdm1(t1, t2, l1, l2) dm2 = mycc1.make_rdm2(t1, t2, l1, l2) self.assertAlmostEqual(abs(dm1[ia][:,ia]-dm1a).max(), 0, 9) self.assertAlmostEqual(abs(dm1[ib][:,ib]-dm1b).max(), 0, 9) self.assertAlmostEqual(abs(dm2[ia][:,ia][:,:,ia][:,:,:,ia]-dm2aa).max(), 0, 9) self.assertAlmostEqual(abs(dm2[ia][:,ia][:,:,ib][:,:,:,ib]-dm2ab).max(), 0, 9) self.assertAlmostEqual(abs(dm2[ib][:,ib][:,:,ib][:,:,:,ib]-dm2bb).max(), 0, 9) def test_h2o_rdm(self): mol = mol_s2 mf = mf_s2 mycc = uccsd.UCCSD(mf) mycc.frozen = 2 ecc, t1, t2 = mycc.kernel() l1, l2 = mycc.solve_lambda() dm1a,dm1b = mycc.make_rdm1(t1, t2, l1, l2) dm2aa,dm2ab,dm2bb = mycc.make_rdm2(t1, t2, l1, l2) mo_a = mf.mo_coeff[0] mo_b = mf.mo_coeff[1] nmoa = mo_a.shape[1] nmob = mo_b.shape[1] eriaa = ao2mo.kernel(mf._eri, mo_a, compact=False).reshape([nmoa]*4) eribb = ao2mo.kernel(mf._eri, mo_b, compact=False).reshape([nmob]*4) eriab = ao2mo.kernel(mf._eri, (mo_a,mo_a,mo_b,mo_b), compact=False) eriab = eriab.reshape([nmoa,nmoa,nmob,nmob]) hcore = mf.get_hcore() h1a = reduce(numpy.dot, (mo_a.T.conj(), hcore, mo_a)) h1b = reduce(numpy.dot, (mo_b.T.conj(), hcore, mo_b)) e1 = numpy.einsum('ij,ji', h1a, dm1a) e1+= numpy.einsum('ij,ji', h1b, dm1b) e1+= numpy.einsum('ijkl,ijkl', eriaa, dm2aa) * .5 e1+= numpy.einsum('ijkl,ijkl', eriab, dm2ab) e1+= numpy.einsum('ijkl,ijkl', eribb, dm2bb) * .5 e1+= mol.energy_nuc() self.assertAlmostEqual(e1, mycc.e_tot, 7) d1 = uccsd_rdm._gamma1_intermediates(mycc, mycc.t1, mycc.t2, mycc.l1, mycc.l2) mycc.max_memory = 0 d2 = uccsd_rdm._gamma2_intermediates(mycc, mycc.t1, mycc.t2, mycc.l1, mycc.l2, True) dm2 = uccsd_rdm._make_rdm2(mycc, d1, d2, with_dm1=True, with_frozen=True) e1 = numpy.einsum('ij,ji', h1a, dm1a) e1+= numpy.einsum('ij,ji', h1b, dm1b) e1+= numpy.einsum('ijkl,ijkl', eriaa, dm2[0]) * .5 e1+= numpy.einsum('ijkl,ijkl', eriab, dm2[1]) e1+= numpy.einsum('ijkl,ijkl', eribb, dm2[2]) * .5 e1+= mol.energy_nuc() self.assertAlmostEqual(e1, mycc.e_tot, 7) def test_h4_rdm(self): mol = gto.Mole() mol.verbose = 0 mol.atom = [ ['H', ( 1.,-1. , 0. )], ['H', ( 0.,-1. ,-1. )], ['H', ( 1.,-0.5 , 0. )], ['H', ( 0.,-1. , 1. )], ] mol.charge = 2 mol.spin = 2 mol.basis = '6-31g' mol.build() mf = scf.UHF(mol).set(init_guess='1e').run(conv_tol=1e-14) ehf0 = mf.e_tot - mol.energy_nuc() mycc = uccsd.UCCSD(mf).run() mycc.solve_lambda() eri_aa = ao2mo.kernel(mf._eri, mf.mo_coeff[0]) eri_bb = ao2mo.kernel(mf._eri, mf.mo_coeff[1]) eri_ab = ao2mo.kernel(mf._eri, [mf.mo_coeff[0], mf.mo_coeff[0], mf.mo_coeff[1], mf.mo_coeff[1]]) h1a = reduce(numpy.dot, (mf.mo_coeff[0].T, mf.get_hcore(), mf.mo_coeff[0])) h1b = reduce(numpy.dot, (mf.mo_coeff[1].T, mf.get_hcore(), mf.mo_coeff[1])) efci, fcivec = direct_uhf.kernel((h1a,h1b), (eri_aa,eri_ab,eri_bb), h1a.shape[0], mol.nelec) dm1ref, dm2ref = direct_uhf.make_rdm12s(fcivec, h1a.shape[0], mol.nelec) t1, t2 = mycc.t1, mycc.t2 l1, l2 = mycc.l1, mycc.l2 rdm1 = mycc.make_rdm1(t1, t2, l1, l2) rdm2 = mycc.make_rdm2(t1, t2, l1, l2) self.assertAlmostEqual(abs(dm1ref[0] - rdm1[0]).max(), 0, 6) self.assertAlmostEqual(abs(dm1ref[1] - rdm1[1]).max(), 0, 6) self.assertAlmostEqual(abs(dm2ref[0] - rdm2[0]).max(), 0, 6) self.assertAlmostEqual(abs(dm2ref[1] - rdm2[1]).max(), 0, 6) self.assertAlmostEqual(abs(dm2ref[2] - rdm2[2]).max(), 0, 6) def test_eris_contract_vvvv_t2(self): mol = gto.Mole() nocca, noccb, nvira, nvirb = 5, 4, 12, 13 nvira_pair = nvira*(nvira+1)//2 nvirb_pair = nvirb*(nvirb+1)//2 numpy.random.seed(9) t2 = numpy.random.random((nocca,noccb,nvira,nvirb)) eris = uccsd._ChemistsERIs() eris.vvVV = numpy.random.random((nvira_pair,nvirb_pair)) eris.mol = mol myucc.max_memory, bak = 0, myucc.max_memory vt2 = eris._contract_vvVV_t2(myucc, t2, eris.vvVV) myucc.max_memory = bak self.assertAlmostEqual(lib.finger(vt2), 12.00904827896089, 11) idxa = lib.square_mat_in_trilu_indices(nvira) idxb = lib.square_mat_in_trilu_indices(nvirb) vvVV = eris.vvVV[:,idxb][idxa] ref = lib.einsum('acbd,ijcd->ijab', vvVV, t2) self.assertAlmostEqual(abs(vt2 - ref).max(), 0, 11) # _contract_VVVV_t2, testing complex and real mixed contraction VVVV =(numpy.random.random((nvirb,nvirb,nvirb,nvirb)) + numpy.random.random((nvirb,nvirb,nvirb,nvirb))*1j - (.5+.5j)) VVVV = VVVV + VVVV.transpose(1,0,3,2).conj() VVVV = VVVV + VVVV.transpose(2,3,0,1) eris.VVVV = VVVV t2 = numpy.random.random((noccb,noccb,nvirb,nvirb)) t2 = t2 - t2.transpose(0,1,3,2) t2 = t2 - t2.transpose(1,0,3,2) myucc.max_memory, bak = 0, myucc.max_memory vt2 = eris._contract_VVVV_t2(myucc, t2, eris.VVVV) myucc.max_memory = bak self.assertAlmostEqual(lib.finger(vt2), 47.903883794299404-50.501573400833429j, 11) ref = lib.einsum('acbd,ijcd->ijab', eris.VVVV, t2) self.assertAlmostEqual(abs(vt2 - ref).max(), 0, 11) def test_update_amps1(self): mf = scf.UHF(mol_s2) numpy.random.seed(9) nmo = mf_s2.mo_occ[0].size mf.mo_coeff = numpy.random.random((2,nmo,nmo)) - 0.5 mf.mo_occ = numpy.zeros((2,nmo)) mf.mo_occ[0,:6] = 1 mf.mo_occ[1,:5] = 1 mycc = uccsd.UCCSD(mf) nocca, noccb = 6, 5 nvira, nvirb = nmo-nocca, nmo-noccb nvira_pair = nvira*(nvira+1)//2 nvirb_pair = nvirb*(nvirb+1)//2 eris = mycc.ao2mo() fakeris = uccsd._ChemistsERIs() fakeris.mo_coeff = eris.mo_coeff fakeris.vvVV = eris.vvVV fakeris.mol = mol_s2 t2ab = numpy.random.random((nocca,noccb,nvira,nvirb)) t1a = numpy.zeros((nocca,nvira)) t1b = numpy.zeros((noccb,nvirb)) self.assertAlmostEqual(lib.finger(mycc._add_vvVV(None, t2ab, fakeris)), 21.652482203108928, 9) fakeris.vvVV = None mycc.direct = True mycc.max_memory = 0 self.assertAlmostEqual(lib.finger(mycc._add_vvVV(None, t2ab, fakeris)), 21.652482203108928, 9) t1 = (numpy.random.random((nocca,nvira)), numpy.random.random((noccb,nvirb))) t2 = (numpy.random.random((nocca,nocca,nvira,nvira)), numpy.random.random((nocca,noccb,nvira,nvirb)), numpy.random.random((noccb,noccb,nvirb,nvirb))) t1, t2 = mycc.vector_to_amplitudes(mycc.amplitudes_to_vector(t1, t2)) t1, t2 = mycc.update_amps(t1, t2, eris) self.assertAlmostEqual(lib.finger(t1[0]), 49.912690337392938, 10) self.assertAlmostEqual(lib.finger(t1[1]), 74.596097348134776, 10) self.assertAlmostEqual(lib.finger(t2[0]), -41.784696524955393, 10) self.assertAlmostEqual(lib.finger(t2[1]), -9675.7677695314342, 7) self.assertAlmostEqual(lib.finger(t2[2]), 270.75447826471577, 8) self.assertAlmostEqual(lib.finger(mycc.amplitudes_to_vector(t1, t2)), 4341.9623137256776, 6) def test_vector_to_amplitudes(self): t1, t2 = myucc.vector_to_amplitudes(myucc.amplitudes_to_vector(myucc.t1, myucc.t2)) self.assertAlmostEqual(abs(t1[0]-myucc.t1[0]).max(), 0, 12) self.assertAlmostEqual(abs(t1[1]-myucc.t1[1]).max(), 0, 12) self.assertAlmostEqual(abs(t2[0]-myucc.t2[0]).max(), 0, 12) self.assertAlmostEqual(abs(t2[1]-myucc.t2[1]).max(), 0, 12) self.assertAlmostEqual(abs(t2[2]-myucc.t2[2]).max(), 0, 12) def test_update_amps2(self): # compare to gccsd.update_amps mol = mol_s2 mf = mf_s2 myucc = uccsd.UCCSD(mf) nocca, noccb = 6,4 nmo = mol.nao_nr() nvira,nvirb = nmo-nocca, nmo-noccb numpy.random.seed(9) t1 = [numpy.random.random((nocca,nvira))-.9, numpy.random.random((noccb,nvirb))-.9] t2 = [numpy.random.random((nocca,nocca,nvira,nvira))-.9, numpy.random.random((nocca,noccb,nvira,nvirb))-.9, numpy.random.random((noccb,noccb,nvirb,nvirb))-.9] t2[0] = t2[0] - t2[0].transpose(1,0,2,3) t2[0] = t2[0] - t2[0].transpose(0,1,3,2) t2[2] = t2[2] - t2[2].transpose(1,0,2,3) t2[2] = t2[2] - t2[2].transpose(0,1,3,2) mo_a = mf.mo_coeff[0] + numpy.sin(mf.mo_coeff[0]) * .01j mo_b = mf.mo_coeff[1] + numpy.sin(mf.mo_coeff[1]) * .01j nao = mo_a.shape[0] eri = ao2mo.restore(1, mf._eri, nao) eri0aa = lib.einsum('pqrs,pi,qj,rk,sl->ijkl', eri, mo_a.conj(), mo_a, mo_a.conj(), mo_a) eri0ab = lib.einsum('pqrs,pi,qj,rk,sl->ijkl', eri, mo_a.conj(), mo_a, mo_b.conj(), mo_b) eri0bb = lib.einsum('pqrs,pi,qj,rk,sl->ijkl', eri, mo_b.conj(), mo_b, mo_b.conj(), mo_b) eri0ba = eri0ab.transpose(2,3,0,1) nvira = nao - nocca nvirb = nao - noccb eris = uccsd._ChemistsERIs(mol) eris.oooo = eri0aa[:nocca,:nocca,:nocca,:nocca].copy() eris.ovoo = eri0aa[:nocca,nocca:,:nocca,:nocca].copy() eris.oovv = eri0aa[:nocca,:nocca,nocca:,nocca:].copy() eris.ovvo = eri0aa[:nocca,nocca:,nocca:,:nocca].copy() eris.ovov = eri0aa[:nocca,nocca:,:nocca,nocca:].copy() eris.ovvv = eri0aa[:nocca,nocca:,nocca:,nocca:].copy() eris.vvvv = eri0aa[nocca:,nocca:,nocca:,nocca:].copy() eris.OOOO = eri0bb[:noccb,:noccb,:noccb,:noccb].copy() eris.OVOO = eri0bb[:noccb,noccb:,:noccb,:noccb].copy() eris.OOVV = eri0bb[:noccb,:noccb,noccb:,noccb:].copy() eris.OVVO = eri0bb[:noccb,noccb:,noccb:,:noccb].copy() eris.OVOV = eri0bb[:noccb,noccb:,:noccb,noccb:].copy() eris.OVVV = eri0bb[:noccb,noccb:,noccb:,noccb:].copy() eris.VVVV = eri0bb[noccb:,noccb:,noccb:,noccb:].copy() eris.ooOO = eri0ab[:nocca,:nocca,:noccb,:noccb].copy() eris.ovOO = eri0ab[:nocca,nocca:,:noccb,:noccb].copy() eris.ooVV = eri0ab[:nocca,:nocca,noccb:,noccb:].copy() eris.ovVO = eri0ab[:nocca,nocca:,noccb:,:noccb].copy() eris.ovOV = eri0ab[:nocca,nocca:,:noccb,noccb:].copy() eris.ovVV = eri0ab[:nocca,nocca:,noccb:,noccb:].copy() eris.vvVV = eri0ab[nocca:,nocca:,noccb:,noccb:].copy() eris.OOoo = eri0ba[:noccb,:noccb,:nocca,:nocca].copy() eris.OVoo = eri0ba[:noccb,noccb:,:nocca,:nocca].copy() eris.OOvv = eri0ba[:noccb,:noccb,nocca:,nocca:].copy() eris.OVvo = eri0ba[:noccb,noccb:,nocca:,:nocca].copy() eris.OVov = eri0ba[:noccb,noccb:,:nocca,nocca:].copy() eris.OVvv = eri0ba[:noccb,noccb:,nocca:,nocca:].copy() eris.VVvv = eri0ba[noccb:,noccb:,nocca:,nocca:].copy() eris.focka = numpy.diag(mf.mo_energy[0]) eris.fockb = numpy.diag(mf.mo_energy[1]) t1[0] = t1[0] + numpy.sin(t1[0]) * .05j t1[1] = t1[1] + numpy.sin(t1[1]) * .05j t2[0] = t2[0] + numpy.sin(t2[0]) * .05j t2[1] = t2[1] + numpy.sin(t2[1]) * .05j t2[2] = t2[2] + numpy.sin(t2[2]) * .05j t1new_ref, t2new_ref = uccsd.update_amps(myucc, t1, t2, eris) nocc = nocca + noccb orbspin = numpy.zeros(nao*2, dtype=int) orbspin[1::2] = 1 orbspin[nocc-1] = 0 orbspin[nocc ] = 1 eri1 = numpy.zeros([nao*2]*4, dtype=numpy.complex) idxa = numpy.where(orbspin == 0)[0] idxb = numpy.where(orbspin == 1)[0] eri1[idxa[:,None,None,None],idxa[:,None,None],idxa[:,None],idxa] = eri0aa eri1[idxa[:,None,None,None],idxa[:,None,None],idxb[:,None],idxb] = eri0ab eri1[idxb[:,None,None,None],idxb[:,None,None],idxa[:,None],idxa] = eri0ba eri1[idxb[:,None,None,None],idxb[:,None,None],idxb[:,None],idxb] = eri0bb eri1 = eri1.transpose(0,2,1,3) - eri1.transpose(0,2,3,1) erig = gccsd._PhysicistsERIs() erig.oooo = eri1[:nocc,:nocc,:nocc,:nocc].copy() erig.ooov = eri1[:nocc,:nocc,:nocc,nocc:].copy() erig.ovov = eri1[:nocc,nocc:,:nocc,nocc:].copy() erig.ovvo = eri1[:nocc,nocc:,nocc:,:nocc].copy() erig.oovv = eri1[:nocc,:nocc,nocc:,nocc:].copy() erig.ovvv = eri1[:nocc,nocc:,nocc:,nocc:].copy() erig.vvvv = eri1[nocc:,nocc:,nocc:,nocc:].copy() mo_e = numpy.empty(nao*2) mo_e[orbspin==0] = mf.mo_energy[0] mo_e[orbspin==1] = mf.mo_energy[1] erig.fock = numpy.diag(mo_e) myccg = gccsd.GCCSD(scf.addons.convert_to_ghf(mf)) t1 = myccg.spatial2spin(t1, orbspin) t2 = myccg.spatial2spin(t2, orbspin) t1new, t2new = gccsd.update_amps(myccg, t1, t2, erig) t1new = myccg.spin2spatial(t1new, orbspin) t2new = myccg.spin2spatial(t2new, orbspin) self.assertAlmostEqual(abs(t1new[0] - t1new_ref[0]).max(), 0, 12) self.assertAlmostEqual(abs(t1new[1] - t1new_ref[1]).max(), 0, 12) self.assertAlmostEqual(abs(t2new[0] - t2new_ref[0]).max(), 0, 12) self.assertAlmostEqual(abs(t2new[1] - t2new_ref[1]).max(), 0, 12) self.assertAlmostEqual(abs(t2new[2] - t2new_ref[2]).max(), 0, 12) def test_mbpt2(self): myucc = uccsd.UCCSD(mf) e = myucc.kernel(mbpt2=True)[0] self.assertAlmostEqual(e, -0.12886859466216125, 10) emp2 = mp.MP2(mf).kernel()[0] self.assertAlmostEqual(e, emp2, 10) myucc = uccsd.UCCSD(mf_s2) e = myucc.kernel(mbpt2=True)[0] self.assertAlmostEqual(e, -0.096257842171487293, 10) emp2 = mp.MP2(mf_s2).kernel()[0] self.assertAlmostEqual(e, emp2, 10) def test_uintermediats(self): from pyscf.cc import uintermediates self.assertTrue(eris.get_ovvv().ndim == 4) self.assertTrue(eris.get_ovVV().ndim == 4) self.assertTrue(eris.get_OVvv().ndim == 4) self.assertTrue(eris.get_OVVV().ndim == 4) self.assertTrue(eris.get_ovvv(slice(None), slice(2,4)).ndim == 4) self.assertTrue(eris.get_ovVV(slice(None), slice(2,4)).ndim == 4) self.assertTrue(eris.get_OVvv(slice(None), slice(2,4)).ndim == 4) self.assertTrue(eris.get_OVVV(slice(None), slice(2,4)).ndim == 4) self.assertTrue(uintermediates._get_vvvv(eris).ndim == 4) self.assertTrue(uintermediates._get_vvVV(eris).ndim == 4) self.assertTrue(uintermediates._get_VVVV(eris).ndim == 4) def test_add_vvvv(self): myucc = uccsd.UCCSD(mf_s2) nocca, noccb = 6,4 nmo = mf_s2.mo_occ[0].size nvira, nvirb = nmo-nocca, nmo-noccb numpy.random.seed(9) t1 = [numpy.zeros((nocca,nvira)), numpy.zeros((noccb,nvirb))] t2 = [numpy.random.random((nocca,nocca,nvira,nvira))-.9, numpy.random.random((nocca,noccb,nvira,nvirb))-.9, numpy.random.random((noccb,noccb,nvirb,nvirb))-.9] t2[0] = t2[0] - t2[0].transpose(1,0,2,3) t2[0] = t2[0] - t2[0].transpose(0,1,3,2) t2[2] = t2[2] - t2[2].transpose(1,0,2,3) t2[2] = t2[2] - t2[2].transpose(0,1,3,2) eris1 = copy.copy(eris) idxa = lib.square_mat_in_trilu_indices(nvira) idxb = lib.square_mat_in_trilu_indices(nvirb) ref =(lib.einsum('acbd,ijcd->ijab', eris1.vvvv[:,idxa][idxa], t2[0]), lib.einsum('acbd,ijcd->ijab', eris1.vvVV[:,idxb][idxa], t2[1]), lib.einsum('acbd,ijcd->ijab', eris1.VVVV[:,idxb][idxb], t2[2])) t2a = myucc._add_vvvv((t1[0]*0,t1[1]*0), t2, eris, t2sym=False) self.assertAlmostEqual(abs(ref[0]-t2a[0]).max(), 0, 12) self.assertAlmostEqual(abs(ref[1]-t2a[1]).max(), 0, 12) self.assertAlmostEqual(abs(ref[2]-t2a[2]).max(), 0, 12) myucc.direct = True eris1.vvvv = None # == with_ovvv=True in the call below eris1.VVVV = None eris1.vvVV = None t1 = None myucc.mo_coeff, eris1.mo_coeff = eris1.mo_coeff, None t2b = myucc._add_vvvv(t1, t2, eris1) self.assertAlmostEqual(abs(ref[0]-t2b[0]).max(), 0, 12) self.assertAlmostEqual(abs(ref[1]-t2b[1]).max(), 0, 12) self.assertAlmostEqual(abs(ref[2]-t2b[2]).max(), 0, 12) def test_add_vvVV(self): myucc = uccsd.UCCSD(mf_s2) nocca, noccb = 6,4 nmo = mf_s2.mo_occ[0].size nvira, nvirb = nmo-nocca, nmo-noccb numpy.random.seed(9) t1 = [numpy.zeros((nocca,nvira)),
numpy.zeros((noccb,nvirb))
numpy.zeros
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data =
np.array([])
numpy.array
# -*- coding: utf-8 -*- """ Created on Sun Feb 7 13:43:01 2016 @author: fergal A series of metrics to quantify the noise in a lightcurve: Includes: x sgCdpp x Marshall's noise estimate o An FT based estimate of 6 hour artifact strength. o A per thruster firing estimate of 6 hour artifact strength. $Id$ $URL$ """ __version__ = "$Id$" __URL__ = "$URL$" from scipy.signal import savgol_filter import matplotlib.pyplot as mp import numpy as np import fft keplerLongCadence_s = 1765.4679 keplerLongCadence_days = keplerLongCadence_s / float(86400) def computeRollTweakAmplitude(y, nHarmonics = 3, tweakPeriod_days = .25, \ expTime_days=None, plot=False): """Compute strength of roll tweak artifact in K2 data with an FT approach. Compute FT of lightcurve Optional Inputs: ----------------- plot Show a diagnostic plot Returns: -------- float indicating strength of correction. A value of 1 means the amplitude of the tweak is approx equal to the strength of all other signals in the FT. """ if expTime_days is None: expTime_days = keplerLongCadence_days #computes FT with frequencies in cycles per days ft = fft.computeFft(y, expTime_days) #Thruster firings every 6 hours artifactFreq_cd = 1/tweakPeriod_days #cycles per day if plot: mp.clf() mp.plot(ft[:,0], 1e6*ft[:,1], 'b-') metric = 0 nPtsForMed = 50 for i in range(1, nHarmonics+1): wh = np.argmin( np.fabs(ft[:,0] - i*artifactFreq_cd)) med = np.median(ft[wh-nPtsForMed:wh+nPtsForMed, 1]) metric += ft[wh, 1] / med if plot: mp.axvline(i*artifactFreq_cd, color='m') return metric / float(nHarmonics) def computeSgCdpp_ppm(y, transitDuration_cadences=13, plot=False): """Estimates 6hr CDPP using <NAME> Cleve's Savitzy-Golay technique An interesting estimate of the noise in a lightcurve is the scatter after all long term trends have been removed. This is the kernel of the idea behind the Combined Differential Photometric Precision (CDPP) metric used in classic Kepler. <NAME> devised a much simpler algorithm for computing CDPP using a Savitzy-Golay detrending, which he called Savitzy-Golay CDPP, or SG-CDPP. We implement his algorithm here. Inputs: ---------- y (1d numpy array) normalised flux to calculate noise from. Flux should have a mean of zero and be in units of fractional amplitude. Note: Bad data in input will skew result. Some filtering of outliers is performed, but Nan's or Infs will not be caught. Optional Inputs: ----------------- transitDuration_cadences (int) Adjust the assumed transit width, in cadences. Default is 13, which corresponds to a 6.5 hour transit in K2 plot Show a diagnostic plot Returns: ------------ Estimated noise in parts per million. Notes: ------------- Taken from svn+ssh://murzim/repo/so/trunk/Develop/jvc/common/compute_SG_noise.m by <NAME> """ #These 3 values were chosen for the original algorithm, and we don't #change them here. window = 101 polyorder=2 noiseNorm = 1.40 #Name change for consistency with original algorithm cadencesPerTransit = transitDuration_cadences if cadencesPerTransit < 4: raise ValueError("Cadences per transit must be >= 4") if len(y) < window: raise ValueError("Can't compute CDPP for timeseries with fewer points than defined window (%i points)" %(window)) trend = savgol_filter(y, window_length=window, polyorder=polyorder) detrend = y-trend filtered = np.ones(cadencesPerTransit)/float(cadencesPerTransit) smoothed = np.convolve(detrend, filtered, mode='same') if plot: mp.clf() mp.plot(y, 'ko') mp.plot(trend, 'r-') mp.plot(smoothed, 'g.') sgCdpp_ppm = noiseNorm*robustStd(smoothed, 1)*1e6 return sgCdpp_ppm def estimateScatterWithMarshallMethod(flux, plot=False): """Estimate the typical scatter in a lightcurve. Uses the same method as Marshall (Mullally et al 2016 submitted) Inputs: ---------- flux (np 1d array). Flux to measure scatter of. Need not have zero mean. Optional Inputs: ----------------- plot Show a diagnostic plot Returns: ------------ (float) scatter of data in the same units as in the input ``flux`` Notes: ---------- Algorithm is reasonably sensitive to outliers. For best results uses outlier rejection on your lightcurve before computing scatter. Nan's and infs in lightcurve will propegate to the return value. """ diff= np.diff(flux) #Remove egregious outliers. Shouldn't make much difference idx = sigmaClip(diff, 5) diff = diff[~idx] mean = np.mean(diff) mad = np.median(np.fabs(diff-mean)) std = 1.4826*mad if plot: mp.clf() mp.plot(flux, 'ko') mp.plot(diff, 'r.') mp.figure(2) mp.clf() bins = np.linspace(-3000, 3000, 61) mp.hist(1e6*diff, bins=bins, ec="none") mp.xlim(-3000, 3000) mp.axvline(-1e6*float(std/np.sqrt(2)), color='r') mp.axvline(1e6*float(std/np.sqrt(2)), color='r') #std is the rms of the diff. std on single point #is 1/sqrt(2) of that value, return float(std/np.sqrt(2)) def singlePointDifferenceSigmaClip(a, nSigma=4, maxIter=1e4, initialClip=None): """Iteratively find and remove outliers in first derivative If a dataset can be modeled as a constant offset + noise + outliers, those outliers can be found and rejected with a sigma-clipping approach. If the data contains some time-varying signal, this signal must be removed before applying a sigma clip. This function removes the signal by applying a single point difference. The function computes a[i+1] - a[i], and sigma clips the result. Slowly varying trends will have single point differences that are dominated by noise, but outliers have strong first derivatives and will show up strongly in this metric. Inputs: ---------- y (1d numpy array) Array to be cleaned nSigma (float) Threshold to cut at. 5 is typically a good value for most arrays found in practice. Optional Inputs: ------------------- maxIter (int) Maximum number of iterations initialClip (1d boolean array) If an element of initialClip is set to True, that value is treated as a bad value in the first iteration, and not included in the computation of the mean and std. Returns: ------------ 1d numpy array. Where set to True, the corresponding element of y is an outlier. """ #Scatter in single point difference is root 2 time larger #than in initial lightcurve threshold = nSigma/np.sqrt(2) diff1 = np.roll(a, -1) - a diff1[-1] = 0 #Don't trust the last value because a[-1] not necessarily equal to a idx1 = sigmaClip(diff1, nSigma, maxIter, initialClip) diff2 = np.roll(a, 1) - a diff2[0] = 0 idx2 = sigmaClip(diff2, nSigma, maxIter, initialClip) flags = idx1 & idx2 #This bit of magic ensures only single point outliers are marked, #not strong trends in the data. It insists that the previous point #in difference time series is an outlier in the opposite direction, otherwise #the point is considered unflagged. This prevents marking transits as bad data. outlierIdx = flags outlierIdx &= np.roll(idx1, 1) outlierIdx &= (np.roll(diff1, 1) * diff1 < 0) return outlierIdx def sigmaClip(y, nSigma, maxIter=1e4, initialClip=None): """Iteratively find and remove outliers Find outliers by identifiny all points more than **nSigma** from the mean value. The recalculate the mean and std and repeat until no more outliers found. Inputs: ---------- y (1d numpy array) Array to be cleaned nSigma (float) Threshold to cut at. 5 is typically a good value for most arrays found in practice. Optional Inputs: ------------------- maxIter (int) Maximum number of iterations initialClip (1d boolean array) If an element of initialClip is set to True, that value is treated as a bad value in the first iteration, and not included in the computation of the mean and std. Returns: ------------ 1d numpy array. Where set to True, the corresponding element of y is an outlier. """ #import matplotlib.pyplot as mp idx = initialClip if initialClip is None: idx = np.zeros( len(y), dtype=bool) assert(len(idx) == len(y)) #x = np.arange(len(y)) #mp.plot(x, y, 'k.') oldNumClipped = np.sum(idx) for i in range(int(maxIter)): mean = np.nanmean(y[~idx]) std = np.nanstd(y[~idx]) newIdx = np.fabs(y-mean) > nSigma*std newIdx =
np.logical_or(idx, newIdx)
