prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import unittest import numpy as np class TestSearch(unittest.TestCase): def test_raise_on_empty_align(self): from multicov.alignment import Alignment from multicov.filtering import search with self.assertRaises(ValueError): search(Alignment(), 'ABC') def test_raise_on_empty_seq(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) with self.assertRaises(ValueError): search(align, '') def test_search_string(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) self.assertEqual(search(align, 'VGGTEAQ'), 1) def test_search_list(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) self.assertEqual(search(align, ['I', 'G', 'G', 'K', 'D', 'T']), 2) def test_search_approx(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) self.assertEqual(search(align, 'IGGYTCQ'), 0) def test_move_to_top(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) search(align, ['I', 'G', 'G', 'K', 'D', 'T'], move_to_top=True) self.assertTrue(np.array_equal(align.data, np.asmatrix([ ['I', 'G', 'G', '-', 'K', 'D', 'T', '-'], ['-', 'V', 'G', 'G', 'T', 'E', 'A', 'Q'], ['I', 'V', 'G', 'G', 'Y', 'T', 'C', 'Q'] ]))) def test_move_to_top_but_return_old_idx(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import search align = Alignment(['IVGGYTCQ', '-VGGTEAQ', 'IGG-KDT-'], alphabet=protein_alphabet) self.assertEqual(search(align, ['I', 'G', 'G', 'K', 'D', 'T'], move_to_top=True), 2) def test_search_dna(self): from multicov.alignment import Alignment from multicov.alphabet import dna_alphabet from multicov.filtering import search align = Alignment(['ATACAT', 'GATACA', 'AA--GG'], dna_alphabet) self.assertEqual(search(align, 'AAGG'), 2) class TestFilterRows(unittest.TestCase): def test_on_empty(self): from multicov.alignment import Alignment from multicov.filtering import filter_rows align1 = Alignment() align2 = filter_rows(Alignment()) self.assertEqual(align1, align2) def test_on_protein(self): from multicov.alignment import Alignment from multicov.alphabet import protein_alphabet from multicov.filtering import filter_rows threshold = 1/21 align = Alignment([ 'WKHNAYDMLSSDCQFESSHKHTQVCSAGMGYCAKPNNWGYW-LIVKMMW-CDYKQKLIYIAPLN', 'KHRCDANC-MLAN-SVIKYTHSACALIWTWNS-KIIRYFFVGAWFKEHFDSVPTAQACVCDSTP', 'LGVVGYYFKPCT-EVPSYSRFNVFHRIFPYLVYRVEE-NHTGHHVQ-KIVRNQYELRSIFDEHG', 'LIGDDHRN-LALCPS-T-GTTCCNWKWRSEWTMHSDTNCNPVAE--SYSKRCNDIGYITWINYA', 'CMPRYWYTYQYDCIFGWRFYSVYWPCLDDMFWQPYVDSMELF-NPMVATEWIMENCQGWG-N-K', 'QWFWRARPFE--FSC-C-PGP-GWVNLIDWMSCNKAMETLMRPYCNPYLKIQLPRSKNLLDDDG', 'VTMPEGHHCPAM-PLDLNGQR-KMWGSDFKKEDCKGYPEKFDCENLIDMDICLSLNTRPED-QR', 'LNYINMHVD-IGP-PCPQYDL--KFKCMYW-GQIEDV-NMQ-WKK-RTMDAVEQIVSMYHMSVE', 'WHV-EWKPVLC-PHWQFYM-VITEYVAMFQWCPPKGMASPKKGNLPRMFQSAKAIGAHRSDM-Y', 'PIWGGFNFPWID-GSQRQQR-EVTTGCDDFEHKYNPYLVPG-WEFGKYSNCWT-RCWRVNHDTV', 'PPCWVEAPYKPMGMWN-GRKV-NVAVWHHVIVL-DMYGLHLLRDWTMVKNAAHIFSHNMEMSNI', 'E-MWRGLIWSKGAY-YQNDNGTFNWPKQKHP-ARCSF-PTVNKDQNPGP-MVQMREFKSQQGQQ', 'RFGKFTCMGFRWKEYFTKQ-NPYKYRGIVHVKVQMIYSANGNLDWIDIPMIIRLKCPFGTRVTQ', 'CGRCGSH-EWL-NIMRNCKFIFWWRPTNAAHIWCARHESPKAD-QIAMTYRML-LDAHIIIVR-', 'T-PMVWRLVWYDHGCDPWMLIV-PIEPCVVKKPQYKDMERFSPDIKCHYLHDKDDGFWGSDKYI', 'LNCPYADLDGL-NPQR-FVVS-RCMRDGFRAVVRVSPDDLS-MWCKAGA-NTTV-DNRH-IVQW' ], protein_alphabet) align_clean = filter_rows(align, max_gaps=threshold) # noinspection PyTypeChecker gap_fraction = np.mean(align.data == '-', axis=1) # noinspection PyTypeChecker gap_fraction_clean = np.mean(align_clean.data == '-', axis=1) self.assertLess(len(align_clean), len(align)) self.assertLessEqual(np.max(gap_fraction_clean), threshold) self.assertEqual(
np.sum(gap_fraction <= threshold)
numpy.sum
""" Code for working with the WThor database, available at http://www.ffothello.org/informatique/la-base-wthor/. """ import logging import os from glob import glob from typing import List, NamedTuple, Tuple, Union import numpy as np # type: ignore import tensorflow as tf # type: ignore from absl import app, flags # type: ignore from alphazero.data import serialize_example from board import Bitboard, Board, GameOutcome, Loc, PlayerColor DB_HEADER_BYTES = 16 GAME_BYTES = 68 GAME_HEADER_BYTES = 8 FLAGS = flags.FLAGS flags.DEFINE_string( "wthor_glob", "resources/wthor/game_data/*.wtb", "Glob specifying wthor files to convert.", ) flags.DEFINE_string( "out_dir", "resources/wthor/preprocessed/", "Directory to dump output files." ) class GameState(NamedTuple): board: Board player: PlayerColor move: Loc # Format: (board [8x8x2 ndarray of (mine, opp)], move [x, y], value) def to_data(self, winner: GameOutcome) -> Tuple[np.ndarray, Tuple[int, int], int]: mine, opp = self.board.player_view(self.player) board = np.dstack([mine.piecearray, opp.piecearray]) if winner == GameOutcome.DRAW: value = 0 elif winner.value == self.player.value: value = 1 else: value = -1 return (board, (self.move.x, self.move.y), value) def __repr__(self) -> str: return f"Next move: {self.player.value} plays {self.move}\n{self.board}" class GameSummary(NamedTuple): real_score: int theoretical_score: int states: List[GameState] outcome: GameOutcome def parse_move(move_encoding: int) -> Loc: x = move_encoding % 10 - 1 y = move_encoding // 10 - 1 return Loc(x, y) def parse_game(game_bytes: bytes) -> GameSummary: assert len(game_bytes) == GAME_BYTES header_bytes = game_bytes[:GAME_HEADER_BYTES] real_score = int(header_bytes[6]) theoretical_score = int(header_bytes[7]) move_bytes = game_bytes[GAME_HEADER_BYTES:] board = Board.starting_board() moves = list(map(parse_move, move_bytes)) player = PlayerColor.BLACK states: List[GameState] = [] for move in moves: if move == Loc.pass_loc(): break states.append(GameState(board, player, move)) board = board.resolve_move(move, player) if board.has_moves(player.opponent): player = player.opponent return GameSummary( real_score=real_score, theoretical_score=theoretical_score, states=states, outcome=board.winning_player, ) def parse_db(filename: str) -> List[GameSummary]: logging.info(f"Parsing database: {filename}") with open(filename, "rb") as f: db_bytes = f.read() data_bytes = db_bytes[DB_HEADER_BYTES:] summaries = [] for i in range(len(data_bytes) // GAME_BYTES): game_bytes = data_bytes[i * GAME_BYTES : (i + 1) * GAME_BYTES] # noqa summaries.append(parse_game(game_bytes)) return summaries def make_dataset( boards: np.ndarray, moves: np.ndarray, values: np.ndarray ) -> tf.data.Dataset: def gen(): for i in range(boards.shape[0]): black_bb = Bitboard.from_piecearray(boards[i, :, :, 0]) white_bb = Bitboard.from_piecearray(boards[i, :, :, 1]) board = Board.from_player_view(black_bb, white_bb, PlayerColor.BLACK) move = Loc(moves[i, 0], moves[i, 1]) yield serialize_example(board, move, values[i]) return tf.data.Dataset.from_generator(gen, output_types=tf.string, output_shapes=()) def main(_): logging.basicConfig(level=logging.INFO) os.makedirs(FLAGS.out_dir, exist_ok=True) db_files = glob(FLAGS.wthor_glob) boards: Union[List[np.ndarray], np.ndarray] = [] moves: Union[List[Tuple[int, int]], np.ndarray] = [] values: Union[List[int], np.ndarray] = [] logging.info(f"Reading files: {db_files}") logging.info(f"Writing files to: {FLAGS.out_dir}") for filename in db_files: games = parse_db(filename) for game in games: data_samples = map(lambda x: x.to_data(game.outcome), game.states) new_boards, new_moves, new_values = zip(*data_samples) boards.extend(new_boards) moves.extend(new_moves) values.extend(new_values) boards = np.array(boards) moves =
np.array(moves)
numpy.array
""" Classes for dealing with data products. """ import os import warnings import cwinpy import lal import lalpulsar import numpy as np from astropy.io import registry as io_registry from gwpy.detector import Channel from gwpy.io.mp import read_multi from gwpy.plot.colors import GW_OBSERVATORY_COLORS from gwpy.segments import SegmentList from gwpy.timeseries import TimeSeries, TimeSeriesBase from gwpy.types import Series from numba import jit # import utility functions from .utils import gcd_array, is_par_file, logfactorial class MultiHeterodynedData(object): """ A class to contain time series' of heterodyned data, using the :class:`~cwinpy.data.HeterodynedData` class, for multiple detectors/data streams. Parameters ---------- data: (str, array_like, dict, HeterodynedData) The heterodyned data either as a string giving a file path, an array of data, or a dictionary of file paths/data arrays, that are keyed on valid detector names. times: (array_like, dict) If `data` is an array, or dictionary of arrays, then `times` must be set giving the time stamps for the data values. If `times` is a dictionary then it should be keyed on the same detector names as in `data`. detector: (str, lal.Detector) If `data` is a file name or data array then `detector` must be given as a string or :class:`lal.Detector`. Notes ----- See the :class:`~cwinpy.data.HeterodynedData` documentation for information on additional keyword arguments. """ def __init__( self, data=None, times=None, detector=None, window=30, inject=False, par=None, injpar=None, freqfactor=2.0, bbthreshold="default", remove_outliers=False, thresh=3.5, **kwargs, ): # set keyword argument self._heterodyned_data_kwargs = {} self._heterodyned_data_kwargs["window"] = window self._heterodyned_data_kwargs["par"] = par self._heterodyned_data_kwargs["injpar"] = injpar self._heterodyned_data_kwargs["inject"] = inject self._heterodyned_data_kwargs["freqfactor"] = freqfactor self._heterodyned_data_kwargs["bbthreshold"] = bbthreshold self._heterodyned_data_kwargs["remove_outliers"] = remove_outliers self._heterodyned_data_kwargs["thresh"] = thresh self._data = dict() # initialise empty dict self._currentidx = 0 # index for iterator # add data if data is not None: self.add_data(data, times, detector=detector) def add_data(self, data, times=None, detector=None): """ Add heterodyned data to the class. Parameters ---------- data: (str, array_like, dict, HeterodynedData) The heterodyned data either as a string giving a file path, an array of data, a dictionary of file paths/data arrays that are keyed on valid detector names, or a :class:`~cwinpy.data.HeterodynedData` object. times: (array_like, dict) If `data` is an array, or dictionary of arrays, then `times` must be set giving the time stamps for the data values. If `times` is a dictionary then it should be keyed on the same detector names as in `data`. detector: (str, lal.Detector) If `data` is a file name or data array then `detector` must be given as a string or :class:`lal.Detector`. """ if isinstance(data, HeterodynedData): if data.detector is None and detector is None: raise ValueError("No detector is given!") if data.detector is None and detector is not None: data.detector = detector self._add_HeterodynedData(data) elif isinstance(data, dict): for detkey in data: if isinstance(data[detkey], HeterodynedData): if data[detkey].detector is None: data[detkey].detector = detkey self._add_HeterodynedData(data[detkey]) else: if isinstance(times, dict): if detkey not in times: raise KeyError( "'times' does not contain the " "detector: {}".format(detkey) ) else: dettimes = times[detkey] else: dettimes = times self._add_data(data[detkey], detkey, dettimes) else: if isinstance(times, dict): raise TypeError("'times' should not be a dictionary") self._add_data(data, detector, times) def _add_HeterodynedData(self, data): detname = data.detector if detname not in self._data: self._data[detname] = [data] # add as a list else: # if data from that detector already exists then append to the list self._data[detname].append(data) def _add_data(self, data, detector, times=None): if detector is None or data is None: raise ValueError("data and detector must be set") het = HeterodynedData( data, times, detector=detector, **self._heterodyned_data_kwargs ) self._add_HeterodynedData(het) def __getitem__(self, det): """ Get the list of :class:`~cwinpy.data.HeterodynedData` objects keyed to a given detector. """ if det in self.detectors: return self._data[det] else: return None def pop(self, det): return self._data.pop(det) @property def to_list(self): datalist = [] for key in self._data: if isinstance(self._data[key], list): datalist += self._data[key] else: datalist.append(self._data[key]) return datalist @property def detectors(self): """ Return the list of detectors contained in the object. """ return list(self._data.keys()) @property def pars(self): """ Return the list of heterodyne source parameter files for each data set contained in the object. """ return [het.par for het in self] @property def freq_factors(self): """ Return the this of heterodyne frequency scaling factors for each data set contained in the object. """ return [het.freq_factor for het in self] @property def injection_snr(self): """ Get the coherent optimal signal-to-noise ratio of an injected signal in all heterodyned data sets. See :meth:`cwinpy.data.HeterodynedData.injection_snr`. """ snr2 = 0.0 for het in self: if het.injpar is not None: snr2 += het.injection_snr ** 2 return np.sqrt(snr2) def signal_snr(self, signalpar): """ Get the coherent signal-to-noise ratio of a given signal. See :meth:`cwinpy.data.HeterodynedData.signal_snr`. """ snr2 = 0.0 for het in self: snr2 += het.signal_snr(signalpar) ** 2 return np.sqrt(snr2) def __iter__(self): self._currentidx = 0 # reset iterator index return self def __next__(self): if self._currentidx >= len(self): raise StopIteration else: self._currentidx += 1 return self.to_list[self._currentidx - 1] def plot( self, det=None, together=False, which="abs", figsize=(12, 4), remove_outliers=False, thresh=3.5, zero_time=True, labelsize=None, fontsize=None, legendsize=None, fontname=None, labelname=None, **plotkwargs, ): """ Plot all, or some of, the time series' contained in the class. The general arguments can be seen in :meth:`cwinpy.data.HeterodynedData.plot` and additional arguments are given below. Parameters ---------- together: bool, False Set to ``True`` to put all the plots onto one figure, otherwise they will be created on individual :class:`~matplotlib.figure.Figure` objects. det: str If a detector name is supplied, then only the time series' for that detector will be plotted. Returns ------- list: A :class:`~matplotlib.figure.Figure` object, or list of :class:`~matplotlib.figure.Figure` objects. """ from matplotlib import pyplot as pl if len(self) == 0: # nothing in the class! return None # set which plots to output ndet = 1 if det is not None: if det not in self.detectors: raise ValueError("Detector {} is not in the class".format(det)) # get the number of time series' for the requested detector ndet = len(self[det]) nplots = 1 if together: if ndet > 1: nplots = ndet hets = self[det] else: nplots = len(self) hets = self # datasets to plot # create the figure if figsize[0] == 12 and figsize[1] == 4: # check default size and increase figsize = (figsize[0], figsize[1] * nplots) figs, axs = pl.subplots(nplots, 1, figsize=figsize) for ax, het in zip(axs, hets): _ = het.plot( which=which, ax=ax, remove_outliers=remove_outliers, thresh=thresh, zero_time=zero_time, labelsize=labelsize, fontsize=fontsize, legendsize=legendsize, fontname=fontname, labelname=labelname, **plotkwargs, ) else: # a list of figures figs = [] if det is not None: hets = self[det] else: hets = self # loop over data and produce plots for het in hets: figs.append( het.plot( which=which, figsize=figsize, remove_outliers=remove_outliers, thresh=thresh, zero_time=zero_time, labelsize=labelsize, fontsize=fontsize, legendsize=legendsize, fontname=fontname, labelname=labelname, **plotkwargs, ) ) return figs def power_spectrum( self, det=None, together=False, figsize=None, remove_outliers=None, thresh=None, labelsize=None, fontsize=None, legendsize=None, fontname=None, labelname=None, dt=None, fraction_labels=None, fraction_label_num=None, average=None, window=None, overlap=None, **plotkwargs, ): """ Plot all, or some of, the power spectra of the time series' contained in the class. The general arguments can be seen in :meth:`cwinpy.data.HeterodynedData.power_spectrum` and additional arguments are given below. Parameters ---------- together: bool, False Set to ``True`` to put all the plots onto one figure, otherwise they will be created on individual :class:`~matplotlib.figure.Figure` objects. det: str If a detector name is supplied, then only the time series' for that detector will be plotted. Returns ------- list: A :class:`~matplotlib.figure.Figure` object, or list of :class:`~matplotlib.figure.Figure` objects. """ return self._plot_power( "power", det=det, together=together, figsize=figsize, remove_outliers=remove_outliers, thresh=thresh, labelsize=labelsize, fontsize=fontsize, labelname=labelname, fontname=fontname, dt=dt, fraction_labels=fraction_labels, fraction_label_num=fraction_label_num, average=average, window=window, overlap=overlap, **plotkwargs, ) def periodogram( self, det=None, together=False, figsize=None, remove_outliers=None, thresh=None, labelsize=None, fontsize=None, legendsize=None, fontname=None, labelname=None, fraction_labels=None, fraction_label_num=None, **plotkwargs, ): """ Plot all, or some of, the periodograms of the time series' contained in the class. The general arguments can be seen in :meth:`cwinpy.data.HeterodynedData.periodogram` and additional arguments are given below. Parameters ---------- together: bool, False Set to ``True`` to put all the plots onto one figure, otherwise they will be created on individual :class:`~matplotlib.figure.Figure` objects. det: str If a detector name is supplied, then only the time series' for that detector will be plotted. Returns ------- list: A :class:`~matplotlib.figure.Figure` object, or list of :class:`~matplotlib.figure.Figure` objects. """ return self._plot_power( "periodogram", det=det, together=together, figsize=figsize, remove_outliers=remove_outliers, thresh=thresh, labelsize=labelsize, fontsize=fontsize, labelname=labelname, fontname=fontname, fraction_labels=fraction_labels, fraction_label_num=fraction_label_num, **plotkwargs, ) def spectrogram( self, det=None, together=False, figsize=None, remove_outliers=None, thresh=None, labelsize=None, fontsize=None, legendsize=None, fontname=None, labelname=None, fraction_labels=None, fraction_label_num=None, dt=None, overlap=None, window=None, **plotkwargs, ): """ Plot all, or some of, the spectograms of the time series' contained in the class. The general arguments can be seen in :meth:`cwinpy.data.HeterodynedData.spectrogram` and additional arguments are given below. Parameters ---------- together: bool, False Set to ``True`` to put all the plots onto one figure, otherwise they will be created on individual :class:`~matplotlib.figure.Figure` objects. det: str If a detector name is supplied, then only the time series' for that detector will be plotted. Returns ------- list: A :class:`~matplotlib.figure.Figure` object, or list of :class:`~matplotlib.figure.Figure` objects. """ return self._plot_power( "spectrogram", det=det, together=together, figsize=figsize, window=window, remove_outliers=remove_outliers, thresh=thresh, labelsize=labelsize, fontsize=fontsize, labelname=labelname, fontname=fontname, dt=dt, fraction_labels=fraction_labels, fraction_label_num=fraction_label_num, overlap=overlap, **plotkwargs, ) def _plot_power( self, plottype, det=None, together=False, figsize=None, remove_outliers=None, thresh=None, labelsize=None, fontsize=None, legendsize=None, fontname=None, labelname=None, dt=None, average=None, overlap=None, window=None, fraction_labels=None, fraction_label_num=None, **plotkwargs, ): """ General purpose function for plotting the various spectrum figures. Parameters ---------- plottype: str The "spectrum" plots that are required: 'power_spectrum', 'periodogram', or 'spectrogram' """ from matplotlib import pyplot as pl if plottype.lower() not in ["spectrogram", "periodogram", "power"]: raise ValueError("Spectrum plot type is not known") if len(self) == 0: # nothing in the class! return None # set which plots to output ndet = 1 if det is not None: if det not in self.detectors: raise ValueError("Detector {} is not in the class".format(det)) # get the number of time series' for the requested detector ndet = len(self[det]) # set keyword arguments speckwargs = {} for key, value in zip( [ "thresh", "remove_outliers", "labelsize", "labelname", "fontsize", "fontname", "legendsize", "fraction_labels", "fraction_label_num", "figsize", ], [ thresh, remove_outliers, labelsize, labelname, fontsize, fontname, legendsize, fraction_labels, fraction_label_num, figsize, ], ): if value is not None: speckwargs[key] = value if plottype.lower() == "power" and average is not None: speckwargs["average"] = average if plottype.lower() in ["spectrogram", "power"]: if overlap is not None: speckwargs["overlap"] = overlap if window is not None: speckwargs["window"] = window if dt is not None: speckwargs["dt"] = dt nplots = 1 if together: if ndet > 1: nplots = ndet hets = self[det] else: nplots = len(self) hets = self # datasets to plot # create the figure if figsize is None: # create default size if plottype.lower() == "spectrogram": figsize = (12, 4 * nplots) else: figsize = (6, 5 * nplots) figs, axs = pl.subplots(nplots, 1, figsize=figsize) for ax, het in zip(axs, hets): if plottype.lower() == "periodogram": plfunc = het.periodogram elif plottype.lower() == "power": plfunc = het.power_spectrum else: plfunc = het.spectrogram _ = plfunc(**speckwargs, ax=ax, **plotkwargs) figs.tight_layout() else: # a list of figures figs = [] if det is not None: hets = self[det] else: hets = self # loop over data and produce plots for het in hets: if plottype.lower() == "periodogram": plfunc = het.periodogram figidx = 2 elif plottype.lower() == "power": plfunc = het.power_spectrum figidx = 2 else: plfunc = het.spectrogram figidx = 3 figs.append(plfunc(**speckwargs, **plotkwargs)[figidx]) return figs def __len__(self): length = 0 for key in self._data: if isinstance(self._data[key], list): length += len(self._data[key]) else: length += 1 return length class HeterodynedData(TimeSeriesBase): """ A class to contain a time series of heterodyned data. Some examples of input `data` are: 1. The path to a file containing (gzipped) ascii text with the following three columns:: # GPS time stamps real strain imaginary strain 1000000000.0 2.3852e-25 3.4652e-26 1000000060.0 -1.2963e-26 9.7423e-25 1000000120.0 5.4852e-25 -1.8964e-25 ... or four columns:: # GPS time stamps real strain imaginary strain std. dev. 1000000000.0 2.3852e-25 3.4652e-26 1.0e-25 1000000060.0 -1.2963e-26 9.7423e-25 1.0e-25 1000000120.0 5.4852e-25 -1.8964e-25 1.0e-25 ... where any row that starts with a ``#`` or a ``%`` is considered a comment. 2. A 1-dimensional array of complex data, and accompanying array of `time` values, e.g., >>> import numpy as np >>> N = 100 # the data length >>> data = np.random.randn(N) + 1j*np.random.randn(N) >>> times = np.linspace(1000000000., 1000005940., N) or, a 2-dimensional array with the real and complex values held in separate columns, e.g., >>> import numpy as np >>> N = 100 # the data length >>> data = np.random.randn(N, 2) >>> times = np.linspace(1000000000., 1000005940., N) or, a 2-dimensional array with the real and complex values held in separate columns, *and* a third column holding the standard deviation for each entry, e.g., >>> import numpy as np >>> N = 100 # the data length >>> stds = np.ones(N) # standard deviations >>> data = np.array([stds*np.random.randn(N), >>> ... stds*np.random.randn(N), stds]).T >>> times = np.linspace(1000000000., 1000005940., N) Parameters ---------- data: (str, array_like) A file (plain ascii text, gzipped ascii text, or HDF5 file) containing a time series of heterodyned data, or an array containing the complex heterodyned data. times: array_like If the data was passed using the `data` argument, then the associated time stamps should be passed using this argument. par: (str, lalpulsar.PulsarParametersPy) A parameter file, or :class:`lalpulsar.PulsarParametersPy` object containing the parameters with which the data was heterodyned. detector: (str, lal.Detector) A string, or lal.Detector object, identifying the detector from which the data was generated. window: int, 30 The length of a window used for calculating a running median over the data. If set to zero the running median will just be initialised with zero values. inject: bool, False Set to ``True`` to add a simulated signal to the data based on the parameters supplied in `injpar`, or `par` if `injpar` is not given. injpar: (str, lalpulsar.PulsarParametersPy) A parameter file name or :class:`lalpulsar.PulsarParametersPy` object containing values for the injected signal. A `par` file must also have been provided, and the injected signal will assume that the data has already been heterodyned using the parameters from `par`, which could be different. injtimes: list, None A list containing pairs of times between which to add the simulated signal. By default the signal will be added into the whole data set. freqfactor: float, 2.0 The frequency scale factor for the data signal, e.g., a value of two for emission from the l=m=2 mode at twice the rotation frequency of the source. fakeasd: (float, str) A amplitude spectral density value (in 1/sqrt(Hz)) at which to generate simulated Gaussian noise to add to the data. Alternatively, if a string is passed, and that string represents a known detector, then the amplitude spectral density for that detector at design sensitivity will be used (this requires a `par` value to be included, which contains the source rotation frequency). fakeseed: (int, class:`numpy.random.RandomState`), None A seed for the random number generator used to create the fake data (see :meth:`numpy.random.seed` and :class:`numpy.random.RandomState` for more information). issigma: bool Set to ``True`` if the ``fakeasd`` value passed is actually a noise standard deviation value rather than an amplitude spectral density. bbthreshold: (str, float), "default" The threshold method, or value for the :meth:`~cwinpy.data.HeterodynedData.bayesian_blocks` function. bbminlength: int, 5 The minimum length (in numbers of data points) of a chunk that the data can be split into by the :meth:`~cwinpy.data.HeterodynedData.bayesian_blocks` function. To perform no splitting of the data set this value to be larger than the total data length, e.g., ``inf``. bbmaxlength: int, inf The maximum length (in numbers of data points) of a chunk that the data can be split into by the :meth:`~cwinpy.data.HeterodynedData.bayesian_blocks` function. By default this is ``inf``, i.e., chunks can be as long as possible. remove_outliers: bool, False If ``True`` outliers will be found (using :meth:`~cwinpy.data.HeterodynedData.find_outliers`) and removed from the data. They will not be stored anywhere in the class. thresh: float, 3.5 The modified z-score threshold for outlier removal (see :meth:`~cwinpy.data.HeterodynedData.find_outliers`) comments: str A string containing any comments about the data. ephemearth: str, None The path to the Earth ephemeris used for the signal phase model. ephemsun: str, None The path to the Sun ephemeris used for the signal phase model. """ # set some default detector color maps for plotting colmapdic = {"H1": "Reds", "L1": "Blues", "V1": "PuRd", "G1": "Greys"} # set some default plotting values PLOTTING_DEFAULTS = { "labelsize": 14, # font size for axes tick labels "fontsize": 16, # font size for axes labels "fontname": "Gentium", # font name for axes labels "labelname": "Carlito", # font names for axes tick labels } _metadata_slots = Series._metadata_slots + ( "dt", "comments", "par", "injpar", "window", "laldetector", "vars", "bbthreshold", "bbminlength", "bbmaxlength", "outlier_thresh", "injtimes", "freq_factor", "filter_history", "running_median", "inj_data", "input_stds", "outlier_mask", "include_ssb", "include_bsb", "include_glitch", "include_fitwaves", "cwinpy_version", ) def __new__( cls, data=None, times=None, par=None, detector=None, window=30, inject=False, injpar=None, injtimes=None, freqfactor=2.0, fakeasd=None, fakeseed=None, issigma=False, bbthreshold="default", bbminlength=5, bbmaxlength=np.inf, remove_outliers=False, thresh=3.5, comments="", ephemearth=None, ephemsun=None, **kwargs, ): stds = None # initialise standard deviations # read/parse data if isinstance(data, str): try: new = cls.read(data) except Exception as e: raise IOError("Error reading file '{}':\n{}".format(data, e)) if new.detector is None: new.detector = detector else: if isinstance(data, (TimeSeriesBase, HeterodynedData)): dataarray = data.value hettimes = data.times if detector is None: detector = data.detector if type(data) is HeterodynedData: if data.stds is not None: stds = data.stds else: # use data hettimes = times if hettimes is None and data is None: raise ValueError("Time stamps and/or data must be supplied") elif data is not None: dataarray = np.atleast_2d(np.asarray(data)) if dataarray.shape[0] == 1: dataarray = dataarray.T else: # set data to zeros dataarray = np.zeros((len(hettimes), 1), dtype=np.complex) if ( dataarray.shape[1] == 1 and dataarray.dtype == np.complex and hettimes is not None ): dataarray = dataarray.flatten() elif dataarray.shape[1] == 2 and hettimes is not None: # real and imaginary components are separate dataarray = dataarray[:, 0] + 1j * dataarray[:, 1] elif dataarray.shape[1] == 3: if hettimes is None: # first column of array should be times hettimes = dataarray[:, 0] dataarray = dataarray[:, 1] + 1j * dataarray[:, 2] else: # third column can be standard deviations stds = dataarray[:, 2] dataarray = dataarray[:, 0] + 1j * dataarray[:, 1] elif dataarray.shape[1] == 4: if hettimes is None: # first column of array should be times hettimes = dataarray[:, 0] stds = dataarray[:, 3] dataarray = dataarray[:, 1] + 1j * dataarray[:, 2] else: raise ValueError("Supplied data array is the wrong shape") else: raise ValueError("Supplied data array is the wrong shape") if len(hettimes) != dataarray.shape[0]: raise ValueError("Supplied times is not that same length as the data") if hettimes is not None and times is not None: if not
np.array_equal(hettimes, times)
numpy.array_equal
from __future__ import print_function, division, absolute_import import pickle from copy import copy import numpy as np import pytest from crick import SummaryStats normal =
np.random.normal(50, scale=100, size=10000)
numpy.random.normal
import torch import torchvision.models as models from torchvision import transforms as trn import torch.nn as nn import numpy as np from PIL import Image import os from tqdm import tqdm import argparse import warnings warnings.filterwarnings('ignore', 'Possibly corrupt EXIF data*') parser = argparse.ArgumentParser(description = "Intra-scale feature extraction") parser.add_argument("-batch_size_base", "--batch_size_base", type=int, help="Number of images processed at one time", default=32) parser.add_argument("-datasets", "--datasets", nargs='+',help="Specify the dataset used for evaluation", default=['SUN397','Places']) parser.add_argument("-gpu", "--gpu", type=int, help="1 for gpu and -1 for cpu", default=1) parser.add_argument("-arches", "--arches", nargs='+',help="Architecture of the CNN feature extractor", default=['alexnet']) parser.add_argument("-scales", "--scales", nargs='+',help="The total scales(up to 3), in which the features are extracted. ", default=['1','2','3']) parser.add_argument("-thresholds", "--thresholds", nargs='+',help="The threshold used to select the number of discriminative patches", default=['100','150']) parser.add_argument("-resolution", "--resolution", help="specify the mode of input image resolution ('ori_res' or 'low_res') ", default="ori_res") parser.add_argument("-selection_types", "--selection_types", nargs='+',help="The type of method (adi_red, dense or random) used for patch selection ", default=['adi_red']) parser.add_argument("-pretrain_databases", "--pretrain_databases",nargs='+', help="Specify the pre-training data (Places(PL) or ImageNet(IN)) of the pre-trained CNN feature extractor", default=['PL','PL','IN']) args = parser.parse_args() batch_size_base=args.batch_size_base datasets=args.datasets arches=args.arches scales=args.scales thresholds=args.thresholds resolution=args.resolution selection_types=args.selection_types pretrain_databases=args.pretrain_databases if args.gpu==1: device = torch.device("cuda:0") if args.gpu==-1: device = torch.device("cpu") def returnTF(scale,resolution): # load the image transformer if scale=='1': scale_image_size=224 if scale=='2': scale_image_size=448 if scale=='3': scale_image_size=896 if resolution=='ori_res' : tf = trn.Compose([ trn.Resize((scale_image_size,scale_image_size)), trn.ToTensor (), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) if resolution=='low_res' : if scale=='1': tf = trn.Compose([ trn.Resize((224,224)), trn.ToTensor (), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) if scale=='2' or scale=='3': tf = trn.Compose([ trn.Resize((224,224)), trn.Resize((scale_image_size,scale_image_size)), trn.ToTensor (), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) return tf def load_model(arch,pretrain_database): if pretrain_database=='PL': model_file = '%s_places365.pth.tar' % arch if not os.access(model_file, os.W_OK): os.system('wget http://places2.csail.mit.edu/models_places365/' + model_file) model = models.__dict__[arch](num_classes=365) checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage) state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()} model.load_state_dict(state_dict) elif pretrain_database=='IN': if arch=='resnet50': model=models.resnet50(pretrained=True) elif arch=='resnet18': model=models.resnet18(pretrained=True) elif arch=='alexnet': model=models.alexnet(pretrained=True) if arch=='resnet50' or arch=='resnet18': feature_extractor = nn.Sequential(*list(model.children())[:-1]) if arch=='alexnet': new_classifier = nn.Sequential(*list(model.classifier.children())[:-1]) model.classifier = new_classifier feature_extractor=model feature_extractor.eval() return feature_extractor modes=['train','test'] for dataset in datasets: image_path='./datasets/images/'+dataset+'/' label_path='./datasets/labels/'+dataset+'/' result_path = './results/intermediate/'+dataset+'/' if dataset=='SUN397': splits=['01','02','03','04','05','06','07','08','09','10']#10 fixed train/test splits for evaluation on SUN397 with open(label_path+'image_list_all.txt', 'r') as f: image_list = f.readlines() for arch in arches: for selection_type in selection_types: if selection_type=='adi_red': for scale in scales: if arch == 'alexnet': fea_dim=4096 if scale=='1': batch_size_ori = 16*batch_size_base if scale=='2' or scale=='3': batch_size_ori = 2*batch_size_base if arch == 'resnet18': fea_dim=512 if scale=='1': batch_size_ori = 4*batch_size_base if scale=='2' or scale=='3': batch_size_ori = batch_size_base if arch == 'resnet50': fea_dim=2048 if scale=='1': batch_size_ori = 4*batch_size_base if scale=='2' or scale=='3': batch_size_ori = batch_size_base feature_extractor = load_model(arch,pretrain_databases[int(scale)-1]) feature_extractor=feature_extractor.to(device) for mode in modes: if dataset=='Places': with open(label_path+'image_list_'+mode+'.txt', 'r') as f: image_list = f.readlines() num_images = len(image_list) if scale=='2' or scale =='3': local_maxima=
np.load(result_path+'local_max_'+scale+'_'+mode+'.npy')
numpy.load
import numpy as np import tensorflow as tf import datetime import time from model import Model, get_err_threhold, performances from tensorflow.python.platform import flags from data import DataSet FLAGS = flags.FLAGS flags.DEFINE_integer('train_iterations', 90000, 'number of training iterations.') # Training options flags.DEFINE_integer('batch_size', 8, '') flags.DEFINE_float('lr', 0.001, 'the base learning rate') flags.DEFINE_integer('lr_decay_itr', 0, 'number of iteration that the lr decays') flags.DEFINE_float('l2_alpha', 0.00001, 'param of the l2_norm loss') flags.DEFINE_float('l1_alpha', 0.001, 'param of the l1_norm loss') flags.DEFINE_float('dropout', 0.1, 'param of the l1_norm loss') flags.DEFINE_float('loss_alpha1', 1, 'param of the l1_norm loss') flags.DEFINE_float('loss_alpha2', 1, 'param of the l1_norm loss') flags.DEFINE_float('score_alpha', 0.5, 'param of the l1_norm loss') flags.DEFINE_bool('attention', True, 'param of the l1_norm loss') flags.DEFINE_bool('leaky_relu', True, 'param of the l1_norm loss') flags.DEFINE_bool('CDC', True, 'param of the l1_norm loss') flags.DEFINE_string('network', 'DTN', 'network name') flags.DEFINE_integer('base_num_filters', 8, 'number of filters for conv nets -- 32 for miniimagenet, 64 for omiglot.') flags.DEFINE_bool('last_relu', True, 'whether to use bias in the attention operation') flags.DEFINE_bool('last_bn', True, 'whether to use bias in the attention operation') # flags.DEFINE_bool('clahe', True, 'whether to use bias in the attention operation') flags.DEFINE_string('loss', 'L2', 'L2 or Con') flags.DEFINE_bool('bn_nn', False, '') flags.DEFINE_integer('num_gpus', 1, '') ## Logging, saving, and testing options flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.') flags.DEFINE_string('logdir', 'logs/miniimagenet1shot/', 'directory for summaries and checkpoints.') flags.DEFINE_bool('resume', False, 'resume training if there is a model available') flags.DEFINE_bool('train', True, 'True to train, False to test.') flags.DEFINE_integer('test_iter', 300, 'iteration to load model (-1 for latest model)') flags.DEFINE_bool('net', False, 'whether use the data saved on the risk disk, or use the data saved on the local disk.') flags.DEFINE_integer('protocol', 3, '') def train(model, saver, sess, exp_string, dataset, resume_itr=0): SUMMARY_INTERVAL = 100 PRINT_INTERVAL = 10 TEST_PRINT_INTERVAL = 100 min_ACER_itr = 0 min_ACER = 1 print('Done initializing, starting training.') print(exp_string) losses_map, losses_binary = [], [] for itr in range(resume_itr, FLAGS.train_iterations): # 调节learning rate if FLAGS.lr_decay_itr > 0: lr = FLAGS.lr * 0.5 ** int(itr / FLAGS.lr_decay_itr) if int(itr % FLAGS.lr_decay_itr) < 2: print('change the mata lr to:' + str(lr) + ', ----------------------------') else: lr = FLAGS.lr feed_dict = {model.lr: lr} feed_dict_data = {} if itr == resume_itr: image_labels = dataset.get_train_data(FLAGS.batch_size) [files, labels] = zip(*image_labels) feed_dict_data[dataset.image_lists] = files sess.run(dataset.iterator, feed_dict=feed_dict_data) faces, depthes, IRs = sess.run(dataset.out_images) lbls =
np.array(labels)
numpy.array
from database import Database, LoadDatabase from numba import njit, vectorize import matplotlib.pyplot as plt import numpy as np import pickle import time import bz2 import os os.environ['NUMBA_DISABLE_INTEL_SVML'] = '1' CENTER = 1200 RATEDBOUND = np.inf def prepare_data(db): CALCS_FILE = "calcs.pickle.bz2" # if calculated and save before, load it from file if os.path.exists(CALCS_FILE): with bz2.BZ2File(CALCS_FILE, "r") as infile: print("Starting loading calcs file ...") ret = pickle.load(infile) print("File read.") else: print("Starting calcs ...") # load database db = LoadDatabase() # collect all handles in all standings all_handles = set() for standings in db.standings.values(): for handle in standings.index: all_handles.add(handle) # create to way mappings (id, handle) handle_to_id = {handle: i for i, handle in enumerate(all_handles)} id_to_handle = {i: handle for handle, i in handle_to_id.items()} # sort standings by startTime sorted_standings = [(k, v) for k, v in sorted(db.standings.items(), key=lambda x: db.contests.loc[x[0]].startTime)] # merge handles, ranks and standings length into flat array handle_ids_merged = [] ranks_merged = [] standings_lengths_merged = [] for c_id, standings in sorted_standings: standings = standings.sort_values("rank") for handle in standings.index: handle_ids_merged.append(handle_to_id[handle]) ranks_merged.append(standings["rank"][handle]) standings_lengths_merged.append(len(standings)) # convert them to numpy array handle_ids = np.array(handle_ids_merged, dtype=np.int32) ranks = np.array(ranks_merged, dtype=np.int32) standings_lens = np.array(standings_lengths_merged, dtype=np.int32) user_contest_cnt = np.bincount(handle_ids) with bz2.BZ2File(CALCS_FILE, "w") as outfile: ret = (handle_to_id, id_to_handle, sorted_standings, handle_ids, ranks, standings_lens, user_contest_cnt) pickle.dump(ret, outfile) print("Calcs ended.") return ret def get_first_K_contests(K, handle_ids, ranks, standings_lens, user_contest_cnt): if K == -1: return handle_ids, ranks, standings_lens, user_contest_cnt K_standings_len = np.sum(standings_lens[:K]) K_handle_ids = handle_ids[:K_standings_len] K_ranks = ranks[:K_standings_len] K_standings_lens = standings_lens[:K] K_user_contest_cnt = np.bincount(K_handle_ids) return K_handle_ids, K_ranks, K_standings_lens, K_user_contest_cnt # Additional return value of AtCoderRatingSystem, which has all calculations, meaningful variables (pretty specific stuff) class Result: def __init__(self, consider, handle_to_id, id_to_handle, sorted_standings, handle_ids, ranks, standings_lens, user_contest_cnt, nums, dens, aperfs, perfs, ratings, offsets, local_offsets, current_ranks, Is, errors): self.consider = consider self.handle_to_id = handle_to_id self.id_to_handle = id_to_handle self.sorted_standings = sorted_standings self.handle_ids = handle_ids self.ranks = ranks self.standings_lens = standings_lens self.user_contest_cnt = user_contest_cnt self.nums = nums self.dens = dens self.aperfs = aperfs self.perfs = perfs self.ratings = ratings self.offsets = offsets self.local_offsets = local_offsets self.current_ranks = current_ranks self.Is = Is self.errors = errors def get_cf_ratings(self, handle): ratings = [] if self.consider == -1: trimmed_standings = self.sorted_standings else: trimmed_standings = self.sorted_standings[:self.consider] for contest_id, standings in trimmed_standings: if handle in standings.index: ratings.append(standings.loc[handle]["oldRating"]) return ratings def get_random_user(self, threshold=10): all_ids = np.arange(len(self.user_contest_cnt)) mask = self.user_contest_cnt >= threshold handle_id = np.random.choice(all_ids[mask]) return self.id_to_handle[handle_id] def plot_user(self, handle, verbose=False): handle_id = self.handle_to_id[handle] contest_cnt = self.user_contest_cnt[handle_id] user_offset = self.offsets[handle_id] print(contest_cnt, self.local_offsets[handle_id]) assert contest_cnt == self.local_offsets[handle_id] perfs = self.perfs[user_offset:user_offset+contest_cnt] atcoder_ratings = self.ratings[user_offset:user_offset+contest_cnt] cf_ratings = self.get_cf_ratings(handle) assert contest_cnt == len(cf_ratings) print("number of contests", contest_cnt) if verbose: print("perfs", perfs) print("aperf", self.aperfs[handle_id]) print("num", self.nums[handle_id]) print("den", self.dens[handle_id]) xs = np.arange(contest_cnt) plt.figure(figsize=(15, 8)) plt.plot(xs, atcoder_ratings, label="AtCoder") plt.plot(xs, cf_ratings, label="CodeForces") # plt.plot(xs, perfs, label="AtCoder Perfs") plt.title(handle) plt.legend() plt.show() # - return tuple (errors, results), where # results: Result class described above # errors: dictionary of: error_function_name -> (dictionary of: contest id -> error calculated with that function) # - consider only `consider` first contests, if consider == -1, all contests are taken # - `err_fun` parameter is one function or list of functions to calculate error with # actual, main function def AtCoderRatingSystem(db, err_fun=None, g_base=2, g_power_div=800, binsearch_base=6, binsearch_power_div=400, decay=0.9, consider=50, verbose=False, **kwargs): CENTER = 1200 RATEDBOUND = np.inf @njit(fastmath=True) def atcoder_calculate(handle_ids, ranks, standings_lens, user_contest_cnt, verbose=True): user_cnt = len(user_contest_cnt) standings_cnt = len(standings_lens) history_cnt = len(handle_ids) def g(x): return np.power(g_base, x / g_power_div) def ginv(y): return g_power_div * np.log(y) / np.log(g_base) # AtCoder stuff ranks = ranks.copy().astype(np.float64) nums = np.zeros(user_cnt, dtype=np.float64) dens = np.zeros(user_cnt, dtype=np.float64) aperfs = np.full(user_cnt, CENTER, dtype=np.float64) perfs = np.empty(history_cnt, dtype=np.float64) ratings = np.zeros(history_cnt, dtype=np.float64) offsets =
np.cumsum(user_contest_cnt)
numpy.cumsum
import unittest as unittest import numpy as np import pandas as pd from limmbo.io.input import InputData from limmbo.io.input import MissingInput from limmbo.io.input import DataMismatch from limmbo.io.input import FormatError class Input(unittest.TestCase): def setUp(self): self.datainput = InputData() self.phenotypes = np.array(((1, 2), (1, 3))) self.pheno_samples = np.array(('S1', 'S2')) self.phenotype_ID =
np.array(('ID1', 'ID2'))
numpy.array
# need to have a more uniform method to exchange (pack/unpack) 1D and 2D PROCESSED data with hdf5 # type of data: Data1d, MatrixWithCoordinates (not just simple numpy arrays) import pylab as plt import h5py import numpy as np import time,datetime import os,copy,subprocess,re import json,pickle,fabio import multiprocessing as mp from py4xs.slnxs import Data1d,average,filter_by_similarity,trans_mode,estimate_scaling_factor from py4xs.utils import common_name,max_len,Schilling_p_value from py4xs.detector_config import create_det_from_attrs from py4xs.local import det_names,det_model,beamline_name # e.g. "_SAXS": "pil1M_image" from py4xs.data2d import Data2d,Axes2dPlot,MatrixWithCoords,DataType from py4xs.utils import run from itertools import combinations from scipy.interpolate import interp1d from scipy.ndimage.filters import gaussian_filter from scipy.interpolate import UnivariateSpline as uspline from scipy.integrate import simpson def lsh5(hd, prefix='', top_only=False, silent=False, print_attrs=True): """ list the content of a HDF5 file hd: a handle returned by h5py.File() prefix: use to format the output when lsh5() is called recursively top_only: returns the names of the top-level groups silent: suppress printouts if True """ if top_only: tp_grps = list(hd.keys()) if not silent: print(tp_grps) return tp_grps for k in list(hd.keys()): print(prefix, k) if isinstance(hd[k], h5py.Group): if print_attrs: print(list(hd[k].attrs.items())) lsh5(hd[k], prefix+"=", silent=silent, print_attrs=print_attrs) def create_linked_files(fn, fnlist): """ create a new file to links to data in existing files in the fn_list for now assume that all files have the same detector/qgrid configuration without checking """ ff = h5py.File(fn, 'w') for s in fnlist: fs = h5py.File(s, "r") if len(ff.attrs)==0: for an in fs.attrs: ff.attrs[an] = fs.attrs[an] ff.flush() for ds in lsh5(fs, top_only=True, silent=True): ff[ds] = h5py.ExternalLink(s, ds) fs.close() ff.close() def integrate_mon(em, ts, ts0, exp): """ integrate monitor counts monitor counts are given by em with timestamps ts ts0 is the timestamps on the exposures, with duration of exp """ ffe = interp1d(ts, em) em0 = [] for t in ts0: tt = np.concatenate(([t], ts[(ts>t) & (ts<t+exp)], [t+exp])) ee = ffe(tt) em0.append(simpson(ee, tt)) return np.asarray(em0)/exp def pack_d1(data, ret_trans=True): """ utility function to creat a list of [intensity, error] from a Data1d object or from a list of Data1s objects """ if isinstance(data, Data1d): if ret_trans: return np.asarray([data.data,data.err]), data.trans else: return np.asarray([data.data,data.err]) elif isinstance(data, list): tvs = [d.trans for d in data] return np.asarray([pack_d1(d, False) for d in data]),tvs def unpack_d1(data, qgrid, label, trans_value): """ utility function to creat a Data1d object from hdf dataset sepatately given data[intensity and error], qgrid, label, and trans works for a dataset that include a list of 1d data as well transMode is set to trans_mode.external """ if len(data.shape)>2: if np.isscalar(trans_value): # this should only happen when intentionally setting trans to 0 trans_value = np.zeros(len(data)) return [unpack_d1(d, qgrid, label+("f%05d" % i), t) for i,(d,t) in enumerate(zip(data,trans_value))] else: ret = Data1d() ret.qgrid = qgrid ret.data = data[0] ret.err = data[1] ret.label = label ret.set_trans(trans_mode.external, trans_value) # TODO: save transMode of d1s when packing return ret def merge_d1s(d1s, detectors, save_merged=False, debug=False): """ utility function to merge 1D data sets, using functions under slnxs d1s should contain data corresponding to detectors """ s0 = Data1d() s0.qgrid = d1s[0].qgrid d_tot = np.zeros(s0.qgrid.shape) d_max = np.zeros(s0.qgrid.shape) d_min = np.zeros(s0.qgrid.shape)+1.e32 e_tot = np.zeros(s0.qgrid.shape) c_tot = np.zeros(s0.qgrid.shape) w_tot = np.zeros(s0.qgrid.shape) label = None comments = "" for d1 in d1s: # empty part of the data is nan idx = ~np.isnan(d1.data) # simple averaging #d_tot[idx] += d1.data[idx] #e_tot[idx] += d1.err[idx] c_tot[idx] += 1 # average using 1/sigma as weight wt = 1/d1.err[idx]**2 d_tot[idx] += wt*d1.data[idx] e_tot[idx] += d1.err[idx]**2*wt**2 w_tot[idx] += wt idx1 = (np.ma.fix_invalid(d1.data, fill_value=-1)>d_max).data d_max[idx1] = d1.data[idx1] idx2 = (np.ma.fix_invalid(d1.data, fill_value=1e32)<d_min).data d_min[idx2] = d1.data[idx2] comments += d1.comments if label is None: label = d1.label else: label = common_name(label, d1.label) # simple averaging #s0.data[idx] /= c_tot[idx] #s0.err[idx] /= np.sqrt(c_tot[idx]) # averaging by weight s0.data = d_tot/w_tot s0.err = np.sqrt(e_tot)/w_tot idx = (c_tot>1) s0.overlaps.append({'q_overlap': s0.qgrid[idx], 'raw_data1': d_max[idx], 'raw_data2': d_min[idx]}) s0.label = label s0.comments = comments # .replace("# ", "## ") if save_merged: s0.save(s0.label+".dd", debug=debug) return s0 # copied from pipeline-test: merge, fix_angular_range, interp_d2 def merge(ds): """ merge a list of MatrixWithCoord together the datatype should be DataType.qphi """ if len(ds)==1: return ds[0].copy() wt = np.zeros(ds[0].shape) avg = np.zeros(ds[0].shape) idx = None for d in ds: if d.shape!=avg.shape: raise Exception("merge: the two data sets must have the same shape: ", d.shape, avg.shape) idx = ~
np.isnan(d)
numpy.isnan
import random import torch import datasets from typing import Union, List, Tuple, Dict from dataclasses import dataclass from torch.utils.data import Dataset from transformers import PreTrainedTokenizer, BatchEncoding from transformers import DataCollatorWithPadding import numpy as np from tqdm import tqdm class PointDataset(Dataset): def __init__(self, filename, sub_graph, max_groups, max_psglen, tokenizer, dataset_script_dir, dataset_cache_dir): self._filename = filename self._tokenizer = tokenizer self.max_psglen = max_psglen self.max_groups = max_groups self.sub_graph = sub_graph self.ir_dataset = datasets.load_dataset( f'{dataset_script_dir}/json.py', data_files=self._filename, ignore_verifications=False, cache_dir=dataset_cache_dir, features=datasets.Features({ 'qry': [datasets.Value('int32')], 'psg1': [[datasets.Value('int32')]], 'psg2': [[datasets.Value('int32')]], 'label': datasets.Value('int32'), }) )['train'] self.total_len = len(self.ir_dataset) def __len__(self): return self.total_len def __getitem__(self, item): irdata = self.ir_dataset[item] encoded_qry = irdata['qry'] passages = irdata[self.sub_graph][:16+self.max_groups] label = irdata['label'] if len(passages) < 16+self.max_groups: passages = [[] for i in range(16+self.max_groups)] input_ids_2d = [] token_type_ids_2d =[] attention_mask_2d =[] passage_mask = [] for i in range(len(passages)): if len(passages[i]) > 1: encoding = self._tokenizer.encode_plus(encoded_qry, passages[i], truncation=True, max_length=self.max_psglen + 5, padding='max_length') passage_mask.append(1) else: encoding = self._tokenizer.encode_plus(encoded_qry, truncation=True, max_length=self.max_psglen + 5, padding='max_length') passage_mask.append(0) input_ids_2d.append(encoding['input_ids']) token_type_ids_2d.append(encoding['token_type_ids']) attention_mask_2d.append(encoding['attention_mask']) # return encoding return { "input_ids":
np.array(input_ids_2d)
numpy.array
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here data_file=path # path for the file data=np.genfromtxt(data_file, delimiter=",", skip_header=1) census=np.concatenate((data,new_record),axis=0) print(census) # -------------- #Code starts here age=np.array(census[:,:1]) print(age) max_age=age.max() min_age=age.min() age_mean=np.mean(age) age_std=np.std(age) # -------------- #Code starts here race_0=[] race_1=[] race_2=[] race_3=[] race_4=[] x=[] for i in census: if i[2]==0: race_0.append(i) elif i[2]==1: race_1.append(i) elif i[2]==2: race_2.append(i) elif i[2]==3: race_3.append(i) elif i[2]==4: race_4.append(i) race_1=np.asarray(race_1) race_2=np.asarray(race_2) race_3=
np.asarray(race_3)
numpy.asarray
import numpy as np from mpmath import * n = 100 # profunditat Z1 = 0.1 + 0.5 * 1j # impedàncies Z2 = 0.02 + 0.13 * 1j Z3 = 0.023 + 0.1 * 1j Zp = -10 * 1j Y1 = 1 / Z1 # admitàncies Y2 = 1 / Z2 Y3 = 1 / Z3 Yp = 1 / Zp P = -1 # dades Q = -0.1 Va = 1.1 van = 0.5 # dades de la làmpada lam = 2 * np.sqrt(2) / np.pi In = np.sqrt(1 - van * van * (2 - lam * lam)) * 1 ang = -np.pi / 2 + np.arctan((van * np.sqrt(lam * lam - van * van)) / (1 - van * van)) Vb = np.zeros(n, dtype=complex) # sèries a calcular Vc = np.zeros(n, dtype=complex) R = np.zeros(n, dtype=complex) X = np.zeros(n, dtype=complex) F = np.zeros(n, dtype=complex) L = np.zeros(n, dtype=complex) Y = np.zeros(n, dtype=complex) M = np.zeros(n, dtype=complex) B = np.zeros(n, dtype=complex) INL = np.zeros(n, dtype=complex) Vb[0] = Va # inicialització de les sèries Vc[0] = (-Va * Y1 - Vb[0] * Y3) / (-Y1 - Y3) R[0] = 1 / conj(Vb[0]) X[0] = 1 / np.real(Vc[0]) F[0] = np.imag(Vc[0]) * X[0] B[0] = 1 + F[0] * F[0] L[0] = np.sqrt(B[0]) Y[0] = 1 / L[0] M[0] = F[0] * Y[0] INL[0] = In * 1 * (cos(ang) * Y[0] - sin(ang) * M[0]) + In * 1 *(sin(ang) * Y[0] + cos(ang) * M[0])*1j sumatori1 = 0 sumatori2 = 0 from Funcions import pade4all def sumaR(R, Vb, i): # convolució entre R i Vb suma = 0 for k in range(i): suma += R[k] * conj(Vb[i - k]) return suma def sumaX(X, Vc, i): # convolució entre X i Vc real suma = 0 for k in range(i): suma += X[k] *
np.real(Vc[i - k])
numpy.real
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([-1,0,0,0,1,0,0,0,-1])
numpy.array
""" cam_predict.py Functions for testing CAM predictions @author <NAME> @date 19 April 2019 """ import numpy as np from random import random from collections import defaultdict def gene_differential(E,syn,neigh): """ Returns list of gene (indices) that have higher expression in the synaptic partners compared to (nonsynaptic) neighbors Parameters: ----------- E : numpy array Expression matrix syn : list list of synaptic partners at each synapse neigh : list list of (nonsynaptic) neighbors at each synapse Note: syn[i] and neigh[i] correpspond to the ith synapse """ (n,m) = E.shape k = len(syn) syn_count = np.zeros(m) neigh_count = np.zeros(m) for i in range(k): sdx = syn[i] ndx = neigh[i] ssum = np.sum(E[sdx,:],axis=0) ssum[ssum > 0] = 1 syn_count += ssum nsum = np.sum(E[ndx,:],axis=0) nsum[nsum > 0] = 1 neigh_count += nsum diff = ssum - nsum tmp = E[sdx,:] - nsum #print('gene diff',np.where(diff > 0)) #print(sdx,ndx,np.where(diff > 1)) diff = syn_count - neigh_count #print('Sum gene diff',np.where(diff > 0)) #print(k) #reldff = 0.5*(syn_count - neigh_count) / (syn_count + neigh_count) #print('Rel diff', np.where(reldff)) return np.where(diff > 0)[0].tolist() def gene_cell_profile(E,syn,neigh): """ Returns dictionary of cam profiles for postsynaptic partners Dict format = {cell:cam_feature_vector} Parameters: ----------- E : numpy array Expression matrix syn : list list of synaptic partners at each synapse neigh : list list of (nonsynaptic) neighbors at each synapse Note: syn[i] and neigh[i] correpspond to the ith synapse """ (n,m) = E.shape k = len(syn) profile = defaultdict(lambda:np.zeros(m)) syn_count = defaultdict(int) for i in range(k): ssum = np.sum(E[syn[i],:],axis=0) ssum[ssum > 0] = 1 nsum = np.sum(E[neigh[i],:],axis=0) nsum[nsum > 0] = 1 diff = ssum - nsum diff[diff < 1] = 0 for j in syn[i]: profile[j] += diff syn_count[j] += 1 for j in profile: profile[j] /= syn_count[j] return profile def gene_mean_profile(E,syn,neigh): """ Returns dictionary of cam profiles for postsynaptic partners Dict format = {cell:cam_feature_vector} Parameters: ----------- E : numpy array Expression matrix syn : list list of synaptic partners at each synapse neigh : list list of (nonsynaptic) neighbors at each synapse Note: syn[i] and neigh[i] correpspond to the ith synapse """ (n,m) = E.shape k = len(syn) profile = np.zeros(m) syn_count = 0 for i in range(k): ssum = np.sum(E[syn[i],:],axis=0) ssum[ssum > 0] = 1 nsum = np.sum(E[neigh[i],:],axis=0) nsum[nsum > 0] = 1 diff = ssum - nsum diff[diff < 1] = 0 if syn[i]: profile += diff syn_count += 1 profile /= syn_count return profile def get_synapse_data(S,e,cpartners=set([]),screen=None,remove_partners = False): """ Formats the synapse data. Returns list synapse (syn) and neighbors (neigh) where cell names have been converted to cell indicies Parameters: ----------- S : dictionary Dictionary synapse data e : expression matrix object cpartners : set (optional) List of synaptic partners to remove from all neighbors screen : string (optional) Screen synapse based on data set. Will screen based on image name. Suggest using 'N2U' for adult synapses and 'JSH' for L4 synapses. """ syn,neigh,cneigh = [],[],[] for cont in S: if screen and screen not in S[cont]['sections'][0]: continue partners = set(S[cont]['partners']) neighbors = set(S[cont]['neighbors']) nonsyn = neighbors - partners if remove_partners: nonsyn = nonsyn - cpartners _cneigh = neighbors & cpartners syn.append([e.cells[n] for n in partners if n in e.cells]) neigh.append([e.cells[n] for n in nonsyn if n in e.cells]) cneigh.append([e.cells[n] for n in _cneigh if n in e.cells]) return syn,neigh,cneigh def score_overlap(sig,test): """ Scores the overlap between the gene signature and the test signature Parameters: ----------- sig: set Gene signature test: set Test signature """ num = len(sig & test) den = float(len(sig)) return num / den def get_overlap(sig,E,syn,neigh): """ Returns the overlap between the computed the gene signature and the gene expression of synaptic and (nonsynaptic) partners. Paramters: ---------- sig : set Gene signature E : numpy array Expression matrix syn : list List of synaptic partners at each synapse neigh : list List of neighbors at each synapse Return: ------- ssig : list List of overlap scores for each synaptic partner at each synapse neigh : list List of overlap score for each neighbor at each synapse idsyn : float Fraction of synapses where the highest overlap score is a synaptic partner """ k = len(syn) den = float(len(sig)) sig = set(sig) ssig,nsig = [],[] idsyn = 0 for i in range(k): synscore = [0] neighscore = [0] for j in syn[i]: _ssig = set(np.where(E[j,:] > 0)[0].tolist()) score = score_overlap(sig,_ssig) synscore.append(score) ssig.append(score) for j in neigh[i]: _nsig = set(np.where(E[j,:]> 0)[0].tolist()) score = score_overlap(sig,_nsig) neighscore.append(score) nsig.append(score) if max(synscore) > max(neighscore): idsyn += 1 return ssig,nsig,idsyn/float(k) def get_overlap_spatial_loc(sig,E,syn,neigh,cneigh): """ Returns the overlap between the computed the gene signature and the gene expression of synaptic and (nonsynaptic) partners. Paramters: ---------- sig : set Gene signature E : numpy array Expression matrix syn : list List of synaptic partners at each synapse neigh : list List of neighbors at each synapse cneigh : lsit List of neighbors that are synaptic partners elsewhere Return: ------- ssig : list List of overlap scores for each synaptic partner at each synapse neigh : list List of overlap score for each neighbor at each synapse idsyn : float Fraction of synapses where the highest overlap score is a synaptic partner """ k = len(syn) den = float(len(sig)) sig = set(sig) ssig,nsig = [],[] idsyn = 0 for i in range(k): synscore = [0] neighscore = [0] for j in syn[i]: _ssig = set(np.where(E[j,:] > 0)[0].tolist()) score = score_overlap(sig,_ssig) synscore.append(score) ssig.append(score) for j in neigh[i]: _nsig = set(
np.where(E[j,:]> 0)
numpy.where
# -*- coding: utf-8 -*- """ Created on Wed Oct 20 12:16:29 2021 @author: WANGH0M """ import numpy as np from scipy import sparse from constraints_basic import columnnew,\ con_edge,con_unit,con_constl,con_equal_length,\ con_constangle2,con_constangle,con_unit_vector,con_dependent_vector,\ con_planarity,con_osculating_tangent,con_diagonal,\ con_equal_opposite_angle,\ con_dot,con_cross_product2,con_bisecting_vector,\ con_normal_constraints, con_planarity_constraints,\ con_unit_tangentplane_normal # ------------------------------------------------------------------------- # common used net-constraints: # ------------------------------------------------------------------------- #-------------------------------------------------------------------------- # isogonals: #-------------------------------------------------------------------------- def con_unit_edge(rregular=False,**kwargs): """ unit_edge / unit_diag_edge X += [l1,l2,l3,l4,ue1,ue2,ue3,ue4] (vi-v) = li*ui, ui**2=1, (i=1,2,3,4) """ if kwargs.get('unit_diag_edge'): w = kwargs.get('unit_diag_edge') diag=True elif kwargs.get('unit_edge'): w = kwargs.get('unit_edge') diag=False mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') V = mesh.V if diag: v,v1,v2,v3,v4 = mesh.rr_star_corner elif rregular: v,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T else: #v,v1,v2,v3,v4 = mesh.ver_regular_star.T # default angle=90, non-orient v,v1,v2,v3,v4 = mesh.ver_star_matrix.T # oriented num = len(v) c_v = columnnew(v,0,V) c_v1 = columnnew(v1,0,V) c_v2 = columnnew(v2,0,V) c_v3 = columnnew(v3,0,V) c_v4 = columnnew(v4,0,V) arr = np.arange(num) c_l1 = N5-16*num + arr c_l2 = c_l1 + num c_l3 = c_l2 + num c_l4 = c_l3 + num c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) H1,r1 = con_edge(X,c_v1,c_v,c_l1,c_ue1,num,N) H2,r2 = con_edge(X,c_v2,c_v,c_l2,c_ue2,num,N) H3,r3 = con_edge(X,c_v3,c_v,c_l3,c_ue3,num,N) H4,r4 = con_edge(X,c_v4,c_v,c_l4,c_ue4,num,N) Hu1,ru1 = con_unit(X,c_ue1,num,N) Hu2,ru2 = con_unit(X,c_ue2,num,N) Hu3,ru3 = con_unit(X,c_ue3,num,N) Hu4,ru4 = con_unit(X,c_ue4,num,N) H = sparse.vstack((H1,H2,H3,H4,Hu1,Hu2,Hu3,Hu4)) r = np.r_[r1,r2,r3,r4,ru1,ru2,ru3,ru4] return H*w,r*w def con_orthogonal(diagmesh=False,**kwargs): # simpliest one, for auxetic-cmc-case """(v1-v3)*(v2-v4)=0, no auxilary variables """ if kwargs.get('orthogonal'): w = kwargs.get('orthogonal') elif kwargs.get('orthogonal_diag'): w = kwargs.get('orthogonal_diag') diagmesh=True mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') V = mesh.V if diagmesh: "(v1-v3)*(v2-v4)=0" v,v1,v2,v3,v4 = mesh.rr_star_corner else: v0, vj, l = mesh.vertex_ring_vertices_iterators(order=True, return_lengths=True) ind = np.in1d(v0, np.where(l == 4)[0]) v0 = v0[ind] vj = vj[ind] v = v0[::4] v1,v2,v3,v4 = vj[::4],vj[1::4],vj[2::4],vj[3::4] c_v1 = columnnew(v1,0,V) c_v2 = columnnew(v2,0,V) c_v3 = columnnew(v3,0,V) c_v4 = columnnew(v4,0,V) col = np.r_[c_v1,c_v2,c_v3,c_v4] num = len(v) row = np.tile(np.arange(num),12) d1 = X[c_v2]-X[c_v4] d2 = X[c_v1]-X[c_v3] d3 = X[c_v4]-X[c_v2] d4 = X[c_v3]-X[c_v1] data = np.r_[d1,d2,d3,d4] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r = np.einsum('ij,ij->i',d1.reshape(-1,3, order='F'),d2.reshape(-1,3, order='F')) #self.add_iterative_constraint(H*w, r*w, name) return H*w,r*w def con_orthogonal_midline(**kwargs): """ this method is almost the same as above, minor differences at boundary control quadfaces: two middle line are orthogonal to each other quadface: v1,v2,v3,v4 middle lins: e1 = (v1+v2)/2-(v3+v4)/2; e2 = (v2+v3)/2-(v4+v1)/2 <===> e1 * e2 = 0 <==> (v1-v3)^2=(v2-v4)^2 """ w = kwargs.get('orthogonal') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') num = mesh.num_quadface v1,v2,v3,v4 = mesh.rr_quadface.T # in odrder c_v1 = columnnew(v1,0,mesh.V) c_v2 = columnnew(v2,0,mesh.V) c_v3 = columnnew(v3,0,mesh.V) c_v4 = columnnew(v4,0,mesh.V) H,r = con_equal_length(X,c_v1,c_v2,c_v3,c_v4,num,N) return H*w,r*w def con_isogonal(cos0,assign=False,**kwargs): """ keep tangent crossing angle X += [lt1,lt2, ut1,ut2, cos] (ue1-ue3) = lt1 * ut1, ut1**2 = 1 (ue2-ue4) = lt2 * ut2, ut2**2 = 1 ut1 * ut2 = cos if assign: cos == cos0 """ w = kwargs.get('isogonal') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') N6 = kwargs.get('N6') num = mesh.num_regular arr = np.arange(num) c_l1 = N6-8*num-1 + arr c_l2 = c_l1+num c_ut1 = columnnew(arr,N6-6*num-1,num) c_ut2 = columnnew(arr,N6-3*num-1,num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) H1,r1 = con_edge(X,c_ue1,c_ue3,c_l1,c_ut1,num,N) H2,r2 = con_edge(X,c_ue2,c_ue4,c_l2,c_ut2,num,N) Hu1,ru1 = con_unit(X,c_ut1,num,N) Hu2,ru2 = con_unit(X,c_ut2,num,N) Ha,ra = con_constangle2(X,c_ut1,c_ut2,N6-1,num,N) H = sparse.vstack((H1,H2,Hu1,Hu2,Ha)) r = np.r_[r1,r2,ru1,ru2,ra] if assign: H0,r0 = con_constl(np.array([N6-1],dtype=int),cos0,1,N) H = sparse.vstack((H, H0)) r = np.r_[r,r0] #self.add_iterative_constraint(H*w, r*w, 'isogonal') #print('err:isogonal:',np.sum(np.square(H*X-r))) return H*w,r*w def con_isogonal_diagnet(cos0,assign=False,**kwargs): """ keep tangent crossing angle, of diagnal directions X += [lt1,lt2, ut1,ut2, cos] (ue1-ue3) = lt1 * ut1, ut1**2 = 1 (ue2-ue4) = lt2 * ut2, ut2**2 = 1 ut1 * ut2 = cos if assign: cos == cos0 """ w = kwargs.get('isogonal_diagnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') N6 = kwargs.get('N6') num = len(mesh.ind_rr_star_v4f4) arr = np.arange(num) c_l1 = N6-8*num-1 + arr c_l2 = c_l1+num c_ut1 = columnnew(arr,N6-6*num-1,num) c_ut2 = columnnew(arr,N6-3*num-1,num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) H1,r1 = con_edge(X,c_ue1,c_ue3,c_l1,c_ut1,num,N) H2,r2 = con_edge(X,c_ue2,c_ue4,c_l2,c_ut2,num,N) Hu1,ru1 = con_unit(X,c_ut1,num,N) Hu2,ru2 = con_unit(X,c_ut2,num,N) Ha,ra = con_constangle2(X,c_ut1,c_ut2,N6-1,num,N) H = sparse.vstack((H1,H2,Hu1,Hu2,Ha)) r = np.r_[r1,r2,ru1,ru2,ra] if assign: H0,r0 = con_constl(np.array([N6-1],dtype=int),cos0,1,N) H = sparse.vstack((H, H0)) r = np.r_[r,r0] #self.add_iterative_constraint(H*w, r*w, 'isogonal_diagnet') return H*w,r*w def con_isogonal_checkerboard_based(cos0,assign=False,**kwargs): """ quadface: diagonal crossing angle X += [ld1,ld2, ud1,ud2] 1. (v1-v3) = ld1*ud1, ud1**2=1 2. (v2-v4) = ld2*ud2, ud2**2=1 3. ud1*ud2 == cos0 """ w = kwargs.get('isogonal_ck_based') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N10 = kwargs.get('N10') V = mesh.V num = mesh.num_quadface numl = N10-8*num-1 numud = N10-6*num-1 arr = np.arange(num) c_ld1 = numl+arr c_ld2 = numl+num+arr v1,v2,v3,v4 = mesh.rr_quadface.T # in odrder c_v1 = np.r_[v1,V+v1,2*V+v1] # [x,y,z] c_v2 = np.r_[v2,V+v2,2*V+v2] # [x,y,z] c_v3 = np.r_[v3,V+v3,2*V+v3] # [x,y,z] c_v4 = np.r_[v4,V+v4,2*V+v4] # [x,y,z] c_ud1 = np.r_[numud+arr,numud+num+arr,numud+2*num+arr] c_ud2 = c_ud1+3*num He1,re1 = con_edge(X,c_v1,c_v3,c_ld1,c_ud1,num,N) He2,re2 = con_edge(X,c_v2,c_v4,c_ld2,c_ud2,num,N) Hu1,ru1 = con_unit(X,c_ud1,num,N) Hu2,ru2 = con_unit(X,c_ud2,num,N) Ha,ra = con_constangle2(X,c_ud1,c_ud2,N10-1,num,N) H = sparse.vstack((He1,He2,Hu1,Hu2,Ha*10)) r = np.r_[re1,re2,ru1,ru2,ra*10] if assign: H0,r0 = con_constl(np.array([N10-1],dtype=int),cos0,1,N) H = sparse.vstack((H, H0)) r = np.r_[r,r0] #self.add_iterative_constraint(H*w, r*w, 'isogonal_ck_based') return H*w,r*w def con_isogonal_quadface_based(cos0,assign=False,halfdiag=True,**kwargs): """ quadface: midedge point edge vectors X += [ld1,ld2, ud1,ud2] 1. (v2+v3-v1-v4) = 2* ld1*ud1, ud1**2=1 2. (v3+v4-v1-v2) = 2* ld2*ud2, ud2**2=1 3. ud1*ud2 == cos0 """ w = kwargs.get('isogonal_face_based') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N10 = kwargs.get('N10') V = mesh.V if halfdiag: ib,ir = mesh.vertex_check_ind _,v1,v2,v3,v4 = mesh.rr_star.T v1,v2,v3,v4 = v1[ib],v2[ib],v3[ib],v4[ib] num = len(v1) else: num = mesh.num_quadface v1,v2,v3,v4 = mesh.rr_quadface.T # in odrder numl = N10-8*num-1 numud = N10-6*num-1 arr = np.arange(num) c_ld1 = numl+arr c_ld2 = numl+num+arr c_v1 = np.r_[v1,V+v1,2*V+v1] # [x,y,z] c_v2 = np.r_[v2,V+v2,2*V+v2] # [x,y,z] c_v3 = np.r_[v3,V+v3,2*V+v3] # [x,y,z] c_v4 = np.r_[v4,V+v4,2*V+v4] # [x,y,z] c_ud1 = np.r_[numud+arr,numud+num+arr,numud+2*num+arr] c_ud2 = c_ud1+3*num def _edge(c_ld1,c_ud1,dddd): "(v2+v3-v1-v4) = 2* ld1*ud1, ud1**2=1" ld1 = X[c_ld1] ud1 = X[c_ud1] row = np.tile(np.arange(3*num),6) col = np.r_[c_v1,c_v2,c_v3,c_v4,np.tile(c_ld1,3),c_ud1] data = np.r_[dddd,-2*ud1,-2*np.tile(ld1,3)] r = -2*np.tile(ld1,3)*ud1 H = sparse.coo_matrix((data,(row,col)), shape=(3*num, N)) return H,r a3 = np.ones(3*num) d1 = np.r_[-a3,a3,a3,-a3] d2 = np.r_[-a3,-a3,a3,a3] He1,re1 = _edge(c_ld1,c_ud1,d1) He2,re2 = _edge(c_ld2,c_ud2,d2) Hu1,ru1 = con_unit(X,c_ud1,num,N) Hu2,ru2 = con_unit(X,c_ud2,num,N) Ha,ra = con_constangle2(X,c_ud1,c_ud2,N10-1,num,N) H = sparse.vstack((He1,He2,Hu1,Hu2,Ha)) r = np.r_[re1,re2,ru1,ru2,ra] if assign: H0,r0 = con_constl(np.array([N10-1],dtype=int),cos0,1,N) H = sparse.vstack((H, H0)) r = np.r_[r,r0] #self.add_iterative_constraint(H*w, r*w, 'isogonal_face_based') return H*w,r*w def con_unequal_two_neighbouring_edges(v012,eps,**kwargs): """ oriented edge1,edge2 l1>=l2 <==> l1^2-l2^2*(1+eps)=s^2 (v1-v)^2-(v2-v)^2*(1+eps) = s^2 """ w = kwargs.get('nonsymmetric') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nnonsym = kwargs.get('Nnonsym') num = len(v012[0]) c_s = Nnonsym-num+np.arange(num) c_v = columnnew(v012[0],0, mesh.V) c_v1 = columnnew(v012[1],0, mesh.V) c_v2 = columnnew(v012[2],0, mesh.V) col = np.r_[c_v,c_v1,c_v2,c_s] row = np.tile(np.arange(num),10) X0,X1,X2,Xs = X[c_v],X[c_v1],X[c_v2],X[c_s] data = np.r_[-2*(X1-X0)+2*(X2-X0)*(1+eps),2*(X1-X0),-2*(X2-X0)*(1+eps),-2*Xs] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) E1,E2 = (X1-X0).reshape(-1,3,order='F'),(X2-X0).reshape(-1,3,order='F') r = np.linalg.norm(E1,axis=1)**2-np.linalg.norm(E2,axis=1)**2*(1+eps) r -= Xs**2 return H*w,r*w def con_nonsquare_quadface(v012,il12,eps,**kwargs): """ oriented edge1,edge2 l1 > l2 or l1<l2. <==> (l1-l2)^2 = s^2 + eps l1**2 = (v1-v0)^2; l2**2 = (v2-v0)^2 v012 := [v0,v1,v2] il12 := [il1, il2] """ w = kwargs.get('nonsymmetric') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nnonsym = kwargs.get('Nnonsym') c_v = columnnew(v012[0],0, mesh.V) c_v1 = columnnew(v012[1],0, mesh.V) c_v2 = columnnew(v012[2],0, mesh.V) num = len(il12[0]) c_l1 = Nnonsym-mesh.E-num + il12[0] c_l2 = Nnonsym-mesh.E-num + il12[1] c_s = Nnonsym-num + np.arange(num) Xl1,Xl2,Xs = X[c_l1],X[c_l2],X[c_s] def _ratio(): col = np.r_[c_l1,c_l2,c_s] row = np.tile(np.arange(num),3) data = np.r_[2*(Xl1-Xl2),-2*(Xl1-Xl2),-2*Xs] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r = (Xl1-Xl2)**2-Xs**2 + np.ones(num)*eps return H,r def _edge(c_l1,c_v0,c_v1): "l1**2 = (v1-v0)^2" col = np.r_[c_v0,c_v1,c_l1] row = np.tile(np.arange(num),7) data = 2*np.r_[-X[c_v1]+X[c_v0],X[c_v1]-X[c_v0],-X[c_l1]] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r = np.linalg.norm((X[c_v1]-X[c_v0]).reshape(-1,3,order='F'),axis=1)**2 r -= X[c_l1]**2 return H,r H1,r1 = _ratio() H2,r2 = _edge(c_l1,c_v,c_v1) H3,r3 = _edge(c_l2,c_v,c_v2) H = sparse.vstack((H1, H2, H3)) r = np.r_[r1,r2,r3] return H*w,r*w def con_ctrlnet_symmetric_1_diagpoly(another_poly_direction=False,**kwargs): """ ctrl-quadmesh + 1diagonal form a web: three families of polylines satisfy symmetric condtion: ut1,ut2 (unit tangnets of control polylines); ud1 (unit tangent of diagonal) ut1 and ut2 symmetric to ud1 <==> ud1 * (ut1-ut2) = 0; (v1-v3) = l1 * ut1; (v2-v4) = l2 * ut2; (va-vc) = lac * ud1 ut1^2=1; ut2^2=1; ut1^2=1; X = [lt1,lt2,ut1,ut2; lac,ud1] ##len=1+1+3+3+1+3 """ w = kwargs.get('ctrlnet_symmetric_1diagpoly') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') num = len(mesh.ind_rr_star_v4f4) arr,arr3 = np.arange(num), np.arange(3*num) Ncds = kwargs.get('Ncds')-12*num c_lt1,c_t1 = Ncds+arr, Ncds+2*num+arr3 c_lt2,c_t2 = c_lt1+num, c_t1+3*num c_ld1,c_d1 = Ncds+8*num+arr,Ncds+9*num+arr3 _,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T _,va,vb,vc,vd = mesh.rr_star_corner# in diagonal direction c_v1 = columnnew(v1,0,mesh.V) c_v2 = columnnew(v2,0,mesh.V) c_v3 = columnnew(v3,0,mesh.V) c_v4 = columnnew(v4,0,mesh.V) if another_poly_direction: c_va = columnnew(vb,0,mesh.V) c_vc = columnnew(vd,0,mesh.V) else: c_va = columnnew(va,0,mesh.V) c_vc = columnnew(vc,0,mesh.V) H1,r1 = con_edge(X,c_v1,c_v3,c_lt1,c_t1,num,N) H2,r2 = con_edge(X,c_v2,c_v4,c_lt2,c_t2,num,N) H3,r3 = con_edge(X,c_va,c_vc,c_ld1,c_d1,num,N) Hu1,ru1 = con_unit(X,c_t1,num,N) Hu2,ru2 = con_unit(X,c_t2,num,N) Hu3,ru3 = con_unit(X,c_d1,num,N) Hs,rs = con_planarity(X,c_t1,c_t2,c_d1,num,N) H = sparse.vstack((H1, H2, H3, Hu1,Hu2,Hu3,Hs)) r = np.r_[r1,r2,r3,ru1,ru2,ru3,rs] return H*w,r*w def con_chebyshev(l0,assign=False,**kwargs): """ keeping all edge_length equal (Vi-Vj)^2 = l^2 if assign: l == l0 """ w = kwargs.get('chebyshev') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N8 = kwargs.get('N8') V = mesh.V vi, vj = mesh.vertex_ring_vertices_iterators(order=True) num = len(vi) numl = N8-1 c_l = np.tile(numl, num) c_vi = columnnew(vi,0,V) c_vj = columnnew(vj,0,V) data1 = X[c_vi] data2 = X[c_vj] col = np.r_[c_vi, c_vj, c_l] data = 2*np.r_[data1-data2, data2-data1, -X[c_l]] row = np.tile(np.arange(num),7) r = np.einsum('ij,ij->i',(data1-data2).reshape(-1,3, order='F'),(data1-data2).reshape(-1,3, order='F')) - X[c_l]**2 H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) if assign: Hl,rl = con_constl(np.array([numl],dtype=int),np.array([l0]),1,N) H = sparse.vstack((H, Hl)) r = np.r_[r,rl] return H*w, r*w #-------------------------------------------------------------------------- # A-net: #-------------------------------------------------------------------------- def _con_anet(X,w,c_n,c_v,c_v1,c_v2,c_v3,c_v4,N): "vn*(vi-v)=0; vn**2=1" num = int(len(c_v)/3) H1,r1 = con_planarity(X,c_v,c_v1,c_n,num,N) H2,r2 = con_planarity(X,c_v,c_v2,c_n,num,N) H3,r3 = con_planarity(X,c_v,c_v3,c_n,num,N) H4,r4 = con_planarity(X,c_v,c_v4,c_n,num,N) Hn,rn = con_unit(X,c_n,num,N) H = sparse.vstack((H1,H2,H3,H4,Hn)) r = np.r_[r1,r2,r3,r4,rn] return H*w, r*w def con_anet(rregular=False,checker_weight=1,id_checker=None,pitch=1,**kwargs): #TODO """ based on con_unit_edge() X += [ni] ni * (vij - vi) = 0 """ w = kwargs.get('Anet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nanet = kwargs.get('Nanet') if rregular: v,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T num=len(mesh.ind_rr_star_v4f4) else: num = mesh.num_regular v,v1,v2,v3,v4 = mesh.ver_regular_star.T c_n = Nanet-3*num+np.arange(3*num) c_v = columnnew(v ,0,mesh.V) c_v1 = columnnew(v1,0,mesh.V) c_v2 = columnnew(v2,0,mesh.V) c_v3 = columnnew(v3,0,mesh.V) c_v4 = columnnew(v4,0,mesh.V) if rregular and checker_weight<1: "at red-rr-vs, smaller weight" wr = checker_weight iblue,ired = id_checker ib = columnnew(iblue,0,len(mesh.ind_rr_star_v4f4)) ir = columnnew(ired,0,len(mesh.ind_rr_star_v4f4)) Hb,rb = _con_anet(X,w,c_n[ib],c_v[ib],c_v1[ib],c_v2[ib],c_v3[ib],c_v4[ib],N) Hr,rr = _con_anet(X,wr,c_n[ir],c_v[ir],c_v1[ir],c_v2[ir],c_v3[ir],c_v4[ir],N) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _con_anet(X,w,c_n,c_v,c_v1,c_v2,c_v3,c_v4,N) if kwargs.get('normal_bar'): Nbar = kwargs.get('Nbar') if pitch<0: c_nbar = Nbar-3*num+np.arange(3*num)-1 annnbar = [c_v,c_n,c_nbar,Nbar-1] else: c_nbar = Nbar-3*num+np.arange(3*num) annnbar = [c_v,c_n,c_nbar] return H,r, annnbar return H,r def con_anet_diagnet(checker_weight=1,id_checker=None, assign_crpc_ratio=1,pitch=1,**kwargs): "based on con_unit_edge(diag=True); X += [ni]; ni * (vij - vi) = 0" w = kwargs.get('Anet_diagnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nanet = kwargs.get('Nanet') #c_v,c_v1,c_v2,c_v3,c_v4 = mesh.get_vs_diagonal_v(index=False) v,v1,v2,v3,v4 = mesh.rr_star_corner c_v = columnnew(v ,0,mesh.V) c_v1 = columnnew(v1,0,mesh.V) c_v2 = columnnew(v2,0,mesh.V) c_v3 = columnnew(v3,0,mesh.V) c_v4 = columnnew(v4,0,mesh.V) num = int(len(c_v)/3) c_n = Nanet-3*num+np.arange(3*num) if checker_weight<1: "at red-rr-vs, smaller weight" wr = checker_weight iblue,ired = id_checker ib = columnnew(iblue,0,len(mesh.ind_rr_star_v4f4)) ir = columnnew(ired,0,len(mesh.ind_rr_star_v4f4)) Hb,rb = _con_anet(X,w,c_n[ib],c_v[ib],c_v1[ib],c_v2[ib],c_v3[ib],c_v4[ib],N) Hr,rr = _con_anet(X,wr,c_n[ir],c_v[ir],c_v1[ir],c_v2[ir],c_v3[ir],c_v4[ir],N) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _con_anet(X,w,c_n,c_v,c_v1,c_v2,c_v3,c_v4,N) annnbar = None if kwargs.get('normal_bar'): N10 = kwargs.get('N10') Nbar = kwargs.get('Nbar') if pitch<0: c_nbar = Nbar-3*num+np.arange(3*num)-1 annnbar = [c_v,c_n,c_nbar,Nbar-1] else: c_nbar = Nbar-3*num+np.arange(3*num) annnbar = [c_v,c_n,c_nbar] return H*w,r*w,annnbar if kwargs.get('CRPC'): """ quadface: diagonal crossing angle no additional varibalse; related with e1,e2,given ratio a a family of constraints: (1-a) e1*e2 - a-1=0 <==> e1*e2 = (1+a) / (1-a) === cos0 """ num = mesh.num_quadface numud = N10-6*num-1 arr = np.arange(num) c_ud1 = np.r_[numud+arr,numud+num+arr,numud+2*num+arr] c_ud2 = c_ud1+3*num col = np.r_[c_ud1,c_ud2] row = np.tile(arr,6) data = np.r_[X[c_ud2],X[c_ud1]] rr = np.einsum('ij,ij->i',X[c_ud1].reshape(-1,3, order='F'),X[c_ud2].reshape(-1,3, order='F')) a = assign_crpc_ratio rr += np.ones(num)*(1+a)/(1-a) Hr = sparse.coo_matrix((data,(row,col)), shape=(num, N)) H = sparse.vstack((H,Hr)) r = np.r_[r,rr] return H*w,r*w,annnbar return H,r #-------------------------------------------------------------------------- # S-net: #-------------------------------------------------------------------------- def con_snet(orientrn,pitch=None,**kwargs): w = kwargs.get('Snet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nsnet = kwargs.get('Nsnet') V = mesh.V X = X numv = mesh.num_regular v0,v1,v2,v3,v4 = mesh.rr_star.T c_v0 = columnnew(v0,0,V) c_v1 = columnnew(v1,0,V) c_v2 = columnnew(v2,0,V) c_v3 = columnnew(v3,0,V) c_v4 = columnnew(v4,0,V) arr1 = np.arange(numv) arr3 = np.arange(3*numv) _n1 = Nsnet-11*numv c_squ, c_a = _n1+np.arange(5*numv),_n1+5*numv+arr1 c_b,c_c,c_d,c_e = c_a+numv,c_a+2*numv,c_a+3*numv,c_a+4*numv c_a_sqr = c_a+5*numv def _con_v_square(c_squ): "[v;v1,v2,v3,v4]=[x,y,z], X[c_squ]=x^2+y^2+z^2" row_v = np.tile(arr1,3) row_1 = row_v+numv row_2 = row_v+2*numv row_3 = row_v+3*numv row_4 = row_v+4*numv row = np.r_[row_v,row_1,row_2,row_3,row_4,np.arange(5*numv)] col = np.r_[c_v0,c_v1,c_v2,c_v3,c_v4,c_squ] dv = 2*np.r_[X[c_v0]] d1 = 2*np.r_[X[c_v1]] d2 = 2*np.r_[X[c_v2]] d3 = 2*np.r_[X[c_v3]] d4 = 2*np.r_[X[c_v4]] data = np.r_[dv,d1,d2,d3,d4,-np.ones(5*numv)] H = sparse.coo_matrix((data,(row,col)), shape=(5*numv, N)) def xyz(c_i): c_x = c_i[:numv] c_y = c_i[numv:2*numv] c_z = c_i[2*numv:] return np.r_[X[c_x]**2+X[c_y]**2+X[c_z]**2] r = np.r_[xyz(c_v0),xyz(c_v1),xyz(c_v2),xyz(c_v3),xyz(c_v4)] return H,r def _con_pos_a(c_a,c_a_sqr): "a>=0 <---> a_sqr^2 - a = 0" row = np.tile(arr1,2) col = np.r_[c_a_sqr, c_a] data = np.r_[2*X[c_a_sqr], -np.ones(numv)] r = X[c_a_sqr]**2 H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r def _con_sphere_normalization(c_a,c_b,c_c,c_d,c_e): """normalize the sphere equation, convinent for computing/represent distance\normals ||df|| = b^2+c^2+d^2-4ae=1 """ row = np.tile(arr1,5) col = np.r_[c_a,c_b,c_c,c_d,c_e] data = 2*np.r_[-2*X[c_e],X[c_b],X[c_c],X[c_d],-2*X[c_a]] r = X[c_b]**2+X[c_c]**2+X[c_d]**2-4*X[c_a]*X[c_e]+np.ones(numv) H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r def _con_sphere(c_squ,c_a,c_b,c_c,c_d,c_e): "a(x^2+y^2+z^2)+(bx+cy+dz)+e=0" row = np.tile(arr1,9) def __sphere(c_vi,c_sq): c_x = c_vi[:numv] c_y = c_vi[numv:2*numv] c_z = c_vi[2*numv:] col = np.r_[c_x,c_y,c_z,c_sq,c_a,c_b,c_c,c_d,c_e] data = np.r_[X[c_b],X[c_c],X[c_d],X[c_a],X[c_sq],X[c_x],X[c_y],X[c_z],np.ones(numv)] r = X[c_b]*X[c_x]+X[c_c]*X[c_y]+X[c_d]*X[c_z]+X[c_a]*X[c_sq] H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r H0,r0 = __sphere(c_v0,c_squ[:numv]) H1,r1 = __sphere(c_v1,c_squ[numv:2*numv]) H2,r2 = __sphere(c_v2,c_squ[2*numv:3*numv]) H3,r3 = __sphere(c_v3,c_squ[3*numv:4*numv]) H4,r4 = __sphere(c_v4,c_squ[4*numv:]) H = sparse.vstack((H0,H1,H2,H3,H4)) r = np.r_[r0,r1,r2,r3,r4] return H,r def _con_const_radius(c_a,c_r): "2*ai * r = 1 == df" c_rr = np.tile(c_r, numv) row = np.tile(arr1,2) col = np.r_[c_a, c_rr] data = np.r_[X[c_rr], X[c_a]] H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) r = X[c_rr] * X[c_a] + 0.5*np.ones(numv) return H,r def _con_anet(c_a): row = arr1 col = c_a data = np.ones(numv) r = np.zeros(numv) H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r def _con_orient(c_n,c_o): "n0x*nx+n0y*ny+n0z*nz-x_orient^2 = 0" row = np.tile(arr1,4) col = np.r_[c_n, c_o] data = np.r_[orientrn.flatten('F'), -2*X[c_o]] r = -X[c_o]**2 H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r H0,r0 = _con_v_square(c_squ) H1,r1 = _con_pos_a(c_a,c_a_sqr) Hn,rn = _con_sphere_normalization(c_a,c_b,c_c,c_d,c_e) Hs,rs = _con_sphere(c_squ,c_a,c_b,c_c,c_d,c_e) H = sparse.vstack((H0,H1,Hn,Hs)) r = np.r_[r0,r1,rn,rs] if kwargs.get('Snet_orient'): w1 = kwargs.get('Snet_orient') Ns_n = kwargs.get('Ns_n') c_n = Ns_n-4*numv+arr3 c_n_sqr = Ns_n-numv+arr1 Ho,ro = _con_orient(c_n,c_n_sqr) H = sparse.vstack((H, Ho * w1)) r = np.r_[r, ro * w1] if kwargs.get('Snet_constR'): w2 = kwargs.get('Snet_constR') Ns_r = kwargs.get('Ns_r') c_r = np.array([Ns_r-1],dtype=int) Hr,rr = _con_const_radius(c_a,c_r) H = sparse.vstack((H, Hr * w2)) r = np.r_[r, rr * w2] if kwargs.get('Snet_anet'): w3 = kwargs.get('Snet_anet') Ha,ra = _con_anet(c_a) H = sparse.vstack((H, Ha * w3)) r = np.r_[r, ra * w3] if kwargs.get('normal_bar'): """cen-an=n*r; (n^2=1, not necessary) cen = -(B,C,D)/2A, r is computed from last iteration 2A*(r* nx + anx) + B = 0 2A*(r* ny + any) + C = 0 2A*(r* nz + anz) + D = 0 """ Nbar = kwargs.get('Nbar') annnbar = None if pitch<0: c_n = Nbar-6*numv+np.arange(3*numv)-1 c_nbar = Nbar-3*numv+np.arange(3*numv)-1 annnbar = [c_v0,c_n,c_nbar,Nbar-1] else: c_n = Nbar-6*numv+np.arange(3*numv) c_nbar = Nbar-3*numv+np.arange(3*numv) annnbar = [c_v0,c_n,c_nbar] cen = -np.c_[X[c_b]/X[c_a],X[c_c]/X[c_a],X[c_d]/X[c_a]]/2 rad1 = np.linalg.norm(cen-X[c_v0].reshape(-1,3,order='F'),axis=1) rad2 = np.linalg.norm(cen-X[c_v1].reshape(-1,3,order='F'),axis=1) rad3 = np.linalg.norm(cen-X[c_v2].reshape(-1,3,order='F'),axis=1) rad4 = np.linalg.norm(cen-X[c_v3].reshape(-1,3,order='F'),axis=1) rad5 = np.linalg.norm(cen-X[c_v4].reshape(-1,3,order='F'),axis=1) radii = (rad1+rad2+rad3+rad4+rad5)/5 def _normal(c_a,c_b,c_anx,c_nx): row = np.tile(np.arange(numv),4) col = np.r_[c_a,c_b,c_anx,c_nx] one = np.ones(numv) data = np.r_[2*(radii*X[c_nx]+X[c_anx]),one,2*X[c_a],2*radii*X[c_a]] r = 2*X[c_a]*(radii*X[c_nx]+X[c_anx]) H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r Hb,rb = _normal(c_a,c_b,c_v0[:numv],c_n[:numv]) Hc,rc = _normal(c_a,c_c,c_v0[numv:2*numv],c_n[numv:2*numv]) Hd,rd = _normal(c_a,c_d,c_v0[2*numv:],c_n[2*numv:]) Hn,rn = con_unit(X,c_n,numv,N) H = sparse.vstack((H, Hb, Hc, Hd, Hn)) r = np.r_[r, rb, rc, rd, rn] return H*w,r*w,annnbar #self.add_iterative_constraint(H * w, r * w, 'Snet') return H*w,r*w def con_snet_diagnet(assign_crpc_ratio,pitch=None, ck1=False,ck2=False,is_sub=True, **kwargs): w = kwargs.get('Snet_diagnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nsnet = kwargs.get('Nsnet') X = X numv = len(mesh.ind_rr_star_v4f4) if ck1: numv = len(mesh.ind_ck_rr_vertex[0]) elif ck2: numv = len(mesh.ind_ck_rr_vertex[1]) arrv1 = np.arange(numv) c_v,c_cen1,c_cen2,c_cen3,c_cen4 = mesh.get_vs_diagonal_v(ck1=ck1,ck2=ck2,index=False) c_cen = [c_cen1,c_cen2,c_cen3,c_cen4] _n1 = Nsnet-11*numv c_squ, c_a = _n1+np.arange(5*numv),_n1+5*numv+arrv1 c_b,c_c,c_d,c_e = c_a+numv,c_a+2*numv,c_a+3*numv,c_a+4*numv c_a_sqr = c_a+5*numv def _con_v_square(c_v,c_cen,c_squ): "[v;c1,c2,c3,c4]=[x,y,z], X[c_squ]=x^2+y^2+z^2" c_cen1,c_cen2,c_cen3,c_cen4 = c_cen row_v = np.tile(arrv1,3) row_1 = row_v+numv row_2 = row_v+2*numv row_3 = row_v+3*numv row_4 = row_v+4*numv row = np.r_[row_v,row_1,row_2,row_3,row_4,np.arange(5*numv)] col = np.r_[c_v,c_cen1,c_cen2,c_cen3,c_cen4,c_squ] dv = 2*np.r_[X[c_v]] d1 = 2*np.r_[X[c_cen1]] d2 = 2*np.r_[X[c_cen2]] d3 = 2*np.r_[X[c_cen3]] d4 = 2*np.r_[X[c_cen4]] data = np.r_[dv,d1,d2,d3,d4,-np.ones(5*numv)] H = sparse.coo_matrix((data,(row,col)), shape=(5*numv, N)) def xyz(c_i): c_x = c_i[:numv] c_y = c_i[numv:2*numv] c_z = c_i[2*numv:] return np.r_[X[c_x]**2+X[c_y]**2+X[c_z]**2] r = np.r_[xyz(c_v),xyz(c_cen1),xyz(c_cen2),xyz(c_cen3),xyz(c_cen4)] return H,r def _con_pos_a(c_a,c_a_sqr): "a>=0 <---> a_sqr^2 - a = 0" row = np.tile(arrv1,2) col = np.r_[c_a_sqr, c_a] data = np.r_[2*X[c_a_sqr], -np.ones(numv)] r = X[c_a_sqr]**2 H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r def _con_sphere_normalization(c_a,c_b,c_c,c_d,c_e): """normalize the sphere equation, convinent for computing/represent distance\normals ||df|| = b^2+c^2+d^2-4ae=1 """ row = np.tile(arrv1,5) col = np.r_[c_a,c_b,c_c,c_d,c_e] data = 2*np.r_[-2*X[c_e],X[c_b],X[c_c],X[c_d],-2*X[c_a]] r = X[c_b]**2+X[c_c]**2+X[c_d]**2-4*X[c_a]*X[c_e]+np.ones(numv) H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r def _con_sphere(c_v,c_cen,c_squ,c_a,c_b,c_c,c_d,c_e): "a(x^2+y^2+z^2)+(bx+cy+dz)+e=0" c_cen1,c_cen2,c_cen3,c_cen4 = c_cen row = np.tile(arrv1,9) def __sphere(c_vi,c_sq): c_x = c_vi[:numv] c_y = c_vi[numv:2*numv] c_z = c_vi[2*numv:] col = np.r_[c_x,c_y,c_z,c_sq,c_a,c_b,c_c,c_d,c_e] data = np.r_[X[c_b],X[c_c],X[c_d],X[c_a],X[c_sq],X[c_x],X[c_y],X[c_z],np.ones(numv)] r = X[c_b]*X[c_x]+X[c_c]*X[c_y]+X[c_d]*X[c_z]+X[c_a]*X[c_sq] H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r H0,r0 = __sphere(c_v,c_squ[:numv]) H1,r1 = __sphere(c_cen1,c_squ[numv:2*numv]) H2,r2 = __sphere(c_cen2,c_squ[2*numv:3*numv]) H3,r3 = __sphere(c_cen3,c_squ[3*numv:4*numv]) H4,r4 = __sphere(c_cen4,c_squ[4*numv:]) H = sparse.vstack((H0,H1,H2,H3,H4)) r = np.r_[r0,r1,r2,r3,r4] return H,r H0,r0 = _con_v_square(c_v,c_cen,c_squ) H1,r1 = _con_pos_a(c_a,c_a_sqr) Hn,rn = _con_sphere_normalization(c_a,c_b,c_c,c_d,c_e) Hs,rs = _con_sphere(c_v,c_cen,c_squ,c_a,c_b,c_c,c_d,c_e) H = sparse.vstack((H0,H1,Hn,Hs)) r = np.r_[r0,r1,rn,rs] def _con_normal(c_n): cen = -np.c_[X[c_b]/X[c_a],X[c_c]/X[c_a],X[c_d]/X[c_a]]/2 rad1 = np.linalg.norm(cen-X[c_v].reshape(-1,3,order='F'),axis=1) rad2 = np.linalg.norm(cen-X[c_cen1].reshape(-1,3,order='F'),axis=1) rad3 = np.linalg.norm(cen-X[c_cen2].reshape(-1,3,order='F'),axis=1) rad4 = np.linalg.norm(cen-X[c_cen3].reshape(-1,3,order='F'),axis=1) rad5 = np.linalg.norm(cen-X[c_cen4].reshape(-1,3,order='F'),axis=1) radii = (rad1+rad2+rad3+rad4+rad5)/5 def _normal(c_a,c_b,c_anx,c_nx): row = np.tile(np.arange(numv),4) col = np.r_[c_a,c_b,c_anx,c_nx] one = np.ones(numv) data = np.r_[2*(radii*X[c_nx]+X[c_anx]),one,2*X[c_a],2*radii*X[c_a]] r = 2*X[c_a]*(radii*X[c_nx]+X[c_anx]) H = sparse.coo_matrix((data,(row,col)), shape=(numv, N)) return H,r Hb,rb = _normal(c_a,c_b,c_v[:numv],c_n[:numv]) Hc,rc = _normal(c_a,c_c,c_v[numv:2*numv],c_n[numv:2*numv]) Hd,rd = _normal(c_a,c_d,c_v[2*numv:],c_n[2*numv:]) Hn,rn = con_unit(X,c_n,numv,N) H = sparse.vstack((Hb, Hc, Hd, Hn)) r = np.r_[rb, rc, rd, rn] return H,r if kwargs.get('normal_bar'): Nbar = kwargs.get('Nbar') annnbar = None if pitch<0: c_n = Nbar-6*numv+np.arange(3*numv)-1 # unit n c_nbar = Nbar-3*numv+np.arange(3*numv)-1 # n_bar annnbar = [c_v,c_n,c_nbar,Nbar-1] else: c_n = Nbar-6*numv+np.arange(3*numv) # unit n c_nbar = Nbar-3*numv+np.arange(3*numv) # n_bar annnbar = [c_v,c_n,c_nbar] Hn,rn = _con_normal(c_n) H = sparse.vstack((H, Hn)) r = np.r_[r, rn] return H*w,r*w,annnbar if kwargs.get('snet_geodesic'): Nbar = kwargs.get('Nbar') Ns_bi = kwargs.get('Ns_bi') if kwargs.get('normal_bar'): "note: here has already include Hn,rn, below add twice" c_n = Nbar-6*numv+np.arange(3*numv) # unit n c_bi1 = Ns_bi-6*numv+np.arange(3*numv) c_bi2 = c_bi1+3*numv else: c_n = Ns_bi-9*numv+np.arange(3*numv) c_bi1 = c_n+3*numv c_bi2 = c_bi1+3*numv H1,r1 = con_cross_product2(X,c_v,c_cen1,c_cen3,c_bi1,N) H2,r2 = con_cross_product2(X,c_v,c_cen2,c_cen4,c_bi2,N) H3,r3 = con_dot(X,c_bi1,c_n,N) H4,r4 = con_dot(X,c_bi2,c_n,N) Hn,rn = _con_normal(c_n) H = sparse.vstack((H,H1,H2,H3,H4,Hn)) r = np.r_[r,r1,r2,r3,r4,rn] if kwargs.get('Snet_gi_t'): # no use now!!! """ quadface: diagonal crossing angle X += [ld1,ld2, ud1,ud2, cos00] -- GI-net tangent 1. (v1-v3) = ld1*ud1, ud1**2=1 2. (v2-v4) = ld2*ud2, ud2**2=1 3. ud1*ud2 == cos00 4. (a^2-1)*A*B-(1+a^2)A+(1+a^2)B+1-a^2=0 (ti, gi-ti, given a) A:=cos0; B:=cos00 """ N10 = kwargs.get('N10') Ns_n = kwargs.get('Ns_n') Ns_git = kwargs.get('Ns_git') V = mesh.V X = X v1,v2,v3,v4 = mesh.rr_quadface.T # in odrder if is_sub: "normal from rr-vertex, tangent from inner-quadface" inn,_ = mesh.get_rr_quadface_boundaryquad_index() v1,v2,v3,v4 = v1[inn],v2[inn],v3[inn],v4[inn] num = len(v1) numl = Ns_git-8*num-1 numud = Ns_git-6*num-1 numn = Ns_n - 3*V arr = np.arange(num) c_ld1 = numl+arr c_ld2 = numl+num+arr "HERE VERTEX FROM UNIT-NORMAL" #c_alln = numn + np.arange(3*V) #X[c_alln] = -mesh.vertex_normals().flatten('F') subn = mesh.rr_star_corner[0] c_subn = columnnew(subn,numn,V) Hn,rn = _con_normal(c_subn) expn = np.setdiff1d(np.arange(V), subn) c_expn = columnnew(expn,numn,V) X[c_expn] = -mesh.vertex_normals()[expn].flatten('F') c_v1 = numn+np.r_[v1,V+v1,2*V+v1] # [x,y,z] c_v2 = numn+np.r_[v2,V+v2,2*V+v2] # [x,y,z] c_v3 = numn+np.r_[v3,V+v3,2*V+v3] # [x,y,z] c_v4 = numn+np.r_[v4,V+v4,2*V+v4] # [x,y,z] c_ud1 = np.r_[numud+arr,numud+num+arr,numud+2*num+arr] c_ud2 = c_ud1+3*num He1,re1 = con_edge(X,c_v1,c_v3,c_ld1,c_ud1,num,N) He2,re2 = con_edge(X,c_v2,c_v4,c_ld2,c_ud2,num,N) Hu1,ru1 = con_unit(X,c_ud1,num,N) Hu2,ru2 = con_unit(X,c_ud2,num,N) Ha,ra = con_constangle2(X,c_ud1,c_ud2,Ns_git-1,num,N) if True: "1 eq.: (a^2-1)*A*B-(1+a^2)A+(1+a^2)B+1-a^2=0" a = assign_crpc_ratio c_cos0,c_cos00 = N10-1, Ns_git-1 col = np.array([c_cos0,c_cos00],dtype=int) row = np.zeros(2) d1,d2 = (a**2-1)*X[c_cos00]-a**2-1, (a**2-1)*X[c_cos0]+a**2+1 data = np.array([d1,d2]) rpc = np.array([(a**2-1)*X[c_cos0]*X[c_cos00]+a**2-1]) Hpc = sparse.coo_matrix((data,(row,col)), shape=(1, N)) H = sparse.vstack((H,Hn,He1,He2,Hu1,Hu2,Ha,Hpc)) r = np.r_[r,rn,re1,re2,ru1,ru2,ra,rpc] # if assign: # "maybe not useful" # H0,r0 = con_constl(np.array([Ns_git-1],dtype=int),cos00,1,N) # H = sparse.vstack((H, H0)) # r = np.r_[r,r0] #print('n:', np.sum(np.square((Hn*X)-rn))) # print('e1:', np.sum(np.square((He1*X)-re1))) # print('u1:', np.sum(np.square((Hu1*X)-ru1))) # print('a:', np.sum(np.square((Ha*X)-ra))) # print('pc:', np.sum(np.square((Hpc*X)-rpc))) #print('all:', np.sum(np.square((H*X)-r))) if kwargs.get('CRPC'): """ quadface: diagonal crossing angle no additional varibalse; related with e1,e2,given ratio a a family of constraints: (1+a) e1*e2 + a-1=0 <==> e1*e2 = (1-a) / (1+a) === cos0 """ num = mesh.num_quadface numud = N10-6*num-1 arr = np.arange(num) c_ud1 = np.r_[numud+arr,numud+num+arr,numud+2*num+arr] c_ud2 = c_ud1+3*num col = np.r_[c_ud1,c_ud2] row = np.tile(arr,6) data = np.r_[X[c_ud2],X[c_ud1]] rr = np.einsum('ij,ij->i',X[c_ud1].reshape(-1,3, order='F'),X[c_ud2].reshape(-1,3, order='F')) a = assign_crpc_ratio rr += np.ones(num)*(1-a)/(1+a) Hr = sparse.coo_matrix((data,(row,col)), shape=(num, N)) H = sparse.vstack((H,Hr)) r = np.r_[r,rr] #self.add_iterative_constraint(H * w, r * w, 'Snet_diagnet') return H*w,r*w #-------------------------------------------------------------------------- # G-net: #-------------------------------------------------------------------------- def con_1geodesic(polyline_direction=False,**kwargs): """ still depends on the angle condition at vertex-star default direction: e1*e2-e3*e4=0; """ w = kwargs.get('Geodesic') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') num = mesh.num_regular arr = np.arange(num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) if polyline_direction: H,r = con_equal_opposite_angle(X,c_ue2,c_ue3,c_ue4,c_ue1,num,N) else: H,r = con_equal_opposite_angle(X,c_ue1,c_ue2,c_ue3,c_ue4,num,N) return H*w,r*w def _con_gnet(X,w,c_ue1,c_ue2,c_ue3,c_ue4,N): num = int(len(c_ue1)/3) H1,r1 = con_equal_opposite_angle(X,c_ue1,c_ue2,c_ue3,c_ue4,num,N) H2,r2 = con_equal_opposite_angle(X,c_ue2,c_ue3,c_ue4,c_ue1,num,N) H, r = sparse.vstack((H1, H2)), np.r_[r1,r2] return H*w, r*w def con_gnet(rregular=False,checker_weight=1,id_checker=None,**kwargs): """ based on con_unit_edge(diag=False) e1*e2-e3*e4=0; e2*e3-e1*e4=0 """ w = kwargs.get('Gnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') if rregular: "function same as below:con_gnet_diagnet" num=len(mesh.ind_rr_star_v4f4) else: num = mesh.num_regular arr = np.arange(num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) if rregular and checker_weight<1: "at red-rr-vs, smaller weight" wr = checker_weight iblue,ired = id_checker ib = columnnew(iblue,0,len(mesh.ind_rr_star_v4f4)) ir = columnnew(ired,0,len(mesh.ind_rr_star_v4f4)) Hb,rb = _con_gnet(X,w,c_ue1[ib],c_ue2[ib],c_ue3[ib],c_ue4[ib],N) Hr,rr = _con_gnet(X,wr,c_ue1[ir],c_ue2[ir],c_ue3[ir],c_ue4[ir],N) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _con_gnet(X,w,c_ue1,c_ue2,c_ue3,c_ue4,N) return H,r def con_gnet_diagnet(checker_weight=1,id_checker=None,**kwargs): """ based on con_unit_edge(diag=True) e1*e2-e3*e4=0; e2*e3-e1*e4=0 """ w = kwargs.get('Gnet_diagnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') num = len(mesh.ind_rr_star_v4f4) arr = np.arange(num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) if checker_weight<1: "at red-rr-vs, smaller weight" wr = checker_weight iblue,ired = id_checker ib = columnnew(iblue,0,len(mesh.ind_rr_star_v4f4)) ir = columnnew(ired,0,len(mesh.ind_rr_star_v4f4)) Hb,rb = _con_gnet(X,w,c_ue1[ib],c_ue2[ib],c_ue3[ib],c_ue4[ib],N) Hr,rr = _con_gnet(X,wr,c_ue1[ir],c_ue2[ir],c_ue3[ir],c_ue4[ir],N) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _con_gnet(X,w,c_ue1,c_ue2,c_ue3,c_ue4,N) return H,r def con_dog(rregular=False,**kwargs): """ based on con_unit_edge() & con_gnet() e1*e2-e2*e3=0 """ w = kwargs.get('DOG') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') if rregular: num=len(mesh.ind_rr_star_v4f4) else: num = mesh.num_regular arr = np.arange(num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) #c_ue4 = columnnew(arr,N5-3*num,num) H,r = con_equal_opposite_angle(X,c_ue1,c_ue2,c_ue2,c_ue3,num,N) return H*w,r*w def con_gonet(rregular=False,is_direction24=False,**kwargs): """ GEODESIC PARALLEL COORDINATES based on con_unit_edge() & con_1geodesic orthogonal: (e1-e3)*(e2-e4) = 0 if direction: geodesic: e1*e2-e1*e4=0; e2*e3-e3*e4=0; else: geodesic: e1*e2-e2*e3=0; e3*e4-e4*e1=0; """ w = kwargs.get('GOnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') N5 = kwargs.get('N5') if rregular: num=len(mesh.ind_rr_star_v4f4) else: num = mesh.num_regular arr = np.arange(num) c_ue1 = columnnew(arr,N5-12*num,num) c_ue2 = columnnew(arr,N5-9*num,num) c_ue3 = columnnew(arr,N5-6*num,num) c_ue4 = columnnew(arr,N5-3*num,num) if is_direction24: H1,r1 = con_equal_opposite_angle(X,c_ue1,c_ue2,c_ue2,c_ue3,num,N) H2,r2 = con_equal_opposite_angle(X,c_ue3,c_ue4,c_ue4,c_ue1,num,N) else: H1,r1 = con_equal_opposite_angle(X,c_ue1,c_ue2,c_ue1,c_ue4,num,N) H2,r2 = con_equal_opposite_angle(X,c_ue2,c_ue3,c_ue3,c_ue4,num,N) row = np.tile(arr,12) col = np.r_[c_ue1,c_ue2,c_ue3,c_ue4] data = np.r_[X[c_ue2]-X[c_ue4],X[c_ue1]-X[c_ue3],X[c_ue4]-X[c_ue2],X[c_ue3]-X[c_ue1]] H3 = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r3 = np.einsum('ij,ij->i',(X[c_ue1]-X[c_ue3]).reshape(-1,3, order='F'),(X[c_ue2]-X[c_ue4]).reshape(-1,3, order='F')) H = sparse.vstack((H1, H2, H3)) r = np.r_[r1, r2, r3] #print('err:gonet:',np.sum(np.square(H*X-r))) return H*w,r*w def con_Voss(**kwargs): "conjugate geodesic net: planar quads with equal opposite angles" H1,r1 = con_normal_constraints(**kwargs) H2,r2 = con_planarity_constraints(**kwargs) H3,r3 = con_gnet(**kwargs) H = sparse.vstack((H1,H2,H3)) r = np.r_[r1,r2,r3] return H,r #-------------------------------------------------------------------------- # DGPC: #-------------------------------------------------------------------------- def con_dgpc(rregular=False,polyline_direction=False,**kwargs): """main difference here is using patch_matrix to represent all vertices based on con_unit_edge() & con_gonet equal parallel_circle_direction edges each row: (vi-vj)^2 - lij^2 = 0 """ w = kwargs.get('DGPC') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Ndgpc = kwargs.get('Ndgpc') rm = mesh.patch_matrix if polyline_direction: rm = rm.T nrow,ncol = rm.shape vi,vj = rm[:,:-1].flatten(), rm[:,1:].flatten() c_vi = columnnew(vi ,0,mesh.V) c_vj = columnnew(vj ,0,mesh.V) c_l = (Ndgpc-nrow+np.arange(nrow)).repeat(ncol-1) H,r = con_diagonal(X,c_vi,c_vj,c_l,nrow*(ncol-1),N) return H*w,r*w #-------------------------------------------------------------------------- # AAG / GGA-net: #-------------------------------------------------------------------------- def _con_agnet_liouville(c_geo,num,angle=90,is_angle=False,**kwargs): """ X +=[ll1,ll2,ll3,ll4,u1,u2; lu1,tu1] +=[lu2,tu2; lla,llc,g1, lg1,tg1, c] orthgonal A-net & constant angle with diagonal crv. 2asymptotics: v1 -- v -- v3 & v2 -- v -- v4 orthogonal: u1 = l1**2*(V3-V0) - l3**2*(V1-V0) u2 = l2**2*(V4-V0) - l4**2*(V2-V0) u1 * v1 = 0 (no need to be unit) 1geodesic: a --- v --- c g1 = la**2*(Vc-V0) - lc**2*(Va-V0) const.angle: u1 = tu1 * lu1 g1 = tg1 * lg1 tu1 * tg1 = const. """ X = kwargs.get('X') N = kwargs.get('N') Noscut = kwargs.get('Noscut') c_v,c_v1,c_v3,c_lu1,c_tu1,c_lla,c_llc,c_lg,c_g1,c_lg1,c_tg1,c_c = c_geo H2,r2 = con_osculating_tangent(X,c_v,c_v1,c_v3,c_lla,c_llc,c_lg,c_g1,num,N) "Unit 1asym tangent vector u1 = tu1 * lu1 :" c_u1 = Noscut-10*num+4*num+np.arange(3*num) H3,r3 = con_unit_vector(X,c_u1,c_tu1,c_lu1,num,N) "Unit 1geo tangent vector g1 = tg1 * lg1 :" H4,r4 = con_unit_vector(X,c_g1,c_tg1,c_lg1,num,N) "Constant angle with 1geo and 1asym crv.: " H5,r5 = con_constangle2(X,c_tu1,c_tg1,c_c,num,N) H = sparse.vstack((H2,H3,H4,H5)) r = np.r_[r2,r3,r4,r5] if is_angle: cos0 = np.cos(angle/180.0*np.pi) H0,r0 = con_constl(np.array([c_c],dtype=int),cos0,1,N) Ha,ra = con_constangle(X,c_tu1,c_tg1,cos0,num,N) H = sparse.vstack((H, H0, Ha)) r = np.r_[r,r0,ra] return H,r def _con_agnet_planar_geodesic(ver_poly_strip,strong=False,**kwargs): """ X +=[ni] along each i-th geodesic: ni * (vij-vik) = 0; k=j+1,j=0,... refer: self.get_poly_strip_normal() if strong: ni * anet_n = 0 """ mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Ndgeo = kwargs.get('Ndgeo') Ndgeopc = kwargs.get('Ndgeopc') iall,iind = ver_poly_strip num = len(iall) arr = Ndgeopc-3*num+np.arange(3*num) c_nx,c_ny,c_nz = arr[:num],arr[num:2*num],arr[2*num:3*num] col=row=data=r = np.array([]) k,i = 0,0 for iv in iall: va,vb = iv[:-1],iv[1:] m = len(va) c_a = columnnew(va,0,mesh.V) c_b = columnnew(vb,0,mesh.V) c_ni = np.r_[np.tile(c_nx[i],m),np.tile(c_ny[i],m),np.tile(c_nz[i],m)] coli = np.r_[c_a,c_b,c_ni] rowi = np.tile(np.arange(m),9) + k datai = np.r_[X[c_ni],-X[c_ni],X[c_a]-X[c_b]] ri = np.einsum('ij,ij->i',X[c_ni].reshape(-1,3,order='F'),(X[c_a]-X[c_b]).reshape(-1,3,order='F')) col = np.r_[col,coli] row = np.r_[row,rowi] data = np.r_[data,datai] r = np.r_[r,ri] k += m i += 1 H = sparse.coo_matrix((data,(row,col)), shape=(k, N)) H1,r1 = con_unit(X,arr,num,N) H = sparse.vstack((H,H1)) r = np.r_[r,r1] if strong: "planar_geodesic = PC crv. if strong: normal_planar=PQ" num = len(mesh.ind_rr_star_v4f4) move = Ndgeo-6*num col=row=data= np.array([]) k,i = 0,0 for iv in iind: iv=np.array(iv) m = len(iv) c_an = move+np.r_[iv,iv+num,iv+2*num] c_ni = np.r_[np.tile(c_nx[i],m),np.tile(c_ny[i],m),np.tile(c_nz[i],m)] coli = np.r_[c_an,c_ni] rowi = np.tile(np.arange(m),6) + k datai = np.r_[X[c_ni],X[c_an]] ri = np.einsum('ij,ij->i',X[c_ni].reshape(-1,3,order='F'),X[c_an].reshape(-1,3,order='F')) col = np.r_[col,coli] row = np.r_[row,rowi] data = np.r_[data,datai] r = np.r_[r,ri] k += m i += 1 H0 = sparse.coo_matrix((data,(row,col)), shape=(k, N)) H = sparse.vstack((H,H0)) return H,r def con_anet_geodesic(ver_poly_strip,another_poly_direction=False, checker_weight=1,id_checker=None, **kwargs): """Anet(Gnet) with diagonal geodesic/asymptotic project: d 4 c 1 v 3 a 2 b if AAG: control net (v,1,2,3,4) is Anet, (a-v-c or b-v-d) is geodesic elif GAA: diagonal net (v,a,b,c,d) is Anet, (1-v-3 or 2-v-4) is geodesic elif GGA: control net (v,1,2,3,4) is Gnet, (a-v-c or b-v-d) is asymptotic elif AGG: diagonal net (v,a,b,c,d) is Gnet, (1-v-3 or 2-v-4) is asymptotic if AAG/GAA: X += [ni]+[Ni]; ni: vertex-normal from Anet; Ni: osculating normal of geodesic <==> from Anet/Anet_diagnet: ni*(vi-v)=0,(i=1,2,3,4), ni^2=1; *geodesic: Ni=(Vc-V) x (Va-V); ni * Ni = 0 elif GGA/AGG: X += [Ni,No1,No2]; Ni: vertex-normal of Gnet; No1,No2: two oscualting normals of G-net <==> Way1 (guess has problem): Gnet/Gnet_diagnet: li*ei=vi-v,ei^2=1 (i=1,2,3,4); bisecting: ni*(e1-e3)= ni*(e2-e4)=0; ni^2=1; asymptotic: ni*(va-v)=ni*(vc-v)=0 *Way2 (using this): *Ni^2=1; Ni*No1,No2,va-v,vc-v=0; *No1=(vc-v) x (va-v), No2=(vd-v) x (vb-v) elif AAGG/GGAA: X += [ni] + [No1,No2]; ni: vertex-normal from Anet; No1,No2: two oscualting normals of G-net <==> *No1=(vc-v) x (va-v), No2=(vd-v) x (vb-v); ni*No1,No2=0 # from constraints_net import con_unit_edge, con_anet,con_anet_diagnet, # con_gnet,con_gnet_diagnet checker constraints: blue for hard constraint; red for soft..with lower checker_weight id_checker=[iblue,ired]; len(id_checker)==len(ind_rr_star_v4f4) rr_star[ind_rr_star_v4f4][id_checker[0]] =\in= vblue rr_star[ind_rr_star_v4f4][id_checker[1]] =\in= vred """ w_aag = kwargs.get('AAGnet') w_gaa = kwargs.get('GAAnet') w_gga = kwargs.get('GGAnet') w_agg = kwargs.get('AGGnet') w_aagg = kwargs.get('AAGGnet') w_ggaa = kwargs.get('GGAAnet') mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Nanet = kwargs.get('Nanet') # for AAG, AAGG Ndgeo = kwargs.get('Ndgeo') num=len(mesh.ind_rr_star_v4f4) arr3 = np.arange(3*num) if id_checker is not None: "if checker_weight<1, checker_weight for red-vertex; w1,..,w6 for blue" iblue,ired = id_checker ib = columnnew(iblue,0,len(mesh.ind_rr_star_v4f4)) ir = columnnew(ired,0,len(mesh.ind_rr_star_v4f4)) v,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T v,va,vb,vc,vd = mesh.rr_star_corner# in diagonal direction c_v = columnnew(v,0,mesh.V) c_1 = columnnew(v1,0,mesh.V) c_2 = columnnew(v2,0,mesh.V) c_3 = columnnew(v3,0,mesh.V) c_4 = columnnew(v4,0,mesh.V) c_a = columnnew(va,0,mesh.V) c_b = columnnew(vb,0,mesh.V) c_c = columnnew(vc,0,mesh.V) c_d = columnnew(vd,0,mesh.V) c_n = Nanet-3*num+np.arange(3*num) # for AAG, AAGG def _1geo(X,w,c_v,c_a,c_c,c_an,c_on): "on = (Vc-V) x (Va-V); an * on = 0" H1,r1 = con_cross_product2(X,c_v,c_c,c_a,c_on,N) H2,r2 = con_dot(X,c_an,c_on,N) H = sparse.vstack((H1,H2)) r = np.r_[r1,r2] return H*w, r*w def _1asym(X,w,c_v,c_a,c_c,c_n): "*asymptotic: ni*(va-v)=ni*(vc-v)=0" num = int(len(c_v)/3) H1,r1 = con_planarity(X,c_v,c_a,c_n,num,N) H2,r2 = con_planarity(X,c_v,c_c,c_n,num,N) Hu,ru = con_unit(X,c_n,num,N) H = sparse.vstack((H1,H2,Hu)) r = np.r_[r1,r2,ru] return H*w, r*w def _gga(X,w,c_v,c_g1,c_g2,c_g3,c_g4,c_l,c_r,c_n,c_on1,c_on2): Ha,ra = _1asym(X,w,c_v,c_l,c_r,c_n) Ho1,ro1 = _1geo(X,w,c_v,c_g1,c_g3,c_n,c_on1) Ho2,ro2 = _1geo(X,w,c_v,c_g2,c_g4,c_n,c_on2) H = sparse.vstack((Ha,Ho1,Ho2)) r = np.r_[ra,ro1,ro2] return H,r def _aagg(X,w,c_v,c_g1,c_g2,c_g3,c_g4,c_a1,c_a2,c_a3,c_a4,c_n,c_on1,c_on2): Ha1,ra1 = _1asym(X,w,c_v,c_a1,c_a3,c_n) Ha2,ra2 = _1asym(X,w,c_v,c_a2,c_a4,c_n) Ho1,ro1 = _1geo(X,w,c_v,c_g1,c_g3,c_n,c_on1) Ho2,ro2 = _1geo(X,w,c_v,c_g2,c_g4,c_n,c_on2) H = sparse.vstack((Ha1,Ha2,Ho1,Ho2)) r = np.r_[ra1,ra2,ro1,ro2] return H,r wr = checker_weight if w_aag or w_gaa: """X += [ni]+[Ni]; ni: vertex-normal from Anet; Ni: osculating normal of geodesic <==> from Anet/Anet_diagnet: ni*(vi-v)=0,(i=1,2,3,4), ni^2=1; *geodesic: Ni=(Vc-V) x (Va-V); ni * Ni = 0 """ wag = max(w_aag,w_gaa) c_on = Ndgeo-3*num + arr3 if w_aag: if another_poly_direction: c_l,c_r = c_b, c_d else: c_l,c_r = c_a, c_c elif w_gaa: if another_poly_direction: c_l,c_r = c_2, c_4 else: c_l,c_r = c_1, c_3 if checker_weight<1: "at red-rr-vs, smaller weight" Hb,rb = _1geo(X,wag,c_v[ib],c_l[ib],c_r[ib],c_n[ib],c_on[ib]) Hr,rr = _1geo(X,wr,c_v[ir],c_l[ir],c_r[ir],c_n[ir],c_on[ir]) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _1geo(X,wag,c_v,c_l,c_r,c_n,c_on) elif w_gga or w_agg: """X += [Ni,No1,No2]; Ni: vertex-normal of Anet; No1,No2: two oscualting normals of G-net <==>Ni^2=1; Ni*No1,No2,va-v,vc-v=0; No1=(vc-v) x (va-v), No2=(vd-v) x (vb-v) """ wag = max(w_gga,w_agg) c_n = Ndgeo-9*num + arr3 c_on1,c_on2 = c_n + 3*num,c_n + 6*num if w_gga: c_g1,c_g2,c_g3,c_g4 = c_1,c_2,c_3,c_4 if another_poly_direction: c_l,c_r = c_b, c_d else: c_l,c_r = c_a, c_c elif w_agg: c_g1,c_g2,c_g3,c_g4 = c_a,c_b,c_c,c_d if another_poly_direction: c_l,c_r = c_2, c_4 else: c_l,c_r = c_1, c_3 if checker_weight<1: "at red-rr-vs, smaller weight" Hb,rb = _gga(X,wag,c_v[ib],c_g1[ib],c_g2[ib],c_g3[ib],c_g4[ib],c_l[ib],c_r[ib],c_n[ib],c_on1[ib],c_on2[ib]) Hr,rr = _gga(X,wr,c_v[ir],c_g1[ir],c_g2[ir],c_g3[ir],c_g4[ir],c_l[ir],c_r[ir],c_n[ir],c_on1[ir],c_on2[ir]) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _gga(X,wag,c_v,c_g1,c_g2,c_g3,c_g4,c_l,c_r,c_n,c_on1,c_on2) elif w_aagg or w_ggaa: """ X += [ni] + [No1,No2]; ni: vertex-normal from Anet; No1,No2: two oscualting normals of G-net <==> *No1=(vc-v) x (va-v), No2=(vd-v) x (vb-v); ni*No1,No2=0 """ wag = max(w_aagg,w_ggaa) c_on1 = Ndgeo-6*num + arr3 c_on2 = c_on1 + 3*num if w_aagg: c_g1,c_g2,c_g3,c_g4 = c_a,c_b,c_c,c_d ##different from above c_a1,c_a2,c_a3,c_a4 = c_1,c_2,c_3,c_4 elif w_ggaa: c_g1,c_g2,c_g3,c_g4 = c_1,c_2,c_3,c_4 ##different from above c_a1,c_a2,c_a3,c_a4 = c_a,c_b,c_c,c_d if checker_weight<1: "at red-rr-vs, smaller weight" Hb,rb = _aagg(X,wag,c_v[ib],c_g1[ib],c_g2[ib],c_g3[ib],c_g4[ib], c_a1[ib],c_a2[ib],c_a3[ib],c_a4[ib], c_n[ib],c_on1[ib],c_on2[ib]) Hr,rr = _aagg(X,wr,c_v[ir],c_g1[ir],c_g2[ir],c_g3[ir],c_g4[ir], c_a1[ir],c_a2[ir],c_a3[ir],c_a4[ir], c_n[ir],c_on1[ir],c_on2[ir]) H = sparse.vstack((Hb,Hr)) r = np.r_[rb,rr] else: "all rr-vs, same weight" H,r = _aagg(X,wag,c_v,c_g1,c_g2,c_g3,c_g4,c_a1,c_a2,c_a3,c_a4, c_n,c_on1,c_on2) w5 = kwargs.get('agnet_liouville') # no need now. w6 = kwargs.get('planar_geodesic') # no need now. Ndgeoliou = kwargs.get('Ndgeoliou') if w5: # no need now. "X +=[lu1,tu1; lla,llc,g1, lg1,tg1]" arr = np.arange(num) n = Ndgeoliou - 13*num -1 c_lu1 = n+arr c_tu1 = n+num+arr3 c_lla = n+4*num+arr c_llc = c_lla+num c_g1 = n+6*num+arr3 c_lg1 = n+9*num+arr c_tg1 = n+10*num+arr3 c_const = Ndgeoliou - 1 #c_geo = [c_lu1,c_tu1,c_lla,c_llc,c_g1,c_lg1,c_tg1,c_const] if w_gaa: if another_poly_direction: c_geo = [c_v,c_2,c_4,c_lu1,c_tu1,c_lla,c_llc,c_g1,c_lg1,c_tg1,c_const] else: c_geo = [c_v,c_1,c_3,c_lu1,c_tu1,c_lla,c_llc,c_g1,c_lg1,c_tg1,c_const] elif w_aag: if another_poly_direction: c_geo = [c_v,c_b,c_d,c_lu1,c_tu1,c_lla,c_llc,c_g1,c_lg1,c_tg1,c_const] else: c_geo = [c_v,c_a,c_c,c_lu1,c_tu1,c_lla,c_llc,c_g1,c_lg1,c_tg1,c_const] H0,r0 = _con_agnet_liouville(c_geo,num,**kwargs) H = sparse.vstack((H,H0)) r = np.r_[r,r0] if w6: # no need now. H0,r0 = _con_agnet_planar_geodesic(ver_poly_strip,**kwargs) H = sparse.vstack((H,H0)) r = np.r_[r,r0] return H,r def con_AGnet(is_ag_or_ga=True,is_ortho=False, is_const_r=False,is_unique_r=False,**kwargs): """ based on pre-defined osculating_tangent: con_osculating_tangents() X +=[ll1,ll2,ll3,ll4,lt1,lt2,t1,t2] v1-v-v3: lt*t = l1**2*(V3-V0) - l3**2*(V1-V0) t^2=1 <===> ll1 (= l1**2) = (V1-V0)^2 ll3 (= l3**2) = (V3-V0)^2 ll1 * (v3-v0) - ll3 * (v1-v0) - t*lt = 0 t^2=1 asymptotic v1-v-v3; geodesic v2-v-v4; X += [surfN; ogN] unit surfN // principalnormal of geodesic _|_ edges of asymptotic constraints: 1. surfN^2=1 2. surfN * t2 = 0; 3. surfN * (v1-v) = 0 4. surfN * (v3-v) = 0 5. ogN^2=1 6. ogN * (v2-v) = 0 7. ogN * (v4-v) = 0 8. ogN * surfN = 0 if ortho. t1 * t2 = 0 if const.r. X+=[Ri],each geodesic assigned Ri=ri^2, or 1 whole R=const.r^2 (v1-v)^2 = 4*[(v1-v)*surfN/|v1-v|]^2 *r^2 <==> ll1 = 4*[]^2 * r^2 <==> ll1^2 = 4* C *R, C:= [(v1-v)*surfN]^2 """ mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Noscut = kwargs.get('Noscut') Nag = kwargs.get('Nag') wag = kwargs.get('AGnet') #igeo = mesh.igeopoly#TODO num=len(mesh.ind_rr_star_v4f4) arr,arr3 = np.arange(num),np.arange(3*num) if is_const_r or is_unique_r: if is_const_r: pass # k = len(igeo) # c_ri = Nag-k+np.arange(k) # c_srfN = Nag-6*num+arr3-k # c_ogN = Nag-4*num+arr3-k elif is_unique_r: c_r = Nag-1 c_srfN = Nag-6*num+arr3-1 c_ogN = Nag-4*num+arr3-1 else: c_srfN = Nag-6*num+arr3 c_ogN = Nag-3*num+arr3 n = Noscut - 12*num c_ll1,c_ll2 = n+arr,n+arr+num c_t1,c_t2 = n+6*num+arr3, n+9*num+arr3 v,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T c_v = columnnew(v,0,mesh.V) c_1 = columnnew(v1,0,mesh.V) c_2 = columnnew(v2,0,mesh.V) c_3 = columnnew(v3,0,mesh.V) c_4 = columnnew(v4,0,mesh.V) if is_ag_or_ga: "asy(1-v-3), geo(2-v-4)" c1,c2,c3,c4 = c_1,c_2,c_3,c_4 else: "asy(2-v-4), geo(1-v-3)" c1,c2,c3,c4 = c_2,c_1,c_4,c_3 c_ll1,c_ll2 = c_ll2,c_ll1 c_t1,c_t2 = c_t2,c_t1 def _AG(): "surfN^2=1" H1,r1 = con_unit(X,c_srfN,num,N) "surfN * t2 = 0;" H2,r2 = con_dot(X,c_t2,c_srfN,N) "surfN*(v1-v)=0; surfN*(v3-v)=0;" H3,r3 = con_planarity(X,c_v,c1,c_srfN,num,N) H4,r4 = con_planarity(X,c_v,c3,c_srfN,num,N) "ogN^2=1; ogN*(v2-v)=0; ogN*(v4-v)=0" H5,r5 = con_unit(X,c_ogN,num,N) H6,r6 = con_planarity(X,c_v,c2,c_ogN,num,N) H7,r7 = con_planarity(X,c_v,c4,c_ogN,num,N) "ogN * surfN = 0" H8,r8 = con_dot(X,c_srfN,c_ogN,N) H = sparse.vstack((H1,H2,H3,H4,H5,H6,H7,H8)) r = np.r_[r1,r2,r3,r4,r5,r6,r7,r8] #print('err:1:',np.sum(np.square(H1*X-r1))) #print('err:2:',np.sum(np.square(H2*X-r2))) print('err:3:',np.sum(np.square(H3*X-r3))) print('err:4:',np.sum(np.square(H4*X-r4))) # print('err:5:',np.sum(np.square(H5*X-r5))) # print('err:6:',np.sum(np.square(H6*X-r6))) # print('err:7:',np.sum(np.square(H7*X-r7))) # print('err:8:',np.sum(np.square(H8*X-r8))) return H,r H,r = _AG() if is_ortho: "t1 * t2 = 0" Ho,ro = con_dot(X,c_t1,c_t2,N) H = sparse.vstack((H,Ho)) r = np.r_[r,ro] #print('err:o:',np.sum(np.square(Ho*X-ro))) if is_const_r or is_unique_r: if is_const_r: "num_m is the num of geodesic" pass elif is_unique_r: "ll1^2 = 4* C *R, C:= [(v1-v)*surfN]^2" VV1 = (X[c1]-X[c_v]).reshape(-1,3,order='F') srfN = X[c_srfN].reshape(-1,3,order='F') C = np.einsum('ij,ij->i',VV1,srfN)**2 col = np.r_[c_ll1,np.ones(num,dtype=int)*c_r] row = np.tile(arr,2) data = np.r_[2*X[c_ll1],-4*C] rr = X[c_ll1]**2 Hr = sparse.coo_matrix((data,(row,col)), shape=(num, N)) print('err:r:',np.sum(np.square(Hr*X-rr))) H = sparse.vstack((H,Hr)) r = np.r_[r,rr] return H*wag,r*wag def con_singular_Anet_diag_geodesic(singular_polylist,ind_anet,**kwargs): "for singular A-net, 1family diagonals are geodesic" mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') Ndgeo = kwargs.get('Ndgeo') Nanet = kwargs.get('Nanet') vl,vc,vr = singular_polylist c_l = columnnew(vl,0,mesh.V) c_v = columnnew(vc,0,mesh.V) c_r = columnnew(vr,0,mesh.V) num = len(vc) arr3 = np.arange(3*num) c_on = Ndgeo-3*num + arr3 num_anet=len(mesh.ind_rr_star_v4f4) #c_anet_n = columnnew(ind_anet,Nanet-3*num_anet,num_anet) c_anet_n = np.r_[ind_anet,ind_anet+num_anet,ind_anet+2*num_anet]+Nanet-3*num_anet #print(len(c_on),len(c_anet_n),num,num_anet) def _1geo(c_v,c_a,c_c,c_an,c_on): "based on control-net==A-net" "an:Anet-normal; on:Osculating-normal" "on=(Vc-V)x(Va-V)" H1,r1 = con_cross_product2(X,c_v,c_a,c_c,c_on,N) "an*on=0" H2,r2 = con_dot(X,c_an,c_on,N) H = sparse.vstack((H1,H2)) r = np.r_[r1,r2] return H,r H,r = _1geo(c_v,c_l,c_r,c_anet_n,c_on) return H,r def con_diag_1_asymptotic_or_geodesic(singular_polylist=None, ind_rrv=None, another_poly_direction=False, is_asym_or_geod = True, **kwargs): """ normal at vs from control-mesh two polylines tangents: t1 x t2 // N default direction: va-v-vc; else: vb-v-vd common: <==> (v3-v1) x (v4-v2) = un * l; un^2=1 if asymptotic: X += [v4N] ##len=[3] <==> uN * (va-v) = uN * (vc-v) == 0 elif geodesic: X += [v4N,la,lc,ea,ec] ##len=[3+1+1+3+3] <==> uN x (ea+ec) == 0; (va-v) = la * ea; (vc-v) = lc * ec; ea^2=1; ec^2=1; """ mesh = kwargs.get('mesh') X = kwargs.get('X') N = kwargs.get('N') num = len(mesh.ind_rr_star_v4f4) arr,arr3 = np.arange(num), np.arange(3*num) v,v1,v2,v3,v4 = mesh.rr_star[mesh.ind_rr_star_v4f4].T c_v = columnnew(v,0,mesh.V) c_v1 = columnnew(v1,0,mesh.V) c_v2 = columnnew(v2,0,mesh.V) c_v3 = columnnew(v3,0,mesh.V) c_v4 = columnnew(v4,0,mesh.V) if singular_polylist is not None: vl,vc,vr = singular_polylist c_v0 = columnnew(vc,0,mesh.V) c_vl = columnnew(vl,0,mesh.V) c_vr = columnnew(vr,0,mesh.V) ind = ind_rrv ind3 = columnnew(ind,0,num) if is_asym_or_geod: "uN * (va-v) = uN * (vc-v) == 0" w = kwargs.get('diag_1_asymptotic') Ncd = kwargs.get('Ncd')-4*num c_l,c_n = Ncd+arr, Ncd+num+arr3 H1,r1 = con_planarity(X,c_vl,c_v0,c_n[ind3],len(ind),N)#change H2,r2 = con_planarity(X,c_vr,c_v0,c_n[ind3],len(ind),N)#change H = sparse.vstack((H1,H2)) r = np.r_[r1,r2] else: "uN x (ea+ec) == 0;(va-v) = la * ea; (vc-v) = lc * ec; ea^2=1; ec^2=1;" w = kwargs.get('diag_1_geodesic') num_ind = len(ind)#new arr_ind,arr3_ind =
np.arange(num_ind)
numpy.arange
import pdb import time import os import subprocess import re import random import json import numpy as np import glob from tensorboard.backend.event_processing.event_accumulator import EventAccumulator import socket import argparse import threading import _thread import signal from datetime import datetime import csv from sklearn import neighbors import gpu_pwr parser = argparse.ArgumentParser(description='TCP client') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='select testcase') args = parser.parse_args() with open('job_queue_50.json', 'r') as fp: #TODO queue = json.load(fp) queue_dict = {} arrival_time = 0 for item in queue: arrival_time += np.random.poisson(30) queue_dict[item] = arrival_time queue_timer = time.time() queue_delay = {} for item in queue: queue_delay[str(item)] = 0 job_start = {} #{'49': time1, '15': time2...} JCT = {} for item in queue: JCT[str(item)] = 0 completion = {} for item in queue: completion[str(item)] = 0 overhead = {} # initialize so that every job starts with 0s overhead time for item in queue: overhead[str(item)] = 0 ovhd_start = {} # initialize this to 0 as well for item in queue: ovhd_start[str(item)] = 0 b_start = {} # initialize this to 0 as well for item in queue: b_start[str(item)] = 0 c_start = {} # initialize this to 0 as well for item in queue: c_start[str(item)] = 0 d_start = {} # initialize this to 0 as well for item in queue: d_start[str(item)] = 0 ovhd_a = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_a[str(item)] = [] ovhd_b = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_b[str(item)] = [] ovhd_c = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_c[str(item)] = [] ovhd_d = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_d[str(item)] = [] ovhd_total = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_total[str(item)] = [] k80_1st = {} for item in queue: k80_1st[str(item)] = [] v100_1st = {} for item in queue: v100_1st[str(item)] = [] num_mig = {} # initialize migration time to 0 for item in queue: num_mig[str(item)] = 0 queue_start = {} # initialize this to 0 as well for item in queue: queue_start[str(item)] = 0 queue_time = {} # initialize this to 0 as well for item in queue: queue_time[str(item)] = 0 V100_epoch_time = {} for item in queue: V100_epoch_time[str(item)] = 0 K80_epoch_time = {} for item in queue: K80_epoch_time[str(item)] = 0 K80_start_time = {} for item in queue: K80_start_time[str(item)] = 0 V100_start_time = {} for item in queue: V100_start_time[str(item)] = 0 promote_start_time = {} for item in queue: promote_start_time[str(item)] = 0 demote_list = [] K80_time = {} for item in queue: K80_time[str(item)] = 0 V100_time = {} for item in queue: V100_time[str(item)] = 0 gpu_usage_time = [] # don't initialize this gpu_usage = [] gpu_usage_completion = [] speedup_dict = {} for item in queue: speedup_dict[str(item)] = 0 predict_dict = {} for item in queue: predict_dict[str(item)] = 0 birthplace = {} for item in queue: birthplace[str(item)] = 'none' index = 0 all_jobs_started = False K80_cap = 8 #TODO V100_cap = 4 K80_used = 0 V100_used = 0 K80_job = {} for i in range(K80_cap): K80_job[str(i)] = 'idle' V100_job = {} for i in range(V100_cap): V100_job[str(i)] = 'idle' qualified_job = [] step1_job = [] step2_job = [] pc_job = [] K80_node = ['c2178']#, 'c2181'] V100_node = ['d1022']#, 'd1012'] host_node = 'c0158' testcase = args.tc ### also, change .h5 file folder in jobs ### INTERVAL = 30 # make decision every 30s run_log = open('run.log','w') def K80_LUT(gpu): quotient = int(gpu) // 8 remainder = int(gpu) % 8 real_node = K80_node[quotient] real_gpu = str(remainder) return real_node, real_gpu def V100_LUT(gpu): quotient = int(gpu) // 4 remainder = int(gpu) % 4 real_node = V100_node[quotient] real_gpu = str(remainder) return real_node, real_gpu ######################### do a regression fit ######################## with open('v100_data/x1_data.json') as f: x1_v100 = json.load(f) with open('v100_data/x2_data.json') as f: x2_v100 = json.load(f) with open('v100_data/x3_data.json') as f: x3_v100 = json.load(f) x1_norm = [(i - min(x1_v100)) / (max(x1_v100) - min(x1_v100)) for i in x1_v100] x2_norm = [(i - min(x2_v100)) / (max(x2_v100) - min(x2_v100)) for i in x2_v100] x3_norm = [(i - min(x3_v100)) / (max(x3_v100) - min(x3_v100)) for i in x3_v100] # create training data x_train = [] for i in range(len(x1_norm)): x_train.append([x1_norm[i], x2_norm[i], x3_norm[i]]) with open('v100_data/y_data.json') as f: y_train = json.load(f) model_V100 = neighbors.KNeighborsRegressor(n_neighbors = 3, weights='distance') model_V100.fit(x_train, y_train) with open('k80_data/x1_data.json') as f: x1_k80 = json.load(f) with open('k80_data/x2_data.json') as f: x2_k80 = json.load(f) with open('k80_data/x3_data.json') as f: x3_k80 = json.load(f) x1_norm = [(i - min(x1_k80)) / (max(x1_k80) - min(x1_k80)) for i in x1_k80] x2_norm = [(i - min(x2_k80)) / (max(x2_k80) - min(x2_k80)) for i in x2_k80] x3_norm = [(i - min(x3_k80)) / (max(x3_k80) - min(x3_k80)) for i in x3_k80] # create training k80 x_train = [] for i in range(len(x1_norm)): x_train.append([x1_norm[i], x2_norm[i], x3_norm[i]]) with open('k80_data/y_data.json') as f: y_train = json.load(f) model_K80 = neighbors.KNeighborsRegressor(n_neighbors = 3, weights='distance') model_K80.fit(x_train, y_train) #################################################################### def send_signal(node, cmd): # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) port = 10000 # Connect the socket to the port where the server is listening server_address = (node, int(port)) print('connecting to {} port {}'.format(*server_address), file=run_log, flush=True) sock.connect(server_address) try: # Send data message = cmd.encode('utf-8') #b'save 35' #b'start 35 gpu 6'#b'save 35' print('sending {!r}'.format(message), file=run_log, flush=True) sock.sendall(message) while True: data = sock.recv(32) if 'success' in data.decode('utf-8'): # print('received {!r}'.format(data)) break else: print('waiting for success signal', file=run_log, flush=True) time.sleep(1) finally: #print('closing socket') sock.close() def max_speedup_promotion(K80_free, V100_free, V100_job, promote_list, demote_list, force_demote): num_demote = len(force_demote) num_promote = len(promote_list) V100_vacant = num_demote + V100_free K80_vacant = num_promote + K80_free global speedup_dict if K80_vacant >= num_demote: # if more vacant K80s than demote jobs, always force demote # selectively promote among active V100 jobs and promote list jobs V100_qual = demote_list #if 'idle' in V100_qual: # V100_qual.remove('idle') V100_pool = list(set(V100_qual).union(promote_list)) if num_promote <= V100_vacant: # promote all jobs as well return promote_list[:], force_demote[:] else: # promote the top 4 jobs pool_dict = {} V100_avail = V100_vacant + len(V100_qual) for job in V100_pool: if job in speedup_dict: pool_dict[job] = speedup_dict[job] sorted_pool = sorted(pool_dict, key=pool_dict.get, reverse=True)[:V100_avail] promotion_list = list(set(promote_list).intersection(sorted_pool)) demotion_list = list(set(demote_list).difference(sorted_pool)) if 'idle' in demotion_list: demotion_list.remove('idle') # this includes force demotion # lazy migration, for every V100 job from high speeup to low speedup and not in sorted_pool, compare it with # K80 jobs in sorted_pool, from low speedup to high speedup. If difference within 0.2, replace the K80 job # in sorted pool for job_demote in sorted(pool_dict, key=pool_dict.get, reverse=True): if job_demote in demotion_list: for job_promote in sorted(pool_dict, key=pool_dict.get, reverse=False): if job_promote in promotion_list: if speedup_dict[job_promote] - speedup_dict[job_demote] < 0.05: demotion_list.remove(job_demote) promotion_list.remove(job_promote) break return promotion_list, demotion_list # situations below won't happen elif V100_vacant >= num_promote: # if more vacant V100s than promote jobs, always promote # less vacant K80s than demote jobs, select worst among force demote list pool_dict = {} # here the pool only includes force demote jobs for job in force_demote: if job in speedup_dict: pool_dict[job] = speedup_dict[job] sorted_pool = sorted(pool_dict, key=pool_dict.get, reverse=False)[:K80_vacant] if len(sorted_pool) > 0: raise ValueError('Bug, demotion shouldnt happen because no practical complete') return promote_list, sorted_pool else: raise ValueError('Bug with max speedup promotion, condition not considered') def save_job(node, job): # save_job('c2176', '50') # first wait for the job to be qualified for checkpointing while True: # wait for ckpt_qual to be available global ckpt_qual_dict if ckpt_qual_dict['job'+job] == 1: ckpt_qual_dict['job'+job] = 0 break time.sleep(5) global pid_dict pid = pid_dict['job'+job] send_signal(node, 'save ' + job + ' pid ' + pid) # 'save 50 pid 10000' global ovhd_start ovhd_start[job] = time.time() time.sleep(3) # in case epoch_waste is communicate too frequently def kill_job(node, job): # kill_job('c2176', '50') send_signal(node, 'kill ' + job) # resume job def resume_job(node, gpu, job): # resume_job('c2176', '3', '50') cmd = 'resume ' + job + ' gpu ' + gpu send_signal(node, cmd) # start job def start_job(node, gpu, job): cmd = 'start ' + job + ' gpu ' + gpu send_signal(node, cmd) # function that checks the tensorboard log of currently running jobs and logs jobs that have finished the first epoch # in a global list. Once it's done, it will be in a queue to be promoted to V100 for 3 more epochs. def check_step1_complete(job_list, node): log_path = '/scratch/li.baol/tsrbrd_log/job_runs/' + testcase + '/' global step1_job global V100_epoch_time global K80_epoch_time for job in job_list: if job not in step1_job and job != 'idle': log_dir = log_path + 'job' + job + '/*' dirs = glob.glob(log_dir) dirs.sort() if len(dirs) > 0: tc = dirs[0] iterator = EventAccumulator(tc).Reload() tag = 'loss' try: if len(iterator.Scalars(tag)) > 2: # this way we can collect one epoch time wall_time = [t.wall_time for t in iterator.Scalars(tag)] if node in V100_node: V100_epoch_time[job] = wall_time[1] - wall_time[0] elif node in K80_node: K80_epoch_time[job] = wall_time[1] - wall_time[0] step1_job.append(job) print('job' + job + ' has reached step1 complete', file=run_log, flush=True) except Exception: pass def check_step2_complete(job_list, node): log_path = '/scratch/li.baol/tsrbrd_log/job_runs/' + testcase + '/' global step1_job global step2_job global V100_epoch_time global K80_epoch_time global speedup_dict for job in job_list: if job in step1_job and job not in step2_job and job != 'idle': log_dir = log_path + 'job' + job + '/*' dirs = glob.glob(log_dir) dirs.sort() if len(dirs) > 1: tc = dirs[1] iterator = EventAccumulator(tc).Reload() tag = 'loss' try: if len(iterator.Scalars(tag)) > 2: # this way we can collect one epoch time wall_time = [t.wall_time for t in iterator.Scalars(tag)] if node in K80_node: K80_epoch_time[job] = wall_time[1] - wall_time[0] V100_time_step2 = V100_epoch_time[job] K80_time_step2 = wall_time[1] - wall_time[0] elif node in V100_node: V100_epoch_time[job] = wall_time[1] - wall_time[0] K80_time_step2 = K80_epoch_time[job] V100_time_step2 = wall_time[1] - wall_time[0] speedup = (K80_time_step2 - V100_time_step2) / K80_time_step2 speedup_dict[job] = speedup step2_job.append(job) print('job' + job + ' has reached step2 complete', file=run_log, flush=True) except Exception: pass # measure job def measure_job(node, gpu, job): cmd = 'measure ' + job + ' gpu ' + gpu send_signal(node, cmd) ############### first clear finish status of all jobs #################### pid_dict = {} for i in range(len(queue)): job_name = 'job' + str(i + 1) pid_dict[job_name] = 0 checkpoint_dict = {} for i in range(len(queue)): job_name = 'job' + str(i + 1) checkpoint_dict[job_name] = 0 ckpt_qual_dict = {} for i in range(len(queue)): job_name = 'job' + str(i + 1) ckpt_qual_dict[job_name] = 0 finish_dict = {} for i in range(len(queue)): job_name = 'job' + str(i + 1) finish_dict[job_name] = 0 epoch_waste_dict = {} for i in range(len(queue)): job_name = 'job' + str(i + 1) epoch_waste_dict[job_name] = 0 #################### background thread running TCP socket ######################## def thread_function(): # here listen on the socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = (host_node, 10002) print('starting up on {} port {}'.format(*server_address), file=run_log, flush=True) sock.bind(server_address) sock.listen(5) while True: # Wait for a connection connection, client_address = sock.accept() try: while True: data = connection.recv(32) if data: data_str = data.decode('utf-8') global K80_start_time global V100_start_time, promote_start_time global K80_job global V100_job global K80_time global V100_time global ovhd_a, ovhd_b, ovhd_c, ovhd_d, k80_1st, v100_1st, ovhd_start, overhead, ovhd_total global b_start, c_start, d_start, completion if 'ckpt_qual' in data_str: global ckpt_qual_dict job_name = data_str.split(' ')[0] ckpt_qual_dict[job_name] = 1 elif 'finish' in data_str: global finish_dict job_name = data_str.split(' ')[0] job = job_name.replace('job','') finish_dict[job_name] = 1 JCT[job] = int(time.time() - job_start[job]) if job in list(K80_job.values()): K80_time[job] += int(time.time() - K80_start_time[job]) elif job in list(V100_job.values()): V100_time[job] += int(time.time() - V100_start_time[job]) elif 'pid' in data_str: global pid_dict job_name = data_str.split(' ')[0] pid = data_str.split(' ')[2] pid_dict[job_name] = pid elif 'checkpoint' in data_str: # can only be received after save signal is sent global checkpoint_dict job_name = data_str.split(' ')[0] job = job_name.replace('job','') checkpoint_dict[job_name] = 1 ovhd_a[job].append(int(time.time() - ovhd_start[job])) b_start[job] = time.time() elif 'waste' in data_str: global epoch_waste_dict job_name = data_str.split(' ')[0] epoch_waste_time = data_str.split(' ')[2] epoch_waste_dict[job_name] += int(epoch_waste_time) elif 'b_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_b[job].append(int(time.time() - b_start[job])) c_start[job] = time.time() elif 'c_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_c[job].append(int(time.time() - c_start[job])) d_start[job] = time.time() elif 'd_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_d[job].append(int(time.time() - d_start[job])) ovhd_total[job].append(int(time.time() - ovhd_start[job])) if ovhd_start[job] != 0: overhead[job] += int(time.time() - ovhd_start[job]) ovhd_start[job] = 0 if job in list(K80_job.values()): K80_start_time[job] = time.time() elif job in list(V100_job.values()): V100_start_time[job] = time.time() promote_start_time[job] = time.time() elif '1st_epoch' in data_str: # 'job50 1st_epoch 35' job_name = data_str.split(' ')[0] job = job_name.replace('job','') epoch_time = int(data_str.split(' ')[2]) if job in list(K80_job.values()): k80_1st[job].append(epoch_time) elif job in list(V100_job.values()): v100_1st[job].append(epoch_time) elif 'completion' in data_str: # 'job50 completion 0.33' job_name = data_str.split(' ')[0] job = job_name.replace('job','') completion_portion = float(data_str.split(' ')[2]) completion[job] = completion_portion #if 'ckpt_qual' in data_str or 'finish' in data_str or 'checkpoint' in data_str: # print('received ' + data_str) connection.sendall(b'success') #time.sleep(5) else: break finally: connection.close() x = threading.Thread(target=thread_function, daemon=True) x.start() ############################################################################### ###################################################################### while True: # termination condition: # all the jobs have finished ################### check for finished jobs on K80 and V100 ############################## for gpu, job in K80_job.items(): if job != 'idle': if finish_dict['job'+job] == 1: K80_used -= 1 K80_job[gpu] = 'idle' print('K80 finished job: ' + job, file=run_log, flush=True) for gpu, job in V100_job.items(): if job != 'idle': if finish_dict['job'+job] == 1: V100_used -= 1 V100_job[gpu] = 'idle' print('V100 finished job: ' + job, file=run_log, flush=True) if job in demote_list: demote_list.remove(job) ################ check step1 finished job of K80 jobs and step 2 of V100 ################# check_step1_complete(list(V100_job.values()), V100_node[0]) check_step2_complete(list(K80_job.values()), K80_node[0]) for gpu, job in V100_job.items(): if job not in qualified_job and job != 'idle': if job in step1_job: real_node, real_gpu = V100_LUT(gpu) kill_job(real_node, job) qualified_job.append(job) print('job ' + job + ' has been qualified for demotion to K80', file=run_log, flush=True) time.sleep(3) # wait for run.sh to finish x1, x3 = gpu_pwr.process_csv('job'+job, testcase) x2 = 3600 / V100_epoch_time[job] # num of epochs per hr # preprocess the data x1 = (x1 - min(x1_v100)) / (max(x1_v100) - min(x1_v100)) x2 = (x2 - min(x2_v100)) / (max(x2_v100) - min(x2_v100)) x3 = (x3 - min(x3_v100)) / (max(x3_v100) - min(x3_v100)) speedup_pred = model_V100.predict(np.array([x1, x2, x3]).reshape((1,-1)))[0] / 100 speedup_dict[job] = speedup_pred predict_dict[job] = speedup_pred check_step1_complete(list(K80_job.values()), K80_node[0]) check_step2_complete(list(V100_job.values()), V100_node[0]) for gpu, job in K80_job.items(): if job not in qualified_job and job != 'idle': if job in step1_job: real_node, real_gpu = K80_LUT(gpu) kill_job(real_node, job) qualified_job.append(job) print('job ' + job + ' has been qualified for promotion to V100', file=run_log, flush=True) time.sleep(3) # wait for run.sh to finish x1, x3 = gpu_pwr.process_csv('job'+job, testcase) x2 = 3600 / K80_epoch_time[job] # preprocess the data x1 = (x1 - min(x1_k80)) / (max(x1_k80) - min(x1_k80)) x2 = (x2 - min(x2_k80)) / (max(x2_k80) - min(x2_k80)) x3 = (x3 - min(x3_k80)) / (max(x3_k80) - min(x3_k80)) speedup_pred = model_K80.predict(np.array([x1, x2, x3]).reshape((1,-1)))[0] / 100 speedup_dict[job] = speedup_pred predict_dict[job] = speedup_pred ############### start new jobs on idle K80s and V100s before promoting K80 jobs to idle V100 ################ if V100_used < V100_cap: V100_free = V100_cap - V100_used for i in range(V100_free): time_passed = int(time.time() - queue_timer) if index < len(queue) and queue_dict[queue[index]] < time_passed: # make sure job has arrived in the queue job_new = str(queue[index]) for gpu, job in V100_job.items(): if job == 'idle': # schedule new job here if idle real_node, real_gpu = V100_LUT(gpu) start_job(real_node, real_gpu, job_new) birthplace[job_new] = real_node measure_job(real_node, real_gpu, job_new) V100_job[gpu] = job_new job_start[job_new] = time.time() queue_delay[job_new] = int(time_passed - queue_dict[queue[index]]) V100_start_time[job_new] = time.time() index += 1 V100_used += 1 time.sleep(5) # don't communicate too often break if K80_used < K80_cap: K80_free = K80_cap - K80_used for i in range(K80_free): time_passed = int(time.time() - queue_timer) if index < len(queue) and queue_dict[queue[index]] < time_passed: # make sure job has arrived in the queue job_new = str(queue[index]) for gpu, job in K80_job.items(): if job == 'idle': # schedule new job here if idle real_node, real_gpu = K80_LUT(gpu) start_job(real_node, real_gpu, job_new) birthplace[job_new] = real_node measure_job(real_node, real_gpu, job_new) K80_job[gpu] = job_new job_start[job_new] = time.time() queue_delay[job_new] = int(time_passed - queue_dict[queue[index]]) K80_start_time[job_new] = time.time() index += 1 K80_used += 1 time.sleep(5) # don't communicate too often break ################ make promotion decisions ######################## V100_free = V100_cap - V100_used K80_free = K80_cap - K80_used promote_list = [] #list(set(qualified_job).intersection(list(K80_job.values())).difference(pc_job)) for gpu, job in K80_job.items(): if job != 'idle': if job in step2_job and len(ovhd_total[job]) > 0: promote_list.append(job) elif job not in step2_job and job in qualified_job and birthplace[job] in K80_node: promote_list.append(job) # this returns job forced to be demoted. Currently in V100, and is practically complete force_demote = list(set(list(V100_job.values())).intersection(pc_job)) # look at demote list for gpu, job in V100_job.items(): if job != 'idle': # for jobs who have finished profiling, added the job if job not in demote_list and job in step2_job and len(ovhd_total[job]) > 0: job_speedup = speedup_dict[job] # 0.7 job_ovhd = np.mean(ovhd_total[job]) # 100 k80_1st_ovhd = np.mean(k80_1st[job]) - K80_epoch_time[job] v100_1st_ovhd = np.mean(v100_1st[job]) - V100_epoch_time[job] demote_qualify_time = (2 * job_ovhd + k80_1st_ovhd + v100_1st_ovhd) / job_speedup if int(time.time() - promote_start_time[job]) > max(demote_qualify_time, max(v100_1st[job])): demote_list.append(job) print('job' + job + 'qualified for demote for passing demote qualify time ' + str(int(demote_qualify_time)), file=run_log, flush=True) # for jobs who have not finished profiling, add the job if it's qualified and it started on V100 elif job not in demote_list and job not in step2_job and job in qualified_job and birthplace[job] in V100_node: demote_list.append(job) print('job' + job + 'qualified for demote for profiling', file=run_log, flush=True) if len(promote_list) > 0 or len(demote_list) > 0: promoted, demoted = max_speedup_promotion(K80_free, V100_free, V100_job, promote_list, demote_list, force_demote) if len(promoted) > 0: print('promoted jobs: ', promoted, file=run_log, flush=True) if len(demoted) > 0: print('demoted jobs: ', demoted, file=run_log, flush=True) # stop all promoted jobs on K80 checkpoint_finish_check = [] for gpu, job in K80_job.items(): if job in promoted: # make sure promoted step1 job doesn't get demoted back before finishing profiling if job in step1_job and job not in step2_job: speedup_dict[job] = 1 real_node, real_gpu = K80_LUT(gpu) save_job(real_node, job) if finish_dict['job'+job] != 1: K80_time[job] += int(time.time() - K80_start_time[job]) checkpoint_finish_check.append(job) K80_job[gpu] = 'idle' K80_used -= 1 # stop all demoted jobs on V100 for gpu, job in V100_job.items(): if job in demoted: # make sure demoted step1 job doesn't get promoted back before finishing profiling if job in step1_job and job not in step2_job: speedup_dict[job] = 0.01 real_node, real_gpu = V100_LUT(gpu) save_job(real_node, job) if finish_dict['job'+job] != 1: V100_time[job] += int(time.time() - V100_start_time[job]) checkpoint_finish_check.append(job) V100_job[gpu] = 'idle' V100_used -= 1 demote_list.remove(job) # wait for all GPUs to be available if len(checkpoint_finish_check) > 0: while True: time.sleep(5) for job in checkpoint_finish_check[:]: if checkpoint_dict['job'+job] == 1: # checkpoint has finished, gpu is free print(job + ' checkpointed successfully', file=run_log, flush=True) checkpoint_dict['job'+job] = 0 # reset it checkpoint_finish_check.remove(job) # also check if job already finished before sending checkpoint signal elif finish_dict['job'+job] == 1: print(job + ' finished before receiving checkpoint signal', file=run_log, flush=True) checkpoint_finish_check.remove(job) if len(checkpoint_finish_check) == 0: break # give it some time to cleanup old checkpointed jobs time.sleep(3) # resume promoted jobs on V100, make sure the gpu is idle for job_new in promoted[:]: if finish_dict['job'+job_new] != 1: for gpu, job in V100_job.items(): if job == 'idle': # if gpu idle, schedule new job here V100_job[gpu] = job_new real_node, real_gpu = V100_LUT(gpu) resume_job(real_node, real_gpu, job_new) num_mig[job_new] += 1 promoted.remove(job_new) V100_used += 1 break else: # job has already finished before checkpointing promoted.remove(job_new) # resume demoted jobs on K80, make sure the gpu is idle for job_new in demoted[:]: if finish_dict['job'+job_new] != 1: for gpu, job in K80_job.items(): if job == 'idle': # if gpu idle, schedule new job here real_node, real_gpu = K80_LUT(gpu) resume_job(real_node, real_gpu, job_new) num_mig[job_new] += 1 K80_job[gpu] = job_new demoted.remove(job_new) K80_used += 1 break else: # job has already finished before checkpointing print('job'+job_new+' has finished before checkpointing', file=run_log, flush=True) demoted.remove(job_new) # perform a check, make sure all promoted/demoted jobs are scheduled if len(promoted) > 0 or len(demoted) > 0: raise ValueError('Bug with promotion scheme, more jobs than free gpus') ############## monitor GPU usage ############ usage = K80_used + V100_used time_stamp = int(time.time() - queue_timer) gpu_usage_time.append(time_stamp) gpu_usage.append(usage) total_completion = np.sum(list(completion.values())) gpu_usage_completion.append(total_completion) ############### wait for next iteration time.sleep(INTERVAL) ################ check if termination condition is met ################ K80_idle_num = sum(value == 'idle' for value in K80_job.values()) V100_idle_num = sum(value == 'idle' for value in V100_job.values()) if K80_idle_num == K80_cap and V100_idle_num == V100_cap and index == len(queue): print('all jobs are finished!', file=run_log, flush=True) break # get average JCT average_JCT = np.average(list(JCT.values())) JCT['average'] = average_JCT average_overhead = np.average(list(overhead.values())) overhead['average'] = average_overhead average_queue_delay = np.average(list(queue_delay.values())) queue_delay['average'] = average_queue_delay # after everything is finished print('finished all runs', file=run_log, flush=True) JCT_name = testcase + '_JCT.json' overhead_name = testcase + '_overhead.json' num_mig_name = testcase + '_num_mig.json' epoch_waste_name = testcase + '_epoch_waste.json' ckpt_qual_name = 'ckpt_qual.json' finish_name = 'finish.json' K80_time_name = testcase + '_K80_time.json' V100_time_name = testcase + '_V100_time.json' gpu_usage_name = testcase + '_gpu_usage.csv' ovhd_a_name = testcase + '_ovhd_a.json' ovhd_b_name = testcase + '_ovhd_b.json' ovhd_c_name = testcase + '_ovhd_c.json' ovhd_d_name = testcase + '_ovhd_d.json' ovhd_total_name = testcase + '_ovhd_total.json' k80_1st_name = testcase + '_k80_1st.json' v100_1st_name = testcase + '_v100_1st.json' speedup_name = 'speedup.json' predict_name = 'predict.json' demote_list_name = 'demote_list.json' completion_name = 'completion.json' queue_delay_name = testcase + '_queue_delay.json' birthplace_name = testcase + '_birthplace.json' with open(JCT_name, 'w') as fp1: json.dump(JCT, fp1, sort_keys=True, indent=4) with open(overhead_name, 'w') as fp3: json.dump(overhead, fp3, sort_keys=True, indent=4) with open(num_mig_name, 'w') as fp3: json.dump(num_mig, fp3, sort_keys=True, indent=4) with open(epoch_waste_name, 'w') as fp3: json.dump(epoch_waste_dict, fp3, sort_keys=True, indent=4) with open(ckpt_qual_name, 'w') as fp1: json.dump(ckpt_qual_dict, fp1, sort_keys=True, indent=4) with open(finish_name, 'w') as fp1: json.dump(finish_dict, fp1, sort_keys=True, indent=4) with open(K80_time_name, 'w') as fp3: json.dump(K80_time, fp3, sort_keys=True, indent=4) with open(V100_time_name, 'w') as fp3: json.dump(V100_time, fp3, sort_keys=True, indent=4) with open(ovhd_a_name, 'w') as fp3: json.dump(ovhd_a, fp3, sort_keys=True, indent=4) with open(ovhd_b_name, 'w') as fp3: json.dump(ovhd_b, fp3, sort_keys=True, indent=4) with open(ovhd_c_name, 'w') as fp3: json.dump(ovhd_c, fp3, sort_keys=True, indent=4) with open(ovhd_d_name, 'w') as fp3: json.dump(ovhd_d, fp3, sort_keys=True, indent=4) with open(ovhd_total_name, 'w') as fp3: json.dump(ovhd_total, fp3, sort_keys=True, indent=4) with open(k80_1st_name, 'w') as fp3: json.dump(k80_1st, fp3, sort_keys=True, indent=4) with open(v100_1st_name, 'w') as fp3: json.dump(v100_1st, fp3, sort_keys=True, indent=4) with open(speedup_name, 'w') as fp1: json.dump(speedup_dict, fp1, sort_keys=True, indent=4) with open(predict_name, 'w') as fp1: json.dump(predict_dict, fp1, sort_keys=True, indent=4) with open(demote_list_name, 'w') as fp1: json.dump(demote_list, fp1, sort_keys=True, indent=4) with open(completion_name, 'w') as fp1: json.dump(completion, fp1, sort_keys=True, indent=4) with open(queue_delay_name, 'w') as fp1: json.dump(queue_delay, fp1, sort_keys=True, indent=4) with open(birthplace_name, 'w') as fp1: json.dump(birthplace, fp1, sort_keys=True, indent=4) gpu_usage_time = np.asarray(gpu_usage_time) gpu_usage =
np.asarray(gpu_usage)
numpy.asarray
""" brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) author: lzhbrian (https://lzhbrian.me) date: 2020.1.5 note: code is heavily borrowed from https://github.com/NVlabs/ffhq-dataset http://dlib.net/face_landmark_detection.py.html requirements: apt install cmake conda install Pillow numpy scipy pip install dlib # download face landmark model from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 """ import PIL import PIL.Image import os import scipy import scipy.ndimage import dlib import cv2 import numpy as np from PIL import Image import torchvision.transforms.functional as fn from argparse import ArgumentParser # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 predictor = dlib.shape_predictor('./resources/shape_predictor_68_face_landmarks.dat') def get_landmark(filepath): """get landmark with dlib :return: np.array shape=(68, 2) """ detector = dlib.get_frontal_face_detector() img = dlib.load_rgb_image(filepath) dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) # lm is a shape=(68,2) np.array return lm def align_face(filepath): """ :param filepath: str :return: PIL Image """ lm = get_landmark(filepath) lm_chin = lm[0 : 17] # left-right lm_eyebrow_left = lm[17 : 22] # left-right lm_eyebrow_right = lm[22 : 27] # left-right lm_nose = lm[27 : 31] # top-down lm_nostrils = lm[31 : 36] # top-down lm_eye_left = lm[36 : 42] # left-clockwise lm_eye_right = lm[42 : 48] # left-clockwise lm_mouth_outer = lm[48 : 60] # left-clockwise lm_mouth_inner = lm[60 : 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 # read image img = PIL.Image.open(filepath) output_size=1024 transform_size=4096 enable_padding=True # Shrink. shrink = int(np.floor(qsize / 1024 * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.ANTIALIAS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] # Transform. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) # Save aligned image. return img def get_landmark_npy(img): """get landmark with dlib :return: np.array shape=(68, 2) """ detector = dlib.get_frontal_face_detector() dets = detector(img, 1) if len(dets) == 0: raise RuntimeError("No faces found") print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) # lm is a shape=(68,2) np.array return lm def align_face_npy(img, output_size=1024): lm = get_landmark_npy(img) lm_chin = lm[0 : 17] # left-right lm_eyebrow_left = lm[17 : 22] # left-right lm_eyebrow_right = lm[22 : 27] # left-right lm_nose = lm[27 : 31] # top-down lm_nostrils = lm[31 : 36] # top-down lm_eye_left = lm[36 : 42] # left-clockwise lm_eye_right = lm[42 : 48] # left-clockwise lm_mouth_outer = lm[48 : 60] # left-clockwise lm_mouth_inner = lm[60 : 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 img = Image.fromarray(img) transform_size=4096 enable_padding=True # Shrink. shrink = int(np.floor(qsize / 1024 * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.ANTIALIAS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] # Transform. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) # Save aligned image. return np.array(img) def align_face_npy_with_params(img, output_size=1204): lm = get_landmark_npy(img) lm_chin = lm[0 : 17] # left-right lm_eyebrow_left = lm[17 : 22] # left-right lm_eyebrow_right = lm[22 : 27] # left-right lm_nose = lm[27 : 31] # top-down lm_nostrils = lm[31 : 36] # top-down lm_eye_left = lm[36 : 42] # left-clockwise lm_eye_right = lm[42 : 48] # left-clockwise lm_mouth_outer = lm[48 : 60] # left-clockwise lm_mouth_inner = lm[60 : 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 img = Image.fromarray(img) transform_size=4096 enable_padding=True # Shrink. shrink = int(np.floor(qsize / 1024 * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.ANTIALIAS) quad /= shrink qsize /= shrink shrunk_image = img # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) actual_crop = (0, 0, 0, 0) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: actual_crop = crop img = img.crop(crop) quad -= crop[0:2] # # Pad. pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) actual_padding = (0, 0, 0, 0) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') actual_padding = pad h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] padded_img = img # # Transform. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) # Save aligned image. return np.array(img), [shrink, actual_crop, actual_padding, quad, padded_img, shrunk_image] def unalign_face_npy(aligned_image, alignment_params): # Shrinking of the original image means that the face was too large to be represented # in the output size anyway, so it doesn't make sense to reverse it. shrink, crop, padding, quad, padded_img, shrunk_image = alignment_params def build_perspective(srcpts, dstpts): srcpts = np.array(srcpts) dstpts = np.array(dstpts) A = \ [ # x1 [srcpts[0, 0], srcpts[0, 1], 1, 0, 0, 0, -srcpts[0, 0] * dstpts[0, 0], -srcpts[0, 1] * dstpts[0, 0]], [0, 0, 0, srcpts[0, 0], srcpts[0, 1], 1, -srcpts[0, 0] * dstpts[0, 1], -srcpts[0, 1] * dstpts[0, 1]], # x2 [srcpts[1, 0], srcpts[1, 1], 1, 0, 0, 0, -srcpts[1, 0] * dstpts[1, 0], -srcpts[1, 1] * dstpts[1, 0]], [0, 0, 0, srcpts[1, 0], srcpts[1, 1], 1, -srcpts[1, 0] * dstpts[1, 1], -srcpts[1, 1] * dstpts[1, 1]], # x3 [srcpts[2, 0], srcpts[2, 1], 1, 0, 0, 0, -srcpts[2, 0] * dstpts[2, 0], -srcpts[2, 1] * dstpts[2, 0]], [0, 0, 0, srcpts[2, 0], srcpts[2, 1], 1, -srcpts[2, 0] * dstpts[2, 1], -srcpts[2, 1] * dstpts[2, 1]], # x4 [srcpts[3, 0], srcpts[3, 1], 1, 0, 0, 0, -srcpts[3, 0] * dstpts[3, 0], -srcpts[3, 1] * dstpts[3, 0]], [0, 0, 0, srcpts[3, 0], srcpts[3, 1], 1, -srcpts[3, 0] * dstpts[3, 1], -srcpts[3, 1] * dstpts[3, 1]], ] b = [dstpts[0, 0], dstpts[0, 1], dstpts[1, 0], dstpts[1, 1], dstpts[2, 0], dstpts[2, 1], dstpts[3, 0], dstpts[3, 1]] coeffs = np.linalg.solve(np.array(A), np.array(b)) xform = \ [ [coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]], [coeffs[6], coeffs[7], 1] ] return np.array(xform) # Transform back to the unaligned quad. c = build_perspective( [[0, 0], [0, 1024], [1024, 1024], [1024, 0]], quad + 0.5, ) c = np.linalg.inv(c) # Upperscale with pytorch aligned_pil = PIL.Image.fromarray(aligned_image) aligned_pil = fn.resize(aligned_pil, size=[1024]) fill_mask = PIL.Image.fromarray(np.ones_like(aligned_pil, dtype=np.uint8) * 255) # Inverse to `unaligned = aligned_pil.transform((1024, 1024), PIL.Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC)`` unaligned = aligned_pil.transform( (padded_img.width, padded_img.height), Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC ) unaligned_mask = fill_mask.transform( (padded_img.width, padded_img.height), Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC ) # "Unpad" unaligned = np.array(unaligned)[padding[1]:unaligned.height-padding[3], padding[0]:unaligned.width-padding[2], :] unaligned_mask = np.array(unaligned_mask)[padding[1]:unaligned_mask.height-padding[3], padding[0]:unaligned_mask.width-padding[2], :] # Ideally get rid of the blur added with padding, but that's not as trivial.. # Uncrop. canvas =
np.empty((shrunk_image.height, shrunk_image.width, unaligned.shape[2]), dtype=unaligned.dtype)
numpy.empty
''' Vocoder classes to parametrize/deparametrize a waveform. This should be seen and developped as a completely independent module. (e.g independent of PercivalTTS and any ML backend) Copyright(C) 2017 Engineering Department, University of Cambridge, UK. License Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author <NAME> <<EMAIL>> ''' import os import numpy as np from external.pulsemodel import sigproc as sp from external import pulsemodel class Vocoder: _name = None shift = None fs = None mlpg_wins = None def __init__(self, name, fs, shift, mlpg_wins=None): self._name = name self.fs = fs self.shift = shift self.mlpg_wins = mlpg_wins def preprocwav(self, wav, fs, highpass=None): ''' Should always be called at the beginning of the analysis function accessing the waveform. ''' if fs!=self.fs: print(' Resampling the waveform (new fs={}Hz)'.format(self.fs)) wav = sp.resample(wav, fs, self.fs, method=2, deterministic=True) fs = self.fs if not highpass is None: print(' High-pass filter the waveform (cutt-off={}Hz)'.format(highpass)) from scipy import signal as sig b, a = sig.butter(4, highpass/(self.fs/0.5), btype='high') wav = sig.filtfilt(b, a, wav) wav = np.ascontiguousarray(wav) # Often necessary for some cython implementations return wav # if pp_spec_extrapfreq>0: # idxlim = int(dftlen*pp_spec_extrapfreq/self.fs) # for n in xrange(SPEC.shape[0]): # SPEC[n,idxlim:] = SPEC[n,idxlim] # # if pp_spec_pf_coef>0: # # A fast version of formant enhancer # for n in xrange(SPEC.shape[0]): # #if n*0.005<1.085: continue # # Post-processing similar to Merlin's # # But really NOT equivalent # # This one creates way more low-pass effect with same coef (1.4) # cc = np.fft.irfft(np.log(abs(SPEC[n,:]))) # cc = cc[:int(dftlen/2)+1] # cc[1:] = 2.0*cc[1:] # cc[2:] = pp_spec_pf_coef*cc[2:] # spec_pp = abs(np.exp(np.fft.rfft(cc, dftlen))) # if 0: # import matplotlib.pyplot as plt # plt.ion() # plt.clf() # FF = self.fs*np.arange(dftlen/2+1)/dftlen # plt.plot(FF, sp.mag2db(SPEC[n,:]), 'k') # plt.plot(FF, sp.mag2db(spec_pp), 'b') # from IPython.core.debugger import Pdb; Pdb().set_trace() # SPEC[n,:] = spec_pp def __str__(self): return '{} (fs={}, shift={})'.format(self.name(), self.fs, self.shift) def name(self): return self._name def featuressizeraw(self): ''' This is the size of the acoustic feature vector, without deltas for MLPG ''' raise ValueError('This member function has to be re-implemented in the sub-classes') # pragma: no cover def featuressize(self): if not self.mlpg_wins is None: return self.featuressizeraw()*(len(self.mlpg_wins)+1) else: return self.featuressizeraw() def f0size(self): return -1 def specsize(self): return -1 def noisesize(self): return -1 def vuvsize(self): return -1 # Please add any other potential feature here, while respecting the expected order # Objective measures member functions for any vocoder features_err = dict() def objmeasures_clear(self): self.features_err=dict() def objmeasures_stats(self): for key in self.features_err: print('{}: {}'.format(key, np.mean(np.vstack(self.features_err[key])))) class VocoderF0Spec(Vocoder): spec_type = None spec_size = None dftlen = 4096 def __init__(self, name, fs, shift, spec_size, spec_type='fwbnd', dftlen=4096, mlpg_wins=None): Vocoder.__init__(self, name, fs, shift, mlpg_wins=mlpg_wins) self.spec_size = spec_size self.spec_type = spec_type # 'fwbnd' 'mcep' self.dftlen = dftlen def f0size(self): return 1 def specsize(self): return self.spec_size # Utility functions for this class of vocoder def compress_spectrum(self, SPEC, spec_type, spec_size): dftlen = (SPEC.shape[1]-1)*2 if self.spec_type=='fwbnd': COMPSPEC = sp.linbnd2fwbnd(np.log(abs(SPEC)), self.fs, dftlen, spec_size) elif self.spec_type=='mcep': # pragma: no cover Need SPTK to test this # TODO test COMPSPEC = sp.spec2mcep(SPEC*self.fs, sp.bark_alpha(self.fs), spec_size-1) return COMPSPEC def decompress_spectrum(self, COMPSPEC, spec_type, pp_mcep=False): if self.spec_type=='fwbnd': SPEC = np.exp(sp.fwbnd2linbnd(COMPSPEC, self.fs, self.dftlen, smooth=True)) if pp_mcep: # pragma: no cover Would need SPTK to test it print(' Merlin/SPTK Post-proc on MCEP') import external.merlin.generate_pp mcep = sp.spec2mcep(SPEC*self.fs, sp.bark_alpha(self.fs), 256) # Arbitrary high order mcep_pp = external.merlin.generate_pp.mcep_postproc_sptk(mcep, self.fs, dftlen=self.dftlen) # Apply Merlin's post-proc on spec env SPEC = sp.mcep2spec(mcep_pp, sp.bark_alpha(self.fs), dftlen=self.dftlen)/self.fs elif self.spec_type=='mcep':# pragma: no cover Would need SPTK to test it # TODO test if pp_mcep: print(' Merlin/SPTK Post-proc on MCEP') import external.merlin.generate_pp COMPSPEC = external.merlin.generate_pp.mcep_postproc_sptk(COMPSPEC, self.fs, dftlen=self.dftlen) # Apply Merlin's post-proc on spec env SPEC = sp.mcep2spec(COMPSPEC, sp.bark_alpha(self.fs), dftlen=self.dftlen) return SPEC class VocoderPML(VocoderF0Spec): nm_size = None def __init__(self, fs, shift, spec_size, nm_size, dftlen=4096, mlpg_wins=None): VocoderF0Spec.__init__(self, 'PML', fs, shift, spec_size, 'fwbnd', dftlen, mlpg_wins=mlpg_wins) self.nm_size = nm_size def featuressizeraw(self): return 1+self.spec_size+self.nm_size def noisesize(self): return self.nm_size def analysisf(self, fwav, ff0, f0_min, f0_max, fspec, fnm, **kwargs): print('Extracting PML features from: '+fwav) if ('preproc_hp' in kwargs) and (kwargs['preproc_hp']=='auto'): kwargs['preproc_hp']=f0_min # through args `preproc_fs` and `preproc_hp` pulsemodel.analysisf takes care of self.preprocwav pulsemodel.analysisf(fwav, shift=self.shift, f0estimator='REAPER', f0_min=f0_min, f0_max=f0_max, ff0=ff0, f0_log=True, fspec=fspec, spec_nbfwbnds=self.spec_size, fnm=fnm, nm_nbfwbnds=self.nm_size, preproc_fs=self.fs, **kwargs) def analysisfid(self, fid, wav_path, f0_min, f0_max, outputpathdicts, **kwargs): # pragma: no cover coverage not detected return self.analysisf(wav_path.replace('*',fid), outputpathdicts['f0'].replace('*',fid), f0_min, f0_max, outputpathdicts['spec'].replace('*',fid), outputpathdicts['noise'].replace('*',fid), **kwargs) def synthesis(self, CMP, pp_mcep=False, pp_f0_smooth=None): f0 = CMP[:,0] f0 = np.exp(f0) SPEC = self.decompress_spectrum(CMP[:,1:1+self.spec_size], self.spec_type, pp_mcep=pp_mcep) NM = CMP[:,1+self.spec_size:1+self.spec_size+self.nm_size] NM = sp.fwbnd2linbnd(NM, self.fs, self.dftlen) syn = pulsemodel.synthesis.synthesize(self.fs, np.vstack((self.shift*np.arange(len(f0)), f0)).T, SPEC, NM=NM, nm_cont=False, pp_atten1stharminsilences=-25, pp_f0_smooth=pp_f0_smooth) return syn # Objective measures def objmeasures_add(self, CMP, REF): f0trg = np.exp(REF[:,0]) f0gen = np.exp(CMP[:,0]) self.features_err.setdefault('F0[Hz]', []).append(np.sqrt(np.mean((f0trg-f0gen)**2))) spectrg = sp.log2db(REF[:,1:1+self.spec_size]) specgen = sp.log2db(CMP[:,1:1+self.spec_size]) self.features_err.setdefault('SPEC[dB]', []).append(np.sqrt(np.mean((spectrg-specgen)**2, 0))) nmtrg = REF[:,1+self.spec_size:1+self.spec_size+self.nm_size] nmgen = CMP[:,1+self.spec_size:1+self.spec_size+self.nm_size] self.features_err.setdefault('NM', []).append(np.sqrt(np.mean((nmtrg-nmgen)**2, 0))) class VocoderWORLD(VocoderF0Spec): aper_size = None def __init__(self, fs, shift, spec_size, aper_size, dftlen=4096, mlpg_wins=None): VocoderF0Spec.__init__(self, 'WORLD', fs, shift, spec_size, 'fwbnd', dftlen, mlpg_wins=mlpg_wins) self.aper_size = aper_size def featuressizeraw(self): return 1+self.spec_size+self.aper_size+1 def noisesize(self): return self.aper_size def vuvsize(self): return 1 def analysisf(self, fwav, ff0, f0_min, f0_max, fspec, faper, fvuv, **kwargs): print('Extracting WORLD features from: '+fwav) wav, fs, _ = sp.wavread(fwav) if ('preproc_hp' in kwargs): if kwargs['preproc_hp']=='auto': kwargs['preproc_hp']=f0_min self.preprocwav(wav, fs, highpass=kwargs['preproc_hp']) else: self.preprocwav(wav, fs) import pyworld as pw if 0: # Check direct copy re-synthesis without compression/encoding print(pw.__file__) # _f0, ts = pw.dio(wav, fs, f0_floor=f0_min, f0_ceil=f0_max, channels_in_octave=2, frame_period=self.shift*1000.0) _f0, ts = pw.dio(wav, fs, f0_floor=f0_min, f0_ceil=f0_max, channels_in_octave=2, frame_period=self.shift*1000.0) # _f0, ts = pw.harvest(wav, fs) f0 = pw.stonemask(wav, _f0, ts, fs) SPEC = pw.cheaptrick(wav, f0, ts, fs, fft_size=self.dftlen) APER = pw.d4c(wav, f0, ts, fs, fft_size=self.dftlen) resyn = pw.synthesize(f0.astype('float64'), SPEC.astype('float64'), APER.astype('float64'), fs, self.shift*1000.0) sp.wavwrite('resynth.wav', resyn, fs, norm_abs=True, force_norm_abs=True, verbose=1) from IPython.core.debugger import Pdb; Pdb().set_trace() _f0, ts = pw.dio(wav, fs, f0_floor=f0_min, f0_ceil=f0_max, channels_in_octave=2, frame_period=self.shift*1000.0) f0 = pw.stonemask(wav, _f0, ts, fs) SPEC = pw.cheaptrick(wav, f0, ts, fs, fft_size=self.dftlen) # SPEC = 10.0*np.sqrt(SPEC) # TODO Best gain correction I could find. Hard to find the good one between PML and WORLD different syntheses APER = pw.d4c(wav, f0, ts, fs, fft_size=self.dftlen) unvoiced = np.where(f0<20)[0] f0 = np.interp(ts, ts[f0>0], f0[f0>0]) f0 = np.log(f0) makedirs(os.path.dirname(ff0)) f0.astype('float32').tofile(ff0) vuv = np.ones(len(f0)) vuv[unvoiced] = 0 makedirs(os.path.dirname(fvuv)) vuv.astype('float32').tofile(fvuv) SPEC = self.compress_spectrum(SPEC, fs, self.spec_size) makedirs(os.path.dirname(fspec)) SPEC.astype('float32').tofile(fspec) APER = sp.linbnd2fwbnd(APER, fs, self.dftlen, self.aper_size) APER = sp.mag2db(APER) makedirs(os.path.dirname(faper)) APER.astype('float32').tofile(faper) # CMP = np.concatenate((f0.reshape((-1,1)), SPEC, APER, vuv.reshape((-1,1))), axis=1) # (This is not a necessity) if 0: import matplotlib.pyplot as plt plt.ion() resyn = self.synthesis(CMP) sp.wavwrite('resynth.wav', resyn, fs, norm_abs=True, force_norm_abs=True, verbose=1) from IPython.core.debugger import Pdb; Pdb().set_trace() # return CMP def analysisfid(self, fid, wav_path, f0_min, f0_max, outputpathdicts, **kwargs): # pragma: no cover coverage not detected return self.analysisf(wav_path.replace('*',fid), outputpathdicts['f0'].replace('*',fid), f0_min, f0_max, outputpathdicts['spec'].replace('*',fid), outputpathdicts['noise'].replace('*',fid), outputpathdicts['vuv'].replace('*',fid), **kwargs) def synthesis(self, CMP, pp_mcep=False, pp_f0_smooth=None): if not pp_f0_smooth is None: raise ValueError('VocoderWORLD synthesis does not include an f0 smoother, please use `pp_f0_smooth=None`') import pyworld as pw f0 = CMP[:,0] f0 =
np.exp(f0)
numpy.exp
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
np.array([])
numpy.array
"""Generates finely spaced grid of SNII, AGB, and SNIa yields. Generates a finely spaced grid of SN II isotopic yields from Woosley & Weaver (1995), AGB isotopic yields from Renzini & Voli (1981), and SNIa yields from Thielemann, Nomoto, & Yokoi (1986). Woosley & Weaver (1995): M = 11--40 Msun; Z = 0--solar Renzini & Voli (1981): M = 1--8 Msun; Z = 0--solar Thielemann et al. (1986): W7 model from Nomoto et al. (1984) Timmes already converted Ni56 to Fe56 in the maltov1.orig file (WW95 doesn't account for its decay). """ from __future__ import print_function, division, absolute_import import os from os.path import join import sys import copy import numpy as np from scipy import interpolate import pandas as pd # ---- Set Paths ----- path_calc_yields = join(os.path.abspath(os.path.dirname(__file__)), '') path_flexce = join('/'.join(path_calc_yields.split('/')[:-2]), '') path_fileio = join(path_flexce, 'fileio') path_data = join(path_flexce, 'data') path_yields = join(path_data, 'yields') path_yldgen = join(path_yields, 'general') path_ww95 = join(path_yields, 'ww95') path_ww95_orig = join(path_ww95, 'orig') path_ww95_half_fe = join(path_ww95, 'half_fe') # path_ww95_half_fe_only = join(path_ww95, 'half_fe_only') # path_rv81 = join(path_yields, 'renzini81' # path_tny86 = join(path_yields, 'thielemann86' sys.path.append(path_fileio) # ------------------- from pickle_io import pickle_read from pickle_io import pickle_write if not os.path.isdir(path_ww95_orig): os.mkdir(path_ww95_orig) if not os.path.isdir(path_ww95_half_fe): os.mkdir(path_ww95_half_fe) # ---- WW95 Yields ----- z = open(join(path_ww95, 'maltov1.orig'), 'r') sym = [] # symbol names sym_metallicity = [] # [symbol--metallicity pairs] bbmf = [] # big bang mass fraction sneIa_orig = [] # ww95_orig[80 symbols + 5 metallicities/sym = 400][[25 masses], [25 yields]] ww95_orig = [] tmp_Ia = 0 tmp = 0 for row in z: if 'symbol name' in row: sym_tmp = row.split()[0] sym.append(sym_tmp) if 'big bang mass fraction' in row: bbmf.append(float(row.split()[0])) if 'w7 tny86' in row: yields_Ia = [] tmp_Ia = 6 if tmp_Ia > 0: yields_Ia.append(float(row.split()[0])) tmp_Ia -= 1 if tmp_Ia == 0: sneIa_orig.append(np.array(yields_Ia)) if '* metallicity' in row: metal_tmp = float(row.split()[0]) sym_metallicity.append([sym_tmp, metal_tmp]) if 'rv81 stellar mass & yield' in row: mass = [] yields = [] tmp = 25 if tmp > 0: mass.append(float(row.split()[0])) yields.append(float(row.split()[1])) tmp -= 1 if tmp == 0: ww95_orig.append([np.array(mass), np.array(yields)]) z.close() sym = np.array(sym) sym_mass = np.array([int(sym[i][-1]) if i < 7 else int(sym[i][-2:]) for i in range(len(sym) - 1)]) sym_metallicity = np.array(sym_metallicity) bbmf = np.array(bbmf)[:-1] sneIa_orig = np.array(sneIa_orig) tnyIa = sneIa_orig[:, 0] ww95_orig = np.array(ww95_orig) # all symbols have 25 masses and yields and 5 metallicity values: ww95_mass = ww95_orig[0][0] ww95_mass2 = np.concatenate([ww95_mass for i in range(5)]) ww95_metal = np.array([0.00e+00, 1.90e-06, 1.90e-04, 1.90e-03, 1.90e-02]) ww95_metal2 = np.concatenate([np.ones(25) * ww95_metal[i] for i in range(5)]) n_sym = len(sym) n_iso = len(sym) - 1 n_metal = len(sym) - 5 n_yield = len(ww95_orig) # ---------------------- # ---- CL04 Data ---- species_in = pd.read_csv(join(path_yldgen, 'species.txt'), delim_whitespace=True, skiprows=1, usecols=[1], names=['name']) species = np.array(species_in['name']) n_species = len(species) # match isotopes from WW95 yields to CL04 yields sym2 = np.array([sym[i].title() for i in range(len(sym))]) ind_sp = [] for i in range(n_sym): if sym2[i] in species: tmp = np.where(sym2[i] == species)[0][0] ind_sp.append(tmp) else: pass # print 'sym[%i]' % (i), '(%s)' % (sym[i]), 'not in species array' ind_sp = np.array(ind_sp) # solar abundance of metals---needed to subtract the initial metal abundances # of the stellar models (also assume Y = 0.285)---in relative amounts (not # Msun), that is, sum(solar_ab) = 1. solar_isotopes = pd.read_csv(join(path_yldgen, 'Solar_isotopes.txt'), delim_whitespace=True, skiprows=1, usecols=[0, 1], names=['name', 'ab']) solar_iso = np.array(solar_isotopes['name']) solar_ab = np.array(solar_isotopes['ab']) # indices within "species" array of the elements for which CL04 give a solar # abundance (Note: WW95 also used the Anders & Grevesse 1989 solar abundance) ind_iso = [] for i in range(len(solar_iso)): ind_iso.append(np.where(solar_iso[i] == species)[0][0]) ind_iso = np.array(ind_iso) # ------------------- # --- Calculate Net Yields --- # WW95 absolute yields (125 mass/metallicity pairs, 293 isotopes) ww95_orig2 = ww95_orig.reshape(80, 5, 2, 25) ww95_orig3 = ww95_orig2[:, :, 1] ww95_orig4 = ww95_orig3.reshape(80, 125).T ww95_abs = np.zeros((125, n_species)) for i in range(125): for j in range(79): ww95_abs[i, ind_sp[j]] = ww95_orig4[i, j] # WW95 mass ejected ww95_mej = np.sum(ww95_abs, axis=1) # WW95 remnant mass ww95_rem = ww95_mass2 - ww95_mej # The remnant masses reported by WW95 but the sum(abs yields) + remnant mass != # mass of star, so for accouting purposes it will be best to calculate remnant # mass = mass of star - sum(abs yields). # WW95 reported remnant masses: # ww95_rem = ww95_orig4[:, -1] # WW95 initial composition ww95_init_comp = np.zeros(ww95_abs.shape) for i in range(5): indt =