numpy.logical_or
#!/usr/bin/env python """ This file is part of IMSIS Licensed under the MIT license: http://www.opensource.org/licenses/MIT-license This module contains image processing methods """ import os import sys import cv2 as cv import matplotlib.gridspec as gridspec import numpy as np import scipy.misc from matplotlib import pyplot as plt import numpy.random as random from matplotlib.colors import hsv_to_rgb from datetime import datetime class Image(object): @staticmethod def load(filename, verbose=True): """Load image Supported file formats: PNG, TIF, BMP note: by default images are converted to grayscale (8bit gray), conversion to 8 bit can be disabled. :Parameters: filename, gray=True, verbose=False :Returns: image """ img = None if (os.path.isfile(filename)): img = cv.imread(filename, -1) if (verbose == True): print("load file ", filename, img.shape, img.dtype) else: print('Error, file does not exist. ', filename) sys.exit() try: q = img.shape except: print('Error, File could not be read. ', filename) sys.exit() return img @staticmethod def crop_rectangle(img, rect): """Crop an image using rectangle shape as input [(x0,y0),(x1,y1)] :Parameters: image, rectangle :Returns: image """ if len(rect) > 0: out = Image.crop(img, rect[0][0], rect[0][1], rect[1][0], rect[1][1]) else: print("Error: rectangle not defined.") out = img return out @staticmethod def crop(img, x0, y0, x1, y1): """Crop an image using pixels at x0,y0,x1,y1 :Parameters: image, x0, y0, x1, y1 :Returns: image """ res = img[y0:y1, x0:x1] # Crop from y0:y1,x0:x1 # print("Cropped region: (" , x0,y0,x1,y1,")") return res @staticmethod def crop_percentage(img, scale=1.0): """Crop an image centered :Parameters: image, scale=1.0 :Returns: image """ center_x, center_y = img.shape[1] / 2, img.shape[0] / 2 width_scaled, height_scaled = img.shape[1] * scale, img.shape[0] * scale left_x, right_x = center_x - width_scaled / 2, center_x + width_scaled / 2 top_y, bottom_y = center_y - height_scaled / 2, center_y + height_scaled / 2 img_cropped = img[int(top_y):int(bottom_y), int(left_x):int(right_x)] return img_cropped @staticmethod def resize(img, factor=0.5): """Resize image :Parameters: image, factor :Returns: image """ small = cv.resize(img, (0, 0), fx=factor, fy=factor) return small @staticmethod def _blur_edge(img, d=31): """blur edge :Parameters: image, d :Returns: image """ h, w = img.shape[:2] img_pad = cv.copyMakeBorder(img, d, d, d, d, cv.BORDER_WRAP) img_blur = cv.GaussianBlur(img_pad, (2 * d + 1, 2 * d + 1), -1)[d:-d, d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w - x - 1, y, h - y - 1]).min(-1) w = np.minimum(np.float32(dist) / d, 1.0) return img * w + img_blur * (1 - w) @staticmethod def _motion_kernel(angle, d, sz=65): """determine motion kernel value :Parameters: angle, d, size :Returns: kernel """ kern = np.ones((1, d), np.float32) c, s = np.cos(angle), np.sin(angle) A = np.float32([[c, -s, 0], [s, c, 0]]) sz2 = sz // 2 A[:, 2] = (sz2, sz2) - np.dot(A[:, :2], ((d - 1) * 0.5, 0)) kern = cv.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC) return kern @staticmethod def _defocus_kernel(d, sz=65): """determine defocus kernel value :Parameters: d, size :Returns: kernel """ kern = np.zeros((sz, sz), np.uint8) cv.circle(kern, (sz, sz), d, 255, -1, cv.LINE_AA, shift=1) kern = np.float32(kern) / 255.0 return kern @staticmethod def _image_stats(image): # compute the mean and standard deviation of each channel (l, a, b) = cv.split(image) (lMean, lStd) = (l.mean(), l.std()) (aMean, aStd) = (a.mean(), a.std()) (bMean, bStd) = (b.mean(), b.std()) # return the color statistics return (lMean, lStd, aMean, aStd, bMean, bStd) @staticmethod def save(img, fn): """Save image (PNG,TIF) :Parameters: image, filename """ try: if (os.path.dirname(fn)): os.makedirs(os.path.dirname(fn), exist_ok=True) #mkdir if not empty cv.imwrite(fn, img) print("file saved. ", fn) except: print("Error: cannot save file {}".format(fn)) @staticmethod def save_withuniquetimestamp(img): """Save PNG image with unique timestamp. :Parameters: image """ path = "./output/" os.makedirs(os.path.dirname(path), exist_ok=True) sttime = datetime.now().strftime('Image_%Y%m%d%H%M%S') fn = path + sttime + '.png' print("file saved. ", fn) cv.imwrite(fn, img) ''' @staticmethod def PSNR(img1, img2): """Return peaksignal to noise ratio :Parameters: image1, image2 :Returns: float """ mse = np.mean((img1 - img2) ** 2) if mse == 0: return 100 PIXEL_MAX = 255.0 # print(np.sqrt(mse)) n = np.sqrt(mse) # n=255/3.525 return 20 * np.log10(PIXEL_MAX / n) ''' # implemented twice remove the 2nd one @staticmethod def cut(img, center=[0, 0], size=[0, 0]): """return a image cut out :Parameters: image, center=[0, 0], size=[0, 0] :Returns: image """ x0 = center[0] - round(size[0] * 0.5) x1 = center[0] + round(size[0] * 0.5) y0 = center[1] - round(size[1] * 0.5) y1 = center[1] + round(size[1] * 0.5) if x0 < 0: x0 = 0 if y0 < 0: y0 = 0 template = Image.crop(img, int(x0), int(y0), int(x1), int(y1)) return template @staticmethod def _multipleof2(number): """Rounds the given number to the nearest multiple of two.""" remainder = number % 2 if remainder > 1: number += (2 - remainder) else: number -= remainder return int(number) @staticmethod def subtract(img0, img1): """subtract 2 images :Parameters: image1, image2 :Returns: image """ out = cv.subtract(img0, img1) return out ''' @staticmethod def add(img0, img1): """add 2 images :Parameters: image1, image2 :Returns: image """ out = cv.addWeighted(img0, 0.5, img1, 0.5, 0.0) return out ''' @staticmethod def add(img0, img1, alpha=0.5): """add 2 images weighted (default alpha=0.5) :Parameters: image1, image2, alpha :Returns: image """ a = img0 b = img1 beta = 1 - alpha out = cv.addWeighted(a, alpha, b, beta, gamma) return out @staticmethod def new(height, width): """Create a new blank image :Parameters: height,width :Returns: image """ img = np.zeros((height, width), np.uint8) return img @staticmethod def gaussiankernel(kernlen=21, nsig=3): """returns a 2D gaussian kernel :Parameters: kernelsize, nsig :Returns: image """ x = np.linspace(-nsig, nsig, kernlen + 1) kern1d = np.diff(st.norm.cdf(x)) kern2d = np.outer(kern1d, kern1d) return kern2d / kern2d.sum() @staticmethod def info(img): """get image properties :Parameters: img """ print(img.shape) print(img.size) print(img.dtype) @staticmethod def unique_colours(image): """get number of unique colors in an image :Parameters: img """ print(image.shape) if (len(image.shape) == 3): out = len(np.unique(image.reshape(-1, image.shape[2]), axis=0)) # b, g, r = cv.split(image) # out_in_32U_2D = np.int32(b) << 16 + np.int32(g) << 8 + np.int32(r) # bit wise shift 8 for each channel. # out_in_32U_1D = out_in_32U_2D.reshape(-1) # convert to 1D # np.unique(out_in_32U_1D) # out = len(np.unique(out_in_32U_1D)) else: out_in_32U_2D = np.int32(image) # bit wise shift 8 for each channel. out_in_32U_1D = out_in_32U_2D.reshape(-1) # convert to 1D np.unique(out_in_32U_1D) out = len(np.unique(out_in_32U_1D)) print(out) return out @staticmethod def video_to_imagesondisk(file_in='video.avi', path_out='images'): """video to image :Parameters: video_filename :Returns: images """ video_file = file_in output_folder = path_out vidcap = cv.VideoCapture(video_file) success, image = vidcap.read() count = 0 success = True while success: fn = output_folder + "/" + "frame%d.png" % count cv.imwrite(fn, image) # save frame as JPEG file success, image = vidcap.read() print('Read a new frame: ', success, fn) count += 1 print("ready.") @staticmethod def imagesfromdisk_to_video(path_in, file_out='video.avi', framerate=15): """images from file to video :Parameters: path with list of frames :Returns: video """ image_folder = path_in video_name = file_out output_folder = "output" fn = image_folder + "/" + output_folder + "/" print(fn) os.makedirs(os.path.dirname(fn), exist_ok=True) images = [img for img in os.listdir(image_folder) if (img.endswith(".tif") or img.endswith(".png"))] frame = cv.imread(os.path.join(image_folder, images[0])) height, width, layers = frame.shape video = cv.VideoWriter(fn + video_name, 0, framerate, (width, height)) for image in images: video.write(cv.imread(os.path.join(image_folder, image))) cv.destroyAllWindows() video.release() ''' @staticmethod def zoom(image0, factor=2): """ zoom image, resize with factor n, crop in center to same size as original image :Parameters: image0, zoom factor :Returns: image """ h = image0.shape[0] w = image0.shape[1] img = Image.resize(image0,factor) x0 = int(factor*w/4) y0 = int(factor*h/4) x1 = x0+w y1 = y0+h print(x0,y0,x1,y1,w,h,img.shape[0],img.shape[1]) img = Image.crop(img,x0,y0,x1,y1) return img ''' @staticmethod def zoom(image0, factor=2, cx=0.5, cy=0.5): """ zoom image, resize with factor n, crop in center to same size as original image :Parameters: image0, zoom factor :Returns: image """ h = image0.shape[0] w = image0.shape[1] img = Image.resize(image0, factor) x0 = int(factor * w * cx * 0.5) y0 = int(factor * h * cy * 0.5) x1 = x0 + w y1 = y0 + h # print(x0, y0, x1, y1, w, h, img.shape[0], img.shape[1]) img = Image.crop(img, x0, y0, x1, y1) return img class Process: @staticmethod def directionalsharpness(img, ksize=-1): """ DirectionalSharpness Measure sharnpess in X and Y seperately Note: Negative slopes are missed when converting to unaryint8, therefore convert to float :Parameters: image, kernel :Returns: gradientx , gradienty, gradientxy, theta """ sobelx64f = cv.Sobel(img, cv.CV_64F, 1, 0, ksize=ksize) sobely64f = cv.Sobel(img, cv.CV_64F, 0, 1, ksize=ksize) grad = np.power(np.power(sobelx64f, 2.0) + np.power(sobely64f, 2.0), 0.5) theta = np.arctan2(sobely64f, sobelx64f) Gx = np.absolute(sobelx64f) Gy = np.absolute(sobely64f) mx = cv.mean(Gx)[0] my = cv.mean(Gy)[0] return mx, my, grad, theta @staticmethod def gradient_image(img, kx=11, ky=3): """Create a gradient image Method used: gradient by bi-directional sobel filter :Parameters: image, blurkernelx, blurkernely :Returns: image """ # Calculate gradient gx = cv.Sobel(img, cv.CV_32F, 1, 0, ksize=1) gy = cv.Sobel(img, cv.CV_32F, 0, 1, ksize=1) # mag, angle = cv.cartToPolar(gx, gy, angleInDegrees=True) blurredgx = cv.GaussianBlur(gx, (kx, ky), 1) blurredgy = cv.GaussianBlur(gy, (kx, ky), 1) mag, angle = cv.cartToPolar(blurredgx, blurredgy) return mag, angle @staticmethod def gradient_image_nonmaxsuppressed(img, blur=5, threshold=40): """Apply non maximum suppressed gradient filter sequence threshold not used?? :Parameters: image, blur=5, threshold=40 :Returns: image, angle """ def nonmaxsuppression(im, grad): # Non-maximum suppression gradSup = grad.copy() for r in range(im.shape[0]): for c in range(im.shape[1]): # Suppress pixels at the image edge if r == 0 or r == im.shape[0] - 1 or c == 0 or c == im.shape[1] - 1: gradSup[r, c] = 0 continue tq = thetaQ[r, c] % 4 if tq == 0: # 0 is E-W (horizontal) if grad[r, c] <= grad[r, c - 1] or grad[r, c] <= grad[r, c + 1]: gradSup[r, c] = 0 if tq == 1: # 1 is NE-SW if grad[r, c] <= grad[r - 1, c + 1] or grad[r, c] <= grad[r + 1, c - 1]: gradSup[r, c] = 0 if tq == 2: # 2 is N-S (vertical) if grad[r, c] <= grad[r - 1, c] or grad[r, c] <= grad[r + 1, c]: gradSup[r, c] = 0 if tq == 3: # 3 is NW-SE if grad[r, c] <= grad[r - 1, c - 1] or grad[r, c] <= grad[r + 1, c + 1]: gradSup[r, c] = 0 return gradSup img = Image.Convert.toGray(img) im = np.array(img, dtype=float) # Convert to float to prevent clipping values # Gaussian Blur im2 = cv.GaussianBlur(im, (blur, blur), 0) # Find gradients im3h = cv.filter2D(im2, -1, np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])) im3v = cv.filter2D(im2, -1, np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])) # Get gradient and direction grad = np.power(np.power(im3h, 2.0) + np.power(im3v, 2.0), 0.5) theta = np.arctan2(im3v, im3h) thetaQ = (np.round(theta * (5.0 / np.pi)) + 5) % 5 # Quantize direction gradSup = nonmaxsuppression(im, grad) return gradSup, thetaQ @staticmethod def nonlocalmeans(img, h=10, templatewindowsize=7, searchwindowsize=21): """Apply a non-local-means filter with filtering strength (h), template windowsize (blocksize), searchwindowsize :Parameters: image, h=10, templatewindowsize=7, searchwindowsize=21 :Returns: image """ # img = cv.pyrDown(img) dst = cv.fastNlMeansDenoising(img, None, h, templatewindowsize, searchwindowsize) return dst @staticmethod def deconvolution_wiener(img, d=3, noise=11): """Apply Wiener deconvolution grayscale images only :Parameters: image, d, noise :Returns: kernel """ img = Image.Convert.toGray(img) noise = 10 ** (-0.1 * noise) img = np.float32(img) / 255.0 IMG = cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT) psf = Image._defocus_kernel(d) psf /= psf.sum() psf_pad = np.zeros_like(img) kh, kw = psf.shape psf_pad[:kh, :kw] = psf PSF = cv.dft(psf_pad, flags=cv.DFT_COMPLEX_OUTPUT, nonzeroRows=kh) PSF2 = (PSF ** 2).sum(-1) iPSF = PSF / (PSF2 + noise)[..., np.newaxis] RES = cv.mulSpectrums(IMG, iPSF, 0) res = cv.idft(RES, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT) res = np.roll(res, -kh // 2, 0) res = np.roll(res, -kw // 2, 1) return res @staticmethod def median(image, kernel=5): """Apply a median filter :Parameters: image :Returns: image """ out = cv.medianBlur(image, kernel) return out @staticmethod def cannyedge_auto(image, sigma=0.33): """Apply a Canny Edge filter automatically :Parameters: image, sigma :Returns: image """ # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv.Canny(image, lower, upper) return edged # smooth, threshold @staticmethod def gaussian_blur(img, smooth=3): """Gaussian blur image with kernel n :Parameters: image, kernel :Returns: image """ # img = cv.pyrDown(img) imout = cv.GaussianBlur(img, (smooth, smooth), 0) return imout @staticmethod def unsharp_mask(img, kernel_size=5, sigma=1.0, amount=1.0, threshold=0): """Unsharp mask filter :Parameters: image, kernel_size=5, sigma=1.0, amount=1.0, threshold=0 :Returns: image """ blurred = cv.GaussianBlur(img, (5, 5), sigma) sharpened = float(amount + 1) * img - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(img - blurred) < threshold np.copyto(sharpened, img, where=low_contrast_mask) return sharpened @staticmethod def FFT(img): """Apply a fourier transform generate a discrete fourier transform shift matrix and a magnitude spectrum image for viewing :Parameters: image :Returns: dft_shift, specimage """ # img = Image.Convert.toGray(img) # do dft saving as complex output dft = np.fft.fft2(img, axes=(0, 1)) # apply shift of origin to center of image dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 # magnitude_spectrum[np.isneginf(magnitude_spectrum)] = 0 return dft_shift, spec @staticmethod def IFFT(fft_img): """Apply an inverse fourier transform :Parameters: image_fft :Returns: image """ back_ishift = np.fft.ifftshift(fft_img) img_back = np.fft.ifft2(back_ishift, axes=(0, 1)) img_back = np.abs(img_back).clip(0, 255).astype(np.uint8) return img_back @staticmethod def FD_bandpass_filter(img, D0=5, w=10, bptype=0): gray = Image.Convert.toGray(img) kernel = Image.FilterKernels.ideal_bandpass_kernel(gray, D0, w) if bptype == 1: kernel = Image.FilterKernels.gaussian_bandpass_kernel(gray, D0, w) elif bptype == 2: kernel = Image.FilterKernels.butterworth_bandpass_kernel(gray, D0, w) gray = np.float64(gray) gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_filtered = np.multiply(kernel, gray_fftshift) dst_ifftshift = np.fft.ifftshift(dst_filtered) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.abs(np.real(dst_ifft)) dst = np.clip(dst, 0, 255) out = np.uint8(dst) return out, kernel ''' def FFT_highpass(img, maskradius=8, maskblur=19): dft = np.fft.fft2(img, axes=(0, 1)) dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 radius = maskradius mask = np.zeros_like(img, dtype=np.float32) cy = mask.shape[0] // 2 cx = mask.shape[1] // 2 cv.circle(mask, (cx, cy), radius, (1, 1, 1), -1)[0] mask = 1 - mask mask = 1 + 0.5 * mask # high boost filter (sharpening) = 1 + fraction of high pass filter if maskblur > 0: mask2 = cv.GaussianBlur(mask, (maskblur, maskblur), 0) dft_shift_masked2 = np.multiply(dft_shift, mask2) back_ishift_masked2 = np.fft.ifftshift(dft_shift_masked2) img_filtered2 = np.fft.ifft2(back_ishift_masked2, axes=(0, 1)) out = np.abs(img_filtered2).clip(0, 255).astype(np.uint8) else: dft_shift_masked = np.multiply(dft_shift, mask) back_ishift_masked = np.fft.ifftshift(dft_shift_masked) img_filtered = np.fft.ifft2(back_ishift_masked, axes=(0, 1)) out = np.abs(img_filtered).clip(0, 255).astype(np.uint8) mask2= mask return out, mask2 def FFT_lowpass(img, maskradius=8, maskblur=19): dft = np.fft.fft2(img, axes=(0, 1)) dft_shift = np.fft.fftshift(dft) mag = np.abs(dft_shift) spec = np.log(mag) / 20 radius = maskradius mask = np.zeros_like(img, dtype=np.float32) cy = mask.shape[0] // 2 cx = mask.shape[1] // 2 cv.circle(mask, (cx, cy), radius, (255, 255, 255), -1)[0] if maskblur > 0: mask2 = cv.GaussianBlur(mask, (maskblur, maskblur), 0) dft_shift_masked2 = np.multiply(dft_shift, mask2)/ 255 back_ishift_masked2 = np.fft.ifftshift(dft_shift_masked2) img_filtered2 = np.fft.ifft2(back_ishift_masked2, axes=(0, 1)) out = np.abs(img_filtered2).clip(0, 255).astype(np.uint8) else: dft_shift_masked = np.multiply(dft_shift, mask)/ 255 back_ishift_masked = np.fft.ifftshift(dft_shift_masked) img_filtered = np.fft.ifft2(back_ishift_masked, axes=(0, 1)) out = np.abs(img_filtered).clip(0, 255).astype(np.uint8) mask2 = mask return out,mask2 ''' ''' @staticmethod def FFT_lowpass(img, radius=16, lpType=2, n=2): """Lowpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, radius, lptype, n :Returns: image, mask """ def createLPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # ideal low-pass filter lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 1 lpFilter[lpFilter >= pow(radius, 2.0)] = 0 elif lpType == 1: # Butterworth low-pass filter lpFilter = 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) elif lpType == 2: # Gaussian low pass filter lpFilter = np.exp(-d / (2 * pow(radius, 2.0))) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createLPFilter(dft_shift.shape, (cx, cy), radius=radius, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_highpass(img, radius=16, lpType=2, n=2): """Highpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, radius, lptype, n :Returns: image, mask """ def createHPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # Ideal high pass filter lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 0 lpFilter[lpFilter >= pow(radius, 2.0)] = 1 elif lpType == 1: # Butterworth Highpass Filters lpFilter = 1.0 - 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) elif lpType == 2: # Gaussian Highpass Filter lpFilter = 1.0 - np.exp(-d / (2 * pow(radius, 2.0))) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createHPFilter(dft_shift.shape, (cx, cy), radius=radius, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_bandpass(img, bandcenter=32, bandwidth=16, lpType=2, n=2): """Bandpass filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, bandcenter, bandwidth, lptype, n :Returns: image, mask """ def createBPFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros((rows,cols), np.float32) if lpType == 0: # Ideal bandpass filter lpFilter = np.copy(d) lpFilter[:, :] = 1 lpFilter[d > (bandCenter + bandWidth / 2)] = 0 lpFilter[d < (bandCenter - bandWidth / 2)] = 0 elif lpType == 1: # Butterworth bandpass filter if bandCenter ==0: bandCenter=1 lpFilter = 1.0 - 1.0 / (1 + np.power(d * bandWidth / (d - pow(bandCenter, 2)), 2 * n)) elif lpType == 2: # Gaussian bandpass filter if bandWidth ==0: bandWidth=1 lpFilter = np.exp(-pow((d - pow(bandCenter, 2)) / (d * bandWidth), 2)) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createBPFilter(dft_shift.shape, (cx, cy), bandCenter=bandcenter, bandWidth=bandwidth, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) #print(mask.dtype,dft_shift.dtype) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask @staticmethod def FFT_bandstop(img, bandcenter=32, bandwidth=16, lpType=2, n=2): """Bandstop filter in frequency domain radius kernel size lpType: 0-ideal, 1 