np.arange(25*i, 25*i+25)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 19 21:21:57 2020 @author: lukepinkel """ import numpy as np import scipy as sp from ..utilities.linalg_operations import (_check_np, _check_shape) from .links import (Link, IdentityLink, ReciprocalLink, LogLink, LogitLink, PowerLink) LN2PI = np.log(2.0 * np.pi) FOUR_SQRT2 = 4.0 * np.sqrt(2.0) def _logbinom(n, k): y=sp.special.gammaln(n+1)-sp.special.gammaln(k+1)-sp.special.gammaln(n-k+1) return y class ExponentialFamily(object): def __init__(self, link=IdentityLink, weights=1.0, scale=1.0): if not isinstance(link, Link): link = link() self._link = link self.weights = weights self.scale = scale def _to_mean(self, eta=None, T=None): if eta is not None: mu = self.inv_link(eta) else: mu = self.mean_func(T) return mu def link(self, mu): return self._link.link(mu) def inv_link(self, eta): return self._link.inv_link(eta) def dinv_link(self, eta): return self._link.dinv_link(eta) def d2inv_link(self, eta): return self._link.d2inv_link(eta) def dlink(self, mu): return 1.0 / self.dinv_link(self.link(mu)) def d2link(self, mu): eta = self.link.link(mu) res = -self.d2inv_link(eta) / np.power(self.dinv_link(eta), 3) return res def cshape(self, y, mu): y = _check_shape(_check_np(y), 1) mu = _check_shape(_check_np(mu), 1) return y, mu def loglike(self, y, eta=None, mu=None, T=None, scale=1.0): return np.sum(self._loglike(y, eta, mu, T, scale)) def full_loglike(self, y, eta=None, mu=None, T=None, scale=1.0): return np.sum(self._full_loglike(y, eta, mu, T, scale)) def pearson_resid(self, y, eta=None, mu=None, T=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) y, mu = self.cshape(y, mu) V = self.var_func(mu) r_p = (y - mu) / np.sqrt(V) return r_p def signed_resid(self, y, eta=None, mu=None, T=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) y, mu = self.cshape(y, mu) d = self.deviance(y, mu=mu) r_s = np.sign(y - mu) * np.sqrt(d) return r_s def gw(self, y, mu, phi=1.0): y, mu = self.cshape(y, mu) num = self.weights * (y - mu) den = self.var_func(mu=mu) * self.dlink(mu) * phi res = num / den return -res def hw(self, y, mu, phi=1.0): y, mu = self.cshape(y, mu) eta = self.link(mu) Vinv = 1.0 / (self.var_func(mu=mu)) W0 = self.dinv_link(eta)**2 W1 = self.d2inv_link(eta) W2 = self.d2canonical(mu) Psc = (y-mu) * (W2*W0+W1*Vinv) Psb = Vinv*W0 res = (Psc - Psb)*self.weights return -res/phi class Gaussian(ExponentialFamily): def __init__(self, link=IdentityLink, weights=1.0, scale=1.0): super().__init__(link, weights, scale) def _loglike(self, y, eta=None, mu=None, T=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) y, mu = self.cshape(y, mu) w = self.weights / scale ll= w * np.power((y - mu), 2) + np.log(scale/self.weights) return ll def _full_loglike(self, y, eta=None, mu=None, T=None, scale=1.0): ll = self._loglike(y, eta, mu, T, scale) llf = ll + LN2PI return llf def canonical_parameter(self, mu): T = mu return T def cumulant(self, T): b = T**2 / 2.0 return b def mean_func(self, T): mu = T return mu def var_func(self, T=None, mu=None, eta=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) V = mu*0.0+1.0 return V def d2canonical(self, mu): res = 0.0*mu+1.0 return res def deviance(self, y, T=None, mu=None, eta=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) y, mu = self.cshape(y, mu) w = self.weights d = w * np.power((y - mu), 2.0) return d def dtau(self, tau, y, mu): y, mu = self.cshape(y, mu) w = self.weights phi = np.exp(tau) g = -np.sum(w * np.power((y - mu), 2) / phi - 1) return g def d2tau(self, tau, y, mu): y, mu = self.cshape(y, mu) w = self.weights phi = np.exp(tau) g = np.sum(w * np.power((y - mu), 2) / (2 * phi)) return g class InverseGaussian(ExponentialFamily): def __init__(self, link=PowerLink(-2), weights=1.0, scale=1.0): super().__init__(link, weights, scale) def _loglike(self, y, eta=None, mu=None, T=None, scale=1.0): if mu is None: mu = self._to_mean(eta=eta, T=T) y, mu = self.cshape(y, mu) w = self.weights / scale ll = w * np.power((y - mu), 2) / (y * mu**2) ll+= np.log((scale * y**2) / self.weights) return ll def _full_loglike(self, y, eta=None, mu=None, T=None, scale=1.0): ll = self._loglike(y, eta, mu, T, scale) llf = ll + LN2PI return llf def canonical_parameter(self, mu): T = 1.0 / (
np.power(mu, 2.0)
numpy.power
import matplotlib.pyplot as plt import numpy as np import csv import html import re import random import json import nltk from nltk.tokenize import regexp_tokenize from nltk.corpus import stopwords from nltk import FreqDist from string import ascii_lowercase from sklearn.metrics import confusion_matrix, accuracy_score nltk.download('punkt') nltk.download('stopwords') filename = 'data/twitter.csv' filename_cache = 'data/twitter.json' nb_samples = 100000 nb_words = 10000 nb_classes = 2 nb_alpha = 1 ds_from_cache = True class Dataset: def __init__(self): if ds_from_cache: print('Using cached dataset...') self.deserialize() else: print('Using new dataset...') self.load(filename) self.clean() self.calculate_bow_lr() self.split() self.calculate_occurrences() self.calculate_likelihoods() self.serialize() def compress_np1d(self, arr): return {i: str(arr[i]) for i in range(len(arr)) if arr[i] != 0} def decompress_np1d(self, map): arr = np.zeros(nb_words, dtype=np.float32) for (i, x) in map.items(): arr[int(i)] = float(x) return arr def serialize(self): print('Serializing dataset...') with open(filename_cache, 'w') as f: compress_train_x = [self.compress_np1d(x) for x in self.train_x] compress_test_x = [self.compress_np1d(x) for x in self.test_x] ds_json = { 'train_x': compress_train_x, 'train_y': self.train_y.tolist(), 'test_x': compress_test_x, 'test_y': self.test_y.tolist(), 'like': self.like.tolist(), 'top_neg': self.top_neg, 'top_pos': self.top_pos, 'lr_min': self.lr_min, 'lr_max': self.lr_max } json.dump(ds_json, f) def deserialize(self): with open(filename_cache, 'r') as f: ds_json = json.load(f) self.train_x = [self.decompress_np1d(x) for x in ds_json['train_x']] self.train_y = ds_json['train_y'] self.test_x = [self.decompress_np1d(x) for x in ds_json['test_x']] self.test_y = ds_json['test_y'] self.like = ds_json['like'] self.top_neg = ds_json['top_neg'] self.top_pos = ds_json['top_pos'] self.lr_min = ds_json['lr_min'] self.lr_max = ds_json['lr_max'] # Ucitavanje podataka def load(self, filename): print('Loading data...') self.data_x = [] self.data_y = [] with open(filename, 'r', encoding='latin1') as fin: reader = csv.reader(fin, delimiter=',') next(reader, None) for row in reader: self.data_y.append(int(row[1])) self.data_x.append(row[2]) # Ciscenje podataka def clean(self): print('Cleaning data...') self.data_x = [html.unescape(x) for x in self.data_x] self.data_x = [re.sub(r'https?://\S+', '', x) for x in self.data_x] self.data_x = [re.sub(r'[^\w\s]|\d+', '', x) for x in self.data_x] self.data_x = [re.sub(r'\s\s+', ' ', x) for x in self.data_x] self.data_x = [x.strip().lower() for x in self.data_x] for c in ascii_lowercase: self.data_x = [re.sub(c + '{3,}', c+c, x) for x in self.data_x] self.data_x = [regexp_tokenize(x, '\w+') for x in self.data_x] stops = set(stopwords.words('english')) self.data_x = [[w for w in x if not w in stops] for x in self.data_x] self.data_x = self.data_x[:nb_samples] self.data_y = self.data_y[:nb_samples] # Racunanje BOW reprezentacije i LR metrike def calculate_bow_lr(self): print('Calculating BOW representation and LR metric...') freq = FreqDist([w for x in self.data_x for w in x]) self.vocab, _ = zip(*freq.most_common(nb_words)) self.vec_x = np.zeros((len(self.data_x), nb_words), dtype=np.float32) lr = np.zeros(nb_words, dtype=np.float32) for j, w in enumerate(self.vocab): neg = 0 pos = 0 for i, x in enumerate(self.data_x): cnt = x.count(w) self.vec_x[i][j] = cnt if self.data_y[i] == 0: neg += cnt else: pos += cnt if pos >= 10 and neg >= 10: lr[j] = pos / neg if j % 100 == 0: print('[calculate_bow_lr] Word: {}/{}'.format(j, nb_words)) # Pronalazenje pet najcesce koriscenih reci u negativnim tvitovima freq_neg = FreqDist([w for i, x in enumerate(self.data_x) for w in x if self.data_y[i] == 0]) self.top_neg, _ = zip(*freq_neg.most_common(5)) # Pronalazenje pet najcesce koriscenih reci u pozitivnim tvitovima freq_pos = FreqDist([w for i, x in enumerate(self.data_x) for w in x if self.data_y[i] == 1]) self.top_pos, _ = zip(*freq_pos.most_common(5)) # Pronalazenje pet reci sa najmanjom vrednoscu LR metrike self.lr_min = [] min_cnt = 1 for i in lr.argsort(): if min_cnt > 5: break if lr[i] > 0: self.lr_min.append(self.vocab[i]) min_cnt += 1 # Pronalazenje pet reci sa najvecom vrednoscu LR metrike self.lr_max = [] max_cnt = 1 for i in (-lr).argsort(): if max_cnt > 5: break if lr[i] > 0: self.lr_max.append(self.vocab[i]) max_cnt += 1 # Deljenje podataka na skup za treniranje i testiranje def split(self): print('Splitting data...') self.train_x, self.test_x = np.split(self.vec_x, [int(len(self.vec_x)*0.8)]) self.train_y, self.test_y = np.split(self.data_y, [int(len(self.data_y)*0.8)]) self.nb_train = len(self.train_x) self.nb_test = len(self.test_x) # Racunanje broja pojavljivanja svake reci u svakoj klasi def calculate_occurrences(self): print('Calculating every word occurrence for every class...') self.occs = np.zeros((nb_classes, nb_words), dtype=np.float32) for i, y in enumerate(self.train_y): for w in range(nb_words): self.occs[y][w] += self.train_x[i][w] if i % 1000 == 0: print('[calculate_occurrences] Object: {}/{}'.format(i, self.nb_train)) # Racunanje P(rec|klasa) def calculate_likelihoods(self): print('Calculating P(word|class)...') self.like = np.zeros((nb_classes, nb_words), dtype=np.float32) for c in range(nb_classes): for w in range(nb_words): up = self.occs[c][w] + nb_alpha down =
np.sum(self.occs[c])
numpy.sum
from numpy import linalg as LA import numpy as np MAX_SIG_VALUE = 10000000 def get_avg_gradient(gradient_list, num_of_workers): summed_gradient = gradient_list[0] i = 0 for gradient in gradient_list: i += 1 if i == 1: continue j = 0 for gradient_part in gradient: summed_gradient[j] = np.add(summed_gradient[j], gradient_part) j += 1 avg_gradient = [] for gradient_part in summed_gradient: avg_gradient.append(gradient_part / num_of_workers) return avg_gradient def get_gradient_diff(previous_gradient, new_gradient): gradient_diff = [] for i in range(len(previous_gradient)): gradient_diff.append(
np.subtract(new_gradient[i], previous_gradient[i])
numpy.subtract
import numpy as np def get_bands(nscf_out, tgrid0): """Get bands and kgrid info from nscf output data contains: kvecs, bands, tgrid, raxes, gvecs kvecs (nk, ndim) are reciprocal points possible in the irreducible wedge kvecs are in 2\pi/alat units bands (nk, nstate) are the Kohn-Sham eigenvalues bands are in eV units tgrid (ndim) is grid size in each dimension !!!! currently assumed to be the same as x raxes (ndim, ndim) is the reciprocal lattice gvecs (nk, ndim) are reciprocal lattice points (kvecs) converted to integers Args: nscf_out (str): output file tgrid0 (int): grid along x Return: dict: data """ from qharv.inspect import axes_pos import qe_reader as qer # get bands data = qer.parse_nscf_bands(nscf_out) kvecs = data['kvecs'] # get raxes, gvecs tgrid = np.array([tgrid0]*3) axes = qer.read_out_cell(nscf_out) raxes = axes_pos.raxes(axes) gcand = np.dot(kvecs, np.linalg.inv(raxes/tgrid)) gvecs = np.around(gcand).astype(int) data['tgrid'] = tgrid data['raxes'] = raxes data['gvecs'] = gvecs data.pop('nkpt') return data def get_ekmap(scf_out): """Obtain the internal variable 'equiv' from kpoint_grid.f90 in QE/PW store the maps between full BZ (fBZ) and irreducible BZ (iBZ) Args: scf_out (str): output file Return: (dict, dict): (fBZ->iBZ, iBZ->fBZ) maps """ from qharv.reel import ascii_out mm = ascii_out.read(scf_out) text = ascii_out.block_text(mm, 'equivalent kpoints begin', 'end') lines = text.split('\n') emap = {} # full kgrid to irreducible wedge kmap = {} # irreducible wedge to full kgrid for line in lines: tokens = line.split('equiv') if len(tokens) != 2: continue left, right = map(int, tokens) emap[left] = right if right in kmap: kmap[right].append(left) else: kmap[right] = [left] mm.close() return emap, kmap def get_weights(equiv_out): """Get weights of irreducible kpoints. Args: equiv_out (str): QE output file Return: np.array: weights, number of equivalent kpoints for each irrek """ emap, kmap = get_ekmap(equiv_out) sidxl = kmap.keys() sidxl.sort() weights = [] for sidx in sidxl: kwt = len(kmap[sidx]) weights.append(kwt) return np.array(weights) def unfold2(bands, emap, kmap, axis=0): """unfold method 2: steal equivalence map from QE kpoint_grid.f90 kpoints in bands MUST be ordered in the same way as the QE irreducible kpts Args: bands (np.array): band energy with kpoint (and state) labels emap (dict): int -> int equivalence map of kpoint indices (full -> irrek) kmap (dict): inverse of emap axis (int, optional): kpoint axis, default is 0 Return: np.array: unfolded bands """ idxl = kmap.keys() idxl.sort() nktot = len(emap) # extend the kpoint axis new_shape = list(bands.shape) new_shape[axis] = nktot vals = np.zeros(new_shape) # fill existing values for i, idx in enumerate(idxl): if axis == 0: vals[idx-1] = bands[i] elif axis == 1: vals[:, idx-1] = bands[:, i] else: raise RuntimeError('need to implement axis %d (add another :,)' % axis) # map symmetry points for idx0, idx1 in emap.items(): if axis == 0: vals[idx0-1] = vals[idx1-1] elif axis == 1: vals[:, idx0-1] = vals[:, idx1-1] return vals def get_mats_vecs(symops): mats = [] vecs = [] for so in symops: mat = np.array(so['mat'], int) vec = np.array(so['vec'], int) mats.append(mat) vecs.append(vec) return np.array(mats), np.array(vecs) def unfold1(gvecs1, nkm1, nscf_out, pbc, show_progress=True): """unfold method 1: apply symmetry operations to unique gvecs notice, there is no reason to carry nkm1 around todo: unfold kgrid only, one symmetry operation at a time return a list of 1D indices on the regular grid Args: gvecs1 (np.array): integer vectors in the irreducible BZ nkm1 (np.array): scalar field defined over gvecs1 scf_out (str): nscf output containing symmetry matrices pbc (bool): apply periodic boundary condition show_progress (bool, optional): show progress bar, default True """ # get symops import qe_reader as qer symops = qer.read_sym_ops(nscf_out) # make a grid large enough to contain the unfolded n(k) import chiesa_correction as chc gmin, gmax, ng = chc.get_regular_grid_dimensions(gvecs1) rgvecs = chc.get_regular_grid(gmin, gmax, ng, int) # unfold rnkm = np.zeros(len(rgvecs)) filled = np.zeros(len(rgvecs), dtype=bool) if show_progress: from qharv.field import sugar bar = sugar.get_progress_bar(len(symops)) for isym, so in enumerate(symops): mat = np.array(so['mat'], dtype=int) for ig, gv in enumerate(gvecs1): # unfold existing data gv1 = np.dot(mat, gv) if pbc: # bring back gvectors outside of rgvecs gv1 = (gv1-gmin) % ng + gmin else: # ignore gvectors outside of rgvecs if (gv1 < gmin).any() or (gv1 > gmax).any(): continue idx3d = gv1-gmin # save new point idx = np.ravel_multi_index(idx3d, ng) if not filled[idx]: rnkm[idx] = nkm1[ig] filled[idx] = True if show_progress: bar.update(isym) return rgvecs[filled], rnkm[filled] def unfold_idx(gvecs1, mats, pbc): # make a grid large enough to contain the unfolded n(k) import chiesa_correction as chc gmin, gmax, ng = chc.get_regular_grid_dimensions(gvecs1) rgvecs = chc.get_regular_grid(gmin, gmax, ng, int) # unfold npt = np.prod(ng) filled = np.zeros(npt, dtype=bool) ridx =
np.ones(npt, dtype=int)
numpy.ones
#!/usr/bin/env python3 import libspn as spn import tensorflow as tf import numpy as np import collections from random import shuffle def _broadcast_to_2D(test_inputs, subset_indices=None, n_stack=2): # Subset indices is either specified or set to [0, ..., len(inputs)-1] subset_indices = subset_indices or list(range(len(test_inputs[0]))) ret = [] for test_input in test_inputs: # Append a tuple with n_stack repetitions if the index of the original element index is in # subset_indices ret.append(tuple(np.asarray(n_stack*[elem]) if ind in subset_indices else elem for ind, elem in enumerate(test_input))) ret.append(test_input) return ret class TestMath(tf.test.TestCase): def test_logmatmul(self): a = tf.random_uniform(shape=(8, 150)) b = tf.random_uniform(shape=(150, 9)) ab_linear = tf.matmul(a, b) ab_log = tf.exp(spn.utils.logmatmul(tf.log(a), tf.log(b))) with self.test_session() as sess: ab_linear_out, ab_log_out = sess.run([ab_linear, ab_log]) self.assertAllClose(ab_linear_out, ab_log_out) def test_gather_columns_3d_not_padded(self): def assert_output(params, indices, params_dtype, output, output_shape): # Assert Output values, shape and dtype true_output = (params[indices] if len(params.shape) == 1 else params[:, indices]) np.testing.assert_array_almost_equal(output, np.array(true_output)) self.assertEqual(params_dtype.as_numpy_dtype, output.dtype) np.testing.assert_array_equal(output_shape, list(np.array(true_output).shape)) def test(params_shape, indices_shape, param_dtype, ind_dtype, use_gpu=False): if use_gpu: device = [False, True] else: device = [False] if len(params_shape) == 1: params_cols = params_shape[0] else: params_cols = params_shape[1] for p_dt in param_dtype: for i_dt in ind_dtype: for dev in device: with self.test_session(use_gpu=dev) as sess: # Generate random params array params = np.random.randint(100, size=params_shape) # Convert params to appropriate data-types params = np.array(params, dtype=p_dt.as_numpy_dtype) # Create params tensor params_tensor = tf.constant(params, dtype=p_dt) # Random indices random_indices = np.random.randint(params_cols, size=indices_shape, dtype=i_dt) # Arange indices if len(indices_shape) == 1: arange_indices = np.arange(0, params_cols, dtype=i_dt) else: arange_indices = np.array([np.arange(0, params_cols) for _ in range(indices_shape[0])], dtype=i_dt) # Create Ops op_rand_ind = spn.utils.gather_cols_3d(params_tensor, random_indices) op_arange_ind = spn.utils.gather_cols_3d(params_tensor, arange_indices) # Execute Sessions output_rand_ind = sess.run(op_rand_ind) output_arange_ind = sess.run(op_arange_ind) # Test Output assert_output(params, random_indices, p_dt, output_rand_ind, op_rand_ind.get_shape()) assert_output(params, arange_indices, p_dt, output_arange_ind, op_arange_ind.get_shape()) # List of params shapes params_shapes = [(1, ), # Single params (1, 1), # 2D params with single row and column (6, ), # 1D params (3, 1), # 2D params with single column (1, 6), # 2D params with single row (3, 6)] # 2D params with multiple rows and columns # List of indices shapes indices_shapes = [(1, ), # Single index (1, 1), # 2D indices with single row and column (4, ), # 1D indices (4, 1), # 2D indices with single column (1, 5), # 2D indices with single row (4, 5)] # 2D indices with multiple rows and columns # All combination of test cases for gather_cols_3d without padding for p_shape in params_shapes: for i_shape in indices_shapes: test(params_shape=p_shape, indices_shape=i_shape, param_dtype=[tf.float32, tf.float64, tf.int32, tf.int64], ind_dtype=[np.int32, np.int64], use_gpu=True) def test_gather_columns_3d_padded(self): def test(params_shape, indices_shape, param_dtype, ind_dtype, pad_elem=0, use_gpu=False): if use_gpu: device = [False, True] else: device = [False] if len(params_shape) == 1: params_rows = 1 params_cols = params_shape[0] else: params_rows = params_shape[0] params_cols = params_shape[1] if len(indices_shape) == 1: indices_rows = 1 indices_cols = indices_shape[0] else: indices_rows = indices_shape[0] indices_cols = indices_shape[1] for p_dt in param_dtype: for i_dt in ind_dtype: for dev in device: with self.test_session(use_gpu=dev) as sess: # Generate random params array params = np.random.randint(100, size=params_shape) # Convert params to appropriate data-types params = np.array(params, dtype=p_dt.as_numpy_dtype) # Create params tensor params_tensor = tf.constant(params, dtype=p_dt) # Generate a list of 1D indices arrays, with random # length ranging between [1, indices-column-size) indices = [] ind_length = indices_cols for i in range(indices_rows): indices.append(np.random.randint(params_cols, size=ind_length, dtype=i_dt)) ind_length = np.random.randint(1, indices_cols) # Shuffle indices list shuffle(indices) # Create Ops op = spn.utils.gather_cols_3d(params_tensor, indices, pad_elem=pad_elem) # Execute session output = sess.run(op) # Insert a column of zeros to the last column of params params_with_zero = \ np.insert(params, params_cols, np.ones(params_rows, dtype=p_dt.as_numpy_dtype)*pad_elem, axis=-1) # Fill indices of padded columns with index of the # last-column of params indices = [np.insert(ind, ind.size, np.full((indices_cols-ind.size), params_cols, dtype=i_dt)) for ind in indices] # Convert list of indices to a np.array indices = np.array(indices) # Compute true output true_output = (params_with_zero[indices] if len(params_with_zero.shape) == 1 else params_with_zero[:, indices]) # Test Output values, shape and dtype np.testing.assert_array_almost_equal(output, np.array(true_output)) self.assertEqual(p_dt.as_numpy_dtype, output.dtype) np.testing.assert_array_equal(op.get_shape(), list(np.array(true_output).shape)) # List of params shapes params_shapes = [(6, ), # 1D params (1, 6), # 2D params with single row (3, 6)] # 2D params with multiple rows and columns # List of padding elements pad_elems = [-float('inf'), -1.0, 0.0, 1.0, 1.23456789, float('inf'), # float -1, 0, 1, 12345678] # int # All combination of test cases for gather_cols_3d without padding for p_shape in params_shapes: for p_elem in pad_elems: test(params_shape=p_shape, indices_shape=(4, 5), param_dtype=[tf.float32, tf.float64, tf.int32, tf.int64], ind_dtype=[np.int32, np.int64], pad_elem=p_elem, use_gpu=True) def test_scatter_cols_errors(self): # Should work spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 2], 3) spn.utils.scatter_cols(tf.constant([[10, 11, 12]]), [0, 1, 2], 3) spn.utils.scatter_cols(tf.placeholder(tf.float32, shape=(None, 3)), [0, 1, 2], 3) # Param size defined with self.assertRaises(RuntimeError): spn.utils.scatter_cols(tf.placeholder(tf.float32, shape=(None, None)), [0, 1, 2], 3) # Param dim number with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant(10), [0, 1, 2], 3) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([[[10, 11, 12]]]), [0, 1, 2], 3) # num_out_cols type with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 2], 3.1) # num_out_cols value with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 2], 2) # Indices dims with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [[0, 1, 2]], 3) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), 1, 3) # Indices size with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 2, 3], 4) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1], 4) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [], 4) # Indices values with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0.1, 1, 2], 3) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 3], 3) with self.assertRaises(ValueError): spn.utils.scatter_cols(tf.constant([10, 11, 12]), [0, 1, 1], 3) def test_scatter_cols(self): def test(params, indices, num_out_cols, true_output, params_dtype, indices_dtype, on_gpu): with self.subTest(params=params, indices=indices, num_out_cols=num_out_cols, params_dtype=params_dtype, indices_dtype=indices_dtype, on_gpu=on_gpu): tf.reset_default_graph() with self.test_session(force_gpu=on_gpu) as sess: # Indices indices = np.asarray(indices, dtype=indices_dtype) # Params p1d = tf.constant(params, dtype=params_dtype) p2d1 = tf.constant(np.array([np.array(params)]), dtype=params_dtype) p2d2 = tf.constant(np.array([np.array(params), np.array(params) * 2, np.array(params) * 3]), dtype=params_dtype) # Define ops for different implementations op1dn = spn.utils.scatter_cols(p1d, indices, num_out_cols) op2d1n = spn.utils.scatter_cols(p2d1, indices, num_out_cols) op2d2n = spn.utils.scatter_cols(p2d2, indices, num_out_cols) # Run out1dn = sess.run(op1dn) out2d1n = sess.run(op2d1n) out2d2n = sess.run(op2d2n) # Compare np.testing.assert_array_almost_equal(out1dn, true_output) self.assertEqual(params_dtype.as_numpy_dtype, out1dn.dtype) true_output_2d1 = [np.array(true_output)] true_output_2d2 = [np.array(true_output), np.array(true_output) * 2, np.array(true_output) * 3] np.testing.assert_array_almost_equal(out2d1n, true_output_2d1) np.testing.assert_array_almost_equal(out2d2n, true_output_2d2) self.assertEqual(params_dtype.as_numpy_dtype, out2d1n.dtype) self.assertEqual(params_dtype.as_numpy_dtype, out2d2n.dtype) def test_all_dtypes(params, indices, num_out_cols, true_output): # CPU test(params, indices, num_out_cols, true_output, tf.float32, np.int32, False) test(params, indices, num_out_cols, true_output, tf.float32, np.int64, False) test(params, indices, num_out_cols, true_output, tf.float64, np.int32, False) test(params, indices, num_out_cols, true_output, tf.float64, np.int64, False) # GPU test(params, indices, num_out_cols, true_output, tf.float32, np.int32, True) test(params, indices, num_out_cols, true_output, tf.float32, np.int64, True) test(params, indices, num_out_cols, true_output, tf.float64, np.int32, True) test(params, indices, num_out_cols, true_output, tf.float64, np.int64, True) # Single column input, single column output test_all_dtypes([10], [0], 1, [10.0]) # Multi-column output, single-column input test_all_dtypes([10], [1], 4, [0.0, 10.0, 0.0, 0.0]) # Multi-column output, multi-column input test_all_dtypes([10, 11, 12], [1, 3, 0], 4, [12.0, 10.0, 0.0, 11.0]) # Pass through if scattering to a single column t = tf.constant([10]) out = spn.utils.scatter_cols(t, [0], 1) self.assertIs(out, t) t = tf.constant([[10], [11]]) out = spn.utils.scatter_cols(t, [0], 1) self.assertIs(out, t) # Pass through if scattering to the output of same size # in original index order t = tf.constant([10, 11, 12]) out = spn.utils.scatter_cols(t, [0, 1, 2], 3) self.assertIs(out, t) t = tf.constant([[10, 11, 12], [13, 14, 15]]) out = spn.utils.scatter_cols(t, [0, 1, 2], 3) self.assertIs(out, t) def test_scatter_values(self): def test(params, indices, num_out_cols, param_dtype, ind_dtype, true_output, use_gpu=False): if use_gpu: device = [False, True] else: device = [False] for p_dt in param_dtype: for i_dt in ind_dtype: for dev in device: with self.test_session(use_gpu=dev) as sess: row1 = 1 row2 = -1 row3 = 2 # Convert params and output to appropriate data-types if p_dt == tf.float32 or p_dt == tf.float64: par = list(map(float, params)) if isinstance(true_output[0], collections.Iterable): t_out = [list(map(float, to)) for to in true_output] else: t_out = list(map(float, true_output)) else: par = list(map(int, params)) if isinstance(true_output[0], collections.Iterable): t_out = [list(map(int, to)) for to in true_output] else: t_out = list(map(int, true_output)) p1d = tf.constant(np.array(par), dtype=p_dt) p2d1 = tf.constant(np.array([np.array(par)]), dtype=p_dt) p2d2 = tf.constant(np.array([np.array(par) * row1, np.array(par) * row2, np.array(par) * row3]), dtype=p_dt) ind1d = tf.constant(np.array(indices), dtype=i_dt) ind2d1 = tf.constant(np.array([np.array(indices)]), dtype=i_dt) ind2d2 = tf.constant(np.array([
np.array(indices)
numpy.array
import numpy as np import time from inspect import signature def nparams(f): return len(signature(f).parameters) def sign(x): if x >= 0: return 1.0 else: return -1.0 def FindMinima(fn, gradfn, eta=0.1, threshold=1e-3): # Determine the number of arguments to the gradient. n_params = len(signature(gradfn).parameters) # Create a randomized starting position. position = (np.random.rand(n_params) - 0.5) * 20 gradient = np.ones(n_params) while True: # Calculate the gradient. gradient = gradfn(*position) #print(gradient) # Check for zero gradient. closeness = np.abs(gradient).max() if closeness < threshold: break # Move each coordinate based on the gradient. cofactor = ((closeness**4) / (1 + closeness**4)) + (eta / 10) for c in range(n_params): position[c] -= eta * sign(gradient[c]) * cofactor #position[c] -= eta * gradient[c] * cofactor # We may have reached a minimum. Return this position. return position def Minimize(fn, gradfn, std_threshold=0.01, n_best=10): # Determine the number of arguments to the gradient. n_params = len(signature(gradfn).parameters) positions = [] minima = [] # Find enough minima to start looking for convergence. for i in range(n_best): pos = FindMinima(fn, gradfn) val = fn(*pos)[0] minima.append(val) positions.append(pos) minima.sort() while np.array(minima[:n_best]).std() > std_threshold: print(len(minima)) pos = FindMinima(fn, gradfn) val = fn(*pos)[0] minima.append(val) print(val) positions.append(pos) minima.sort() minidx = np.array(minima).argmin() minimum = minima[minidx] minpos = positions[minidx] return minimum, minpos def f(x, y, z): return [-np.exp(-((x / 5)**2 + (y / 5)**2 + (z / 5)**2))*(np.sin(x) +
np.sin(y)
numpy.sin
# ============================================================================ # 第七章 給湯設備 # 第一節 給湯設備 # Ver.18(エネルギー消費性能計算プログラム(住宅版)Ver.02.05~) # ============================================================================ import numpy as np from functools import lru_cache import pyhees.section7_1_b as default import pyhees.section7_1_c as gas import pyhees.section7_1_d as oil import pyhees.section7_1_e as eheatpump import pyhees.section7_1_f as eheater import pyhees.section7_1_g as hybrid_gas import pyhees.section7_1_g_3 as hybrid_gas_3 import pyhees.section7_1_h as gas_hybrid import pyhees.section7_1_i as whybrid import pyhees.section7_1_j as watersaving import pyhees.section7_1_m as schedule import pyhees.section9_2 as lss import pyhees.section9_3 as ass from pyhees.section11_1 import load_outdoor, get_Theta_ex from pyhees.section11_2 import load_solrad from pyhees.section11_3 import load_schedule, get_schedule_hw # ============================================================================ # 5. 給湯設備によるエネルギー消費量 # ============================================================================ # ============================================================================ # 5.1 消費電力量 # ============================================================================ @lru_cache() def calc_hotwater_load(n_p, region, sol_region, has_bath, bath_function, pipe_diameter, kitchen_watersaving_A, kitchen_watersaving_C, shower_watersaving_A, shower_watersaving_B, washbowl_watersaving_C, bath_insulation, type=None, ls_type=None, A_sp=None, P_alpha_sp=None, P_beta_sp=None, W_tnk_ss=None, hotwater_use=None, heating_flag_d=None, A_col=None, P_alpha=None, P_beta=None, V_fan_P0=None, d0=None, d1=None, m_fan_test=None, W_tnk_ass=None ): """給湯負荷の計算 Args: n_p(float): 仮想居住人数 (人) region(int): 省エネルギー地域区分 sol_region(int): 年間の日射地域区分(1-5) has_bath(bool): 浴室等の有無 bath_function(str): ふろ機能の種類 pipe_diameter(str): ヘッダー分岐後の径 kitchen_watersaving_A(bool): 台所水栓の手元止水機能の有無 kitchen_watersaving_C(bool): 台所水栓の水優先吐水機能の有無 shower_watersaving_A(bool): 浴室シャワー水栓の手元止水機能の有無 shower_watersaving_B(bool): 浴室シャワー水栓の小流量吐水機能の有無 washbowl_watersaving_C(bool): 洗面水栓の水優先吐水機能の有無 bath_insulation(bool): 浴槽の断熱の有無 type(str, optional): 太陽熱利用設備の種類 (液体集熱式,空気集熱式,None) (Default value = None) ls_type(str, optional): 液体集熱式太陽熱利用設備の種類 (太陽熱温水器,ソーラーシステム) (Default value = None) A_sp(float, optional): 太陽熱集熱部の有効集熱面積 (m2) (Default value = None) P_alpha_sp(float, optional): 太陽熱集熱部の方位角 (°) (Default value = None) P_beta_sp(float, optional): 太陽熱集熱部の傾斜角 (°) (Default value = None) W_tnk_ss(float, optional): ソーラーシステムのタンク容量 (L) (Default value = None) hotwater_use(bool, optional): 空気集熱式太陽熱利用設備が給湯部を有する場合はTrue (Default value = None) heating_flag_d(ndarray, optional): 暖房日 (Default value = None) A_col(tuple, optional): 集熱器群の面積 (m2) (Default value = None) P_alpha(float, optional): 方位角 (°) (Default value = None) P_beta(float, optional): 傾斜角 (°) (Default value = None) V_fan_P0(float, optional): 空気搬送ファンの送風機特性曲線において機外静圧をゼロとしたときの空気搬送ファンの風量 (m3/h) (Default value = None) d0(tuple, optional): 集熱器群を構成する集熱器の集熱効率特性線図一次近似式の切片 (-) (Default value = None) d1(tuple, optional): 集熱器群を構成する集熱器の集熱効率特性線図一次近似式の傾き (W/(m2K)) (Default value = None) m_fan_test(tuple, optional): 集熱器群を構成する集熱器の集熱性能試験時における単位面積当たりの空気の質量流量 (kg/(s・m2)) (Default value = None) W_tnk_ass(float, optional): タンク容量 (L) (Default value = None) Returns: dict: 1日当たりの給湯設備付加 """ # 生活スケジュール schedule = load_schedule() schedule_hw = get_schedule_hw(schedule) # 外部環境 outdoor = load_outdoor() Theta_ex_d_t = get_Theta_ex(region, outdoor) # ----- 14. 夜間平均外気温度 ----- # 夜間平均外気温度 (℃) (15) Theta_ex_Nave_d = get_Theta_ex_Nave_d(Theta_ex_d_t) # ----- 13. 日平均外気温度 ----- # 日平均外気温度 (℃) (14) theta_ex_d_Ave_d = get_theta_ex_d_Ave_d(Theta_ex_d_t) # ----- 12. 日平均給水温度 ----- # 期間平均外気温度 (℃) (13) Theta_ex_prd_Ave_d = get_Theta_ex_prd_Ave_d(theta_ex_d_Ave_d) # 日平均給水温度 (℃) (12) Theta_wtr_d = get_Theta_wtr_d(region, Theta_ex_prd_Ave_d) # ----- 11. 浴槽沸かし直しによる給湯熱負荷 ----- # 浴槽沸かし直しによる給湯熱負荷 (MJ/h) (10) L_ba_d_t = calc_L_ba_d_t(bath_insulation, schedule_hw, has_bath, theta_ex_d_Ave_d, n_p) # ----- 10. 基準給湯量 ----- # 基準給湯量 (L/h) (7) W_k_d_t = calc_W_k_d_t(n_p, schedule_hw) W_s_d_t = calc_W_s_d_t(n_p, schedule_hw, has_bath) W_w_d_t = calc_W_w_d_t(n_p, schedule_hw) W_b1_d_t = calc_W_b1_d_t(n_p, schedule_hw, has_bath, bath_function) W_b2_d_t = calc_W_b2_d_t(n_p, schedule_hw, has_bath, bath_function) # 浴槽水栓さし湯時における基準給湯量 (L/h) (9) W_ba1_d_t = calc_W_ba1_d_t(bath_function, L_ba_d_t, Theta_wtr_d) # ----- 9. 節湯補正給湯量 ----- # 節湯補正給湯量 (L/h) (6) W_dash_k_d_t = calc_W_dash_k_d_t(W_k_d_t, kitchen_watersaving_A, kitchen_watersaving_C, pipe_diameter, Theta_wtr_d) W_dash_s_d_t = calc_W_dash_s_d_t(W_s_d_t, shower_watersaving_A, shower_watersaving_B, pipe_diameter) W_dash_w_d_t = calc_W_dash_w_d_t(W_w_d_t, washbowl_watersaving_C, pipe_diameter, Theta_wtr_d) W_dash_b1_d_t = calc_W_dash_b1_d_t(W_b1_d_t, pipe_diameter) W_dash_b2_d_t = calc_W_dash_b2_d_t(W_b2_d_t) W_dash_ba1_d_t = calc_W_dash_ba1_d_t(W_ba1_d_t, pipe_diameter) # ----- 8. 節湯補正給湯熱負荷 ----- # 基準給湯温度 (℃) Theta_sw_k = get_Theta_sw_k() Theta_sw_s = get_Theta_sw_s() Theta_sw_w = get_Theta_sw_w() # 節湯補正給湯熱負荷 (MJ/h) (5) L_dash_k_d_t = get_L_dash_k_d_t(W_dash_k_d_t, Theta_sw_k, Theta_wtr_d) L_dash_s_d_t = get_L_dash_s_d_t(W_dash_s_d_t, Theta_sw_s, Theta_wtr_d) L_dash_w_d_t = get_L_dash_w_d_t(W_dash_w_d_t, Theta_sw_w, Theta_wtr_d) L_dash_b1_d_t, L_dash_b2_d_t = get_L_dash_bx_d_t(W_dash_b1_d_t, W_dash_b2_d_t, Theta_wtr_d, has_bath, bath_function) L_dash_ba1_d_t, L_dash_ba2_d_t = get_L_dash_bax_d_t(W_dash_ba1_d_t, Theta_wtr_d, L_ba_d_t, has_bath, bath_function) # ----- 7. 太陽熱補正給湯熱負荷 ----- # 太陽熱利用給湯設備による補正集熱量 L_sun_d_t = calc_L_sun_d_t( region=region, sol_region=sol_region, solar_device=type, ls_type=ls_type, A_sp=A_sp, P_alpha_sp=P_alpha_sp, P_beta_sp=P_beta_sp, W_tnk_ss=W_tnk_ss, hotwater_use=hotwater_use, heating_flag_d=heating_flag_d, A_col=A_col, P_alpha=P_alpha, P_beta=P_beta, V_fan_P0=V_fan_P0, d0=d0, d1=d1, m_fan_test=m_fan_test, W_tnk_ass=W_tnk_ass, Theta_wtr_d=Theta_wtr_d, L_dash_k_d_t=L_dash_k_d_t, L_dash_s_d_t=L_dash_s_d_t, L_dash_w_d_t=L_dash_w_d_t, L_dash_b1_d_t=L_dash_b1_d_t, L_dash_b2_d_t=L_dash_b2_d_t, L_dash_ba1_d_t=L_dash_ba1_d_t ) # 太陽熱補正給湯熱負荷 L_dashdash_k_d_t = calc_L_dashdash_k_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_s_d_t = calc_L_dashdash_s_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_w_d_t = calc_L_dashdash_w_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_b1_d_t = calc_L_dashdash_b1_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_b2_d_t = calc_L_dashdash_b2_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_ba1_d_t = calc_L_dashdash_ba1_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t) L_dashdash_ba2_d_t = get_L_dashdash_ba2_d_t(L_dash_ba2_d_t) print('L_ba = {}'.format(np.sum(L_ba_d_t))) print('W_k = {}'.format(np.sum(W_k_d_t))) print('W_s = {}'.format(np.sum(W_s_d_t))) print('W_w = {}'.format(np.sum(W_w_d_t))) print('W_b1 = {}'.format(np.sum(W_b1_d_t))) print('W_b2 = {}'.format(np.sum(W_b2_d_t))) print('W_ba1 = {}'.format(np.sum(W_ba1_d_t))) print('W_dash_k = {}'.format(np.sum(W_dash_k_d_t))) print('W_dash_s = {}'.format(np.sum(W_dash_s_d_t))) print('W_dash_w = {}'.format(np.sum(W_dash_w_d_t))) print('W_dash_b1 = {}'.format(np.sum(W_dash_b1_d_t))) print('W_dash_b2 = {}'.format(np.sum(W_dash_b2_d_t))) print('W_dash_ba1 = {}'.format(np.sum(W_dash_ba1_d_t))) print('L_dash_k = {}'.format(np.sum(L_dash_k_d_t))) print('L_dash_s = {}'.format(np.sum(L_dash_s_d_t))) print('L_dash_w = {}'.format(np.sum(L_dash_w_d_t))) print('L_dash_b1 = {}'.format(np.sum(L_dash_b1_d_t))) print('L_dash_b2 = {}'.format(np.sum(L_dash_b2_d_t))) print('L_dash_ba1 = {}'.format(np.sum(L_dash_ba1_d_t))) print('L_dash_ba2 = {}'.format(np.sum(L_dash_ba2_d_t))) print('L_dashdash_k = {}'.format(np.sum(L_dashdash_k_d_t))) print('L_dashdash_s = {}'.format(np.sum(L_dashdash_s_d_t))) print('L_dashdash_w = {}'.format(np.sum(L_dashdash_w_d_t))) print('L_dashdash_b1 = {}'.format(np.sum(L_dashdash_b1_d_t))) print('L_dashdash_b2 = {}'.format(np.sum(L_dashdash_b2_d_t))) print('L_dashdash_ba1 = {}'.format(np.sum(L_dashdash_ba1_d_t))) print('L_dashdash_ba2 = {}'.format(np.sum(L_dashdash_ba2_d_t))) return { 'L_dash_k_d_t': L_dash_k_d_t, 'L_dash_s_d_t': L_dash_s_d_t, 'L_dash_w_d_t': L_dash_w_d_t, 'L_dash_b1_d_t': L_dash_b1_d_t, 'L_dash_b2_d_t': L_dash_b2_d_t, 'L_dash_ba1_d_t': L_dash_ba1_d_t, 'L_dash_ba2_d_t': L_dash_ba2_d_t, 'L_dashdash_k_d_t': L_dashdash_k_d_t, 'L_dashdash_s_d_t': L_dashdash_s_d_t, 'L_dashdash_w_d_t': L_dashdash_w_d_t, 'L_dashdash_b1_d_t': L_dashdash_b1_d_t, 'L_dashdash_b2_d_t': L_dashdash_b2_d_t, 'L_dashdash_ba1_d_t': L_dashdash_ba1_d_t, 'L_dashdash_ba2_d_t': L_dashdash_ba2_d_t, 'W_dash_k_d_t': W_dash_k_d_t, 'W_dash_s_d_t': W_dash_s_d_t, 'W_dash_w_d_t': W_dash_w_d_t, 'W_dash_b1_d_t': W_dash_b1_d_t, 'W_dash_b2_d_t': W_dash_b2_d_t, 'W_dash_ba1_d_t': W_dash_ba1_d_t, 'theta_ex_d_Ave_d': theta_ex_d_Ave_d, 'Theta_ex_Nave_d': Theta_ex_Nave_d } def calc_E_E_W_d_t(n_p, L_HWH, heating_flag_d, region, sol_region, HW, SHC): """1時間当たりの給湯設備の消費電力量 (1) Args: n_p(float): 仮想居住人数 (人) L_HWH(ndarray): 温水暖房用熱源機の熱負荷 heating_flag_d(ndarray): 暖房日 region(int): 省エネルギー地域区分 sol_region(int): 年間の日射地域区分(1-5) HW(dict): 給湯機の仕様 SHC(dict): 集熱式太陽熱利用設備の仕様 Returns: ndarray: 1日当たりの給湯設備の消費電力量 (kWh/d) """ if HW is None or HW['hw_type'] is None: # 台所、洗面所及 び浴室等がいずれも無い場合は0とする return np.zeros(24 * 365) if HW['hw_type'] == 'コージェネレーションを使用する': return np.zeros(24 * 365) # ふろ機能の修正 bath_function = get_normalized_bath_function(HW['hw_type'], HW.get('bath_function')) # 給湯負荷の生成 args = { 'n_p': n_p, 'region': region, 'sol_region': sol_region, 'has_bath': HW['has_bath'], 'bath_function': bath_function, 'pipe_diameter': HW['pipe_diameter'], 'kitchen_watersaving_A': HW['kitchen_watersaving_A'], 'kitchen_watersaving_C': HW['kitchen_watersaving_C'], 'shower_watersaving_A': HW['shower_watersaving_A'], 'shower_watersaving_B': HW['shower_watersaving_B'], 'washbowl_watersaving_C': HW['washbowl_watersaving_C'], 'bath_insulation': HW['bath_insulation'] } if SHC is not None: if SHC['type'] == '液体集熱式': args.update({ 'type': SHC['type'], 'ls_type': SHC['ls_type'], 'A_sp': SHC['A_sp'], 'P_alpha_sp': SHC['P_alpha_sp'], 'P_beta_sp': SHC['P_beta_sp'], 'W_tnk_ss': SHC['W_tnk_ss'] }) elif SHC['type'] == '空気集熱式': args.update({ 'type': SHC['type'], 'hotwater_use': SHC['hotwater_use'], 'heating_flag_d': tuple(heating_flag_d), 'A_col': SHC['A_col'], 'P_alpha': SHC['P_alpha'], 'P_beta': SHC['P_beta'], 'V_fan_P0': SHC['V_fan_P0'], 'm_fan_test': SHC['m_fan_test'], 'd0': SHC['d0'], 'd1': SHC['d1'], 'W_tnk_ass': SHC['W_tnk_ass'] }) else: raise ValueError(SHC['type']) hotwater_load = calc_hotwater_load(**args) # 1時間当たりの給湯機の消費電力量 (kWh/h) E_E_hs_d_t = calc_E_E_hs_d_t( hw_type=HW['hw_type'], bath_function=bath_function, hybrid_category=HW['hybrid_category'], package_id=HW.get('package_id'), hybrid_param=HW.get('hybrid_param'), e_rtd=HW['e_rtd'], e_dash_rtd=HW['e_dash_rtd'], L_dashdash_k_d_t=hotwater_load['L_dashdash_k_d_t'], L_dashdash_s_d_t=hotwater_load['L_dashdash_s_d_t'], L_dashdash_w_d_t=hotwater_load['L_dashdash_w_d_t'], L_dashdash_b1_d_t=hotwater_load['L_dashdash_b1_d_t'], L_dashdash_b2_d_t=hotwater_load['L_dashdash_b2_d_t'], L_dashdash_ba1_d_t=hotwater_load['L_dashdash_ba1_d_t'], L_dashdash_ba2_d_t=hotwater_load['L_dashdash_ba2_d_t'], W_dash_k_d_t=hotwater_load['W_dash_k_d_t'], W_dash_s_d_t=hotwater_load['W_dash_s_d_t'], W_dash_w_d_t=hotwater_load['W_dash_w_d_t'], W_dash_b1_d_t=hotwater_load['W_dash_b1_d_t'], W_dash_b2_d_t=hotwater_load['W_dash_b2_d_t'], W_dash_ba1_d_t=hotwater_load['W_dash_ba1_d_t'], theta_ex_d_Ave_d=hotwater_load['theta_ex_d_Ave_d'], Theta_ex_Nave_d=hotwater_load['Theta_ex_Nave_d'], L_HWH=L_HWH, CO2HP=HW['CO2HP'] if 'CO2HP' in HW else None ) # 太陽利用設備の補機の消費電力量 E_E_aux_ss_d_t = calc_E_E_aux_ss_d_t( SHC=SHC, region=region, sol_region=sol_region, heating_flag_d=heating_flag_d ) # 1時間当たりの給湯設備の消費電力量(1) E_E_W_d_t = E_E_hs_d_t + E_E_aux_ss_d_t return E_E_W_d_t def calc_E_E_aux_ss_d_t(SHC, region=None, sol_region=None, heating_flag_d=None): """1時間当たりの補機の消費電力量 (kWh/h) Args: SHC(dict): 太陽熱利用設備の仕様 region(int, optional): 省エネルギー地域区分 (Default value = None) sol_region(int, optional): 年間の日射地域区分 (Default value = None) heating_flag_d(ndarray, optional): 暖房日 (Default value = None) Returns: ndarray: 1時間当たりの補機の消費電力量 (kWh/h) """ if SHC is None: return np.zeros(24 * 365) elif SHC['type'] == '液体集熱式': # 第九章「自然エネルギー利用設備」第二節「液体集熱式太陽熱利用設備」の算定方法により定まる # 1時間当たりの補機の消費電力量 (kWh/h) return lss.calc_E_E_lss_aux_d_t( ls_type=SHC['ls_type'], pmp_type='上記以外の機種', P_alpha_sp=SHC['P_alpha_sp'], P_beta_sp=SHC['P_beta_sp'], region=region, sol_region=sol_region ) elif SHC['type'] == '空気集熱式': # 第九章「自然エネルギー利用設備」第三節「空気集熱式太陽熱利用設備」の算定方法により定まる # 1時間当たりの補機の消費電力量のうちの給湯設備への付加分 (kWh/h) return ass.calc_E_E_W_aux_ass_d_t( hotwater_use=SHC['hotwater_use'], heating_flag_d=heating_flag_d, region=region, sol_region=sol_region, P_alpha=SHC['P_alpha'], P_beta=SHC['P_beta'], A_col=SHC['A_col'], V_fan_P0=SHC['V_fan_P0'], m_fan_test=SHC['m_fan_test'], d0=SHC['d0'], d1=SHC['d1'], fan_sso=SHC['fan_sso'], fan_type=SHC['fan_type'], pump_sso=SHC['pump_sso'] ) else: raise ValueError(SHC['type']) # ============================================================================ # 5.2 ガス消費量 # ============================================================================ def calc_E_G_W_d_t(n_p, L_HWH, heating_flag_d, A_A, region, sol_region, HW, SHC): """1時間当たりの給湯設備のガス消費量 (MJ/h) (2) Args: n_p(float): 仮想居住人数 L_HWH(ndarray): 1日当たりの温水暖房の熱負荷 (MJ/d) A_A(float): 床面積の合計[m^2] region(int): 地域区分 sol_region(int): 年間の日射地域区分 HW(dict): 給湯機の仕様 SHC(dict): 集熱式太陽熱利用設備の仕様 heating_flag_d: returns: 1時間当たりの給湯設備のガス消費量 (MJ/h) Returns: ndarray: 1時間当たりの給湯設備のガス消費量 (MJ/h) """ if HW is None or HW['hw_type'] is None: # 台所、洗面所及 び浴室等がいずれも無い場合は0とする return np.zeros(24 * 365) # ふろ機能の修正 bath_function = get_normalized_bath_function(HW['hw_type'], HW.get('bath_function')) # 給湯負荷の生成 args = { 'n_p': n_p, 'region': region, 'sol_region': sol_region, 'has_bath': HW['has_bath'], 'bath_function': bath_function, 'pipe_diameter': HW['pipe_diameter'], 'kitchen_watersaving_A': HW['kitchen_watersaving_A'], 'kitchen_watersaving_C': HW['kitchen_watersaving_C'], 'shower_watersaving_A': HW['shower_watersaving_A'], 'shower_watersaving_B': HW['shower_watersaving_B'], 'washbowl_watersaving_C': HW['washbowl_watersaving_C'], 'bath_insulation': HW['bath_insulation'] } if SHC is not None: if SHC['type'] == '液体集熱式': args.update({ 'type': SHC['type'], 'ls_type': SHC['ls_type'], 'A_sp': SHC['A_sp'], 'P_alpha_sp': SHC['P_alpha_sp'], 'P_beta_sp': SHC['P_beta_sp'], 'W_tnk_ss': SHC['W_tnk_ss'] }) elif SHC['type'] == '空気集熱式': args.update({ 'type': SHC['type'], 'hotwater_use': SHC['hotwater_use'], 'heating_flag_d': tuple(heating_flag_d), 'A_col': SHC['A_col'], 'P_alpha': SHC['P_alpha'], 'P_beta': SHC['P_beta'], 'V_fan_P0': SHC['V_fan_P0'], 'm_fan_test': SHC['m_fan_test'], 'd0': SHC['d0'], 'd1': SHC['d1'], 'W_tnk_ass': SHC['W_tnk_ass'] }) else: raise ValueError(SHC['type']) hotwater_load = calc_hotwater_load(**args) # 1日当たりの給湯機のガス消費量 E_G_hs_d = calc_E_G_hs_d( hw_type=HW['hw_type'], hybrid_category=HW['hybrid_category'], e_rtd=HW['e_rtd'], e_dash_rtd=HW['e_dash_rtd'], bath_function=bath_function, package_id=HW.get('package_id'), L_dashdash_k_d_t=hotwater_load['L_dashdash_k_d_t'], L_dashdash_s_d_t=hotwater_load['L_dashdash_s_d_t'], L_dashdash_w_d_t=hotwater_load['L_dashdash_w_d_t'], L_dashdash_b1_d_t=hotwater_load['L_dashdash_b1_d_t'], L_dashdash_b2_d_t=hotwater_load['L_dashdash_b2_d_t'], L_dashdash_ba1_d_t=hotwater_load['L_dashdash_ba1_d_t'], L_dashdash_ba2_d_t=hotwater_load['L_dashdash_ba2_d_t'], W_dash_k_d_t=hotwater_load['W_dash_k_d_t'], W_dash_s_d_t=hotwater_load['W_dash_s_d_t'], W_dash_w_d_t=hotwater_load['W_dash_w_d_t'], W_dash_b1_d_t=hotwater_load['W_dash_b1_d_t'], W_dash_b2_d_t=hotwater_load['W_dash_b2_d_t'], W_dash_ba1_d_t=hotwater_load['W_dash_ba1_d_t'], Theta_ex_Ave=hotwater_load['theta_ex_d_Ave_d'], Theta_ex_Nave=hotwater_load['Theta_ex_Nave_d'], L_HWH=L_HWH, hybrid_param=HW.get('hybrid_param') ) return E_G_hs_d # ============================================================================ # 5.3 灯油消費量 # ============================================================================ def calc_E_K_W_d_t(n_p, L_HWH, heating_flag_d, A_A, region, sol_region, HW, SHC): """1時間当たりの給湯設備の灯油消費量 (MJ/h) (3) Args: n_p(float): 仮想居住人数 L_HWH(ndarray): 1日当たりの温水暖房の熱負荷 (MJ/d) A_A(float): 床面積の合計[m^2] region(int): 省エネルギー地域区分 sol_region(int): 年間の日射地域区分 HW(dict): 給湯機の仕様 SHC(dict): 集熱式太陽熱利用設備の仕様 heating_flag_d: returns: 1時間当たりの給湯設備の灯油消費量 (MJ/h) (3) Returns: ndarray: 1時間当たりの給湯設備の灯油消費量 (MJ/h) (3) """ if HW is None or HW['hw_type'] is None: # 台所、洗面所及 び浴室等がいずれも無い場合は0とする return np.zeros(24 * 365) # ふろ機能の修正 bath_function = get_normalized_bath_function(HW['hw_type'], HW.get('bath_function')) # 給湯負荷の生成 args = { 'n_p': n_p, 'region': region, 'sol_region': sol_region, 'has_bath': HW['has_bath'], 'bath_function': bath_function, 'pipe_diameter': HW['pipe_diameter'], 'kitchen_watersaving_A': HW['kitchen_watersaving_A'], 'kitchen_watersaving_C': HW['kitchen_watersaving_C'], 'shower_watersaving_A': HW['shower_watersaving_A'], 'shower_watersaving_B': HW['shower_watersaving_B'], 'washbowl_watersaving_C': HW['washbowl_watersaving_C'], 'bath_insulation': HW['bath_insulation'] } if SHC is not None: if SHC['type'] == '液体集熱式': args.update({ 'type': SHC['type'], 'ls_type': SHC['ls_type'], 'A_sp': SHC['A_sp'], 'P_alpha_sp': SHC['P_alpha_sp'], 'P_beta_sp': SHC['P_beta_sp'], 'W_tnk_ss': SHC['W_tnk_ss'] }) elif SHC['type'] == '空気集熱式': args.update({ 'type': SHC['type'], 'hotwater_use': SHC['hotwater_use'], 'heating_flag_d': tuple(heating_flag_d), 'A_col': SHC['A_col'], 'P_alpha': SHC['P_alpha'], 'P_beta': SHC['P_beta'], 'V_fan_P0': SHC['V_fan_P0'], 'm_fan_test': SHC['m_fan_test'], 'd0': SHC['d0'], 'd1': SHC['d1'], 'W_tnk_ass': SHC['W_tnk_ass'] }) else: raise ValueError(SHC['type']) hotwater_load = calc_hotwater_load(**args) # 1時間当たりの給湯機の灯油消費量 (MJ/h) E_k_hs_d_t = calc_E_K_hs_d_t( hw_type=HW['hw_type'], e_rtd=HW['e_rtd'], e_dash_rtd=HW['e_dash_rtd'], bath_function=bath_function, L_dashdash_k_d_t=hotwater_load['L_dashdash_k_d_t'], L_dashdash_s_d_t=hotwater_load['L_dashdash_s_d_t'], L_dashdash_w_d_t=hotwater_load['L_dashdash_w_d_t'], L_dashdash_b1_d_t=hotwater_load['L_dashdash_b1_d_t'], L_dashdash_b2_d_t=hotwater_load['L_dashdash_b2_d_t'], L_dashdash_ba1_d_t=hotwater_load['L_dashdash_ba1_d_t'], L_dashdash_ba2_d_t=hotwater_load['L_dashdash_ba2_d_t'], theta_ex_d_Ave_d=hotwater_load['theta_ex_d_Ave_d'] ) return E_k_hs_d_t # ============================================================================ # 5.4 その他の燃料による一次エネルギー消費量 # ============================================================================ def get_E_M_W_d_t(): """1時間当たりの給湯設備のその他の燃料による一次エネルギー消費量 Args: Returns: ndarray: 1時間当たりの給湯設備のその他の燃料による一次エネルギー消費量 """ # 1時間当たりの給湯設備のその他の燃料による一次エネルギー消費量は0とする return np.zeros(24 * 365) # ============================================================================ # 6. 給湯機のエネルギー消費量 # ============================================================================ def calc_E_E_hs_d_t(hw_type, bath_function, package_id, hybrid_param, hybrid_category, e_rtd, e_dash_rtd, Theta_ex_Nave_d, W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_b2_d_t, W_dash_ba1_d_t, theta_ex_d_Ave_d, L_dashdash_k_d_t, L_dashdash_s_d_t, L_dashdash_w_d_t, L_dashdash_b1_d_t, L_dashdash_b2_d_t, L_dashdash_ba1_d_t, L_dashdash_ba2_d_t, L_HWH, CO2HP): """1時間当たりの給湯機の消費電力量 (kWh/h) Args: hw_type(str): 給湯機/給湯温水暖房機の種類 bath_function(str): 給湯機の種類 hybrid_category(str): 電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機の区分 package_id(str): パッケージID hybrid_param(dic): ハイブリッドパラメーター e_rtd(float): 当該給湯機の効率 e_dash_rtd(float): エネルギーの使用の合理化に関する法律」に基づく「特定機器の性能の向上に関する製造事業者等の 判断の基準等」(ガス温水機器)に定義される「エネルギー消費効率」 Theta_ex_Nave_d(ndarray): 夜間平均外気温 (℃) W_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯量 (L/d) W_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯量 (L/d) W_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯量 (L/d) W_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯量 (L/d) W_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯量 (L/d) W_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯量 (L/d) theta_ex_d_Ave_d(ndarray): 日平均外気温度 (℃) L_dashdash_k_d_t(ndarray): 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_w_d_t(ndarray): 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯熱負荷 (MJ/d) L_dashdash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/d) L_HWH(ndarray): 1日当たりの温水暖房の熱負荷 (MJ/d) CO2HP(dict): CO2HPのパラメーター Returns: ndarray: 1時間当たりの給湯機の消費電力量 (MJ/h) """ if hw_type == 'ガス従来型給湯機' or hw_type == 'ガス従来型給湯温水暖房機' \ or hw_type == 'ガス潜熱回収型給湯機' or hw_type == 'ガス潜熱回収型給湯温水暖房機': return gas.calc_E_E_hs_d_t( W_dash_k_d_t=W_dash_k_d_t, W_dash_s_d_t=W_dash_s_d_t, W_dash_w_d_t=W_dash_w_d_t, W_dash_b1_d_t=W_dash_b1_d_t, W_dash_b2_d_t=W_dash_b2_d_t, W_dash_ba1_d_t=W_dash_ba1_d_t, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '石油従来型給湯機' or hw_type == '石油従来型給湯温水暖房機' \ or hw_type == '石油潜熱回収型給湯機' or hw_type == '石油潜熱回収型給湯温水暖房機': return oil.calc_E_E_hs_d_t(W_dash_k_d_t=W_dash_k_d_t, W_dash_s_d_t=W_dash_s_d_t, W_dash_w_d_t=W_dash_w_d_t, W_dash_b1_d_t=W_dash_b1_d_t, W_dash_ba1_d_t=W_dash_ba1_d_t, W_dash_b2_d_t=W_dash_b2_d_t, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t) elif hw_type == '電気ヒートポンプ給湯機': return eheatpump.calc_E_E_hs_d_t( L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t, e_rtd=e_rtd, theta_ex_d_Ave_d=theta_ex_d_Ave_d, theta_ex_Nave_d=Theta_ex_Nave_d, CO2HP=CO2HP ) elif hw_type == '電気ヒーター給湯機' or hw_type == '電気ヒーター給湯温水暖房機': return eheater.calc_E_E_hs_d_t( L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t, theta_ex_d_Ave_d=theta_ex_d_Ave_d ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(仕様による)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(仕様による)': return hybrid_gas.calc_E_E_hs_d_t( hybrid_category=hybrid_category, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(試験された値を用いる)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(試験された値を用いる)': return hybrid_gas_3.calc_E_E_hs_d_t( bath_function=bath_function, package_id=package_id, hybrid_param=hybrid_param, W_dash_ba1_d_t=W_dash_ba1_d_t, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:ガス瞬間式、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return gas_hybrid.get_E_E_hs( W_dash_k_d_t=W_dash_k_d_t, W_dash_s_d_t=W_dash_s_d_t, W_dash_w_d_t=W_dash_w_d_t, W_dash_b1_d_t=W_dash_b1_d_t, W_dash_b2_d_t=W_dash_b2_d_t, W_dash_ba1_d_t=W_dash_ba1_d_t, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return whybrid.calc_E_E_hs_d_t( L_HWH=L_HWH, hybrid_category=hybrid_category, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) else: raise ValueError(hw_type) def calc_E_G_hs_d(hw_type, hybrid_category, e_rtd, e_dash_rtd, bath_function, package_id, Theta_ex_Nave, W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_b2_d_t, W_dash_ba1_d_t, Theta_ex_Ave, L_dashdash_k_d_t, L_dashdash_s_d_t, L_dashdash_w_d_t, L_dashdash_b1_d_t, L_dashdash_b2_d_t, L_dashdash_ba1_d_t, L_dashdash_ba2_d_t, L_HWH, hybrid_param): """1日当たりの給湯機のガス消費量 Args: hw_type(str): 給湯機/給湯温水暖房機の種類 hybrid_category(str): 電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機の区分 e_rtd(float): 当該給湯機の効率 e_dash_rtd(float): エネルギーの使用の合理化に関する法律」に基づく「特定機器の性能の向上に関する製造事業者等の 判断の基準等」(ガス温水機器)に定義される「エネルギー消費効率」 bath_function(str): ふろ機能の種類 Theta_ex_Nave(ndarray): 夜間平均外気温 (℃) W_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯量 (L/h) W_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯量 (L/h) W_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯量 (L/h) W_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯量 (L/h) W_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯量 (L/h) W_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯量 (L/h) Theta_ex_Ave(ndarray): 日平均外気温度 (℃) L_dashdash_k_d: 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_s_d: 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_w_d: 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b1_d: 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b2_d: 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba1_d: 1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba2_d: 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/h) L_HWH(ndarray): 1日当たりの温水暖房の熱負荷 (MJ/d) package_id: param L_dashdash_k_d_t: L_dashdash_s_d_t: param L_dashdash_w_d_t: L_dashdash_b1_d_t: param L_dashdash_b2_d_t: L_dashdash_ba1_d_t: param L_dashdash_ba2_d_t: hybrid_param: returns: 1時間当たりの給湯機のガス消費量 (MJ/h) L_dashdash_k_d_t: L_dashdash_w_d_t: L_dashdash_b2_d_t: L_dashdash_ba2_d_t: Returns: ndarray: 1時間当たりの給湯機のガス消費量 (MJ/h) """ if hw_type == 'ガス従来型給湯機' or hw_type == 'ガス従来型給湯温水暖房機' \ or hw_type == 'ガス潜熱回収型給湯機' or hw_type == 'ガス潜熱回収型給湯温水暖房機': return gas.calc_E_G_hs_d_t( hw_type=hw_type, e_rtd=e_rtd, e_dash_rtd=e_dash_rtd, theta_ex_d_Ave_d=Theta_ex_Ave, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t, bath_function=bath_function ) elif hw_type == '石油従来型給湯機' or hw_type == '石油従来型給湯温水暖房機' \ or hw_type == '石油潜熱回収型給湯機' or hw_type == '石油潜熱回収型給湯温水暖房機': return oil.get_E_G_hs_d_t() elif hw_type == '電気ヒートポンプ給湯機': return eheatpump.get_E_G_hs_d_t() elif hw_type == '電気ヒーター給湯機' or hw_type == '電気ヒーター給湯温水暖房機': return eheater.get_E_G_hs() elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(仕様による)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(仕様による)': return hybrid_gas.calc_E_G_hs_d_t( hybrid_category=hybrid_category, theta_ex_d_Ave_d=Theta_ex_Ave, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(試験された値を用いる)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(試験された値を用いる)': return hybrid_gas_3.get_E_G_hs_d_t( bath_function=bath_function, package_id=package_id, theta_ex_d_Ave_d=Theta_ex_Ave, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t, W_dash_ba1_d_t=W_dash_ba1_d_t, hybrid_param=hybrid_param ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:ガス瞬間式、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return gas_hybrid.get_E_G_hs( Theta_ex_Ave=Theta_ex_Ave, L_dashdash_k=L_dashdash_k_d_t, L_dashdash_s=L_dashdash_s_d_t, L_dashdash_w=L_dashdash_w_d_t, L_dashdash_b1=L_dashdash_b1_d_t, L_dashdash_b2=L_dashdash_b2_d_t, L_dashdash_ba1=L_dashdash_ba1_d_t, L_dashdash_ba2=L_dashdash_ba2_d_t, bath_function=bath_function ) elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return whybrid.calc_E_G_hs_d_t( L_HWH=L_HWH, hybrid_category=hybrid_category, Theta_ex_Ave=Theta_ex_Ave, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == 'コージェネレーションを使用する': return np.zeros(365) else: raise ValueError(hw_type) def calc_E_K_hs_d_t(hw_type, e_rtd, e_dash_rtd, bath_function, theta_ex_d_Ave_d, L_dashdash_k_d_t, L_dashdash_s_d_t, L_dashdash_w_d_t, L_dashdash_b1_d_t, L_dashdash_b2_d_t, L_dashdash_ba1_d_t, L_dashdash_ba2_d_t): """1時間当たりの給湯機の灯油消費量 (MJ/h) Args: hw_type(str): 給湯機/給湯温水暖房機の種類 e_rtd(float): 当該給湯機の効率 e_dash_rtd(float): エネルギーの使用の合理化に関する法律」に基づく「特定機器の性能の向上に関する製造事業者等の 判断の基準等」(ガス温水機器)に定義される「エネルギー消費効率」 bath_function(str): ふろ機能の種類 theta_ex_d_Ave_d(ndarray): 日平均外気温度 (℃) L_dashdash_w_d_t(ndarray): 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_k_d_t(ndarray): 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/h) Returns: ndarray: 1時間当たりの給湯機の灯油消費量 (MJ/h) """ if hw_type == 'ガス従来型給湯機' or hw_type == 'ガス従来型給湯温水暖房機' \ or hw_type == 'ガス潜熱回収型給湯機' or hw_type == 'ガス潜熱回収型給湯温水暖房機': return gas.get_E_K_hs_d_t() elif hw_type == '石油従来型給湯機' or hw_type == '石油従来型給湯温水暖房機' \ or hw_type == '石油潜熱回収型給湯機' or hw_type == '石油潜熱回収型給湯温水暖房機': return oil.calc_E_K_hs_d_t( hw_type=hw_type, bath_function=bath_function, e_rtd=e_rtd, e_dash_rtd=e_dash_rtd, theta_ex_d_Ave_d=theta_ex_d_Ave_d, L_dashdash_k_d_t=L_dashdash_k_d_t, L_dashdash_s_d_t=L_dashdash_s_d_t, L_dashdash_w_d_t=L_dashdash_w_d_t, L_dashdash_b1_d_t=L_dashdash_b1_d_t, L_dashdash_b2_d_t=L_dashdash_b2_d_t, L_dashdash_ba1_d_t=L_dashdash_ba1_d_t, L_dashdash_ba2_d_t=L_dashdash_ba2_d_t ) elif hw_type == '電気ヒートポンプ給湯機': return eheatpump.get_E_K_hs_d_t() elif hw_type == '電気ヒーター給湯機' or hw_type == '電気ヒーター給湯温水暖房機': return eheater.get_E_K_hs() elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(仕様による)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(仕様による)': return gas_hybrid.get_E_K_hs() elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(試験された値を用いる)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(試験された値を用いる)': return hybrid_gas.get_E_K_hs_d_t() elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:ガス瞬間式、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return hybrid_gas.get_E_K_hs_d_t() elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return whybrid.get_E_K_hs_d_t() elif hw_type == 'コージェネレーションを使用する': return np.zeros(365) else: raise ValueError(hw_type) def get_normalized_bath_function(hw_type, bath_function): """表4 評価可能な給湯機/給湯温水暖房機の種類 Args: hw_type(str): 給湯機/給湯温水暖房機の種類 bath_function(str): ふろ機能の種類 Returns: str: 評価可能な給湯機/給湯温水暖房機の種類 """ if hw_type == 'ガス従来型給湯機' or hw_type == 'ガス従来型給湯温水暖房機' \ or hw_type == 'ガス潜熱回収型給湯機' or hw_type == 'ガス潜熱回収型給湯温水暖房機': return bath_function elif hw_type == '石油従来型給湯機' or hw_type == '石油従来型給湯温水暖房機' \ or hw_type == '石油潜熱回収型給湯機' or hw_type == '石油潜熱回収型給湯温水暖房機': return bath_function elif hw_type == '電気ヒートポンプ給湯機': return bath_function elif hw_type == '電気ヒーター給湯機' or hw_type == '電気ヒーター給湯温水暖房機': return bath_function elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(試験された値を用いる)' \ or hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:ガス瞬間式)(仕様による)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(試験された値を用いる)' \ or hw_type == '電気ヒートポンプ・ガス併用型給湯機(仕様による)': return "ふろ給湯機(追焚あり)" elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:ガス瞬間式、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return "ふろ給湯機(追焚あり)" elif hw_type == '電気ヒートポンプ・ガス瞬間式併用型給湯温水暖房機(給湯熱源:電気ヒートポンプ・ガス瞬間式併用、暖房熱源:電気ヒートポンプ・ガス瞬間式併用)': return "ふろ給湯機(追焚あり)" elif hw_type == 'コージェネレーションを使用する': return bath_function else: raise ValueError(hw_type) # ============================================================================ # 7. 太陽熱補正給湯熱負荷 # ============================================================================ def calc_L_dashdash_k_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) (4a) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/h) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) """ L_dashdash_k_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_k_d_t[f] = L_dash_k_d_t[f] - L_sun_d_t[f] * (L_dash_k_d_t[f] / L_dash_d_t[f]) return L_dashdash_k_d_t def calc_L_dashdash_s_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) (4b) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/h) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) """ L_dashdash_s_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_s_d_t[f] = L_dash_s_d_t[f] - L_sun_d_t[f] * (L_dash_s_d_t[f] / L_dash_d_t[f]) return L_dashdash_s_d_t def calc_L_dashdash_w_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) (4c) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/h) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) """ L_dashdash_w_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_w_d_t[f] = L_dash_w_d_t[f] - L_sun_d_t[f] * (L_dash_w_d_t[f] / L_dash_d_t[f]) return L_dashdash_w_d_t def calc_L_dashdash_b1_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) (4d) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/h) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) """ L_dashdash_b1_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_b1_d_t[f] = L_dash_b1_d_t[f] - L_sun_d_t[f] * (L_dash_b1_d_t[f] / L_dash_d_t[f]) return L_dashdash_b1_d_t def calc_L_dashdash_b2_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの浴槽自動湯はり時における太陽熱補正給湯負荷 (MJ/h) (4e) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/h) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの浴槽自動湯はり時における太陽熱補正給湯負荷 (MJ/h) """ L_dashdash_b2_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_b2_d_t[f] = L_dash_b2_d_t[f] - L_sun_d_t[f] * (L_dash_b2_d_t[f] / L_dash_d_t[f]) return L_dashdash_b2_d_t def calc_L_dashdash_ba1_d_t(L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t, L_sun_d_t): """1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯負荷 (MJ/h) (4f) Args: L_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) L_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯熱負荷 (MJ/hd) L_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯熱負荷 (MJ/h) L_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯熱負荷 (MJ/h) L_sun_d_t(ndarray): 1時間当たりの太陽熱利用給湯設備による補正集熱量 (MJ/h) Returns: ndarray: 1時間当たりの浴槽水栓さし湯時における太陽熱補正給湯負荷 (MJ/h) """ L_dashdash_ba1_d_t = np.zeros(24 * 365) L_dash_d_t = L_dash_k_d_t + L_dash_s_d_t + L_dash_w_d_t + L_dash_b1_d_t + L_dash_b2_d_t + L_dash_ba1_d_t f = L_dash_d_t > 0 L_dashdash_ba1_d_t[f] = L_dash_ba1_d_t[f] - L_sun_d_t[f] * (L_dash_ba1_d_t[f] / L_dash_d_t[f]) return L_dashdash_ba1_d_t def get_L_dashdash_ba2_d_t(L_dash_ba2_d_t): """1時間当たりの浴槽追焚時における太陽熱補正給湯負荷 (MJ/h) (4g) Args: L_dash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯負荷 (MJ/h) Returns: 1時間当たりの浴槽追焚時における太陽熱補正給湯負荷 (MJ/h) """ return L_dash_ba2_d_t def calc_L_sun_d_t(region, sol_region=None, solar_device=None, ls_type=None, A_sp=None, P_alpha_sp=None, P_beta_sp=None, W_tnk_ss=None, hotwater_use=None, heating_flag_d=None, A_col=None, P_alpha=None, P_beta=None, V_fan_P0=None, d0=None, d1=None, m_fan_test=None, W_tnk_ass=None, Theta_wtr_d=None, L_dash_k_d_t=None, L_dash_s_d_t=None, L_dash_w_d_t=None, L_dash_b1_d_t=None, L_dash_b2_d_t=None, L_dash_ba1_d_t=None): """太陽熱利用給湯設備による補正集熱量 Args: region(int): 省エネルギー地域区分 sol_region(int, optional): 年間の日射地域区分 (Default value = None) solar_device(str, optional): 太陽熱利用設備の種類 (液体集熱式,空気集熱式,None) (Default value = None) ls_type(str, optional): 液体集熱式太陽熱利用設備の種類 (太陽熱温水器,ソーラーシステム) (Default value = None) A_sp(float, optional): 太陽熱集熱部の有効集熱面積 (m2) (Default value = None) P_alpha_sp(float, optional): 太陽熱集熱部の方位角 (°) (Default value = None) P_beta_sp(float, optional): 太陽熱集熱部の傾斜角 (°) (Default value = None) W_tnk_ss(float, optional): ソーラーシステムのタンク容量 (L) (Default value = None) W_tnk_ass(float, optional): タンク容量 (L) (Default value = None) Theta_wtr_d(ndarray, optional): 日平均給水温度 (℃) (Default value = None) L_dash_k_d_t(ndarrayL, optional): 1時間当たりの台所水栓における節湯補正給湯熱負荷 (MJ/h) (Default value = None) L_dash_s_d_t(ndarray, optional): 1時間当たりの浴室シャワー水栓における節湯補正給湯熱負荷 (MJ/h) (Default value = None) L_dash_w_d_t(ndarray, optional): 1時間当たりの洗面水栓における節湯補正給湯熱負荷 (MJ/h) (Default value = None) L_dash_b1_d_t(ndarray, optional): 1時間当たりの浴槽水栓湯はりにおける節湯補正給湯熱負荷 (MJ/h) (Default value = None) L_dash_b2_d_t(ndarray, optional): 1時間当たりの浴槽自動湯はりにおける節湯補正給湯熱負荷 (MJ/h) (Default value = None) L_dash_ba1_d_t(ndarray, optional): 1時間当たりの浴槽水栓さし湯における節湯補正給湯熱負荷 (MJ/h) (Default value = None) hotwater_use: Default value = None) heating_flag_d: Default value = None) A_col: Default value = None) P_alpha: Default value = None) P_beta: Default value = None) V_fan_P0: Default value = None) d0: Default value = None) d1: Default value = None) m_fan_test: Default value = None) Returns: ndarray: 1時間当たりの太陽熱利用設備による補正集熱量 (MJ/h) """ if solar_device == '液体集熱式': return lss.calc_L_sun_lss_d_t( region=region, sol_region=sol_region, ls_type=ls_type, A_sp=A_sp, P_alpha_sp=P_alpha_sp, P_beta_sp=P_beta_sp, W_tnk_ss=W_tnk_ss, Theta_wtr_d=Theta_wtr_d, L_dash_k_d_t=L_dash_k_d_t, L_dash_s_d_t=L_dash_s_d_t, L_dash_w_d_t=L_dash_w_d_t, L_dash_b1_d_t=L_dash_b1_d_t, L_dash_b2_d_t=L_dash_b2_d_t, L_dash_ba1_d_t=L_dash_ba1_d_t ) elif solar_device == '空気集熱式': if hotwater_use == True: outdoor = load_outdoor() Theta_ex_d_t = get_Theta_ex(region, outdoor) Theta_col_nonopg_d_t, Theta_col_opg_d_t = ass.calc_Theta_col(A_col, P_alpha, P_beta, V_fan_P0, d0, d1, m_fan_test, region, sol_region, Theta_ex_d_t) t_fan_d_t = ass.get_t_fan_d_t(Theta_col_nonopg_d_t, Theta_col_opg_d_t) t_cp_d_t = ass.get_t_cp_d_t(hotwater_use, t_fan_d_t, heating_flag_d) V_fan_d_t = ass.get_V_fan_d_t(t_fan_d_t, V_fan_P0) Q_col_d_t = ass.get_Q_col_d_t(V_fan_d_t, Theta_col_opg_d_t, Theta_ex_d_t) Q_d = ass.calc_Q_d(Q_col_d_t, t_cp_d_t) L_tnk_d = ass.calc_L_tnk_d(Q_d, W_tnk_ass, Theta_wtr_d) return ass.calc_L_sun_ass_d_t(L_tnk_d, L_dash_k_d_t, L_dash_s_d_t, L_dash_w_d_t, L_dash_b1_d_t, L_dash_b2_d_t, L_dash_ba1_d_t) else: return np.zeros(24 * 365) elif solar_device is None: return np.zeros(24 * 365) else: raise ValueError(solar_device) # ============================================================================ # 8. 節湯補正給湯熱負荷 # ============================================================================ def get_L_dash_k_d_t(W_dash_k_d_t, Theta_sw_k, Theta_wtr_d): """台所水栓における節湯補正給湯負荷 (MJ/h) (5a) Args: W_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯量 (L/h) Theta_sw_k(int): 台所水栓における基給湯量 (℃) Theta_wtr_d(ndarray): 日平均給水温度 (℃) Returns: ndarray: 台所水栓における節湯補正給湯負荷 (MJ/h) """ return W_dash_k_d_t * (Theta_sw_k - np.repeat(Theta_wtr_d, 24)) * 4.186 * 10 ** (-3) def get_L_dash_s_d_t(W_dash_s_d_t, Theta_sw_s, Theta_wtr_d): """浴室シャワー水栓における節湯補正給湯負荷 (5b) Args: W_dash_s_d_t(ndarray): 1時間当たりの浴室シャワーにおける節湯補正給湯量 (L/h) Theta_sw_s(int): 浴室シャワーにおける基給湯量 (℃) Theta_wtr_d(ndarray): 日平均給水温度 (℃) Returns: ndarray: 浴室シャワーにおける節湯補正給湯負荷 (MJ/h) """ return W_dash_s_d_t * (Theta_sw_s - np.repeat(Theta_wtr_d, 24)) * 4.186 * 10 ** (-3) def get_L_dash_w_d_t(W_dash_w_d_t, Theta_sw_w, Theta_wtr_d): """洗面水栓における節湯補正給湯負荷 (5c) Args: W_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯量 (L/d) Theta_sw_w(int): 洗面水栓における基給湯量 (℃) Theta_wtr_d(ndarray): 日平均給水温度 (℃) Returns: ndarray: 洗面水栓における節湯補正給湯負荷 (MJ/d) """ return W_dash_w_d_t * (Theta_sw_w - np.repeat(Theta_wtr_d, 24)) * 4.186 * 10 ** (-3) def get_L_dash_bx_d_t(W_dash_b1_d_t, W_dash_b2_d_t, Theta_wtr_d, has_bath, bash_function): """浴槽水栓湯はり時における節水補正給湯熱負荷 L_dash_b1_d, L_dash_b2_d Args: W_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯量 (L/d) W_dash_b2_d_t(ndarray): 1時間当たりの浴槽自動湯はり時における節湯補正給湯量 (L/d) Theta_wtr_d(ndarray): 日平均給水温度 (℃) has_bath(bool): 浴室用の有無 bash_function(str): ふろ機能の種類 Returns: ndarray: 浴槽水栓湯はり時・浴槽自動湯はり時における節水補正給湯熱負荷 (MJ/d) """ if has_bath == False: L_dash_b1_d_t = np.zeros(24 * 365) # (5-1d) L_dash_b2_d_t = np.zeros(24 * 365) # (5-1e) return L_dash_b1_d_t, L_dash_b2_d_t elif bash_function == '給湯単機能': Theta_sw_b1 = get_Theta_sw_b1() L_dash_b1_d_t = W_dash_b1_d_t * (Theta_sw_b1 - np.repeat(Theta_wtr_d, 24)) * 4.186 * 10 ** (-3) # (5-2d) L_dash_b2_d_t = np.zeros(24 * 365) # (5-2e) return L_dash_b1_d_t, L_dash_b2_d_t elif bash_function == 'ふろ給湯機(追焚あり)' or bash_function == 'ふろ給湯機(追焚なし)': Theta_sw_b2 = get_Theta_sw_b2() L_dash_b1_d_t = np.zeros(24 * 365) # (5-3d) L_dash_b2_d_t = W_dash_b2_d_t * (Theta_sw_b2 - np.repeat(Theta_wtr_d, 24)) * 4.186 * 10 ** (-3) # (5-3e) return L_dash_b1_d_t, L_dash_b2_d_t else: raise ValueError(bash_function) def get_L_dash_bax_d_t(W_dash_ba1_d_t, Theta_wtr_d, L_ba_d_t, has_bath, bash_function): """浴槽水栓さし湯時における節水補正給湯熱負荷 L_dash_ba1_d, L_dash_ba2_d Args: W_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯量 (L/h) Theta_wtr_d(ndarray): 日平均給水温度 (℃) L_ba_d_t(ndarray): 1時間当たりの浴槽沸かし直しによる給湯熱負荷 (MJ/h) has_bath(bool): 浴室等の有無 bash_function(str): ふろ機能の種類 (給湯単機能,ふろ給湯機(追焚なし),ふろ給湯機(追焚あり)) Returns: ndarray: 浴槽水栓さし湯時/浴槽追焚時における節水補正給湯熱負荷 (MJ/h) """ if has_bath == False: L_dash_ba1_d_t = np.zeros(24 * 365) # (5-1f) L_dash_ba2_d_t =
np.zeros(24 * 365)
numpy.zeros
import itertools import json import numpy as np import scipy.stats as stats import trilearn.graph.decomposable import trilearn.graph.junction_tree as libj import trilearn.auxiliary_functions as aux from trilearn.distributions import dirichlet def ll_complete_set_ratio(comp, alpha, counts, data, levels, cache): """ The ratio of normalizing constants for a posterior Dirichlet distribution defined ofer a complete set (clique or separator). I(alpha + n) / I(alpha) Args: comp: Clique or separator. alpha: Pseudo counts for each cell. """ if comp not in counts: counts[comp] = aux.get_marg_counts(data, list(comp)) if comp not in cache: nodes = list(comp) c1 = dirichlet.log_norm_constant_multidim(counts[comp], alpha, levels[nodes]) c2 = dirichlet.log_norm_constant_multidim({}, alpha, levels[nodes]) cache[comp] = c1 - c2 return cache[comp] def log_likelihood_partial(cliques, separators, no_levels, cell_alpha, counts, data, levels, cache): cliques_constants = 0.0 tot_no_cells = np.prod([l for l in no_levels]) for c in cliques: # Setting constant alpha here no_cells_outside = np.prod([l for i, l in enumerate(no_levels) if i not in c]) alpha = cell_alpha * no_cells_outside / tot_no_cells cliques_constants += ll_complete_set_ratio(c, alpha, counts, data, levels, cache) seps_constants = 0.0 for s in separators: if s == frozenset({}): continue nu = len(separators[s]) # Setting alpha here no_cells_outside = np.prod([l for i, l in enumerate(no_levels) if i not in s]) alpha = cell_alpha * no_cells_outside / tot_no_cells seps_constants += nu * ll_complete_set_ratio(s, alpha, counts, data, levels, cache) return cliques_constants - seps_constants def sample_hyper_consistent_counts(graph, levels, constant_alpha): """ TODO """ junctiontree = trilearn.graph.decomposable.junction_tree(graph) (C, S, H, A, R) = libj.peo(junctiontree) parameters = {} no_levels = np.array([len(l) for l in levels]) for i, clique in enumerate(C): if i == 0: nodes = list(clique) no_cells = np.prod(no_levels[nodes]) alphas = [constant_alpha/no_cells] * no_cells x = stats.dirichlet.rvs(alphas) x.shape = tuple(no_levels[nodes]) parameters[clique] = x else: # Find clique that contains S[i] cont_clique = None for j in range(i): if S[i] <= C[j]: cont_clique = C[j] break (parameters[clique], parameters[S[i]]) = hyperconsistent_cliques(cont_clique, parameters[cont_clique], clique, levels, constant_alpha) return parameters def sample_hyper_consistent_parameters(graph, constant_alpha, levels): junctiontree = trilearn.graph.decomposable.junction_tree(graph) (C, S, H, A, R) = libj.peo(junctiontree) parameters = {} no_levels = np.array([len(l) for l in levels]) for i, clique in enumerate(C): if i == 0: nodes = sorted(list(clique)) no_cells = np.prod(no_levels[nodes]) alphas = [constant_alpha/no_cells] * no_cells x = stats.dirichlet.rvs(alphas) # assume that the corresponding variables are ordered x.shape = tuple(no_levels[nodes]) parameters[clique] = x else: # Find a clique that contains S[i] cont_clique = None for j in range(i): if S[i] < C[j]: cont_clique = C[j] break #print str(clique) + " neighbor of " + str(cont_clique) (parameters[clique], parameters[S[i]]) = hyperconsistent_cliques(cont_clique, parameters[cont_clique], clique, levels, constant_alpha) return parameters def hyperconsistent_cliques(clique1, clique1_dist, clique2, levels, constant_alpha): """ Returns a distribution for clique2 that is hyper-consistent with clique1_dist. Args: clique1 (set): A clique clique1_dist (np.array): A distribution for clique1 clique2 (set): A clique levels (np.array of lists): levels for all nodes in the full graph """ sep_list = sorted(list(clique1 & clique2)) # TODO: Bug, does not work if sorting this for some reason clique1_list = sorted(list(clique1)) clique2_list = sorted(list(clique2)) no_levels = np.array([len(l) for l in levels]) clique2_dist_shape = tuple(no_levels[clique2_list]) sep_dist_shape = tuple(no_levels[sep_list]) clique2_dist = np.zeros(
np.prod(no_levels[clique2_list])
numpy.prod
import os import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from c0101_retrieve_clinical import retrieve_clinical from c0201_query_patents import query_patents def chart_patents(): """ """ query_patents() # clinical_gov_url = 'https://clinicaltrials.gov/ct2/results?cond=&term=&type=&rslt=&age_v=&gndr=&intr=allogenic+AND+msc&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=' # retrieve_clinical(clinical_gov_url) ref_path = os.path.join( 'metadata') alloFile = 'allogenicANDmesencymalClinicalGov.csv' autoFile = 'autologousANDmesencymalClinicalGov.csv' fig = plt.figure() ax = plt.subplot(111) df_return = count_per_year(alloFile) plt.scatter(df_return['year'], df_return['count'], color = [0,0,1], label = 'allogenic') plt.plot(df_return['year'], df_return['count'], color = [1,0,0], label = 'allogenic') df_return = count_per_year(autoFile) plt.scatter(df_return['year'], df_return['count'], color = [0,0,1], label = 'autologous') plt.plot(df_return['year'], df_return['count'], color = [0,0,1], label = 'autologous') ax.legend(loc = 'center left') plt.title('Clinical Trials of MSC') plt.savefig('patents.png', bbox_inches='tight') def count_per_year(refFile): """ """ ref_path = os.path.join( 'metadata') ref_file = os.path.join(ref_path, refFile) dfAllo = pd.read_csv(ref_file) startAllo = list(dfAllo["Start Date"]) years = [] for start in startAllo: start = str(start) fullDate = start.split(' ') year = fullDate[-1] years.append(year) dfAllo['Start Year'] = years # print(years) unique_years, unique_counts = [], [] for year in
np.arange(2000, 2025, 1)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 2 16:36:49 2020 @author: hanshengjiang """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import scipy.optimize import time # change plot fonts rc = {"font.family" : "serif", "mathtext.fontset" : "stix", "font.size": 16} plt.rcParams.update(rc) plt.rcParams["font.serif"] = ["Times New Roman"] + plt.rcParams["font.serif"] from scipy import integrate def u(r,p,coefficients): ''' utility function p: price r: reference price a,b,c_pos,c_neg all >=0 ''' (a ,b, c_pos, c_neg) = coefficients u = a - b * p + c_pos * np.maximum(r - p, 0) + c_neg * np.minimum(r - p, 0) return u def R_single(a,b,c_pos,c_neg,r,p): ''' r: reference price p: price a, b, c_pos, c_neg: coefficients ''' u = a - b * p + c_pos * np.maximum(r - p, 0) + c_neg * np.minimum(r - p, 0) if u > 100: revenue = p elif u < -100: revenue = 0 else: temp = 1/(1+np.exp(-u)) revenue = p * temp return revenue def R_uniform(r,p,coefficients): ''' one period revenue, logistic demand function mixing distribution is a uniform distribution over [bL,bH] [bL,bH] integratation range or parameter distribution range p: price r: reference price ''' # need to set the integral accuracy lower # --otherwise the intergal does not converge BH = np.array(coefficients[3])[1] (revenue_uniform, abserr) = integrate.nquad(R_single, coefficients,\ args = (r,p), opts = [{'epsabs': 1e-6}, {'epsabs': 1e-6}, {'epsabs': 1e-6}, {'epsabs': 1e-6},]) return revenue_uniform/(BH**4) def R_uniform_fast(r,p,coefficients): ''' one period revenue (approximated), logistic demand function mixing distribution is a uniform distribution over [bL,bH] [bL,bH] integratation range or parameter distribution range p: price r: reference price coefficients: ( coordiates of the center, edge length of cube) ''' # need to set the integral accuracy lower # --otherwise the intergal does not converge c = np.array(coefficients[0]) BH = float(coefficients[1]) # print(BH) num_sample = 500 revenue_uniform = 0 for i in range(num_sample): b = np.random.uniform(-BH/2,BH/2,4) b = b + c u = b[0] - b[1] * p + b[2] * np.maximum(r - p, 0) + b[3] * np.minimum(r - p, 0) if u > 100: revenue_uniform += p elif u < -100: revenue_uniform += 0 else: temp = 1/(1+np.exp(-u)) revenue_uniform += p*temp revenue_uniform = revenue_uniform/num_sample # print(revenue_uniform) return revenue_uniform def R(r,p,coefficients,weights): ''' one period revenue, logistic demand function multi-segment consumers p: price r: reference price ''' revenue = 0 coefficients = np.array(coefficients) num_seg = int(len(coefficients)/4) for i in range(num_seg): # this number is set to be 26 if u(r,p,coefficients[4*i:4*(i+1)]) > 100: # print('\n++++++++++++++++++++++++++') # print('overflow encountered in exp(+inf)') # print('++++++++++++++++++++++++++\n') revenue += p * weights[i] elif u(r,p,coefficients[4*i:4*(i+1)]) < -100: revenue += 0 else: revenue += p*np.exp(u(r,p,coefficients[4*i:4*(i+1)]))/(1+ np.exp(u(r,p,coefficients[4*i:4*(i+1)])))*weights[i] return revenue def R_ext(r,p,coefficients,weights): ''' one period revenue, logistic demand function multi-segment consumers p: price r: reference price coefficients: includ both B and vB ''' revenue = 0 coefficients = np.array(coefficients) num_seg = int(len(coefficients)/8) v = (1, -p, max(r-p,0), min(r-p,0)) eps = 1e-3 for i in range(num_seg): if np.dot(v,coefficients[8*i+4:8*i+8]) > eps: revenue += p * weights[i] elif np.dot(v,coefficients[8*i+4:8*i+8]) < -eps: revenue += 0 else: revenue += p*weights[i]*np.exp(np.dot(v,coefficients[8*i:8*i+4]) -\ np.logaddexp(0, np.dot(v,coefficients[8*i:8*i+4]))) return revenue def R_lin(r,p,coefficients,weights): ''' one period revenue when the demand function is piece-wise linear multi-segment consumers ****lower bounded by zero**** Input: r reference price p current price coefficients 4*k coefficients for k segements in a sequential order Output: revenue from all segments ''' revenue = 0 coefficients = np.array(coefficients) # num_seg = int(len(coefficients)/4) for i in range(num_seg): revenue += p*max(u(r,p,coefficients[4*i:4*(i+1)]),0)*weights[i] return revenue def D(r,p,coefficients,weights): ''' one period demand, logistic demand function multi-segment consumers p: price r: reference price return demand ''' demand = 0 coefficients = np.array(coefficients) num_seg = int(len(coefficients)/4) for i in range(num_seg): if u(r,p,coefficients[4*i:4*(i+1)]) >9000: demand += 1 * weights[i] elif u(r,p,coefficients[4*i:4*(i+1)]) <- 9000: demand += 0 else: demand += np.exp(u(r,p,coefficients[4*i:4*(i+1)]))/(1+ np.exp(u(r,p,coefficients[4*i:4*(i+1)])))*weights[i] return demand def D_lin(r,p,coefficients,weights): ''' one period demand when the demand function is piece-wise linear multi-segment consumers ****lower bounded by zero**** Input: r reference price p current price coefficients 4*k coefficients for k segements in a sequential order Output: demand from all segments ''' demand = 0 coefficients = np.array(coefficients) # num_seg = int(len(coefficients)/4) for i in range(num_seg): # heuristic fix demand += p* max(u(r,p,coefficients[4*i:4*(i+1)]),0)*weights[i] return demand def non_decreasing(x): dx = np.diff(x) return np.all(dx >= 0) def inf_hor_pricing_pricerange(L,H,theta,epsilon,T,gamma,coefficients,weights,func): ''' Input: L: lower bound of price H: upper bound of price theta: memory parameter of prices epsilon: accuracy of price discretization T: number of time periods gamma: discounted factor coefficients: u = a - b * p + c_pos * np.maximum(r - p, 0) + c_neg * np.maximum(p - r, 0) utility model Output: V: V[i] = revenue for infinite horizon when the first (reference) price is price_list[i] mu: mu[i] = optimal next reference price in the next time period given reference price is price_list[i] ''' if T != np.inf: raise ValueError("Must be infinite horizon!") # decimals for rounding the value function decimals_ = 100 price_list = np.arange(L-epsilon,H+2*epsilon,epsilon) M = len(price_list) V = np.zeros(M) mu = np.zeros(M) ####### parameters that can be tuned k = 1000 #number of iterations in policy evaluation, k could be any positive integer num_iters = 100 # numer of outermost loop converge_cnt = 0 start_time = time.time() for count in range(num_iters): # policy improvement for i in range(M): V_candidate =
np.zeros(M)
numpy.zeros
#!/bin/python3 import sys import random import numpy as np sys.path.append('..') from neural_network import NeuralNetwork import time from tkinter import * tk = Tk() widthSize = 500 heightSize = 500 frameRate = 60 frameSpeed = int(1 / frameRate * 1000) canvas = Canvas(tk, width=widthSize, height=heightSize, background="black") tk.title("Drawing_float") canvas.pack() inputLen = 2 hiddenLen = 18 outputLen = 1 learningRate = 0.1 n = NeuralNetwork(inputLen, hiddenLen, outputLen) # With this structure, answer may not be predicted sometimes # n = NeuralNetwork(2, 2, 1) training_data = { 1: {'inputs': np.array([[0],[0]]), 'targets': np.array([[0]])}, 2: {'inputs': np.array([[0],[1]]), 'targets': np.array([[1]])}, 3: {'inputs':
np.array([[1],[0]])
numpy.array
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import tensorflow as tf import sys import os import pickle as pickle from six.moves import urllib import tarfile import scipy.stats.mstats from load_cifar10 import load_data10 # training parameters initial_learning_rate = 0.001 training_epochs = 200 batch_size = 128 # architecture parameters n_labels = 10 crop_length = 32 n_channels = 3 image_width = 32 n_input = 32 * 32 mode = 'normal' # 'normal', 'mix', or 'fast' nonlinearity_name = 'relu' try: num_to_make = int(sys.argv[1]) print('Number of foolers to generate:', num_to_make) except: print('Defaulted to making one fooling image') num_to_make = 1 try: mode = sys.argv[2] # 'normal', 'mix', or 'fast' print('Chosen mode:', mode) except: print('Defaulted to normal mode since no mode given through command line') mode = 'normal' def str2bool(v): return v.lower() in ("yes", "true", "t", "1") graph = tf.Graph() with graph.as_default(): x = tf.placeholder(dtype=tf.float32, shape=[None, crop_length, crop_length, n_channels]) y = tf.placeholder(dtype=tf.int64, shape=[None]) is_training = tf.constant(False) # tf.placeholder(tf.bool) W = {} bn = {} params = pickle.load(open("./r32.pkl", "rb"), encoding='latin1') bn['beta0'] = tf.Variable(params[0]) bn['gamma0'] = tf.Variable(params[1]) bn['mu0'] = tf.constant(params[2]) bn['inv_std0'] = tf.constant(params[3]) for layer in range(1, 32): # awkward offset because of bn for input l_str = str(layer) W['filter' + l_str] = tf.Variable(np.moveaxis(params[layer * 5 - 1], [0, 1, 2, 3], [3, 2, 0, 1])) bn['beta' + l_str] = tf.Variable(params[layer * 5 + 0]) bn['gamma' + l_str] = tf.Variable(params[layer * 5 + 1]) bn['mu' + l_str] = tf.constant(params[layer * 5 + 2]) bn['inv_std' + l_str] = tf.constant(params[layer * 5 + 3]) W['w_out'] = tf.Variable(params[159]) W['b_out'] = tf.Variable(params[160]) def feedforward(_x, n=5): rho = tf.nn.relu def residual_block(h, layer_number=1, input_num_filters=32, increase_dim=False): l_num = str(layer_number) if increase_dim: first_stride = [1, 2, 2, 1] out_num_filters = input_num_filters * 2 else: first_stride = [1, 1, 1, 1] out_num_filters = input_num_filters stack1 = rho((tf.nn.conv2d(h, W['filter' + l_num], strides=first_stride, padding='SAME') - bn['mu' + l_num]) * bn['inv_std' + l_num] * bn['gamma' + l_num] + bn['beta' + l_num]) l_num = str(layer_number + 1) stack2 = (tf.nn.conv2d(stack1, W['filter' + l_num], strides=[1, 1, 1, 1], padding='SAME') - bn['mu' + l_num]) * bn['inv_std' + l_num] * bn['gamma' + l_num] + bn['beta' + l_num] if increase_dim: # upgrade tensorflow h[:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, ::2, :] # array_ops.strided_slice(h, [0,0,0,0], [2000,-1,-1,input_num_filters], [1,2,2,1]) h_squished = tf.nn.max_pool(h, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') padded = tf.pad(h_squished, [[0, 0], [0, 0], [0, 0], [out_num_filters // 4, out_num_filters // 4]]) block = rho(stack2 + padded) else: block = rho(stack2 + h) return block x_input = (_x - bn['mu0']) * bn['inv_std0'] * bn['gamma0'] + bn['beta0'] # bsize x 32 x 32 x 16 l = rho((tf.nn.conv2d(x_input, W['filter1'], strides=[1, 1, 1, 1], padding='SAME') - bn['mu1']) * bn['inv_std1'] * bn['gamma1'] + bn['beta1']) # bsize x 32 x 32 x 16 for i in range(n): l = residual_block(l, layer_number=2 * i + 2) # bsize x 16 x 16 x 32 l = residual_block(l, increase_dim=True, layer_number=2 * n + 2, input_num_filters=16) for i in range(1, n): l = residual_block(l, layer_number=2 * n + 2 * i + 2) # bsize x 8 x 8 x 64 l = residual_block(l, increase_dim=True, layer_number=4 * n + 2, input_num_filters=32) for i in range(1, n): l = residual_block(l, layer_number=4 * n + 2 * i + 2) l = tf.reduce_mean(l, reduction_indices=[1, 2]) return tf.matmul(l, W['w_out']) + W['b_out'] def normal(_x): return feedforward(_x) def energy_blur(_x): _x = tf.reshape(_x, [-1, image_width, image_width, 3]) # 5x5, sigma = 0.7 filter = tf.reshape(tf.constant([[0.000252, 0.00352, 0.008344, 0.00352, 0.000252], [0.00352, 0.049081, 0.11634, 0.049081, 0.00352], [0.008344, 0.11634, 0.275768, 0.11634, 0.008344], [0.00352, 0.049081, 0.11634, 0.049081, 0.00352], [0.000252, 0.00352, 0.008344, 0.00352, 0.000252]], dtype=tf.float32), [5, 5, 1, 1]) h, s, v = tf.split(3, 3, _x) h = tf.nn.conv2d(tf.square(h), filter, strides=[1, 1, 1, 1], padding='SAME') h = tf.sqrt(tf.reshape(h, [-1, 32, 32, 1]) + 1e-12) s = tf.nn.conv2d(tf.square(s), filter, strides=[1, 1, 1, 1], padding='SAME') s = tf.sqrt(tf.reshape(s, [-1, 32, 32, 1]) + 1e-12) v = tf.nn.conv2d(tf.square(v), filter, strides=[1, 1, 1, 1], padding='SAME') v = tf.sqrt(tf.reshape(v, [-1, 32, 32, 1]) + 1e-12) _x = tf.concat(3, [h, s, v]) return feedforward(_x) pred_normal = normal(x) loss_normal = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(pred_normal, y)) pred_energy_blur = energy_blur(x) loss_energy_blur = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(pred_energy_blur, y)) if mode == 'normal' or mode == 'fast': pred = pred_normal loss = loss_normal elif mode == 'mix': pred = (pred_normal + pred_energy_blur) / 2. loss = loss_normal + loss_energy_blur sess = tf.InteractiveSession(graph=graph) tf.initialize_all_variables().run() train_dataset, train_labels, test_dataset, test_labels = load_data10(randomize=False) # mean_img = np.reshape(np.mean(train_dataset, 0), (32, 32, 3)) train_dataset = train_dataset.astype(np.float32) test_dataset = test_dataset.astype(np.float32) # pred = sess.run(pred, feed_dict={x: train_dataset[0:3000,:,:,:]}) # error = np.argmax(pred, 1) != np.argmax(train_labels[0:3000, :], 1) # print(np.mean(error)) class_names = ['airplane', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def show_image(image, rescale=False, add_mean=False): img = image.copy() img = img.reshape(32,32,3) # if add_mean: # img += mean_img # if rescale: # low, high = np.min(img), np.max(img) # img = (img - low) / (high - low) plt.imshow(img) plt.gca().axis('off') def make_fooling_image(image, target, reg=1e-3, step=1/255., max_iters=100, confidence_thresh=0.5): # NOTE: we clip as a consequence of our discussion about improperly plotted images orig_image = image.copy() # paranoia fooling_image = image.copy() for _ in range(max_iters): dFool, predictions = sess.run([tf.gradients(loss, x)[0], pred], feed_dict={x: fooling_image, y: [target]}) fooling_image[0] -= step * (np.squeeze(dFool[0]) + reg * (fooling_image[0] - orig_image[0])) fooling_image[0] = np.clip(fooling_image[0], 0, 1) fool_prob = sess.run(tf.nn.softmax(predictions)[0, target]) if fool_prob > confidence_thresh: break return fooling_image def make_fooling_image_fast(image, target, reg=1e-3, step=10/255.): # NOTE: we clip as a consequence of our discussion about improperly plotted images orig_image = image.copy() # paranoia fooling_image = image.copy() dFool = sess.run(tf.gradients(loss, x)[0], feed_dict={x: fooling_image, y: [target]}) fooling_image[0] -= step * np.sign(np.squeeze(dFool[0]) + reg * (fooling_image[0] - orig_image[0])) fooling_image[0] = np.clip(fooling_image[0], 0, 1) return fooling_image l1_distances = [] l2_distances = [] linf_distances = [] # examples = [i for i in range(300, 400)] # labels = [i % 10 for i in range(300, 400)] try: history = pickle.load(open("./data/" + mode + "_foolers.p", "rb")) except: history = {} if not os.path.exists('./data'): os.makedirs('./data') if not os.path.exists('./data/normal'): os.makedirs('./data/normal') if not os.path.exists('./data/mix'): os.makedirs('./data/mix') if not os.path.exists('./data/fast'): os.makedirs('./data/fast') for i in range(num_to_make): # choose source image from which to generate a fooling image rand_int =
np.random.randint(10000, size=1)
numpy.random.randint
import numpy as np from numpy import linalg import time import sys import math import cmath global pi pi = np.pi global sin sin = np.sin global cos cos = np.cos global asin asin = np.arcsin global acos acos = np.arccos global atan2 atan2 = np.arctan2 def asind(x): temp_theta = asin(x.real) return np.multiply(temp_theta,180.0/pi) def acosd(x): temp_theta = acos(x.real) return np.multiply(temp_theta,180.0/pi) def sind(x): tempx = np.multiply(x,pi/180.0) return sin(tempx) def cosd(x): tempx = np.multiply(x,pi/180.0) return cos(tempx) def tand(x): tempx = np.multiply(x,pi/180.0) return tan(tempx) def atan2d(x,y): try: temp_theta = atan2(x.real,y.real) return
np.multiply(temp_theta,180.0/pi)
numpy.multiply
if __name__ == '__main__': import os from glob import glob from shutil import copy import numpy as np image_root = './Images/PSPT' dir_dst = './Images/PSPT/DailyBest' os.makedirs(dir_dst, exist_ok=True) list_raw_paths = list() list_grad_paths = list() list_HMI = sorted(glob(os.path.join('./Images/HMI_100', '*.png'))) list_dir = sorted(os.listdir(image_root)) for dir in list_dir: list_raw_paths.extend(sorted((glob(os.path.join(image_root, dir, 'Raw', '*.png'))))) list_grad_paths.extend(sorted((glob(os.path.join(image_root, dir, 'Gradient/2', '*.png'))))) list_dates = list() for i in range(len(list_raw_paths)): name = os.path.split(os.path.splitext(list_raw_paths[i])[0])[-1] list_dates.append(name[:8]) tuple_dates = sorted(frozenset(list_dates)) for date in tuple_dates: list_raw_same_date = list() list_grads_same_date = list() switch = False for i, raw in enumerate(list_raw_paths): if raw.find(date) != -1: list_raw_same_date.append(list_raw_paths[i]) list_grads_same_date.append(np.fromfile(list_grad_paths[i]).sum()) switch = True else: if not switch: continue else: break np_grads_same_date =
np.asarray(list_grads_same_date)
numpy.asarray
# coding: utf-8 # Copyright (c) 2021 AkaiKKRteam. # Distributed under the terms of the Apache License, Version 2.0. #!/bin/env python from .Error import * from .Unit import * import sys import numpy as np from pymatgen.io.cif import CifParser from pymatgen.core import Structure, PeriodicSite from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.core.periodic_table import Element import pandas as pd from .ElementKkr import ElementKKR _kkr_bohr = Unit().length_au2ang if False: try: from pymatgen.symmetry import kpath _use_kpath = False except ImportError: print("Warning: no kpath in pymatgen. kpath will be omitted.") _use_kpath = False class _BravaisKKR: dict = { 1: "trc", # triclinic 2: "trc", # triclinic 3: "sm", # simple monoclinic 4: "sm", # simple monoclinic 5: "bsm", # base centered monoclinic 6: "sm", # simple monoclinic 7: "sm", # simple monoclinic 8: "bsm", # base centered monoclinic 9: "bsm", # base centered monoclinic 10: "sm", # simple monoclinic 11: "sm", # simple monoclinic 12: "bsm", # base centered monoclinic 13: "sm", # simple monoclinic 14: "sm", # simple monoclinic 15: "bsm", # base centered monoclinic 16: "so", # simple orthorhombic 17: "so", # simple orthorhombic 18: "so", # simple orthorhombic 19: "so", # simple orthorhombic 20: "bso", # base centered orthorhombic 21: "bso", # base centered orthorhombic 22: "fco", # face centered orthorhombic 23: "bco", # body centered orthorhombic 24: "bco", # body centered orthorhombic 25: "so", # simple orthorhombic 26: "so", # simple orthorhombic 27: "so", # simple orthorhombic 28: "so", # simple orthorhombic 29: "so", # simple orthorhombic 30: "so", # simple orthorhombic 31: "so", # simple orthorhombic 32: "so", # simple orthorhombic 33: "so", # simple orthorhombic 34: "so", # simple orthorhombic 35: "bso", # base centered orthorhombic 36: "bso", # base centered orthorhombic 37: "bso", # base centered orthorhombic 38: "bso", # base centered orthorhombic 39: "bso", # base centered orthorhombic 40: "bso", # base centered orthorhombic 41: "bso", # base centered orthorhombic 42: "fco", # face centered orthorhombic 43: "fco", # face centered orthorhombic 44: "bco", # body centered orthorhombic 45: "bco", # body centered orthorhombic 46: "bco", # body centered orthorhombic 47: "so", # simple orthorhombic 48: "so", # simple orthorhombic 49: "so", # simple orthorhombic 50: "so", # simple orthorhombic 51: "so", # simple orthorhombic 52: "so", # simple orthorhombic 53: "so", # simple orthorhombic 54: "so", # simple orthorhombic 55: "so", # simple orthorhombic 56: "so", # simple orthorhombic 57: "so", # simple orthorhombic 58: "so", # simple orthorhombic 59: "so", # simple orthorhombic 60: "so", # simple orthorhombic 61: "so", # simple orthorhombic 62: "so", # simple orthorhombic 63: "bso", # base centered orthorhombic 64: "bso", # base centered orthorhombic 65: "bso", # base centered orthorhombic 66: "bso", # base centered orthorhombic 67: "bso", # base centered orthorhombic 68: "bso", # base centered orthorhombic 69: "fco", # face centered orthorhombic 70: "fco", # face centered orthorhombic 71: "bco", # body centered orthorhombic 72: "bco", # body centered orthorhombic 73: "bco", # body centered orthorhombic 74: "bco", # body centered orthorhombic 75: "st", # simple tetragonal 76: "st", # simple tetragonal 77: "st", # simple tetragonal 78: "st", # simple tetragonal 79: "bct", # body centered tetragonal 80: "bct", # body centered tetragonal 81: "st", # simple tetragonal 82: "bct", # body centered tetragonal 83: "st", # simple tetragonal 84: "st", # simple tetragonal 85: "st", # simple tetragonal 86: "st", # simple tetragonal 87: "bct", # body centered tetragonal 88: "bct", # body centered tetragonal 89: "st", # simple tetragonal 90: "st", # simple tetragonal 91: "st", # simple tetragonal 92: "st", # simple tetragonal 93: "st", # simple tetragonal 94: "st", # simple tetragonal 95: "st", # simple tetragonal 96: "st", # simple tetragonal 97: "bct", # body centered tetragonal 98: "bct", # body centered tetragonal 99: "st", # simple tetragonal 100: "st", # simple tetragonal 101: "st", # simple tetragonal 102: "st", # simple tetragonal 103: "st", # simple tetragonal 104: "st", # simple tetragonal 105: "st", # simple tetragonal 106: "st", # simple tetragonal 107: "bct", # body centered tetragonal 108: "bct", # body centered tetragonal 109: "bct", # body centered tetragonal 110: "bct", # body centered tetragonal 111: "st", # simple tetragonal 112: "st", # simple tetragonal 113: "st", # simple tetragonal 114: "st", # simple tetragonal 115: "st", # simple tetragonal 116: "st", # simple tetragonal 117: "st", # simple tetragonal 118: "st", # simple tetragonal 119: "bct", # body centered tetragonal 120: "bct", # body centered tetragonal 121: "bct", # body centered tetragonal 122: "bct", # body centered tetragonal 123: "st", # simple tetragonal 124: "st", # simple tetragonal 125: "st", # simple tetragonal 126: "st", # simple tetragonal 127: "st", # simple tetragonal 128: "st", # simple tetragonal 129: "st", # simple tetragonal 130: "st", # simple tetragonal 131: "st", # simple tetragonal 132: "st", # simple tetragonal 133: "st", # simple tetragonal 134: "st", # simple tetragonal 135: "st", # simple tetragonal 136: "st", # simple tetragonal 137: "st", # simple tetragonal 138: "st", # simple tetragonal 139: "bct", # body centered tetragonal 140: "bct", # body centered tetragonal 141: "bct", # body centered tetragonal 142: "bct", # body centered tetragonal 143: "hcp", # hexagonal close packed 144: "hcp", # hexagonal close packed 145: "hcp", # hexagonal close packed 146: "rhb", # rhombohedral(trigonal) 147: "hcp", # hexagonal close packed 148: "rhb", # rhombohedral(trigonal) 149: "hcp", # hexagonal close packed 150: "hcp", # hexagonal close packed 151: "hcp", # hexagonal close packed 152: "hcp", # hexagonal close packed 153: "hcp", # hexagonal close packed 154: "hcp", # hexagonal close packed 155: "rhb", # rhombohedral(trigonal) 156: "hcp", # hexagonal close packed 157: "hcp", # hexagonal close packed 158: "hcp", # hexagonal close packed 159: "hcp", # hexagonal close packed 160: "rhb", # rhombohedral(trigonal) 161: "rhb", # rhombohedral(trigonal) 162: "hcp", # hexagonal close packed 163: "hcp", # hexagonal close packed 164: "hcp", # hexagonal close packed 165: "hcp", # hexagonal close packed 166: "rhb", # rhombohedral(trigonal) 167: "rhb", # rhombohedral(trigonal) 168: "hcp", # hexagonal close packed 169: "hcp", # hexagonal close packed 170: "hcp", # hexagonal close packed 171: "hcp", # hexagonal close packed 172: "hcp", # hexagonal close packed 173: "hcp", # hexagonal close packed 174: "hcp", # hexagonal close packed 175: "hcp", # hexagonal close packed 176: "hcp", # hexagonal close packed 177: "hcp", # hexagonal close packed 178: "hcp", # hexagonal close packed 179: "hcp", # hexagonal close packed 180: "hcp", # hexagonal close packed 181: "hcp", # hexagonal close packed 182: "hcp", # hexagonal close packed 183: "hcp", # hexagonal close packed 184: "hcp", # hexagonal close packed 185: "hcp", # hexagonal close packed 186: "hcp", # hexagonal close packed 187: "hcp", # hexagonal close packed 188: "hcp", # hexagonal close packed 189: "hcp", # hexagonal close packed 190: "hcp", # hexagonal close packed 191: "hcp", # hexagonal close packed 192: "hcp", # hexagonal close packed 193: "hcp", # hexagonal close packed 194: "hcp", # hexagonal close packed 195: "sc", # simple cubic 196: "fcc", # face centered cubic 197: "bcc", # body centered cubic 198: "sc", # simple cubic 199: "bcc", # body centered cubic 200: "sc", # simple cubic 201: "sc", # simple cubic 202: "fcc", # face centered cubic 203: "fcc", # face centered cubic 204: "bcc", # body centered cubic 205: "sc", # simple cubic 206: "bcc", # body centered cubic 207: "sc", # simple cubic 208: "sc", # simple cubic 209: "fcc", # face centered cubic 210: "fcc", # face centered cubic 211: "bcc", # body centered cubic 212: "sc", # simple cubic 213: "sc", # simple cubic 214: "bcc", # body centered cubic 215: "sc", # simple cubic 216: "fcc", # face centered cubic 217: "bcc", # body centered cubic 218: "sc", # simple cubic 219: "fcc", # face centered cubic 220: "bcc", # body centered cubic 221: "sc", # simple cubic 222: "sc", # simple cubic 223: "sc", # simple cubic 224: "sc", # simple cubic 225: "fcc", # face centered cubic 226: "fcc", # face centered cubic 227: "fcc", # face centered cubic 228: "fcc", # face centered cubic 229: "bcc", # body centered cubic 230: "bcc", # body centered cubic } @staticmethod def getType(group): if group in _BravaisKKR.dict: return _BravaisKKR.dict[group] else: return "aux" class _TranslationKKR: matrix = { "sc": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "fcc": np.array([[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]]), "bcc": np.array([[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]]), "hcp": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "rhb": np.array([[2.0, 1.0, 1.0], [-1.0, 1.0, 1.0], [-1.0, -2.0, 1.0]])/3.0, "st": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "bct": np.array([[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]]), "so": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "fco": np.array([[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]]), "bco": np.array([[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]]), "bso": np.array([[0.5, -0.5, 0.0], [0.5, +0.5, 0.0], [0.0, 0.0, +1.0]]), "sm": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "bsm": np.array([[0.5, -0.5, 0.0], [0.5, +0.5, 0.0], [0.0, 0.0, +1.0]]), "trc": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), "aux": np.array([[+1.0, 0.0, 0.0], [0.0, +1.0, 0.0], [0.0, 0.0, +1.0]]), } @staticmethod def getMatrix(brvtyp): if brvtyp in _TranslationKKR.matrix: return _TranslationKKR.matrix[brvtyp] else: return _TranslationKKR.matrix["aux"] class _SiteKKR: def __init__(self, site, wyckoff, coords, Vc: str = "Og"): """initialization Args: site ([type]): [description] wyckoff ([type]): [description] coords ([type]): [description] Vc (str, optional): element treast as Z=0. Defaults to "Og". """ def fold(c): c[0] = c[0] % 1.0 c[1] = c[1] % 1.0 c[2] = c[2] % 1.0 if c[0] > 1.0-1.0e-8: c[0] = 0.0 if c[1] > 1.0-1.0e-8: c[1] = 0.0 if c[2] > 1.0-1.0e-8: c[2] = 0.0 return c self.species = site.species self.frac_coords = fold(coords) conc_sum = 0.0 # sum of concentration. for element in site.species.elements: conc_sum += site.species.get_el_amt_dict()[element.symbol] if conc_sum < 1.0: self.name = site.species.reduced_formula + Vc + "_%s" % wyckoff else: self.name = site.species.reduced_formula + "_%s" % wyckoff def findSameCoords(self, vsite): def match_coords(ca, cb): return abs(ca[0]-cb[0]) < 1.0e-8 \ and abs(ca[1]-cb[1]) < 1.0e-8 \ and abs(ca[2]-cb[2]) < 1.0e-8 found = False for site in vsite: if match_coords(self.frac_coords, site.frac_coords): found = True break return found def findSameName(self, vsite): found = False for site in vsite: if self.name == site.name: found = True break return found def _get_spginfo_from_ciffile(filename): """extract space group data from a cif file returns None the cif file lacks it. Note: _symmetry_space_group_name_H-M, _symmetry_Int_Tables_number, _symmetry_cell_setting are obsolte, but are used widely. Therefore, they can be read. Args: filename (str): cif filename Returns: str: _space_group_name_H-M_alt int: _space_group_IT_number str: _space_group_crystal_system """ with open(filename) as f: data = f.read().splitlines() name = None number = None cellsetting = None for line in data: s = line.split() if len(s) > 1: if s[0] == "_symmetry_space_group_name_H-M" or s[0] == "_space_group_name_H-M_alt": name = " ".join(s[1:]) if s[0] == "_symmetry_Int_Tables_number" or s[0] == "_space_group_IT_number": number = int(s[1]) if s[0] == "_symmetry_cell_setting" or s[0] == "_space_group_crystal_system": cellsetting = s[1] # debug print if False: print("ciffile: name, number, cellsetting", name, number, cellsetting) return name, number, cellsetting class StructureSpeciesConverter: def __init__(self, structure): # make unit species dictionary species_dict = [] for site in structure.sites: newitem = dict(site.species.as_dict()) if newitem not in species_dict: species_dict.append(newitem) # make conversion table if True: conv_table = {} Z = 0 for content in species_dict: Z += 1 if Z == 2 or Z == 10 or Z == 18 or Z == 36 or Z == 54 or Z == 86: # skip noble gas Z += 1 if Z > 103: raise CIF2KKRTooManyTypesError("too many type definitions") elm = Element("H").from_Z(Z) elm_str = str(elm) conv_table[elm_str] = content else: conv_table = {} for Z, content in zip(range(1, 104), species_dict): elm = Element("H").from_Z(Z) elm_str = str(elm) conv_table[elm_str] = content self.conv_table = conv_table # make a dummay struture new_species = [] for site in structure.sites: newitem = dict(site.species.as_dict()) keys = [k for k, v in conv_table.items() if v == newitem] if len(keys) != 1: print("strange keys", keys) raise ValueError new_species.append(keys[0]) # make fractional coordinates frac_coords = [] for site in structure.sites: frac_coords.append(site.frac_coords) new_structure = Structure( lattice=structure.lattice, species=new_species, coords=frac_coords) self.substituted_structure = new_structure @ property def structure(self): return self.substituted_structure def inverse_conversion(self, structure): conv_table = self.conv_table # make a dummay struture new_species = [] for site in structure.sites: newitem = dict(site.species.as_dict()) if len(newitem.keys()) != 1: print("keys >1", newitem) raise ValueError key = list(newitem.keys())[0] if newitem[key] != 1.0: raise ValueError("value error in inverse_conversion") new_species.append(conv_table[key]) # make fractional coordinates frac_coords = [] for site in structure.sites: frac_coords.append(site.frac_coords) new_structure = Structure( lattice=structure.lattice, species=new_species, coords=frac_coords) return new_structure def _show_equiv_matrix(structure, input_analyzer, wy): """obsolete""" species = structure.species ops = input_analyzer.get_space_group_operations() n = len(structure.sites) # equiv_matrix = np.full((n, n), False) equiv_matrix = np.identity(n, dtype=bool) for i1 in range(n): for i2 in range(i1, n): site1 = PeriodicSite( species=species[i1], coords=structure.sites[i1].frac_coords, lattice=structure.lattice) site2 = PeriodicSite( species=species[i2], coords=structure.sites[i2].frac_coords, lattice=structure.lattice) eq = ops.are_symmetrically_equivalent([site1], [site2]) equiv_matrix[i1, i2] = eq for i1 in range(n): for i2 in range(i1, n): equiv_matrix[i2, i1] = equiv_matrix[i1, i2] # make indeces and columns namelist = [] for specie, wy in zip(species, wy): namelist.append("{},{}".format(specie, wy)) df = pd.DataFrame(equiv_matrix, index=namelist, columns=namelist) print(df) uniq_name_wy_list = list(set(namelist)) print(uniq_name_wy_list) uniq_name_wy_count = {} for key in uniq_name_wy_list: uniq_name_wy_count[key] = 0 # make submatrix step by step nlist = list(range(len(namelist))) for i in nlist: flaglist = df.iloc[i, :].values ilist = np.where(flaglist == True)[0] dfs = df.iloc[ilist, ilist] name_wy = dfs.columns[0] s = name_wy.split(",") if len(s) == 2: print(dfs) uniq_name_wy_count[name_wy] += 1 id_ = uniq_name_wy_count[name_wy] new_name_wy = "{},{}".format(name_wy, id_) for j in ilist: namelist[j] = new_name_wy df.index = namelist df.columns = namelist print(df) elm_list = [] wy_list = [] id_list = [] for name in df.columns: s = name.split(",") elm_list.append(s[0]) wy_list.append(s[1]) id_list.append(s[2]) return elm_list, wy_list, id_list def _get_uniq_wyckoff(structure): analyzer = SpacegroupAnalyzer(structure) wyckoffs = analyzer.get_symmetry_dataset()["wyckoffs"] equiv_atoms = analyzer.get_symmetry_dataset()["equivalent_atoms"] if len(wyckoffs) != len(equiv_atoms) or len(wyckoffs) != len(structure.sites): print("len(wyckoffs)={}, ".format(len(wyckoffs)) + "len(equiv_atoms)={}, ".format(len(equiv_atoms)) + "len(structure.sites)={}".format(len(structure.sites))) raise ValueError( "len(wyckoffs)!=len(equiv_atoms), possibly !=len(structure.sites)") wyckoffs_conv = [] for site, wy, eq in zip(structure.sites, wyckoffs, equiv_atoms): mul = np.count_nonzero(equiv_atoms == eq) wyckoffs_conv.append("{}{}_{}".format(mul, wy, str(eq))) # debug print if False: print(wyckoffs_conv) for site, wy in zip(structure.sites, wyckoffs_conv): print("spceie, wy,eq", site.as_dict()["species"], wy) return wyckoffs_conv # obsolete algorithm # Kino keeps it for future use if True: speciesconverter = StructureSpeciesConverter(structure) substitutedstructure = speciesconverter.structure else: substitutedstructure = structure print(substitutedstructure) elm_list, wy_list, id_list = _show_equiv_matrix( substitutedstructure, analyzer, wyckoffs) print(elm_list, wy_list, id_list) converted_structure = speciesconverter.inverse_conversion( substitutedstructure) print(converted_structure) wyckoff_conv = [] for wy, id_ in zip(wy_list, id_list): wyckoff_conv.append("{}_{}".format(wy, id_)) for site, wy in zip(converted_structure.sites, wyckoff_conv): namedict = site.species.as_dict() name = None if len(namedict.keys()) == 1: key = list(namedict.keys())[0] if namedict[key] == 1.0: name = key if name is None: name = str(site.species) print(str(site.species), "_".join([name, wy])) return wyckoff_conv def _found_unknown_elements(structure): elementkkr = ElementKKR(Vc=None) elementkkr = list(elementkkr.dict.keys()) sites = structure.sites for site in sites: for elm in site.species.elements: elm = str(elm) if elm not in elementkkr: print("unknown element", elm) print("known elements are", elementkkr) return True return False def _show_cell_parameters(structure_conv): print("# conventional cell") print(" a=%9.5f b=%9.5f c=%9.5f(a.u)" % (structure_conv.lattice.a, structure_conv.lattice.b, structure_conv.lattice.c)) print(" alpha=%9.5f beta=%9.5f gamma=%9.5f(degree)" % (structure_conv.lattice.alpha, structure_conv.lattice.beta, structure_conv.lattice.gamma)) def _show_lattice_parameters(lattice_constant, structure_conv, lattice_prim): print("# lattice constant a %9.5f [angstrom]" % lattice_constant) print("# conventional translation vectors (in units of a)") print(" a=(%9.5f%9.5f%9.5f)" % (structure_conv.lattice.matrix[0][0]/lattice_constant, structure_conv.lattice.matrix[0][1]/lattice_constant, structure_conv.lattice.matrix[0][2]/lattice_constant)) print(" b=(%9.5f%9.5f%9.5f)" % (structure_conv.lattice.matrix[1][0]/lattice_constant, structure_conv.lattice.matrix[1][1]/lattice_constant, structure_conv.lattice.matrix[1][2]/lattice_constant)) print(" c=(%9.5f%9.5f%9.5f)" % (structure_conv.lattice.matrix[2][0]/lattice_constant, structure_conv.lattice.matrix[2][1]/lattice_constant, structure_conv.lattice.matrix[2][2]/lattice_constant)) volume = np.dot(np.cross(structure_conv.lattice.matrix[0], structure_conv.lattice.matrix[1]), structure_conv.lattice.matrix[2]) print(" volume= %10.5f(a.u.)" % (volume/_kkr_bohr**3)) print("# primitive translation vectors (in units of a)") print(" a=(%9.5f%9.5f%9.5f)" % (lattice_prim[0][0]/lattice_constant, lattice_prim[0][1]/lattice_constant, lattice_prim[0][2]/lattice_constant)) print(" b=(%9.5f%9.5f%9.5f)" % (lattice_prim[1][0]/lattice_constant, lattice_prim[1][1]/lattice_constant, lattice_prim[1][2]/lattice_constant)) print(" c=(%9.5f%9.5f%9.5f)" % (lattice_prim[2][0]/lattice_constant, lattice_prim[2][1]/lattice_constant, lattice_prim[2][2]/lattice_constant)) volume = np.dot( np.cross(lattice_prim[0], lattice_prim[1]), lattice_prim[2]) print(" volume= %10.5f(a.u.)" % (volume/_kkr_bohr**3)) def _show_atomic_position(sites_prim, lattice_prim, lattice_constant): print("# atomic positions (in units of a) %d atoms" % len(sites_prim)) for site in sites_prim: position = np.dot(site.frac_coords, lattice_prim)/lattice_constant if abs(position[0]) < 1e-6: position[0] = 0.0 if abs(position[1]) < 1e-6: position[1] = 0.0 if abs(position[2]) < 1e-6: position[2] = 0.0 print(" position=%13.8f%13.8f%13.8f type=%s" % (position[0], position[1], position[2], site.name)) def ak_cif2kkrparam(filename: str, use_bravais: bool = True, use_primitive: bool = True, cif_primitive: bool = True, fmt: str = "cif", Vc: str = "Og", show_detail: bool = False): """ check whether the cif space group number is the same as that of spglib check whether the number of sites of the cif file is the same as that of this routine If use_bravais is True, use_primitive is set to True if fmt is "cif", CifParser is used. In the other fmt, Structure.from_file() is used. Args: filename (str): cif filename use_bravais (bool, optional): use bravias lattice. Defaults to True. use_primitive (bool, optional): use primitive cell. Defaults to True. cif_primitive (bool, optional): read the cif file as primitive cell. Defaults to True. fmt (str, optional): filename format. Defaults to "cif". show_detail (bool, optional): [description]. Defaults to False. Raises: CIF2KKRGetStructureError: failed to read structure via CifParser CIF2KKRUnknownElementError: unknown element in the cif file """ if fmt == "cif": parser = CifParser(filename) try: print("cif_primitive=", cif_primitive) structure_work = parser.get_structures(primitive=cif_primitive)[0] except ValueError: raise CIF2KKRGetStructureError("failed in parser.get_structures.\n" + "please correct occupancies and coordinates.") else: try: structure_work = Structure.from_file(filename) except ValueError: raise CIF2KKRGetStructureError("failed in Struture.from_file.\n" + "please check occupancies and coordinates.") if _found_unknown_elements(structure_work): raise CIF2KKRUnknownElementError("unknown element in the cif file") analyzer = SpacegroupAnalyzer(structure_work) # analyzer = SpacegroupAnalyzer(structure_work,symprec=0.001, angle_tolerance=0.5) # bad result try: structure_conv = analyzer.get_conventional_standard_structure() except TypeError: raise CIF2KKRGetConventionalStandardStructureError("failed in analyzer.get_conventional_standard_structure.\n" + "please correct occupancies and coordinates.") param = {} if use_bravais: use_primitive = True # setup primitive cell vectors. if use_primitive: if fmt == "cif": _, cif_number, _ = _get_spginfo_from_ciffile(filename) if False: spginfo = structure_work.get_space_group_info() number = spginfo[1] else: number = analyzer.get_space_group_number() if fmt == "cif": print("cif symmetry, spg lib symmetry", cif_number, number) if cif_number != number: print("WARNING: spg number in the cif file != spg number from spglib") # raise CIF2KKRSpgDifferentError( # "spg number in the cif file != spg number from spglib") brvtyp = _BravaisKKR.getType(number) if show_detail: print("# space group") print(" number=%d bravais=%s kkr_brvtyp=%s" % ( number, analyzer.get_crystal_system(), brvtyp)) matrix = _TranslationKKR.getMatrix(brvtyp) lattice_prim =
np.dot(matrix, structure_conv.lattice.matrix)
numpy.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Transform the gamestate data to onehot vectors """ from sklearn.preprocessing import OneHotEncoder,LabelEncoder import pandas as pd import numpy as np import re import os from pathlib import Path # settlements and cities are built on node coordinates # roads are built on edge coordinates # nodes are named after an adjacent rode # hence the set of node coords is a subset of the edge coords # Additionally, no nodes close to the sea are needed... # these are inaccessible for building # edge_coordinates contains the edge coordinates on which a player # could actually built # len(edge_coordinates) = 72 edge_coordinates = ['0x27','0x38','0x49','0x5a','0x6b','0x7c', '0x26','0x48','0x6a','0x8c', '0x25','0x36','0x47','0x58','0x69','0x7a','0x8b','0x9c', '0x24','0x46','0x68','0x8a','0xac', '0x23','0x34','0x45','0x56','0x67','0x78','0x89','0x9a','0xab','0xbc', '0x22','0x44','0x66','0x88','0xaa','0xcc', '0x32','0x43','0x54','0x65','0x76','0x87','0x98','0xa9','0xba','0xcb', '0x42','0x64','0x86','0xa8','0xca', '0x52','0x63','0x74','0x85','0x96','0xa7','0xb8', '0xc9', '0x62','0x84','0xa6','0xc8', '0x72','0x83','0x94','0xa5','0xb6','0xc7'] # additional node coordinates # (that are not in the accessible edge_coordinates list) # the ones on the right side of the land that are named after # sea edge nodes node_coordinates = ['0x8d', '0xad','0xcd','0xdc','0xda','0xd8'] # all the coordinates of the table that a player can build on # plus the none value for when the player has not built # len(build_coords) = 79 build_coords = edge_coordinates + node_coordinates + ['None'] ################################ # encoding the build coordinates ################################ np_build_coords = np.array(build_coords) label_encoder = LabelEncoder() integer_encoded_build_coords = label_encoder.fit_transform(np_build_coords) #print(label_encoder.transform(np.array(['0x69']))) ###################### # for debugging use: ###################### #print('building coordinates label encoding') #for x in build_coords: # print('coordinate ' + str(x) + ' : '+str(label_encoder.transform(np.ravel(x)))) #print('-----------------------------------') #building coordinates label encoding #coordinate 0x27 : [5] #coordinate 0x38 : [9] #coordinate 0x49 : [17] #coordinate 0x5a : [22] #coordinate 0x6b : [32] #coordinate 0x7c : [38] #coordinate 0x26 : [4] #coordinate 0x48 : [16] #coordinate 0x6a : [31] #coordinate 0x8c : [48] #coordinate 0x25 : [3] #coordinate 0x36 : [8] #coordinate 0x47 : [15] #coordinate 0x58 : [21] #coordinate 0x69 : [30] #coordinate 0x7a : [37] #coordinate 0x8b : [47] #coordinate 0x9c : [54] #coordinate 0x24 : [2] #coordinate 0x46 : [14] #coordinate 0x68 : [29] #coordinate 0x8a : [46] #coordinate 0xac : [62] #coordinate 0x23 : [1] #coordinate 0x34 : [7] #coordinate 0x45 : [13] #coordinate 0x56 : [20] #coordinate 0x67 : [28] #coordinate 0x78 : [36] #coordinate 0x89 : [45] #coordinate 0x9a : [53] #coordinate 0xab : [61] #coordinate 0xbc : [67] #coordinate 0x22 : [0] #coordinate 0x44 : [12] #coordinate 0x66 : [27] #coordinate 0x88 : [44] #coordinate 0xaa : [60] #coordinate 0xcc : [73] #coordinate 0x32 : [6] #coordinate 0x43 : [11] #coordinate 0x54 : [19] #coordinate 0x65 : [26] #coordinate 0x76 : [35] #coordinate 0x87 : [43] #coordinate 0x98 : [52] #coordinate 0xa9 : [59] #coordinate 0xba : [66] #coordinate 0xcb : [72] #coordinate 0x42 : [10] #coordinate 0x64 : [25] #coordinate 0x86 : [42] #coordinate 0xa8 : [58] #coordinate 0xca : [71] #coordinate 0x52 : [18] #coordinate 0x63 : [24] #coordinate 0x74 : [34] #coordinate 0x85 : [41] #coordinate 0x96 : [51] #coordinate 0xa7 : [57] #coordinate 0xb8 : [65] #coordinate 0xc9 : [70] #coordinate 0x62 : [23] #coordinate 0x84 : [40] #coordinate 0xa6 : [56] #coordinate 0xc8 : [69] #coordinate 0x72 : [33] #coordinate 0x83 : [39] #coordinate 0x94 : [50] #coordinate 0xa5 : [55] #coordinate 0xb6 : [64] #coordinate 0xc7 : [68] #coordinate 0x8d : [49] #coordinate 0xad : [63] #coordinate 0xcd : [74] #coordinate 0xdc : [77] #coordinate 0xda : [76] #coordinate 0xd8 : [75] #coordinate None : [78] # binary encode onehot_encoder = OneHotEncoder(sparse=False) integer_encoded_build_coords = integer_encoded_build_coords.reshape(len(integer_encoded_build_coords), 1) onehot_encoded_build_coords = onehot_encoder.fit_transform(integer_encoded_build_coords) #print(onehot_encoded_build_coords) ############################################## # Testing ############################################## # test label transform ['0x69' '0x89' 'None'] #print('Testing the build coordinates') #y = gamestates.iloc[2,6:9] #values = np.array(y) #print(values) #integer_encoded = label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting build coordinates') # robber can be placed on land hexes (19) land_coords = ['0x37','0x59','0x7b', '0x35','0x57','0x79','0x9b', '0x33','0x55','0x77','0x99','0xbb', '0x53','0x75','0x97','0xb9', '0x73','0x95','0xb7' ] ################################ # encoding the land coordinates # aka robber coordinates ################################ np_rob_coords = np.array(land_coords) rob_label_encoder = LabelEncoder() integer_encoded_rob_coords = rob_label_encoder.fit_transform(np_rob_coords) # print(integer_encoded_rob_coords) # [ 2 6 11 1 5 10 15 0 4 9 14 18 3 8 13 17 7 12 16] # binary encode rob_onehot_encoder = OneHotEncoder(sparse=False) integer_encoded_rob_coords = integer_encoded_rob_coords.reshape(len(integer_encoded_rob_coords), 1) onehot_encoded_rob_coords = rob_onehot_encoder.fit_transform(integer_encoded_rob_coords) #print(onehot_encoded_rob_coords) ############################################## # Testing ############################################## ## test robber coordinates of pilot01 #print('Testing the robber ') #y = gamestates.iloc[:,3] #values = np.array(y) #print(values) #integer_encoded = rob_label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = rob_onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting robber') ################################ # encoding the hex typed ################################ # this needs to have custom categories because of the ports # in the game version of the data # 6: water # 0: desert # 1: clay # 2: ore # 3: sheep # 4: wheat # 5: wood # 7 - 12 : miscelaneous ports(3:1) facing on the different directions # 16+ : non miscelaneous ports(2:1) # # 9 categories def hexLabelEncoder(hextypes): ''' converts the hextypes to labeled (9 labels for the 9 categories) Parameters: hex board layout array Returns: array that contains the labels ''' y = [] # pilot1 hexlayout is #[9, 6, 67, 6, 6, 2, 5, 1, 66, 8, 2, 3, 1, 2, 6, 6, 5, 3, 4, 1, 4, 11, 36, 5, 4, 0, 5, 6, 6, 4, 3, 3, 97, 21, 6, 12, 6] for x in hextypes: if x < 7 : y.append(x) elif 7<= x <= 12: y.append(7) else : y.append(8) return y ###### checking the general fit ###### generalized ohe encoder for list of all possible land types hex_type_OHencoder = OneHotEncoder(sparse=False) hex_type_labels = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) #integer_encoded_types = integer_encoded_types.reshape(len(integer_encoded_types),1) OHE_land_types = hex_type_OHencoder.fit_transform(hex_type_labels.reshape(len(hex_type_labels),1)) #print(OHE_land_types) ################################################ # Testing ############################################## ## test land types of pilot01 #hextypes = gamestates.iloc[0,1] #integer_encoded_types = np.array(hexLabelEncoder(hextypes)) #print(integer_encoded_types) # outputs: # pilot1 hexlayout is #[9, 6, 67, 6, 6, 2, 5, 1, 66, 8, 2, 3, 1, 2, 6, 6, 5, 3, 4, 1, 4, 11, 36, 5, 4, 0, 5, 6, 6, 4, 3, 3, 97, 21, 6, 12, 6] # converted to: # [7 6 8 6 6 2 5 1 8 7 2 3 1 2 6 6 5 3 4 1 4 7 8 5 4 0 5 6 6 4 3 3 8 8 6 7 6] #ohe_hex_layout = hex_type_OHencoder.transform(integer_encoded_types.reshape(len(integer_encoded_types),1)) ###################################################### # create the numpy array that contains the ohe vectors ###################################################### # # store the data to an np array so that the can be used # in keras # # a massive np array will be created with all the games at the end, when we # will be ready to train # to convert to ohe you first transform to label encoded # and then to one-hot encode # np array size : # rows : 4150 # i.e. for all 57 games we have 4150 gameturns # columns : # hex layout : 37 hexes x 9 categories # -> 333 # robber positions : 19 possible positions (land hexes) # -> 19 # player state : # builds : 24 building blocks x 79 categories(coords) # -> 1896 # dev cards : 25 dev cards (true-false) # -> 25 ## # total : 333 + 19 + 4x(1896+25) = 8017 + 19 = 8036 ######### IMPORTAND ########## ## Instead of a big, chaotic table, save to various small np arrays ## #ohedata = np.zeros((4150,8036)) ## saving pilot1 to np data array ## land hex types #temp = np.array(hexLabelEncoder(gamestates.iloc[0,1])) #print('-------') #print(temp) #print(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) # ##oned_temp = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) ## this goes from 0 to 332 #ohedata[0,0:333] = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) #ohedata[0,0:3]=1 # -> writes 1 to columns 0,1,2 ######## IMPORTAND ########## # OHE conversion steps: # 1. convert hex layout # 2. convert robber position and append it # 3. convert player1 build and append them # 4. convert player1 devcard and append them # 5. convert player2 3 4 # 6. check size of all this def convert_hex_layout(hexlayout): ''' converts the gamestates hexlayout to one hot encoding PARAMETERS ---------- hexlayout : the gamestates hexlayout Returns ------- an np array of size (1,333) ''' # convert the layout to label encoding labeled = np.array(hexLabelEncoder(hexlayout)) # convert the layout to one hot encoding ohe = hex_type_OHencoder.transform(labeled.reshape(len(labeled),1)) return np.ravel(ohe) ####Testing OK #print('Testing hex layout conversion') #methodlayout = convert_hex_layout(gamestates.iloc[0,1]) #scriptlayout = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) def convert_robber_position(robber): ''' converts the robber position coordinates to one hot encoding Parameters ---------- robber: the robber coordinates from the gamestates dataframe Returns ------- encoded np array of size 19 ''' # convert the robber position to labeled encoding robber = np.array(robber) labeled = rob_label_encoder.transform(np.ravel(robber)) # convert the robber position to one hot encoding labeled = labeled.reshape(len(labeled),1) ohe = rob_onehot_encoder.transform(labeled) # return with ravel to avoid the double list [[]] return np.ravel(ohe) ####Testing OK #print('Testing the robber ') #y = gamestates.iloc[1,3] #values = np.array(y) #print(values) #integer_encoded = rob_label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = rob_onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting robber') #print('Testing the robber method') #methodrobber = convert_robber_position(gamestates.iloc[1,3]) #print(methodrobber) def convert_player_buildings(playerbuildings): ''' Converts the player buildings coordinates to one hot encoding Parameters ---------- from the gamestate the players columns of settlements, cities and roads a list of 24 coordinates Returns ------- np array of one hot encoding for all 24 building blocks of the player size should be (24,79) (in one line vector 24*79 = 1896) ''' # list of the buildings buildings = [] for coord in playerbuildings: ohe_coord = convert_building_coord(coord) buildings.append(ohe_coord) #print(buildings) npbuildings = np.array(buildings) return np.ravel(npbuildings) def convert_building_coord(hexcoord): ''' Convert a hex building coordinate to one hot encoding Parameters ---------- a hex coordinate Returns ------- one hot encoding of the coordinate, an np array or size 79 ''' value = np.array(hexcoord) # convert the coordinate to labeled encoding labeled = label_encoder.transform(np.ravel(value)) # convert the coordinate to one hot encoding labeled = labeled.reshape(len(labeled), 1) ohe = onehot_encoder.transform(labeled) return ohe ####### ## Testing the coordinate convertion OK #print('Testing the coordinate convertion to ohe') ## testing only one coordinate #coord = gamestates.iloc[2,6] #print(coord) #methodcoord = convert_building_coord(coord) ## testing group of coordinates OK #coords = gamestates.iloc[2,6:9] #print(coords) #methodcoords = convert_player_buildings(coords) #print(methodcoords) #print(methodcoords.reshape(3,79)) def convert_player_devcards(dev_cards): ''' Coverts the gamestate fields of the players dev cards from true/false to binary 1/0 Parameters ---------- dev_cards : the 25 dev cards potentialy available to the player Returns ------- np array of size 25 where true is 1 and false is 0 ''' binary_dev_cards =[] for card in dev_cards: # type is np.bool, don't use quotes if card == True : binary_dev_cards.append(1) else: binary_dev_cards.append(0) return np.array(binary_dev_cards) #### Testing player dev cards OK #dev_cards = gamestates.loc[58, 'pl0knight1' : 'pl0vp5'] #dclist = convert_player_devcards(dev_cards) #print(dclist) ############################################################################## # OHE conversion ############################################################################## # convert each dataframe to np arrays # each game has 10 np arrays of the board, robber and player states in ohe data datafiles = ["../soclogsData_NoResources/DataTables/pilot/pilot03_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot15_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot17_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot04_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot21_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot02_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot08_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot09_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot14_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot11_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot05_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot16_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot01_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot20_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot13_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot10_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot12_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot07_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot06_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/league4_attempt2-2012-11-14-19-46-22-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/practice-2012-10-30-18-41-07-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League4-2012-11-24-09-17-47-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Test-2012-10-16-14-53-15-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/L5 Real game-2012-11-11-19-58-55-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master League final-2012-12-05-16-59-57-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League 8 Game 2-2012-11-26-18-55-31-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/SOCL League 5 Game 2-2012-11-25-17-25-09-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/league 5 last game-2012-12-09-21-08-39-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/SOCL League 5 Game 4-2012-12-03-02-11-10-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League8-2012-11-24-12-04-51-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game5-2012-11-30-19-59-18-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/master league 4-2012-12-04-17-37-56-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master league game 2-2012-11-13-18-07-14-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Game 3-2012-11-25-20-09-16-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League 5 game 3-2012-11-26-00-51-20-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League4-2012-11-09-19-08-53-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/3version2-2012-11-21-20-23-31-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game1-2012-11-18-20-34-38-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game4-2012-11-28-20-01-30-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/L5 practicegame-2012-11-11-19-26-36-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master League Game 3-2012-11-17-17-01-18-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Settles league 1-2012-11-08-18-05-34-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3practice-2012-05-31-19-23-46-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League2.4-2012-06-26-22-47-04-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3-2012-05-27-19-53-48-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league2.2-2012-06-18-20-50-12-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3 michael-2012-06-17-20-54-03-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/3-2012-06-06-19-58-56-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1-2012-06-17-19-53-24-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1.2-2012-06-21-20-27-05-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league 3 (-k)-2012-06-25-18-22-53-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3minus1-2012-05-25-22-22-21-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 2-2012-06-26-20-23-20-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1 game-2012-06-19-18-49-00-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1.1-2012-06-21-18-58-22-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league1 31may-2012-05-31-19-59-37-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 3 Finale-2012-06-25-21-57-53-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League2-2012-06-17-19-58-07-+0100_gamestates.pkl" ] # make directories to save the results ohedata_dir = Path.cwd() / "OHEdata/season2" ohedata_dir.mkdir(parents=True, exist_ok=True) ohedata_dir = Path.cwd() / "OHEdata/season1" ohedata_dir.mkdir(parents=True, exist_ok=True) ohedata_dir = Path.cwd() / "OHEdata/pilot" ohedata_dir.mkdir(parents=True, exist_ok=True) print('Converting gamestates data to ohe-hot encoded vectors') print('This might take a while. Please be patient...') for file in datafiles: # create a dir with the game name # to save the 11 np arrays of the game # with the data in ohe filename_parts = re.split(r'[/]', file) season = filename_parts[3] dest = "./OHEdata/"+season gamename = filename_parts[4][:-15] #exclude the _gamestates.pkl part :-) path = dest+"/"+gamename try: os.mkdir(path) except OSError : print("Creation of the directory %s failed" %path) gamestates = pd.read_pickle(file) # replace None values with 'None' to work with np gamestates.replace(to_replace=[None], value='None', inplace=True) # initialize nptables nplayout = np.zeros((1,333)) nprobber = np.zeros((len(gamestates.index),19)) np_pl0_builds = np.zeros((len(gamestates.index),1896)) np_pl0_devcards = np.zeros((len(gamestates.index),25)) np_pl1_builds = np.zeros((len(gamestates.index),1896)) np_pl1_devcards = np.zeros((len(gamestates.index),25)) np_pl2_builds = np.zeros((len(gamestates.index),1896)) np_pl2_devcards = np.zeros((len(gamestates.index),25)) np_pl3_builds = np.zeros((len(gamestates.index),1896)) np_pl3_devcards = np.zeros((len(gamestates.index),25)) # convert the hex layout, column 1 is hexlayout # hex layout does not change during a game, hence it is saved only once # to view it nplayout.reshape(37,9) tested OK nplayout[:] = convert_hex_layout(gamestates.iloc[0,1]) # for every row of the df, i.e. every game turn for turn in range(len(gamestates.index)): # convert the robber position, column 3 is robber # tested OK ohe_robber = convert_robber_position(gamestates.iloc[turn,3]) nprobber[turn,:] = ohe_robber # convert player 0 building coordinates # (note the None is also a category in the ohe endoding) #print(gamestates.loc[turn,'pl0setm1':'pl0road15']) # ohe_pl0_builds is a np.array of size (1896,) ohe_pl0_builds = convert_player_buildings(gamestates.loc[turn,'pl0setm1':'pl0road15']) #print(ohe_pl0_builds) np_pl0_builds[turn,:] = ohe_pl0_builds #print(np_pl0_builds[turn,:]) # convert player 0 dev cards np_pl0_devcards[turn,:] = convert_player_devcards(gamestates.loc[turn,'pl0knight1' : 'pl0vp5']) # convert player 1 building coordinates ohe_pl1_builds = convert_player_buildings(gamestates.loc[turn,'pl1setm1':'pl1road15']) np_pl1_builds[turn,:] = ohe_pl1_builds # convert player 1 dev cards np_pl1_devcards[turn,:] = convert_player_devcards(gamestates.loc[turn,'pl1knight1' : 'pl1vp5']) # convert player 2 building coordinates ohe_pl2_builds = convert_player_buildings(gamestates.loc[turn,'pl2setm1':'pl2road15']) np_pl2_builds[turn,:] = ohe_pl2_builds # convert player 1 dev cards np_pl2_devcards[turn,:] = convert_player_devcards(gamestates.loc[turn,'pl2knight1' : 'pl2vp5']) # convert player 3 building coordinates ohe_pl3_builds = convert_player_buildings(gamestates.loc[turn,'pl3setm1':'pl3road15']) np_pl3_builds[turn,:] = ohe_pl3_builds # convert player 3 dev cards np_pl3_devcards[turn,:] = convert_player_devcards(gamestates.loc[turn,'pl3knight1' : 'pl3vp5']) # save the np arrays of the game np.save(path+"/"+'layout.npy',nplayout) np.save(path+"/"+'robber.npy',nprobber) np.save(path+"/"+'pl0builds.npy',np_pl0_builds)
np.save(path+"/"+'pl0devcards.npy',np_pl0_devcards)
numpy.save
""" Athena binary file reader At the moment, this reader assumes the conserved fields are in the files. The Athena custom Grid has methods to do vx = M1 / d, etc. """ from __future__ import print_function import os import re import numpy as np from viscid import glob2 from viscid.readers import vfile from viscid.readers.vfile_bucket import ContainerFile from viscid.readers import athena from viscid import coordinate class AthenaBinFile(athena.AthenaFile, ContainerFile): # pylint: disable=abstract-method """An Athena binary file reader""" _detector = r"^\s*(.*)\.([0-9]+)\.(bin)\s*$" _def_fld_center = "Cell" _collection = None _fwrapper = None float_type_name = None var_type = None _crds = None def __init__(self, fname, crds=None, float_type_name=None, var_type=None, **kwargs): """ Keyword Arguments: float_type_name (str): should be 'f4' or 'f8' if you know the data type of the file's data. var_type (str): either 'cons' or 'prim' """ # there is no parent bucket, so we need to new one up for children self.float_type_name = float_type_name self.var_type = var_type self._crds = crds super(AthenaBinFile, self).__init__(fname, **kwargs) @classmethod def group_fnames(cls, fnames): return athena.group_athena_files_common(cls._detector, fnames) @classmethod def collective_name_from_group(cls, fnames): return athena.athena_collective_name_from_group(cls._detector, fnames) def get_file_wrapper(self, filename): if self._fwrapper is None: self._fwrapper = AthenaBinFileWrapper(filename, float_type_name=self.float_type_name, var_type=self.var_type) else: assert (self._fwrapper.filename == filename or glob2(self._fwrapper.filename) == glob2(filename)) return self._fwrapper def set_file_wrapper(self, wrapper): raise NotImplementedError("This must be done at file init") def load(self, fname): if isinstance(fname, list): self._collection = fname else: self._collection = [fname] fname0 = self._collection[0] fname1 = self.collective_name(fname) basename = os.path.basename(fname0) self.set_info('run', re.match(self._detector, basename).group(1)) super(AthenaBinFile, self).load(fname1) def _parse(self): if self._crds is None: self._crds = self._make_crds(self._collection[0]) if len(self._collection) == 1: # load a single file _grid = self._parse_file(self.fname, self) self.add(_grid) self.activate(0) else: # load each file, and add it to teh bucket data_temporal = self._make_dataset(self, dset_type="temporal", name="AthenaTemporalCollection") for fname in self._collection: f = self._load_child_file(fname, index_handle=False, file_type=type(self), crds=self._crds, float_type_name=self.float_type_name, var_type=self.var_type) data_temporal.add(f) data_temporal.activate(0) self.add(data_temporal) self.activate(0) def _parse_file(self, filename, parent_node): # we do minimal file parsing here for performance. we just # make data wrappers from the templates we got from the first # file in the group, and package them up into grids # find the time from the first field's meta data _file_wrapper = self.get_file_wrapper(filename) _file_wrapper.read_header() time = _file_wrapper.time _grid = self._make_grid(parent_node, name="<AthenaGrid>") self.time = time _grid.time = time _grid.set_crds(self._crds) # make a DataWrapper and a Field for each template that we # have from the first file that we parsed, then add it to # the _grid data_wrapper = AthenaBinDataWrapper for i, fld_name in enumerate(_file_wrapper.fld_names): if self._def_fld_center.lower() == "cell": shape = self._crds.shape_cc else: shape = self._crds.shape_nc data = data_wrapper(_file_wrapper, fld_name, shape[::-1], i) fld = self._make_field(_grid, "Scalar", fld_name, self._crds, data, time=time, center=self._def_fld_center, zyx_native=True) _grid.add_field(fld) return _grid def _make_crds(self, filename): fw = AthenaBinFileWrapper(filename, keep_crd_clist=True, float_type_name=self.float_type_name, var_type=self.var_type) with fw as f: crd_clist = f.crd_clist new_clist = [] dxmin = np.inf for c in crd_clist: if len(c[1]) > 1: dxmin = np.min([dxmin, np.min(c[1][1:] - c[1][:-1])]) for i, cli in enumerate(crd_clist): cc = cli[1] try: hd = 0.5 * (cc[1:] - cc[:-1]) nc = np.hstack([cc[0] - hd[0], cc[:-1] + hd, cc[-1] + hd[-1]]) except IndexError: dxminh = 0.5 * dxmin nc = np.array([cc[0] - dxminh, cc[0] + dxminh]) new_clist.append([crd_clist[i][0], nc]) crds = coordinate.wrap_crds("nonuniform_cartesian", new_clist[::-1]) return crds class AthenaBinFileWrapper(object): """A File-like object for interfacing with Athena binary files Attributes: float_type_name (str): default float data type, should be 'f4' or 'f8'; deufaults to double ('f8') """ # translation is is purely for convenience float_type_name = "f8" var_type = "cons" _file = None _loc_after_header = None _endian = None _float_dtype = None # = np.dtype(_endian + float_type_name) filename = None keep_crd_clist = None fld_names = None nvars = None nscalars = None shape = None count = None _file_meta = None time = None dt = None crd_clist = None def __init__(self, filename, keep_crd_clist=False, float_type_name=None, var_type=None): self.filename = filename self.keep_crd_clist = keep_crd_clist if float_type_name is not None: self.float_type_name = float_type_name if var_type is not None: self.var_type = var_type def __del__(self): self.close() @property def float_dtype(self): if self._float_dtype is None: with self as _: # just opening the file makes it read the meta data pass return self._float_dtype @property def field_names(self): if self._fld_names_lookup is None: with self as _: # just opening the file makes it read the meta data pass def read_field(self, fld_id): """Read a field given a seekable location Parameters: fld_id(int): number of field in file Returns: tuple array """ if fld_id >= self.nvars: raise IndexError("File {0} only has {1} fields, you asked for " "fld number {2}".format(self.filename, self.nvars, fld_id)) fld_size_bytes = self.count * self._float_dtype.itemsize self._file.seek(self._loc_after_header + fld_id * fld_size_bytes) data = np.fromfile(self._file, dtype=self._float_dtype, count=self.count) # return ndarray as native endian return data.astype(self._float_dtype.name) def read_header(self): if self._endian is None: with self as _: # just opening the file makes it read the header pass def open(self): if self._file is None: self._file = open(self.filename, 'rb') try: if self._endian is None: self._read_file_header() except IOError as e: self.close() raise e @property def isopen(self): return self._file is not None def close(self): if self._file is not None: f = self._file self._file = None f.close() def __enter__(self): self.open() return self def __exit__(self, exc_type, value, traceback): self.close() def _read_file_header(self): """load up the file's meta data""" self._file.seek(0, 0) coordsys = np.fromfile(self._file, dtype="<i", count=1)[0] dims = np.fromfile(self._file, dtype="<i", count=5) # if nvar makes sense, we were right, use little endian if dims[3] < 1000: self._endian = "<" else: self._endian = ">" coordsys = coordsys.byteswap() dims = dims.byteswap() nx, ny, nz = dims[:3] nvars, nscalars = dims[3:5] # pylint: disable=unused-variable dtyp_int = np.dtype(self._endian + "i4") # 32bit int self._float_dtype = np.dtype(self._endian + self.float_type_name) # ignore self_gravity and particles flags for now _, _ = np.fromfile(self._file, dtype=dtyp_int, count=2) # ignore gamm1 and cs for now _, _ =
np.fromfile(self._file, dtype=self._float_dtype, count=2)
numpy.fromfile
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Name: <NAME> # Date: October 11, 2019 # Email: <EMAIL> # Description: Implementation of the continuous rate RNN model import os, sys import numpy as np import tensorflow as tf import scipy.io import pickle np.random.seed(700) # import horovod.tensorflow as hvd # from hpc4neuro.errors import MpiInitError # from hpc4neuro.distribution import DataDistributor # import mpi4py # Import utility functions from utils import set_gpu from utils import restricted_float from utils import str2bool ''' CONTINUOUS FIRING-RATE RNN CLASS ''' class FR_RNN_dale: """ Firing-rate RNN model for excitatory and inhibitory neurons Initialization of the firing-rate model with recurrent connections """ def __init__(self, N, P_inh, P_rec, w_in, som_N, w_dist, gain, apply_dale, w_out): """ Network initialization method N: number of units (neurons) P_inh: probability of a neuron being inhibitory P_rec: recurrent connection probability w_in: NxN weight matrix for the input stimuli som_N: number of SOM neurons (set to 0 for no SOM neurons) w_dist: recurrent weight distribution ('gaus' or 'gamma') apply_dale: apply Dale's principle ('True' or 'False') w_out: Nx1 readout weights Based on the probability (P_inh) provided above, the units in the network are classified into either excitatory or inhibitory. Next, the weight matrix is initialized based on the connectivity probability (P_rec) provided above. """ self.N = N self.P_inh = P_inh self.P_rec = P_rec self.w_in = w_in self.som_N = som_N self.w_dist = w_dist self.gain = gain self.apply_dale = apply_dale self.w_out = w_out # Assign each unit as excitatory or inhibitory inh, exc, NI, NE, som_inh = self.assign_exc_inh() self.inh = inh self.som_inh = som_inh self.exc = exc self.NI = NI self.NE = NE # Initialize the weight matrix self.W, self.mask, self.som_mask = self.initialize_W() def assign_exc_inh(self): """ Method to randomly assign units as excitatory or inhibitory (Dale's principle) Returns inh: bool array marking which units are inhibitory exc: bool array marking which units are excitatory NI: number of inhibitory units NE: number of excitatory units som_inh: indices of "inh" for SOM neurons """ # Apply Dale's principle if self.apply_dale == True: inh = np.random.rand(self.N, 1) < self.P_inh exc = ~inh NI = len(np.where(inh == True)[0]) NE = self.N - NI # Do NOT apply Dale's principle else: inh = np.random.rand(self.N, 1) < 0 # no separate inhibitory units exc = ~inh NI = len(np.where(inh == True)[0]) NE = self.N - NI if self.som_N > 0: som_inh = np.where(inh==True)[0][:self.som_N] else: som_inh = 0 return inh, exc, NI, NE, som_inh def initialize_W(self): """ Method to generate and initialize the connectivity weight matrix, W The weights are drawn from either gaussian or gamma distribution. Returns w: NxN weights (all positive) mask: NxN matrix of 1's (excitatory units) and -1's (for inhibitory units) NOTE: To compute the "full" weight matrix, simply multiply w and mask (i.e. w*mask) """ # Weight matrix w = np.zeros((self.N, self.N), dtype = np.float32) idx = np.where(np.random.rand(self.N, self.N) < self.P_rec) if self.w_dist.lower() == 'gamma': w[idx[0], idx[1]] = np.random.gamma(2, 0.003, len(idx[0])) elif self.w_dist.lower() == 'gaus': w[idx[0], idx[1]] = np.random.normal(0, 1.0, len(idx[0])) w = w/np.sqrt(self.N*self.P_rec)*self.gain # scale by a gain to make it chaotic if self.apply_dale == True: w = np.abs(w) # Mask matrix mask = np.eye(self.N, dtype=np.float32) mask[np.where(self.inh==True)[0], np.where(self.inh==True)[0]] = -1 # SOM mask matrix som_mask = np.ones((self.N, self.N), dtype=np.float32) if self.som_N > 0: for i in self.som_inh: som_mask[i, np.where(self.inh==True)[0]] = 0 return w, mask, som_mask def load_net(self, model_dir): """ Method to load pre-configured network settings """ settings = scipy.io.loadmat(model_dir) self.N = settings['N'][0][0] self.som_N = settings['som_N'][0][0] self.inh = settings['inh'] self.exc = settings['exc'] self.inh = self.inh == 1 self.exc = self.exc == 1 self.NI = len(np.where(settings['inh'] == True)[0]) self.NE = len(np.where(settings['exc'] == True)[0]) self.mask = settings['m'] self.som_mask = settings['som_m'] self.W = settings['w'] self.w_in = settings['w_in'] self.b_out = settings['b_out'] self.w_out = settings['w_out'] return self def display(self): """ Method to print the network setup """ print('Network Settings') print('====================================') print('Number of Units: ', self.N) print('\t Number of Excitatory Units: ', self.NE) print('\t Number of Inhibitory Units: ', self.NI) print('Weight Matrix, W') full_w = self.W*self.mask zero_w = len(np.where(full_w == 0)[0]) pos_w = len(np.where(full_w > 0)[0]) neg_w = len(np.where(full_w < 0)[0]) print('\t Zero Weights: %2.2f %%' % (zero_w/(self.N*self.N)*100)) print('\t Positive Weights: %2.2f %%' % (pos_w/(self.N*self.N)*100)) print('\t Negative Weights: %2.2f %%' % (neg_w/(self.N*self.N)*100)) def generate_flip_flop_trial(settings): bits = settings['bits'] batch = settings['batches'] trial_info = {'neural_input': np.zeros([settings['T'],batch, bits]), 'desired_output':np.zeros([settings['T'],batch, bits])} unsigned_inp = settings['rng'].binomial(1,0.2,[settings['T']//10,batch, bits]) unsigned_out = 2*settings['rng'].binomial(1,0.5,[settings['T']//10,batch, bits]) -1 inputs = unsigned_inp inputs = np.multiply(unsigned_inp,unsigned_out) inputs[0,:] = 1.0 inputs = np.repeat(inputs,10,axis=0) trial_info['neural_input'] = inputs.T # trial_info['neural_input'] = 0.5*trial_info['neural_input'] output = np.zeros_like(inputs) for trial_idx in range(batch): for bit_idx in range(bits): input_ = np.squeeze(inputs[:,trial_idx,bit_idx]) t_flip = np.where(input_ != 0) for flip_idx in range(np.size(t_flip)): # Get the time of the next flip t_flip_i = t_flip[0][flip_idx] '''Set the output to the sign of the flip for the remainder of the trial. Future flips will overwrite future output''' output[t_flip_i:,trial_idx, bit_idx] = \ inputs[t_flip_i,trial_idx, bit_idx] trial_info['desired_output'] = output # trial_info['desired_output'] = 0.5*trial_info['desired_output'] return trial_info ''' CONSTRUCT TF GRAPH FOR TRAINING ''' def cell_rate(inputs, states): # if fr_rnn.apply_dale == True: # # Parametrize the weight matrix to enforce exc/inh synaptic currents def restore(path): file = open(path,'rb') restore_data = file.read() file.close() # print(type(pickle.loads(restore_data))) # print((self.__dict__)) hid= pickle.loads(restore_data,encoding='latin1') return(hid) data = restore(os.getcwd()+'/flip.pkl') x = tf.transpose(states) r = tf.sigmoid(x) taus = data['taus'] w = tf.nn.relu(data['w']) w_in = data['w_in'] # next_x is [N x 1] ww = tf.matmul(w, data['m']) ww = tf.multiply(ww, data['som_m']) # Pass the synaptic time constants thru the sigmoid function if len(taus) > 1: taus_sig = tf.sigmoid(taus_gaus)*(taus[1] - taus[0]) + taus[0] elif len(taus) == 1: # one scalar synaptic decay time-constant taus_sig = taus[0] a = tf.multiply((1 - 1/taus_sig), x) b = tf.multiply((1/taus_sig), ((tf.matmul(ww, r))\ + tf.matmul(w_in, tf.transpose(inputs[:,:])))) next_x = a + b #+ tf.random_normal(tf.shape(b))/10 # x.append(next_x) return tf.transpose(next_x), tf.transpose(next_x) def find_fps(settings): def restore(path): file = open(path,'rb') restore_data = file.read() file.close() # print(type(pickle.loads(restore_data))) # print((self.__dict__)) hid= pickle.loads(restore_data,encoding='latin1') return(hid) data = restore(os.getcwd()+'/flip.pkl') sess = tf.Session() sess.run(tf.global_variables_initializer()) x = data['x'] n_bits = settings['bits'] inputs = np.zeros([1,n_bits]) fps = FixedPointSearch( 'rate', np.array(x), os.getcwd(), cell = cell_rate, sess = sess) fps.sample_states(1000,np.array(x),'rate',1.5) unique, all_fps = fps.find_fixed_points(inputs, save= True) return unique, all_fps def construct_tf(fr_rnn, settings, training_params): """ Method to construct a TF graph and return nodes with Dale's principle INPUT fr_rnn: firing-rate RNN class settings: dict containing the following keys T: duration of a single trial (in steps) stim_on: stimulus starting time (in steps) stim_dur: stimulus duration (in steps) delay: delay b/w two stimuli (in steps) taus: time-constants (in steps) DeltaT: sampling rate training_params: dictionary containing training parameters learning_rate: learning rate OUTPUT TF graph """ # Task params T = settings['T'] taus = settings['taus'] DeltaT = settings['DeltaT'] task = settings['task'] # Training params learning_rate = training_params['learning_rate'] # Excitatory units exc_idx_tf = tf.constant(np.where(fr_rnn.exc == True)[0], name='exc_idx') # Inhibitory units inh_idx_tf = tf.constant(np.where(fr_rnn.inh == True)[0], name='inh_idx') som_inh_idx_tf = tf.constant(fr_rnn.som_inh, name='som_inh_idx') if task == 'flip': stim = tf.placeholder(tf.float32, [settings['bits'],settings['batches'], T], name='u') # Target node z = tf.placeholder(tf.float32, [T,settings['batches'],settings['bits']], name='target') # Initialize the decay synaptic time-constants (gaussian random). # This vector will go through the sigmoid transfer function. if len(taus) > 1: taus_gaus = tf.Variable(tf.random_normal([fr_rnn.N, 1]), dtype=tf.float32, name='taus_gaus', trainable=True) elif len(taus) == 1: taus_gaus = tf.Variable(tf.random_normal([fr_rnn.N, 1]), dtype=tf.float32, name='taus_gaus', trainable=False) print('Synaptic decay time-constants will not get updated!') # Synaptic currents and firing-rates x = [] # synaptic currents r = [] # firing-rates x_t = [] x.append(tf.random_normal([fr_rnn.N,settings['batches']], dtype=tf.float32)/100) x_t.append(tf.transpose(x[-1])) # Transfer function options if training_params['activation'] == 'sigmoid': r.append(tf.sigmoid(x[0])) elif training_params['activation'] == 'clipped_relu': # r.append(tf.clip_by_value(tf.nn.relu(x[0]), 0, 20)) r.append(tf.nn.relu(x[0])) elif training_params['activation'] == 'softplus': r.append(tf.clip_by_value(tf.nn.softplus(x[0]), 0, 20)) # Initialize recurrent weight matrix, mask, input & output weight matrices w = tf.get_variable('w', initializer = fr_rnn.W, dtype=tf.float32, trainable=True) m = tf.get_variable('m', initializer = fr_rnn.mask, dtype=tf.float32, trainable=False) som_m = tf.get_variable('som_m', initializer = fr_rnn.som_mask, dtype=tf.float32, trainable=False) w_in = tf.get_variable('w_in', initializer = fr_rnn.w_in, dtype=tf.float32, trainable=True) w_out = tf.get_variable('w_out', initializer = fr_rnn.w_out, dtype=tf.float32, trainable=True) b_out = tf.Variable(0, dtype=tf.float32, name='b_out', trainable=True) # Forward pass o = [] # output (i.e. weighted linear sum of rates, r) for t in range(1, T): if fr_rnn.apply_dale == True: # Parametrize the weight matrix to enforce exc/inh synaptic currents w = tf.nn.relu(w) # next_x is [N x 1] ww = tf.matmul(w, m) ww = tf.multiply(ww, som_m) # Pass the synaptic time constants thru the sigmoid function if len(taus) > 1: taus_sig = tf.sigmoid(taus_gaus)*(taus[1] - taus[0]) + taus[0] elif len(taus) == 1: # one scalar synaptic decay time-constant taus_sig = taus[0] next_x = tf.multiply((1 - DeltaT/taus_sig), x[t-1]) + \ tf.multiply((DeltaT/taus_sig), ((tf.matmul(ww, r[t-1]))\ + tf.matmul(w_in, tf.squeeze(stim[:,:, t-1])))) #+\ # tf.random_normal(tf.shape(x[t-1]), dtype=tf.float32)/10 x.append(next_x) x_t.append(tf.transpose(next_x)) if training_params['activation'] == 'sigmoid': r.append(tf.sigmoid(next_x)) elif training_params['activation'] == 'clipped_relu': # r.append(tf.clip_by_value(tf.nn.relu(next_x), 0, 20)) r.append(tf.nn.relu(next_x)) elif training_params['activation'] == 'softplus': r.append(tf.clip_by_value(tf.nn.softplus(next_x), 0, 20)) next_o = tf.matmul(w_out, r[t]) + b_out o.append(tf.transpose(tf.squeeze(next_o))) return stim, z, x_t, r, o, w, w_in, m, som_m, w_out, b_out, taus_gaus ''' DEFINE LOSS AND OPTIMIZER ''' class loss_op: def __init__(self, o, z, training_params, hvd): self.o = o self.z = z self.global_step = tf.train.get_or_create_global_step() self.training_params = training_params self.hvd = hvd def loss_op(self): """ Method to define loss and optimizer for ONLY ONE target signal INPUT o: list of output values z: target values training_params: dictionary containing training parameters learning_rate: learning rate OUTPUT loss: loss function training_op: optimizer """ # Loss function # print(z.shape) # print(tf.stack(tf.squeeze(o))) loss = tf.zeros(1) # print(o[0]) loss_fn = self.training_params['loss_fn'] # for i in range(0, len(o)): # if loss_fn.lower() == 'l1': # loss += tf.norm(o[i] - z[i]) # elif loss_fn.lower() == 'l2': # loss += tf.reduce_sum(tf.squared_difference(o[i], z[i])) # if loss_fn.lower() == 'l2': # loss = tf.sqrt(loss) self.loss = tf.reduce_mean(tf.squared_difference(self.o, self.z[:-1,:])) # Optimizer function with tf.name_scope('ADAM'): optimizer = tf.train.AdamOptimizer(learning_rate = self.training_params['learning_rate']*self.hvd.size()) # # decay = tf.train.exponential_decay(self.training_params['learning_rate'], self.global_step, 128, 0.9) # # optimizer = tf.train.MomentumOptimizer(decay*hvd.size(), 0.9) # # optimizer = tf.train.AdamOptimizer(decay*hvd.size(),epsilon=1e-1) # optimizer = self.hvd.DistributedOptimizer( optimizer) # # gradients, variables = zip(*optimizer.compute_gradients(self.loss,tf.trainable_variables())) # # gradients = [None if gradient is None else tf.clip_by_norm(gradient, 0.1) for gradient in gradients] # # self.training_op = optimizer.apply_gradients(zip(gradients, variables), global_step=self.global_step) self.training_op = optimizer.minimize(self.loss,global_step=self.global_step) return self.loss, self.training_op ''' EVALUATE THE TRAINED MODEL NOTE: NEED TO BE UPDATED!! ''' def eval_tf(model_dir, settings, u): """ Method to evaluate a trained TF graph INPUT model_dir: full path to the saved model .mat file stim_params: dictionary containig the following keys u: 12xT stimulus matrix NOTE: There are 12 rows (one per dot pattern): 6 cues and 6 probes. OUTPUT o: 1xT output vector """ T = settings['T'] stim_on = settings['stim_on'] stim_dur = settings['stim_dur'] delay = settings['delay'] DeltaT = settings['DeltaT'] # Load the trained mat file var = scipy.io.loadmat(model_dir) # Get some additional params N = var['N'][0][0] exc_ind = [np.bool(i) for i in var['exc']] # Get the delays taus_gaus = var['taus_gaus'] taus = var['taus'][0] # tau [min, max] taus_sig = (1/(1+np.exp(-taus_gaus))*(taus[1] - taus[0])) + taus[0] # Synaptic currents and firing-rates x = np.zeros((N, T)) # synaptic currents r = np.zeros((N, T)) # firing-rates x[:, 0] = np.random.randn(N, )/100 r[:, 0] = 1/(1 + np.exp(-x[:, 0])) # r[:, 0] = np.minimum(np.maximum(x[:, 0], 0), 1) #clipped relu # r[:, 0] = np.clip(np.minimum(np.maximum(x[:, 0], 0), 1), None, 10) #clipped relu # r[:, 0] = np.clip(np.log(np.exp(x[:, 0])+1), None, 10) # softplus # r[:, 0] = np.minimum(np.maximum(x[:, 0], 0), 6)/6 #clipped relu6 # Output o = np.zeros((T, )) o_counter = 0 # Recurrent weights and masks # w = var['w0'] #!!!!!!!!!!!! w = var['w'] m = var['m'] som_m = var['som_m'] som_N = var['som_N'][0][0] # Identify excitatory/inhibitory neurons exc = var['exc'] exc_ind = np.where(exc == 1)[0] inh = var['inh'] inh_ind = np.where(inh == 1)[0] som_inh_ind = inh_ind[:som_N] for t in range(1, T): # next_x is [N x 1] ww = np.matmul(w, m) ww = np.multiply(ww, som_m) # next_x = (1 - DeltaT/tau)*x[:, t-1] + \ # (DeltaT/tau)*(np.matmul(ww, r[:, t-1]) + \ # np.matmul(var['w_in'], u[:, t-1])) + \ # np.random.randn(N, )/10 next_x = np.multiply((1 - DeltaT/taus_sig), np.expand_dims(x[:, t-1], 1)) + \ np.multiply((DeltaT/taus_sig), ((np.matmul(ww, np.expand_dims(r[:, t-1], 1)))\ + np.matmul(var['w_in'], np.expand_dims(u[:, t-1], 1)))) +\ np.random.randn(N, 1)/10 x[:, t] = np.squeeze(next_x) r[:, t] = 1/(1 + np.exp(-x[:, t])) # r[:, t] = np.minimum(np.maximum(x[:, t], 0), 1) # r[:, t] = np.clip(np.minimum(np.maximum(x[:, t], 0), 1), None, 10) # r[:, t] = np.clip(np.log(np.exp(x[:, t])+1), None, 10) # softplus # r[:, t] = np.minimum(np.maximum(x[:, t], 0), 6)/6 wout = var['w_out'] wout_exc = wout[0, exc_ind] wout_inh = wout[0, inh_ind] r_exc = r[exc_ind, :] r_inh = r[inh_ind, :] o[o_counter] =
np.matmul(wout, r[:, t])
numpy.matmul
import numpy as np def flatten(matrix): flat_matrix = matrix.flatten() if len(flat_matrix)==0: flat_matrix = np.array([0]) return flat_matrix def one_hot_and_reduce(categorical_array, one_hot_dim): try: one_hot_array = np.eye(one_hot_dim)[categorical_array] agregated_array = np.sum(one_hot_array, axis=0) except IndexError: #print("index error : the one hot array will be replaced by an array of 0") agregated_array = np.zeros(one_hot_dim) return agregated_array def preprocess_last_actions(array): #Because 'last_actions' can have a variable length we need to add a #default value of '-1' when 'last_actions' length is '0' or '1' : if len(array) == 0: output = np.array([0, 0]) elif len(array) == 1 : output = np.append(np.array([0]), array) else: output = array return output def preprocess_non_spatial(matrix, layer): if len(matrix) == 0: if layer == 'action': output = np.array([0]) elif layer == 'multi_select': output = np.array([[0,0,0,0,0,0,0]]) else: output = matrix return output def preprocess_game_loop(array): array[array==0]=1 array = np.log(array) return array def preprocess_alerts(array): if len(array) == 0 : output = np.array([0, 0]) elif len(array) == 1: output = np.append(array, np.array([0])) elif len(array) == 2: output = np.array(array) else: output = np.array(array[0:2]) return output def preprocess_quantitative_arrays(array, arg): output_array = [] for index, value in enumerate(array): if value > 0: if arg == 'score_cumulative': if index > 0: value = np.log(value) elif arg == 'player': value =
np.log(value)
numpy.log