butterworth, 2 gaussian :Parameters: image, bandcenter, bandwidth, lptype, n :Returns: image, mask """ def createBRFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros((rows, cols), np.float32) if lpType == 0: # Ideal band stop filter lpFilter = np.copy(d) lpFilter[:, :] = 0 lpFilter[d > (bandCenter + bandWidth / 2)] = 1 lpFilter[d < (bandCenter - bandWidth / 2)] = 1 elif lpType == 1: # Butterworth band stop filter lpFilter = 1.0 / (1 + np.power(d * bandWidth / (d - pow(bandCenter, 2)), 2 * n)) elif lpType == 2: # Gaussian band stop filter lpFilter = 1 - np.exp(-pow((d - pow(bandCenter, 2)) / (d * bandWidth), 2)) lpFilter_matrix[:, :] = lpFilter return lpFilter_matrix dft_shift, imgfft = Image.Process.FFT(img) cy = dft_shift.shape[0] // 2 cx = dft_shift.shape[1] // 2 mask = createBRFilter(dft_shift.shape, (cx, cy), bandCenter=bandcenter, bandWidth=bandwidth, lpType=lpType, n=n) if len(img.shape) == 3: mask = Image.Convert.toRGB(mask) ifft = np.multiply(dft_shift, mask) out = Image.Process.IFFT(ifft) return out, mask ''' def pencilsketch(img): """Apply a pencil sketch filter to a grayscale image :Parameters: image :Returns: image """ def dodgeV2(image, mask): return cv.divide(image, 255 - mask, scale=256) def burnV2(image, mask): return 255 - cv.divide(255 - image, 255 - mask, scale=256) img_gray_inv = 255 - img img_blur = cv.GaussianBlur(img_gray_inv, ksize=(21, 21), sigmaX=0, sigmaY=0) out = dodgeV2(img, img_blur) return out def sepia(img): """Apply sepia filter :Parameters: image :Returns: image """ res = img.copy() res = cv.cvtColor(res, cv.COLOR_BGR2RGB) # converting to RGB as sepia matrix is for RGB res = np.array(res, dtype=np.float64) res = cv.transform(res, np.matrix([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]])) res[np.where(res > 255)] = 255 # clipping values greater than 255 to 255 res = np.array(res, dtype=np.uint8) res = cv.cvtColor(res, cv.COLOR_RGB2BGR) return res @staticmethod def gaussian_noise(img, prob=0.25): """ Add gaussian noise :Parameters: image, sigma=0.25 :Returns: image """ noise_img = img.astype(np.float) stddev = prob * 100.0 noise = np.random.randn(*img.shape) * stddev noise_img += noise noise_img = np.clip(noise_img, 0, 255).astype(np.uint8) return noise_img @staticmethod def salt_and_pepper_noise(image, prob=0.01): """Add salt and pepper noise :Parameters: image, sigma=0.01 :Returns: image """ output = np.zeros(image.shape, np.uint8) thres = 1 - prob for i in range(image.shape[0]): for j in range(image.shape[1]): rdn = random.random() if rdn < prob: output[i][j] = 0 elif rdn > thres: output[i][j] = 255 else: output[i][j] = image[i][j] return output @staticmethod def poisson_noise(img, prob=0.25): """ Induce poisson noise :Parameters: image, lambda=0.25 :Returns: image """ # Noise range from 0 to 100 """ seed = 42 data = np.float32(img / 255) #convert to float to add poisson noise np.random.seed(seed=seed) out = np.random.poisson(data * 256) / 256. out = np.uint8(out*255) out = np.clip(out, 0, 255).astype(np.uint8) #convert back to UINT8 """ # data = np.float32(img) #convert to float to add poisson noise data = img.astype(np.float) noise = prob # peak = 256.0-noise*(256-32) peak = 256.0 - noise * (256) # print(noise,peak) noise_image = np.random.poisson(data / 255.0 * peak) / peak * 255 out = np.clip(noise_image, 0, 255).astype(np.uint8) return out @staticmethod def k_means(image, k=3): """ k_means clustering :Parameters: image, k=3 :Returns: image """ pixel_vals = image.reshape((-1, 3)) pixel_vals = np.float32(pixel_vals) criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.85) retval, labels, centers = cv.kmeans(pixel_vals, k, None, criteria, 10, cv.KMEANS_RANDOM_CENTERS) centers = np.uint8(centers) segmented_data = centers[labels.flatten()] segmented_image = segmented_data.reshape((image.shape)) return segmented_image class Falsecolor: @staticmethod def falsecolor_jet(img): """False color jet :Parameters: image :Returns: image """ im_color = cv.applyColorMap(img, cv.COLORMAP_JET) return im_color @staticmethod def falsecolor_rainbow(img): """False color rainbow :Parameters: image :Returns: image """ im_color = cv.applyColorMap(img, cv.COLORMAP_RAINBOW) return im_color @staticmethod def falsecolor_transfer(source, target): """ convert RGB to LAB color space :Parameters: source_image, target_image :Returns: image """ # convert the images from the RGB to L*ab* color space, being # sure to utilizing the floating point data type (note: OpenCV # expects floats to be 32-bit, so use that instead of 64-bit) source = cv.cvtColor(source, cv.COLOR_GRAY2BGR) target = cv.cvtColor(target, cv.COLOR_GRAY2BGR) source = cv.cvtColor(source, cv.COLOR_BGR2LAB).astype("float32") target = cv.cvtColor(target, cv.COLOR_BGR2LAB).astype("float32") # compute color statistics for the source and target images (lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = _image_stats(source) (lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = _image_stats(target) # subtract the means from the target image (l, a, b) = cv.split(target) l -= lMeanTar a -= aMeanTar b -= bMeanTar # scale by the standard deviations l = (lStdTar / lStdSrc) * l a = (aStdTar / aStdSrc) * a b = (bStdTar / bStdSrc) * b # add in the source mean l += lMeanSrc a += aMeanSrc b += bMeanSrc # clip the pixel intensities to [0, 255] if they fall outside # this range l = np.clip(l, 0, 255) a = np.clip(a, 0, 255) b = np.clip(b, 0, 255) # merge the channels together and convert back to the RGB color # space, being sure to utilize the 8-bit unsigned integer data # type transfer = cv.merge([l, a, b]) transfer = cv.cvtColor(transfer.astype("uint8"), cv.COLOR_LAB2BGR) # return the color transferred image return transfer @staticmethod def falsecolor_merge2channels(img0, img1): """Merge 2 images using 2 colors :Parameters: image1, image2 :Returns: image """ img0 = Image.Convert.toGray(img0) img1 = Image.Convert.toGray(img1) img0 = Image.Adjust.histostretch_clahe(img0) img1 = Image.Adjust.histostretch_clahe(img1) img0 = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) r0, g0, b0 = cv.split(img0) r1, g1, b1 = cv.split(img1) img3 = cv.merge([b1, g1, r0]) return img3 @staticmethod def falsecolor_merge3channels(img0, img1, img2): """Merge 3 images using 3 colors :Parameters: image1, image2, image3 :Returns: image """ img0 = Image.Adjust.histostretch_clahe(img0) img1 = Image.Adjust.histostretch_clahe(img1) img2 = Image.Adjust.histostretch_clahe(img2) img0 = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) img2 = cv.cvtColor(img2, cv.COLOR_GRAY2BGR) r0, g0, b0 = cv.split(img0) r1, g1, b1 = cv.split(img1) r2, g2, b2 = cv.split(img2) img3 = cv.merge([b2, g1, r0]) return img3 class Adjust: @staticmethod def invert(img): """Invert image :Parameters: image :Returns: image """ img2 = cv.bitwise_not(img) return img2 @staticmethod def squared_and_bin(img): """First make image squared followed by binning to 256 pixels :Parameters: image :Returns: image """ img0 = Image.Tools.squared(img, leadingaxislargest=False) scale = 256 / img0.shape[1] img0 = cv.resize(img0, None, None, scale, scale, interpolation=cv.INTER_AREA) return img0 @staticmethod def bin(img, shrinkfactor=2): """bin image with shrinkfactor (default shrinkfactor= 2) :Parameters: image, shrinkfactor :Returns: image """ scale = 1 / shrinkfactor img0 = cv.resize(img, None, None, scale, scale, interpolation=cv.INTER_AREA) return img0 @staticmethod def histogram(img): """create histogram of an image as an image :Parameters: image :Output: histogram image """ w = img.shape[1] h = img.shape[0] if (img.dtype == np.uint8): rng = 256 else: rng = 65535 # bitdepth = img.dtype hist, bins = np.histogram(img.flatten(), 256, [0, rng]) cdf = hist.cumsum() cdf_normalized = cdf * hist.max() / cdf.max() # this line not necessary. fig = plt.figure() plt.plot(cdf_normalized, color='b') plt.hist(img.flatten(), 256, [0, rng], color='0.30') plt.axis("off") # turns off axes fig.tight_layout() fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) out = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() # cv.imwrite("test.png",out) return out @staticmethod def histostretch_clahe(img): """Apply a CLAHE (Contrast Limited Adaptive Histogram Equalization) filter on a grayscale image supports 8 and 16 bit images. :Parameters: image :Returns: image """ # img = cv.pyrDown(img) if (len(img.shape) < 3): clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) cl1 = clahe.apply(img) img = cl1 else: clahe = cv.createCLAHE(clipLimit=3., tileGridSize=(8, 8)) lab = cv.cvtColor(img, cv.COLOR_BGR2LAB) # convert from BGR to LAB color space l, a, b = cv.split(lab) # split on 3 different channels l2 = clahe.apply(l) # apply CLAHE to the L-channel lab = cv.merge((l2, a, b)) # merge channels img = cv.cvtColor(lab, cv.COLOR_LAB2BGR) # convert from LAB to BGR return img ''' @staticmethod def histostretch_equalized(img): """Apply a equalize histogram filter (8-bit images only!) :Parameters: image :Returns: image """ # img = cv.pyrDown(img) equ = cv.equalizeHist(img) return equ ''' @staticmethod def histostretch_equalized(img): """Apply a equalize histogram filter 8 and 16 bit :Parameters: image :Returns: image #https://github.com/torywalker/histogram-equalizer/blob/master/HistogramEqualization.ipynb """ def get_histogram(image, bins): # array with size of bins, set to zeros histogram = np.zeros(bins) # loop through pixels and sum up counts of pixels for pixel in image: histogram[pixel] += 1 # return our final result return histogram # create our cumulative sum function def cumsum(a): a = iter(a) b = [next(a)] for i in a: b.append(b[-1] + i) return np.array(b) if (img.dtype == np.uint16): flat = img.flatten() hist = get_histogram(flat, 65536) # plt.plot(hist) # cs = cumsum(hist) # re-normalize cumsum values to be between 0-255 # numerator & denomenator nj = (cs - cs.min()) * 65535 N = cs.max() - cs.min() # re-normalize the cdf cs = nj / N cs = cs.astype('uint16') img_new = cs[flat] # plt.hist(img_new, bins=65536) # plt.show(block=True) img_new = np.reshape(img_new, img.shape) else: if len(img.shape) == 2: img_new = cv.equalizeHist(img) else: img_yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV) # equalize the histogram of the Y channel img_yuv[:, :, 0] = cv.equalizeHist(img_yuv[:, :, 0]) # convert the YUV image back to RGB format img_new = cv.cvtColor(img_yuv, cv.COLOR_YUV2BGR) return img_new @staticmethod def histostretch_normalize(img): """Normalize histogram 8bit between 0 and 255 16bit between 0 and 65535 :Parameters: image :Returns: image """ # img = cv.pyrDown(img) if (img.dtype == np.uint16): norm = cv.normalize(img, None, alpha=0, beta=65535, norm_type=cv.NORM_MINMAX, dtype=cv.CV_16U) else: norm = cv.normalize(img, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) return norm # smooth, threshold @staticmethod def threshold(img, thresh=128): """Applies a fixed-level threshold to each array element. [0-255] :Parameters: image, threshold :Returns: image """ ret, imout = cv.threshold(img, thresh, 255, cv.THRESH_BINARY) return imout @staticmethod def normalize(img): """Normalize image. [0-255] :Parameters: image :Returns: image """ imout = cv.normalize(img, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_64F) return imout @staticmethod def thresholdrange(img, threshmin=128, threshmax=255): """threshold image between min and max value :Parameters: image, thresholdmin, thresholdmax :Returns: image """ imout = cv.inRange(img, threshmin, threshmax) return imout @staticmethod def threshold_otsu(img): """Applies an automatic threshold using the Otsu method for thresholding :Parameters: image :Returns: image """ ret, imout = cv.threshold(img, 0, 255, cv.THRESH_OTSU) return imout @staticmethod def adjust_contrast_brightness(img, contrast=0, brightness=0): """adjust contrast and brightness contrast range: -127..127 brightness range: -255..255 :Parameters: image :Returns: image """ table = np.array([i * (contrast / 127 + 1) - contrast + brightness for i in range(0, 256)]).clip(0, 255).astype( 'uint8') # if len(img.shape) == 3: # out = cv.LUT(img, table)[:, :, np.newaxis] # else: out = cv.LUT(img, table) return out @staticmethod def adjust_gamma(image, gamma=1.0): """adjust gamma [0..3.0], default = 1 gamma cannot be 0 :Parameters: image, gamma=1.0 :Returns: image """ invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") # apply gamma correction using the lookup table return cv.LUT(image, table) @staticmethod def adjust_HSV(img, hval, sval, vval): """adjust Hue [0..179], Saturation [-255..255], lightness [-255..255] :Parameters: image, hue, saturation, lightness :Returns: image """ img = Image.Convert.toRGB(img) # changing channels for nicer image hsv = Image.Convert.BGRtoHSV(img) h = hsv[:, :, 0] s = hsv[:, :, 1] v = hsv[:, :, 2] h = np.where(h <= 255.0 - hval, h + hval, 255) if (sval > 0): s = np.where(s <= 255.0 - sval, s + sval, 255) else: s = (s * ((255.0 + sval) / 255.0)) if (vval > 0): v = np.where(v <= 255.0 - vval, v + vval, 255) else: v = v * ((255.0 + vval) / 255.0) hsv[:, :, 0] = h hsv[:, :, 1] = s hsv[:, :, 2] = v img1 = Image.Convert.HSVtoBGR(hsv) return img1 @staticmethod def adjust_HSL(img, hval, sval, lval): """adjust Hue [0..179], Saturation [0..255], lightness [0..255] The definition HSL is most commonly used, occasionly this is called HLS :Parameters: image, hue, saturation, lightness :Returns: image """ img = Image.Convert.toRGB(img) # changing channels for nicer image hls = cv.cvtColor(img, cv.COLOR_RGB2HLS) h = hls[:, :, 0] l = hls[:, :, 1] s = hls[:, :, 2] h = np.where(h <= 255.0 - hval, h + hval, 255) if (sval > 0): s = np.where(s <= 255.0 - sval, s + sval, 255) else: s = (s * ((255.0 + sval) / 255.0)) if (lval > 0): l = np.where(l <= 255.0 - lval, l + lval, 255) else: l = l * ((255.0 + lval) / 255.0) hls[:, :, 0] = h hls[:, :, 1] = l hls[:, :, 2] = s img1 = cv.cvtColor(hls, cv.COLOR_HLS2RGB) return img1 @staticmethod def adjust_auto_whitebalance(img): """auto whitebalance https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption :Parameters: image, temperature :Returns: image """ result = cv.cvtColor(img, cv.COLOR_BGR2LAB) avg_a = np.average(result[:, :, 1]) avg_b = np.average(result[:, :, 2]) result[:, :, 1] = result[:, :, 1] - ((avg_a - 128) * (result[:, :, 0] / 255.0) * 1.1) result[:, :, 2] = result[:, :, 2] - ((avg_b - 128) * (result[:, :, 0] / 255.0) * 1.1) result = cv.cvtColor(result, cv.COLOR_LAB2BGR) return result class Transform: @staticmethod def flip_horizontal(img): """Flip image horizontal :Parameters: image :Returns: image """ horizontal_img = cv.flip(img, 0) return horizontal_img @staticmethod def flip_vertical(img): """Flip image vertical :Parameters: image :Returns: image """ vertical_img = cv.flip(img, 1) return vertical_img @staticmethod def translate(img, shiftx, shifty): """Shift image n x and y pixels :Parameters: image, shiftx, shifty :Returns: image """ w = img.shape[1] h = img.shape[0] M = np.float32([[1, 0, shiftx], [0, 1, shifty]]) img2 = cv.warpAffine(img, M, (w, h)) return img2 @staticmethod def rotate(image, angle): """Rotate image :Parameters: image, angle :Returns: image """ image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0) result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR) return result class Binary: @staticmethod def skeletonize(img): """skeletonize a thresholded image. :Parameters: image :Returns: image """ size = np.size(img) skel = np.zeros(img.shape, np.uint8) element = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3)) done = False while (not done): eroded = cv.erode(img, element) temp = cv.dilate(eroded, element) temp = cv.subtract(img, temp) skel = cv.bitwise_or(skel, temp) img = eroded.copy() zeros = size - cv.countNonZero(img) if zeros == size: done = True return skel # Zhang-Suen Thinning Algorithm - https://github.com/linbojin/Skeletonization-by-Zhang-Suen-Thinning-Algorithm # note: slow filter @staticmethod def thinning(img): """Applies the Zhang-Suen thinning algorithm. :Parameters: image :Returns: image """ def neighbours(x, y, img): "Return 8-neighbours of image point P1(x,y), in a clockwise order" img = img x_1, y_1, x1, y1 = x - 1, y - 1, x + 1, y + 1 return [img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], # P2,P3,P4,P5 img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1]] # P6,P7,P8,P9 def transitions(neighbours): "No. of 0,1 patterns (transitions from 0 to 1) in the ordered sequence" n = neighbours + neighbours[0:1] # P2, P3, ... , P8, P9, P2 return sum((n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:])) # (P2,P3), (P3,P4), ... , (P8,P9), (P9,P2) ret, imout = cv.threshold(img, 0, 255, cv.THRESH_OTSU) img = img < ret # must set object region as 1, background region as 0 ! print("the Zhang-Suen Thinning Algorithm") img_Thinned = img.copy() # deepcopy to protect the original img changing1 = changing2 = 1 # the points to be removed (set as 0) while changing1 or changing2: # iterates until no further changes occur in the img # Step 1 changing1 = [] rows, columns = img_Thinned.shape # x for rows, y for columns for x in range(1, rows - 1): # No. of rows for y in range(1, columns - 1): # No. of columns P2, P3, P4, P5, P6, P7, P8, P9 = n = neighbours(x, y, img_Thinned) if (img_Thinned[x][y] == 1 and # Condition 0: Point P1 in the object regions 2 <= sum(n) <= 6 and # Condition 1: 2<= N(P1) <= 6 transitions(n) == 1 and # Condition 2: S(P1)=1 P2 * P4 * P6 == 0 and # Condition 3 P4 * P6 * P8 == 0): # Condition 4 changing1.append((x, y)) for x, y in changing1: img_Thinned[x][y] = 0 # Step 2 changing2 = [] for x in range(1, rows - 1): for y in range(1, columns - 1): P2, P3, P4, P5, P6, P7, P8, P9 = n = neighbours(x, y, img_Thinned) if (img_Thinned[x][y] == 1 and # Condition 0 2 <= sum(n) <= 6 and # Condition 1 transitions(n) == 1 and # Condition 2 P2 * P4 * P8 == 0 and # Condition 3 P2 * P6 * P8 == 0): # Condition 4 changing2.append((x, y)) for x, y in changing2: img_Thinned[x][y] = 0 return img_Thinned @staticmethod def morphology_erode(img, kernel=5): """Morphology filter - erode :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) erosion = cv.erode(img, kerneln, iterations=1) return erosion @staticmethod def morphology_dilate(img, kernel=5): """Morphology filter - dilate :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) dilation = cv.dilate(img, kerneln, iterations=1) return dilation @staticmethod def morphology_open(img, kernel=5): """Morphology filter - open :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) opening = cv.morphologyEx(img, cv.MORPH_OPEN, kerneln) return opening @staticmethod def morphology_close(img, kernel=5): """Morphology filter - close :Parameters: image, kernel :Returns: image """ kerneln = np.ones((kernel, kernel), np.uint8) opening = cv.morphologyEx(img, cv.MORPH_CLOSE, kerneln) return opening @staticmethod def morphology_fillholes(im_in): """Morphology filter - fillholes :Parameters: image, kernel :Returns: image """ im_floodfill = im_in.copy() # Mask used to flood filling. # Notice the size needs to be 2 pixels than the image. h, w = im_in.shape[:2] mask = np.zeros((h + 2, w + 2), np.uint8) # Floodfill from point (0, 0) cv.floodFill(im_floodfill, mask, (0, 0), 255) # Invert floodfilled image im_floodfill_inv = cv.bitwise_not(im_floodfill) # Combine the two images to get the foreground. im_out = im_in | im_floodfill_inv return im_in, im_floodfill, im_floodfill_inv, im_out @staticmethod def remove_isolated_pixels(img0): """Remove isolated pixels in an image :Parameters: image :Returns: image """ input_image = cv.threshold(img0, 254, 255, cv.THRESH_BINARY)[1] input_image_comp = cv.bitwise_not(input_image) # could just use 255-img kernel1 = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], np.uint8) kernel2 = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]], np.uint8) hitormiss1 = cv.morphologyEx(input_image, cv.MORPH_ERODE, kernel1) hitormiss2 = cv.morphologyEx(input_image_comp, cv.MORPH_ERODE, kernel2) hitormiss = cv.bitwise_and(hitormiss1, hitormiss2) hitormiss_comp = cv.bitwise_not(hitormiss) # could just use 255-img del_isolated = cv.bitwise_and(input_image, input_image, mask=hitormiss_comp) return del_isolated @staticmethod def remove_islands(img0, min_size=150): """Remove islands in an image :Parameters: image, min_size=150 :Returns: image """ # find all your connected components (white blobs in your image) nb_components, output, stats, centroids = cv.connectedComponentsWithStats(img0, connectivity=8) # connectedComponentswithStats yields every seperated component with information on each of them, such as size # the following part is just taking out the background which is also considered a component, but most of the time we don't want that. sizes = stats[1:, -1] nb_components = nb_components - 1 # minimum size of features we want to keep (number of pixels) # here, it's a fixed value, but you can set it as you want, eg the mean of the sizes or whatever # your answer image img2 = np.zeros((output.shape)) # for every component in the image, you keep it only if it's above min_size for i in range(0, nb_components): if sizes[i] >= min_size: img2[output == i + 1] = 255 return img2 class Convert: @staticmethod def