################################################################################ # Copyright (C) 2013-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for gaussian_markov_chain module. """ import numpy as np from ..gaussian_markov_chain import GaussianMarkovChain from ..gaussian_markov_chain import VaryingGaussianMarkovChain from ..gaussian import Gaussian, GaussianMoments from ..gaussian import GaussianARD from ..gaussian import GaussianGamma from ..wishart import Wishart, WishartMoments from ..gamma import Gamma, GammaMoments from bayespy.utils import random from bayespy.utils import linalg from bayespy.utils import misc from bayespy.utils.misc import TestCase def kalman_filter(y, U, A, V, mu0, Cov0, out=None): """ Perform Kalman filtering to obtain filtered mean and covariance. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- y : (N,D) array "Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices). U : (N,D,D) array or N-list of (D,D) arrays Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Filtered mean of the states. Cov : array Filtered covariance of the states. See also -------- rts_smoother """ mu = mu0 Cov = Cov0 # Allocate memory for the results (N,D) = np.shape(y) X = np.empty((N,D)) CovX = np.empty((N,D,D)) # Update step for t=0 M = np.dot(np.dot(Cov, U[0]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[0]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) X[0,:] = mu CovX[0,:,:] = Cov #for (yn, Un, An, Vn) in zip(y, U, A, V): for n in range(len(y)-1): #(yn, Un, An, Vn) in zip(y, U, A, V): # Prediction step mu = np.dot(A[n], mu) Cov = np.dot(np.dot(A[n], Cov), A[n].T) + V[n] # Update step M = np.dot(np.dot(Cov, U[n+1]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[n+1]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) # Force symmetric covariance (for numeric inaccuracy) Cov = 0.5*Cov + 0.5*Cov.T # Store results X[n+1,:] = mu CovX[n+1,:,:] = Cov return (X, CovX) def rts_smoother(mu, Cov, A, V, removethis=None): """ Perform Rauch-Tung-Striebel smoothing to obtain the posterior. The function returns the posterior mean and covariance of each state. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- mu : (N,D) array Mean of the states from Kalman filter. Cov : (N,D,D) array Covariance of the states from Kalman filter. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Posterior mean of the states. Cov : array Posterior covariance of the states. See also -------- kalman_filter """ N = len(mu) #n = N-1 # Start from the last time instance and smoothen backwards x = mu[-1,:] Covx = Cov[-1,:,:] for n in reversed(range(N-1)):#(An, Vn) in zip(reversed(A), reversed(V)): #n = n - 1 #if n <= 0: # break # The predicted value of n x_p = np.dot(A[n], mu[n,:]) Cov_p = np.dot(np.dot(A[n], Cov[n,:,:]), A[n].T) + V[n] # Temporary variable S = np.linalg.solve(Cov_p, np.dot(A[n], Cov[n,:,:])) # Smoothed value of n x = mu[n,:] + np.dot(S.T, x-x_p) Covx = Cov[n,:,:] + np.dot(np.dot(S.T, Covx-Cov_p), S) # Force symmetric covariance (for numeric inaccuracy) Covx = 0.5*Covx + 0.5*Covx.T # Store results mu[n,:] = x Cov[n,:] = Covx return (mu, Cov) class TestGaussianMarkovChain(TestCase): def create_model(self, N, D): # Construct the model Mu = Gaussian(np.random.randn(D), np.identity(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), np.identity(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N) Y = Gaussian(X, np.identity(D)) return (Y, X, Mu, Lambda, A, V) def test_plates(self): """ Test that plates are handled correctly. """ def test_message_to_mu0(self): pass def test_message_to_Lambda0(self): pass def test_message_to_A(self): pass def test_message_to_v(self): pass def test_message_to_parents(self): """ Check gradient passed to inputs parent node """ N = 3 D = 2 Mu = Gaussian(np.random.randn(D), random.covariance(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), random.covariance(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N+1) Y = Gaussian(X, random.covariance(D)) self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) self.assert_message_to_parent(X, Mu, eps=1e-8) self.assert_message_to_parent( X, Lambda, eps=1e-8, postprocess=lambda u: [ u[0] + linalg.transpose(u[0], ndim=1), u[1], ] ) self.assert_message_to_parent(X, A) self.assert_message_to_parent(X, V, eps=1e-10, atol=1e-5) pass def test_message_to_parents_with_inputs(self): """ Check gradient passed to inputs parent node """ def check(Mu, Lambda, A, V, U): X = GaussianMarkovChain(Mu, Lambda, A, V, inputs=U) Y = Gaussian(X, random.covariance(D)) # Check moments self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) X.update() # Check gradient messages to parents self.assert_message_to_parent(X, Mu) self.assert_message_to_parent( X, Lambda, postprocess=lambda phi: [ phi[0] + linalg.transpose(phi[0], ndim=1), phi[1] ] ) self.assert_message_to_parent( X, A, postprocess=lambda phi: [ phi[0], phi[1] + linalg.transpose(phi[1], ndim=1), ] ) self.assert_message_to_parent(X, V) self.assert_message_to_parent(X, U) N = 4 D = 2 K = 3 check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), Gaussian( np.random.randn(D,D+K), random.covariance(D+K) ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), GaussianGamma( np.random.randn(D,D+K), random.covariance(D+K), D, np.random.rand(D), ndim=1 ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) pass def test_message_to_child(self): """ Test the updating of GaussianMarkovChain. Check that the moments and the lower bound contribution are computed correctly. """ # TODO: Add plates and missing values! # Dimensionalities D = 3 N = 5 (Y, X, Mu, Lambda, A, V) = self.create_model(N, D) # Inference with arbitrary observations y = np.random.randn(N,D) Y.observe(y) X.update() (x_vb, xnxn_vb, xpxn_vb) = X.get_moments() # Get parameter moments (mu0, mumu0) = Mu.get_moments() (icov0, logdet0) = Lambda.get_moments() (a, aa) = A.get_moments() (icov_x, logdetx) = V.get_moments() icov_x = np.diag(icov_x) # Prior precision Z = np.einsum('...kij,...kk->...ij', aa, icov_x) U_diag = [icov0+Z] + (N-2)*[icov_x+Z] + [icov_x] U_super = (N-1) * [-np.dot(a.T, icov_x)] U = misc.block_banded(U_diag, U_super) # Prior mean mu_prior = np.zeros(D*N) mu_prior[:D] = np.dot(icov0,mu0) # Data Cov = np.linalg.inv(U + np.identity(D*N)) mu = np.dot(Cov, mu_prior + y.flatten()) # Moments xx = mu[:,np.newaxis]*mu[np.newaxis,:] + Cov mu = np.reshape(mu, (N,D)) xx = np.reshape(xx, (N,D,N,D)) # Check results self.assertAllClose(x_vb, mu, msg="Incorrect mean") for n in range(N): self.assertAllClose(xnxn_vb[n,:,:], xx[n,:,n,:], msg="Incorrect second moment") for n in range(N-1): self.assertAllClose(xpxn_vb[n,:,:], xx[n,:,n+1,:], msg="Incorrect lagged second moment") # Compute the entropy H(X) ldet = linalg.logdet_cov(Cov) H = random.gaussian_entropy(-ldet, N*D) # Compute <log p(X|...)> xx = np.reshape(xx, (N*D, N*D)) mu = np.reshape(mu, (N*D,)) ldet = -logdet0 - np.sum(np.ones((N-1,D))*logdetx) P = random.gaussian_logpdf(np.einsum('...ij,...ij', xx, U), np.einsum('...i,...i', mu, mu_prior), np.einsum('...ij,...ij', mumu0, icov0), -ldet, N*D) # The VB bound from the net l = X.lower_bound_contribution() self.assertAllClose(l, H+P) # Compute the true bound <log p(X|...)> + H(X) # # Simple tests # def check(N, D, plates=None, mu=None, Lambda=None, A=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if A is None: A = np.random.randn(D,D) if V is None: V = np.random.rand(D) X = GaussianMarkovChain(mu, Lambda, A, V, plates=plates, n=N) (u0, u1, u2) = X._message_to_child() (mu, mumu) = Gaussian._ensure_moments(mu, GaussianMoments, ndim=1).get_moments() (Lambda, _) = Wishart._ensure_moments(Lambda, WishartMoments, ndim=1).get_moments() (a, aa) = Gaussian._ensure_moments(A, GaussianMoments, ndim=1).get_moments() a = a * np.ones((N-1,D,D)) # explicit broadcasting for simplicity aa = aa * np.ones((N-1,D,D,D)) # explicit broadcasting for simplicity (v, _) = Gamma._ensure_moments(V, GammaMoments).get_moments() v = v * np.ones((N-1,D)) plates_C = X.plates plates_mu = X.plates C = np.zeros(plates_C + (N,D,N,D)) plates_mu = np.shape(mu)[:-1] m = np.zeros(plates_mu + (N,D)) m[...,0,:] = np.einsum('...ij,...j->...i', Lambda, mu) C[...,0,:,0,:] = Lambda + np.einsum('...dij,...d->...ij', aa[...,0,:,:,:], v[...,0,:]) for n in range(1,N-1): C[...,n,:,n,:] = (np.einsum('...dij,...d->...ij', aa[...,n,:,:,:], v[...,n,:]) + v[...,n,:,None] * np.identity(D)) for n in range(N-1): C[...,n,:,n+1,:] = -np.einsum('...di,...d->...id', a[...,n,:,:], v[...,n,:]) C[...,n+1,:,n,:] = -np.einsum('...di,...d->...di', a[...,n,:,:], v[...,n,:]) C[...,-1,:,-1,:] = v[...,-1,:,None]*np.identity(D) C = np.reshape(C, plates_C+(N*D,N*D)) Cov = np.linalg.inv(C) Cov = np.reshape(Cov, plates_C+(N,D,N,D)) m0 = np.einsum('...minj,...nj->...mi', Cov, m) m1 = np.zeros(plates_C+(N,D,D)) m2 = np.zeros(plates_C+(N-1,D,D)) for n in range(N): m1[...,n,:,:] = Cov[...,n,:,n,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n,:]) for n in range(N-1): m2[...,n,:,:] = Cov[...,n,:,n+1,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n+1,:]) self.assertAllClose(m0, u0*np.ones(np.shape(m0))) self.assertAllClose(m1, u1*np.ones(np.shape(m1))) self.assertAllClose(m2, u2*np.ones(np.shape(m2))) pass check(4,1) check(4,3) # # Test mu # # Simple check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3))) # Plates check(4,3, mu=Gaussian(np.random.randn(5,6,3), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3), plates=(5,))) check(4,3, mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), mu=Gaussian(np.random.randn(3), random.covariance(3), plates=())) check(4,3, plates=(5,), mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(1,))) # # Test Lambda # # Simple check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3))) # Plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,))) check(4,3, Lambda=Wishart(10+np.random.rand(1), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=())) check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(1,))) # # Test A # # Simple check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) # Plates on time axis check(5,3, A=GaussianARD(np.random.randn(4,3,3), np.random.rand(4,3,3), shape=(3,), plates=(4,3))) # Plates on time axis with broadcasted moments check(5,3, A=GaussianARD(np.random.randn(1,3,3), np.random.rand(1,3,3), shape=(3,), plates=(4,3))) check(5,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(4,3))) # Plates check(4,3, A=GaussianARD(np.random.randn(5,6,1,3,3), np.random.rand(5,6,1,3,3), shape=(3,), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(5,1,3))) check(4,3, A=GaussianARD(np.random.randn(1,1,3,3), np.random.rand(1,1,3,3), shape=(3,), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(1,1,3))) # # Test v # # Simple check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, V=Gamma(np.random.rand(3), np.random.rand(3), plates=(3,))) # Plates check(4,3, V=Gamma(np.random.rand(5,6,1,3), np.random.rand(5,6,1,3), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(5,1,3))) check(4,3, V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, plates=(5,), V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(1,1,3))) # # Check with input signals # mu = 2 Lambda = 3 A = 4 B = 5 v = 6 inputs = [[-2], [3]] X = GaussianMarkovChain([mu], [[Lambda]], [[A,B]], [v], inputs=inputs) V = (np.array([[v*A**2, -v*A, 0], [-v*A, v*A**2, -v*A], [0, -v*A, 0]]) + np.array([[Lambda, 0, 0], [0, v, 0], [0, 0, v]])) m = (np.array([Lambda*mu, 0, 0]) + np.array([0, v*B*inputs[0][0], v*B*inputs[1][0]]) - np.array([v*A*B*inputs[0][0], v*A*B*inputs[1][0], 0])) Cov = np.linalg.inv(V) mean = np.dot(Cov, m) X.update() u = X.get_moments() self.assertAllClose(u[0], mean[:,None]) self.assertAllClose(u[1] - u[0][...,None,:]*u[0][...,:,None], Cov[(0,1,2),(0,1,2),None,None]) self.assertAllClose(u[2] - u[0][...,:-1,:,None]*u[0][...,1:,None,:], Cov[(0,1),(1,2),None,None]) pass def test_smoothing(self): """ Test the posterior estimation of GaussianMarkovChain. Create time-variant dynamics and compare the results of BayesPy VB inference and standard Kalman filtering & smoothing. This is not that useful anymore, because the moments are checked much better in another test method. """ # # Set up an artificial system # # Dimensions N = 500 D = 2 # Dynamics (time varying) A0 = np.array([[.9, -.4], [.4, .9]]) A1 = np.array([[.98, -.1], [.1, .98]]) l = np.linspace(0, 1, N-1).reshape((-1,1,1)) A = (1-l)*A0 + l*A1 # Innovation covariance matrix (time varying) v = np.random.rand(D) V = np.diag(v) # Observation noise covariance matrix C = np.identity(D) # # Simulate data # X = np.empty((N,D)) Y = np.empty((N,D)) x = np.array([0.5, -0.5]) X[0,:] = x Y[0,:] = x + np.random.multivariate_normal(np.zeros(D), C) for n in range(N-1): x = np.dot(A[n,:,:],x) + np.random.multivariate_normal(np.zeros(D), V) X[n+1,:] = x Y[n+1,:] = x + np.random.multivariate_normal(np.zeros(D), C) # # BayesPy inference # # Construct VB model Xh = GaussianMarkovChain(np.zeros(D), np.identity(D), A, 1/v, n=N) Yh = Gaussian(Xh, np.identity(D), plates=(N,)) # Put data Yh.observe(Y) # Run inference Xh.update() # Store results Xh_vb = Xh.u[0] CovXh_vb = Xh.u[1] - Xh_vb[...,np.newaxis,:] * Xh_vb[...,:,np.newaxis] # # "The ground truth" using standard Kalman filter and RTS smoother # V = N*(V,) UY = Y U = N*(C,) (Xh, CovXh) = kalman_filter(UY, U, A, V, np.zeros(D), np.identity(D)) (Xh, CovXh) = rts_smoother(Xh, CovXh, A, V) # # Check results # self.assertTrue(np.allclose(Xh_vb, Xh)) self.assertTrue(np.allclose(CovXh_vb, CovXh)) class TestVaryingGaussianMarkovChain(TestCase): def test_plates_from_parents(self): """ Test that VaryingGaussianMarkovChain deduces plates correctly """ def check(plates_X, plates_mu=(), plates_Lambda=(), plates_B=(), plates_S=(), plates_v=()): D = 3 K = 2 N = 4 np.random.seed(42) mu = Gaussian(np.random.randn(*(plates_mu+(D,))), random.covariance(D)) Lambda = Wishart(D+np.ones(plates_Lambda), random.covariance(D)) B = GaussianARD(np.random.randn(*(plates_B+(D,D,K))), 1+np.random.rand(*(plates_B+(D,D,K))), shape=(D,K), plates=plates_B+(D,)) S = GaussianARD(np.random.randn(*(plates_S+(N,K))), 1+np.random.rand(*(plates_S+(N,K))), shape=(K,), plates=plates_S+(N,)) v = Gamma(1+np.random.rand(*(plates_v+(1,D))), 1+np.random.rand(*(plates_v+(1,D)))) X = VaryingGaussianMarkovChain(mu, Lambda, B, S, v, name="X") self.assertEqual(plates_X, X.plates, msg="Incorrect plates deduced") pass check(()) check((2,3), plates_mu=(2,3)) check((6,7), plates_Lambda=(6,7)) check((2,3), plates_B=(2,3)) check((2,3), plates_S=(2,3)) check((2,3), plates_v=(2,3)) pass def test_message_to_child(self): # A very simple check before the more complex ones: # 1-D process, k=1, fixed constant parameters m = 1.0 l = 4.0 b = 2.0 s = [3.0, 8.0] v = 5.0 X = VaryingGaussianMarkovChain([m], [[l]], [[[b]]], [[s[0]],[s[1]]], [v]) (u0, u1, u2) = X._message_to_child() C = np.array([[l+b**2*s[0]**2*v, -b*s[0]*v, 0], [ -b*s[0]*v, v+b**2*s[1]**2*v, -b*s[1]*v], [ 0, -b*s[1]*v, v]]) Cov = np.linalg.inv(C) m0 = np.dot(Cov, [[l*m], [0], [0]]) m1 = np.diag(Cov)[:,None,None] + m0[:,:,None]**2 m2 = np.diag(Cov, k=1)[:,None,None] + m0[1:,:,None]*m0[:-1,:,None] self.assertAllClose(m0, u0) self.assertAllClose(m1, u1) self.assertAllClose(m2, u2) def check(N, D, K, plates=None, mu=None, Lambda=None, B=None, S=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if B is None: B = np.random.randn(D,D,K) if S is None: S = np.random.randn(N-1,K) if V is None: V = np.random.rand(D) X = VaryingGaussianMarkovChain(mu, Lambda, B, S, V, plates=plates, n=N) (u0, u1, u2) = X._message_to_child() (mu, mumu) = X.parents[0].get_moments() (Lambda, _) = X.parents[1].get_moments() (b, bb) = X.parents[2].get_moments() (s, ss) = X.parents[3].get_moments() (v, _) = X.parents[4].get_moments() v = v * np.ones((N-1,D)) #V = np.atleast_3d(v)[...,-1,:,None]*np.identity(D) plates_C = X.plates plates_mu = X.plates C = np.zeros(plates_C + (N,D,N,D)) plates_mu = np.shape(mu)[:-1] m = np.zeros(plates_mu + (N,D)) m[...,0,:] = np.einsum('...ij,...j->...i', Lambda, mu) #m = np.reshape(m, plates_mu + (N*D,)) A = np.einsum('...dik,...nk->...ndi', b, s) AA = np.einsum('...dikjl,...nkl->...ndij', bb, ss) C[...,0,:,0,:] = Lambda + np.einsum('...dij,...d->...ij', AA[...,0,:,:,:], v[...,0,:]) for n in range(1,N-1): C[...,n,:,n,:] = (np.einsum('...dij,...d->...ij', AA[...,n,:,:,:], v[...,n,:]) + v[...,n,:,None] * np.identity(D)) for n in range(N-1): C[...,n,:,n+1,:] = -np.einsum('...di,...d->...id', A[...,n,:,:], v[...,n,:]) C[...,n+1,:,n,:] = -np.einsum('...di,...d->...di', A[...,n,:,:], v[...,n,:]) C[...,-1,:,-1,:] = v[...,-1,:,None]*np.identity(D) C = np.reshape(C, plates_C+(N*D,N*D)) Cov = np.linalg.inv(C) Cov = np.reshape(Cov, plates_C+(N,D,N,D)) m0 = np.einsum('...minj,...nj->...mi', Cov, m) m1 = np.zeros(plates_C+(N,D,D)) m2 = np.zeros(plates_C+(N-1,D,D)) for n in range(N): m1[...,n,:,:] = Cov[...,n,:,n,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n,:]) for n in range(N-1): m2[...,n,:,:] = Cov[...,n,:,n+1,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n+1,:]) self.assertAllClose(m0, u0*np.ones(np.shape(m0))) self.assertAllClose(m1, u1*np.ones(np.shape(m1))) self.assertAllClose(m2, u2*np.ones(np.shape(m2))) pass check(2,1,1) check(2,3,1) check(2,1,3) check(4,3,2) # # Test mu # # Simple check(4,3,2, mu=Gaussian(np.random.randn(3), random.covariance(3))) # Plates check(4,3,2, mu=Gaussian(np.random.randn(5,6,3), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3,2, mu=Gaussian(np.random.randn(3), random.covariance(3), plates=(5,))) check(4,3,2, mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3,2, plates=(5,), mu=Gaussian(np.random.randn(3), random.covariance(3), plates=())) check(4,3,2, plates=(5,), mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(1,))) # # Test Lambda # # Simple check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3))) # Plates check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,))) check(4,3,2, Lambda=Wishart(10+np.random.rand(1), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3,2, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=())) check(4,3,2, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(1,))) # # Test B # # Simple check(4,3,2, B=GaussianARD(
np.random.randn(3,3,2)
numpy.random.randn
#! /usr/bin/env python # -*- coding: utf-8 -*- """Helper file containing activation functions """ import numpy as np def sigmoid(x): """Description: Calculates the sigmoid for each value in the the input array Params: x: Array for which sigmoid is to be calculated Returns: ndarray: Sigmoid of the input """ return 1.0 / (1.0 + np.exp(-x)) def delta_sigmoid(x): """Description: Calculates the sigmoid derivative for the input array Params: x: Array for which sigmoid derivative is to be calculated Returns: ndarray: Sigmoid derivative of the input """ return sigmoid(x) * (1 - sigmoid(x)) def softmax(x): """Description: Calculates softmax for each set of scores in the input array Params: x: Array for which softmax is to be calculated (axis_0 is the feature dimension, axis_1 is the n_samples dim) Returns: ndarray: Softmax of the input """ e_x = np.exp(x -
np.max(x, axis=0)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 11 12:16:04 2019 @author: gryang """ import os import sys import pickle import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression rootpath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(rootpath) import tools mpl.rcParams['font.size'] = 7 mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 mpl.rcParams['font.family'] = 'arial' # mpl.rcParams['text.usetex'] = 'true' mpl.rcParams['mathtext.fontset'] = 'stix' def load_optimal_K(filename, v_name): print(filename) with open(filename, "rb") as f: # values is a dictionary of lists values = pickle.load(f) # print(values[0]['dim']) # TODO: TEMPORARY HACK to make withdim analysis work if isinstance(values, list): values = values[0] for key, val in values.items(): values[key] = np.array(val) choose = np.argmax if v_name in ['dim'] else np.argmin optimal_Ks = list() for ind in np.unique(values['ind']): # repetition indices idx = values['ind'] == ind # idx of current repetition index v_vals = values[v_name][idx] optimal_Ks.append(values['K'][idx][choose(v_vals)]) means = [np.mean( np.random.choice(optimal_Ks, size=len(optimal_Ks), replace=True)) for _ in range(1000)] optimal_K = np.mean(optimal_Ks) conf_int = np.percentile(means, [2.5, 97.5]) K_range = np.unique(values['K']) return optimal_K, conf_int, K_range def get_sparsity_from_training(path): import standard.analysis_pn2kc_training as analysis_pn2kc_training dirs = [os.path.join(path, n) for n in os.listdir(path)] sparsitys = list() n_ors = list() for i, d in enumerate(dirs): config = tools.load_config(d) print('N: ', config.N_PN) sparsity = analysis_pn2kc_training.compute_sparsity( d, epoch=-1, dynamic_thres=False, visualize=True) n_ors.append(config.N_PN) sparsitys.append(sparsity[sparsity>0].mean()) print('Prop neurons with zero-weights: {:0.3f}'.format(np.mean(sparsity==0))) n_ors = np.array(n_ors) sparsitys = np.array(sparsitys) indsort = np.argsort(n_ors) return sparsitys[indsort], n_ors[indsort] def _load_result(filename, v_name='theta'): dirs = os.listdir(os.path.join(rootpath, 'files', 'analytical')) xs = [int(d[len(filename):-len('.pkl')]) for d in dirs if filename in d] xs = np.sort(xs) optimal_Ks = list() conf_ints = list() yerr_low = list() yerr_high = list() for value in xs: fn = filename + str(value) _filename = './files/analytical/' + fn + '.pkl' optimal_K, conf_int, K_range = load_optimal_K(_filename, v_name=v_name) # print('m:' + str(value)) print('optimal K:' + str(optimal_K)) print('confidence interval: ' + str(conf_int)) print('K range: ' + str(K_range)) print('') optimal_Ks.append(optimal_K) conf_ints.append(conf_int) yerr_low.append(optimal_K-conf_int[0]) yerr_high.append(conf_int[1]-optimal_K) return xs, np.array(optimal_Ks) def load_result(filenames, v_name='theta'): optimal_Ks = list() conf_ints = list() yerr_low = list() yerr_high = list() for filename in filenames: optimal_K, conf_int, K_range = load_optimal_K(filename, v_name=v_name) print('Load results from ' + filename) # print('m:' + str(value)) print('optimal K:' + str(optimal_K)) print('confidence interval: ' + str(conf_int)) print('K range: ' + str(K_range)) print('') optimal_Ks.append(optimal_K) conf_ints.append(conf_int) yerr_low.append(optimal_K - conf_int[0]) yerr_high.append(conf_int[1] - optimal_K) conf_ints = np.array(conf_ints) return np.array(optimal_Ks), conf_ints def _fit(x, y): # x_fit = np.linspace(x[0], x[-1], 100) x_fit = np.linspace(min(np.log(50),x[0]), max(np.log(1000),x[-1]), 100) # model = Ridge() model = LinearRegression() model.fit(x[:, np.newaxis], y) y_fit = model.predict(x_fit[:, np.newaxis]) return x_fit, y_fit, model def main(): x, y = _load_result('all_value_m', v_name='theta') x, y = np.log(x), np.log(y) x_fit, y_fit, model = _fit(x, y) res_perturb = {'log_N': x, 'log_K': y, 'label': 'Weight robustness'} res_perturb_fit = {'log_N': x_fit, 'log_K': y_fit, 'model': model, 'label': r'$K ={:0.2f} \ N^{{{:0.2f}}}$'.format( np.exp(model.intercept_), model.coef_[0])} x, y = _load_result('all_value_withdim_m', v_name='dim') x, y = np.log(x), np.log(y) x_fit, y_fit, model = _fit(x, y) res_dim = {'log_N': x, 'log_K': y} res_dim_fit = {'log_N': x_fit, 'log_K': y_fit, 'model': model, 'label': r'$K ={:0.2f} \ N^{{{:0.2f}}}$'.format( np.exp(model.intercept_), model.coef_[0])} # Get results from training path = os.path.join(rootpath, 'files', 'vary_n_orn2') sparsitys, n_ors = get_sparsity_from_training(path) ind_show = (n_ors>=50) * (n_ors<500) # TODO: The smaller than 500 is just because N=500 didn't finish training x, y = n_ors[ind_show], sparsitys[ind_show] print(x, y) # x = [50, 100, 200] # y = [7.3, 10.17, 18.3] # y[np.where(x==100)[0][0]] = 13.6 # y[np.where(x==200)[0][0]] = 16 # # TODO: TEMPORARY!! # x, y = np.array([50, 100, 200]), np.array([7, 17, 31]) res_train = {'log_N': np.log(x), 'log_K': np.log(y), 'label': 'Train'} x, y = res_train['log_N'], res_train['log_K'] x_fit = np.linspace(np.log(50), np.log(1000), 3) model = LinearRegression() model.fit(x[:, np.newaxis], y) y_fit = model.predict(x_fit[:, np.newaxis]) res_train_fit = {'log_N': x_fit, 'log_K': y_fit, 'model': model, 'label': r'$K ={:0.2f} \ N^{{{:0.2f}}}$'.format( np.exp(model.intercept_), model.coef_[0])} file = os.path.join(rootpath, 'files', 'analytical', 'optimal_k_two_term') with open(file+'.pkl', 'rb') as f: res_twoterm = pickle.load(f) ind = (res_twoterm['ms'] >= 50) * (res_twoterm['ms'] <= 1000) res_twoterm['log_N'] = np.log(res_twoterm['ms'][ind]) res_twoterm['log_K'] = np.log(res_twoterm['optimal_Ks'])[ind] fig = plt.figure(figsize=(4, 3.)) ax = fig.add_axes([0.2, 0.2, 0.7, 0.7]) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') res_list = [res_train, res_perturb, res_perturb_fit, res_twoterm, res_dim, res_dim_fit] labels = ['Train', 'Weight robustness', res_perturb_fit['label'], 'Two-term approx.', 'Dimensionality', res_dim_fit['label']] markers = ['+', 'o', '-', '-', 'o', '-'] mss = [8, 4, 4, 4, 4, 4] zorders = [5, 4, 3, 2, 1, 0] colors = ['black', tools.red, tools.red, tools.red*0.5, tools.gray, tools.gray] for i, res in enumerate(res_list): ax.plot(res['log_N'], res['log_K'], markers[i], ms=mss[i], label=labels[i], color=colors[i], zorder=zorders[i]) ax.plot(np.log(1000), np.log(100), 'x', color=tools.darkblue) ax.text(np.log(900),
np.log(120)
numpy.log
## @package teetool # This module contains the Visual_2d class # # See Visual_2d class for more details import numpy as np from scipy.interpolate import griddata import matplotlib.pyplot as plt import teetool as tt ## Visual_2d class generates the 2d output using Matplotlib # # Even 3-dimensional trajectories can be output in 2d (sliced) class Visual_2d(object): ## Constructor for Visual_2d # @param self object pointer # @param thisWorld World object, filled with trajectory data and models # @param kwargs additional parameters for plt.figure() def __init__(self, thisWorld, **kwargs): """ <description> """ ## figure object self._fig = plt.figure(facecolor="white", **kwargs) ## axis object self._ax = self._fig.gca() # set colour of axis #self._ax.set_axis_bgcolor('white') #self._ax.set_facecolor('white') ## World object self._world = thisWorld ## Labels of plots self._labels = [] ## Plot mean of trajectories # @param self object pointer # @param list_icluster list of clusters to plot # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotMean(self, list_icluster=None, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract data clusters = self._world.getCluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, this_cluster) in enumerate(clusters): # pass clusters Y = this_cluster["model"].getMean() a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[list_icluster[i]], **kwargs) ## Plot trajectories of cluster # @param self object pointer # @param list_icluster list of clusters to plot # @param ntraj maximum number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotTrajectories(self, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract data clusters = self._world.getCluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, this_cluster) in enumerate(clusters): # pass clusters for itraj, (x, Y) in enumerate(this_cluster["data"]): a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[i], **kwargs) # limit number of trajectories if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot trajectories of cluster # @param self object pointer # @param x1 point from [0,1] to visualise # @param list_icluster list of clusters to plot # @param ntraj maximum number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotTrajectoriesPoints(self, x1, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # obtain points clustersP = self._world.getClusterPoints(x1, list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, A) in enumerate(clustersP): # pass clusters for itraj, a in enumerate(A): a_line, = self._ax.plot(a[0], a[1], color=colours[i], **kwargs) # limit number of trajectories if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot time-series of trajectories # @param self object pointer # @param icluster select cluster to plot # @param idim select dimension to plot # @param ntraj maximum number of trajectories # @param colour specificy colour of trajectories # @param kwargs additional parameters for plotting def plotTimeSeries(self, icluster=0, idim=0, ntraj=50, colour='k', **kwargs): # number of subplots, 2 or 3 ndim = self._world._ndim # subplot #f, axarr = plt.subplots(ndim, sharex=True) # check validity [icluster] = self._world._check_list_icluster([icluster]) # extract data clusters = self._world.getCluster([icluster]) for (i, this_cluster) in enumerate(clusters): # pass clusters for itraj, (x, Y) in enumerate(this_cluster["data"]): #for d in range(ndim): x_norm = (x - x.min()) / (x.max() - x.min()) a_line, = self._ax.plot(x_norm, Y[:,idim], color=colour, **kwargs) if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot a box based on two coordinates # @param self object pointer # @param coord_lowerleft lower-left coordinate (x,y) # @param coord_upperright upper-right coordinate (x,y) # @param kwargs additional parameters for plotting def plotBox(self, coord_lowerleft, coord_upperright, **kwargs): x_lo = coord_lowerleft[0] x_hi = coord_upperright[0] y_lo = coord_lowerleft[1] y_hi = coord_upperright[1] coords = np.array([[x_lo, y_lo], [x_hi, y_lo], [x_hi, y_hi], [x_lo, y_hi], [x_lo, y_lo]]) coords_x = coords[:,0] coords_y = coords[:,1] self._ax.plot(coords_x, coords_y, **kwargs) ## standard plotting function for Matplotlib # @param self object pointer # @param args additional arguments for plotting # @param kwargs additional labeled parameters for plotting def plot(self, *args, **kwargs): # plot self._ax.plot(*args, **kwargs) ## Plot samples of model # @param self object pointer # @param list_icluster list of clusters to plot # @param ntraj number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotSamples(self, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, icluster) in enumerate(list_icluster): these_samples = self._world.getSamples(icluster, nsamples=ntraj) for (x, Y) in these_samples: a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[i], linestyle=":", **kwargs) self._labels.append((a_line, "samples")) ## Add legend to plot # @param self object pointer def plotLegend(self): list_lines = [] list_label = [] for (a_line, a_label) in self._labels: list_lines.append(a_line) list_label.append(a_label) plt.legend(handles=list_lines, labels=list_label) ## Plots a confidence region of variance sigma # @param self object pointer # @param list_icluster list of clusters to plot # @param sdwidth variance to evaluate # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution sets resolution for which to calculate the tube, can be a single integer, or an actual measurement [dim1 dim2] (2d) [dim1 dim2 dim3] (3d) # @param colour if specified, overwrites distinct colours # @param alpha opacity for the confidence region # @param kwargs additional parameters for plotting def plotTube(self, list_icluster=None, sdwidth=1, z=None, resolution=None, colour=None, alpha=.1, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract (ss_list, [xx, yy, zz]) = self._world.getTube(list_icluster, sdwidth, z=z, resolution=resolution) # unique colours lcolours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for i, ss1 in enumerate(ss_list): #plt.contourf(xx, yy, 1.*ss1, levels=[-np.inf, 1., np.inf], colors=(lcolours[i],), alpha=alpha, **kwargs) # plot an iso surface line plt.contour(xx, yy, ss1, levels=[.5], colors=(lcolours[list_icluster[i]], 'w'), **kwargs) ## Plots the difference confidence region of variance sigma for two models # @param self object pointer # @param list_icluster list of 2 clusters to compare # @param sdwidth variance to evaluate # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution specify resolution of region # @param colour if specified, overwrites distinct colours # @param alpha opacity for the confidence region # @param kwargs additional parameters for plotting def plotTubeDifference(self, list_icluster=None, sdwidth=1, z=None, resolution=None, colour=None, alpha=.1, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract first two only! list_icluster = list_icluster[:2] # extract (ss_list, [xx, yy, zz]) = self._world.getTube(list_icluster, sdwidth, z=z, resolution=resolution) # to plot ss_plot = - np.inf * np.ones_like(ss_list[0]) # 1 :: blocks added ss_added = ((ss_list[0] - ss_list[1])==-1) # 2 :: blocks removed ss_removed = ((ss_list[0] - ss_list[1])==1) # 3 :: present in both ss_neutral = ((ss_list[0] + ss_list[1])==2) ss_plot[ss_added] = 1. ss_plot[ss_removed] = -1. ss_plot[ss_neutral] = 0. #plt.contourf(xx, yy, ss_plot, levels=[-np.inf, -1., 0., 1., np.inf], colors='none', hatches=['//', '.', '/'], **kwargs) plt.contourf(xx, yy, ss_plot, levels=[-np.inf, -1., 0., 1., np.inf], colors=('r','b','g'), alpha=alpha, **kwargs) for i in [1, 2, 3]: if i == 1: ss1 = 1.*ss_removed color = 'r' elif i == 2: ss1 = 1.*ss_added color = 'g' elif i == 3: ss1 = 1.*ss_neutral color = 'b' # plot an iso surface plt.contour(xx, yy, ss1, levels=[0.5], colors=color) ## Plot the log-likehood of confidence regions -- which can be related to traffic complexity in the future # @param self object pointer # @param list_icluster list of clusters to compare # @param pmin minimum value on a normalised scale # @param pmax maximum value on a normalised scale # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution specify resolution of region def plotLogLikelihood(self, list_icluster=None, pmin=0, pmax=1, z=None, resolution=None): # check validity list_icluster = self._world._check_list_icluster(list_icluster) (ss_list, [xx, yy, zz]) = self._world.getLogLikelihood(list_icluster, resolution, z) ss = ss_list[0] # initialise for ss1 in ss_list: # find those greater mask = np.greater(ss1, ss) # replace ss[mask] = ss1[mask] # normalise ss_norm = (ss - np.min(ss)) / (
np.max(ss)
numpy.max
import numpy as np def remove_dependent_variables(x, tol = np.finfo(np.float).eps): """ Find independent columns using QR decomposition. The returned solution might not unique. There might be other subset of independent columns. Strict condition number of rows (m) > number of columns (n) :param x: The input numpy array :param tol: Tolerance, variables less than tol are removed :return: The linearly independent subset of variables """ r = np.linalg.matrix_rank(x) n = x.shape[1] assert(r is not n), 'Matrix is already linearly independent' q, r = np.linalg.qr(x) ind = np.where(np.abs(r.diagonal()) > tol)[0] return(ind, x[:, ind]) if __name__ == '__main__': """ Simple use case """ print('Define Matrix') A =
np.array([[2, 4, 1, 3], [-1, -2, 1, 0], [0, 0, 4, 4], [3, 6, 2, 5]])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tools related to handling overlaps. Currently implemented to be used with a minimap (https://github.com/lh3/minimap) file. Includes overlap class, functions that create a sparse matrix from the overlaps, and a function that computes the absolute positions of the reads from the overlaps in a contig if the ordering of the reads is given. @author: <NAME> """ import numpy as np from scipy.sparse import find class MiniOvl: """ Overlap between two reads, named 1 and 2, from line of minimap file. Such a line contains : query name, length, 0-based start, end, strand, target name, length, start, end, the number of matching bases. Parameters ---------- mini_line : str (line from minimap file) Attributes ---------- id1 : str (read id of read 1) id2 : str (read id of read 2) len1 : int (length of read 1) len2 : int (length of read 2) b1 : int (basepair number of the beginning of the overlap on read 1) e1 : int (basepair number of the end of the overlap on read 1) b2 : int (basepair number of the beginning of the overlap on read 2) e2 : int (basepair number of the end of the overlap on read 2) strand : char ('+' if the two reads are on same strand and '-' otherwise) n_match : int (number of matching bases (see minimap [https://github.com/lh3/minimap] documentation)) """ def __init__(self, mini_line): fields = mini_line.split() self.id1 = fields[0] self.len1 = int(fields[1]) self.b1 = int(fields[2]) self.e1 = int(fields[3]) self.strand = fields[4] self.id2 = fields[5] self.len2 = int(fields[6]) self.b2 = int(fields[7]) self.e2 = int(fields[8]) self.n_match = int(fields[9]) # self.n_coll = int(fields[10]) # self.n_frac_match = int(fields[11]) def switch_ids(self, id1, id2): """ Switch reads in the overlap object (read 1 becomes 2 and 2 becomes 1). """ if (self.id1 == id2) and (self.id2 == id1): self.id1, self.id2 = self.id2, self.id1 self.len1, self.len2 = self.len2, self.len1 self.b1, self.b2 = self.b2, self.b1 self.e1, self.e2 = self.e2, self.e1 else: assert self.id1 == id1 and self.id2 == id2, u"id1 : {}, id2 : {} \n self.id1 : {}, self.id2 : {}".format( id1, id2, self.id1, self.id2) def compute_abs_pos(self, b_ref, s_ref): """ Compute absolute position and strand of read 2 from overlap information (self) and absolute position and strand of read 1 (b_ref and s_ref). Parameters ---------- b_ref : int (absolute position (leftmost base coordinate) of read 1 s_ref : int (+1 or -1. Absolute strand of read 1) Returns ---------- b : int (absolute position (leftmost base coordinate) of read 2) s : int (+1 or -1. Absolute strand of read 2) """ # Compute strand of next read s = s_ref if self.strand == '+' else not(s_ref) # Compute leftmost position (depending of strands of reference and next read) if (s_ref and s): b = b_ref + self.b1 - self.b2 elif (s_ref and not(s)): b = b_ref + self.b1 - (self.len2 - self.e2) elif (not(s_ref) and s): b = b_ref + (self.len1 - self.e1) - self.b2 elif (not(s_ref) and not(s)): b = b_ref + (self.len1 - self.e1) - (self.len2 - self.e2) return (b, s) def compute_overlaps(mini_fn, record_list): """ Compute list of overlaps from minimap output file and list of reads. Parameters ---------- mini_fn : str (path to minimap file) record_list : list (list of reads in Bio.SeqIO.records format) Returns ---------- read_nb2id : dict (keys : read number, values : read id) ovl_list : list (of overlaps as MiniOvl objects) i_list : list (of read indices (int) i to build sparse coo_matrix such that A[i,j] ~ overlap between reads i and j) j_list : list (of read indices (int) j to build sparse coo_matrix such that A[i,j] ~ overlap between reads i and j) k_list : list (of indices (int) k such that ovl_list[k] is the overlap between i_list[k] and j_list[k]) n_match_list : list (of number of matches (int) such that A[i,j] = number of matches between i and j) ovl_len_list : list (of length of overlap between i and j) n_reads : int (number of reads) """ # Construct {read name : read number} dictionary read_nb_dic = {} cpt = 0 for record in record_list: if read_nb_dic.has_key(record.id): msg = "Same id {} for reads {} and {} ! " \ "Run [https://github.com/antrec/spectrassembler/]check_reads.py "\ "on your data first.".format(record.id, read_nb_dic[record.id], cpt) raise StandardError(msg) read_nb_dic[record.id] = cpt cpt += 1 n_reads = cpt idx = 0 h_list = [] k_list = [] ovl_list = [] n_match_list = [] ovl_len_list = [] fh = open(mini_fn, 'rb') for line in fh: ovl = MiniOvl(line) i_idx = read_nb_dic[ovl.id1] j_idx = read_nb_dic[ovl.id2] # Discard self matches if i_idx == j_idx: continue # Keep 1D indexing : h = n*i + j h_idx = n_reads*i_idx + j_idx # Check if another overlap between i and j already exists duplicate_cond = (h_idx in h_list[-300:]) if duplicate_cond: dupl_idx = h_list[-300:].index(h_idx) + len(h_list) - min(300, len(h_list)) dupl_ovl = ovl_list[dupl_idx] # Drop the overlap if the preexisting one is more significant if dupl_ovl.n_match > ovl.n_match: continue # Replace the preexisting overlap by the new one otherwise else: n_match_list[dupl_idx] = dupl_ovl.n_match ovl_len = (abs(dupl_ovl.e1 - dupl_ovl.b1) \ + abs(dupl_ovl.e2 - dupl_ovl.b2))/2 ovl_len_list[dupl_idx] = ovl_len continue # Add the overlap if there was no other overlap between i and j ovl_list.append(ovl) h_list.append(h_idx) k_list.append(idx) idx += 1 n_match_list.append(ovl.n_match) ovl_len = (abs(ovl.e1 - ovl.b1) + abs(ovl.e2 - ovl.b2))/2 ovl_len_list.append(ovl_len) fh.close() # Convert to numpy arrays h_list = np.array(h_list) n_match_list =
np.array(n_match_list)
numpy.array
#!/usr/bin/env python3 from __future__ import print_function from __future__ import division import rospy import rosbag import math import numpy as np import matplotlib.pyplot as plt from scipy import linalg from nav_msgs.msg import Odometry from geometry_msgs.msg import Quaternion from sensor_msgs.msg import Imu from tf.transformations import euler_from_quaternion, quaternion_from_euler from mav_msgs.msg import Actuators from waypoint_generation_library import WaypointGen # TODO: make this critically damped by tuning the natural frequency class PDControl(object): """ Takes IMU and position data and publishes actuator commands based off a Proportional Derivative law""" def __init__(self): self.dlqrPublisher = rospy.Publisher("/uams/command/motor_speed", Actuators, queue_size=1) # self.dlqrPublisher = rospy.Publisher("/neo11/command/motor_speed", Actuators, queue_size=1) self.receivedImuQuat = Quaternion() self.thrustConstant = 1.269e-05 self.momentConstant = 0.016754 self.g = 9.8 # [m/s^2] self.m = 4.88 # [kg] self.Ixx = 6.08870e-02 # [kg*m^2] self.Iyy = 6.87913e-02 # [kg*m^2] self.Izz = 1.48916e-01 # [kg*m^2] gamma = self.thrustConstant / self.momentConstant self.L = 0.2895 # [m] # damping ratio (overdamped) zeta = 2 zetaYaw = 1 # natural frequency self.PI = 3.14159 wnAng = 13 # [rad/s] wnAngYaw = 200 # attitude control gains calculation based on 2nd order system assumption # proportional gain # self.kpAngle = np.array(([self.Ixx * pow(wnAng, 2), # roll # self.Iyy * pow(wnAng, 2), # pitch # self.Izz * pow(wnAngYaw, 2)])) # yaw # self.kpAngle = np.array([11.2, 11.2, 5713.2]) # self.kdAngle = np.array([ 1.12, 1.12, 16.56]) # self.kpAngle = np.array([11.2, 11.2, 5000]) # self.kdAngle = np.array([1.12, 1.12, 16.56]) self.kpAngle = np.array([20, 20, 5000]) self.kdAngle = np.array([11, 11, 160]) print(self.kpAngle) # derivative gain # self.kdAngle = np.array(([self.Ixx * zeta * wnAng, # roll # self.Iyy * zeta * wnAng, # pitch # self.Izz * 0.5 * zetaYaw * wnAngYaw])) # yaw print(self.kdAngle) # position control gains hand-tuned # proportional gain self.kpPos = np.array(([0.1, 0.1, 1])) # derivative gain self.kdPos = np.array(([0.1, 0.1, 1])) # variable to keep track of the previous error in each state self.prevRPYErr =
np.zeros((3, 1))
numpy.zeros
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- ######################## -*- coding: utf-8 -*- """Usage: plotfc.py INPUTFILE Simple script to visualize output of m1qn3 with omode>0 as saved in INPUTFILE. The script plots the cost function value minus the final (smallest) value and the number of simulations as a function of iterations. """ import matplotlib.pyplot as plt import numpy as np import sys from getopt import gnu_getopt as getopt # parse command-line arguments try: optlist,args = getopt(sys.argv[1:], ':', ['verbose']) assert len(args) == 1 except (AssertionError): sys.exit(__doc__) fname=args[0] print("reading from "+fname) def get_output (fname, mystring): """parse fname and get some numbers out""" iters = [] simuls= [] fc = [] try: f=open(fname) except: print(fname + " does not exist, continuing") else: for line in f: if mystring in line: ll = line.split() iters.append( int(ll[2].replace(',',''))) simuls.append(int(ll[4].replace(',',''))) fc.append( float(ll[6].replace('D','e').replace(',',''))) return iters, simuls, fc iters, simuls, fc = get_output(fname, "f=") # sort out restarts iters0 =
np.asarray(iters)
numpy.asarray
# Copyright (C) 2020 <NAME> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np from gwbench.basic_constants import time_fac, REarth, AU, cLight cos = np.cos sin = np.sin exp = np.exp PI = np.pi ap_symbs_string = 'f Mc tc ra dec psi gmst0' locs = ('H', 'L', 'V', 'K', 'I', 'ET1', 'ET2', 'ET3', 'C', 'N', 'S') #-----Check, location generation----- def check_loc_gen(loc): '''Check, what generation the locations is and return appropriate label.''' if loc in ('H','L','V','K','I'): return '2G' elif loc in ('C','N','S','ET1','ET2','ET3'): return '3G' def detector_response(f,hf_pl,hf_cr,Mc,tc,ra,dec,psi,gmst0,loc,use_rot): # input: f frequency domain [Hz] # Mc chirp Mass [solar mass] # tc time of coalescence [s] # dec declination [rad] # ra right ascencsion [rad] # psi polarization angle [rad] # gmst0 GreenwichMeanSiderialTime according to LAL # loc location (and implied orientation) of a detector # use_rot use frequency dependent time due to rotation of earth and SPA # # output: hf detector strain Fp, Fc, Flp = antenna_pattern_and_loc_phase_fac(f,Mc,tc,ra,dec,psi,gmst0,loc,use_rot) return Flp * (Fp * hf_pl + Fc * hf_cr) def antenna_pattern_and_loc_phase_fac(f,Mc,tc,ra,dec,psi,gmst0,loc,use_rot): # input: f frequency domain [Hz] # Mc chirp Mass [solar mass] # tc time of coalescence [s] # dec declination [rad] # ra right ascencsion [rad] # psi polarization angle [rad] # gmst0 GreenwichMeanSiderialTime according to LAL # loc location (and implied orientation) of a detector # use_rot use frequency dependent time due to rotation of earth and SPA # # output: Fp, Fc half_period = 4.32e4 R = REarth D, d = det_ten_and_loc_vec(loc, R) if use_rot: tf = tc - (5./256.)*(time_fac*Mc)**(-5./3.)*(PI*f)**(-8./3.) else: tf = 0 gra = (gmst0 + tf*PI/half_period) - ra theta = PI/2. - dec if isinstance(gra, np.ndarray): r = np.array((cos(gra) * sin(theta), sin(gra) * sin(theta), cos(theta) * np.ones(len(gra)))) XX = np.transpose(np.array([ -cos(psi)*sin(gra) - sin(psi)*cos(gra)*sin(dec), -cos(psi)*cos(gra) + sin(psi)*sin(gra)*sin(dec), sin(psi)*cos(dec) * np.ones(len(gra)) ])) YY = np.transpose(np.array([ sin(psi)*sin(gra) - cos(psi)*cos(gra)*sin(dec), sin(psi)*cos(gra) + cos(psi)*sin(gra)*sin(dec), cos(psi)*cos(dec) * np.ones(len(gra)) ])) Fp = 0.5 * np.array([np.matmul(np.matmul(XX[i],D),XX[i]) - np.matmul(np.matmul(YY[i],D),YY[i]) for i in range(len(gra))]) Fc = 0.5 * np.array([np.matmul(np.matmul(XX[i],D),YY[i]) + np.matmul(np.matmul(YY[i],D),XX[i]) for i in range(len(gra))]) else: r = np.array((cos(gra) * sin(theta), sin(gra) * sin(theta), cos(theta))) XX = np.transpose(np.array([ -cos(psi)*sin(gra) - sin(psi)*cos(gra)*sin(dec), -cos(psi)*cos(gra) + sin(psi)*sin(gra)*sin(dec), sin(psi)*cos(dec) ])) YY = np.transpose(np.array([ sin(psi)*sin(gra) - cos(psi)*cos(gra)*sin(dec), sin(psi)*cos(gra) + cos(psi)*sin(gra)*sin(dec), cos(psi)*cos(dec) ])) Fp = 0.5 * (np.matmul(np.matmul(XX,D),XX) - np.matmul(np.matmul(YY,D),YY)) Fc = 0.5 * (np.matmul(np.matmul(XX,D),YY) + np.matmul(np.matmul(YY,D),XX)) return Fp, Fc, exp(1j * 2*PI * f * np.matmul(d,r)) def det_ten_and_loc_vec(loc, R): i_vec = np.array((1,0,0)) j_vec = np.array((0,1,0)) k_vec = np.array((0,0,1)) et_vec2 = ( i_vec + np.sqrt(3.)*j_vec)/2. et_vec3 = (-i_vec + np.sqrt(3.)*j_vec)/2. alpha, beta, gamma = det_angles(loc) EulerD1 = np.matmul(np.matmul(rot_mat(alpha,'k'), rot_mat(beta,'j')),rot_mat(gamma,'k')) if loc in ('ET3','LISA3'): eDArm1 = -1 * np.matmul(EulerD1,et_vec2) eDArm2 = -1 *
np.matmul(EulerD1,et_vec3)
numpy.matmul
import os import numpy as np from rs_embed import EmbeddingData POSE_DIR = '/app/data/pose' POSE_PATH = os.path.join(POSE_DIR, 'pose_binary.bin') ID_PATH = os.path.join(POSE_DIR, 'pose_ids.bin') POSE_DIM = 390 def _load(): id_file_size = os.path.getsize(ID_PATH) assert id_file_size % 8 == 0, \ 'Id file size is not a multiple of sizeof(u64)' n = int(id_file_size / 8) emb_file_size = os.path.getsize(POSE_PATH) assert emb_file_size % 4 == 0, \ 'Embedding file size is a multiple of sizeof(f32)' d = int((emb_file_size / 4) / (id_file_size / 8)) assert emb_file_size % d == 0, \ 'Embedding file size is a multiple of d={}'.format(d) emb_data = EmbeddingData(ID_PATH, POSE_PATH, POSE_DIM) assert emb_data.count() == n, \ 'Count does not match expected: {} != {}'.format(n, emb_data.count()) return emb_data _POSE_DATA = _load() class PoseWrapper(): def __init__(self, keypoints, pose_id, labeler): self.kp = np.array(keypoints).reshape(130, 3) self.id = pose_id self.labeler = labeler POSE_KEYPOINTS = 18 FACE_KEYPOINTS = 70 HAND_KEYPOINTS = 21 Nose = 0 Neck = 1 RShoulder = 2 RElbow = 3 RWrist = 4 LShoulder = 5 LElbow = 6 LWrist = 7 RHip = 8 RKnee = 9 RAnkle = 10 LHip = 11 LKnee = 12 LAnkle = 13 REye = 14 LEye = 15 REar = 16 LEar = 17 Background = 18 def pose_keypoints(self): return self.kp[:self.POSE_KEYPOINTS, :] def face_keypoints(self): return self.kp[self.POSE_KEYPOINTS:(self.POSE_KEYPOINTS + self.FACE_KEYPOINTS), :] def hand_keypoints(self): base = self.kp[self.POSE_KEYPOINTS + self.FACE_KEYPOINTS:, :] return [base[:self.HAND_KEYPOINTS, :], base[self.HAND_KEYPOINTS:, :]] def get(pose_meta_qs): """Generator of PoseMeta objects -> list of PoseWrapper objects.""" pose_meta_qs = list(pose_meta_qs) ids = [p.id for p in pose_meta_qs] # get returns list of (id, pose bytes) result = _POSE_DATA.get(ids) assert len(result) == len(pose_meta_qs), "{} != {}".format( len(result), len(pose_meta_qs)) return [ PoseWrapper(
np.array(pose_id_bytes[1])
numpy.array
import sys import numpy as np import pytest import polynomials_on_simplices.algebra.multiindex as multiindex from polynomials_on_simplices.calculus.finite_difference import central_difference, central_difference_jacobian from polynomials_on_simplices.calculus.polynomial.polynomials_calculus import derivative from polynomials_on_simplices.calculus.polynomial.polynomials_simplex_bernstein_basis_calculus import ( integrate_bernstein_polynomial_unit_simplex) from polynomials_on_simplices.geometry.mesh.simplicial_complex import opposite_sub_simplex, simplex_vertices from polynomials_on_simplices.geometry.primitives.simplex import unit from polynomials_on_simplices.polynomial.polynomials_base import get_dimension, polynomials_equal from polynomials_on_simplices.polynomial.polynomials_monomial_basis import unique_identifier_monomial_basis from polynomials_on_simplices.polynomial.polynomials_unit_simplex_bernstein_basis import ( PolynomialBernstein, bernstein_basis_fn, degree_elevated_bernstein_basis_fn, dual_bernstein_basis_fn, dual_bernstein_basis_polynomial, dual_vector_valued_bernstein_basis, get_associated_sub_simplex, unique_identifier_bernstein_basis, unit_polynomial, vector_valued_bernstein_basis, zero_polynomial) from polynomials_on_simplices.probability_theory.uniform_sampling import nsimplex_sampling def test_call(): # Test calling a scalar valued univariate polynomial p = PolynomialBernstein([1, 1, 1], 2, 1) value = p(0.5) expected_value = 1 assert value == expected_value # Test calling a vector valued univariate polynomial p = PolynomialBernstein([[1, 1], [1, 1], [1, 1]], 2, 1) value = p(0.5) expected_value =
np.array([1, 1])
numpy.array
import numpy as NP from astropy.io import fits from astropy.io import ascii import scipy.constants as FCNST from scipy import interpolate import matplotlib.pyplot as PLT import matplotlib.colors as PLTC import matplotlib.cm as CMAP import matplotlib.animation as MOV from matplotlib import ticker from scipy.interpolate import griddata import datetime as DT import time import progressbar as PGB import healpy as HP import geometry as GEOM import interferometry as RI import catalog as CTLG import constants as CNST import my_DSP_modules as DSP import my_operations as OPS import primary_beams as PB import baseline_delay_horizon as DLY import lookup_operations as LKP import ipdb as PDB ## Input/output parameters telescope_id = 'custom' element_size = 0.74 element_shape = 'delta' phased_array = True if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole'): element_size = 0.74 element_shape = 'dipole' elif telescope_id == 'vla': element_size = 25.0 element_shape = 'dish' elif telescope_id == 'gmrt': element_size = 45.0 element_shape = 'dish' elif telescope_id == 'hera': element_size = 14.0 element_shape = 'dish' elif telescope_id == 'custom': if (element_shape is None) or (element_size is None): raise ValueError('Both antenna element shape and size must be specified for the custom telescope type.') elif element_size <= 0.0: raise ValueError('Antenna element size must be positive.') elif telescope_id == 'mwa_tools': pass else: raise ValueError('telescope ID must be specified.') if telescope_id == 'custom': if element_shape == 'delta': telescope_id = 'delta' else: telescope_id = '{0:.1f}m_{1:}'.format(element_size, element_shape) if phased_array: telescope_id = telescope_id + '_array' telescope_str = telescope_id+'_' ground_plane = 0.3 # height of antenna element above ground plane if ground_plane is None: ground_plane_str = 'no_ground_' else: if ground_plane > 0.0: ground_plane_str = '{0:.1f}m_ground_'.format(ground_plane) else: raise ValueError('Height of antenna element above ground plane must be positive.') obs_mode = 'custom' avg_drifts = False beam_switch = False snapshot_type_str = '' if avg_drifts: snapshot_type_str = 'drift_averaged_' if beam_switch: snapshot_type_str = 'beam_switches_' n_sky_sectors = 4 sky_sector = 3 # if None, use all sky sector. Accepted values are None, 0, 1, 2, or 3 if sky_sector is None: sky_sector_str = '_all_sky_' n_sky_sectors = 1 sky_sector = 0 else: sky_sector_str = '_sky_sector_{0:0d}_'.format(sky_sector) Tsys = 90.0 # System temperature in K freq = 185.0 * 1e6 # foreground center frequency in Hz freq_resolution = 80e3 # in Hz coarse_channel_resolution = 1.28e6 # in Hz bpass_shape = 'bnw' f_pad = 1.0 oversampling_factor = 1.0 + f_pad n_channels = 384 nchan = n_channels max_abs_delay = 2.5 # in micro seconds window = n_channels * DSP.windowing(n_channels, shape=bpass_shape, pad_width=0, centering=True, area_normalize=True) nside = 64 use_GSM = False use_DSM = True use_CSM = False use_NVSS = False use_SUMSS = False use_MSS = False use_GLEAM = False use_PS = False if use_GSM: fg_str = 'asm' elif use_DSM: fg_str = 'dsm' elif use_CSM: fg_str = 'csm' elif use_SUMSS: fg_str = 'sumss' elif use_GLEAM: fg_str = 'gleam' elif use_PS: fg_str = 'point' elif use_NVSS: fg_str = 'nvss' else: fg_str = 'other' antenna_file = '/data3/t_nithyanandan/project_MWA/MWA_128T_antenna_locations_MNRAS_2012_Beardsley_et_al.txt' ant_locs = NP.loadtxt(antenna_file, skiprows=6, comments='#', usecols=(0,1,2,3)) bl, bl_id = RI.baseline_generator(ant_locs[:,1:], ant_id=ant_locs[:,0].astype(int).astype(str), auto=False, conjugate=False) bl_length = NP.sqrt(NP.sum(bl**2, axis=1)) bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) sortind = NP.argsort(bl_length, kind='mergesort') bl = bl[sortind,:] bl_length = bl_length[sortind] bl_orientation = bl_orientation[sortind] bl_id = bl_id[sortind] n_bins_baseline_orientation = 4 n_bl_chunks = 32 baseline_chunk_size = 64 neg_bl_orientation_ind = bl_orientation < 0.0 # neg_bl_orientation_ind = NP.logical_or(bl_orientation < -0.5*180.0/n_bins_baseline_orientation, bl_orientation > 180.0 - 0.5*180.0/n_bins_baseline_orientation) bl[neg_bl_orientation_ind,:] = -1.0 * bl[neg_bl_orientation_ind,:] bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) total_baselines = bl_length.size baseline_bin_indices = range(0,total_baselines,baseline_chunk_size) bl_chunk = range(len(baseline_bin_indices)) bl_chunk = bl_chunk[:n_bl_chunks] bl = bl[:baseline_bin_indices[n_bl_chunks],:] bl_length = bl_length[:baseline_bin_indices[n_bl_chunks]] bl_orientation = bl_orientation[:baseline_bin_indices[n_bl_chunks]] bl_id = bl_id[:baseline_bin_indices[n_bl_chunks]] neg_bl_orientation_ind = bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation ## Plot distribution of baseline lengths and distributions bl_length_binsize = 20.0 bl_length_bins = NP.linspace(0.0, NP.ceil(bl_length.max()/bl_length_binsize) * bl_length_binsize, NP.ceil(bl_length.max()/bl_length_binsize)+1) bl_orientation_binsize=180.0/(2*n_bins_baseline_orientation) bl_orientation_bins = NP.linspace(bl_orientation.min(), bl_orientation.max(), 2*n_bins_baseline_orientation+1) labels = [] labels += ['B{0:0d}'.format(i+1) for i in xrange(bl.shape[0])] roifile = '/data3/t_nithyanandan/project_MWA/roi_info_'+telescope_str+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' roi = RI.ROI_parameters(init_file=roifile) telescope = roi.telescope # telescope = {} # telescope['id'] = telescope_id # telescope['shape'] = element_shape # telescope['size'] = element_size # telescope['orientation'] = element_orientation # telescope['ocoords'] = element_ocoords # telescope['groundplane'] = ground_plane fig = PLT.figure(figsize=(6,6)) ax1 = fig.add_subplot(211) n, bins, patches = ax1.hist(bl_length, bins=bl_length_bins, histtype='step', lw=2, color='black') ax1.xaxis.tick_top() ax1.xaxis.set_label_position('top') ax1.set_xlabel('Baseline Length [m]', fontsize=18, weight='medium') ax1.set_ylabel('Number in bin', fontsize=18, weight='medium') ax1.tick_params(which='major', length=18, labelsize=12) ax1.tick_params(which='minor', length=12, labelsize=12) for axis in ['top','bottom','left','right']: ax1.spines[axis].set_linewidth(2) xticklabels = PLT.getp(ax1, 'xticklabels') yticklabels = PLT.getp(ax1, 'yticklabels') PLT.setp(xticklabels, fontsize=15, weight='medium') PLT.setp(yticklabels, fontsize=15, weight='medium') ax2 = fig.add_subplot(212) n, bins, patches = ax2.hist(bl_orientation, bins=bl_orientation_bins, histtype='step', lw=2, color='black') ax2.set_xlabel('Baseline Orientation [deg]', fontsize=18, weight='medium') ax2.set_ylabel('Number in bin', fontsize=18, weight='medium') ax2.tick_params(which='major', length=18, labelsize=12) ax2.tick_params(which='minor', length=12, labelsize=12) for axis in ['top','bottom','left','right']: ax2.spines[axis].set_linewidth(2) xticklabels = PLT.getp(ax2, 'xticklabels') yticklabels = PLT.getp(ax2, 'yticklabels') PLT.setp(xticklabels, fontsize=15, weight='medium') PLT.setp(yticklabels, fontsize=15, weight='medium') PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/baseline_properties.eps', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/baseline_properties.png', bbox_inches=0) ## Animation set up backdrop_xsize = 100 fps = 0.5 interval = 100 animation_format = 'MP4' if animation_format == 'MP4': anim_format = '.mp4' else: anim_format = 'gif' animation_file = None if animation_file is None: animation_file = '/data3/t_nithyanandan/project_MWA/animations/multi_baseline_noiseless_visibilities_'+snapshot_type_str+obs_mode+'_'+'{0:0d}'.format(n_bl_chunks*baseline_chunk_size)+'_baselines_{0:0d}_orientations_'.format(n_bins_baseline_orientation)+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_sectors'.format(n_bins_baseline_orientation) animation2_file = None if animation2_file is None: animation2_file = '/data3/t_nithyanandan/project_MWA/animations/delay_emission_map_'+snapshot_type_str+obs_mode+'_'+'{0:0d}'.format(n_bl_chunks*baseline_chunk_size)+'_baselines_{0:0d}_orientations_'.format(n_bins_baseline_orientation)+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_sectors'.format(n_bins_baseline_orientation) lags = None skyvis_lag = None vis_lag = None # # progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=n_bl_chunks).start() # # for i in range(0, n_bl_chunks): # # infile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[i]],bl_length[min(baseline_bin_indices[i]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) # # hdulist = fits.open(infile+'.fits') # # # extnames = [hdu.header['EXTNAME'] for hdu in hdulist] # # if i == 0: # # lags = hdulist['SPECTRAL INFO'].data.field('lag') # # vis_lag = hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data # # skyvis_lag = hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data # # latitude = hdulist[0].header['latitude'] # # pointing_coords = hdulist[0].header['pointing_coords'] # # pointings_table = hdulist['POINTING INFO'].data # # lst = pointings_table['LST'] # # n_snaps = lst.size # # if pointing_coords == 'altaz': # # pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) # # pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # elif pointing_coords == 'radec': # # pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # # pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) # # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # elif pointing_coords == 'hadec': # # pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # # pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) # # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # else: # # vis_lag = NP.vstack((vis_lag, hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data)) # # skyvis_lag = NP.vstack((skyvis_lag, hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data)) # # hdulist.close() # # progress.update(i+1) # # progress.finish() # progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=n_bl_chunks).start() # for i in range(0, n_bl_chunks): # infile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[i]],bl_length[min(baseline_bin_indices[i]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) # if i == 0: # ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') # hdulist = fits.open(infile+'.fits') # latitude = hdulist[0].header['latitude'] # pointing_coords = hdulist[0].header['pointing_coords'] # pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data # lst = pointings_table['LST'] # n_snaps = lst.size # hdulist.close() # if pointing_coords == 'altaz': # pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) # pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # elif pointing_coords == 'radec': # pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # elif pointing_coords == 'hadec': # pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # else: # ia_next = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') # ia.concatenate(ia_next, axis=0) # progress.update(i+1) # progress.finish() infile = '/data3/t_nithyanandan/project_MWA/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[0]],bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6) ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') hdulist = fits.open(infile+'.fits') latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data lst = pointings_table['LST'] n_snaps = lst.size hdulist.close() if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # pc = NP.asarray([90.0, 90.0]).reshape(1,-1) # pc = NP.asarray([266.416837, -29.00781]).reshape(1,-1) pc = NP.asarray([0.0, 0.0, 1.0]).reshape(1,-1) pc_coords = 'dircos' ia.phase_centering(phase_center=pc, phase_center_coords=pc_coords) ################################################################################# # Find any negative orientation baselines and conjugate those visibilities simdata_bl_orientation = NP.angle(ia.baselines[:,0] + 1j * ia.baselines[:,1], deg=True) simdata_neg_bl_orientation_ind = simdata_bl_orientation < 0.0 simdata_bl_orientation[simdata_neg_bl_orientation_ind] += 180.0 ia.baselines[simdata_neg_bl_orientation_ind,:] = -ia.baselines[simdata_neg_bl_orientation_ind,:] # ia.baseline_orientations[simdata_neg_bl_orientation_ind] = 180.0 + ia.baseline_orientations[simdata_neg_bl_orientation_ind] ia.vis_freq[simdata_neg_bl_orientation_ind,:,:] = ia.vis_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.skyvis_freq[simdata_neg_bl_orientation_ind,:,:] = ia.skyvis_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.vis_noise_freq[simdata_neg_bl_orientation_ind,:,:] = ia.vis_noise_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.delay_transform(f_pad, freq_wts=window) # delay transform re-estimate lags = ia.lags vis_lag = ia.vis_lag skyvis_lag = ia.skyvis_lag if max_abs_delay is not None: small_delays_ind = NP.abs(lags) <= max_abs_delay * 1e-6 lags = lags[small_delays_ind] vis_lag = vis_lag[:,small_delays_ind,:] skyvis_lag = skyvis_lag[:,small_delays_ind,:] ## Delay limits re-estimation delay_matrix = DLY.delay_envelope(ia.baselines, pointings_dircos, units='mks') fig = PLT.figure(figsize=(6,8)) ax1 = fig.add_subplot(211) # ax1.set_xlabel('Baseline Length [m]', fontsize=18) # ax1.set_ylabel(r'lag [$\mu$s]', fontsize=18) # dspec1 = ax1.pcolorfast(bl_length, 1e6*lags, NP.abs(skyvis_lag[:-1,:-1,0].T), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag)))) # ax1.set_xlim(bl_length[0], bl_length[-1]) # ax1.set_ylim(1e6*lags[0], 1e6*lags[-1]) ax1.set_xlabel('Baseline Index', fontsize=18) ax1.set_ylabel(r'lag [$\mu$s]', fontsize=18) dspec1 = ax1.imshow(NP.abs(skyvis_lag[:,:,0].T), origin='lower', extent=(0, skyvis_lag.shape[0]-1, NP.amin(lags*1e6), NP.amax(lags*1e6)), norm=PLTC.LogNorm(NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag))), interpolation=None) ax1.set_aspect('auto') ax2 = fig.add_subplot(212) # ax2.set_xlabel('Baseline Length [m]', fontsize=18) # ax2.set_ylabel(r'lag [$\mu$s]', fontsize=18) # dspec2 = ax2.pcolorfast(bl_length, 1e6*lags, NP.abs(skyvis_lag[:-1,:-1,1].T), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag)))) # ax2.set_xlim(bl_length[0], bl_length[-1]) # ax2.set_x=ylim(1e6*lags[0], 1e6*lags[-1]) ax2.set_xlabel('Baseline Index', fontsize=18) ax2.set_ylabel(r'lag [$\mu$s]', fontsize=18) dspec2 = ax2.imshow(NP.abs(skyvis_lag[:,:,1].T), origin='lower', extent=(0, skyvis_lag.shape[0]-1,
NP.amin(lags*1e6)
numpy.amin
import gym import copy import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches class JapanMaze(object): def __init__(self,radius=0.5,seed=0): np.random.seed(seed=seed) self.action_limit = 0.1 self.ini_posi = np.array([-0.9,-0.9]) self.ini_cov = np.array([[0.005,0.],[0.,0.005]]) self.whereami = copy.deepcopy(self.ini_posi) self.goal = np.array([0.9,0.9]) self.reward_f = lambda y:np.exp(-(np.linalg.norm(y-self.goal)**2)/2) self.center = np.array([0.0,0.0]) self.radius = radius self.timelimit =40 self.N = 30 # Collision determination resolution high = np.ones(2)*1 self.observation_space = gym.spaces.Box(low=-np.ones(2)*1, high=np.ones(2)*1,dtype=np.float32) self.action_space = gym.spaces.Box(low=-np.ones(2)*0.1, high=np.ones(2)*0.1,dtype=np.float32) def reset(self): self.timestep = 0 self.whereami = np.random.multivariate_normal(self.ini_posi, self.ini_cov) return self.whereami def isvalid(self,wai): return np.linalg.norm(self.center-wai) >= 0.5 def step_near_circle(self,ac): wai = copy.deepcopy(self.whereami) for i in range(1,self.N+1): ratio = i/self.N n_wai = self.whereami+ac*ratio if not self.isvalid(n_wai): # 丸の中入ったら,一個前を返す return wai else: wai = copy.deepcopy(n_wai) return wai def step(self,ac): self.timestep +=1 ac = copy.deepcopy(np.array([max(-self.action_limit,min(ac[0],self.action_limit)), max(-self.action_limit,min(ac[1],self.action_limit))])) ac += np.random.normal(0.0, 0.005, 2) nwai = self.whereami+ ac nwai[0] = min(max(-1.,nwai[0]),1.) nwai[1] = min(max(-1.,nwai[1]),1.) if nwai[0] < 0.5 and nwai[0] > -0.5 and nwai[1] < 0.5 and nwai[1] > -0.5: self.whereami = self.step_near_circle(ac) else: self.whereami = nwai rew = self.reward_f(self.whereami) return self.whereami, rew, self.timestep>=self.timelimit,{} def render(self): fig = plt.figure(figsize=(5,5)) ax = plt.axes() ax.plot([-1,-1,1,1,-1],[-1,1,1,-1,-1],c='black') c = patches.Circle(xy=(self.center[0], self.center[1]), radius=self.radius, fc='r', ec='r') ax.add_patch(c) ax.scatter(self.whereami[0],self.whereami[1],c='black') ax.scatter(self.goal[0],self.goal[1],marker='x',c='black') def calc_sum_rews(self,X): return sum([self.reward_f(x[:2]) for x in X]) def vis_gpr(self,pilco,save_name=False): posi = [[-0.7,-0.7],[0.7,-0.7],[-0.7,0.7],[0.7,0.7]] th = lambda t:[np.cos(t)*0.1,np.sin(t)*0.1] vec = [th(np.pi/2),th(np.pi/2 + 2/3*np.pi),th(np.pi/2 + 4/3*np.pi)] posi_vec = np.array([p+v for p in posi for v in vec]) xmean,xvar = pilco.mgpr.models[0].predict_y(posi_vec) ymean,yvar = pilco.mgpr.models[1].predict_y(posi_vec) means =
np.hstack((xmean,ymean))
numpy.hstack
# # Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from subprocess import Popen, PIPE import cudf import cupy as cp import os import time import tabix import numpy as np import pandas as pd from numba import cuda from atacworks.dl4atac.models.models import DenoisingResNet from atacworks.dl4atac.models.model_utils import load_model import torch def count_fragments(fragment_file): """ Counts number of fragments per barcode in fragment file. Parameters ---------- fragment_file: path to gzipped fragment file Returns ------- barcode_counts: pandas DF with number of fragments per barcode. """ fragment_barcodes = pd.read_csv(fragment_file, compression='gzip', sep='\t', header=None, usecols=[3]) barcode_counts = fragment_barcodes.iloc[:,0].value_counts().reset_index() barcode_counts.columns = ['cell', 'fragments'] return barcode_counts def query_fragments(fragment_file, chrom, start, end): """ Counts number of fragments per barcode in fragment file. Parameters ---------- fragment_file: path to fragment file chrom: chromosome to query start: start of query region end: end of query region Returns ------- records: fragments in given region. """ tb = tabix.open(fragment_file) results = tb.querys("%s:%d-%d" % (chrom, start, end)) records = [] for record in results: records.append(record) return records def tabix_query(filename, chrom, start, end): """ Calls tabix and generate an array of strings for each line it returns. Parameters ---------- filename: path to fragment file chrom: chromosome to query start: start of query region end: end of query region Returns ------- records: fragments in given region. """ query = '{}:{}-{}'.format(chrom, start, end) process = Popen(['tabix', '-f', filename, query], stdout=PIPE) records = [] for line in process.stdout: record = line.decode('utf-8').strip().split('\t') records.append(record) return records def read_fragments(chrom, start, end, fragment_file): """ Creates a DF from the output of tabix_query. Parameters ---------- filename: path to fragment file chrom: chromosome to query start: start of query region end: end of query region Returns ------- fragments: DF containing fragments in given region. """ fragments = cudf.DataFrame( data=tabix_query(fragment_file, chrom, start, end), columns=['chrom', 'start', 'end', 'cell', 'duplicate']) fragments.drop('duplicate', inplace=True, axis=1) fragments['row_num'] = fragments.index fragments = fragments.astype({"start": np.int32, "end": np.int32}) fragments['len'] = fragments['end'] - fragments['start'] return fragments @cuda.jit def expand_fragments(start, end, index, end_index, interval_start, interval_end, interval_index, step): """ Expands fragments to high resolution intervals. Parameters ---------- start: start of fragment end: end of fragment index: index of fragment end_index: index of fragment end interval_start: array to fill start of each interval interval_end: array to fill end of each interval interval_index: array to fill index of each interval step: step size in bp """ i = cuda.grid(1) # Starting position in the target frame first_index = end_index[i] - (end[i] - start[i]) chrom_start = start[i] for j in range(first_index, end_index[i], step): interval_start[j] = chrom_start chrom_start = chrom_start + 1 interval_end[j] = chrom_start interval_index[j] = index[i] def get_coverages(start, end, fragments): """ Calculates per-bp coverage per cluster. Parameters ---------- start: start of selected region end: end of selected region fragments: DF containing fragments for selected region Returns: -------- coverage_array: numpy array containing coverage for each cluster """ # Copy fragments DF fragments_copy = fragments.copy() # Take cumulative sum of fragment lengths cum_sum = fragments_copy['len'].cumsum() expanded_size = cum_sum[len(fragments_copy) - 1].tolist() # Create expanded fragment dataframe expanded_fragments = cudf.DataFrame() start_arr = cp.zeros(expanded_size, dtype=cp.int32) end_arr = cp.zeros(expanded_size, dtype=cp.int32) rownum_arr = cp.zeros(expanded_size, dtype=cp.int32) # Expand all fragments to single-bp resolution expand_fragments.forall(fragments_copy.shape[0], 1)( fragments_copy['start'], fragments_copy['end'], fragments_copy['row_num'], cum_sum, start_arr, end_arr, rownum_arr, 1) expanded_fragments['start'] = start_arr expanded_fragments['end'] = end_arr expanded_fragments['row_num'] = rownum_arr fragments_copy.drop(['start', 'end'], inplace=True, axis=1) expanded_fragments = expanded_fragments.merge(fragments_copy, on='row_num') # Count number of fragments at each position coverage_df = expanded_fragments.groupby(['chrom', 'start', 'end', 'cluster'], as_index=False).count() # List all clusters clusters = sorted(np.unique(fragments_copy['cluster'].to_array())) num_clusters = len(clusters) # Create empty array coverage_array = np.zeros(shape=(num_clusters, (end - start))) # Iterate over clusters to add coverage values for (i, cluster) in enumerate(clusters): cluster_df = coverage_df.loc[coverage_df['cluster'] == cluster] coords = cluster_df['start'] - start values = cluster_df['row_num'] ind = (coords >= 0) & (coords < (end-start)) coords = coords[ind].values.get() values = values[ind].values.get() coverage_array[i][coords] = values return coverage_array def load_atacworks_model(weights_path, gpu, interval_size=50000): """ Loads pre-trained AtacWorks resnet model. Parameters ---------- weights_path: path to hdf5 file containing model weights. gpu: Index of GPU on which to load model. interval_size: interval size parameter for resnet model Returns: -------- model: AtacWorks resnet model to be used for denoising and peak calling. """ model = DenoisingResNet(interval_size=interval_size, kernel_size=51, kernel_size_class=51) model = load_model(model, weights_path=weights_path, rank=0) model = model.cuda(gpu) return model def reshape_with_padding(coverage, interval_size, pad): """ Reshapes array of coverage values for AtacWorks model. Parameters ---------- coverage: array of coverage values per cluster. interval_size: interval_size parameter for AtacWorks model. pad: pad parameter for AtacWorks model Returns: -------- reshaped coverage: reshaped array of coverage values. """ if(len(coverage.shape)==1): coverage = coverage.reshape((1, coverage.shape[0])) # Calculate dimensions of empty array num_clusters = int(coverage.shape[0]) n_intervals = int((coverage.shape[1] - 2*pad) / interval_size) padded_interval_size = int(interval_size + 2*pad) # Create empty array to fill in reshaped coverage values reshaped_coverage =
np.zeros(shape=(num_clusters*n_intervals, padded_interval_size))
numpy.zeros
import numpy as np from scipy.sparse.csgraph import minimum_spanning_tree, connected_components def euclidean_mst(X, neighbors_estimator, verbose=2): n_neighbors = min(2, X.shape[0]) while True: # make sure we have a connected minimum spanning tree. # otherwise we need to consider more neighbors n_neighbors = 2 * n_neighbors if verbose > 1: print("Trying to build mst with %d neighbors." % n_neighbors) distances = neighbors_estimator.kneighbors_graph( X, n_neighbors=n_neighbors, mode='distance') n_components, component_indicators =\ connected_components(distances + distances.T) if len(np.unique(component_indicators)) > 1: continue distances.sort_indices() forest = minimum_spanning_tree(distances) _, inds = connected_components(forest + forest.T) assert(len(
np.unique(inds)
numpy.unique
import numpy as np import os from scipy.io import loadmat from scipy.special import kv, iv from numpy import pi, real, imag, exp, sqrt, sum, sin, cos # see <NAME>., and <NAME>. "Stokes flow due to a Stokeslet in a pipe." # Journal of Fluid Mechanics 86.04 (1978): 727-744. # class containing functions for detailed expression # noinspection PyTypeChecker class detail: def __init__(self, threshold, b): self._threshold = threshold self._b = b self._k = np.zeros([0]) self._n = np.zeros([0]) self._xn = np.zeros([0]) self._yn = np.zeros([0]) self._DmyD_xn = np.zeros([0]) self._DmyD_yn = np.zeros([0]) self._xn_k0 = np.zeros([0]) self._yn_k0 = np.zeros([0]) self._DmyD_xn_k0 = np.zeros([0]) self._DmyD_yn_k0 = np.zeros([0]) self._psi_xn1 = np.zeros([0]) self._psi_xn2 = np.zeros([0]) self._psi_xn3 = np.zeros([0]) self._pi_xn1 = np.zeros([0]) self._pi_xn2 = np.zeros([0]) self._pi_xn3 =
np.zeros([0])
numpy.zeros
# Copyright (C) 2022 <NAME>, <NAME>, <NAME> # Code -- Scaling up Ranking under Constraints for Live Recommendations by Replacing Optimization with Prediction # https://github.com/computationalmarketing/scalable_ranking_under_constraints/ # Code running ranking of 50 news articles from core_functions_unbalanced import * import numpy as np import pandas as pd import cvxopt from scipy.optimize import linear_sum_assignment import time import cvxpy as cp from multiprocessing import Pool from tqdm import tqdm from matplotlib import pyplot as plt from scipy import sparse import matplotlib.tri as tri from sklearn.linear_model import BayesianRidge from sklearn.neighbors import KNeighborsRegressor import math import json import seaborn as sns sns.set_theme(style="whitegrid") import os if not os.path.exists('../results'): os.makedirs('../results') PATH_RESULTS = '../results/yow-dataset-50' if not os.path.exists(PATH_RESULTS): os.makedirs(PATH_RESULTS) # load data PATH_DATA = '../data/yow-dataset' ratings = pd.read_csv(PATH_DATA + '/generated_data.csv') ratings.shape # very important to sort # we can use the special structure of the problem to speed up computation ratings = ratings.sort_values('relevant', ascending=False) # dummy code clusters ratings['userClust1'] = 1*(ratings['userClust']==1) ratings['userClust2'] = 1*(ratings['userClust']==2) # number of unique movies ratings['DOC_ID'].unique().shape def extract_data(user, top_k, sample_size): # data extraction function # user is user id in range(1000) # sample - whether to extract sample prop of user observations only # top_k - across what items to measure the utility/exposure # user data ratings_u = ratings[ratings['user_id']==user] # for each user, optimize only across top sample_size items if sample_size: ratings_u = ratings_u.iloc[:sample_size] n = ratings_u.shape[0] # utilities and constraints exposure = np.array([[1.0/np.log2(i+1.0) for i in range(1,top_k+1)]])#np.array([[1.0 for i in range(top_k)]])# # taking dot product with identical discounting U =
np.dot(ratings_u['relevant'].values[:,np.newaxis], exposure)
numpy.dot
import numpy as np from baselines import util import os import copy import nltk #import crf import scipy.special import sklearn class HMM: """ Hidden Markov Model """ def __init__(self, n, m): """ fix n, m :param n: number of states :param m: number of observations """ self.n = n self.m = m self.t = np.zeros((n, n)) self.e = np.zeros((n, m)) self.start = np.asarray([1.0 / n] * n) def pr_obs(self, i, list_features, t=None): """ :param i: state :param list_features: :param t: time, not used here :return: probability of observing the features in state i """ res = 1 for f in list_features: res *= self.e[i, f] return res def decode(self, a, include_crowd_obs=False): """ Viterbi decoding :param a: seq of observations, each observation is a list of features :return: """ l = len(a) if l == 0: return [] # c[t][i] = prob of best path time t, at state i c = np.zeros((l, self.n)) c[0] = np.copy(self.start) # * self.e[:, a[0]] # print self.n, c.shape for i in range(self.n): c[0][i] *= self.pr_obs(i, a[0]) # b[t][i] = backpointer b = np.zeros((l, self.n)) for t in range(1, l, 1): # time ob = a[t] for i in range(self.n): # current state for j in range(self.n): # previous state # todo: change to log scale p = c[t - 1][j] * self.t[j, i] * self.pr_obs(i, ob) if include_crowd_obs: p *= self.pr_crowd_labs(t, i, self.current_list_cl) # print t, i, j, p if p > c[t][i]: c[t][i] = p b[t][i] = j # normalise otherwise p ends up as zeros with long sequences c_t_total = 0 for i in range(self.n): c_t_total += c[t][i] for i in range(self.n): c[t][i] /= c_t_total res = np.zeros((l,)) # trace p = 0 for i in range(self.n): if c[l - 1][i] > p: p = c[l - 1][i] res[l - 1] = i seq_prob = p for t in range(l - 2, -1, -1): res[t] = b[int(t + 1), int(res[t + 1])] # print c # print b return res, seq_prob def learn(self, sentences, smooth=0.001): """ learn parameters from labeled data :param sentences: list of sentence, which is list of instance :return: """ # counting self.t = smooth * np.ones((self.n, self.n)) self.e = smooth * np.ones((self.n, self.m)) self.start = smooth * np.ones((self.n,)) for sentence in sentences: if len(sentence) > 0: i = sentence[0] self.start[i.label] += 1 prev = -1 # previous state for i in sentence: state = i.label if prev != -1: self.t[prev][state] += 1 for f in i.features: self.e[state][int(f)] += 1 prev = state # save count for e self.count_e = copy.deepcopy(self.e) # normalizing self.start = self.start * 1.0 / np.sum(self.start) for i in range(self.n): self.t[i] = self.t[i] * 1.0 / np.sum(self.t[i]) self.e[i] = self.e[i] * 1.0 / np.sum(self.e[i]) def decode_all(self, sentences): self.res = [] self.res_prob = [] for s in sentences: mls, mls_prob = self.decode(util.get_obs(s)) self.res.append(mls) self.res_prob.append(mls_prob) ########################################################################## ########################################################################## ########################################################################## ########################################################################## class WorkerModel: """ model of workers """ def __init__(self, n_workers = 47, n_class = 10, smooth = 0.001, ne = 9, rep = 'cv'): """ :param n_workers: :param n_class: :param smooth: :param ne: :param rep: representation. cv2 = confusion vec of accuracy in two cases: non-entity/ entity """ self.n_workers = n_workers self.n = n_class self.smooth = smooth self.ne = ne self.rep = rep def learn_from_pos(self, data, pos): """ :param data: crowd_data :param pos: sentence posterior :return: """ count = self.smooth * np.ones( (self.n_workers, self.n, self.n)) for i, sentence in enumerate(data.sentences): for j in range(len(sentence)): for l, w in data.get_lw(i, j): for k in range(self.n): # 'true' label = k count[w][k][l] += pos[i][j][k] self.learn_from_count(count) def learn_from_count(self, count): """ :return: """ #save the count for debug self.count = count if self.rep == 'cv2': ne = self.ne self.cv = np.zeros((self.n_workers, 2)) for w in range(self.n_workers): self.cv[w][0] = count[w][ne][ne] * 1.0 / np.sum(count[w][ne]) # accuracy for ne class cc = self.smooth; cw = self.smooth # count for correct and wrong for non ne classes for i in range(self.n): if i != ne: cc += count[w][i][i] cw += np.sum(count[w][i]) - count[w][i][i] self.cv[w][1] = cc * 1.0 / (cc + cw) elif self.rep == 'cv': self.cv = np.zeros((self.n_workers, self.n)) for w in range(self.n_workers): if np.mod(w, 100) == 0: print('M-step, processing worker counts %i of %i' % (w, self.n_workers)) for i in range(self.n): self.cv[w][i] = count[w][i][i] * 1.0 / np.sum(count[w][i]) # accuracy for ne class elif self.rep == 'cm_sage': self.cm = np.zeros((self.n_workers, self.n, self.n)) # background dist m = np.sum(count, axis=0) for i in range(self.n): m[i] = m[i] * 1.0 / np.sum(m[i]) m = np.log(m) for w in range(self.n_workers): for i in range(self.n): temp = additive.estimate(count[w][i], m[i]) temp = np.reshape(temp, (self.n,) ) self.cm[w][i] = np.exp(temp + m[i]) self.cm[w][i] = self.cm[w][i] * 1.0 / np.sum(self.cm[w][i]) else: self.cm = np.zeros((self.n_workers, self.n, self.n)) for w in range(self.n_workers): for k in range(self.n): self.cm[w][k] = count[w][k] * 1.0 / np.sum(count[w][k]) def get_prob(self, w, true_lab, lab): """ :param w: worker :param true_lab: :param lab: :return: probability of response lab given true label """ #return 1.0 if self.rep == 'cv2': if self.ne == true_lab: if true_lab == lab: return self.cv[w][0] else: return (1 - self.cv[w][0]) / float(self.n - 1) else: if true_lab == lab: return self.cv[w][1] else: return (1 - self.cv[w][1]) / float(self.n - 1) elif self.rep == 'cv': if true_lab == lab: return self.cv[w][true_lab] else: return (1 - self.cv[w][true_lab]) / float(self.n - 1) elif self.rep == 'cm_sage': return self.cm[w][true_lab][lab] else: return self.cm[w][true_lab][lab] class HMM_crowd(HMM): def __init__(self, n, m, data, features, labels, n_workers=47, init_w=0.9, smooth=0.001, smooth_w=10, ne = 9, vb = None): """ :param data: util.crowd_data with crowd label :return: """ HMM.__init__(self, n, m) self.data = data self.smooth = smooth self.n_workers = n_workers self.ep = 1e-300 self.features = features self.labels = labels self.init_w = init_w self.ne = ne #self.wsen = np.zeros((n_workers,)) #self.wspe = np.zeros((n_workers,)) self.wca = np.zeros((n, n_workers)) #self.ne = labels['O'] # id of 'non entity' label self.ne = ne self.smooth_w = smooth_w self.n_sens = len(data.sentences) self.vb = vb def pr_crowd_labs(self, t, i, list_cl): """ :param t: time :param i: the state :param list_cl: list of util.crowddlab :return: probability of observing crowd labels at state i """ res = 1# * self.prior[i] for cl in list_cl: wid = cl.wid sen = cl.sen lab = sen[t] # crowd label # if i == self.ne: # res *= self.wspe[wid] if lab == i else 1 - self.wspe[wid] # specificity # else: # res *= self.wsen[wid] if lab == i else 1 - self.wsen[wid] # # sensitivity #res *= self.wca[i, wid] if lab == i else 1 - self.wca[i, wid] #res *= self.wa[wid][i][lab] res *= self.wm.get_prob(wid, i, lab) return res def inference(self, sentence, list_cl, return_ab=False): T = len(sentence) # number of timesteps alpha = np.zeros((T, self.n)) # T * states beta = np.zeros((T, self.n)) # alpha (forward): for i in range(self.n): alpha[0][i] = self.pr_obs( i, sentence[0].features) * self.pr_crowd_labs(0, i, list_cl) * self.start[i] for t in range(1, T, 1): ins = sentence[t] alpha_t_sum = 0 for i in range(self.n): # current state alpha[t][i] = 0 for j in range(self.n): # previous state alpha[t][i] += self.pr_obs(i, ins.features) * self.t[j][i] * alpha[t - 1][j] \ * self.pr_crowd_labs(t, i, list_cl) alpha_t_sum += alpha[t][i] # normalise for i in range(self.n): alpha[t][i] /= alpha_t_sum # beta (backward): for i in range(self.n): beta[T - 1][i] = self.pr_obs(i, sentence[T - 1].features) * \ self.pr_crowd_labs(T - 1, i, list_cl) for t in range(T - 2, -1, -1): ins = sentence[t + 1] beta_t_sum = 0 for i in range(self.n): # current state beta[t][i] = 0 for j in range(self.n): # next state beta[t][i] += self.pr_obs(j, ins.features) * self.t[i][j] * beta[t + 1][j] \ * self.pr_crowd_labs(t + 1, j, list_cl)#\ #* (self.start[i] if t == 0 else 1) beta_t_sum += beta[t][i] for i in range(self.n): beta[t][i] /= beta_t_sum if return_ab: return (alpha, beta) sen_posterior = [] # update counts p = np.zeros((self.n,)) for t in range(T): for i in range(self.n): p[i] = self.ep + alpha[t][i] * beta[t][i] p = p * 1.0 / np.sum(p) # normalilze #save the posterior sen_posterior.append(p.copy()) if t == 0: # update start counts self.count_start += p # update prior count #self.count_prior += p # update emission counts ins = sentence[t] for i in range(self.n): for f in ins.features: self.count_e[i][f] += p[i] # update crowd params counts for i in range(self.n): # state for cl in list_cl: wid = cl.wid # worker ans lab = cl.sen[t] # if i == self.ne: # if lab == self.ne: # self.count_spe[wid][0] += p[i] # else: # self.count_spe[wid][1] += p[i] # else: # if lab == self.ne: # self.count_sen[wid][0] += p[i] # else: # self.count_sen[wid][1] += p[i] #if lab == i: # self.count_wa[i, wid][1] += p[i] #else: # self.count_wa[i, wid][0] += p[i] self.count_wa[wid][i][lab] += p[i] trans_pos = [] # update transition counts for t in range(T - 1): p = np.zeros((self.n, self.n)) ins = sentence[t+1] for i in range(self.n): # state at time t for j in range(self.n): # state at time t+1 p[i][j] = self.ep + alpha[t][i] * self.t[i][j] * self.pr_obs(j, ins.features) \ * self.pr_crowd_labs(t + 1, j, list_cl) * beta[t + 1][j] # update transition counts p = p * 1.0 /
np.sum(p)
numpy.sum
import pandas as pd import os import numpy as np import argparse import warnings import matplotlib.pyplot as plt import seaborn as sns from matplotlib.lines import Line2D from matplotlib.colors import ListedColormap, Normalize parser = argparse.ArgumentParser('Plot Odds (Bayes) Ratio for bins') parser.add_argument('file', type=str, metavar='DF', help='Location where pkl file saved') parser.add_argument('--fig-size', type=float, default=4, help='Figure size (inches)') parser.add_argument('--font-size',type=float, default=20) parser.add_argument('--no-show', action='store_false', dest='show') parser.add_argument('--show', action='store_true', dest='show') parser.add_argument('--dpi', type=int, default=80) parser.add_argument('--save', action='store_true', dest='save') parser.add_argument('--no-save', action='store_false',dest='save') parser.add_argument('--name', type=str, default='br.pdf', help='file name for saving') parser.add_argument('--nbins', type=int, default=100) parser.add_argument('--yvar', type=str, nargs='+', default=['model_entropy']) parser.add_argument('--xvar', type=str, default='rank') parser.add_argument('--xbins', type=float, default=[], nargs='*') parser.add_argument('--ybins', type=float, default=[], nargs='*') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--eps', type=float, default=0) parser.add_argument('--K', type=int, default=10) parser.add_argument('--exclude', type=int, default=[], nargs='*') parser.set_defaults(save=False) parser.set_defaults(show=True) from common import labdict parser.set_defaults(show=True) parser.set_defaults(save=False) args = parser.parse_args() np.random.seed(args.seed) sns.set_palette(palette='colorblind') colors = sns.color_palette() cmap = ListedColormap(colors) fsz = args.font_size figsz = (args.fig_size, args.fig_size) plt.rc('font', size=fsz) plt.rc('axes', titlesize=fsz) plt.rc('axes', labelsize=fsz) plt.rc('xtick', labelsize=fsz) plt.rc('ytick', labelsize=fsz) plt.rc('legend', fontsize=.66*fsz) plt.rc('figure', titlesize=fsz) dpi = args.dpi show=args.show plt.close('all') fig, ax = plt.subplots(1, figsize=figsz) from common import labdict print('X: %s, Y: %s'%(args.xvar, args.yvar)) df = pd.read_pickle(args.file) df.drop(args.exclude) Nsamples = len(df) K = args.K N = len(df) Ix = np.random.permutation(N) X_ = df[args.xvar] for yvar in args.yvar: Y_ = df[yvar] #n = N//K #ix = Ix[n*i:n*(i+1)] #X = np.delete(X_.to_numpy(), ix) #Y = np.delete(Y_.to_numpy(), ix) X = X_[Ix] Y = Y_[Ix] Nbins = args.nbins if len(args.ybins)==0: Yc, Ybins = pd.qcut(Y,Nbins,retbins=True,duplicates='drop') else: Yc, Ybins = pd.cut(Y,args.ybins,retbins=True, duplicates='drop', right=False) if len(args.xbins)==0: Xc, Xbins = pd.qcut(X,Nbins,retbins=True,duplicates='drop') else: Xc, Xbins = pd.cut(X,args.xbins,retbins=True,duplicates='drop', right=False) #Yvc = Yc.value_counts(sort=False) #Xvc = Xc.value_counts(sort=False) H, xe, ye = np.histogram2d(X, Y, bins=[Xbins, Ybins]) P = H/np.sum(H) Ptop1 = df['top1'].sum()/len(df) Ptop5 = df['top5'].sum()/len(df) Otop1 = Ptop1/(1-Ptop1) Otop5 = Ptop5/(1-Ptop5) Py = P.sum(axis=0) Ptop1xbins = P[Xbins[:-1]==0,:].reshape(-1)/Py ix = np.arange(len(Ptop1xbins)) ix1 = Ptop1xbins==1 try: lb = np.max(ix[ix1])+1 except ValueError as e: lb = 0 Ptop1xbins[0:(lb+1)] =
np.sum(Ptop1xbins[0:(lb+1)])
numpy.sum
import numpy as np class Real(): def __init__(self, value: float = 0): self.value = np.array([value], dtype=float) def __add__(self, rhs): out = Real() if isinstance(rhs, Real): out.value = self.value + rhs.value else: out.value = self.value + rhs return out def __radd__(self, lhs): out = Real() if isinstance(lhs, Real): out.value = lhs.values + self.value else: out.value = lhs + self.value return out def __sub__(self, rhs): out = Real() if isinstance(rhs, Real): out.value = self.value - rhs.value else: out.value = self.value - rhs return out def __rsub__(self, lhs): out = Real() if isinstance(lhs, Real): out.value = lhs.value - self.value else: out.value = lhs - self.value return out def __mul__(self, rhs): out = Real() if isinstance(rhs, (Real, Complex, RealMatrix, ComplexMatrix)): out.value = self.value*rhs.value elif isinstance(rhs, (float, int, complex)): out.value = self.value*rhs return out def __rmul__(self, lhs): out = Real() if isinstance(lhs, (Real, Complex, RealMatrix, ComplexMatrix)): out.value = lhs.value*self.value elif isinstance(lhs, (float, int, complex)): out.value = lhs*self.value return out def __pow__(self, n): out = Real() if isinstance(n, (float, int)): out.value = self.value**n else: out.value = self.value**n.value return out class Complex(Real): def __init__(self, value: complex = 1j): super().__init__() self.value = np.array([value], dtype=complex) def re(self): out = Real() out.value = np.real(self.value) return out def im(self): out = Real() out.value = np.imag(self.value) return out def conj(self): out = Complex() out.value = np.conj(self.value) return out class RealMatrix(): def __init__(self, N: int = None, value: np.ndarray = None): if N != None: self.N = N self.value = np.zeros((N, N), dtype=float) else: self.N = len(value) self.value = value def transpose(self): out = RealMatrix(self.N) out.value = np.transpose(self.value) return out def trace(self): tr = np.trace(self.value) return Real(tr) def det(self): d =
np.linalg.det(self.value)
numpy.linalg.det
import numpy as np import pickle import os from copy import deepcopy from scipy.special import digamma from pynverse import inversefunc from utils import bql_f_inv, \ normal_gamma, \ solve_tabular_continuing_PI # ============================================================================ # General Tabular agent class # ============================================================================ class TabularAgent: def __init__(self, gamma): # Discount factor self.gamma = gamma def add_observations(self, s, a, r, s_): """ Add observations to log. """ s, a, r, s_ = [np.array([data]) for data in [s, a, r, s_]] if hasattr(self, 'train_s'): self.train_s = np.concatenate([self.train_s, s], axis=0) self.train_a = np.concatenate([self.train_a, a], axis=0) self.train_s_ = np.concatenate([self.train_s_, s_], axis=0) self.train_r = np.concatenate([self.train_r, r], axis=0) else: self.train_s = s self.train_a = a self.train_s_ = s_ self.train_r = r def take_action(self, s, t, policy_params): raise NotImplementedError def update_after_step(self, t): pass def observe(self, transition): pass def save_copy(self, location, name): """ Save a copy of the agent. """ fhandle = open(location + '/' + name, 'wb') pickle.dump(self, fhandle) fhandle.close() # ============================================================================ # QLearningAgent class # ============================================================================ class QLearningAgent(TabularAgent): def __init__(self, params): # Set QLearning agent parameters self.gamma = params['gamma'] self.lr = params['lr'] self.sa_list = params['sa_list'] self.Q0 = params['Q0'] self.dither_mode = params['dither_mode'] self.dither_param = params['dither_param'] self.anneal_timescale = params['anneal_timescale'] # Array for storing previous Q posterior self.Qlog = [] super(QLearningAgent, self).__init__(self.gamma) # Set initial Q values to Q0, and create set of valid actions self.Q = {} self.valid_actions = {} # List of valid state-actions for (s, a) in self.sa_list: if s not in self.Q: self.Q[s] = {a : self.Q0} else: self.Q[s][a] = self.Q0 if s not in self.valid_actions: self.valid_actions[s] = set([a]) else: self.valid_actions[s].add(a) def take_action(self, s, t): """ Take epsilon-greedy or boltzmann action. """ # Compute annealing factor for epsilon or T anneal_factor = np.exp(- t / self.anneal_timescale) if self.dither_mode == 'epsilon-greedy': # Get action corresponding to highest Q a = self.get_max_a_Q(s, argmax=True) if np.random.rand() < anneal_factor * self.dither_param: # Return random pick from valid actions return np.random.choice(list(self.valid_actions[s])) else: return a elif self.dither_mode == 'boltzmann': # Get list of valid actions from state s valid_actions = list(self.valid_actions[s]) # Get Q values coorespodning to actions from state s Q_ = np.array([self.Q[s][a] for a in valid_actions]) # Calculate Boltzmann probabilities and normalise probs = np.exp(Q_ / (self.dither_param * anneal_factor)) probs = probs / probs.sum() return np.random.choice(valid_actions, p=probs) def update_Q(self, s, a, r, s_): """ Update Q-estimates using Temporal Differences update. """ # Get maximum Q corresponding to next state s_ max_a_Q = self.get_max_a_Q(s_) # Apply Q-Learning update rule self.Q[s][a] += self.lr * (r + self.gamma * max_a_Q - self.Q[s][a]) def get_max_a_Q(self, s, argmax=False): """ Returns the maximum of Q[s] across all valid actions. """ # Get list of valid actions valid_actions = list(self.valid_actions[s]) # Get Q values coorespodning to actions from state s Q_ = np.array([self.Q[s][a] for a in valid_actions]) if argmax: # Break ties at random a_idx = np.random.choice(np.argwhere(Q_ == np.amax(Q_))[:, 0]) return valid_actions[a_idx] else: return np.max(Q_) def observe(self, transition): t, s, a, r, s_ = transition self.add_observations(s, a, r, s_) self.last_transition = transition def update_after_step(self, max_buffer_length, log): # Log Q values if log: self.Qlog.append(deepcopy(self.Q)) # Update Q values t, s, a, r, s_ = self.last_transition self.update_Q(s, a, r, s_) self.last_transition = None def get_name(self): name = 'QLearningAgent_{}_param-{}_gamma-{}_lr-{}_Q0-{}-tscale-{}' name = name.format(self.dither_mode, self.dither_param, self.gamma, self.lr, self.Q0, self.anneal_timescale) return name # ============================================================================ # BayesianQAgent class # ============================================================================ class BayesianQAgent(TabularAgent): def __init__(self, params): # Bayesian Q-Learning agent parameters self.gamma = params['gamma'] self.mu0 = params['mu0'] self.lamda = params['lamda'] self.alpha = params['alpha'] self.beta = params['beta'] self.sa_list = params['sa_list'] self.num_mixture_samples = params['num_mixture_samples'] # List for storing Q posterior hyperparameters self.Qpost_log = [] super(BayesianQAgent, self).__init__(params['gamma']) # Dict for holding posterior phyperparameters self.Qpost = {} # Set normal-gamma prior parameters for each state-action for s, a in self.sa_list: if s not in self.Qpost: self.Qpost[s] = {} self.Qpost[s][a] = (self.mu0, self.lamda, self.alpha, self.beta) def take_action(self, s, t, reduce_max=True): # Sample q values for each action from current state qs, acts = self.sample_q(s) if reduce_max: # Return action corresponding to maximum q return acts[np.argmax(qs)] else: return qs, acts def sample_q(self, s): # Arrays for holding q samples and corresponding actions qs, acts = [], [] for a, hyp in self.Qpost[s].items(): # Sample from student-t distribution st = np.random.standard_t(2 * hyp[2]) # q sample from t: m0 + t * (beta / (lamda * alpha))**0.5 qs.append(hyp[0] + st * (hyp[3] / (hyp[1] * hyp[2]))**0.5) acts.append(a) return np.array(qs), np.array(acts) def kl_matched_hyps(self, s, a, r, s_): num_samples = self.num_mixture_samples # Find the action from s_ with the largest mean a_ = self.max_mu0_action(s_) # Parameters for next state-action NG and posterior predictive mu0_, lamda_, alpha_, beta_ = self.Qpost[s_][a_] coeff = (beta_ * (lamda_ + 1) / (alpha_ * lamda_))**0.5 # Sample from student-t, rescale and add mean st = np.random.standard_t(2 * alpha_, size=(num_samples,)) z_samp = mu0_ + st * coeff # Dicount and add reward z_samp = r + self.gamma * z_samp # z_sa posterior hyperparameters mu0_sa, lamda_sa, alpha_sa, beta_sa = self.Qpost[s][a] # z_sa posterior hyperparameters updated for each sample mu0_ = (lamda_sa * mu0_sa + z_samp) / (lamda_sa + 1) lamda_ = np.array([lamda_sa + 1] * mu0_.shape[0]) alpha_ = np.array([alpha_sa + 0.5] * mu0_.shape[0]) beta_ = beta_sa + lamda_sa * (z_samp - mu0_sa)**2 / (2 * lamda_sa + 2) # Sample mu and tau for each set of updated hyperparameters mus, taus = normal_gamma(mu0_, lamda_, alpha_, beta_) # MC estimates of moments E_tau = np.mean(taus) E_mu_tau = np.mean(mus * taus) E_mu2_tau = np.mean(mus**2 * taus) E_log_tau = np.mean(np.log(taus)) # f^-1(x) where f(x) = log(x) - digamma(x) f_inv_term = bql_f_inv(np.log(E_tau) - E_log_tau) # Calculate hyperparameters of KL-matched normal gamma mu0 = E_mu_tau / E_tau lamda = 1 / (1e-12 + E_mu2_tau - E_tau * mu0**2) alpha = max(1 + 1e-6, f_inv_term) beta = alpha / E_tau return mu0, lamda, alpha, beta def max_mu0_action(self, s): # Get actions and corresponding hyperparameters of R_sa distribution a_mu0 = [(a, hyp[0]) for (a, hyp) in self.Qpost[s].items()] a, mu0 = [np.array(arr) for arr in zip(*a_mu0)] return a[np.argmax(mu0)] def observe(self, transition): t, s, a, r, s_ = transition self.add_observations(s, a, r, s_) self.last_transition = transition def update_after_step(self, max_buffer_length, log): # Log Q posterior hyperparameters if log: self.Qpost_log.append(deepcopy(self.Qpost)) # Update hyperparameters t, s, a, r, s_ = self.last_transition hyps = self.kl_matched_hyps(s, a, r, s_) self.Qpost[s][a] = hyps self.last_transition = None def get_name(self): name = 'BayesianQAgent_gamma-{}_mu0-{}_lamda-{}_alpha-{}_beta-{}' name = name.format(self.gamma, self.mu0, self.lamda, self.alpha, self.beta) return name # ============================================================================ # PSRLAgent agent definition # ============================================================================ class PSRLAgent(TabularAgent): def __init__(self, params): # PSRL agent parameters self.gamma = params['gamma'] self.kappa = params['kappa'] self.mu0 = params['mu0'] self.lamda = params['lamda'] self.alpha = params['alpha'] self.beta = params['beta'] self.sa_list = params['sa_list'] self.max_iter = params['max_iter'] self.Ppost = {} self.Rpost = {} self.buffer = [] self.num_s = len(set([s for (s, a) in self.sa_list])) self.num_a = len(set([a for (s, a) in self.sa_list])) # Lists for storing P and R posteriors self.Ppost_log = [] self.Rpost_log = [] super(PSRLAgent, self).__init__(params['gamma']) # Dynamics posterior self.Ppost = self.kappa * np.ones((self.num_s, self.num_a, self.num_s)) # Rewards posterior parameters for non-allowed actions Rparam = [-1e12, 1e9, 1e12, 1e9] Rparam = [[[Rparam] * self.num_s] * self.num_a] * self.num_s self.Rpost = np.array(Rparam) # Rewards posterior parameters for allowed actions Rparam = [self.mu0, self.lamda, self.alpha, self.beta] Rparam = np.array([Rparam] * self.num_s) for (s, a) in self.sa_list: self.Rpost[s, a, ...] = Rparam self.sample_posterior_and_update_continuing_policy() def sample_posterior(self): # Initialise posterior arrays (dynamics 0, reward large negative) P = np.zeros((self.num_s, self.num_a, self.num_s)) R = np.zeros((self.num_s, self.num_a, self.num_s)) for s in range(self.num_s): for a in range(self.num_a): P[s, a, :] = np.random.dirichlet(self.Ppost[s, a]) for s in range(self.num_s): for a in range(self.num_a): for s_ in range(self.num_s): mu0, lamda, alpha, beta = self.Rpost[s, a, s_] R[s, a, s_] = normal_gamma(mu0, lamda, alpha, beta)[0] return P, R def update_posterior(self): # Transition counts and reward sums p_counts = np.zeros((self.num_s, self.num_a, self.num_s)) r_sums = np.zeros((self.num_s, self.num_a, self.num_s)) r_counts = np.zeros((self.num_s, self.num_a, self.num_s)) for (s, a, r, s_) in self.buffer: p_counts[s, a, s_] += 1 r_sums[s, a, s_] += r r_counts[s, a, s_] += 1 # Update dynamics posterior for s in range(self.num_s): for a in range(self.num_a): # Dirichlet posterior params are prior params plus counts self.Ppost[s, a] = self.Ppost[s, a] + p_counts[s, a] # Update rewards posterior for s in range(self.num_s): for a in range(self.num_a): for s_ in range(self.num_s): mu0, lamda, alpha, beta = self.Rpost[s, a, s_] # Calculate moments M1 = r_sums[s, a, s_] / max(1, r_counts[s, a, s_]) M2 = r_sums[s, a, s_]**2 / max(1, r_counts[s, a, s_]) n = r_counts[s, a, s_] # Update parameters mu0_ = (lamda * mu0 + n * M1) / (lamda + n) lamda_ = lamda + n alpha_ = alpha + 0.5 * n beta_ = beta + 0.5 * n * (M2 - M1**2) beta_ = beta_ + n * lamda * (M1 - mu0)**2 / (2 * (lamda + n)) self.Rpost[s, a, s_] = np.array([mu0_, lamda_, alpha_, beta_]) # Reset episode buffer self.buffer = [] def take_action(self, s, t): return self.pi[s] def observe(self, transition): t, s, a, r, s_ = transition self.add_observations(s, a, r, s_) self.buffer.append([s, a, r, s_]) def update_after_step(self, max_buffer_length, log): # Log posterior values if log: self.Ppost_log.append(deepcopy(self.Ppost)) self.Rpost_log.append(deepcopy(self.Rpost)) if len(self.buffer) >= max_buffer_length: self.update_posterior() self.sample_posterior_and_update_continuing_policy() def sample_posterior_and_update_continuing_policy(self): # Sample dynamics and rewards posterior P, R = self.sample_posterior() # Solve Bellman equation by policy iteration pi, Q = solve_tabular_continuing_PI(P, R, self.gamma, self.max_iter) self.pi = pi def get_name(self): return 'PSRLAgent_gamma-{}'.format(self.gamma) # ============================================================================ # UbeNoUnrollAgent class # ============================================================================ class UbeNoUnrollAgent(TabularAgent): def __init__(self, params): self.Rmax = params['Rmax'] self.kappa = params['kappa'] self.mu0 = params['mu0'] self.lamda = params['lamda'] self.alpha = params['alpha'] self.beta = params['beta'] self.zeta = params['zeta'] self.sa_list = params['sa_list'] self.max_iter = params['max_iter'] self.num_dyn_samples = params['num_dyn_samples'] self.num_s = len(set([s for (s, a) in self.sa_list])) self.num_a = len(set([a for (s, a) in self.sa_list])) super(UbeNoUnrollAgent, self).__init__(params['gamma']) # Set episode buffer self.buffer = [] # Dynamics posterior self.Ppost = self.kappa * np.ones((self.num_s, self.num_a, self.num_s)) # Rewards posterior parameters for non-allowed actions Rparam_ = [[[[-1e12, 1e9, 1e12, 1e9]] * self.num_s] * self.num_a] * self.num_s self.Rpost = np.array(Rparam_) Rparam = np.array([[self.mu0, self.lamda, self.alpha, self.beta]] * self.num_s) for (s, a) in self.sa_list: self.Rpost[s, a, ...] = Rparam self.set_Q_posterior() self.pi_log, self.Qmu_log, self.Qvar_log = [], [], [] def update_posterior(self): # Transition counts and reward sums p_counts = np.zeros((self.num_s, self.num_a, self.num_s)) r_sums = np.zeros((self.num_s, self.num_a, self.num_s)) r_counts = np.zeros((self.num_s, self.num_a, self.num_s)) for (s, a, r, s_) in self.buffer: p_counts[s, a, s_] += 1 r_sums[s, a, s_] += r r_counts[s, a, s_] += 1 # Update dynamics posterior for s in range(self.num_s): for a in range(self.num_a): # Dirichlet posterior params are prior params plus counts self.Ppost[s, a] = self.Ppost[s, a] + p_counts[s, a] # Update rewards posterior for s in range(self.num_s): for a in range(self.num_a): for s_ in range(self.num_s): mu0, lamda, alpha, beta = self.Rpost[s, a, s_] # Calculate moments M1 = r_sums[s, a, s_] / max(1, r_counts[s, a, s_]) M2 = r_sums[s, a, s_]**2 / max(1, r_counts[s, a, s_]) n = r_counts[s, a, s_] # Update parameters mu0_ = (lamda * mu0 + n * M1) / (lamda + n) lamda_ = lamda + n alpha_ = alpha + 0.5 * n beta_ = beta + 0.5 * n * (M2 - M1**2) beta_ = beta_ + n * lamda * (M1 - mu0)**2 / (2 * (lamda + n)) self.Rpost[s, a, s_] = np.array([mu0_, lamda_, alpha_, beta_]) # Reset episode buffer self.buffer = [] def set_Q_posterior(self): ''' Computes the approximation (diagonal gaussian) of the Q posterior under policy pi. ''' # Get expectations of P and R under posterior P, R = self.get_expected_P_and_R() # Compute the greedy policy and corresponding Q values pi, Qmu = solve_tabular_continuing_PI(P, R, self.gamma, self.max_iter) # Compute the uncertainty (variance) of Q Qvar = self.solve_bellman(self.local_rew_var, self.gamma**2, pi) # Set policy, Q and Q epistemic variance upper bound self.pi = pi self.Qmu = Qmu self.Qvar = Qvar def get_expected_P_and_R(self): return self.Ppost / self.Ppost.sum(axis=-1)[..., None], self.Rpost[..., 0] def take_action(self, s, t, reduce_max=True): # Posterior mean and variance mu = self.Qmu[s, :] var = self.Qvar[s, :] # Sample Q from diagonal gaussian Q_sample = np.random.normal(loc=mu, scale=(self.zeta * var**0.5)) # Return argmax to choose action if reduce_max: return
np.argmax(Q_sample)
numpy.argmax
import random import numpy as np from deap import base, creator, tools from deap.tools.emo import selNSGA2 import h5py import vectorization_tools from mnist_member import MnistMember from digit_mutator import DigitMutator from predictor2 import Predictor from timer import Timer from utils import print_archive, print_archive_experiment import archive_manager2 from individual import Individual from config import NGEN, \ POPSIZE, INITIALPOP, \ RESEEDUPPERBOUND, GENERATE_ONE_ONLY, DATASET, \ STOP_CONDITION, STEPSIZE, DJ_DEBUG # Load the dataset. hf = h5py.File(DATASET, 'r') x_test = hf.get('xn') x_test =
np.array(x_test)
numpy.array
import numpy as np import numpy.testing as npt from stumpy import scrump, stump, config from stumpy.scrump import prescrump import pytest import naive test_data = [ ( np.array([9, 8100, -60, 7], dtype=np.float64), np.array([584, -11, 23, 79, 1001, 0, -19], dtype=np.float64), ), ( np.random.uniform(-1000, 1000, [8]).astype(np.float64), np.random.uniform(-1000, 1000, [64]).astype(np.float64), ), ] window_size = [8, 16, 32] substitution_locations = [(slice(0, 0), 0, -1, slice(1, 3), [0, 3])] substitution_values = [np.nan, np.inf] percentages = [(0.01, 0.1, 1.0)] @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_self_join(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_B, s=s, exclusion_zone=zone) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_A_B_join(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_A, m, T_B, s=s) np.random.seed(seed) comp_P, comp_I = prescrump(T_A, m, T_B=T_B, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_A_B_join_swap(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_A, s=s) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, T_B=T_A, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_prescrump_self_join_larger_window(T_A, T_B, m): if len(T_B) > m: zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_B, s=s, exclusion_zone=zone) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) def test_scrump_int_input(): with pytest.raises(TypeError): scrump(np.arange(10), 5, ignore_trivial=True, percentage=1.0, pre_scrump=False) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_self_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_A_B_join(T_A, T_B, percentages): m = 3 for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_A, m, T_B, percentage, None, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_A, m, T_B, ignore_trivial=False, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_A_B_join_swap(T_A, T_B, percentages): m = 3 for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_A, percentage, None, False, None) ref_P = ref_mp[:, 0] # ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, T_A, ignore_trivial=False, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ # comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) @pytest.mark.parametrize("percentages", percentages) def test_scrump_self_join_larger_window(T_A, T_B, m, percentages): if len(T_B) > m: zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_self_join_full(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_B, m, exclusion_zone=zone) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump(T_B, m, ignore_trivial=True, percentage=1.0, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I)
npt.assert_almost_equal(ref_left_I, comp_left_I)
numpy.testing.assert_almost_equal
import os import sys import yaml import json import time import argparse import numpy as np import pickle import matplotlib.pyplot as plt from torch.utils.data import DataLoader import src.utils import src.dataset import src.evaluation if __name__ == "__main__": # config file parser = argparse.ArgumentParser(description="Test linear model.") parser.add_argument('--config', type=str, default="config_linear_test.yaml") args = parser.parse_args() ### END CONFIG ### ### PATHS & CONFIG project_root = os.getcwd() data_root = os.path.join(project_root, "datasets/maad") exp_root = os.path.join(project_root, "experiments") config_root = os.path.join(project_root, "config") # config config_path = os.path.join(config_root, args.config) with open(config_path, "r") as fin: config = yaml.load(fin, Loader=yaml.FullLoader) # data data_path_test = os.path.join(data_root, config["dataset"]["set"]) # experiment path method = config["model"]["type"] run_name = method date_time = src.utils.get_current_time() run_name = date_time + "_" + run_name exp_dir = os.path.join(exp_root, run_name) if not os.path.exists(exp_dir): os.makedirs(exp_dir) # create evaluation directory eval_dir = "eval_" + src.utils.get_current_time() eval_path = os.path.join(exp_dir, eval_dir) if not os.path.isdir(eval_path): os.makedirs(eval_path) ### DATA dset_test = src.dataset.MAADDataset(data_path_test, obs_len=config["model"]["obs_len"], adj_type="identity") loader_test = DataLoader(dset_test, batch_size=1, shuffle=False, num_workers=1) ### PREDICTION print("\nPredicting...") pred_start = time.time() prediction_data = {} step = 0 for cnt, batch in enumerate(loader_test): step += 1 # get data obs_traj, obs_traj_rel, frame_ids, seq_ids, labels, V_obs, A_obs = batch # prepare data obs_traj = obs_traj.numpy()[0] # its anyway batch size = 1 frame_ids = frame_ids.numpy()[0].tolist() seq_ids = seq_ids.numpy()[0] labels = labels.numpy()[0] # init linear trajectory linear_traj = np.zeros(obs_traj.shape) N = obs_traj.shape[0] # model each agent individually for i in range(N): # get agent trajectory agent_traj = obs_traj[i] # trajectory features start_pos = agent_traj[:, 0] end_pos = agent_traj[:, -1] n_ts = agent_traj.shape[1] if method == "cvm": # CVM velocity = agent_traj[:, 1] - agent_traj[:, 0] approx_agent_traj = np.zeros(agent_traj.shape) + velocity[:, np.newaxis] approx_agent_traj[:, 0] = start_pos approx_agent_traj = np.cumsum(approx_agent_traj, axis=1) elif method == "lti": # LTI x_interp = np.linspace(start_pos[0], end_pos[0], n_ts) y_interp = np.linspace(start_pos[1], end_pos[1], n_ts) approx_agent_traj =
np.zeros(agent_traj.shape)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 10 09:16:42 2022 @author: mbonnema """ import os from netCDF4 import Dataset import matplotlib.pyplot as plt #import geopandas as geo import datetime import numpy as np from datetime import timedelta import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import ee ee.Initialize() import shapely import matplotlib.lines as mlines import csv from readCSV import readCSV from FilterS1 import FilterS1 from FilterJRC import FilterJRC from InterpS1 import InterpS1 from InterpJRC import InterpJRC print('Preparing Data...') dataDir = '../../Results/World_Ver3_CSV/' print('\tReading data csv files...') D,A,LE,WE,ND = readCSV(dataDir) Ds1 = {} As1 = {} Dgsw = {} Agsw = {} #print(LE['1646']) [Ds1, Dgsw] = map(lambda keys: {x: D[x] for x in keys}, [WE.keys(), ND.keys()]) [As1, Agsw] = map(lambda keys: {x: A[x] for x in keys}, [WE.keys(), ND.keys()]) print('\t\tComplete') print('\tFiltering area data...') Ds1,As1,WE,LE = FilterS1(Ds1,As1,WE,LE) Dgsw,Agsw,ND = FilterJRC(Dgsw,Agsw,ND) D = {} A = {} D.update(Ds1) D.update(Dgsw) A.update(As1) A.update(Agsw) print('\t\tComplete') print('\tLoading Lake Database Fields...') lakes = ee.FeatureCollection('users/matthewbonnema/HydroLAKES') largeLakes = lakes.filter(ee.Filter.gte('Lake_area',1)) lakeID = largeLakes.aggregate_array('Hylak_id').getInfo() lakeType = largeLakes.aggregate_array('Lake_type').getInfo() lakeLat = largeLakes.aggregate_array('Pour_lat').getInfo() lakeLon = largeLakes.aggregate_array('Pour_long').getInfo() lakeArea = largeLakes.aggregate_array('Lake_area').getInfo() print('\t\tComplete') print('\tCompute Area Variations...') Av = [] Avp = [] Am = [] A_database = [] Amin = [] Amax = [] lat = [] lon = [] Ltype = [] for key in D: try: a = A[key] stda = np.std(a) mina = np.nanmin(a) maxa = np.nanmax(a) vara = maxa - mina meana = np.nanmean(a) varap = vara/meana ad = lakeArea[lakeID.index(int(key))] index = lakeID.index(int(key)) if np.isnan(mina) or np.isnan(maxa) or np.isnan(meana) or np.isnan(vara): continue Av.append(vara) Avp.append(varap) Am.append(meana) A_database.append(ad) Amin.append(mina) Amax.append(maxa) lat.append(lakeLat[index]) lon.append(lakeLon[index]) lt = lakeType[index] if lt == 3: lt = 2 Ltype.append(lt) except: continue A_database = np.array(A_database)[np.isfinite(np.array(Avp))] Av = np.array(Av)[np.isfinite(np.array(Avp))] Am = np.array(Am)[np.isfinite(
np.array(Avp)
numpy.array
import numpy as np import tinyobjloader def obj_loader(path): # Create reader. reader = tinyobjloader.ObjReader() # Load .obj(and .mtl) using default configuration ret = reader.ParseFromFile(path) if ret == False: print("Failed to load : ", path) return None # note here for wavefront obj, #v might not equal to #vt, same as #vn. attrib = reader.GetAttrib() v = np.array(attrib.vertices).reshape(-1, 3) vn = np.array(attrib.normals).reshape(-1, 3) vt = np.array(attrib.texcoords).reshape(-1, 2) shapes = reader.GetShapes() tri = shapes[0].mesh.numpy_indices().reshape(-1, 9) f_v = tri[:, [0, 3, 6]] f_vn = tri[:, [1, 4, 7]] f_vt = tri[:, [2, 5, 8]] faces = f_v #[m, 3] face_normals = vn[f_vn].mean(axis=1) #[m, 3] face_uvs = vt[f_vt].mean(axis=1) #[m, 2] verts = v #[n, 3] vert_normals = np.zeros((verts.shape[0], 3), dtype=np.float32) #[n, 3] vert_normals[f_v.reshape(-1)] = vn[f_vn.reshape(-1)] vert_uvs = np.zeros((verts.shape[0], 2), dtype=np.float32) #[n, 2] vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)] return verts, faces, vert_normals, face_normals, vert_uvs, face_uvs def load_obj_mesh_for_Hoppe(mesh_file): vertex_data = [] face_data = [] if isinstance(mesh_file, str): f = open(mesh_file, "r") else: f = mesh_file for line in f: if isinstance(line, bytes): line = line.decode("utf-8") if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = list(map(float, values[1:4])) vertex_data.append(v) elif values[0] == 'f': # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) f = list(map(lambda x: int(x.split('/')[0]), [values[3], values[4], values[1]])) face_data.append(f) # tri mesh else: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) vertices = np.array(vertex_data) faces =
np.array(face_data)
numpy.array
import numpy as np import numba from numba import jit from sklearn import metrics import random import traj_tools numericThresh = 1E-150 logNumericThresh =
np.log(numericThresh)
numpy.log
import torch import numpy as np import os import pandas as pd import re import sys import tqdm from absl import flags import chexpert_labeler from api.models.base import DataParallelCPU from api.models.nondiff import CheXpert from api.metrics import Bleu, Rouge, CiderD as Cider, MentionSim from api.utils import to_numpy flags.DEFINE_string('do', None, '') flags.DEFINE_enum('dataset', None, ['mimic-cxr', 'open-i'], 'Dataset to use') flags.DEFINE_string('raw', None, '') flags.DEFINE_string('cache', None, '') flags.DEFINE_list('remove_tokens', [], '') FLAGS = flags.FLAGS def compile(): re_objs = [re.compile(token) for token in FLAGS.remove_tokens] bleu = Bleu(4) rouge = Rouge() cider = Cider(df_cache=torch.load(os.path.join(cache_dir, 'cider-cache.pkl'))) _df = pd.read_csv(FLAGS.raw, sep='\t').fillna('') _df = _df.rename(columns={'pred_text': 'text'}) df_sentence = pd.read_csv(df_sentence_path, sep='\t') df_report = pd.read_csv(df_report_path, sep='\t') rad_ids = set(_df.rad_id) & set(df_sentence.rad_id) df = pd.merge( df_sentence.loc[df_sentence.rad_id.isin(rad_ids)].groupby('rad_id').sentence.apply(' '.join).rename('text').reset_index(), df_report.loc[df_report.rad_id.isin(rad_ids)].drop(columns='text', errors='ignore'), on='rad_id', ) _df = _df[_df.rad_id.isin(rad_ids)] df = _df[['rad_id']].merge(df, on='rad_id', how='left') df_metric = pd.DataFrame( {'rad_id': _df.rad_id}, index=range(len(_df)), ) for index in tqdm.trange(len(_df)): _text = _df.text.iloc[index] for re_obj in re_objs: _text = re_obj.sub('', _text) text = df.text.iloc[index] for scorer in [bleu, rouge, cider]: report_score = scorer([_text], [text]) if report_score.dim() == 2: for (num, _report_score) in enumerate(report_score): df_metric.loc[index, f'{scorer.method()}-{num + 1}'] = _report_score.mean().item() else: df_metric.loc[index, f'{scorer.method()}'] = report_score.mean().item() print('Evaluating CheXpert label...') label = df[chexpert_labeler.CATEGORIES].values if all(map(_df.columns.__contains__, chexpert_labeler.CATEGORIES)): chexpert = None _label = _df[chexpert_labeler.CATEGORIES].values else: chexpert = DataParallelCPU(CheXpert, num_jobs=None, maxtasksperchild=256, verbose=True) _label = to_numpy(chexpert(_df.text.values)) index = _label * 4 + label for (num, category) in enumerate(chexpert_labeler.CATEGORIES): df_metric[category] = index[:, num] df_metric.to_csv(FLAGS.cache, sep='\t', index=False) if chexpert is not None: chexpert.close() def calc(): df_metric = pd.read_csv(FLAGS.cache, sep='\t') tp = np.array([ np.nan, np.nan, np.nan, 0.0, np.nan, np.nan, np.nan, 0.5, np.nan, np.nan, np.nan, 0.0, np.nan, np.nan, np.nan, 1.0, ]) fn = 1 - tp fp = np.array([ 0.0, np.nan, 0.0, np.nan, 0.5, np.nan, 0.5, np.nan, 0.0, np.nan, 0.0, np.nan, 1.0, np.nan, 1.0, np.nan, ]) tn = 1 - fp index = df_metric[chexpert_labeler.CATEGORIES] tp = np.nansum(tp[index], axis=0) fn = np.nansum(fn[index], axis=0) fp = np.nansum(fp[index], axis=0) tn =
np.nansum(tn[index], axis=0)
numpy.nansum
# ND2 extractor, Kymograph generator # author: <NAME> # product manager: <NAME>, <NAME> # Special thanks for technical support: <NAME> # # # Library dependence: # use nd2reader 2.1.3, don't use the new version!!!!! # library install instructions: # In terminal, type: # nd2reader: In terminal, type: "pip install "nd2reader==2.1.3"" or "pip3 install "nd2reader==2.1.3"" # PIL: In terminal, type: "pip install Pillow" or "pip3 install Pillow" # pims: In terminal, type: "pip install pims_nd2" or "pip3 install pims_nd2" # # # Todo: create a GUI import matplotlib.pyplot as pl import glob # pathname pattern from PIL import Image # from ND2 extractor import nd2reader import os import PIL import numpy as np from pims import ND2_Reader import xml.etree.cElementTree as ET import re import pathos.multiprocessing import multiprocessing from datetime import datetime import h5py from tifffile import imsave # todo: fix extractor xml file problem # todo: new class for segmentation & lineage tracking # step 1, extract ND2 as usual class ND2_extractor(): def __init__(self, nd2_file, file_directory, xml_file=None, xml_dir=None, output_path=None): self.input_path = file_directory self.nd2_file = nd2_file self.nd2_file_name = nd2_file[:-4] self.xml_file = xml_file self.xml_dir = xml_dir self.output_path = output_path self.main_dir = file_directory + "/" + self.nd2_file_name self.nd2_f = nd2_file self.file_dir = file_directory self.pos_dict = None self.pos_offset = None self.lane_dict = None def lane_info(self): # dict for lane info nd2_new = ND2_Reader(self.nd2_file) nd2_new.iter_axes = 'm' lane_dict = {} lane_dict[0] = 1 pos_offset = {} cur_lane = 1 pos_min = 0 pos_offset[cur_lane] = pos_min - 1 y_prev = nd2_new[0].metadata['y_um'] pos_num = len(nd2_new) for i in range(1, pos_num): f = nd2_new[i] y_now = f.metadata['y_um'] if abs(y_now - y_prev) > 200: # a new lane cur_lane += 1 pos_min = i - 1 pos_offset[cur_lane] = pos_min lane_dict[i] = cur_lane y_prev = y_now nd2_new.close() self.lane_dict = lane_dict self.pos_offset = pos_offset def pos_info(self): cur_dir = os.getcwd() os.chdir(self.xml_dir) tree = ET.ElementTree(file=self.xml_file) root = tree.getroot()[0] pos_dict = {} lane_dict = {} pos_offset = {} lane_count = 0 lane_name_prev = None dummy_count = 0 for i in root: if i.tag.startswith('Point'): ind = int(i.tag[5:]) pos_name = i[1].attrib['value'] if len(pos_name) < 1: pos_name = "dummy_" + str(dummy_count) dummy_count += 1 lane_name_cur = "dummy" else: lane_name_cur = re.match(r'\w', pos_name).group() if lane_name_cur != lane_name_prev: lane_name_prev = lane_name_cur lane_count += 1 pos_offset[lane_count] = ind - 1 lane_dict[ind] = lane_count pos_dict[ind] = pos_name os.chdir(cur_dir) self.pos_dict = pos_dict self.lane_dict = lane_dict self.pos_offset = pos_offset def tiff_extractor(self, pos): nd2 = nd2reader.Nd2(self.nd2_f) if self.pos_dict: new_dir = self.main_dir + "/Lane_" + str(self.lane_dict[pos]).im(2) + "/" + self.pos_dict[pos] + "/" else: lane_ind = self.lane_dict[pos] pos_off = self.pos_offset[lane_ind] new_dir = self.main_dir + "/Lane_" + str(lane_ind).zfill(2) + "/pos_" + str(pos - pos_off).zfill(3) + "/" # create a folder for each position if not os.path.exists(new_dir): os.makedirs(new_dir) os.chdir(new_dir) if self.pos_dict: meta_name = self.nd2_file_name + "_" + self.pos_dict[pos] + "_t" else: meta_name = self.nd2_file_name + "_pos_" + str(pos - pos_off).zfill(3) + "_t" for image in nd2.select(fields_of_view=pos): channel = image._channel channel = str(channel.encode('ascii', 'ignore')) time_point = image.frame_number tiff_name = meta_name + str(time_point).zfill(4) + "_c_" + channel + ".tiff" # save file in 16-bit # thanks to http://shortrecipes.blogspot.com/2009/01/python-python-imaging-library-16-bit.html image = image.base.astype(np.uint16) out = PIL.Image.frombytes("I;16", (image.shape[1], image.shape[0]), image.tobytes()) out.save(tiff_name) os.chdir(self.file_dir) def run_extraction(self): start_t = datetime.now() os.chdir(self.input_path) # get position name if xml is available if self.xml_file: if not self.xml_dir: self.xml_dir = self.input_path self.pos_info() # otherwise get lane info from y_um else: self.lane_info() os.chdir(self.input_path) # switch to another ND2reader for faster iterations nd2 = nd2reader.Nd2(self.nd2_file) main_dir = self.input_path + "/" + self.nd2_file_name if not os.path.exists(main_dir): os.makedirs(main_dir) # parallelize extraction poses = nd2.fields_of_view cores = pathos.multiprocessing.cpu_count() pool = pathos.multiprocessing.Pool(cores) pool.map(self.tiff_extractor, poses) time_elapsed = datetime.now() - start_t print('Time elapsed for extraction (hh:mm:ss.ms) {}'.format(time_elapsed)) ############# # todo: deal with trenches at bottom & one fov with 2 trenches # todo: incorporate Sadik's Phase Contrast channel # todo: rotation correction for poor aligned chips # todo: trench identification with multiple channels class trench_kymograph(): def __init__(self, nd2_file, main_directory, lane, pos, channel, seg_channel, trench_length, trench_width, spatial, drift_correct=0, find_correct=0, frame_start=None, frame_limit=None, output_dir=None, box_info=None, trench_detect_start=None, trench_detect_end=None): self.prefix = nd2_file[:-4] self.main_path = main_directory self.lane = lane self.channel = channel self.seg_channel = seg_channel self.pos = pos self.trench_length = trench_length self.trench_width = trench_width self.frame_start = frame_start self.frame_limit = frame_limit self.seg_channel = seg_channel self.drift_correct = drift_correct self.find_correct = find_correct self.drift_x = None self.drift_y = None self.drift_x_txt = None self.drift_y_txt = None self.spatial = spatial # 0 for top, 1 for bottom, 2 for both self.tops = [] self.bottoms = [] self.meta = None self.height = None self.width = None self.total_t = None self.out_file = None self.box_info = box_info # file names self.file_list = None self.frame_end = None self.trench_detect_start = trench_detect_start self.trench_detect_end = trench_detect_end self.file_list_trench_detect = None # TODO: change the path pattern if you didn't extract the ND2 with my extractor self.file_path = self.main_path + "/" + self.prefix + "/Lane_" + str(self.lane).zfill(2) + "/pos_" + str( self.pos).zfill(3) if output_dir: self.output_dir = output_dir else: self.output_dir = self.file_path ### # TODO: change the path pattern if you didn't extract the ND2 with my extractor def get_file_list(self): os.chdir(self.file_path) self.file_list = glob.glob('*' + self.channel + '*.tif*') # print(self.file_path, self.seg_channel, '*' + self.channel + '*.tif*', self.file_list) # exit() def get_time(name): sub_name = name.split('_t0')[1] # print sub_name num = sub_name.split('_c')[0] return int(num) self.file_list.sort(key=get_time) # print(self.file_list) # exit() if self.frame_start is None: self.frame_start = 0 if self.frame_limit is None: self.frame_end = len(self.file_list) else: self.frame_end = self.frame_start + self.frame_limit self.file_list = self.file_list[self.frame_start:self.frame_end] [self.height, self.width] = pl.imread(self.file_list[0]).shape return def get_file_list_for_trench_detection(self): os.chdir(self.file_path) self.file_list_trench_detect = glob.glob('*' + self.channel + '*.tif*') def get_time(name): sub_name = name.split('_t0')[1] # print sub_name num = sub_name.split('_c')[0] return int(num) self.file_list_trench_detect.sort(key=get_time) if self.trench_detect_start is None: self.trench_detect_start = self.frame_start if self.trench_detect_end is None: self.trench_detect_end = self.trench_detect_start + 50 # using 50 consecutive frames for trench detection otherwise specified self.file_list_trench_detect = self.file_list_trench_detect[self.trench_detect_start:self.trench_detect_end] [self.height, self.width] = pl.imread(self.file_list_trench_detect[0]).shape return def find_drift(self): lane_path = self.main_path + "/" + self.prefix + "/Lane_" + str(self.lane).zfill(2) tops = [] peaks = [] file_num = len(self.file_list) drift_y = open(lane_path + '/drift_y.txt', 'w') drift_x = open(lane_path + '/drift_x.txt', 'w') y_shift = [0] # Todo: parallelization? for i in range(len(self.file_list)): # print(self.find_top(i)) tops.append(self.find_top(i)) for i in range(len(tops)-1): diff = 0 # diff = tops[i+1] - tops[i] # if diff > 10: # diff = 0 y_shift.append(diff) for i in range(len(self.file_list)): peaks.append(self.find_peaks(i, tops)) # positive: downwards drift drift_y.write(' '.join(map(str, y_shift))) # print(y_shift) x_shift = [0] for i in range(file_num - 1): list_a = peaks[i] list_b = peaks[i + 1] move = self.pairwise_list_align(list_a, list_b, self.trench_width * 0.75) x_shift.append(move) # positive: drift to the right x_shift = np.cumsum(np.array(x_shift)).astype(int) drift_x.write(' '.join(map(str, x_shift.tolist()))) self.drift_x = x_shift self.drift_y = y_shift self.drift_x_txt = 'drift_x.txt' self.drift_y_txt = 'drift_y.txt' return def read_drift(self): self.drift_x_txt = 'drift_x.txt' self.drift_y_txt = 'drift_y.txt' lane_path = self.main_path + "/" + self.prefix + "/Lane_" + str(self.lane).zfill(2) self.drift_x_txt = lane_path + "/" + self.drift_x_txt self.drift_y_txt = lane_path + "/" + self.drift_y_txt # read files into np array self.drift_x = np.loadtxt(self.drift_x_txt, dtype=int, delimiter=' ') self.drift_y = np.loadtxt(self.drift_y_txt, dtype=int, delimiter=' ') return def find_top(self, i): self.get_file_list_for_trench_detection() im_i = pl.imread(self.file_list_trench_detect[i]) x_per = np.percentile(im_i, 95, axis=1) intensity_scan = x_per intensity_scan = intensity_scan / float(sum(intensity_scan)) # normalize intensity im_min = intensity_scan.min() im_max = intensity_scan.max() scaling_factor = (im_max - im_min) intensity_scan = (intensity_scan - im_min) intensity_scan = (intensity_scan / scaling_factor) if self.spatial == 1: # actually bottoms, but mie.. top = np.where(intensity_scan > 0.2)[0][-1] else: top = np.where(intensity_scan > 0.2)[0][0] return top def find_peaks(self, i, tops): self.get_file_list_for_trench_detection() # self.file_list_trench_detect im_i = pl.imread(self.file_list_trench_detect[i]) # crop the trench region im_trenches = im_i[tops[0]:tops[0] + self.trench_length] im_trenches_perc = np.percentile(im_trenches, 90, axis=0) # normalize intensity im_min = im_trenches_perc.min() im_max = im_trenches_perc.max() scaling_factor = (im_max - im_min) im_trenches_perc = (im_trenches_perc - im_min) im_trenches_perc = (im_trenches_perc / scaling_factor) peak = self.detect_peaks(im_trenches_perc, mph=0.15, mpd=trench_width) new_peak = self.peak_correct(peak, im_trenches_perc) return new_peak def peak_correct(self, old_peak, im_intensity): half_trench_width = self.trench_width/2 new_peaks = [old_peak[0]] for p in old_peak[1:-1]: half_p_height = im_intensity[p]/2 # int full_peak = im_intensity[p - half_trench_width:p + half_trench_width+1] p_tops = np.where(full_peak>half_p_height) p_left = p - half_trench_width + p_tops[0][0] p_right = p - half_trench_width + p_tops[0][-1] p_corrected = (p_left + p_right)/2 new_peaks.append(p_corrected) new_peaks.append(old_peak[-1]) return new_peaks def get_trenches(self): os.chdir(self.file_path) # use the first 50 frames to identify trench relation self.get_file_list_for_trench_detection() frame_num = len(self.file_list_trench_detect) # using the 85 percentile of the intensity of the first 50 frames as the meta-representation im_stack = np.zeros((min(50, frame_num), self.height, self.width)) for i in range(min(50, frame_num)): im_i = pl.imread(self.file_list_trench_detect[i]) if np.max(im_i) > 255: im_i = self.to_8_bit(im_i) if self.drift_correct == 1: # correct for drift move_x = self.drift_x[i] temp = np.zeros((self.height, self.width)) if move_x > 0: temp[:, :self.width-move_x] = im_i[:,move_x:] else: temp[:, (-move_x):] = im_i[:, :self.width+move_x] im_i = temp im_stack[i] = im_i perc = np.percentile(im_stack, 85, axis=0).astype(np.uint8) out_file = "perc_85_frame_50.tiff" # convert to 8-bit, using the imageJ way out = PIL.Image.frombytes("L", (self.width, self.height), perc.tobytes()) out.save(out_file) # identify tops & bottoms if self.spatial != 2: intensity_scan = np.percentile(perc, 90, axis=1) # intensity_scan = np.max(perc,axis=1) intensity_scan = intensity_scan / float(sum(intensity_scan)) # normalize intensity im_min = intensity_scan.min() im_max = intensity_scan.max() scaling_factor = (im_max - im_min) intensity_scan = (intensity_scan - im_min) intensity_scan = (intensity_scan / scaling_factor) else: perc_top = perc[:int(self.height/2),:] perc_bot = perc[int(self.height/2):,:] intensity_scan_top = np.percentile(perc_top, 90, axis=1) # intensity_scan_top = np.max(perc_top,axis=1) intensity_scan_top = intensity_scan_top / float(sum(intensity_scan_top)) # normalize intensity im_min_top = intensity_scan_top.min() im_max_top = intensity_scan_top.max() scaling_factor_top = (im_max_top - im_min_top) intensity_scan_top = (intensity_scan_top - im_min_top) intensity_scan_top = (intensity_scan_top / scaling_factor_top) intensity_scan_bot = np.percentile(perc_bottom, 90, axis=1) # intensity_scan_bot = np.max(perc_bot, axis=1) intensity_scan_bot = intensity_scan_bot / float(sum(intensity_scan_bot)) # normalize intensity im_min_bot = intensity_scan_bot.min() im_max_bot = intensity_scan_bot.max() scaling_factor_bot = (im_max_bot - im_min_bot) intensity_scan_bot = (intensity_scan_bot - im_min_bot) intensity_scan_bot = (intensity_scan_bot / scaling_factor_bot) pl.plot(intensity_scan_bot) pl.show() pl.plot(intensity_scan_top) pl.show() if self.spatial == 0: # top top = max(0, np.where(intensity_scan > 0.2)[0][0] - 30) bottom = top + self.trench_length + 60 self.tops.append(top) self.bottoms.append(bottom) elif self.spatial == 1: # bottom bottom = min(self.height,np.where(intensity_scan > 0.2)[0][-1] + 30) top = bottom - self.trench_length - 60 self.tops.append(top) self.bottoms.append(bottom) else: # both # top one top = max(0, np.where(intensity_scan_top > 0.2)[0][0] - 30) bottom = top + self.trench_length + 60 self.tops.append(top) self.bottoms.append(bottom) # bottom one bottom = min(self.height,
np.where(intensity_scan_bot > 0.2)
numpy.where
from __future__ import print_function, division import numpy as np from allennlp.commands.elmo import ElmoEmbedder import time import torch class ElmoEncoder(object): def __init__(self): self.elmo = ElmoEmbedder() def encode_batch(self, sents): start_time = time.time() vec_seq = self.elmo.embed_sentences(sents) elapsed_time = time.time() - start_time print("embed_sentences {}".format(elapsed_time)) vecs = [] start_time = time.time() for vec in vec_seq: vecs.append(self.collapse_vec(vec)) # vecs = torch.stack(vecs) vecs = np.stack(vecs) elapsed_time =time.time() - start_time print("collapse {}".format(elapsed_time)) print("vecs ", vecs.shape) return vecs def collapse_vec(self, vec_seq, time_combine_method="max", layer_combine_method="add"): if time_combine_method == "max": vec = vec_seq.max(axis=1) elif time_combine_method == "mean": vec = vec_seq.mean(axis=1) elif time_combine_method == "concat": vec = np.concatenate(vec_seq, axis=1) elif time_combine_method == "last": vec = vec_seq[:, -1] else: raise NotImplementedError if layer_combine_method == "add": vec = vec.sum(axis=0) elif layer_combine_method == "mean": vec = vec.mean(axis=0) elif layer_combine_method == "concat": vec = np.concatenate(vec, axis=0) elif layer_combine_method == "last": vec = vec[-1] else: raise NotImplementedError return vec def encode(self, sents, time_combine_method="max", layer_combine_method="add"): """ Load ELMo and encode sents """ vecs = {} for sent in sents: vec_seq = self.elmo.embed_sentence(sent) if time_combine_method == "max": vec = vec_seq.max(axis=1) elif time_combine_method == "mean": vec = vec_seq.mean(axis=1) elif time_combine_method == "concat": vec = np.concatenate(vec_seq, axis=1) elif time_combine_method == "last": vec = vec_seq[:, -1] else: raise NotImplementedError if layer_combine_method == "add": vec = vec.sum(axis=0) elif layer_combine_method == "mean": vec = vec.mean(axis=0) elif layer_combine_method == "concat": vec =
np.concatenate(vec, axis=0)
numpy.concatenate
""" Visualize the transformations Matplotlib: quiver plot """ from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np # Function to plot a single transformation def plot_transformation(transformation): """ Plot Transformation matrix ... Parameters --- transformation: 4x4 transformation matrix Returns --- None Notes --- RGB -> XYZ """ fig = plt.figure() ax = fig.gca(projection='3d') # x, y, z of 6 arrows in a quiver plot x = np.array([0, 0, 0, transformation[0, 3], transformation[0, 3], transformation[0, 3]]) y = np.array([0, 0, 0, transformation[1, 3], transformation[1, 3], transformation[1, 3]]) z = np.array([0, 0, 0, transformation[2, 3], transformation[2, 3], transformation[2, 3]]) # u, v, w of 6 arrows in a quiver plot u = np.concatenate([np.array([1, 0, 0]), transformation[:3, 0]]) v = np.concatenate([np.array([0, 1, 0]), transformation[:3, 1]]) w = np.concatenate([np.array([0, 0, 1]), transformation[:3, 2]]) # Color(RGB) for 6 arrows, original X, Y, Z and then transformed X, Y, Z red = np.array([1, 0, 0]) green =
np.array([0, 1, 0])
numpy.array
import numpy as np import matplotlib.pyplot as plt import os import properties import discretize from discretize.utils import closestPoints from SimPEG.utils import setKwargs from SimPEG.electromagnetics import frequency_domain as fdem from SimPEG.electromagnetics import time_domain as tdem from .base import LoadableInstance, BaseCasing from . import model from .mesh import BaseMeshGenerator from .info import __version__ class BaseCasingSrc(BaseCasing): """ The base class for sources. Inherit this to attach properties. """ filename = properties.String( "filename to serialize properties to", default="Source.json" ) modelParameters = LoadableInstance( "casing parameters", model.Wholespace ) meshGenerator = LoadableInstance( "mesh generator instance", BaseMeshGenerator ) physics = properties.StringChoice( "fdem or tdem simulation?", choices=["fdem", "tdem"], required=False ) src_a = properties.Array( "A electrode location" ) src_b = properties.Array( "B electrode location" ) def __init__(self, **kwargs): setKwargs(self, **kwargs) if self.src_a is None: self.src_a = self.modelParameters.src_a if self.src_b is None: self.src_b = self.modelParameters.src_b assert self.src_a[1] == self.src_b[1], ( 'non y-axis aligned sources have not been implemented' ) @property def mesh(self): """ discretize mesh """ return self.meshGenerator.mesh # @property # def src_a(self): # """ # location of the a-electrode # """ # if getattr(self, '_src_a', None) is None: # return self.modelParameters.src_a # return self._src_a # @src_a.setter # def src_a(self, value): # self._src_a = value # @property # def src_b(self): # """ # location of the b-electrode # """ # if getattr(self, '_src_b', None) is None: # return self.modelParameters.src_b # return self._src_b # @src_b.setter # def src_b(self, value): # self._src_b = value @property def casing_a(self): """ inner radius of the casing """ return self.modelParameters.casing_a @property def freqs(self): """ frequencies to consider """ return self.modelParameters.freqs @property def srcList(self): """ Source List """ if getattr(self, '_srcList', None) is None: if self.physics.lower() == "fdem": srcList = [ fdem.sources.RawVec_e([], f, self.s_e.astype("complex")) for f in self.freqs ] elif self.physics == "tdem": srcList = [tdem.sources.RawVec_Grounded([], self.s_e)] self._srcList = srcList return self._srcList class HorizontalElectricDipole(BaseCasingSrc): """ A horizontal electric dipole """ def __init__(self, **kwargs): super(HorizontalElectricDipole, self).__init__(**kwargs) assert self.src_a[2] == self.src_b[2], ( 'z locations must be the same for a HED' ) @property def src_a_closest(self): """ closest face to where we want the return current electrode """ if getattr(self, '_src_a_closest', None) is None: # find the z location of the closest face to the src src_a_closest = ( self.mesh.gridFx[closestPoints(self.mesh, self.src_a, 'Fz'), :] ) assert(len(src_a_closest) == 1), 'multiple source locs found' self._src_a_closest = src_a_closest[0] return self._src_a_closest @property def src_b_closest(self): """ closest face to where we want the return current electrode """ if getattr(self, '_src_b_closest', None) is None: # find the z location of the closest face to the src src_b_closest = ( self.mesh.gridFx[closestPoints(self.mesh, self.src_b, 'Fz'), :] ) assert(len(src_b_closest) == 1), 'multiple source locs found' self._src_b_closest = src_b_closest[0] return self._src_b_closest @property def surface_wire(self): """ Horizontal part of the wire that runs along the surface (one cell above) from the center of the well to the return electrode """ if getattr(self, '_surface_wire', None) is None: mesh = self.mesh src_a = self.src_a src_b = self.src_b # horizontally directed wire surface_wirex = ( ( mesh.gridFx[:, 0] <= np.max( [self.src_a[0], self.src_b[0]] ) ) & ( mesh.gridFx[:, 0] >= np.min( [self.src_a[0], self.src_b[0]] ) ) ) surface_wirez = ( (mesh.gridFx[:, 2] > src_b[2] - self.mesh.hz.min()/2.) & (mesh.gridFx[:, 2] < src_b[2] + self.mesh.hz.min()/2.) ) self._surface_wire = surface_wirex & surface_wirez if getattr(mesh, 'isSymmetric', False) is False: surface_wirey = ( (mesh.gridFx[:, 1] > src_b[1] - mesh.hy.min()/2.) & (mesh.gridFx[:, 1] < src_b[1] + mesh.hy.min()/2.) ) self._surface_wire = ( self._surface_wire & surface_wirey ) return self._surface_wire @property def surface_wire_direction(self): """ direction of the source wire """ # todo: extend to the case where the wire is not along the x-axis return [-1. if self.src_a[0] < self.src_b[0] else 1.][0] @property def s_e(self): """ electric source term used to build the right hand side of the maxwell system """ if getattr(self, '_s_e', None) is None: # downhole source s_x = np.zeros(self.mesh.vnF[0]) s_y = np.zeros(self.mesh.vnF[1]) s_z = np.zeros(self.mesh.vnF[2]) # horizontal part of wire along surface s_x[self.surface_wire] = self.surface_wire_direction # assemble the source (downhole grounded primary) s_e = np.hstack([s_x, s_y, s_z]) self._s_e = s_e/self.mesh.area # self._s_e = self.mesh.getFaceInnerProduct(invMat=True) * s_e return self._s_e def plot(self, ax=None): """ Plot the source. """ if ax is None: fig, ax = plt.subplots(1, 1, figsize=(6, 4)) mesh = self.mesh ax.plot( mesh.gridFx[self.surface_wire, 0], mesh.gridFx[self.surface_wire, 2], 'r{}'.format( ['<' if self.surface_wire_direction == -1. else '>'][0] ) ) @properties.validator def _check_wire(self): """ Make sure that each segment of the wire is only going through a single face .. todo:: check that """ # check the surface wire only has one y and one z location surface_wire = self.mesh.gridFx[self.surface_wire, :] assert len(np.unique(surface_wire[:, 1])) == 1, ( 'the surface wire has more than one y-location' ) assert len(np.unique(surface_wire[:, 2])) == 1, ( 'the surface wire has more than one z-location' ) class VerticalElectricDipole(BaseCasingSrc): """ A vertical electric dipole. It is not coupled to the casing :param CasingSimulations.Model.CasingProperties modelParameters: a casing properties instance :param discretize.BaseMesh mesh: a discretize mesh """ def __init__(self, **kwargs): super(VerticalElectricDipole, self).__init__(**kwargs) assert all(self.src_a[:2] == self.src_b[:2]), ( 'src_a and src_b must have the same horizontal location' ) @property def src_a_closest(self): """ closest face to where we want the return current electrode """ if getattr(self, '_src_a_closest', None) is None: # find the z location of the closest face to the src src_a_closest = ( self.mesh.gridFz[closestPoints(self.mesh, self.src_a, 'Fz'), :] ) assert(len(src_a_closest) == 1), 'multiple source locs found' self._src_a_closest = src_a_closest[0] return self._src_a_closest @property def src_b_closest(self): """ closest face to where we want the return current electrode """ if getattr(self, '_src_b_closest', None) is None: # find the z location of the closest face to the src src_b_closest = ( self.mesh.gridFz[closestPoints(self.mesh, self.src_b, 'Fz'), :] ) assert(len(src_b_closest) == 1), 'multiple source locs found' self._src_b_closest = src_b_closest[0] return self._src_b_closest @property def _wire_direction(self): if self.src_a_closest[2] < self.src_b_closest[2]: return -1 return 1 @property def wire_in_borehole(self): """ Indices of the verically directed wire inside of the borehole. It goes through the center of the well """ if getattr(self, '_wire_in_borehole', None) is None: mesh = self.mesh src_a = self.src_a src_b = self.src_b wire_in_boreholex = ( (mesh.gridFz[:, 0] < self.src_a_closest[0] + mesh.hx.min()/2.) & (mesh.gridFz[:, 0] > self.src_a_closest[0] - mesh.hx.min()/2.) ) wire_in_boreholez = ( ( mesh.gridFz[:, 2] >= np.min([src_a[2], src_b[2]]) - 0.5*mesh.hz.min() ) & ( mesh.gridFz[:, 2] <= np.max([src_a[2], src_b[2]]) + 0.5*mesh.hz.min() ) ) self._wire_in_borehole = wire_in_boreholex & wire_in_boreholez if getattr(mesh, 'isSymmetric', False) is False: wire_in_boreholey = ( (mesh.gridFz[:, 1] > src_a[1] - mesh.hy.min()/2.) & (mesh.gridFz[:, 1] < src_a[1] + mesh.hy.min()/2.) ) self._wire_in_borehole = ( self._wire_in_borehole & wire_in_boreholey ) return self._wire_in_borehole @property def s_e(self): """ Source List """ if getattr(self, '_s_e', None) is None: # downhole source s_x = np.zeros(self.mesh.vnF[0]) s_y = np.zeros(self.mesh.vnF[1]) s_z = np.zeros(self.mesh.vnF[2]) s_z[self.wire_in_borehole] = self._wire_direction # part of wire through borehole # assemble the source (downhole grounded primary) s_e =
np.hstack([s_x, s_y, s_z])
numpy.hstack
#!/usr/bin/env python3 """ logistic regression """ import numpy as np from loguru import logger from scipy.optimize import minimize from sklearn.utils.extmath import safe_sparse_dot from scipy.special import logsumexp from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.linear_model import SGDClassifier BATCH_SIZE = 32 # https://machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-descent-scratch-python/ # https://github.com/iamkucuk/Logistic-Regression-With-Mini-Batch-Gradient-Descent/blob/master/logistic_regression_notebook.ipynb # https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/ # http://www.oranlooney.com/post/ml-from-scratch-part-2-logistic-regression/ # https://stats.stackexchange.com/a/117928 - mini-batch vs batch vs epoch # https://towardsdatascience.com/understanding-the-scaling-of-l%C2%B2-regularization-in-the-context-of-neural-networks-e3d25f8b50db # https://github.com/sergei-bondarenko/machine-learning/blob/master/l2.ipynb # https://github.com/ral99/SGDForLinearModels/blob/master/pysgd/linear_models.py def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Faster than norm(x) ** 2. """ x = np.ravel(x, order='K') return np.dot(x, x) def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities.""" n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities.""" n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept)), dtype=X.dtype) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _logistic_regression_path(X, y, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, pos_class=None, coef=None): # Preprocessing. _, n_features = X.shape print(X.shape, y.shape) classes = np.unique(y) # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples sample_weight =
np.ones(X.shape[0])
numpy.ones
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #pip install tensorflow==2.3.1 #pip install tensorflow-quantum import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools#%matplotlib inline import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit qubit = cirq.GridQubit(0, 0) # Define some circuits. circuit1 = cirq.Circuit(cirq.X(qubit)) circuit2 = cirq.Circuit(cirq.H(qubit)) # Convert to a tensor. input_circuit_tensor = tfq.convert_to_tensor([circuit1, circuit2]) # Define a circuit that we want to append y_circuit = cirq.Circuit(cirq.Y(qubit)) # Instantiate our layer y_appender = tfq.layers.AddCircuit() # Run our circuit tensor through the layer and save the output. output_circuit_tensor = y_appender(input_circuit_tensor, append=y_circuit) print(tfq.from_tensor(input_circuit_tensor)) print(tfq.from_tensor(output_circuit_tensor)) def generate_data(qubits): """Generate training and testing data.""" n_rounds = 20 # Produces n_rounds * n_qubits datapoints. excitations = [] labels = [] for n in range(n_rounds): for bit in qubits: rng = np.random.uniform(-np.pi, np.pi) excitations.append(cirq.Circuit(cirq.rx(rng)(bit))) labels.append(1 if (-np.pi / 2) <= rng <= (np.pi / 2) else -1) split_ind = int(len(excitations) * 0.7) train_excitations = excitations[:split_ind] test_excitations = excitations[split_ind:] train_labels = labels[:split_ind] test_labels = labels[split_ind:] return tfq.convert_to_tensor(train_excitations), np.array(train_labels), \ tfq.convert_to_tensor(test_excitations),
np.array(test_labels)
numpy.array
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x =
np.max(X[:, 0])
numpy.max
from typing import Callable import numpy na = numpy.newaxis def calc_m_sq_sin_sq_para(tensor_sigma, flag_tensor_sigma: bool = False): """Calculate the term P1 for paramagnetic sublattice. For details see documentation "Integrated intensity from powder diffraction". """ sigma_11 = tensor_sigma[0] sigma_12 = tensor_sigma[1] sigma_22 = tensor_sigma[4] p_1 = 0.5*(numpy.square(numpy.abs(sigma_11)) + numpy.square(numpy.abs(sigma_22))) + \ numpy.square(numpy.abs(sigma_12)) dder = {} if flag_tensor_sigma: ones = numpy.ones_like(sigma_11.real) dder_sigma_11_real = sigma_11.real * ones dder_sigma_11_imag = sigma_11.imag * ones dder_sigma_22_real = sigma_22.real * ones dder_sigma_22_imag = sigma_22.imag * ones dder_sigma_12_real = 2*sigma_12.real * ones dder_sigma_12_imag = 2*sigma_12.imag * ones zeros = numpy.zeros_like(dder_sigma_11_real) dder["tensor_sigma_real"] = numpy.stack([ dder_sigma_11_real, dder_sigma_12_real, zeros, zeros, dder_sigma_22_real, zeros, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ dder_sigma_11_imag, dder_sigma_12_imag, zeros, zeros, dder_sigma_22_imag, zeros, zeros, zeros, zeros], axis=0) return p_1, dder def calc_m_sq_cos_sq_para(tensor_sigma, flag_tensor_sigma: bool = False): """Calculate the term P2 for paramagnetic sublattice. For details see documentation "Integrated intensity from powder diffraction". """ sigma_13 = tensor_sigma[2] sigma_23 = tensor_sigma[5] p_2 = numpy.square(numpy.abs(sigma_13)) + numpy.square(numpy.abs(sigma_23)) dder = {} if flag_tensor_sigma: ones = numpy.ones_like(sigma_13.real) dder_sigma_13_real = 2*sigma_13.real * ones dder_sigma_13_imag = 2*sigma_13.imag * ones dder_sigma_23_real = 2*sigma_23.real * ones dder_sigma_23_imag = 2*sigma_23.imag * ones zeros = numpy.zeros_like(dder_sigma_13_real) dder["tensor_sigma_real"] = numpy.stack([ zeros, zeros, dder_sigma_13_real, zeros, zeros, dder_sigma_23_real, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ zeros, zeros, dder_sigma_13_imag, zeros, zeros, dder_sigma_23_imag, zeros, zeros, zeros], axis=0) return p_2, dder def calc_cross_term_para(f_nucl, tensor_sigma, flag_f_nucl: bool = False, flag_tensor_sigma: bool = False): """Calculate the term P3 for paramagnetic sublattice. For details see documentation "Integrated intensity from powder diffraction". """ sigma_11 = tensor_sigma[0] sigma_22 = tensor_sigma[4] p_3 = f_nucl.real * (sigma_11.real + sigma_22.real) + f_nucl.imag * (sigma_11.imag + sigma_22.imag) dder = {} if flag_f_nucl: dder["f_nucl_real"] = (sigma_11.real + sigma_22.real)*numpy.ones_like(f_nucl.real) dder["f_nucl_imag"] = (sigma_11.imag + sigma_22.imag)*numpy.ones_like(f_nucl.imag) if flag_tensor_sigma: ones = numpy.ones_like(sigma_11.real) dder_sigma_11_real = f_nucl.real * ones dder_sigma_11_imag = f_nucl.imag * ones dder_sigma_22_real = f_nucl.real * ones dder_sigma_22_imag = f_nucl.imag * ones zeros = numpy.zeros_like(dder_sigma_11_real) dder["tensor_sigma_real"] = numpy.stack([ dder_sigma_11_real, zeros, zeros, zeros, dder_sigma_22_real, zeros, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ dder_sigma_11_imag, zeros, zeros, zeros, dder_sigma_22_imag, zeros, zeros, zeros, zeros], axis=0) return p_3, dder def calc_chiral_term_cos_sin_sq_para(tensor_sigma, flag_tensor_sigma: bool = False): """Calculate the term P4 for paramagnetic sublattice. For details see documentation "Integrated intensity from powder diffraction". """ sigma_11 = tensor_sigma[0] sigma_12 = tensor_sigma[1] sigma_21 = tensor_sigma[3] sigma_22 = tensor_sigma[4] p_4 = sigma_21.real*sigma_11.imag - sigma_21.imag*sigma_11.real + \ sigma_22.real*sigma_12.imag - sigma_22.imag*sigma_12.real dder = {} if flag_tensor_sigma: ones = numpy.ones_like(sigma_11.real) dder_sigma_11_real = - sigma_21.imag * ones dder_sigma_11_imag = sigma_21.real * ones dder_sigma_12_real = - sigma_22.imag * ones dder_sigma_12_imag = sigma_22.real * ones dder_sigma_21_real = sigma_11.imag * ones dder_sigma_21_imag = - sigma_11.real * ones dder_sigma_22_real = sigma_12.imag * ones dder_sigma_22_imag = - sigma_12.real * ones zeros = numpy.zeros_like(dder_sigma_11_real) dder["tensor_sigma_real"] = numpy.stack([ dder_sigma_11_real, dder_sigma_12_real, zeros, dder_sigma_21_real, dder_sigma_22_real, zeros, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ dder_sigma_11_imag, dder_sigma_12_imag, zeros, dder_sigma_21_imag, dder_sigma_22_imag, zeros, zeros, zeros, zeros], axis=0) return p_4, dder def calc_chiral_term_cos_cube_para(tensor_sigma, flag_tensor_sigma: bool = False): """Calculate the term P5 for paramagnetic sublattice. For details see documentation "Integrated intensity from powder diffraction". """ sigma_13 = tensor_sigma[2] sigma_23 = tensor_sigma[5] p_5 = 2*(sigma_23.real*sigma_13.imag - sigma_23.imag*sigma_13.real) dder = {} if flag_tensor_sigma: ones = numpy.ones_like(sigma_13.real) dder_sigma_13_real = -2 * sigma_23.imag * ones dder_sigma_13_imag = 2 * sigma_23.real * ones dder_sigma_23_real = 2 * sigma_13.imag * ones dder_sigma_23_imag = -2 * sigma_13.real * ones zeros = numpy.zeros_like(dder_sigma_13_real) dder["tensor_sigma_real"] = numpy.stack([ zeros, zeros, dder_sigma_13_real, zeros, zeros, dder_sigma_23_real, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ zeros, zeros, dder_sigma_13_imag, zeros, zeros, dder_sigma_23_imag, zeros, zeros, zeros], axis=0) return p_5, dder def calc_cross_term_ordered(f_nucl, f_m_perp, flag_f_nucl: bool = False, flag_f_m_perp: bool = False): """Calculate the term O1 for the magnetically ordered sublattice. For details see documentation "Integrated intensity from powder diffraction". """ f_m_perp_z = f_m_perp[2] o_1 = 2*(f_nucl.real*f_m_perp_z.real + f_nucl.imag*f_m_perp_z.imag) dder = {} if flag_f_nucl: dder["f_nucl_real"] = 2 * f_m_perp_z.real * numpy.ones_like(f_nucl.real) dder["f_nucl_imag"] = 2 * f_m_perp_z.imag * numpy.ones_like(f_nucl.imag) if flag_f_m_perp: dder_f_m_perp_z_real = 2 * f_nucl.real * numpy.ones_like(f_m_perp_z.real) dder_f_m_perp_z_imag = 2 * f_nucl.imag * numpy.ones_like(f_m_perp_z.imag) zeros = numpy.zeros_like(dder_f_m_perp_z_real) dder["f_m_perp_real"] = numpy.stack([zeros, zeros, dder_f_m_perp_z_real], axis=0) dder["f_m_perp_imag"] = numpy.stack([zeros, zeros, dder_f_m_perp_z_imag], axis=0) return o_1, dder def calc_chiral_term_ordered(f_m_perp, flag_f_m_perp: bool = False): """Calculate the term O2 for the magnetically ordered sublattice. For details see documentation "Integrated intensity from powder diffraction". """ f_m_perp_x = f_m_perp[0] f_m_perp_y = f_m_perp[1] o_2 = 2*(f_m_perp_y.real*f_m_perp_x.imag - f_m_perp_y.imag*f_m_perp_x.real) dder = {} if flag_f_m_perp: dder_f_m_perp_x_real = -2 * f_m_perp_y.imag * numpy.ones_like(f_m_perp_x.real) dder_f_m_perp_x_imag = 2 * f_m_perp_y.real * numpy.ones_like(f_m_perp_x.imag) dder_f_m_perp_y_real = 2 * f_m_perp_x.imag * numpy.ones_like(f_m_perp_y.real) dder_f_m_perp_y_imag = -2 * f_m_perp_x.real * numpy.ones_like(f_m_perp_y.imag) zeros = numpy.zeros_like(dder_f_m_perp_x_real) dder["f_m_perp_real"] = numpy.stack([dder_f_m_perp_x_real, dder_f_m_perp_y_real, zeros], axis=0) dder["f_m_perp_imag"] = numpy.stack([dder_f_m_perp_x_imag, dder_f_m_perp_y_imag, zeros], axis=0) return o_2, dder def calc_m_sq_mix(tensor_sigma, f_m_perp, flag_tensor_sigma: bool = False, flag_f_m_perp: bool = False): """Calculate the term M1 for the case of coexistiong paramatic and magnetically ordered sublattices. For details see documentation "Integrated intensity from powder diffraction". tensor_sigma describe paramagnetic sublattice f_m_perp describe ordered sublattice """ sigma_13 = tensor_sigma[2] sigma_23 = tensor_sigma[5] f_m_perp_x = f_m_perp[0] f_m_perp_y = f_m_perp[1] m_1 = 2*(sigma_13.real*f_m_perp_x.real + sigma_13.imag*f_m_perp_x.imag + sigma_23.real*f_m_perp_y.real + sigma_23.imag*f_m_perp_y.imag) dder = {} if flag_tensor_sigma: dder_sigma_13_real = 2*f_m_perp_x.real*numpy.ones_like(sigma_13.real) dder_sigma_13_imag = 2*f_m_perp_x.imag*numpy.ones_like(sigma_13.imag) dder_sigma_23_real = 2*f_m_perp_y.real*numpy.ones_like(sigma_23.real) dder_sigma_23_imag = 2*f_m_perp_y.imag*numpy.ones_like(sigma_23.imag) zeros = numpy.zeros_like(dder_sigma_13_real) dder["tensor_sigma_real"] = numpy.stack([ zeros, zeros, dder_sigma_13_real, zeros, zeros, dder_sigma_23_real, zeros, zeros, zeros], axis=0) dder["tensor_sigma_imag"] = numpy.stack([ zeros, zeros, dder_sigma_13_imag, zeros, zeros, dder_sigma_23_imag, zeros, zeros, zeros], axis=0) if flag_f_m_perp: dder_f_m_perp_x_real = 2 * sigma_13.real * numpy.ones_like(f_m_perp_x.real) dder_f_m_perp_x_imag = 2 * sigma_13.imag * numpy.ones_like(f_m_perp_x.imag) dder_f_m_perp_y_real = 2 * sigma_23.real * numpy.ones_like(f_m_perp_y.real) dder_f_m_perp_y_imag = 2 * sigma_13.imag * numpy.ones_like(f_m_perp_y.imag) zeros = numpy.zeros_like(dder_f_m_perp_x_real) dder["f_m_perp_real"] = numpy.stack([dder_f_m_perp_x_real, dder_f_m_perp_y_real, zeros], axis=0) dder["f_m_perp_imag"] = numpy.stack([dder_f_m_perp_x_imag, dder_f_m_perp_y_imag, zeros], axis=0) return m_1, dder def calc_chiral_term_sin_sq_mix( tensor_sigma, f_m_perp, flag_tensor_sigma: bool = False, flag_f_m_perp: bool = False): """Calculate the term M2 for the case of coexistiong paramatic and magnetically ordered sublattices. For details see documentation "Integrated intensity from powder diffraction". tensor_sigma describe paramagnetic sublattice f_m_perp describe ordered sublattice """ sigma_12 = tensor_sigma[1] sigma_21 = tensor_sigma[3] f_m_perp_z = f_m_perp[2] m_2 = sigma_12.real*f_m_perp_z.imag - sigma_12.imag*f_m_perp_z.real + \ sigma_21.imag*f_m_perp_z.real - sigma_21.real*f_m_perp_z.imag dder = {} if flag_tensor_sigma: dder_sigma_12_real = f_m_perp_z.imag*numpy.ones_like(sigma_12.real) dder_sigma_12_imag = -f_m_perp_z.real*numpy.ones_like(sigma_12.imag) dder_sigma_21_real = -f_m_perp_z.imag*numpy.ones_like(sigma_21.real) dder_sigma_21_imag = f_m_perp_z.real*
numpy.ones_like(sigma_21.imag)
numpy.ones_like
import gym import numpy as np from typing import Tuple, List from mae_envs.wrappers.util import update_obs_space from mujoco_worldgen.util.types import store_args def get_all_integer_partitions(n, min_team_size=1, max_team_size=np.inf): ''' Return a list of all integer partitions of n. Args: n (int): number of entities. min_team_size (int): minimum number of entities in a partition max_team_size (int): maximum number of entities in a partition ''' if n <= max_team_size: yield (n,) for i in range(min_team_size, n // 2 + 1): for p in get_all_integer_partitions(n - i, i, max_team_size): yield (i,) + p class RUSPGenerator: ''' Helper class to generate the randomized uncertain relationship graph. Agents are first partitioned into groups. Within each group we randomize the amount each agent shares reward with everyone else in the group. We then sample independent noise such that each agent observes an inependent noisy observation of the relationship graph. Reward sharing values are sampled from a beta distribution with parameters alpha and beta. For all results in the paper except where we experiment with team hardness, we set both alpha and beta to 1. To compute noise added to the relationship graphs, we first sample the noise level (standard devation of a gaussian) from a uniform distribution independently per relationship, per agent. We then sample a single value from this Gaussian with sampled standard deviation centered around the true value Args: min_team_size (int): minimum size of a group of agents with non-zero reward sharing amounts max_team_size (int): maximum size of a group of agents with non-zero reward sharing amounts alpha (float): reward sharing beta distribution parameter beta (float): reward sharing beta distribution parameter allow_diagonal_non_1 (bool): if True then diagonal elements of the reward sharing matrix (an agents weight over its own reward) can be less than 1 (sampled from the same beta distribution as for other relationships) obs_noise_std_range (tuple of float): Range (maximum and minimum) that noise standard deviation can be sampled from. ''' @store_args def __init__(self, *, # Prosociality Graph min_team_size: int = 1, max_team_size: int = 1, alpha: float = 1.0, beta: float = 1.0, allow_diagonal_non_1: bool = True, # Uncertainty obs_noise_std_range: Tuple[float] = [0.0, 1.0], **kwargs): assert min_team_size >= 1 assert max_team_size >= 1 assert max_team_size >= min_team_size assert alpha > 0 assert beta > 0 assert np.all(np.array(obs_noise_std_range) >= 0) self.cached_partitions = {} # Keys are (n_agents, min_team_size, max_team_size) def _partition_agents(self, n_agents, min_team_size, max_team_size): ''' Return a random partition from the set of all integer partitions ''' settings = (n_agents, min_team_size, max_team_size) if settings not in self.cached_partitions: self.cached_partitions[settings] = list(get_all_integer_partitions(n_agents, min_team_size, max_team_size)) all_partitions = self.cached_partitions[settings] random_partitions = all_partitions[np.random.randint(len(all_partitions))] return random_partitions def _generate_social_preferences(self, n_agents): ''' Generate the relationship graph (without uncertainty) ''' # Generate random partitions if self.max_team_size != self.min_team_size: random_partitions = self._partition_agents(n_agents, self.min_team_size, self.max_team_size) else: random_partitions = np.random.randint(self.min_team_size, self.max_team_size + 1, (n_agents)) random_partitions = np.cumsum(random_partitions) random_partitions = random_partitions[random_partitions <= n_agents] random_partitions = np.concatenate([[0], random_partitions, [n_agents]]) # Convert random partitions into a block diagonal matrix self.reward_xform_mat = np.zeros((n_agents, n_agents)) for i in range(len(random_partitions) - 1): block = slice(random_partitions[i], random_partitions[i + 1]) self.reward_xform_mat[block, block] = 1 # Randomize reward sharing values in block diagonal matrix self.reward_xform_mat *= np.random.beta(a=self.alpha, b=self.beta, size=(n_agents, n_agents)) # Make sure off-diagonal is symmetric self.reward_xform_mat = np.tril(self.reward_xform_mat, -1) + np.tril(self.reward_xform_mat).T if not self.allow_diagonal_non_1: np.fill_diagonal(self.reward_xform_mat, 1.0) # Randomly shuffle agents so that agent indicies do not matter random_shuffle_mat =