to8bit(img): """Convert to 8 bit image :Parameters: image :Returns: image """ if (img.dtype == np.uint16): img1 = (img / 256).astype('uint8') # updated this one on 20191216 for 16 bit imaging else: img1 = (img).astype('uint8') # img1 = img.astype('uint8') # 16bit to 8bit return img1 @staticmethod def to16bit(img): """Convert to 16 bit image :Parameters: image :Returns: image """ if (img.dtype == np.uint8): img1 = (img * 256).astype('uint16') # updated this one on 20191216 for 16 bit imaging else: img1 = (img).astype('uint16') # img1 = img.astype('uint8') # 16bit to 8bit return img1 @staticmethod def toRGB(img): """Convert grayscale to RGB image :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels != 3): img1 = cv.cvtColor(img, cv.COLOR_GRAY2BGR) # print('Image converted from Grayscale to RGB') return img1 @staticmethod def toGray(img): """Convert RGB to color grayscale image :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): img1 = cv.cvtColor(img, cv.COLOR_RGB2GRAY) # print('Image converted from RGB to Grayscale') return img1 @staticmethod def BGRtoRGB(img): """Convert BGR to RGB :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): b, g, r = cv.split(img) # get b,g,r img1 = cv.merge([r, g, b]) # switch it to rgb (OpenCV uses BGR) return img1 @staticmethod def RGBtoBGR(img): """Convert RGB to BGR :Parameters: image :Returns: image """ img1 = img channels = len(img.shape) if (channels > 2): r, g, b = cv.split(img) # get b,g,r img1 = cv.merge([b, g, r]) # switch it to rgb (OpenCV uses BGR) return img1 @staticmethod def BGRtoHSV(img): """Convert BGR to HSV :Parameters: image :Returns: image """ img1 = cv.cvtColor(img, cv.COLOR_BGR2HSV) return img1 @staticmethod def HSVtoBGR(img): """Convert HSV to BGR :Parameters: image :Returns: image """ img1 = cv.cvtColor(img, cv.COLOR_HSV2BGR) return img1 @staticmethod def binarytogray(img): """Convert binary image to grayscale (dtype=bool -> dtype=uint8) :Parameters: image :Returns: image """ img = img.astype('uint8') * 255 return img class FilterKernels: @staticmethod def ideal_lowpass_kernel(img, radius=32): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = np.copy(d) kernel[kernel < pow(radius, 2.0)] = 1 kernel[kernel >= pow(radius, 2.0)] = 0 kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def gaussian_lowpass_kernel(img, radius=32): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = np.exp(-d / (2 * pow(radius, 2.0))) kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def butterworth_lowpass_kernel(img, radius=32, n=2): rows, cols = img.shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= int(cols / 2) r -= int(rows / 2) d = np.power(c, 2.0) + np.power(r, 2.0) kernel_matrix = np.zeros((rows, cols), np.float32) kernel = 1.0 / (1 + np.power(np.sqrt(d) / radius, 2 * n)) kernel_matrix[:, :] = kernel return kernel_matrix @staticmethod def ideal_bandpass_kernel(img, D0=32, w=9): rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.ones((rows, cols), np.uint8) for i in range(0, rows): for j in range(0, cols): d = np.sqrt(pow(i - crow, 2) + pow(j - ccol, 2)) if D0 - w / 2 < d < D0 + w / 2: mask[i, j] = 1 else: mask[i, j] = 0 kernel = mask return kernel @staticmethod def ideal_bandstop_kernel(img, D0=32, W=9): kernel = 1.0 - Image.FilterKernels.ideal_bandpass_kernel(img, D0, W) return kernel @staticmethod def gaussian_bandstop_kernel(img, D0=32, W=9): r, c = img.shape[1], img.shape[0] u = np.arange(r) v = np.arange(c) u, v = np.meshgrid(u, v) low_pass = np.sqrt((u - r / 2) ** 2 + (v - c / 2) ** 2) kernel = 1.0 - np.exp(-0.5 * (((low_pass ** 2 - D0 ** 2) / (low_pass * W + 1.0e-5)) ** 2)) return kernel @staticmethod def gaussian_bandpass_kernel(img, D0=32, W=9): assert img.ndim == 2 # kernel = Image.FilterKernels.gaussian_bandstop_kernel(img, D0, W) kernel = 1.0 - Image.FilterKernels.gaussian_bandstop_kernel(img, D0, W) return kernel @staticmethod def butterworth_bandstop_kernel(img, D0=32, W=9, n=1): r, c = img.shape[1], img.shape[0] u = np.arange(r) v = np.arange(c) u, v = np.meshgrid(u, v) low_pass = np.sqrt((u - r / 2) ** 2 + (v - c / 2) ** 2) kernel = (1 / (1 + ((low_pass * W) / (low_pass ** 2 - D0 ** 2)) ** (2 * n))) return kernel def butterworth_bandpass_kernel(img, D0=5, W=10): kernel = 1.0 - Image.FilterKernels.butterworth_bandstop_kernel(img, D0, W) return kernel ''' def convert_kernel_to_image(kernel): out = np.dstack((kernel, np.zeros(kernel.shape[:-1]))) return out ''' class Tools: # combined sequences @staticmethod def image_with_2_closeups(img, t_size=[0.2, 0.2], t_center1=[0.3, 0.3], t_center2=[0.6, 0.6]): """image with 2 closeups, the output is a color image. :Parameters: image, t_size=[0.2, 0.2], t_center1=[0.3, 0.3], t_center2=[0.6, 0.6] :Returns: image """ w = img.shape[1] h = img.shape[0] rgb = Image.Convert.toRGB(img) xt0 = Image._multipleof2((t_center1[0] - t_size[0] * 0.5) * w) yt0 = Image._multipleof2((t_center1[1] - t_size[1] * 0.5) * h) xt1 = Image._multipleof2((t_center1[0] + t_size[0] * 0.5) * w) yt1 = Image._multipleof2((t_center1[1] + t_size[1] * 0.5) * h) # rgb = img template1 = Image.crop(rgb, xt0, yt0, xt1, yt1) w3 = np.abs(xt0 - xt1) h3 = np.abs(yt0 - yt1) xt0b = Image._multipleof2((t_center2[0] - t_size[0] * 0.5) * w) yt0b = Image._multipleof2((t_center2[1] - t_size[1] * 0.5) * h) # rgb = img template2 = Image.crop(rgb, xt0b, yt0b, xt0b + w3, yt0b + h3) wt = template1.shape[1] ht = template1.shape[0] scalefactor = (w * 0.5) / wt template1b = Image.resize(template1, scalefactor) # print(template1b.shape) wt2 = template1b.shape[1] ht2 = template1b.shape[0] template2b = Image.resize(template2, scalefactor) # print(template2b.shape) # print(w,h) # print(wt2,ht2) output = np.zeros((h + ht2, w, 3), np.uint8) print(output.shape) print(rgb.shape) print(template1b.shape) print(template2b.shape) output[0:h, 0:w] = rgb output[h:h + ht2, 0:wt2] = template1b output[h:h + ht2, wt2:w] = template2b output = cv.rectangle(output, (xt0, yt0), (xt1, yt1), (33, 145, 237), 3) output = cv.rectangle(output, (xt0b, yt0b), (xt0b + w3, yt0b + h3), (240, 167, 41), 3) output = cv.rectangle(output, (wt2 + 3, h), (w - 2, h + ht2 - 3), (240, 167, 41), 3) output = cv.rectangle(output, (0 + 2, h), (wt2 - 2, h + ht2 - 3), (33, 145, 237), 3) return output @staticmethod def anaglyph(img0, img1): """Create a anaglyph from 2 images (stereo image) :Parameters: image1, image2 :Returns: image """ matrices = { 'true': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0.299, 0.587, 0.114]], 'mono': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114]], 'color': [[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], 'halfcolor': [[0.299, 0.587, 0.114, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], 'optimized': [[0, 0.7, 0.3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1]], } # img1 = translate_image(img1,8,0) width = img0.shape[0] height = img0.shape[1] leftImage = cv.cvtColor(img0, cv.COLOR_GRAY2BGR) rightImage = cv.cvtColor(img1, cv.COLOR_GRAY2BGR) m = matrices['optimized'] result = np.zeros((img0.shape[0], img0.shape[1], 3), np.uint8) # split the left and right images into separate blue, green and red images lb, lg, lr = cv.split(np.asarray(leftImage[:, :])) rb, rg, rr = cv.split(np.asarray(rightImage[:, :])) resultArray = np.asarray(result[:, :]) resultArray[:, :, 0] = lb * m[0][6] + lg * m[0][7] + lr * m[0][8] + rb * m[1][6] + rg * m[1][7] + rr * m[1][ 8] resultArray[:, :, 1] = lb * m[0][3] + lg * m[0][4] + lr * m[0][5] + rb * m[1][3] + rg * m[1][4] + rr * m[1][ 5] resultArray[:, :, 2] = lb * m[0][0] + lg * m[0][1] + lr * m[0][2] + rb * m[1][0] + rg * m[1][1] + rr * m[1][ 2] return result @staticmethod def image2patches(img, patchsize, overlappx=0, verbose=False): """ Convert single image to a list of patches. The size of a patch is determined by patchsize, be aware of rounding incase image width or height cannot be divided through the patchsize. Works both for color and grayscale images. overlap in pixels (default overlap=0) :Parameters: image, rows, cols :Returns: image_list """ h0, w0 = img.shape[0], img.shape[1] # determine number of steps (rows and columns cols = int(
np.round(w0 / patchsize, 0)
numpy.round
"""Plotting for manuscript figures.""" import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import fit from models import calc_cs, calc_ffs, calc_ge_gm, calc_rho, dipole_ffs, get_b2, hbarc matplotlib.rcParams["text.usetex"] = True matplotlib.rcParams["font.size"] = 13 matplotlib.rcParams["font.family"] = "lmodern" matplotlib.rcParams["text.latex.preamble"] = r"\usepackage{lmodern}" matplotlib.rcParams["xtick.labelsize"] = 12 matplotlib.rcParams["ytick.labelsize"] = 12 # Number of samples to use when generating statistical uncertainty bands N_SAMPLES = 1000 def read_Rosenbluth_data(): """Read data for G_E and G_M from "Rosenbluth.dat".""" col_names = ["Q2", "GE", "delta_GE", "GM", "delta_GM"] data = pd.read_csv("data/Rosenbluth.dat", sep=" ", skiprows=5, names=col_names) return data def calc_interval(calc_func, x_range, param_list, order): """Calculate 68% ("1 sigma") percentile interval from param sample.""" out = np.array([calc_func(x_range, param, order) for param in param_list]) return np.percentile(out, (15.9, 84.1), 0) def calc_params(data, order, reg_param): """Run fit and get model parameters and covariance.""" params, _, _, _, cov = fit.fit(data, data, order, reg_param) params = params[fit.N_NORM_PARAMS :] cov = cov[fit.N_NORM_PARAMS :, fit.N_NORM_PARAMS :] return params, cov def calc_sys_bands(calc_func, x_range, data, order, reg_param): """Calculate systematic error bands for given quantity.""" params, _ = calc_params(data, order, reg_param) f1, f2 = calc_func(x_range, params, order) mincut_params = fit.fit_systematic_variant("cs_mincut", data, order, reg_param)[0] maxcut_params = fit.fit_systematic_variant("cs_maxcut", data, order, reg_param)[0] sysup_params = fit.fit_systematic_variant("cs_sysup", data, order, reg_param)[0] syslow_params = fit.fit_systematic_variant("cs_syslow", data, order, reg_param)[0] mincut_f1, mincut_f2 = calc_func(x_range, mincut_params, order) maxcut_f1, maxcut_f2 = calc_func(x_range, maxcut_params, order) sysup_f1, sysup_f2 = calc_func(x_range, sysup_params, order) syslow_f1, syslow_f2 = calc_func(x_range, syslow_params, order) # Calculate upper and lower limits for each of the systematic variations: f1_cut_up = np.clip(np.max(np.stack([mincut_f1 - f1, maxcut_f1 - f1]), 0), 0, None) f1_cut_low = np.clip(np.min(np.stack([mincut_f1 - f1, maxcut_f1 - f1]), 0), None, 0) f1_sys_up = np.clip(np.max(np.stack([sysup_f1 - f1, syslow_f1 - f1]), 0), 0, None) f1_sys_low = np.clip(np.min(np.stack([sysup_f1 - f1, syslow_f1 - f1]), 0), None, 0) f2_cut_up = np.clip(np.max(np.stack([mincut_f2 - f2, maxcut_f2 - f2]), 0), 0, None) f2_cut_low = np.clip(np.min(np.stack([mincut_f2 - f2, maxcut_f2 - f2]), 0), None, 0) f2_sys_up = np.clip(np.max(np.stack([sysup_f2 - f2, syslow_f2 - f2]), 0), 0, None) f2_sys_low = np.clip(np.min(np.stack([sysup_f2 - f2, syslow_f2 - f2]), 0), None, 0) # Add two systematic "errors" in quadrature: f1_up = np.sqrt(f1_cut_up ** 2 + f1_sys_up ** 2) f1_low = np.sqrt(f1_cut_low ** 2 + f1_sys_low ** 2) f2_up = np.sqrt(f2_cut_up ** 2 + f2_sys_up ** 2) f2_low = np.sqrt(f2_cut_low ** 2 + f2_sys_low ** 2) return f1_up, f1_low, f2_up, f2_low def fill_between(x_range, y_up, y_low, color, hbarc_scale=False): """Plot confidence interval.""" if hbarc_scale: x_range = hbarc * x_range y_up = y_up / (hbarc * hbarc) y_low = y_low / (hbarc * hbarc) plt.fill_between(x_range, y_up, y_low, color=color, lw=0, alpha=0.7) def plot_f1_f2(data, order, reg_param): """Plot the Dirac and Pauli form factors.""" params, cov = calc_params(data, order, reg_param) Q2_range = np.linspace(0, 1, 100) F1, F2 = calc_ffs(Q2_range, params, order) # Transverse charge radius and the slope of F1: b2, _ = get_b2(params, cov) slope_x = np.linspace(0, 0.15, 10) slope_y = 1 - slope_x * b2 / 4 # Plot the form factor slope: plt.plot(slope_x, slope_y, ls="--", color="black", lw=1) if fit.covariance_bad(cov): print("Warning: Covariance ill-conditioned, will not plot confidence intervals") draw_confidence = False else: draw_confidence = True if draw_confidence: # Calculate statistical uncertainties: params = np.random.multivariate_normal(params, cov, size=N_SAMPLES) interval = calc_interval(calc_ffs, Q2_range, params, order) # Calculate systematic uncertainties: f1_up, f1_low, f2_up, f2_low = calc_sys_bands(calc_ffs, Q2_range, data, order, reg_param) # Plot the systematic band for F2: fill_between(Q2_range, interval[1, 1] + f2_up, interval[1, 1], "blue") fill_between(Q2_range, interval[0, 1], interval[0, 1] - f2_low, "blue") # Plot the statistical band for F2: fill_between(Q2_range, interval[1, 1], interval[0, 1], "#AAAAFF") # Plot the best-fit line for F2: plt.plot(Q2_range, F2, color="blue", lw=0.6, alpha=0.7) # Plot the same things for F1: if draw_confidence: fill_between(Q2_range, interval[1, 0] + f1_up, interval[1, 0], "red") fill_between(Q2_range, interval[0, 0], interval[0, 0] - f1_low, "red") fill_between(Q2_range, interval[1, 0], interval[0, 0], "#FFAAAA") plt.plot(Q2_range, F1, color="red", lw=0.6, alpha=0.7) # Axes and labels: plt.xlim(0, 1) plt.xlabel(r"$Q^2~\left(\mathrm{GeV}^2\right)$") plt.ylabel(r"$F_1, \, F_2$", labelpad=11) if order == 5: plt.text(0.45, 0.46, r"$F_1$", color="#FF0000") plt.text(0.36, 0.31, r"$F_2$", color="#0000FF") def plot_rhos(data, order, reg_param): """Plot the transverse densities rho1 and rho2.""" rho_range = np.linspace(0, 10.1, 100) params, cov = calc_params(data, order, reg_param) rho1, rho2 = calc_rho(rho_range, params, order) if fit.covariance_bad(cov): print("Warning: Covariance ill-conditioned, will not plot confidence intervals") draw_confidence = False else: draw_confidence = True if draw_confidence: # Calculate statistical uncertainties: params = np.random.multivariate_normal(params, cov, size=N_SAMPLES) interval = calc_interval(calc_rho, rho_range, params, order) # Calculate systematic uncertainties: rho1_up, rho1_low, rho2_up, rho2_low = calc_sys_bands(calc_rho, rho_range, data, order, reg_param) # Plot the systematic band for rho1: fill_between(rho_range, interval[1, 0] + rho1_up, interval[1, 0], "red", hbarc_scale=True) fill_between(rho_range, interval[0, 0], interval[0, 0] - rho1_low, "red", hbarc_scale=True) # Plot the statistical band for rho1: fill_between(rho_range, interval[1, 0], interval[0, 0], "#FFAAAA", hbarc_scale=True) # Plot the best-fit line for rho1: plt.plot(hbarc * rho_range, rho1 / (hbarc * hbarc), color="red", alpha=0.7, lw=0.6) # Plot the same things for rho2: if draw_confidence: fill_between(rho_range, interval[1, 1] + rho2_up, interval[1, 1], "blue", hbarc_scale=True) fill_between(rho_range, interval[0, 1], interval[0, 1] - rho2_low, "blue", hbarc_scale=True) fill_between(rho_range, interval[1, 1], interval[0, 1], "#AAAAFF", hbarc_scale=True) plt.plot(hbarc * rho_range, rho2 / (hbarc * hbarc), color="blue", alpha=0.7, lw=0.6) # Axes and labels: plt.xlim(0, 2) plt.yscale("log") plt.xlabel(r"$b~(\mathrm{fm})$", labelpad=6) plt.ylabel(r"$\rho_1, \, \rho_2~\left(\mathrm{fm}^{-2}\right)$") if order == 5: plt.text(0.94, 0.013, r"$\rho_1$", color="#FF0000") plt.text(1.1, 0.079, r"$\rho_2$", color="#0000FF") def plot_ge_gm(cs_data, R_data, order, reg_param): """Plot the Sachs electric and magnetic form factors.""" params, cov = calc_params(cs_data, order, reg_param) Q2_range = np.linspace(0, 1, 100) GE, GM = calc_ge_gm(Q2_range, params, order) if fit.covariance_bad(cov): print("Warning: Covariance ill-conditioned, will not plot confidence intervals") draw_confidence = False else: draw_confidence = True # Calculate statistical uncertainties: if draw_confidence: params =
np.random.multivariate_normal(params, cov, size=N_SAMPLES)
numpy.random.multivariate_normal
import numpy as np from rdt.transformers.numerical import GaussianCopulaTransformer, NumericalTransformer class TestNumericalTransformer: def test_null_column(self): data = np.array([1, 2, 1, 2, np.nan, 1]) nt = NumericalTransformer() transformed = nt.fit_transform(data) assert isinstance(transformed, np.ndarray) assert transformed.shape == (6, 2) assert list(transformed[:, 1]) == [0, 0, 0, 0, 1, 0] reverse = nt.reverse_transform(transformed) np.testing.assert_array_almost_equal(reverse, data, decimal=2) def test_not_null_column(self): data = np.array([1, 2, 1, 2, np.nan, 1]) nt = NumericalTransformer(null_column=False) transformed = nt.fit_transform(data) assert isinstance(transformed, np.ndarray) assert transformed.shape == (6, ) reverse = nt.reverse_transform(transformed) np.testing.assert_array_almost_equal(reverse, data, decimal=2) def test_int(self): data = np.array([1, 2, 1, 2, 1]) nt = NumericalTransformer(dtype=int) transformed = nt.fit_transform(data) assert isinstance(transformed, np.ndarray) assert transformed.shape == (5, ) reverse = nt.reverse_transform(transformed) assert list(reverse) == [1, 2, 1, 2, 1] def test_int_nan(self): data = np.array([1, 2, 1, 2, 1, np.nan]) nt = NumericalTransformer(dtype=int) transformed = nt.fit_transform(data) assert isinstance(transformed, np.ndarray) assert transformed.shape == (6, 2) reverse = nt.reverse_transform(transformed) np.testing.assert_array_almost_equal(reverse, data, decimal=2) class TestGaussianCopulaTransformer: def test_stats(self): data = np.random.normal(loc=4, scale=4, size=1000) ct = GaussianCopulaTransformer() transformed = ct.fit_transform(data) assert isinstance(transformed, np.ndarray) assert transformed.shape == (1000, ) np.testing.assert_almost_equal(transformed.mean(), 0, decimal=1) np.testing.assert_almost_equal(transformed.std(), 1, decimal=1) reverse = ct.reverse_transform(transformed) np.testing.assert_array_almost_equal(reverse, data, decimal=1) def test_null_column(self): data =
np.array([1, 2, 1, 2, np.nan, 1])
numpy.array
import collections import copy import os import kerastuner import numpy as np import tensorflow as tf from tensorflow.python.util import nest class AutoTuner(kerastuner.engine.multi_execution_tuner.MultiExecutionTuner): """A Tuner class based on KerasTuner for AutoKeras. Different from KerasTuner's Tuner class. AutoTuner's not only tunes the Hypermodel which can be directly built into a Keras model, but also the preprocessors. Therefore, a HyperGraph stores the overall search space containing both the Preprocessors and Hypermodel. For every trial, the HyperGraph build the PreprocessGraph and KerasGraph with the provided HyperParameters. The AutoTuner uses EarlyStopping for acceleration during the search and fully train the model with full epochs and with both training and validation data. The fully trained model is the best model to be used by AutoModel. # Arguments **kwargs: The args supported by KerasTuner. """ def __init__(self, **kwargs): super().__init__(**kwargs) self._finished = False # Override the function to prevent building the model during initialization. def _populate_initial_space(self): pass def get_best_model(self): model = super().get_best_models()[0] model.load_weights(self.best_model_path) return model @staticmethod def _adapt_model(model, dataset): from tensorflow.keras.layers.experimental import preprocessing x = dataset.map(lambda x, y: x) def get_output_layer(tensor): tensor = nest.flatten(tensor)[0] for layer in model.layers: if isinstance(layer, tf.keras.layers.InputLayer): continue input_node = nest.flatten(layer.input)[0] if input_node is tensor: return layer return None for index, input_node in enumerate(nest.flatten(model.input)): def get_data(*args): return args[index] temp_x = x.map(get_data) layer = get_output_layer(input_node) while isinstance(layer, preprocessing.PreprocessingLayer): layer.adapt(temp_x) layer = get_output_layer(layer.output) return model def run_trial(self, trial, x=None, *fit_args, **fit_kwargs): model_checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath=self._get_checkpoint_fname( trial.trial_id, self._reported_step), monitor=self.oracle.objective.name, mode=self.oracle.objective.direction, save_best_only=True, save_weights_only=True) original_callbacks = fit_kwargs.pop('callbacks', []) # Run the training process multiple times. metrics = collections.defaultdict(list) for execution in range(self.executions_per_trial): copied_fit_kwargs = copy.copy(fit_kwargs) callbacks = self._deepcopy_callbacks(original_callbacks) self._configure_tensorboard_dir(callbacks, trial.trial_id, execution) callbacks.append( kerastuner.engine.tuner_utils.TunerCallback(self, trial)) # Only checkpoint the best epoch across all executions. callbacks.append(model_checkpoint) copied_fit_kwargs['callbacks'] = callbacks model = self.hypermodel.build(trial.hyperparameters) self._adapt_model(model, x) history = model.fit(x, *fit_args, **copied_fit_kwargs) for metric, epoch_values in history.history.items(): if self.oracle.objective.direction == 'min': best_value = np.min(epoch_values) else: best_value = np.max(epoch_values) metrics[metric].append(best_value) # Average the results across executions and send to the Oracle. averaged_metrics = {} for metric, execution_values in metrics.items(): averaged_metrics[metric] =
np.mean(execution_values)
numpy.mean