np.eye(n_agents)
numpy.eye
import copy import logging import numpy as np import torch from torch import nn from torch.utils.data import DataLoader from utils.toolkit import tensor2numpy, accuracy from scipy.spatial.distance import cdist EPSILON = 1e-8 batch_size = 64 class BaseLearner(object): def __init__(self, args): self._cur_task = -1 self._known_classes = 0 self._total_classes = 0 self._network = None self._old_network = None self._data_memory, self._targets_memory = np.array([]), np.array([]) self.topk = 5 self._memory_size = args['memory_size'] self._memory_per_class = args['memory_per_class'] self._fixed_memory = args['fixed_memory'] self._device = args['device'] self._multiple_gpus = [args['device']] @property def exemplar_size(self): assert len(self._data_memory) == len(self._targets_memory), 'Exemplar size error.' return len(self._targets_memory) @property def samples_per_class(self): if self._fixed_memory: return self._memory_per_class else: assert self._total_classes != 0, 'Total classes is 0' return (self._memory_size // self._total_classes) @property def feature_dim(self): if isinstance(self._network, nn.DataParallel): return self._network.module.feature_dim else: return self._network.feature_dim def build_rehearsal_memory(self, data_manager, per_class): if self._fixed_memory: self._construct_exemplar_unified(data_manager, per_class) else: self._reduce_exemplar(data_manager, per_class) self._construct_exemplar(data_manager, per_class) def save_checkpoint(self, filename): self._network.cpu() save_dict = { 'tasks': self._cur_task, 'model_state_dict': self._network.state_dict(), } torch.save(save_dict, '{}_{}.pkl'.format(filename, self._cur_task)) def after_task(self): pass def _evaluate(self, y_pred, y_true): ret = {} grouped = accuracy(y_pred.T[0], y_true, self._known_classes) ret['grouped'] = grouped ret['top1'] = grouped['total'] ret['top{}'.format(self.topk)] = np.around((y_pred.T == np.tile(y_true, (self.topk, 1))).sum()*100/len(y_true), decimals=2) return ret def eval_task(self): y_pred, y_true = self._eval_cnn(self.test_loader) cnn_accy = self._evaluate(y_pred, y_true) if hasattr(self, '_class_means'): y_pred, y_true = self._eval_nme(self.test_loader, self._class_means) nme_accy = self._evaluate(y_pred, y_true) else: nme_accy = None return cnn_accy, nme_accy def incremental_train(self): pass def _train(self): pass def _get_memory(self): if len(self._data_memory) == 0: return None else: return (self._data_memory, self._targets_memory) def _compute_accuracy(self, model, loader): model.eval() correct, total = 0, 0 for i, (_, inputs, targets) in enumerate(loader): inputs = inputs.to(self._device) with torch.no_grad(): outputs = model(inputs)['logits'] predicts = torch.max(outputs, dim=1)[1] correct += (predicts.cpu() == targets).sum() total += len(targets) return np.around(tensor2numpy(correct)*100 / total, decimals=2) def _eval_cnn(self, loader): self._network.eval() y_pred, y_true = [], [] for _, (_, inputs, targets) in enumerate(loader): inputs = inputs.to(self._device) with torch.no_grad(): outputs = self._network(inputs)['logits'] predicts = torch.topk(outputs, k=self.topk, dim=1, largest=True, sorted=True)[1] # [bs, topk] y_pred.append(predicts.cpu().numpy()) y_true.append(targets.cpu().numpy()) return np.concatenate(y_pred), np.concatenate(y_true) # [N, topk] def _eval_nme(self, loader, class_means): self._network.eval() vectors, y_true = self._extract_vectors(loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T dists = cdist(class_means, vectors, 'sqeuclidean') # [nb_classes, N] scores = dists.T # [N, nb_classes], choose the one with the smallest distance return np.argsort(scores, axis=1)[:, :self.topk], y_true # [N, topk] def _extract_vectors(self, loader): self._network.eval() vectors, targets = [], [] for _, _inputs, _targets in loader: _targets = _targets.numpy() if isinstance(self._network, nn.DataParallel): _vectors = tensor2numpy(self._network.module.extract_vector(_inputs.to(self._device))) else: _vectors = tensor2numpy(self._network.extract_vector(_inputs.to(self._device))) vectors.append(_vectors) targets.append(_targets) return np.concatenate(vectors), np.concatenate(targets) def _reduce_exemplar(self, data_manager, m): logging.info('Reducing exemplars...({} per classes)'.format(m)) dummy_data, dummy_targets = copy.deepcopy(self._data_memory), copy.deepcopy(self._targets_memory) self._class_means = np.zeros((self._total_classes, self.feature_dim)) self._data_memory, self._targets_memory = np.array([]), np.array([]) for class_idx in range(self._known_classes): mask = np.where(dummy_targets == class_idx)[0] dd, dt = dummy_data[mask][:m], dummy_targets[mask][:m] self._data_memory = np.concatenate((self._data_memory, dd)) if len(self._data_memory) != 0 else dd self._targets_memory = np.concatenate((self._targets_memory, dt)) if len(self._targets_memory) != 0 else dt # Exemplar mean idx_dataset = data_manager.get_dataset([], source='train', mode='test', appendent=(dd, dt)) idx_loader = DataLoader(idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4) vectors, _ = self._extract_vectors(idx_loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T mean = np.mean(vectors, axis=0) mean = mean / np.linalg.norm(mean) self._class_means[class_idx, :] = mean def _construct_exemplar(self, data_manager, m): logging.info('Constructing exemplars...({} per classes)'.format(m)) for class_idx in range(self._known_classes, self._total_classes): data, targets, idx_dataset = data_manager.get_dataset(np.arange(class_idx, class_idx+1), source='train', mode='test', ret_data=True) idx_loader = DataLoader(idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4) vectors, _ = self._extract_vectors(idx_loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T class_mean = np.mean(vectors, axis=0) # Select selected_exemplars = [] exemplar_vectors = [] # [n, feature_dim] for k in range(1, m+1): S = np.sum(exemplar_vectors, axis=0) # [feature_dim] sum of selected exemplars vectors mu_p = (vectors + S) / k # [n, feature_dim] sum to all vectors i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1))) selected_exemplars.append(np.array(data[i])) # New object to avoid passing by inference exemplar_vectors.append(np.array(vectors[i])) # New object to avoid passing by inference vectors = np.delete(vectors, i, axis=0) # Remove it to avoid duplicative selection data = np.delete(data, i, axis=0) # Remove it to avoid duplicative selection # uniques = np.unique(selected_exemplars, axis=0) # print('Unique elements: {}'.format(len(uniques))) selected_exemplars = np.array(selected_exemplars) exemplar_targets = np.full(m, class_idx) self._data_memory = np.concatenate((self._data_memory, selected_exemplars)) if len(self._data_memory) != 0 \ else selected_exemplars self._targets_memory = np.concatenate((self._targets_memory, exemplar_targets)) if \ len(self._targets_memory) != 0 else exemplar_targets # Exemplar mean idx_dataset = data_manager.get_dataset([], source='train', mode='test', appendent=(selected_exemplars, exemplar_targets)) idx_loader = DataLoader(idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4) vectors, _ = self._extract_vectors(idx_loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T mean = np.mean(vectors, axis=0) mean = mean / np.linalg.norm(mean) self._class_means[class_idx, :] = mean def _construct_exemplar_unified(self, data_manager, m): logging.info('Constructing exemplars for new classes...({} per classes)'.format(m)) _class_means = np.zeros((self._total_classes, self.feature_dim)) # Calculate the means of old classes with newly trained network for class_idx in range(self._known_classes): mask = np.where(self._targets_memory == class_idx)[0] class_data, class_targets = self._data_memory[mask], self._targets_memory[mask] class_dset = data_manager.get_dataset([], source='train', mode='test', appendent=(class_data, class_targets)) class_loader = DataLoader(class_dset, batch_size=batch_size, shuffle=False, num_workers=4) vectors, _ = self._extract_vectors(class_loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T mean = np.mean(vectors, axis=0) mean = mean / np.linalg.norm(mean) _class_means[class_idx, :] = mean # Construct exemplars for new classes and calculate the means for class_idx in range(self._known_classes, self._total_classes): data, targets, class_dset = data_manager.get_dataset(np.arange(class_idx, class_idx+1), source='train', mode='test', ret_data=True) class_loader = DataLoader(class_dset, batch_size=batch_size, shuffle=False, num_workers=4) vectors, _ = self._extract_vectors(class_loader) vectors = (vectors.T / (
np.linalg.norm(vectors.T, axis=0)
numpy.linalg.norm
""" csalt_models.py Usage: - import modules Outputs: - various """ import os, sys import numpy as np from astropy.io import fits from vis_sample import vis_sample from scipy.ndimage import convolve1d from scipy.interpolate import interp1d from vis_sample.classes import * from simple_disk import simple_disk import const as const import matplotlib.pyplot as plt def cube_parser(pars, FOV=8, Npix=128, dist=150, r_min=0, r_max=500, r0=10, RA=240, DEC=-40, restfreq=230.538e9, Vsys=0, vel=None, datafile=None, outfile=None): ### Generate a model disk disk = simple_disk(pars[0], pars[1], x0=0, y0=0, dist=dist, mstar=pars[2], r_min=r_min, r_max=r_max, r0=r0, r_l=pars[3], z0=pars[4], zpsi=pars[5], zphi=np.inf, Tb0=pars[6], Tbq=pars[7], Tbeps=np.inf, Tbmax=1000, Tbmax_b=pars[8], tau0=1000, tauq=0, taueta=np.inf, taumax=5000, dV0=pars[9], dVq=0.5*pars[7], dVmax=1000, FOV=FOV, Npix=Npix) ### Set velocities for cube (either use the channels in an already-existing ### cube from a .FITS file, or use the provided values) if datafile is not None: hd = fits.open(datafile)[0].header f0, ix, nf, df = hd['CRVAL4'], hd['CRPIX4'], hd['NAXIS4'], hd['CDELT4'] freqs = f0 + (np.arange(nf) - ix + 1) * df vel = const.c_ * (1 - freqs / restfreq) else: freqs = restfreq * (1 - vel / const.c_) # adjust for systemic velocity vlsr = vel - Vsys ### Generate the spectral line cube cube = disk.get_cube(vlsr) # convert from brightness temperatures to Jy / pixel pixel_area = (disk.cell_sky * np.pi / (180 * 3600))**2 for i in range(len(freqs)): cube[i,:,:] *= 1e26 * pixel_area * 2 * freqs[i]**2 * \ const.k_ / const.c_**2 ### Prepare the output: either into the specified .FITS file or into a ### vis_sample "SKY OBJECT". if outfile is not None: hdu = fits.PrimaryHDU(cube[:,::-1,:]) header = hdu.header # basic header inputs header['EPOCH'] = 2000. header['EQUINOX'] = 2000. header['LATPOLE'] = -1.436915713634E+01 header['LONPOLE'] = 180. # spatial coordinates header['CTYPE1'] = 'RA---SIN' header['CUNIT1'] = 'DEG' header['CDELT1'] = -disk.cell_sky / 3600. header['CRPIX1'] = 0.5 * disk.Npix + 0.5 header['CRVAL1'] = RA header['CTYPE2'] = 'DEC--SIN' header['CUNIT2'] = 'DEG' header['CDELT2'] = disk.cell_sky / 3600. header['CRPIX2'] = 0.5 * disk.Npix + 0.5 header['CRVAL2'] = DEC # frequency coordinates header['CTYPE3'] = 'FREQ' header['CUNIT3'] = 'Hz' header['CRPIX3'] = 1. header['CDELT3'] = freqs[1]-freqs[0] header['CRVAL3'] = freqs[0] header['SPECSYS'] = 'LSRK' header['VELREF'] = 257 # intensity units header['BSCALE'] = 1. header['BZERO'] = 0. header['BUNIT'] = 'JY/PIXEL' header['BTYPE'] = 'Intensity' # output FITS hdu.writeto(outfile, overwrite=True) return cube[:,::-1,:] # otherwise, return a vis_sample SkyObject else: # adjust cube formatting mod_data = np.rollaxis(cube[:,::-1,:], 0, 3) # spatial coordinates npix_ra = disk.Npix mid_pix_ra = 0.5 * disk.Npix + 0.5 delt_ra = -disk.cell_sky / 3600 if (delt_ra < 0): mod_data = np.fliplr(mod_data) mod_ra = (np.arange(npix_ra) - (mid_pix_ra-0.5))*np.abs(delt_ra)*3600 npix_dec = disk.Npix mid_pix_dec = 0.5 * disk.Npix + 0.5 delt_dec = disk.cell_sky / 3600 if (delt_dec < 0): mod_data = np.flipud(mod_data) mod_dec = (np.arange(npix_dec)-(mid_pix_dec-0.5))*np.abs(delt_dec)*3600 # spectral coordinates try: nchan_freq = len(freqs) mid_chan_freq = freqs[0] mid_chan = 1 delt_freq = freqs[1] - freqs[0] mod_freqs = (np.arange(nchan_freq)-(mid_chan-1))*delt_freq + \ mid_chan_freq except: mod_freqs = [0] # return a vis_sample SkyImage object return SkyImage(mod_data, mod_ra, mod_dec, mod_freqs, None) def vismodel_full(pars, fixed, dataset, chpad=3, oversample=None, noise_inject=None): ### - Prepare inputs # Parse fixed parameters restfreq, FOV, Npix, dist, rmax = fixed npars = len(pars) # Spatial frequencies to lambda units uu = dataset.um * np.mean(dataset.nu_TOPO) / const.c_ vv = dataset.vm * np.mean(dataset.nu_TOPO) / const.c_ # Pad the frequency arrays dnu_TOPO = np.diff(dataset.nu_TOPO)[0] nu_TOPO_s = dataset.nu_TOPO[0] + dnu_TOPO * np.arange(-chpad, 0, 1) nu_TOPO_f = dataset.nu_TOPO[-1] + dnu_TOPO * np.arange(1, chpad+1, 1) dataset.nu_TOPO = np.concatenate((nu_TOPO_s, dataset.nu_TOPO, nu_TOPO_f)) dnu_LSRK = np.diff(dataset.nu_LSRK, axis=1)[:,0] nu_LSRK_s = (dataset.nu_LSRK[:,0])[:,None] + \ dnu_LSRK[:,None] * np.arange(-chpad, 0, 1)[None,:] nu_LSRK_f = (dataset.nu_LSRK[:,-1])[:,None] + \ dnu_LSRK[:,None] * np.arange(1, chpad+1, 1)[None,:] dataset.nu_LSRK = np.concatenate((nu_LSRK_s, dataset.nu_LSRK, nu_LSRK_f), axis=1) # Upsample in the spectral domain (if necessary) if oversample is not None: nchan = dataset.nchan + 2 * chpad nu_TOPO = np.interp(np.arange((nchan-1) * oversample + 1), np.arange(0, nchan * oversample, oversample), dataset.nu_TOPO) nch = len(nu_TOPO) nu_LSRK = np.empty((dataset.nstamps, nch)) for itime in range(dataset.nstamps): nu_LSRK[itime,:] = np.interp(np.arange((nchan-1) * oversample + 1), np.arange(0, nchan*oversample, oversample), dataset.nu_LSRK[itime,:]) else: nu_TOPO = dataset.nu_TOPO nu_LSRK = dataset.nu_LSRK nch = len(nu_TOPO) oversample = 1 # LSRK velocities v_LSRK = const.c_ * (1 - nu_LSRK / restfreq) ### - Configure noise (if necessary) if noise_inject is not None: # Scale input RMS for desired (naturally-weighted) noise per vis-chan sigma_out = 1e-3 * noise_inject * np.sqrt(dataset.npol * dataset.nvis) # Scale to account for spectral oversampling and SRF convolution sigma_noise = sigma_out * np.sqrt(np.pi * oversample) # Random Gaussian noise draws: note RE/IM separated for speed later noise = np.random.normal(0, sigma_noise, (dataset.npol, nch, dataset.nvis, 2)) noise = np.squeeze(noise) ### - Compute the model visibilities # Loop through timestamps to get raw (sky) visibilities mvis_pure = np.squeeze(np.empty((dataset.npol, nch, dataset.nvis, 2))) for itime in range(dataset.nstamps): # track the steps print('timestamp '+str(itime+1)+' / '+str(dataset.nstamps)) # create a model cube cube = cube_parser(pars[:npars-3], FOV=FOV, Npix=Npix, dist=dist, r_max=rmax, Vsys=pars[10], vel=v_LSRK[itime,:], restfreq=restfreq) # indices for this timestamp only ixl = np.min(np.where(dataset.tstamp == itime)) ixh = np.max(np.where(dataset.tstamp == itime)) + 1 # sample it's Fourier transform on the template (u,v) spacings mvis = vis_sample(imagefile=cube, uu=uu[ixl:ixh], vv=vv[ixl:ixh], mu_RA=pars[11], mu_DEC=pars[12], mod_interp=False).T # populate the results in the output array *for this timestamp only* mvis_pure[0,:,ixl:ixh,0] = mvis.real mvis_pure[1,:,ixl:ixh,0] = mvis.real mvis_pure[0,:,ixl:ixh,1] = mvis.imag mvis_pure[1,:,ixl:ixh,1] = mvis.imag # Convolve with the spectral response function chix = np.arange(nch) / oversample xch = chix - np.mean(chix) SRF = 0.5 * np.sinc(xch) + 0.25 * np.sinc(xch-1) + 0.25 * np.sinc(xch+1) mvis_pure = convolve1d(mvis_pure, SRF/np.sum(SRF), axis=1, mode='nearest') # Return decimated visibilities, with noise if necessary if noise_inject is None: # Decimate and remove padding mvis_pure = mvis_pure[:,::oversample,:,:] mvis_pure = mvis_pure[:,chpad:-chpad,:,:] # Convert to complex and return return mvis_pure[:,:,:,0] + 1j * mvis_pure[:,:,:,1] else: # SRF convolution of noisy data mvis_noisy = convolve1d(mvis_pure + noise, SRF/np.sum(SRF), axis=1, mode='nearest') # Decimate mvis_pure = mvis_pure[:,::oversample,:,:] mvis_pure = mvis_pure[:,chpad:-chpad,:,:] mvis_noisy = mvis_noisy[:,::oversample,:,:] mvis_noisy = mvis_noisy[:,chpad:-chpad,:,:] # Convert to complex mvis_pure = mvis_pure[:,:,:,0] + 1j * mvis_pure[:,:,:,1] mvis_noisy = mvis_noisy[:,:,:,0] + 1j * mvis_noisy[:,:,:,1] return mvis_pure, mvis_noisy def vismodel_def(pars, fixed, dataset, imethod='cubic', return_holders=False, chpad=3): ### - Prepare inputs # Parse fixed parameters restfreq, FOV, Npix, dist, rmax = fixed npars = len(pars) # Spatial frequencies to lambda units uu = dataset.um * np.mean(dataset.nu_TOPO) / const.c_ vv = dataset.vm * np.mean(dataset.nu_TOPO) / const.c_ # Pad the frequency arrays dnu_TOPO = np.diff(dataset.nu_TOPO)[0] nu_TOPO_s = dataset.nu_TOPO[0] + dnu_TOPO * np.arange(-chpad, 0, 1) nu_TOPO_f = dataset.nu_TOPO[-1] + dnu_TOPO * np.arange(1, chpad+1, 1) nu_TOPO = np.concatenate((nu_TOPO_s, dataset.nu_TOPO, nu_TOPO_f)) dnu_LSRK = np.diff(dataset.nu_LSRK, axis=1)[:,0] nu_LSRK_s = (dataset.nu_LSRK[:,0])[:,None] + \ dnu_LSRK[:,None] * np.arange(-chpad, 0, 1)[None,:] nu_LSRK_f = (dataset.nu_LSRK[:,-1])[:,None] + \ dnu_LSRK[:,None] *
np.arange(1, chpad+1, 1)
numpy.arange
import numpy as np ### MEASURES # pureDP pure epsilon-DP # approxDP approximate (epsilon, delta)-DP # zCDP zero concentrated (xi, rho)-zCDP renyi divergence for all alpha # smoothedzCDP approximate zero conc (xi, rho, delta)-zCDP the delta is equivalent to approxDP # renyiDP renyi (alpha, epsilon')-RDP ### COMPOSITION # composition_[measure]_[static|dynamic]_[homo|hetero]_[name] # "static" when the choice of distances is fixed up-front # "dynamic" when the choice of parameters is chosen adaptively # "hetero" for heterogeneous, where each epsilon_i and delta_i may vary # "homo" for homogeneous, where all k queries share the same `distance_0`. # Omitted if a trivial simplification of heterogeneous composition def composition_approxDP_static_hetero_basic(distance_is): """apply composition on `distance_is`, a list of individual distances :param distance_is: a list of (epsilon, delta), or ndarray of shape [k, 2] """ epsilon_is, delta_is = zip(*distance_is) return sum(epsilon_is), sum(delta_is) def composition_approxDP_static_homo_advanced(distance_0, k, delta_p): """apply composition on `distance_0` in k-folds "advanced" composition from Theorem 3.3 in https://guyrothblum.files.wordpress.com/2014/11/drv10.pdf Sometimes also referred to as "strong" composition. :param distance_0: per-query epsilon, delta :param k: how many folds, number of queries :param delta_p: how much additional delta to add, beyond basic composition of `delta_0` :returns global (epsilon, delta) of k-fold composition of a (epsilon_0, delta_0)-DP mechanism """ epsilon_0, delta_0 = distance_0 epsilon_g = np.sqrt(2 * k * np.log(1 / delta_p)) * epsilon_0 + k * epsilon_0 * ( np.exp(epsilon_0) - 1 ) delta_g = delta_0 * k + delta_p return epsilon_g, delta_g def composition_approxDP_static_homo_optimal_analytic(distance_0, k, delta_p): """apply composition on `distance_0` in k-folds "optimal" composition from KOV15 "analytic" because this is the looser closed form expression in Theorem 3.5: https://arxiv.org/pdf/1311.0776.pdf#subsection.3.3 :param distance_0: (epsilon, delta) :param delta_p: p as in prime. Slack term for delta. Allows for nontrivial epsilon composition """ eps_0, del_0 = distance_0 bound1 = k * eps_0 bound2 = k * eps_0**2 + eps_0 * np.sqrt( 2 * k * np.log(np.exp(1) + np.sqrt(k * eps_0**2) * delta_p) ) bound3 = k * eps_0**2 + eps_0 * np.sqrt(2 * k * np.log(1 / delta_p)) # Corresponds to Theorem 3.5 in KOV15. Ignoring nan. epsilon = np.nanmin([bound1, bound2, bound3]) delta = 1 - (1 - delta_p) * (1 - del_0) ** k return epsilon, delta def composition_approxDP_static_hetero_optimal_analytic(distance_is, delta_p): """Find the (epsilon, delta) composition of `distances_is`. "optimal" composition from KOV15 "analytic" because this is the looser closed form expression in Theorem 3.5: https://arxiv.org/pdf/1311.0776.pdf#subsection.3.3 :param distance_is: a list of (epsilon, delta), or ndarray of shape [k, 2] :param delta_p: slack term for delta. Allows for tighter composition on epsilons """ epsilon_is, delta_is = np.array(distance_is).T sum_of_squares = (epsilon_is**2).sum() first_term = sum(ep * (np.exp(ep) - 1) / (np.exp(ep) + 1) for ep in epsilon_is) # want to find the smallest of three bounds bound1 = sum(epsilon_is) bound2 = first_term + np.sqrt( (2 * np.log(np.exp(1) + (np.sqrt(sum_of_squares) / delta_p))) * sum_of_squares ) bound3 = first_term + np.sqrt(2 * np.log(1 / delta_p) * sum_of_squares) # Corresponds to Theorem 3.5 in KOV15. Ignoring nan. epsilon = np.nanmin([bound1, bound2, bound3]) delta = 1 - (1 - delta_p) *
np.prod(1 - delta_is)
numpy.prod
import numpy as np from skimage.color.rgb_colors import * from skimage import draw from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def angle_diff(a1, a2): a1 = a1%180 a2 = a2%180 return abs(min(a1 - a2, 180 - abs(a1 - a2))) def line_coords(img, sym, angle_bins, drange=10, arange=2, num_lines=1): img = img[:,:,0:3] #sym = sym.copy() lines = [] for i in range(num_lines): r, t = np.unravel_index(np.argmax(sym), sym.shape) #print(r,t) #print('r = ', r, 't = ', t) offset = sym.shape[0]/2 line = InfLine(r - offset, angle_bins[t], img) lines.append(line) dmin = np.clip(r - drange - 1, 0, sym.shape[0]) dmax = np.clip(r + drange + 1, 0, sym.shape[0]) amin = np.clip(t - arange - 1, 0, sym.shape[1]) amax = np.clip(t + arange + 1, 0, sym.shape[1]) # fig = plt.figure() # ax = fig.gca(projection='3d') # x = np.arange(0, sym.shape[0]) # y = np.arange(0, sym.shape[1]) # xx, yy = np.meshgrid(y, x) # surf = ax.plot_surface(xx, yy, sym, rstride=1, cstride=1, linewidth=0, antialiased=False) # plt.show() sym[dmin:dmax, amin:amax] = 0 return lines def dist_point_line(x,y,x1,y1,x2,y2): if y1 == y2: return y - y1 elif x1 == x2: return x - x1 else: #m = float(y2 - y1)/(x2 - x1) #c = y1 - m*x1 #dist = (y - m*x -c)/np.sqrt(1 + m*m) num = (y2 - y1)*x - (x2 - x1)*y + x2*y1 - y2*x1 den = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) return abs(num/den) class Line(object): def __init__(self, x1, y1, x2, y2): self.x1 = x1 self.x2 = x2 self.y1 = y1 self.y2 = y2 self.cx = (x1 + x2)/2 self.cy = (y1 + y2)/2 self.angle = np.arctan2(y1 - y2, x1 - x2) self.angle = self.angle%np.pi self.len =
np.hypot(y1 - y2, x1 - x2)
numpy.hypot
# -*- coding: utf-8 -*- from __future__ import print_function import numpy as np from scipy.integrate import ode, odeint import scipy.optimize as optimize from ipydex import IPS class Simulator(object): """ This class simulates the initial value problem that results from solving the boundary value problem of the control system. See __init__ for details. """ def __init__(self, ff, T, x_start, x_col_fnc, u_col_fnc, z_par=None, dt=0.01, mpc_flag=False): """ :param ff: vectorfield function :param T: end Time :param x_start: initial state :param x_col_fnc: state function u(t) :param u_col_fnc: input function u(t) :param dt: """ self.ff = ff self.T = T self.x_start = x_start self.mpc_flag = mpc_flag # x and u from collocation self.x_col_fnc = x_col_fnc # ##:: self.eqs.trajectories.x self.u_col_fnc = u_col_fnc # ##:: self.eqs.trajectories.u self.dt = dt # this is where the solutions go self.xt = [] self.ut = [] self.nu = len(np.atleast_1d(self.u_col_fnc(0))) # save optimal u values for each dt-step self.mpc_cache = {} # handle absence of additional free parameters if z_par is None: z_par = [] self.pt = z_par # time steps self.t = [] # get the values at t=0 self.xt.append(x_start) self.ut.append(self.u_col_fnc(0.0)) ##:: array([ 0.]) self.t.append(0.0) # initialise our ode solver self.solver = ode(self.rhs) self.solver.set_initial_value(x_start) self.solver.set_integrator('vode', method='adams', rtol=1e-6) # self.solver.set_integrator('lsoda', rtol=1e-6) # self.solver.set_integrator('dop853', rtol=1e-6) def calc_input(self, t): if self.mpc_flag: u = self.u_col_fnc(t) + self.mpc_corrector(t) else: u = self.u_col_fnc(t) return u def rhs(self, t, x): """ Retruns the right hand side (vector field) of the ode system. """ u = self.calc_input(t) p = self.pt dx = self.ff(x, u, t, p) return dx def calcstep(self): """ Calculates one step of the simulation. """ x = list(self.solver.integrate(self.solver.t + self.dt)) t = round(self.solver.t, 5) if 0 <= t <= self.T: self.xt.append(x) self.ut.append(self.calc_input(t)) self.t.append(t) return t, x def simulate(self): """ Starts the simulation Returns ------- List of numpy arrays with time steps and simulation data of system and input variables. """ t = 0 while t <= self.T: t, y = self.calcstep() self.ut = np.array(self.ut).reshape(-1, self.nu) return [np.array(self.t), np.array(self.xt), np.array(self.ut)] def mpc_corrector(self, t): """ calculate a (hopefully small) correction of the u-signal from collocation to force the state x back to the reference (also from collocation). Motivation: In the case of unstable systems error between x_col and x_sim grows exponentially. This should be mitigated by adapting u appropriately :param t: :return: """ n_state = len(self.x_start) n_input = len(self.u_col_fnc(0)) N = n_state u0 =
np.zeros(N + 1)
numpy.zeros
import numpy as np from numpy.testing._private.utils import assert_array_max_ulp from scipy import integrate import scipy.linalg import scipy from . import bibo import matplotlib.pyplot as plt class LTI(): """main object #dimension: ndim of state,input and output vector Raises: assert: [description] ValueError: [description] ValueError: [description] Returns: [type]: [description] """ bibo_result = { -1 : "System is not stable", 0 : "Unable to conclude about system's stability", 1 : "System is stable" } def __init__(self,**kwargs): """constructor of LTI system. LTI has some follwing basic attributes: Args: expected keyword for constructor method A : system matrix, if not provide, raise assert error B : input matrix, if not provide, B is None C : output matrix, if not provide, C is None D : input matrix, if not provide, D is None """ assert "A" in kwargs, "matrix A must be provided" A = kwargs.get('A') B = kwargs.get('B') C = kwargs.get('C') D = kwargs.get('D') self.Nx = kwargs.get('Nx') self.Nx = kwargs.get('Ny') for i in ['A','B','C','D']: if kwargs.get(i) is not None: assert isinstance(kwargs.get(i),np.ndarray), f"Invalid data type of {i}" assert kwargs.get(i).ndim==2, f'Invlid ndim of matrix {i}, {i}.ndim must be 2' if B is not None: assert A.shape[0] == A.shape[1] and A.shape[0] ==B.shape[0] , f'Invalid shape of matrix A,B, \n A.shape ={A.shape} and B.shape={B.shape}' self._inputs_shape = B.shape[1] self._A = A self._B = B self._C = C self._D = D self._states_shape = A.shape[0] if C is not None: self._outputs_shape = C.shape[0] #input_function = kwargs.get('u') #self._x0 = kwargs.get('x0') #if self._x0 is not None: # self._x0 = self._x0.reshape(-1,1) self._max_step = kwargs.get('max_step') @property def states_shape(self,) -> int: return self._states_shape @property def inputs_shape(self,) -> int: if hasattr(self,'_inputs_shape'): return self._inputs_shape else: return None @property def outputs_shape(self,) -> int: if hasattr(self,'_outputs_shape'): return self._outputs_shape else: return None @property def max_step(self): return self._max_step @property def A(self,): return self._A @property def B(self,): return self._B @property def C(self,): return self._C @property def D(self): return self._D @property def dimension(self,) -> list: """An attributes of system Returns: list: got the length 3, dimention of """ return self.states_shape, self.inputs_shape, self.outputs_shape def eigvals(self): """Compute the eigen values of system matrix (matrix A) Returns: [np.ndarray]: [1D array of eigvalues] """ return scipy.linalg.eigvals(self._A) def is_stable(self,algorimth='hurwitz', **kwagrs) -> int: """[Compute the stability of system] Args: algorimth (str, optional): [select the algorithms to determine stability of system ]. Defaults to 'hurwitz'. Returns: int: 1 - if system is stable 0 - if selected algorithms can't conclude about stability of system -1 - if system is unstable """ assert algorimth in ["gerschgorin","lyapunov" ,"hurwitz"], f"Invalid algorithm, must be \ in ['gerschgorin','lyapunov' ,'hurwitz']" if algorimth=='gerschgorin': #Gerschgorin std = bibo.Gerschgorin(self._A) result = std.conclusion() print(LTI.bibo_result[result]) return result if algorimth=='lyapunov': P = kwagrs.get('P') Q = kwagrs.get('Q') std = bibo.Lyapunov(A=self._A, P=P, Q=Q) result = std.conclusion() print(LTI.bibo_result[result]) return result if algorimth=='hurwitz': std = bibo.Hurwitz(A=self._A) result = std.conclusion() print(LTI.bibo_result[result]) return result def is_controlable(self,algorimth='kalman', **kwagrs) -> bool: """Determine the controllability of system. Args: algorimth (str, optional): select the algorithms to determine controllability of system. Defaults to 'kalman'. Raises: ValueError: if the input matrix (matrix B) not found Returns: bool: True if system is controlalbe """ if self._B is None: raise ValueError('please provide B matrix') A = self._A B = self._B M = B ndim = self._states_shape if ndim==1: if np.linalg.matrix_rank(B) == 1: return True else: return False X = A @ B M = np.hstack([M,X]) for i in range(ndim-2): X = A @ X M = np.hstack([M,X]) if np.linalg.matrix_rank(M)==ndim: return True else: return False def is_observable(self,algorimth='kalman') -> bool: """Determine the observability of system. Args: algorimth (str, optional): select the algorithms to determine observability of system. Defaults to 'kalman'. Raises: ValueError: if the output matrix (matrix C) not found Returns: bool: True is system is observable """ #assert self._C is not None, 'please fill matrix C to calculate observability' if self._C is None: raise ValueError('please provide C matrix') A = self._A C = self._C M = C ndim = self._states_shape if ndim==1: if
np.linalg.matrix_rank(C)
numpy.linalg.matrix_rank
import matplotlib.pyplot as plt import numpy as np import math import scipy as sp from scipy.io.wavfile import read def file_normalize(audio): # return (audio / 128.) - 1 return audio # Reads a WAV file and returns the sampling rate and audio as a numpy array def file_read(filepath): fs, x = read(filepath) return fs, x # Returns a 2-D array of the audio signal blocked according to block size and hop size def block_audio(x, blockSize, hopSize, fs): """ Sample audio blocking code from Alex """ # allocate memory numBlocks = int(np.ceil(x.size / hopSize)) xb = np.zeros([numBlocks, blockSize]) # compute time stamps t = (np.arange(0, numBlocks) * hopSize) / fs x = np.concatenate((x, np.zeros(blockSize)), axis=0) for n in range(0, numBlocks): i_start = n * hopSize i_stop = np.min([x.size - 1, i_start + blockSize - 1]) xb[n][np.arange(0, blockSize)] = x[np.arange(i_start, i_stop + 1)] return xb, t # Apply Von-Hann window def compute_hann(iWindowLength): """ Sample compute hann window code from Alex """ return 0.5 - (0.5 * np.cos(2 * np.pi / iWindowLength * np.arange(iWindowLength))) # Computes the Short Time Fourier Transform def compute_stft(xb, fs, block_size, hop_size): numBlocks = xb.shape[0] afWindow = compute_hann(xb.shape[1]) X = np.zeros([math.ceil(xb.shape[1] / 2 + 1), numBlocks]) for n in range(0, numBlocks): # apply window tmp = abs(sp.ifft(xb[n, :] * afWindow)) * 2 / xb.shape[1] # compute magnitude spectrum X[:, n] = tmp[range(math.ceil(tmp.size / 2 + 1))] X[[0, math.ceil(tmp.size / 2)], n] = X[[0, math.ceil(tmp.size / 2)], n] / np.sqrt(2) return X, fs # Computes the Harmonic Product Spectrum from the DFT of the blocked audio signal def HPS(X, fs, order): freqRange = int((len(X[0]) - 1) / order) # print len(X) # print X.shape f0 = np.zeros((1, len(X))) hps = np.zeros((len(X), freqRange)) freqSpread = np.linspace(0, fs / 2, len(X[0])) for h in range(len(X)): for i in range(freqRange): multiplier = 1 for j in range(1, order + 1): multiplier = multiplier * (X[h, i * j]) hps[h, i] = multiplier if max(hps[h, :]) > 10 ** 10: hps[h, :] = hps[h, :] / max(hps[h, :]) return hps # Computes the pitch class profile (chromagram) from the HPS obtained earlier def extract_pitch_chroma(X, fs, tfInHz, baseline_ver = 1): if baseline_ver == 1: Y =
np.abs(X)
numpy.abs
# -*- coding: utf-8 -*- ################################################################ # The contents of this file are subject to the BSD 3Clause (New) License # you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://directory.fsf.org/wiki/License:BSD_3Clause # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the # License for the specific language governing rights and limitations # under the License. # The Original Code is part of the PyRadi toolkit. # The Initial Developer of the Original Code is <NAME>, # Portions created by <NAME> are Copyright (C) 2006-2012 # All Rights Reserved. # Contributor(s): ______________________________________. ################################################################ """ This module provides various utility functions for radiometry calculations. Functions are provided for a maximally flat spectral filter, a simple photon detector spectral response, effective value calculation, conversion of spectral domain variables between [um], [cm^-1] and [Hz], conversion of spectral density quantities between [um], [cm^-1] and [Hz] and spectral convolution. See the __main__ function for examples of use. This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, <NAME>, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646 """ __version__= "$Revision$" __author__= 'pyradi team' __all__= ['buildLogSpace','sfilter', 'responsivity', 'effectiveValue', 'convertSpectralDomain', 'convertSpectralDensity', 'convolve', 'savitzkyGolay1D','abshumidity', 'TFromAbshumidity', 'rangeEquation','_rangeEquationCalc','detectThresholdToNoiseTpFAR', 'detectSignalToNoiseThresholdToNoisePd', 'detectThresholdToNoiseSignalToNoisepD', 'detectProbabilityThresholdToNoiseSignalToNoise', 'detectFARThresholdToNoisepulseWidth', 'upMu', 'cart2polar', 'polar2cart','index_coords','framesFirst','framesLast', 'rect', 'circ','poissonarray','draw_siemens_star','drawCheckerboard', 'makemotionsequence','extractGraph','luminousEfficiency','Spectral', 'Atmo','Sensor','Target','calcMTFwavefrontError', 'polar2cartesian','warpPolarImageToCartesianImage','warpCartesianImageToPolarImage', 'intify_tuple','differcommonfiles','blurryextract','update_progress' ] import sys import numpy as np from scipy import constants from scipy import interpolate import matplotlib.pyplot as plt from matplotlib.patches import Wedge from matplotlib.collections import PatchCollection import os import pkg_resources from numbers import Number if sys.version_info[0] > 2: from io import StringIO else: from StringIO import StringIO ################################################################################# """ Gathers and presents version information. Adapted from https://github.com/ahmedsalhin/version_information This makes it much easier to determine which versions of modules were installed in the source IPython interpreter's environment. Produces output in: * Plaintext (IPython [qt]console) * HTML (IPython notebook, ``nbconvert --to html``, ``--to slides``) * JSON (IPython notebook ``.ipynb`` files) * LaTeX (e.g. ``ipython nbconvert example.ipynb --to LaTeX --post PDF``) Usage ====== .. sourcecode:: ipython print(ryutils.VersionInformation('matplotlib,numpy')) """ import html import json import sys import time import locale import IPython import platform try: import pkg_resources except ImportError: pkg_resources = None timefmt = '%a %b %d %H:%M:%S %Y %Z' def _date_format_encoding(): return locale.getlocale(locale.LC_TIME)[1] or locale.getpreferredencoding() class VersionInformation(): def __init__(self,line=''): self.version_information( line=line) def version_information(self, line=''): """Show information about versions of modules. Usage: %version_information [optional comma-separated list of modules] """ self.packages = [ ("Python", "{version} {arch} [{compiler}]".format( version=platform.python_version(), arch=platform.architecture()[0], compiler=platform.python_compiler())), ("IPython", IPython.__version__), ("OS", platform.platform().replace('-', ' ')) ] modules = line.replace(' ', '').split(",") for module in modules: if len(module) > 0: try: code = ("import %s; version=str(%s.__version__)" % (module, module)) ns_g = ns_l = {} exec(compile(code, "<string>", "exec"), ns_g, ns_l) self.packages.append((module, ns_l["version"])) except Exception as e: try: if pkg_resources is None: raise version = pkg_resources.require(module)[0].version self.packages.append((module, version)) except Exception as e: self.packages.append((module, str(e))) return self def _repr_json_(self): obj = { 'Software versions': [ {'module': name, 'version': version} for (name, version) in self.packages]} if IPython.version_info[0] >= 3: return obj else: return json.dumps(obj) @staticmethod def _htmltable_escape(str_): CHARS = { '&': r'\&', '%': r'\%', '$': r'\$', '#': r'\#', '_': r'\_', '{': r'\letteropenbrace{}', '}': r'\letterclosebrace{}', '~': r'\lettertilde{}', '^': r'\letterhat{}', '\\': r'\letterbackslash{}', '>': r'\textgreater', '<': r'\textless', } return u"".join([CHARS.get(c, c) for c in str_]) def _repr_html_(self): html_table = "<table>" html_table += "<tr><th>Software</th><th>Version</th></tr>" for name, version in self.packages: _version = self._htmltable_escape(version) html_table += "<tr><td>%s</td><td>%s</td></tr>" % (name, _version) try: html_table += "<tr><td colspan='2'>%s</td></tr>" % time.strftime(timefmt) except: html_table += "<tr><td colspan='2'>%s</td></tr>" % \ time.strftime(timefmt).decode(_date_format_encoding()) html_table += "</table>" return html_table @staticmethod def _latex_escape(str_): CHARS = { '&': r'\&', '%': r'\%', '$': r'\$', '#': r'\#', '_': r'\_', '{': r'\letteropenbrace{}', '}': r'\letterclosebrace{}', '~': r'\lettertilde{}', '^': r'\letterhat{}', '\\': r'\letterbackslash{}', '>': r'\textgreater', '<': r'\textless', } return u"".join([CHARS.get(c, c) for c in str_]) def _repr_latex_(self): latex = r"\begin{tabular}{|l|l|}\hline" + "\n" latex += r"{\bf Software} & {\bf Version} \\ \hline\hline" + "\n" for name, version in self.packages: _version = self._latex_escape(version) latex += r"%s & %s \\ \hline" % (name, _version) + "\n" try: latex += r"\hline \multicolumn{2}{|l|}{%s} \\ \hline" % \ time.strftime(timefmt) + "\n" except: latex += r"\hline \multicolumn{2}{|l|}{%s} \\ \hline" % \ time.strftime(timefmt).decode(_date_format_encoding()) + "\n" latex += r"\end{tabular}" + "\n" return latex def _repr_pretty_(self): text = "Software versions\n" for name, version in self.packages: text += "%s %s\n" % (name, version) try: text += "%s" % time.strftime(timefmt) except: text += "%s" % \ time.strftime(timefmt).decode(_date_format_encoding()) import pprint pprint.pprint(text) def __str__(self): text = 'Software versions\n' for name, version in self.packages: text += f"{name}: {version}\n" try: text += f"{time.strftime(timefmt)}" except: text += f"{time.strftime(timefmt).decode(_date_format_encoding())}" return text ############################################################################## ## def buildLogSpace(Vmin,Vmax,nDec,patn=False): """Calculate a log space given low, high and number samples per decade If patn is True, the upper limit is adjusted to obtain a repeat numeric pattern in each dcade. Args: | Vmin (float) lower limit | Vmax (float) upper limit | nDec (int) number of points per decade | patn (bool) repeat pattern in each decade Returns: | vector with equal spacing in log Raises: | No exception is raised. """ decs = int(np.log10(Vmax/Vmin)) if patn: ful = np.log10(Vmax/Vmin) upp = np.ceil(nDec *(ful - decs)) num = np.ceil(decs * nDec + upp + 1) Vmax = 10 ** (np.log10(Vmin) + ((num-1) / nDec)) else: num = np.ceil(decs * nDec) return np.logspace(np.log10(Vmin),np.log10(Vmax),num) ############################################################################## ## def update_progress(progress, bar_length=20): """Simple text-based progress bar for Jupyter notebooks. Note that clear_output, and hence this function wipes the entire cell output, including previous output and widgets. Usage: import pyradi.ryutils as ryutils import time print('before') #Replace this with a real computation number_of_elements = 100 for i in range(number_of_elements): time.sleep(0.1) # progress must be a float between 0 and 1 ryutils.update_progress((i+1) / number_of_elements,bar_length=40) print('after') source: https://mikulskibartosz.name/how-to-display-a-progress-bar-in-jupyter-notebook-47bd4c2944bf https://ipython.org/ipython-doc/3/api/generated/IPython.display.html#IPython.display.clear_output Wait to clear the output until new output is available to replace it. """ from IPython.display import clear_output if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 if progress < 0: progress = 0 if progress >= 1: progress = 1 block = int(round(bar_length * progress)) clear_output(wait = True) text = "Progress: [{0}] {1:.1f}%".format( "#" * block + "-" * (bar_length - block), progress * 100) print(text) ############################################################################## ## def solidAngleSquare(width,breadth,height,stype,numsamples): """Calculate the solid angle of a rectagular plate from a point on the normal at its centre The solid angle of a rectangular flat surface, with dimensions $W$ and $D$, as seen from a reference point centered above the surface, is determined by the integral of the projected area of a small elemental area $\cos\theta\,dd\,dw$ across the full size of the surface: $$ \omega_{\rm s}=\int_W\int_D\frac{dw\,dd\,\cos^{n-2}\theta}{R^2} $$ $$ \omega_{\rm s}=\int_W\int_D\frac{dw\,dd\,\cos^n\theta}{H^2} $$ $$ \omega_{\rm s}=\int_W\int_D\frac{dw\,dd\,}{H^2}\left(\frac{H}{R}\right)^n $$ $$\omega_{\rm s}=\int_W\int_D\frac{dw\,dd\,}{H^2}\left(\frac{H}{\sqrt{w^2+d^2+H^2}}\right)^n, $$ where $H$ is the reference point height above the surface, and $n=3$ for the geometrical solid angle and $n=4$ for the projected solid angle. The integral is performed along the $W$ and $D$ dimensions with increments of $dw$ and $dd$. The slant range between the reference point and the elemental area $dd\times dw$ is $R=H/\cos\theta$. Args: | width (float): size along one edge of rectangle | breadth (float): size along the second edge of rectangle | height (float): distance along normal to the rect to reference point | stype (str): type of solid angle can be one of ('g' or 'p') for ('geometric','projected') | numsamples (int): number of samples along edges Returns: | solid angle (float) or None if incorrect type Raises: | No exception is raised. """ varx = np.linspace(-width/2, width/2, numsamples) vary = np.linspace(-breadth/2, breadth/2, numsamples) x, y = np.meshgrid(varx, vary) if stype[0]=='g': gv = (1. / ( (x / height) ** 2 + (y / height) ** 2 + 1 ) ) ** (3 / 2) elif stype[0]=='p': gv = (1. / ( (x / height) ** 2 + (y / height) ** 2 + 1 ) ) ** (4 / 2) else: return None solidAngle = np.trapz(np.ravel(gv), dx=breadth*width/(numsamples**2))/(height*height) return solidAngle ############################################################################## ## def intify_tuple(tup): """Make tuple entries int type """ tup_int = () for tup_ent in tup: tup_int = tup_int + (int(tup_ent),) return tup_int ############################################################################## ## def framesFirst(imageSequence): """Image sequence with frames along axis=2 (last index), reordered such that frames are along axis=0 (first index). Image sequences are stored in three-dimensional arrays, in rows, columns and frames. Not all libraries share the same sequencing, some store frames along axis=0 and others store frames along axis=2. This function reorders an image sequence with frames along axis=2 to an image sequence with frames along axis=0. The function uses np.transpose(imageSequence, (2,0,1)) Args: | imageSequence (3-D np.array): image sequence in three-dimensional array, frames along axis=2 Returns: | ((3-D np.array): reordered three-dimensional array (view or copy) Raises: | No exception is raised. """ return np.transpose(imageSequence, (2,0,1)) ############################################################################## ## def framesLast(imageSequence): """Image sequence with frames along axis=0 (first index), reordered such that frames are along axis=2 (last index). Image sequences are stored in three-dimensional arrays, in rows, columns and frames. Not all libraries share the same sequencing, some store frames along axis=0 and others store frames along axis=2. This function reorders an image sequence with frames along axis=0 to an image sequence with frames along axis=2. The function uses np.transpose(imageSequence, (1,2,0)) Args: | imageSequence (3-D np.array): image sequence in three-dimensional array, frames along axis=0 Returns: | ((3-D np.array): reordered three-dimensional array (view or copy) Raises: | No exception is raised. """ return np.transpose(imageSequence, (1,2,0)) ############################################################################## ## def index_coords(data, origin=None, framesFirst=True): """Creates (x,y) zero-based coordinate arrrays for a numpy array indices, relative to some origin. This function calculates two meshgrid arrays containing the coordinates of the input array. The origin of the new coordinate system defaults to the center of the image, unless the user supplies a new origin. The data format can be data.shape = (rows, cols, frames) or data.shape = (frames, rows, cols), the format of which is indicated by the framesFirst parameter. Args: | data (np.array): array for which coordinates must be calculated. | origin ( (x-orig, y-orig) ): data-coordinates of where origin should be | framesFirst (bool): True if data.shape is (frames, rows, cols), False if data.shape is (rows, cols, frames) Returns: | x (float np.array): x coordinates in array format. | y (float np.array): y coordinates in array format. Raises: | No exception is raised. original code by <NAME> https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system """ if framesFirst: ny, nx = data.shape[1:3] else: ny, nx = data.shape[:2] if origin is None: origin_x, origin_y = nx // 2, ny // 2 else: origin_x, origin_y = origin x, y = np.meshgrid(np.arange(nx), np.arange(ny)) x -= origin_x y -= origin_y return x, y ############################################################################## ## def cart2polar(x, y): """Converts from cartesian to polar coordinates, given (x,y) to (r,theta). Args: | x (float np.array): x values in array format. | y (float np.array): y values in array format. Returns: | r (float np.array): radial component for given (x,y). | theta (float np.array): angular component for given (x,y). Raises: | No exception is raised. original code by <NAME> https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system """ r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return r, theta ############################################################################## ## def polar2cart(r, theta): """Converts from polar to cartesian coordinates, given (r,theta) to (x,y). Args: | r (float np.array): radial values in array format. | theta (float np.array): angular values in array format. Returns: | x (float np.array): x component for given (r, theta). | y (float np.array): y component for given (r, theta). Raises: | No exception is raised. original code by <NAME> https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system """ x = r * np.cos(theta) y = r * np.sin(theta) return x, y ############################################################################## ## def upMu(uprightMu=True, textcomp=False): """Returns a LaTeX micron symbol, either an upright version or the normal symbol. The upright symbol requires that the siunitx LaTeX package be installed on the computer running the code. This function also changes the Matplotlib rcParams file. Args: | uprightMu (bool): signals upright (True) or regular (False) symbol (optional). | textcomp (bool): if True use the textcomp package, else use siunitx package (optional). Returns: | range (string): LaTeX code for the micro symbol. Raises: | No exception is raised. """ if sys.version_info[0] < 3: if uprightMu: from matplotlib import rc, font_manager import matplotlib as mpl rc('text', usetex=True) # set up the use of external latex, fonts and packages if not textcomp : mpl.rcParams['text.latex.preamble'] = [ # r'\usepackage{siunitx}', # i need upright \micro symbols, but you need... '\\usepackage{siunitx}', # i need upright \micro symbols, but you need... '\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts '\\usepackage{helvet}', # set the normal font here '\\usepackage{sansmath}', # load up the sansmath so that math -> helvet '\\sansmath'] # <- tricky! -- gotta actually tell tex to use! upmu = '\si{\micro}' else: mpl.rcParams['text.latex.preamble'] = [ '\\usepackage{textcomp}', # i need upright \micro symbols, but you need... '\\usepackage{helvet}', # set the normal font here '\\usepackage{sansmath}', # load up the sansmath so that math -> helvet '\\sansmath' # <- tricky! -- gotta actually tell tex to use! ] upmu = '\\textmu{}' else: upmu = '$\\mu$' else: upmu = '\u00B5' return upmu ############################################################################## ## def detectFARThresholdToNoisepulseWidth(ThresholdToNoise, pulseWidth): """ Solve for the FAR, given the threshold to noise ratio and pulse width, for matched filter. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. <NAME>, Detection Theory: Applications and Digital Signal Processing, CRC Press, 2002 Args: | ThresholdToNoise (float): the threshold to noise ratio. | pulseWidth (float): the signal pulse width in [s]. Returns: | FAR (float): the false alarm rate in [alarms/s] Raises: | No exception is raised. """ FAR = np.exp(- (ThresholdToNoise ** 2) / 2.) / (2. * pulseWidth * np.sqrt(3)) return FAR ############################################################################## ## def detectThresholdToNoiseTpFAR(pulseWidth, FAR): """ Solve for threshold to noise ratio, given pulse width and FAR, for matched filter. Using the theory of matched filter design, calculate the threshold to noise ratio, to achieve a required false alarm rate. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. <NAME>, Detection Theory: Applications and Digital Signal Processing, CRC Press, 2002 Args: | pulseWidth (float): the signal pulse width in [s]. | FAR (float): the false alarm rate in [alarms/s] Returns: | range (float): threshold to noise ratio Raises: | No exception is raised. """ ThresholdToNoise = np.sqrt(-2 * np.log (2 * pulseWidth * np.sqrt(3) * FAR )) return ThresholdToNoise ############################################################################## ## def detectSignalToNoiseThresholdToNoisePd(ThresholdToNoise, pD): """ Solve for the signal to noise ratio, given the threshold to noise ratio and probability of detection. Using the theory of matched filter design, calculate the signal to noise ratio, to achieve a required probability of detection. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. <NAME>, Detection Theory: Applications and Digital Signal Processing, CRC Press, 2002 Args: | ThresholdToNoise (float): the threshold to noise ratio [-] | pD (float): the probability of detection [-] Returns: | range (float): signal to noise ratio Raises: | No exception is raised. """ import scipy.special SignalToNoise = np.sqrt(2) * scipy.special.erfinv(2 * pD -1) + ThresholdToNoise return SignalToNoise ############################################################################## ## def detectThresholdToNoiseSignalToNoisepD(SignalToNoise, pD): """ Solve for the threshold to noise ratio, given the signal to noise ratio and probability of detection. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. <NAME>, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002 Args: | SignalToNoise (float): the signal to noise ratio [-] | pD (float): the probability of detection [-] Returns: | range (float): signal to noise ratio Raises: | No exception is raised. """ import scipy.special ThresholdToNoise = SignalToNoise - np.sqrt(2) * scipy.special.erfinv(2 * pD -1) return ThresholdToNoise ############################################################################## ## def detectProbabilityThresholdToNoiseSignalToNoise(ThresholdToNoise, SignalToNoise): """ Solve for the probability of detection, given the signal to noise ratio and threshold to noise ratio References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. <NAME>, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002 Args: | ThresholdToNoise (float): the threshold to noise ratio [-] | SignalToNoise (float): the signal to noise ratio [-] Returns: | range (float): probability of detection Raises: | No exception is raised. """ import scipy.special pD = 0.5 * (scipy.special.erf((SignalToNoise - ThresholdToNoise) / np.sqrt(2)) + 1) return pD ############################################################################## ## def rangeEquation(Intensity, Irradiance, rangeTab, tauTab, rangeGuess = 1, n = 2): """ Solve the range equation for arbitrary transmittance vs range. This function solve for the range :math:`R` in the range equation .. math:: E = \\frac{I\\tau_a(R)}{R^n} where :math:`E` is the threshold irradiance in [W/m2], and :math:`I` is the intensity in [W/sr]. This range equation holds for the case where the target is smaller than the field of view. The range :math:`R` must be in [m], and :math:`\\tau_a(R)` is calculated from a lookup table of atmospheric transmittance vs. range. The transmittance lookup table can be calculated from the simple Bouguer law, or it can have any arbitrary shape, provided it decreases with increasing range. The user supplies the lookup table in the form of an array of range values and an associated array of transmittance values. The range values need not be on constant linear range increment. The parameter :math:`n` * :math:`n=2` (default value) the general case of a radiating source smaller than the field of view. * :math:`n=4` the special case of a laser range finder illuminating a target smaller than the field of view, viewed against the sky. In this case there is an :math:`R^2` attenuation from the laser to the source and another :math:`R^2` attenuation from the source to the receiver, hence :math:`R^4` overall. If the range solution is doubtful (e.g. not a trustworthy solution) the returned value is made negative. Args: | Intensity (float or np.array[N,] or [N,1]): in [W/sr]. | Irradiance (float or np.array[N,] or [N,1]): in [W/m2]. | rangeTab (np.array[N,] or [N,1]): range vector for tauTab lookup in [m] | tauTab (np.array[N,] or [N,1]): transmittance vector for lookup in [m] | rangeGuess (float): starting value range estimate in [m] (optional) | n (float): range power (2 or 4) (optional) Returns: | range (float or np.array[N,] or [N,1]): Solution to the range equation in [m]. Value is negative if calculated range exceeds the top value in range table, or if calculated range is too near the lower resolution limit. Raises: | No exception is raised. """ from scipy.interpolate import interp1d from scipy.optimize import fsolve tauTable = interp1d(rangeTab, tauTab, kind = 'linear') Range = fsolve(_rangeEquationCalc, rangeGuess, args = (Intensity,Irradiance,tauTable,n,np.max(rangeTab),)) #near the bottom (minimum) range of the table if(Range < rangeTab[2] ): Range = - Range # beyond the top of the range table if(Range > rangeTab[-1] ): Range = - Range return Range ############################################################################## ## def _rangeEquationCalc(r,i,e,tauTable,n,rMax): if r > rMax: return 0 return i * tauTable(r) / (r ** n) - e ############################################################################## ## def TFromAbshumidity(AH, equationSelect = 1): """temperature in [K] between 248 K and 342 K, given atmopsheric absolute humidity [g/m3], assuming 100% RH This function uses two similar equations, but with different constants. Args: | AH (float): absolute humidity in g/m3. | equationSelect (int): select the equation to be used. Returns: | temperature (float): in K Raises: | No exception is raised. """ T = np.linspace(248., 342., 100 ) absLUT = abshumidity(T, equationSelect = equationSelect) f = interpolate.interp1d(absLUT, T,bounds_error=True) return f(AH) ############################################################################## ## def abshumidity(T, equationSelect = 1): """ Atmopsheric absolute humidity [g/m3] for temperature in [K] between 248 K and 342 K. This function provides two similar equations, but with different constants. Args: | temperature (np.array[N,] or [N,1]): in [K]. | equationSelect (int): select the equation to be used. Returns: | absolute humidity (np.array[N,] or [N,1]): abs humidity in [g/m3] Raises: | No exception is raised. """ #there are two options, the fist one seems more accurate (relative to test set) if equationSelect == 1: #http://www.vaisala.com/Vaisala%20Documents/Application%20notes/Humidity_Conversion_Formulas_B210973EN-D.pdf return ( 1325.2520998 * 10 **(7.5892*(T - 273.15)/(T -32.44)))/T else: #http://www.see.ed.ac.uk/~shs/Climate%20change/Data%20sources/Humidity%20with%20altidude.pdf return (1324.37872 * 2.718281828459046 **(17.67*(T - 273.16)/(T - 29.66)))/T ############################################################################## ## def sfilter(spectral,center, width, exponent=6, taupass=1.0, \ taustop=0.0, filtertype = 'bandpass' ): """ Calculate a symmetrical filter response of shape exp(-x^n) Given a number of parameters, calculates maximally flat, symmetrical transmittance. The function parameters controls the width, pass-band and stop-band transmittance and sharpness of cutoff. This function is not meant to replace the use of properly measured filter responses, but rather serves as a starting point if no other information is available. This function does not calculate ripple in the pass-band or cut-off band. Filter types supported include band pass, high (long) pass and low (short) pass filters. High pass filters have maximal transmittance for all spectral values higher than the central value. Low pass filters have maximal transmittance for all spectral values lower than the central value. Args: | spectral (np.array[N,] or [N,1]): spectral vector in [um] or [cm-1]. | center (float): central value for filter passband | width (float): proportional to width of filter passband | exponent (float): even integer, define the sharpness of cutoff. | If exponent=2 then gaussian | If exponent=infinity then square | taupass (float): the transmittance in the pass band (assumed constant) | taustop (float): peak transmittance in the stop band (assumed constant) | filtertype (string): filter type, one of 'bandpass', 'lowpass' or 'highpass' Returns: | transmittance (np.array[N,] or [N,1]): transmittances at "spectral" intervals. Raises: | No exception is raised. | If an invalid filter type is specified, return None. | If negative spectral is specified, return None. """ maxexp = np.log(sys.float_info.max)/np.log(np.max(2*np.abs(spectral-center)/width)) # minexp = np.log(sys.float_info.min)/np.log(np.min(2*(spectral-center)/width)) exponent = maxexp if exponent > maxexp else exponent # exponent = minexp if exponent < minexp else exponent tau = taustop+(taupass-taustop)*np.exp(-(2*np.abs(spectral-center)/width)**exponent) maxtau=np.max(tau) if filtertype == 'bandpass': pass elif filtertype == 'lowpass': tau = tau * np.greater(spectral,center) + \ maxtau * np.ones(spectral.shape) * np.less(spectral,center) elif filtertype == 'highpass': tau = tau * np.less(spectral,center) + \ maxtau * np.ones(spectral.shape) * np.greater(spectral,center) else: return None return tau ############################################################################## ## def responsivity(wavelength,lwavepeak, cuton=1, cutoff=20, scaling=1.0): """ Calculate a photon detector wavelength spectral responsivity Given a number of parameters, calculates a shape that is somewhat similar to a photon detector spectral response, on wavelength scale. The function parameters controls the cutoff wavelength and shape of the response. This function is not meant to replace the use of properly measured spectral responses, but rather serves as a starting point if no other information is available. Args: | wavelength (np.array[N,] or [N,1]): vector in [um]. | lwavepeak (float): approximate wavelength at peak response | cutoff (float): cutoff strength beyond peak, 5 < cutoff < 50 | cuton (float): cuton sharpness below peak, 0.5 < cuton < 5 | scaling (float): scaling factor Returns: | responsivity (np.array[N,] or [N,1]): responsivity at wavelength intervals. Raises: | No exception is raised. """ responsivity=scaling *( ( wavelength / lwavepeak) **cuton - ( wavelength / lwavepeak) **cutoff) responsivity= responsivity * (responsivity > 0) return responsivity ################################################################ ## def effectiveValue(spectraldomain, spectralToProcess, spectralBaseline): """Normalise a spectral quantity to a scalar, using a weighted mapping by another spectral quantity. Effectivevalue = integral(spectralToProcess * spectralBaseline) / integral( spectralBaseline) The data in spectralToProcess and spectralBaseline must both be sampled at the same domain values as specified in spectraldomain. The integral is calculated with numpy/scipy trapz trapezoidal integration function. Args: | inspectraldomain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber. | spectralToProcess (np.array[N,] or [N,1]): spectral quantity to be normalised | spectralBaseline (np.array[N,] or [N,1]): spectral serving as baseline for normalisation Returns: | (float): effective value | Returns None if there is a problem Raises: | No exception is raised. """ num=np.trapz(spectralToProcess.reshape(-1, 1)*spectralBaseline.reshape(-1, 1),spectraldomain, axis=0)[0] den=np.trapz(spectralBaseline.reshape(-1, 1),spectraldomain, axis=0)[0] return num/den ################################################################ ## def convertSpectralDomain(inspectraldomain, type=''): """Convert spectral domains, i.e. between wavelength [um], wavenummber [cm^-1] and frequency [Hz] In string variable type, the 'from' domain and 'to' domains are indicated each with a single letter: 'f' for temporal frequency, 'l' for wavelength and 'n' for wavenumber The 'from' domain is the first letter and the 'to' domain the second letter. Note that the 'to' domain vector is a direct conversion of the 'from' domain to the 'to' domain (not interpolated or otherwise sampled. Args: | inspectraldomain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber. | wavelength vector in [um] | frequency vector in [Hz] | wavenumber vector in [cm^-1] | type (string): specify from and to domains: | 'lf' convert from wavelength to per frequency | 'ln' convert from wavelength to per wavenumber | 'fl' convert from frequency to per wavelength | 'fn' convert from frequency to per wavenumber | 'nl' convert from wavenumber to per wavelength | 'nf' convert from wavenumber to per frequency Returns: | [N,1]: outspectraldomain | Returns zero length array if type is illegal, i.e. not one of the expected values Raises: | No exception is raised. """ #use dictionary to switch between options, lambda fn to calculate, default zero outspectraldomain = { 'lf': lambda inspectraldomain: constants.c / (inspectraldomain * 1.0e-6), 'ln': lambda inspectraldomain: (1.0e4/inspectraldomain), 'fl': lambda inspectraldomain: constants.c / (inspectraldomain * 1.0e-6), 'fn': lambda inspectraldomain: (inspectraldomain / 100) / constants.c , 'nl': lambda inspectraldomain: (1.0e4/inspectraldomain), 'nf': lambda inspectraldomain: (inspectraldomain * 100) * constants.c, }.get(type, lambda inspectraldomain: np.zeros(shape=(0, 0)) )(inspectraldomain) return outspectraldomain ################################################################ ## def convertSpectralDensity(inspectraldomain, inspectralquantity, type=''): """Convert spectral density quantities, i.e. between W/(m^2.um), W/(m^2.cm^-1) and W/(m^2.Hz). In string variable type, the 'from' domain and 'to' domains are indicated each with a single letter: 'f' for temporal frequency, 'w' for wavelength and ''n' for wavenumber The 'from' domain is the first letter and the 'to' domain the second letter. The return values from this function are always positive, i.e. not mathematically correct, but positive in the sense of radiance density. The spectral density quantity input is given as a two vectors: the domain value vector and the density quantity vector. The output of the function is also two vectors, i.e. the 'to' domain value vector and the 'to' spectral density. Note that the 'to' domain vector is a direct conversion of the 'from' domain to the 'to' domain (not interpolated or otherwise sampled). Args: | inspectraldomain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber. | inspectralquantity (np.array[N,] or [N,1]): spectral density in same domain as domain vector above. | wavelength vector in [um] | frequency vector in [Hz] | wavenumber vector in [cm^-1] | type (string): specify from and to domains: | 'lf' convert from per wavelength interval density to per frequency interval density | 'ln' convert from per wavelength interval density to per wavenumber interval density | 'fl' convert from per frequency interval density to per wavelength interval density | 'fn' convert from per frequency interval density to per wavenumber interval density | 'nl' convert from per wavenumber interval density to per wavelength interval density | 'nf' convert from per wavenumber interval density to per frequency interval density Returns: | ([N,1],[N,1]): outspectraldomain and outspectralquantity | Returns zero length arrays is type is illegal, i.e. not one of the expected values Raises: | No exception is raised. """ inspectraldomain = inspectraldomain.reshape(-1,) inspectralquantity = inspectralquantity.reshape(inspectraldomain.shape[0], -1) outspectralquantity = np.zeros(inspectralquantity.shape) # the meshgrid idea does not work well here, because we can have very long # spectral arrays and these become too large for meshgrid -> size **2 # we have to loop this one spec = inspectraldomain for col in range(inspectralquantity.shape[1]): quant = inspectralquantity[:,col] #use dictionary to switch between options, lambda fn to calculate, default zero outspectraldomain = { 'lf': lambda spec: constants.c / (spec * 1.0e-6), 'fn': lambda spec: (spec / 100) / constants.c , 'nl': lambda spec: (1.0e4/spec), 'ln': lambda spec: (1.0e4/spec), 'nf': lambda spec: (spec * 100) * constants.c, 'fl': lambda spec: constants.c / (spec * 1.0e-6), }.get(type, lambda spec: np.zeros(shape=(0, 0)) )(spec) outspectralquantity[:, col] = { 'lf': lambda quant: quant / (constants.c *1.0e-6 / ((spec * 1.0e-6)**2)), 'fn': lambda quant: quant * (100 *constants.c), 'nl': lambda quant: quant / (1.0e4 / spec**2) , 'ln': lambda quant: quant / (1.0e4 / spec**2) , 'nf': lambda quant: quant / (100 * constants.c), 'fl': lambda quant: quant / (constants.c *1.0e-6 / ((spec * 1.0e-6)**2)), }.get(type, lambda quant: np.zeros(shape=(0, 0)) )(quant) return (outspectraldomain,outspectralquantity) ############################################################################## ## def savitzkyGolay1D(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. Source: http://wiki.scipy.org/Cookbook/SavitzkyGolay The Savitzky Golay filter is a particular type of low-pass filter, well adapted for data smoothing. For further information see: http://www.wire.tu-bs.de/OLDWEB/mameyer/cmr/savgol.pdf The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples: t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References: [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing <NAME>, <NAME>, <NAME>, <NAME> Cambridge University Press ISBN-13: 9780521880688 Args: | y : array_like, shape (N,) the values of the time history of the signal. | window_size : int the length of the window. Must be an odd integer number. | order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. | deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns: | ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Raises: | Exception raised for window size errors. """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError as msg: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = list(range(order+1)) half_window = (window_size -1) // 2 # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] ) lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve( m[::-1], y, mode='valid') ############################################################################## ## def getFHWM(wl,tau,normaliseMax=False): """Given spectral domain and range, determine full-width half-max domain width Returns the FWHM, and the two 50% wavelengths """ # get FWHM https://stackoverflow.com/questions/53445337/implementation-of-a-threshold-detection-function-in-python if normaliseMax: tau = tau / np.max(tau) mask = np.diff(1 * (tau > 0.5) != 0) wlcr = np.vstack((wl[:-1][mask],wl[1:][mask])) spcr = np.vstack((tau[:-1][mask],tau[1:][mask])) lamh = np.zeros((2,)) # interpolate to get 0.5 crossing for i in [0,1]: lamh[i] = wlcr[0,i]+(wlcr[1,i]-wlcr[0,i])*(0.5-spcr[0,i])/(spcr[1,i]-spcr[0,i]) fwhm = lamh[1] - lamh[0] return np.abs(fwhm),lamh[0], lamh[1] ############################################################################## ## def convolve(inspectral, samplingresolution, inwinwidth, outwinwidth, windowtype=np.bartlett): """ Convolve (non-circular) a spectral variable with a window function, given the input resolution and input and output window widths. This function is normally used on wavenumber-domain spectral data. The spectral data is assumed sampled at samplingresolution wavenumber intervals. The inwinwidth and outwinwidth window function widths are full width half-max (FWHM) for the window functions for the inspectral and returned spectral variables, respectively. The Bartlett function is used as default, but the user can use a different function. The Bartlett function is a triangular function reaching zero at the ends. Window function width is correct for Bartlett and only approximate for other window functions. Spectral convolution is best done in frequency domain ([cm-1] units) because the filter or emission line shapes have better symmetry in frequency domain than in wavelength domain. The input spectral vector must be in spectral density units of cm-1. Args: | inspectral (np.array[N,] or [N,1]): spectral variable input vector (e.g., radiance or transmittance). | samplingresolution (float): wavenumber interval between inspectral samples | inwinwidth (float): FWHM window width used to obtain the input spectral vector (e.g., spectroradiometer window width) | outwinwidth (float): FWHM window width of the output spectral vector after convolution | windowtype (function): name of a numpy/scipy function for the window function Returns: | outspectral (np.array[N,]): input vector, filtered to new window width. | windowfn (np.array[N,]): The window function used. Raises: | No exception is raised. """ winbins = round(2*(outwinwidth/(inwinwidth*samplingresolution)), 0) winbins = winbins if winbins%2==1 else winbins+1 windowfn=windowtype(winbins) #np.convolve is unfriendly towards unicode strings if sys.version_info[0] > 2: cmode='same' else: cmode='same'.encode('utf-8') outspectral = np.convolve(windowfn/(samplingresolution*windowfn.sum()), inspectral.reshape(-1, ),mode=cmode) return outspectral, windowfn ###################################################################################### def circ(x, y, d=1): """ Generation of a circular aperture. Args: | x (np.array[N,M]): x-grid, metres | y (np.array[N,M]): y-grid, metres | d (float): diameter in metres. | comment (string): the symbol used to comment out lines, default value is None. | delimiter (string): delimiter used to separate columns, default is whitespace. Returns: | z (np.array[N,M]): z-grid, 1's inside radius, meters/pixels. Raises: | No exception is raised. Author: Prof. <NAME>, revised/ported by <NAME> Original source: http://arxiv.org/pdf/1412.4031.pdf """ z = None r = np.sqrt(x ** 2 + y ** 2) z = np.zeros(r.shape) z[r < d / 2.] = 1.0 z[r == d / 2.] = 0.5 return z ###################################################################################### def rect(x, y, sx=1, sy=1): """ Generation of a rectangular aperture. Args: | x (np.array[N,M]): x-grid, metres | y (np.array[N,M]): x-grid, metres | sx (float): full size along x. | sy (float): full size along y. Returns: | Nothing. Raises: | No exception is raised. Author: <NAME> Original source: http://arxiv.org/pdf/1412.4031.pdf """ z = None if x is not None and y is not None: z = np.zeros(x.shape) z[np.logical_and(np.abs(x) < sx/2.,np.abs(y) < sy/2.)] = 1. z[np.logical_and(np.abs(x) == sx/2., np.abs(y) == sy/2.)] = 0.5 return z ###################################################################################################### def poissonarray(inp, seedval=None, tpoint=1000): r"""This routine calculates a Poisson random variable for an array of input values with potentially very high event counts. At high mean values the Poisson distribution calculation overflows. For mean values exceeding 1000, the Poisson distribution may be approximated by a Gaussian distribution. The function accepts a two-dimensional array and calculate a separate random value for each element in the array, using the element value as the mean value. A typical use case is when calculating shot noise for image data. From http://en.wikipedia.org/wiki/Poisson_distribution#Related_distributions For sufficiently large values of :math:`\lambda`, (say :math:`\lambda>1000`), the normal distribution with mean :math:`\lambda` and variance :math:`\lambda` (standard deviation :math:`\sqrt{\lambda}`) is an excellent approximation to the Poisson distribution. If :math:`\lambda` is greater than about 10, then the normal distribution is a good approximation if an appropriate continuity correction is performed, i.e., :math:`P(X \le x)`, where (lower-case) x is a non-negative integer, is replaced by :math:`P(X\le\,x+0.5)`. :math:`F_\mathrm{Poisson}(x;\lambda)\approx\,F_\mathrm{normal}(x;\mu=\lambda,\sigma^2=\lambda)` This function returns values of zero when the input is zero. Args: | inp (np.array[N,M]): array with mean value | seedval (int): seed for random number generator, None means use system time. | tpoint (int): Threshold when to switch over between Poisson and Normal distributions Returns: | outp (np.array[N,M]): Poisson random variable for given mean value Raises: | No exception is raised. Author: <NAME> """ #If seed is omitted or None, current system time is used np.random.seed(seedval) #this is a bit of a mess: # - for values smaller than tpoint calculate using standard Poisson distribution # - for values larger than tpoint but nonzero use normal approximation, add small sdelta to avoid variance==0 # - for values larger than tpoint but zero keep at zero, sdelta added has no effect, just avoids zero divide sdelta = 1e-10 outp = np.zeros(inp.shape) outp = (inp<=tpoint) * np.random.poisson(inp * (inp<=tpoint) )\ + ((inp>tpoint) & (inp!=0)) * np.random.normal(loc=inp, scale=np.sqrt(inp+sdelta)) outp = np.where(inp==0, 0., outp) return outp ###################################################################################################### def draw_siemens_star(outfile, n, dpi): r"""Siemens star chart generator by <NAME>, http://cmp.felk.cvut.cz/~wagnelib/utils/star.html Args: | outfile (str): output image filename (monochrome only) | n (int): number of spokes in the output image. | dpi (int): dpi in output image, determines output image size. Returns: | Nothing, creates a monochrome siemens star image Raises: | No exception is raised. Author: <NAME>, adapted by <NAME> """ from scipy import misc # Create figure and add patterns fig, ax = plt.subplots() ax.add_collection(gen_siemens_star((0,0), 1., n)) plt.axis('equal') plt.axis([-1.03, 1.03, -1.03, 1.03]) plt.axis('off') fig.savefig(outfile, figsize=(900,900), papertype='a0', bbox_inches='tight', dpi=dpi) #read image back in order to crop to spokes only imgIn = np.abs(255 - misc.imread(outfile)[:,:,0]) nz0 = np.nonzero(np.sum(imgIn,axis=0)) nz1 = np.nonzero(np.sum(imgIn,axis=1)) imgOut = imgIn[(nz1[0][0]-1) : (nz1[0][-1]+2), (nz0[0][0]-1) : (nz0[0][-1]+2)] imgOut = np.abs(255 - imgOut) misc.imsave(outfile, imgOut) ###################################################################################################### def gen_siemens_star(origin, radius, n): centres = np.linspace(0, 360, n+1)[:-1] step = (((360.0)/n)/4.0) patches = [] for c in centres: patches.append(Wedge(origin, radius, c-step, c+step)) return PatchCollection(patches, facecolors='k', edgecolors='none') ###################################################################################################### def drawCheckerboard(rows, cols, numPixInBlock, imageMode, colour1, colour2, imageReturnType='image',datatype=np.uint8): """Draw checkerboard with 8-bit pixels From http://stackoverflow.com/questions/2169478/how-to-make-a-checkerboard-in-numpy Args: | rows (int) : number or rows in checkerboard | cols (int) : number of columns in checkerboard | numPixInBlock (int) : number of pixels to be used in one block of the checkerboard | imageMode (string) : PIL image mode [e.g. L (8-bit pixels, black and white), RGB (3x8-bit pixels, true color)] | colour1 (int or RGB tuple) : colour 1 specified according to the imageMode | colour2 (int or RGB tuple) : colour 2 specified according to the imageMode | imageReturnType: 'image' for PIL image, 'nparray' for numpy array | datatype (numpy data type) : numpy data type for the returned np.array Returns: | img : checkerboard numpy array or PIL image (see imageReturnType) Raises: | No exception is raised. Example Usage: rows = 5 cols = 7 pixInBlock = 4 color1 = 0 color2 = 255 img = drawCheckerboard(rows,cols,pixInBlock,'L',color1,color2,'nparray') pilImg = Img.fromarray(img, 'L') pilImg.save('{0}.png'.format('checkerboardL')) color1 = (0,0,0) color2 = (255,255,255) pilImage = drawCheckerboard(rows,cols,pixInBlock,'RGB',color1,color2,'image') pilImage.save('{0}.png'.format('checkerboardRGB')) """ width = numPixInBlock * cols height = numPixInBlock * rows coords = np.ogrid[0:height, 0:width] idx = (coords[0] // numPixInBlock + coords[1] // numPixInBlock) % 2 vals = np.array([colour1, colour2], dtype=datatype) img = vals[idx] if (imageReturnType == 'nparray'): return img else: from PIL import Image as Img pilImage = Img.fromarray(img, imageMode) return pilImage ###################################################################################################### def extractGraph(filename, xmin, xmax, ymin, ymax, outfile=None,doPlot=False,\ xaxisLog=False, yaxisLog=False, step=None, value=None): """Scan an image containing graph lines and produce (x,y,value) data. This function processes an image, calculate the location of pixels on a graph line, and then scale the (r,c) or (x,y) values of pixels with non-zero values. The Get a bitmap of the graph (scan or screen capture). Take care to make the graph x and y axes horizontal/vertical. The current version of the software does not work with rotated images. Bitmap edit the graph. Clean the graph to the maximum extent possible, by removing all the clutter, such that only the line to be scanned is visible. Crop only the central block that contains the graph box, by deleting the x and y axes notation and other clutter. The size of the cropped image must cover the range in x and y values you want to cover in the scan. The graph image/box must be cut out such that the x and y axes min and max correspond exactly with the edges of the bitmap. You must end up with nothing in the image except the line you want to digitize. The current version only handles single lines on the graph, but it does handle vertical and horizontal lines. The function can also write out a value associated with the (x,y) coordinates of the graph, as the third column. Normally these would have all the same value if the line represents an iso value. The x,y axes can be lin/lin, lin/log, log/lin or log/log, set the flags. Args: | filename: name of the image file | xmin: the value corresponding to the left side (column=0) | xmax: the value corresponding to the right side (column=max) | ymin: the value corresponding to the bottom side (row=bottom) | ymax: the value corresponding to the top side (row=top) | outfile: write the sampled points to this output file | doPlot: plot the digitised graph for visual validation | xaxisLog: x-axis is in log10 scale (min max are log values) | yaxisLog: y-axis is in log10 scale (min max are log values) | step: if not None only ouput every step values | value: if not None, write this value as the value column Returns: | outA: a numpy array with columns (xval, yval, value) | side effect: a file may be written | side effect: a graph may be displayed Raises: | No exception is raised. Author: <EMAIL> """ from scipy import ndimage from skimage.morphology import medial_axis if doPlot: import pylab import matplotlib.pyplot as pyplot #read image file, as grey scale img = ndimage.imread(filename, True) # find threshold 50% up the way halflevel = img.min() + (img.max()-img.min()) /2 # form binary image by thresholding img = img < halflevel #find the skeleton one pixel wide imgskel = medial_axis(img) #if doPlot: # pylab.imshow(imgskel) # pylab.gray() # pylab.show() # set up indices arrays to get x and y indices ind = np.indices(img.shape) #skeletonise the graph to one pixel only #then get the y pixel value, using indices yval = ind[0,...] * imgskel.astype(float) #if doPlot: # pylab.imshow(yval>0) # pylab.gray() # pylab.show() # invert y-axis origin from left top to left bottom yval = yval.shape[0] - np.max(yval, axis=0) #get indices for only the pixels where we have data wantedIdx = np.where(np.sum(imgskel, axis = 0) > 0) # convert to original graph coordinates cvec = np.arange(0.0,img.shape[1]) xval = xmin + (cvec[wantedIdx] / img.shape[1]) * (xmax - xmin) xval = xval.reshape(-1,1) yval = ymin + (yval[wantedIdx] / img.shape[0]) * (ymax - ymin) yval = yval.reshape(-1,1) if xaxisLog: xval = 10** xval if yaxisLog: yval = 10 ** yval #build the result array outA = np.hstack((xval,yval)) if value is not None: outA = np.hstack((outA,value*np.ones(yval.shape))) # process step intervals if step is not None: # collect the first value, every step'th value, and last value outA = np.vstack((outA[0,:],outA[1:-2:step,:],outA[-1,:])) #write output file if outfile is not None > 0 : np.savetxt(outfile,outA) if doPlot: fig = pyplot.figure() ax=fig.add_subplot(1,1,1) ax.plot(xval,yval) if xaxisLog: ax.set_xscale('log') if yaxisLog: ax.set_yscale('log') pylab.show() return outA ###################################################################################################### def makemotionsequence(imgfilename, mtnfilename,postfix,intTime,frmTim,outrows,outcols, imgRatio,pixsize,numsamples,fnPlotInput=None): r"""Builds a video from a still image and a displacement motion file. The objective with this function is to create a video sequence from a still image, as if the camera moved minutely during the sensor integration time. A static image is moved according to the (x,y) displacement motion in an input file. The input file must be at least ten times plus a bit larger than the required output file. The image input file is sampled with appropriate displacement for each point in the displacement file and pixel vlaues are accumulated in the output image. All of this temporal displacement and accumulation takes place in the context of a frame integration time and frame frequency. The key requirements for accuracy in this method is an input image with much higher resolution than the output image, plus a temporal displacement file with much higher temporal sampling than the sensor integration time. The function creates a sequence of images that can be used to create a video. Images are numbered in sequence, using the same base name as the input image. The sequence is generated in the current working directory. The function currently processes only monochrome images (M,N) arrays. The motion data file must be a compressed numpy npz or text file, with three columns: First column must be time, then movement along rows, then movement along columns. The units and scale of the motion columns must be the same units and scale as the pixel size in the output image. imgRatio x imgRatio number of pixels in the input (hires) image are summed together and stored in one output image pixel. In other words if imgRatio is ten, each pixel in the output image will be the sum of 100 pixels in the imput image. During one integration time period the hires input image will be sampled at slightly different offsets (according to the motion file) and accumulated in an intermediate internal hires file. This intermediate internal file is collapsed as described above. The function creates a series-numbered sequence if images that can be used to construct a video. One easy means to create the video is to use VirtualDub, available at www.virtualdub.org/index. In VirtualDub open the first image file in the numbered sequence, VirtualDub will then recognise the complete sequence as a video. Once loaded in VirtualDub, save the video as avi. Args: | imgfilename (str): static image filename (monochrome only) | mtnfilename (str): motion data filename. | postfix (str): add this string to the end of the output filename. | intTime (float): sensor integration time. | frmTim (float): sensor frame time. | outrows (int): number of rows in the output image. | outcols (int): number of columns in the output image. | imgRatio (float): hires image pixel count block size of one output image pixel | pixsize (float): pixel size in same units as motion file. | numsamples (int): number of motion input samples to be processed (-1 for all). | fnPlotInput (str): output plot filename (None for no plot). Returns: | True if successful, message otherwise, creates numbered images in current working directory Raises: | No exception is raised. Author: <NAME> """ from scipy import ndimage from scipy import misc import os #read in the image and motion files. if not os.path.exists(imgfilename): return '{} not found'.format(imgfilename) imgIn = misc.imread(imgfilename) centrow = imgIn.shape[0]/2 centcol = imgIn.shape[1]/2 motionScale = pixsize / imgRatio if not os.path.exists(mtnfilename): return '{} not found'.format(mtnfilename) if '.npz' in mtnfilename: rcmotion = np.load(mtnfilename)['arr_0'] elif '.txt' in mtnfilename: rcmotion = np.loadtxt(mtnfilename) else: return '{} not in appropriate format'.format(mtnfilename) mtnfilenamecore = os.path.split(mtnfilename)[1] mtnfilenamecore = mtnfilenamecore[:mtnfilenamecore.find('.')] #reset time to start at zero times = rcmotion[:,0] - rcmotion[0,0] drows = rcmotion[:,1] dcols = rcmotion[:,2] if fnPlotInput is not None: I = ryplot.Plotter(1,3,1,'', figsize=(6,9)) I.showImage(1, imgIn) I.plot(2,times,rcmotion[:,1:3],'Input motion','Time s','Displacement',label=['row','col']) I.plot(3,times,rcmotion[:,1:3]/pixsize,'Input motion','Time s','Displacement pixels',label=['row','col']) I.saveFig(fnPlotInput) fullframe = 0 subframes = 0 outimage = np.zeros((outrows*imgRatio,outcols*imgRatio)) if times.shape[0] < numsamples: numsamples = times.shape[0] for isample,time in enumerate(times): if isample <= numsamples: fracframe = np.floor(time / frmTim) if fracframe >= fullframe + 1: #output and reset the present image outfilename = os.path.split(imgfilename)[1].replace('.png', '-{}-{}-{:05d}.png'.format(mtnfilenamecore,postfix,fullframe)) outimage = outimage/subframes saveimage = np.array([[np.sum(vchunk) for vchunk in np.split(hchunk, outrows, 1)] for hchunk in np.split(outimage, outcols)])/imgRatio**2 misc.imsave(outfilename, saveimage) outimage = np.zeros((outrows*imgRatio,outcols*imgRatio)) fullframe += 1 subframes = 0 if time - fullframe * frmTim < intTime: #integrate the frames during integration time # print('{} {} integrate image {}'.format(time,fracframe, fullframe)) roffs = drows[isample] / motionScale coffs = dcols[isample] / motionScale outimage += imgIn[ centrow+roffs-outrows*imgRatio/2:centrow+roffs+outrows*imgRatio/2, centcol+coffs-outcols*imgRatio/2:centcol+coffs+outcols*imgRatio/2 ] subframes += 1 else: # this sample is not integrated in the output image # print('{} {}'.format(time,fracframe)) pass return True ###################################################################################################### def luminousEfficiency(vlamtype='photopic', wavelen=None, eqnapprox=False): r"""Returns the photopic luminous efficiency function on wavelength intervals Type must be one of: photopic: CIE Photopic V(lambda) modified by Judd (1951) and Vos (1978) [also known as CIE VM(lambda)] scotopic: CIE (1951) Scotopic V'(lambda) CIE2008v2: 2 degree CIE "physiologically-relevant" luminous efficiency Stockman & Sharpe CIE2008v10: 10 degree CIE "physiologically-relevant" luminous efficiency Stockman & Sharpe For the equation approximations (only photoic and scotopic), if wavelength is not given a vector is created 0.3-0.8 um. For the table data, if wavelength is not given a vector is read from the table. CIE Photopic V(l) modified by Judd (1951) and Vos (1978) [also known as CIE VM(l)] from http://www.cvrl.org/index.htm Args: | vlamtype (str): type of curve required | wavelen (np.array[]): wavelength in um | eqnapprox (bool): if False read tables, if True use equation Returns: | luminousEfficiency (np.array[]): luminous efficiency | wavelen (np.array[]): wavelength in um Raises: | No exception is raised. Author: <NAME> """ if eqnapprox: if wavelen is None: wavelen = np.linspace(0.3, 0.8, 100) if 'photopic' in vlamtype: vlam = 1.019 * np.exp(-285.51 * (wavelen - 0.5591) ** 2 ).reshape(-1,) elif 'scotopic' in vlamtype: vlam = 0.99234 * np.exp(-321.1 * (wavelen - 0.502) ** 2 ).reshape(-1,) else: return None, None else: if 'photopic' in vlamtype: vlamname = 'vljve.csv' elif 'scotopic' in vlamtype: vlamname = 'scvle.csv' elif 'CIE2008v2' in vlamtype: vlamname = 'linCIE2008v2e_1.csv' elif 'CIE2008v10' in vlamtype: vlamname = 'linCIE2008v10e_1.csv' else: return None, None #load data file from the pyradi directories, not local dir resource_package = 'pyradi' #__name__ ## Could be any module/package name. resource_path = os.path.join('data', 'photometry',vlamname) dat = pkg_resources.resource_string(resource_package, resource_path) if sys.version_info[0] > 2: dat = np.loadtxt(StringIO(dat.decode('utf-8')),delimiter=",") else: dat = np.genfromtxt(StringIO(dat),delimiter=",") if wavelen is not None: vlam = np.interp(wavelen*1000., dat[:,0],dat[:,1],left=dat[0,1],right=dat[-1,1]) else: wavelen = dat[:,0]/1000. vlam = dat[:,1] return vlam, wavelen ############################################################################################## ############################################################################################## ############################################################################################## # to calculate the MTF degradation from the pupil function def calcMTFwavefrontError(sample, wfdisplmnt, xg, yg, specdef, samplingStride = 1,clear='Clear'): """Given a mirror figure error, calculate MTF degradation from ideal An aperture has an MTF determined by its shape. A clear aperture has zero phase delay and the MTF is determined only by the aperture shape. Any phase delay/error in the wavefront in the aperture will result in a lower MTF than the clear aperture diffraction MTF. This function calculates the MTF degradation attributable to a wavefront error, relative to the ideal aperture MTF. The optical transfer function is the Fourier transform of the point spread function, and the point spread function is the square absolute of the inverse Fourier transformed pupil function. The optical transfer function can also be calculated directly from the pupil function. From the convolution theorem it can be seen that the optical transfer function is the autocorrelation of the pupil function <https://en.wikipedia.org/wiki/Optical_transfer_function>. The pupil function comprises a masking shape (the binary shape of the pupil) and a transmittance and spatial phase delay inside the mask. A perfect aperture has unity transmittance and zero phase delay in the mask. Some pupils have irregular pupil functions/shapes and hence the diffraction MTF has to be calculated numerically using images (masks) of the pupil function. From the OSA Handbook of Optics, Vol II, p 32.4: For an incoherent optical system, the OTF is proportional to the two-dimensional autocorrelation of the exit pupil. This calculation can account for any phase factors across the pupil, such as those arising from aberrations or defocus. A change of variables is required for the identification of an autocorrelation (a function of position in the pupil) as a transfer function (a function of image-plane spatial frequency). The change of variables is xi = {x}/{lambda d_i} where $x$ is the autocorrelation shift distance in the pupil, $\lambda$ is the wavelength, and $d_i$ is the distance from the exit pupil to the image. A system with an exit pupil of full width $D$ has an image-space cutoff frequency (at infinite conjugates) of xi_{cutoff} ={D}/{lambda f} In this analysis we assume that 1. the sensor is operating at infinite conjugates. 2. the mask falls in the entrance pupil shape. The MTF is calculated as follows: 1. Read in the pupil function mask and create an image of the mask. 2. Calculate the two-dimensional autocorrelation function of the binary image (using the SciPy two-dimensional correlation function `signal.correlate2d`). 3. Scale the magnitude and $(x,y)$ dimensions according to the dimensions of the physical pupil. The the array containing the wavefront displacement in the pupil must have np.nan values outside the pupil. The np.nan values are ignored and not included in the calculation. Obscurations can be modelled by placing np.nan in the obscuration. The specdef dictionary has a string key to identify (name) the band, with a single float contents which is the wavelength associated with this band. Args: | sample (string): an identifier string to be used in the plots | wfdisplmnt (nd.array[M,N]): wavefront displacement in m | xg (nd.array[M,N]): x values from meshgrid, for wfdisplmnt | yg (nd.array[M,N]): y values from meshgrid, for wfdisplmnt | specdef (dict): dictionary defining spectral wavelengths | samplingStride (number): sampling stride to limit size and processing | clear (string): defines the dict key for clear aperture reference Returns: | dictionaries below have entries for all keys in specdef. | wfdev (dict): subsampled wavefront error in m | phase (dict): subsampled wavefront error in rad | pupfn (dict): subsampled complex pupil function | MTF2D (dict): 2D MTF in (x,y) format | MTFpol (dict): 2D MTF in (r,theta) format | specdef (): specdef dictionary as passed plus clear entry | MTFmean (dict): mean MTF across all rotation angles | rho (nd.array[M,]): spatial frequency scale in cy/mrad | fcrit (float): cutoff or critical spatial frequency cy/mrad | clear (string): key used to signify the clear aperture case. Raises: | No exception is raised. """ from scipy import signal import pyradi.ryplot as ryplot error = {} wfdev = {} phase = {} pupfn = {} pupfnz = {} MTF2D = {} MTFpol = {} MTFmean = {} freqfsm = {} rho = {} fcrit = {} pim = ryplot.ProcessImage() # make the clear case zero error wfdev[clear] = np.where(np.isnan(wfdisplmnt),np.nan,0) specdef[clear] = 1e300 # three cases, clear is done for near infinite wavelength (=zero phase) for specband in specdef: # the physical deviation/error from the ideal mirror figure # force nan outside of valid mirror surface if clear not in specband: wfdev[specband] = np.where(np.isnan(wfdisplmnt),np.nan,wfdisplmnt) # resample with stride to reduce processing load wfdev[specband] = wfdev[specband][::samplingStride,0:wfdev[specband].shape[0]:samplingStride] # one wavelength error is 2pi rad phase shift # use physical displacement and wavelength to normalise to # of wavelengths phase[specband] = np.where(np.isnan(wfdev[specband]), np.nan, 2*np.pi*(wfdev[specband]/specdef[specband])) # phase into complex pupil function pupfn[specband] = np.exp(-1j * phase[specband]) # correlation fn does not work if nan in data set, force nan to zero pupfnz[specband] = np.where(np.isnan(pupfn[specband]),0,pupfn[specband]) # correlation to get optical transfer function corr = signal.correlate2d(pupfnz[specband], np.conj(pupfnz[specband]), boundary='fill', mode='full') # normalise and get abs value to get MTF MTF2D[specband] = np.abs(corr / np.max(corr)) polar_c, _, _ = pim.reprojectImageIntoPolar( MTF2D[specband].reshape(MTF2D[specband].shape[0],MTF2D[specband].shape[1],1), None, False,cval=0.) MTFpol[specband] = polar_c[:,:,0] MTFmean[specband] = MTFpol[specband].mean(axis=1) #calculate the aperture diameter, geometric mean along x and y pdia = np.sqrt(np.abs(np.nanmax(xg)-np.nanmin(xg)) * np.abs(
np.nanmax(yg)
numpy.nanmax
# %% import sys sys.path.append("../../..") from scipy.linalg import null_space import copy import numpy as np from numpy.linalg import matrix_rank, matrix_power, cholesky, inv import torch from torch.optim import Adam from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import util.geometry_util as geo_util import solvers.rigidity_solver.gradient as gradient from solvers.rigidity_solver.internal_structure import tetrahedron, triangulation_with_torch from solvers.rigidity_solver.constraints_3d import select_non_colinear_points from solvers.rigidity_solver import gradient, algo_core as core, extra_constraint from solvers.rigidity_solver.eigen_analysis import eigen_analysis from visualization.model_visualizer import visualize_3D, visualize_2D from matplotlib import pyplot as plt data = np.array([ [503, 353], [1067, 27], [866, 128], [1067, 167], [1067, 367], [261, 432], ]) * 0.01 # mutable parameter_nodes = { "up-right-conn": torch.tensor(data[1], dtype=torch.double), "right-down-node": torch.tensor(data[4], dtype=torch.double), } parameter_scalars = { "sliding-ratio": torch.tensor(0.75, dtype=torch.double), "main-right-ratio": torch.tensor(0.583, dtype=torch.double), } immutable = { "base-main-conn": torch.tensor(data[5], dtype=torch.double), "main-up-conn": torch.tensor(data[0], dtype=torch.double), } for param in parameter_nodes.values(): param.requires_grad_(True) part_node_connectivity = { "main": ("base-main-conn", "main-right-conn"), "up-left": ("main-up-conn", "up-sliding-conn"), "up-right": ("up-sliding-conn", "up-right-conn"), "right": ("up-right-conn", "right-down-node"), } def describe_nodes(): nm = {**parameter_nodes, **immutable} computed_nodes = { "up-sliding-conn": torch.lerp(nm["main-up-conn"], nm["up-right-conn"], parameter_scalars["sliding-ratio"]), "main-right-conn": torch.lerp(nm["up-right-conn"], nm["right-down-node"], parameter_scalars["main-right-ratio"]), } node_map = {**nm, **computed_nodes} return node_map part_map = {} from collections import namedtuple Part = namedtuple("Part", "points, edges, index_offset") Joint = namedtuple("Joint", "pivot, part1_ind, part2_ind, translation, rotation_center") def empty(_): return None joints = [ Joint(lambda nm: nm["main-up-conn"], "main", "up-left", empty, lambda nm: nm["main-up-conn"]), Joint(lambda nm: nm["up-sliding-conn"], "up-left", "up-right", lambda nm: nm["up-right-conn"] - nm["main-up-conn"], empty), Joint(lambda nm: nm["up-right-conn"], "up-right", "right", empty, lambda nm: nm["up-right-conn"]), Joint(lambda nm: nm["main-right-conn"], "main", "right", empty, lambda nm: nm["main-right-conn"]), ] def describe_model(part_nodes, only_points=False): offset = 0 for key, (i, j) in part_node_connectivity.items(): _points, _edges = triangulation_with_torch(part_nodes[i], part_nodes[j], 10, thickness=0.3) part_map[key] = Part(_points, _edges, offset) assert not torch.any(torch.isnan(_points)), f"exists nan, {part_nodes[i], part_nodes[j]}" offset += len(_points) point_matrix = torch.vstack([part_map[key].points for key in part_node_connectivity.keys()]) assert not torch.any(torch.isnan(point_matrix)) if only_points: return point_matrix edge_matrix = torch.vstack([ part_map[key].edges + part_map[key].index_offset for key in part_node_connectivity.keys()]) constraint_point_indices = torch.tensor(np.vstack([ np.concatenate( [select_non_colinear_points( part_map[j.part1_ind].points.detach().numpy(), 2, near=j.pivot(part_nodes).detach().numpy() )[1] + part_map[j.part1_ind].index_offset, select_non_colinear_points( part_map[j.part2_ind].points.detach().numpy(), 2, near=j.pivot(part_nodes).detach().numpy() )[1] + part_map[j.part2_ind].index_offset] ) for j in joints ]), dtype=torch.long) return point_matrix, edge_matrix, constraint_point_indices def total_length(nodes, connectivity): len = torch.tensor(0, dtype=torch.double) for i, j in connectivity.values(): len += torch.norm(nodes[i] - nodes[j]) return len # %% # initialization for edges and constraint_point_indices with torch.no_grad(): nodes = describe_nodes() points, edges, constraint_point_indices = describe_model(nodes) init_len = total_length(nodes, part_node_connectivity) # visualize_2D(points, edges) # %% n_iters = 500 optimizer = Adam([ {"params": [*parameter_nodes.values()], "lr": 0.01}, {"params": [*parameter_scalars.values()], "lr": 0.002}, ]) traces = [] for it in tqdm(range(n_iters)): optimizer.zero_grad() nodes = describe_nodes() points = describe_model(nodes, only_points=True) assert not torch.any(torch.isnan(torch.vstack(tuple(nodes.values())))), f"exists nan in nodes, {nodes}" with torch.no_grad(): joint_constraints = gradient.constraint_matrix( points, pivots=[j.pivot(nodes) for j in joints], translation_vectors=[j.translation(nodes) for j in joints], rotation_centers=[j.rotation_center(nodes) for j in joints], joint_point_indices=constraint_point_indices, ) extra_constraints = torch.vstack([ gradient.rigid_motion(points) ]) constraints = torch.vstack([ joint_constraints, extra_constraints ]) B = gradient.torch_null_space(constraints) K = gradient.spring_energy_matrix(points, edges, dim=2) Q = torch.chain_matmul(B.t(), K, B) # the eigenvalues are already in ascending order! eigenvalues, eigenvectors = torch.symeig(Q, eigenvectors=True) eigind = 1 smallest_eigenvalue = eigenvalues[eigind] corresponding_eigenvector = torch.mv(B, eigenvectors[:, eigind]) assert not torch.allclose(eigenvalues[eigind], torch.tensor(0.0, dtype=torch.double), atol=1e-12), f"more than expected num dof: {eigenvalues}" length_penalty = 0.001 * torch.pow(total_length(nodes, part_node_connectivity) - init_len, 2) # Negate eigenvalue in the objective as we're trying to increase it objective = -smallest_eigenvalue + length_penalty objective.backward() optimizer.step() with torch.no_grad(): for value in parameter_scalars.values(): value.clamp_(0.0, 1.0) trace = { "eigenvalue": smallest_eigenvalue.detach().cpu().numpy(), "eigenvector": corresponding_eigenvector.detach().cpu().numpy(), "nodes": copy.deepcopy({k: v.detach().numpy() for k, v in nodes.items()}), "points": points.detach().cpu().numpy(), } traces.append(trace) # %% # visualize the optimization process from matplotlib import pyplot as plt # objective against time objectives = [t["eigenvalue"] for t in traces] plt.plot(np.arange(n_iters), objectives) # plt.show() # shape of the triangle against time def plot_shape(ax, vertices, edges): for a, b in edges: p, q = vertices[a], vertices[b] ax.plot([p[0], q[0]], [p[1], q[1]], color=[0, 1, 0]) plt.clf() fig, ax = plt.subplots() ax.set(xlim=(0, 1.5), ylim=(0, 2)) ax.axis('equal') ax.axis('off') for key in nodes: plt.cla() ax.axis('equal') ax.axis('off') points = np.array([t["nodes"][key] for t in traces]) points_x = points[:, 0] points_y = points[:, 1] ax.plot(points_x, points_y, color="black") plt.savefig(f"excavator-{key}-points.svg", transparent=True) print(traces[0]["nodes"]) print(traces[-1]["nodes"]) for key, (i, j) in part_node_connectivity.items(): print(key, traces[-1]["nodes"][i], traces[-1]["nodes"][j], np.linalg.norm(traces[-1]["nodes"][i] - traces[-1]["nodes"][j])) for key, (i, j) in part_node_connectivity.items(): print(key, traces[0]["nodes"][i], traces[0]["nodes"][j], np.linalg.norm(traces[0]["nodes"][i] - traces[0]["nodes"][j])) for it in np.round(
np.linspace(0, n_iters - 1, 8)
numpy.linspace
# !pip3 install streamlit from io import BytesIO import base64 import datetime import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import yfinance as yf # https://pypi.org/project/yfinance/ ############################## # Technical Analysis Classes # ############################## # https://github.com/bukosabino/ta/blob/master/ta/utils.py class IndicatorMixin: """Util mixin indicator class""" _fillna = False def _check_fillna(self, series: pd.Series, value: int = 0) -> pd.Series: """Check if fillna flag is True. Args: series(pandas.Series): dataset 'Close' column. value(int): value to fill gaps; if -1 fill values using 'backfill' mode. Returns: pandas.Series: New feature generated. """ if self._fillna: series_output = series.copy(deep=False) series_output = series_output.replace([np.inf, -np.inf], np.nan) if isinstance(value, int) and value == -1: series = series_output.fillna(method="ffill").fillna(value=-1) else: series = series_output.fillna(method="ffill").fillna(value) return series @staticmethod def _true_range( high: pd.Series, low: pd.Series, prev_close: pd.Series ) -> pd.Series: tr1 = high - low tr2 = (high - prev_close).abs() tr3 = (low - prev_close).abs() true_range = pd.DataFrame( data={"tr1": tr1, "tr2": tr2, "tr3": tr3}).max(axis=1) return true_range def dropna(df: pd.DataFrame) -> pd.DataFrame: """Drop rows with "Nans" values""" df = df.copy() number_cols = df.select_dtypes("number").columns.to_list() df[number_cols] = df[number_cols][df[number_cols] < math.exp(709)] # big number df[number_cols] = df[number_cols][df[number_cols] != 0.0] df = df.dropna() return df def _sma(series, periods: int, fillna: bool = False): min_periods = 0 if fillna else periods return series.rolling(window=periods, min_periods=min_periods).mean() def _ema(series, periods, fillna=False): min_periods = 0 if fillna else periods return series.ewm(span=periods, min_periods=min_periods, adjust=False).mean() def _get_min_max(series1: pd.Series, series2: pd.Series, function: str = "min"): """Find min or max value between two lists for each index""" series1 = np.array(series1) series2 = np.array(series2) if function == "min": output =
np.amin([series1, series2], axis=0)
numpy.amin
# Copyright 2017 The TensorFlow Lattice Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TensorFlow Lattice's keypoints_initialization module.""" import math import os # Dependency imports import numpy as np from tensorflow_lattice.python.lib import keypoints_initialization from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.feature_column import feature_column as feature_column_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class KeypointsInitializationTestCase(test.TestCase): def setUp(self): super(KeypointsInitializationTestCase, self).setUp() def testMaterializeLocally(self): num_examples = 100 x = np.random.uniform(0.0, 1.0, size=num_examples) # Read to the end of a number of epochs. input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=1, shuffle=False) results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=None) self.assertEqual(len(results['x']), num_examples) input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=2, shuffle=False) results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=None) self.assertEqual(len(results['x']), 2 * num_examples) # Read a certain number of steps: just enough to read all data (last # batch will only be partially fulfilled). input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=1, shuffle=False) results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=1) self.assertEqual(len(results['x']), 13) input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=1, shuffle=False) results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=8) self.assertEqual(len(results['x']), num_examples) # Try to read beyond end of input, with num_steps set. input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=1, shuffle=False) with self.assertRaises(errors.OutOfRangeError): results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=100) # Try to read beyond safety limit. input_fn = numpy_io.numpy_input_fn( x={'x': x}, batch_size=13, num_epochs=None, shuffle=False) with self.assertRaises(ValueError): results = keypoints_initialization._materialize_locally( tensors=input_fn(), num_steps=None, safety_size=1000) def _BuildInputs(self, x0, x1, x2): """Returns input_fn, feature_names and feature_columns.""" def _input_fn(): return ({ 'x0': array_ops.constant(x0, dtype=dtypes.float32), 'x1': array_ops.constant(x1, dtype=dtypes.float32), 'x2': array_ops.constant(x2, dtype=dtypes.float32), }, None) feature_names = ['x0', 'x1', 'x2'] feature_columns = set( [feature_column_lib.numeric_column(key=fn) for fn in feature_names]) return _input_fn, feature_names, feature_columns def _CheckSaveQuantilesForKeypoints(self, name, num_examples, num_steps, x0, x1, x2, use_feature_columns, override): input_fn, feature_names, feature_columns = self._BuildInputs(x0, x1, x2) save_dir = os.path.join(self.get_temp_dir(), name) keypoints_initialization.save_quantiles_for_keypoints( input_fn, save_dir, feature_columns=(feature_columns if use_feature_columns else None), num_quantiles=5, override=override) # Check by reading files directly. subdir = os.path.join(save_dir, keypoints_initialization._QUANTILES_SUBDIRECTORY) quantiles_x0 = keypoints_initialization._load_quantiles(subdir, 'x0') quantiles_x1 = keypoints_initialization._load_quantiles(subdir, 'x1') quantiles_x2 = keypoints_initialization._load_quantiles(subdir, 'x2') self.assertAllClose( quantiles_x0, [0, 2.5**2, 5.**2, 7.5**2, 100.], atol=0.2) self.assertAllClose( quantiles_x1, [1., math.pow(10., 0.5), 10.0, math.pow(10., 1.5), 100.], atol=0.2) # x2 should start with [0,0,...] and end in [..., 1, 1], the middle value # can be either 0 or 1. self.assertAllClose(quantiles_x2[0:2], [0., 0.], atol=1e-3) self.assertAllClose(quantiles_x2[-2:], [1., 1.], atol=1e-3) # New graph is needed because default graph is changed by save # keypoints, and self.test_session() will by default try to reuse a cached # session, with a different graph. with ops.Graph().as_default() as g: # Check by using load_keypoints_from_quantiles. keypoints_init = keypoints_initialization.load_keypoints_from_quantiles( feature_names, save_dir, 3, output_min={ 'x0': 0., 'x1': 1., 'x2': 7. }, output_max={ 'x0': 1., 'x1': 10., 'x2': 13. }) with self.test_session(graph=g) as sess: keypoints_init = sess.run(keypoints_init) self.assertAllClose(keypoints_init['x0'][0], [0, 5.**2, 100.], atol=0.2) self.assertAllClose(keypoints_init['x0'][1], [0., 0.5, 1.]) self.assertAllClose(keypoints_init['x1'][0], [1., 10.0, 100.], atol=0.2) self.assertAllClose(keypoints_init['x1'][1], [1., 5.5, 10.]) # Notice x2 only has 2 unique values, so it should have lowered the # num_keypoints to 2. self.assertAllClose([0., 1.0], keypoints_init['x2'][0], atol=1e-3) self.assertAllClose([7., 13.0], keypoints_init['x2'][1], atol=1e-3) # Check that load_keypoints_from_quantiles don't generate anything # if num_keypoints is 0 or unset. with ops.Graph().as_default() as g: # Check by using load_keypoints_from_quantiles. keypoints_init = keypoints_initialization.load_keypoints_from_quantiles( feature_names, save_dir, { 'x0': 3, 'x2': 3, 'x1': 0 }, output_min={ 'x0': 0., 'x1': 1., 'x2': 7. }, output_max={ 'x0': 1., 'x1': 10., 'x2': 13. }) with self.test_session(graph=g) as sess: keypoints_init = sess.run(keypoints_init) self.assertTrue('x0' in keypoints_init) self.assertTrue('x2' in keypoints_init) self.assertTrue('x1' not in keypoints_init) def testSaveQuantilesForKeypoints(self): """Tests quantiles are being calculated correctly.""" num_examples = 100000 num_steps = num_examples / num_examples # Verify for randomized input: try with/without feature_columns. x0 =
np.random.uniform(0.0, 10.0, size=num_examples)
numpy.random.uniform
"""Feature View: show spikes as 2D points in feature space.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import operator import time import numpy as np import numpy.random as rdn from qtools import QtGui, QtCore, show_window from galry import (Manager, PlotPaintManager, PlotInteractionManager, Visual, GalryWidget, enforce_dtype, RectanglesVisual, TextVisual, PlotVisual, AxesVisual, GridVisual, NavigationEventProcessor, EventProcessor, DataNormalizer) from kwiklib.dataio.selection import get_indices, select from kwiklib.dataio.tools import get_array from klustaviewa.views.common import HighlightManager, KlustaViewaBindings, KlustaView from kwiklib.utils.colors import COLORMAP_TEXTURE, SHIFTLEN, COLORMAP from klustaviewa import USERPREF from kwiklib.utils import logger as log import klustaviewa # ----------------------------------------------------------------------------- # Shaders # ----------------------------------------------------------------------------- VERTEX_SHADER = """ // move the vertex to its position vec3 position = vec3(0, 0, 0); position.xy = position0; vhighlight = highlight; cmap_vindex = cmap_index; vmask = mask; vselection = selection; // compute the depth: put masked spikes on the background, unmasked ones // on the foreground on a different layer for each cluster float depth = 0.; //if (mask == 1.) depth = -(cluster_depth + 1) / (nclusters + 10); position.z = depth; if ((highlight > 0) || (selection > 0)) gl_PointSize = 5.; else gl_PointSize = u_point_size; // DEBUG //gl_PointSize = 20; """ FRAGMENT_SHADER = """ float index = %CMAP_OFFSET% + cmap_vindex * %CMAP_STEP%; vec2 index2d = vec2(index, %SHIFT_OFFSET% + (1 + toggle_mask * (1 - vmask) * %SHIFTLEN%) * %SHIFT_STEP%); if (vhighlight > 0) {{ index2d.y = 0; out_color = texture2D(cmap, index2d); out_color.w = .85; }} else {{ out_color = texture2D(cmap, index2d); out_color.w = {0:.3f}; }} """ # Background spikes. VERTEX_SHADER_BACKGROUND = """ // move the vertex to its position vec3 position = vec3(0, 0, 0); position.xy = position0; position.z = 0.; gl_PointSize = u_point_size; """ FRAGMENT_SHADER_BACKGROUND = """ out_color = vec4(.75, .75, .75, alpha); """ # ----------------------------------------------------------------------------- # Utility functions # ----------------------------------------------------------------------------- def polygon_contains_points(polygon, points): """Returns the points within a polygon. Arguments: * polygon: a Nx2 array with the coordinates of the polygon vertices. * points: a Nx2 array with the coordinates of the points. Returns: * arr: a Nx2 array of booleans with the belonging of every point to the inside of the polygon. """ try: from matplotlib.path import Path p = Path(polygon) return p.contains_points(points) except: import matplotlib.nxutils return matplotlib.nxutils.points_inside_poly(points, polygon) # ----------------------------------------------------------------------------- # Grid # ----------------------------------------------------------------------------- def nicenum(x, round=False): e = np.floor(np.log10(x)) f = x / 10 ** e eps = 1e-6 if round: if f < 1.5: nf = 1. elif f < 3: nf = 2. elif f < 7.: nf = 5. else: nf = 10. else: if f < 1 - eps: nf = 1. elif f < 2 - eps: nf = 2. elif f < 5 - eps: nf = 5. else: nf = 10. return nf * 10 ** e def get_ticks(x0, x1): nticks = 5 r = nicenum(x1 - x0, False) d = nicenum(r / (nticks - 1), True) g0 = np.floor(x0 / d) * d g1 = np.ceil(x1 / d) * d nfrac = int(max(-np.floor(np.log10(d)), 0)) return np.arange(g0, g1 + .5 * d, d), nfrac def format_number(x, nfrac=None): if nfrac is None: nfrac = 2 if np.abs(x) < 1e-15: return "0" elif np.abs(x) > 100.001: return "%.3e" % x if nfrac <= 2: return "%.2f" % x else: nfrac = nfrac + int(np.log10(np.abs(x))) return ("%." + str(nfrac) + "e") % x def get_ticks_text(x0, y0, x1, y1): ticksx, nfracx = get_ticks(x0, x1) ticksy, nfracy = get_ticks(y0, y1) n = len(ticksx) text = [format_number(x, nfracx) for x in ticksx] text += [format_number(x, nfracy) for x in ticksy] # position of the ticks coordinates = np.zeros((len(text), 2)) coordinates[:n, 0] = ticksx coordinates[n:, 1] = ticksy return text, coordinates, n class GridEventProcessor(EventProcessor): def initialize(self): self.register('Initialize', self.update_axes) self.register('Pan', self.update_axes) self.register('Zoom', self.update_axes) self.register('Reset', self.update_axes) self.register('Animate', self.update_axes) self.register(None, self.update_axes) def update_viewbox(self): # normalization viewbox self.normalizer = DataNormalizer() self.normalizer.normalize( (0, -1, self.parent.data_manager.duration, 1)) def update_axes(self, parameter): nav = self.get_processor('navigation') if not nav: return if not self.parent.projection_manager.grid_visible: return viewbox = nav.get_viewbox() x0, y0, x1, y1 = viewbox x0 = self.normalizer.unnormalize_x(x0) y0 = self.normalizer.unnormalize_y(y0) x1 = self.normalizer.unnormalize_x(x1) y1 = self.normalizer.unnormalize_y(y1) viewbox = (x0, y0, x1, y1) text, coordinates, n = get_ticks_text(*viewbox) coordinates[:,0] = self.normalizer.normalize_x(coordinates[:,0]) coordinates[:,1] = self.normalizer.normalize_y(coordinates[:,1]) # here: coordinates contains positions centered on the static # xy=0 axes of the screen position =
np.repeat(coordinates, 2, axis=0)
numpy.repeat
# Ciholas, Inc. - www.ciholas.com # Licensed under: creativecommons.org/licenses/by/4.0 # System libraries import numpy as np import pyqtgraph as pg from pyqtgraph.Qt import QtGui, QtCore # Local libraries from cdp import LPSTemperatureV1 from network_objects import * from settings import * class PlotTemperature(pg.GraphicsWindow): type = LPSTemperatureV1.type def __init__(self, serial): pg.GraphicsWindow.__init__(self) self.setWindowTitle('CUWB Monitor - Temperature Plot ID: 0x{:08X}'.format(serial)) self.resize(900,500) self.serial = serial self.graph_window = self.addPlot(title='C') self.graph_window.addLegend() self.graph_window.showGrid(x=True, y=True) self.temperature = self.graph_window.plot(pen=pg.mkPen('b', width=3), name='Temperature') self.timer = self.startTimer(QPLOT_FREQUENCY) self.last_count = UwbNetwork.nodes[self.serial].cdp_pkts_count[LPSTemperatureV1.type] self.data = deque([], TRAIL_LENGTH) self.time = deque([], TRAIL_LENGTH) _current_size = len(UwbNetwork.nodes[self.serial].cdp_pkts[LPSTemperatureV1.type]) for idx in range(_current_size): self.data.append(UwbNetwork.nodes[self.serial].cdp_pkts[LPSTemperatureV1.type][idx - _current_size].temperature / 480.0 + 42.5) self.time.append(UwbNetwork.nodes[self.serial].cdp_pkts_time[LPSTemperatureV1.type][idx - _current_size]) def timerEvent(self, e): if not UwbNetwork.running: self.killTimer(self.timer) self.close() return _current_size = UwbNetwork.nodes[self.serial].cdp_pkts_count[LPSTemperatureV1.type] - self.last_count self.last_count = UwbNetwork.nodes[self.serial].cdp_pkts_count[LPSTemperatureV1.type] if _current_size == 0: return for idx in range(_current_size): self.data.append(UwbNetwork.nodes[self.serial].cdp_pkts[LPSTemperatureV1.type][idx - _current_size].temperature / 480.0 + 42.5) self.time.append(UwbNetwork.nodes[self.serial].cdp_pkts_time[LPSTemperatureV1.type][idx - _current_size]) self.temperature.setData(
np.array(self.time)
numpy.array
import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt def shifted_log_diff(rates, shift=2.0): return
np.log(rates + shift)
numpy.log
import numpy as np import scipy.sparse as sps from scipy.sparse.linalg import LinearOperator from scipy.optimize._slsqp import slsqp from scipy.optimize._differentiable_functions import FD_METHODS from scipy.optimize._hessian_update_strategy import HessianUpdateStrategy from scipy.optimize._constraints import old_bound_to_new from scipy.optimize._minimize import standardize_constraints, standardize_bounds from scipy.optimize._minimize import MemoizeJac from scipy.optimize import OptimizeResult def minimize( fun, x0, args=(), jac=None, bounds=None, constraints=(), tol=None, options=None ): """Minimization of scalar function of one or more variables. Wrapper of scipy.optimize.minimize implementing shortcuts to the SLSQP method and extracting the KKT multipliers. Parameters ---------- fun : callable The objective function to be minimized. fun(x, *args) -> float where x is an 1-D array with shape (n,) and args is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where n is the number of independent variables. args : tuple, optional Extra arguments passed to the objective function and its derivatives (fun, jac and hess functions). jac : {callable, '2-point', '3-point', 'cs', bool}, optional Method for computing the gradient vector. If it is a callable, it should be a function that returns the gradient vector: jac(x, *args) -> array_like, shape (n,) where x is an array with shape (n,) and args is a tuple with the fixed parameters. If jac is a Boolean and is True, fun is assumed to return a tuple (f, g) containing the objective function and the gradient. If None or False, the gradient will be estimated using 2-point finite difference estimation with an absolute step size. Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used to select a finite difference scheme for numerical estimation of the gradient with a relative step size. These finite difference schemes obey any specified bounds. bounds : scipy.optimize.Bounds, optional Bounds on variables as an instance of Bounds class. constraints : scipy.optimize.Constraint or List of Constraints, optional Constraints defined as a single object or a list of objects specifying constraints to the optimization problem. Available constraints are: - LinearConstraint - NonlinearConstraint tol : float, optional Tolerance for termination. When tol is specified, the selected minimization algorithm sets some relevant solver-specific tolerance(s) equal to tol. For detailed control, use solver-specific options. options : dict, optional A dictionary of solver options. maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. ftol : float Precision goal for the value of f in the stopping criterion. eps: float Step size used for numerical approximation of the Jacobian. Returns ------- res : scipy.optimize.OptimizeResult The optimization result represented as a OptimizeResult object. Important attributes are: x the solution array, success a Boolean flag indicating if the optimizer exited successfully and message which describes the cause of the termination. See OptimizeResult for a description of other attributes. """ x0 = np.atleast_1d(np.asarray(x0)) if x0.dtype.kind in np.typecodes["AllInteger"]: x0 = np.asarray(x0, dtype=float) if not isinstance(args, tuple): args = (args,) if options is None: options = {} # check gradient vector if callable(jac) or jac in FD_METHODS: pass elif jac is True: # fun returns func and grad fun = MemoizeJac(fun) jac = fun.derivative else: # default if jac option is not understood jac = None # set default tolerances if tol is not None: options = dict(options) options.setdefault('ftol', tol) constraints = standardize_constraints(constraints, x0, 'slsqp') remove_vars = False if bounds is not None: # SLSQP can't take the finite-difference derivatives when a variable is # fixed by the bounds. To avoid this issue, remove fixed variables from # the problem. # convert to new-style bounds so we only have to consider one case bounds = standardize_bounds(bounds, x0, 'new') # determine whether any variables are fixed i_fixed = (bounds.lb == bounds.ub) # determine whether finite differences are needed for any grad/jac fd_needed = (not callable(jac)) for con in constraints: if not callable(con.get('jac', None)): fd_needed = True # If finite differences are ever used, remove all fixed variables remove_vars = i_fixed.any() and fd_needed if remove_vars: x_fixed = (bounds.lb)[i_fixed] x0 = x0[~i_fixed] bounds = _remove_from_bounds(bounds, i_fixed) fun = _remove_from_func(fun, i_fixed, x_fixed) if callable(jac): jac = _remove_from_func(jac, i_fixed, x_fixed, remove=1) # make a copy of the constraints so the user's version doesn't # get changed. (Shallow copy is ok) constraints = [con.copy() for con in constraints] for con in constraints: # yes, guaranteed to be a list con['fun'] = _remove_from_func(con['fun'], i_fixed, x_fixed, min_dim=1, remove=0) if callable(con.get('jac', None)): con['jac'] = _remove_from_func(con['jac'], i_fixed, x_fixed, min_dim=2, remove=1) bounds = standardize_bounds(bounds, x0, 'slsqp') res = _minimize_slsqp(fun, x0, args, jac, bounds, constraints, **options) if remove_vars: res.x = _add_to_array(res.x, i_fixed, x_fixed) res.jac = _add_to_array(res.jac, i_fixed, np.nan) if 'hess_inv' in res: res.hess_inv = None return res def _minimize_slsqp( fun, x0, args=(), jac=None, bounds=None, constraints=(), maxiter=100, ftol=1.0E-6, iprint=1, disp=False, eps=np.sqrt(np.finfo(float).eps), finite_diff_rel_step=None ): """ Minimize a scalar function of one or more variables using Sequential Least Squares Programming (SLSQP). Options ------- ftol : float Precision goal for the value of f in the stopping criterion. eps : float Step size used for numerical approximation of the Jacobian. disp : bool Set to True to print convergence messages. If False, `verbosity` is ignored and set to 0. maxiter : int Maximum number of iterations. finite_diff_rel_step : None or array_like, optional If `jac in ['2-point', '3-point', 'cs']` the relative step size to use for numerical approximation of `jac`. The absolute step size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically. """ iter = maxiter - 1 acc = ftol if not disp: iprint = 0 # Transform x0 into an array. x = np.asfarray(x0).flatten() # SLSQP is sent 'old-style' bounds, 'new-style' bounds are required by # ScalarFunction if bounds is None or len(bounds) == 0: new_bounds = (-np.inf, np.inf) else: new_bounds = old_bound_to_new(bounds) # clip the initial guess to bounds, otherwise ScalarFunction doesn't work x = np.clip(x, new_bounds[0], new_bounds[1]) # Constraints are triaged per type into a dictionary of tuples if isinstance(constraints, dict): constraints = (constraints, ) cons = {'eq': (), 'ineq': ()} for ic, con in enumerate(constraints): # check type try: ctype = con['type'].lower() except KeyError as e: raise KeyError('Constraint %d has no type defined.' % ic) from e except TypeError as e: raise TypeError('Constraints must be defined using a ' 'dictionary.') from e except AttributeError as e: raise TypeError("Constraint's type must be a string.") from e else: if ctype not in ['eq', 'ineq']: raise ValueError("Unknown constraint type '%s'." % con['type']) # check function if 'fun' not in con: raise ValueError('Constraint %d has no function defined.' % ic) # check Jacobian cjac = con.get('jac') if cjac is None: # approximate Jacobian function. The factory function is needed # to keep a reference to `fun`, see gh-4240. def cjac_factory(fun): def cjac(x, *args): x = _check_clip_x(x, new_bounds) if jac in ['2-point', '3-point', 'cs']: return approx_derivative(fun, x, method=jac, args=args, rel_step=finite_diff_rel_step, bounds=new_bounds) else: return approx_derivative(fun, x, method='2-point', abs_step=eps, args=args, bounds=new_bounds) return cjac cjac = cjac_factory(con['fun']) # update constraints' dictionary cons[ctype] += ({'fun': con['fun'], 'jac': cjac, 'args': con.get('args', ())}, ) exit_modes = {-1: "Gradient evaluation required (g & a)", 0: "Optimization terminated successfully", 1: "Function evaluation required (f & c)", 2: "More equality constraints than independent variables", 3: "More than 3*n iterations in LSQ subproblem", 4: "Inequality constraints incompatible", 5: "Singular matrix E in LSQ subproblem", 6: "Singular matrix C in LSQ subproblem", 7: "Rank-deficient equality constraint subproblem HFTI", 8: "Positive directional derivative for linesearch", 9: "Iteration limit reached"} # Set the parameters that SLSQP will need # _meq_cv: a list containing the length of values each constraint function _meq_cv = [len(np.atleast_1d(c['fun'](x, *c['args']))) for c in cons['eq']] _mieq_cv = [len(np.atleast_1d(c['fun'](x, *c['args']))) for c in cons['ineq']] # meq, mieq: number of equality and inequality constraints meq = sum(_meq_cv) mieq = sum(_mieq_cv) # m = The total number of constraints m = meq + mieq # la = The number of constraints, or 1 if there are no constraints la = np.array([1, m]).max() # n = The number of independent variables n = len(x) # Define the workspaces for SLSQP n1 = n + 1 mineq = m - meq + n1 + n1 len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \ + 2*meq + n1 + ((n+1)*n)//2 + 2*m + 3*n + 3*n1 + 1 len_jw = mineq w = np.zeros(len_w) jw = np.zeros(len_jw) # Decompose bounds into xl and xu if bounds is None or len(bounds) == 0: xl = np.empty(n, dtype=float) xu = np.empty(n, dtype=float) xl.fill(np.nan) xu.fill(np.nan) else: bnds = np.array( [(_arr_to_scalar(l), _arr_to_scalar(u)) for (l, u) in bounds], dtype=float ) if bnds.shape[0] != n: raise IndexError('SLSQP Error: the length of bounds is not ' 'compatible with that of x0.') with np.errstate(invalid='ignore'): bnderr = bnds[:, 0] > bnds[:, 1] if bnderr.any(): raise ValueError('SLSQP Error: lb > ub in bounds %s.' % ', '.join(str(b) for b in bnderr)) xl, xu = bnds[:, 0], bnds[:, 1] # Mark infinite bounds with nans; the Fortran code understands this infbnd = ~np.isfinite(bnds) xl[infbnd[:, 0]] = np.nan xu[infbnd[:, 1]] = np.nan # ScalarFunction provides function and gradient evaluation sf = _prepare_scalar_function(fun, x, jac=jac, args=args, epsilon=eps, finite_diff_rel_step=finite_diff_rel_step, bounds=new_bounds) # gh11403 SLSQP sometimes exceeds bounds by 1 or 2 ULP, make sure this # doesn't get sent to the func/grad evaluator. wrapped_fun = _clip_x_for_func(sf.fun, new_bounds) wrapped_grad = _clip_x_for_func(sf.grad, new_bounds) # Initialize the iteration counter and the mode value mode = np.array(0, int) acc = np.array(acc, float) majiter = np.array(iter, int) majiter_prev = 0 # Initialize internal SLSQP state variables alpha = np.array(0, float) f0 = np.array(0, float) gs = np.array(0, float) h1 = np.array(0, float) h2 = np.array(0, float) h3 = np.array(0, float) h4 = np.array(0, float) t = np.array(0, float) t0 = np.array(0, float) tol = np.array(0, float) iexact = np.array(0, int) incons = np.array(0, int) ireset = np.array(0, int) itermx = np.array(0, int) line = np.array(0, int) n1 = np.array(0, int) n2 = np.array(0, int) n3 = np.array(0, int) # Print the header if iprint >= 2 if iprint >= 2: print("%5s %5s %16s %16s" % ("NIT", "FC", "OBJFUN", "GNORM")) # mode is zero on entry, so call objective, constraints and gradients # there should be no func evaluations here because it's cached from # ScalarFunction fx = wrapped_fun(x) g = np.append(wrapped_grad(x), 0.0) c = _eval_constraint(x, cons) a = _eval_con_normals(x, cons, la, n, m, meq, mieq) while 1: # Call SLSQP slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw, alpha, f0, gs, h1, h2, h3, h4, t, t0, tol, iexact, incons, ireset, itermx, line, n1, n2, n3) if mode == 1: # objective and constraint evaluation required fx = wrapped_fun(x) c = _eval_constraint(x, cons) if mode == -1: # gradient evaluation required g = np.append(wrapped_grad(x), 0.0) a = _eval_con_normals(x, cons, la, n, m, meq, mieq) if majiter > majiter_prev: # Print the status of the current iterate if iprint > 2 if iprint >= 2: print("%5i %5i % 16.6E % 16.6E" % (majiter, sf.nfev, fx, np.linalg.norm(g))) # If exit mode is not -1 or 1, slsqp has completed if abs(mode) != 1: break majiter_prev = int(majiter) # Obtain KKT multipliers im = 1 il = im + la ix = il + (n1*n)//2 + 1 ir = ix + n - 1 _kkt_mult = w[ir:ir + m] # KKT multipliers w_ind = 0 kkt_multiplier = dict() for _t, cv in [("eq", _meq_cv), ("ineq", _mieq_cv)]: kkt = [] for dim in cv: kkt += [_kkt_mult[w_ind:(w_ind + dim)]] w_ind += dim kkt_multiplier[_t] = kkt # Optimization loop complete. Print status if requested if iprint >= 1: print(f"{exit_modes[int(mode)]} (Exit mode {mode})") print(" Current function value:", fx) print(" Iterations:", majiter) print(" Function evaluations:", sf.nfev) print(" Gradient evaluations:", sf.ngev) return OptimizeResult(x=x, fun=fx, jac=g[:-1], nit=int(majiter), nfev=sf.nfev, njev=sf.ngev, status=int(mode), message=exit_modes[int(mode)], success=(mode==0), kkt=kkt_multiplier) def _prepare_scalar_function(fun, x0, jac=None, args=(), bounds=None, epsilon=None, finite_diff_rel_step=None, hess=None): """ Creates a ScalarFunction object for use with scalar minimizers (BFGS/LBFGSB/SLSQP/TNC/CG/etc). Parameters ---------- fun : callable The objective function to be minimized. ``fun(x, *args) -> float`` where ``x`` is an 1-D array with shape (n,) and ``args`` is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where 'n' is the number of independent variables. jac : {callable, '2-point', '3-point', 'cs', None}, optional Method for computing the gradient vector. If it is a callable, it should be a function that returns the gradient vector: ``jac(x, *args) -> array_like, shape (n,)`` If one of `{'2-point', '3-point', 'cs'}` is selected then the gradient is calculated with a relative step for finite differences. If `None`, then two-point finite differences with an absolute step is used. args : tuple, optional Extra arguments passed to the objective function and its derivatives (`fun`, `jac` functions). bounds : sequence, optional Bounds on variables. 'new-style' bounds are required. eps : float or ndarray If `jac is None` the absolute step size used for numerical approximation of the jacobian via forward differences. finite_diff_rel_step : None or array_like, optional If `jac in ['2-point', '3-point', 'cs']` the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically. hess : {callable, '2-point', '3-point', 'cs', None} Computes the Hessian matrix. If it is callable, it should return the Hessian matrix: ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation. Whenever the gradient is estimated via finite-differences, the Hessian cannot be estimated with options {'2-point', '3-point', 'cs'} and needs to be estimated using one of the quasi-Newton strategies. Returns ------- sf : ScalarFunction """ if callable(jac): grad = jac elif jac in FD_METHODS: # epsilon is set to None so that ScalarFunction is made to use # rel_step epsilon = None grad = jac else: # default (jac is None) is to do 2-point finite differences with # absolute step size. ScalarFunction has to be provided an # epsilon value that is not None to use absolute steps. This is # normally the case from most _minimize* methods. grad = '2-point' epsilon = epsilon if hess is None: # ScalarFunction requires something for hess, so we give a dummy # implementation here if nothing is provided, return a value of None # so that downstream minimisers halt. The results of `fun.hess` # should not be used. def hess(x, *args): return None if bounds is None: bounds = (-np.inf, np.inf) # ScalarFunction caches. Reuse of fun(x) during grad # calculation reduces overall function evaluations. sf = ScalarFunction(fun, x0, args, grad, hess, finite_diff_rel_step, bounds, epsilon=epsilon) return sf class ScalarFunction: """Scalar function and its derivatives. This class defines a scalar function F: R^n->R and methods for computing or approximating its first and second derivatives. Parameters ---------- fun : callable evaluates the scalar function. Must be of the form ``fun(x, *args)``, where ``x`` is the argument in the form of a 1-D array and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. Should return a scalar. x0 : array-like Provides an initial set of variables for evaluating fun. Array of real elements of size (n,), where 'n' is the number of independent variables. args : tuple, optional Any additional fixed parameters needed to completely specify the scalar function. grad : {callable, '2-point', '3-point', 'cs'} Method for computing the gradient vector. If it is a callable, it should be a function that returns the gradient vector: ``grad(x, *args) -> array_like, shape (n,)`` where ``x`` is an array with shape (n,) and ``args`` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used to select a finite difference scheme for numerical estimation of the gradient with a relative step size. These finite difference schemes obey any specified `bounds`. hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy} Method for computing the Hessian matrix. If it is callable, it should return the Hessian matrix: ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` where x is a (n,) ndarray and `args` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation. Or, objects implementing `HessianUpdateStrategy` interface can be used to approximate the Hessian. Whenever the gradient is estimated via finite-differences, the Hessian cannot be estimated with options {'2-point', '3-point', 'cs'} and needs to be estimated using one of the quasi-Newton strategies. finite_diff_rel_step : None or array_like Relative step size to use. The absolute step size is computed as ``h = finite_diff_rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None then finite_diff_rel_step is selected automatically, finite_diff_bounds : tuple of array_like Lower and upper bounds on independent variables. Defaults to no bounds, (-np.inf, np.inf). Each bound must match the size of `x0` or be a scalar, in the latter case the bound will be the same for all variables. Use it to limit the range of function evaluation. epsilon : None or array_like, optional Absolute step size to use, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `epsilon` is ignored. By default relative steps are used, only if ``epsilon is not None`` are absolute steps used. Notes ----- This class implements a memoization logic. There are methods `fun`, `grad`, hess` and corresponding attributes `f`, `g` and `H`. The following things should be considered: 1. Use only public methods `fun`, `grad` and `hess`. 2. After one of the methods is called, the corresponding attribute will be set. However, a subsequent call with a different argument of *any* of the methods may overwrite the attribute. """ def __init__(self, fun, x0, args, grad, hess, finite_diff_rel_step, finite_diff_bounds, epsilon=None): if not callable(grad) and grad not in FD_METHODS: raise ValueError( f"`grad` must be either callable or one of {FD_METHODS}." ) if not (callable(hess) or hess in FD_METHODS or isinstance(hess, HessianUpdateStrategy)): raise ValueError( f"`hess` must be either callable, HessianUpdateStrategy" f" or one of {FD_METHODS}." ) if grad in FD_METHODS and hess in FD_METHODS: raise ValueError("Whenever the gradient is estimated via " "finite-differences, we require the Hessian " "to be estimated using one of the " "quasi-Newton strategies.") # the astype call ensures that self.x is a copy of x0 self.x = np.atleast_1d(x0).astype(float) self.n = self.x.size self.nfev = 0 self.ngev = 0 self.nhev = 0 self.f_updated = False self.g_updated = False self.H_updated = False self._lowest_x = None self._lowest_f = np.inf finite_diff_options = {} if grad in FD_METHODS: finite_diff_options["method"] = grad finite_diff_options["rel_step"] = finite_diff_rel_step finite_diff_options["abs_step"] = epsilon finite_diff_options["bounds"] = finite_diff_bounds if hess in FD_METHODS: finite_diff_options["method"] = hess finite_diff_options["rel_step"] = finite_diff_rel_step finite_diff_options["abs_step"] = epsilon finite_diff_options["as_linear_operator"] = True # Function evaluation def fun_wrapped(x): self.nfev += 1 # Send a copy because the user may overwrite it. # Overwriting results in undefined behaviour because # fun(self.x) will change self.x, with the two no longer linked. fx = fun(np.copy(x), *args) # Make sure the function returns a true scalar if not np.isscalar(fx): try: fx = np.asarray(fx).item() except (TypeError, ValueError) as e: raise ValueError( "The user-provided objective function " "must return a scalar value." ) from e if fx < self._lowest_f: self._lowest_x = x self._lowest_f = fx return fx def update_fun(): self.f = fun_wrapped(self.x) self._update_fun_impl = update_fun self._update_fun() # Gradient evaluation if callable(grad): def grad_wrapped(x): self.ngev += 1 return np.atleast_1d(grad(np.copy(x), *args)) def update_grad(): self.g = grad_wrapped(self.x) elif grad in FD_METHODS: def update_grad(): self._update_fun() self.ngev += 1 self.g = approx_derivative(fun_wrapped, self.x, f0=self.f, **finite_diff_options) self._update_grad_impl = update_grad self._update_grad() # Hessian Evaluation if callable(hess): self.H = hess(np.copy(x0), *args) self.H_updated = True self.nhev += 1 if sps.issparse(self.H): def hess_wrapped(x): self.nhev += 1 return sps.csr_matrix(hess(np.copy(x), *args)) self.H = sps.csr_matrix(self.H) elif isinstance(self.H, LinearOperator): def hess_wrapped(x): self.nhev += 1 return hess(np.copy(x), *args) else: def hess_wrapped(x): self.nhev += 1 return np.atleast_2d(np.asarray(hess(np.copy(x), *args))) self.H = np.atleast_2d(np.asarray(self.H)) def update_hess(): self.H = hess_wrapped(self.x) elif hess in FD_METHODS: def update_hess(): self._update_grad() self.H = approx_derivative(grad_wrapped, self.x, f0=self.g, **finite_diff_options) return self.H update_hess() self.H_updated = True elif isinstance(hess, HessianUpdateStrategy): self.H = hess self.H.initialize(self.n, 'hess') self.H_updated = True self.x_prev = None self.g_prev = None def update_hess(): self._update_grad() self.H.update(self.x - self.x_prev, self.g - self.g_prev) self._update_hess_impl = update_hess if isinstance(hess, HessianUpdateStrategy): def update_x(x): self._update_grad() self.x_prev = self.x self.g_prev = self.g # ensure that self.x is a copy of x. Don't store a reference # otherwise the memoization doesn't work properly. self.x = np.atleast_1d(x).astype(float) self.f_updated = False self.g_updated = False self.H_updated = False self._update_hess() else: def update_x(x): # ensure that self.x is a copy of x. Don't store a reference # otherwise the memoization doesn't work properly. self.x = np.atleast_1d(x).astype(float) self.f_updated = False self.g_updated = False self.H_updated = False self._update_x_impl = update_x def _update_fun(self): if not self.f_updated: self._update_fun_impl() self.f_updated = True def _update_grad(self): if not self.g_updated: self._update_grad_impl() self.g_updated = True def _update_hess(self): if not self.H_updated: self._update_hess_impl() self.H_updated = True def fun(self, x): if not np.array_equal(x, self.x): self._update_x_impl(x) self._update_fun() return self.f def grad(self, x): if not np.array_equal(x, self.x): self._update_x_impl(x) self._update_grad() return self.g def hess(self, x): if not np.array_equal(x, self.x): self._update_x_impl(x) self._update_hess() return self.H def fun_and_grad(self, x): if not np.array_equal(x, self.x): self._update_x_impl(x) self._update_fun() self._update_grad() return self.f, self.g def _clip_x_for_func(func, bounds): # ensures that x values sent to func are clipped to bounds # this is used as a mitigation for gh11403, slsqp/tnc sometimes # suggest a move that is outside the limits by 1 or 2 ULP. This # unclean fix makes sure x is strictly within bounds. def eval(x): x = _check_clip_x(x, bounds) return func(x) return eval def _check_clip_x(x, bounds): if (x < bounds[0]).any() or (x > bounds[1]).any(): return np.clip(x, bounds[0], bounds[1]) return x def _arr_to_scalar(x): # If x is a numpy array, return x.item(). This will # fail if the array has more than one element. return x.item() if isinstance(x, np.ndarray) else x def _eval_constraint(x, cons): # Compute constraints if cons['eq']: c_eq = np.concatenate( [np.atleast_1d(con['fun'](x, *con['args'])) for con in cons['eq']] ) else: c_eq = np.zeros(0) if cons['ineq']: c_ieq = np.concatenate( [np.atleast_1d(con['fun'](x, *con['args'])) for con in cons['ineq']] ) else: c_ieq = np.zeros(0) # Now combine c_eq and c_ieq into a single matrix c = np.concatenate((c_eq, c_ieq)) return c def _eval_con_normals(x, cons, la, n, m, meq, mieq): # Compute the normals of the constraints if cons['eq']: a_eq = np.vstack( [con['jac'](x, *con['args']) for con in cons['eq']] ) else: # no equality constraint a_eq = np.zeros((meq, n)) if cons['ineq']: a_ieq = np.vstack( [con['jac'](x, *con['args']) for con in cons['ineq']] ) else: # no inequality constraint a_ieq = np.zeros((mieq, n)) # Now combine a_eq and a_ieq into a single a matrix if m == 0: # no constraints a =
np.zeros((la, n))
numpy.zeros
import math import numpy as np from levinson_durbin import LevinsonDurbin class SDAR_1Dim(object): def __init__(self, r, order): self._r = r self._mu =
np.random.random()
numpy.random.random
import batoid import numpy as np from test_helpers import timer, init_gpu, rays_allclose, checkAngle, do_pickle @timer def test_properties(): rng = np.random.default_rng(5) size = 10 for i in range(100): x = rng.normal(size=size) y = rng.normal(size=size) z = rng.normal(size=size) vx = rng.normal(size=size) vy = rng.normal(size=size) vz = rng.normal(size=size) t = rng.normal(size=size) w = rng.normal(size=size) fx = rng.normal(size=size) vig = rng.choice([True, False], size=size) fa = rng.choice([True, False], size=size) cs = batoid.CoordSys( origin=rng.normal(size=3), rot=batoid.RotX(rng.normal())@batoid.RotY(rng.normal()) ) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, w, fx, vig, fa, cs) np.testing.assert_array_equal(rv.x, x) np.testing.assert_array_equal(rv.y, y) np.testing.assert_array_equal(rv.z, z) np.testing.assert_array_equal(rv.r[:, 0], x) np.testing.assert_array_equal(rv.r[:, 1], y) np.testing.assert_array_equal(rv.r[:, 2], z) np.testing.assert_array_equal(rv.vx, vx) np.testing.assert_array_equal(rv.vy, vy) np.testing.assert_array_equal(rv.vz, vz) np.testing.assert_array_equal(rv.v[:, 0], vx) np.testing.assert_array_equal(rv.v[:, 1], vy) np.testing.assert_array_equal(rv.v[:, 2], vz) np.testing.assert_array_equal(rv.k[:, 0], rv.kx) np.testing.assert_array_equal(rv.k[:, 1], rv.ky) np.testing.assert_array_equal(rv.k[:, 2], rv.kz) np.testing.assert_array_equal(rv.t, t) np.testing.assert_array_equal(rv.wavelength, w) np.testing.assert_array_equal(rv.flux, fx) np.testing.assert_array_equal(rv.vignetted, vig) np.testing.assert_array_equal(rv.failed, fa) assert rv.coordSys == cs rv._syncToDevice() do_pickle(rv) @timer def test_positionAtTime(): rng = np.random.default_rng(57) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, 0.0) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.0, -1.1, 2.5]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + t1 * rv.v ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, t) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.4, -1.3, 2.1]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + rv.v*(t1-rv.t)[:,None] ) @timer def test_propagate(): rng = np.random.default_rng(577) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) @timer def test_phase(): rng = np.random.default_rng(5772) size = 10_000 for n in [1.0, 1.3]: x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0/(n*n) - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, wavelength) # First explicitly check that phase is 0 at position and time of individual # rays for i in rng.choice(size, size=10): np.testing.assert_equal( rv.phase(rv.r[i], rv.t[i])[i], 0.0 ) # Now use actual formula # phi = k.(r-r0) - (t-t0)omega # k = 2 pi v / lambda |v|^2 # omega = 2 pi / lambda # |v| = 1 / n for r1, t1 in [ ((0, 0, 0), 0), ((0, 1, 2), 3), ((-1, 2, 4), -1), ((0, 1, -4), -2) ]: phi = np.einsum("ij,ij->i", rv.v, r1-rv.r) phi *= n*n phi -= (t1-rv.t) phi *= 2*np.pi/wavelength np.testing.assert_allclose( rv.phase(r1, t1), phi, rtol=0, atol=1e-7 ) for i in rng.choice(size, size=10): s = slice(i, i+1) rvi = batoid.RayVector( x[s], y[s], z[s], vx[s], vy[s], vz[s], t[s].copy(), wavelength[s].copy() ) # Move integer number of wavelengths ahead ti = rvi.t[0] wi = rvi.wavelength[0] r1 = rvi.positionAtTime(ti + 5123456789*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Half wavelength r1 = rvi.positionAtTime(ti + 6987654321.5*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, -1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Quarter wavelength r1 = rvi.positionAtTime(ti + 0.25*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 1.0, rtol=0, atol=2e-5) # Three-quarters wavelength r1 = rvi.positionAtTime(ti + 7182738495.75*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, -1.0, rtol=0, atol=2e-5) # We can also keep the position the same and change the time in # half/quarter integer multiples of the period. a = rvi.amplitude(rvi.r[0], rvi.t[0]+5e9*wi) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+5.5)*wi) np.testing.assert_allclose(a.real, -1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+2.25)*wi) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, -1.0, rtol=0, atol=1e-5) a = rvi.amplitude(rvi.r[0], rvi.t[0]+(5e9+1.75)*wi) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 1.0, rtol=0, atol=1e-5) # If we pick a point anywhere along a vector originating at the ray # position, but orthogonal to its direction of propagation, then we # should get phase = 0 (mod 2pi). v1 = np.array([1.0, 0.0, 0.0]) v1 = np.cross(rvi.v[0], v1) p1 = rvi.r[0] + v1 a = rvi.amplitude(p1, rvi.t[0]) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=1e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=1e-5) @timer def test_sumAmplitude(): import time rng = np.random.default_rng(57721) size = 10_000 for n in [1.0, 1.3]: x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0/(n*n) - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, wavelength) satime = 0 atime = 0 for r1, t1 in [ ((0, 0, 0), 0), ((0, 1, 2), 3), ((-1, 2, 4), -1), ((0, 1, -4), -2) ]: at0 = time.time() s1 = rv.sumAmplitude(r1, t1) at1 = time.time() s2 = np.sum(rv.amplitude(r1, t1)) at2 = time.time() np.testing.assert_allclose(s1, s2, rtol=0, atol=1e-11) satime += at1-at0 atime += at2-at1 # print(f"sumAplitude() time: {satime}") # print(f"np.sum(amplitude()) time: {atime}") @timer def test_equals(): import time rng = np.random.default_rng(577215) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) flux = rng.uniform(0.9, 1.1, size=size) vignetted = rng.choice([True, False], size=size) failed = rng.choice([True, False], size=size) args = x, y, z, vx, vy, vz, t, wavelength, flux, vignetted, failed rv = batoid.RayVector(*args) rv2 = rv.copy() assert rv == rv2 for i in range(len(args)): newargs = [args[i].copy() for i in range(len(args))] ai = newargs[i] if ai.dtype == float: ai[0] = 1.2+ai[0]*3.45 elif ai.dtype == bool: ai[0] = not ai[0] # else panic! rv2 = batoid.RayVector(*newargs) assert rv != rv2 # Repeat, but force comparison on device rv2 = rv.copy() rv._rv.x.syncToDevice() rv._rv.y.syncToDevice() rv._rv.z.syncToDevice() rv._rv.vx.syncToDevice() rv._rv.vy.syncToDevice() rv._rv.vz.syncToDevice() rv._rv.t.syncToDevice() rv._rv.wavelength.syncToDevice() rv._rv.flux.syncToDevice() rv._rv.vignetted.syncToDevice() rv._rv.failed.syncToDevice() assert rv == rv2 for i in range(len(args)): newargs = [args[i].copy() for i in range(len(args))] ai = newargs[i] if ai.dtype == float: ai[0] = 1.2+ai[0]*3.45 elif ai.dtype == bool: ai[0] = not ai[0] # else panic! rv2 = batoid.RayVector(*newargs) assert rv != rv2 @timer def test_asGrid(): rng = np.random.default_rng(5772156) for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) nx = 1 while (nx%2) == 1: nx = rng.integers(10, 21) lx = rng.uniform(1.0, 10.0) dx = lx/(nx-2) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) # Some things that should be equivalent grid1 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=lx, dirCos=dirCos ) grid2 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, dx=dx, dirCos=dirCos ) grid3 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, dx=dx, lx=lx, dirCos=dirCos ) grid4 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0.0), dirCos=dirCos ) theta_x, theta_y = batoid.utils.dirCosToField(*dirCos) grid5 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0.0), theta_x=theta_x, theta_y=theta_y ) rays_allclose(grid1, grid2) rays_allclose(grid1, grid3) rays_allclose(grid1, grid4) rays_allclose(grid1, grid5) # Check distance to chief ray cridx = (nx//2)*nx+nx//2 obs_dist = np.sqrt(np.dot(grid1.r[cridx], grid1.r[cridx])) np.testing.assert_allclose(obs_dist, backDist) np.testing.assert_allclose(grid1.t, 0) np.testing.assert_allclose(grid1.wavelength, wavelength) np.testing.assert_allclose(grid1.vignetted, False) np.testing.assert_allclose(grid1.failed, False) np.testing.assert_allclose(grid1.vx, dirCos[0]) np.testing.assert_allclose(grid1.vy, dirCos[1]) np.testing.assert_allclose(grid1.vz, dirCos[2]) # Check distribution of points propagated to entrance pupil pupil = batoid.Plane() pupil.intersect(grid1) np.testing.assert_allclose(np.diff(grid1.x)[0], dx) np.testing.assert_allclose(np.diff(grid1.y)[0], 0, atol=1e-14) np.testing.assert_allclose(np.diff(grid1.x)[nx-1], -dx*(nx-1)) np.testing.assert_allclose(np.diff(grid1.y)[nx-1], dx) # Another set, but with odd nx for _ in range(10): backDist = rng.uniform(9.0, 11.0) wavelength = rng.uniform(300e-9, 1100e-9) while (nx%2) == 0: nx = rng.integers(10, 21) lx = rng.uniform(1.0, 10.0) dx = lx/(nx-1) dirCos = np.array([ rng.uniform(-0.1, 0.1), rng.uniform(-0.1, 0.1), rng.uniform(-1.2, -0.8), ]) dirCos /= np.sqrt(np.dot(dirCos, dirCos)) grid1 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=lx, dirCos=dirCos ) grid2 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, dx=dx, dirCos=dirCos ) grid3 = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, nx=nx, lx=(lx, 0), dirCos=dirCos ) # ... but the following is not equivalent, since default is to always # infer an even nx and ny # grid4 = batoid.RayVector.asGrid( # backDist=backDist, wavelength=wavelength, # dx=1/9, lx=1.0, dirCos=dirCos # ) rays_allclose(grid1, grid2) rays_allclose(grid1, grid3) cridx = (nx*nx-1)//2 obs_dist = np.sqrt(np.dot(grid1.r[cridx], grid1.r[cridx])) np.testing.assert_allclose(obs_dist, backDist) np.testing.assert_allclose(grid1.t, 0) np.testing.assert_allclose(grid1.wavelength, wavelength) np.testing.assert_allclose(grid1.vignetted, False) np.testing.assert_allclose(grid1.failed, False) np.testing.assert_allclose(grid1.vx, dirCos[0]) np.testing.assert_allclose(grid1.vy, dirCos[1]) np.testing.assert_allclose(grid1.vz, dirCos[2]) # Check distribution of points propagated to entrance pupil pupil = batoid.Plane() pupil.intersect(grid1) np.testing.assert_allclose(np.diff(grid1.x)[0], dx) np.testing.assert_allclose(np.diff(grid1.y)[0], 0, atol=1e-14) np.testing.assert_allclose(np.diff(grid1.x)[nx-1], -dx*(nx-1)) np.testing.assert_allclose(np.diff(grid1.y)[nx-1], dx) for _ in range(10): # Check nrandom rays = batoid.RayVector.asGrid( backDist=backDist, wavelength=wavelength, lx=1.0, nx=1, nrandom=1000, dirCos=dirCos ) np.testing.assert_allclose(rays.t, 0) np.testing.assert_allclose(rays.wavelength, wavelength) np.testing.assert_allclose(rays.vignetted, False)
np.testing.assert_allclose(rays.failed, False)
numpy.testing.assert_allclose
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image import albumentations as A from pathlib import Path import torch from torch import nn from src_backup.cdan import get_model from src.backbone.iresnet import get_arcface_backbone class MyModel(nn.Module): def __init__(self, backbone): super().__init__() self.backbone = backbone self.layers = [backbone.layer1, backbone.layer2, backbone.layer3, backbone.layer4] def forward(self, x): activations = [] x = self.backbone.prelu(self.backbone.bn1(self.backbone.conv1(x))) for layer in self.layers: x = layer(x) activations.append(x) return activations def get_best_model(mode='arcface', base_path='log/best_weight/{}.pth'): model_path_dict = {'BSP': 'FACE_CDAN_BSP_BOTH', 'DAN': 'FACE_DAN_BOTH', 'BOTH': 'FACE_BOTH', 'FACE': 'FACE'} backbone = get_arcface_backbone('cpu') if mode != 'arcface': backbone = get_model(backbone, fc_dim=512, embed_dim=512, nclass=460, hidden_dim=1024, pretrained_path=base_path.format(model_path_dict[mode])).backbone backbone.eval() return MyModel(backbone) def img_preprocessing(img): transforms = A.Compose([ A.SmallestMaxSize(112), A.CenterCrop(112, 112, p=1), ]) img = ((np.transpose(transforms(image=np.array(img))['image'], (2, 0, 1)) / 255) - 0.5) / 0.5 return img def activation_based_map_f(activations): attention_map = [] for activation in activations: img = activation.pow(2).mean(1).detach().numpy()[0, :, :, np.newaxis] resized_img = A.Resize(112, 112, 4)(image=img)['image'] attention_map.append((resized_img, img)) return attention_map def show_example(img_path='iu_mask.jpg', mode='arcface', show=True): img = Image.open(img_path) img_resized = A.Resize(112, 112)(image=np.array(img))['image'] img_np =
np.array(img)
numpy.array
import h5py import os import re import numpy as np import glob import json import os def dumper(obj): try: return obj.toJSON() except: return obj.tolist() def read_avg(filepath): with open(filepath, encoding="utf8", errors='ignore') as f: lines = [line for line in f.readlines() if line != '\n'] # print(filepath) AXESDICT = {} PROPERTIES = {} DATA = {} DATA['I'] = [] i=0 while i < len(lines)-1: if 'Dump of DataSpace' in lines[i]: PROPERTIES.update({'VGD_Location':lines[i].split(';Dump of DataSpace')[1].strip().replace("'",'')}) i+=1 elif (lines[i][0] != ';') and (lines[i][0] != '\n'): if '$PROPERTIES' in lines[i]: i+=1 while (lines[i][0] !='$'): if lines[i][0] != ';': props = [k.strip() for k in re.split('=|:',lines[i].strip())] if props[1] =='VT_BSTR': if props[0] == 'DS_EXT_SUPROPID_COMMENTS': comments = props[2].replace("'","") i+=1 while lines[i][0] == ' ': comments+=lines[i].replace("'","") i+=1 PROPERTIES.update({props[0].split(':')[0].strip():comments}) else: PROPERTIES.update({props[0].split(':')[0].strip():props[2].replace("'","")}) i+=1 elif props[1] =='VT_DATE': props = [k.strip() for k in re.split('=',lines[i].strip())] PROPERTIES.update({props[0].split(':')[0].strip():props[1]}) i+=1 elif (props[1] =='VT_I4') or (props[1] =='VT_I2'): PROPERTIES.update({props[0].split(':')[0].strip():int(props[2])}) i+=1 elif props[1] == 'VT_BOOL': PROPERTIES.update({props[0].split(':')[0].strip():bool(props[2])}) i+=1 elif (props[1] =='VT_R4'): PROPERTIES.update({props[0].split(':')[0].strip():np.float(props[2])}) i+=1 else: PROPERTIES.update({props[0].split(':')[0].strip():props[2]}) print(props[1],'is a not specified dat format') i+=1 else: i+=1 elif '$SPACEAXES' in lines[i]: SPACEAXES = {} spaxes_pars = [j for j in [ k.strip() for k in re.split(',|;|=', lines[i-1].strip())] if j !=''] #Get SPACEAXES parameter names i+=1 while (lines[i][0] !='$'): if lines[i][0] != ';': spax_vals = [re.split(',|=',lines[i].strip())[k].strip() for k in range(len(spaxes_pars))] #Get space axis parameter values SPACEAXES.update({spax_vals[0]:{spaxes_pars[k]:spax_vals[k] for k in range(1,len(spax_vals))}}) #Organize into dictionary with each axis as a key i+=1 elif '$AXISVALUE' in lines[i]: AXVAL = [x.strip() for x in re.split(r'\b$AXISVALUE\b|\bDATAXIS\b|\bSPACEAXIS\b|\bLABEL\b|\bPOINT\b|\bVALUE\b|=|;',lines[i].strip()) if x.strip() not in ['$AXISVALUE','']] try: if (eval(AXVAL[2]) == 'Etch Time') or (eval(AXVAL[2]) == 'Etch Level'): AXESDICT[eval(AXVAL[2])].append(np.float(AXVAL[4])) elif eval(AXVAL[2]) == 'Position': AXESDICT[eval(AXVAL[2])].append(eval(AXVAL[4])) except: if (eval(AXVAL[2]) == 'Etch Time') or (eval(AXVAL[2]) == 'Etch Level'): AXESDICT[eval(AXVAL[2])] = [] AXESDICT[eval(AXVAL[2])].append(np.float(AXVAL[4])) elif eval(AXVAL[2]) == 'Position': AXESDICT[eval(AXVAL[2])] = [] AXESDICT[eval(AXVAL[2])].append(eval(AXVAL[4])) AXVAL[2] i+=1 elif '$DATA=*' in lines[i]: data_temp = [] i+=1 while ('LIST@' in lines[i].split()[0]): if lines[i][0] != ';': data_temp.extend([np.float(k.strip()) for k in lines[i].split('=')[1].split(',')]) i+=1 if i == len(lines): break if int(SPACEAXES['0']['numPoints']) != len(data_temp): print(lines[i-1].split()[0]) print(int(SPACEAXES['0']['numPoints']),len(data_temp)) print('data is not the same length as the numpoints') break DATA['I'].append(data_temp) else: i+=1 else: i+=1 start = np.float(PROPERTIES['DS_SOPROPID_ENERGY']) - np.float(SPACEAXES['0']['start']) stop = np.float(PROPERTIES['DS_SOPROPID_ENERGY']) - np.float(SPACEAXES['0']['start']) -
np.float(SPACEAXES['0']['width'])
numpy.float
import numpy as np from scipy import integrate from scipy import interpolate # Cosmological parameters Om0 = 0.272 Ol0 = 1.0 - Om0 h = 0.704 ns = 0.961 sigma80 = 0.807 SPEEDOFLIGHT_KMS = 2.99792458e5 def nhat(alpha, delta): nhat = np.zeros(3) nhat[0] = np.cos(delta) * np.cos(alpha) nhat[1] = np.cos(delta) * np.sin(alpha) nhat[2] = np.sin(delta) return nhat def angsep(alpha1, alpha2, delta1, delta2): cos_ang = np.sin(delta1)*np.sin(delta2) + np.cos(delta1)*np.cos(delta2)*np.cos(alpha1-alpha2) ang = np.arccos(cos_ang) return ang class cosmo: def __init__(self, Om0=Om0, h=h, ns=ns, sigma80=sigma80, **kwargs): self.Om0 = Om0 self.Ol0 = 1.0 - self.Om0 self.Ob0 = 0.045 self.Tcmb0 = 2.7255 self.h = h self.ns = ns self.sigma80 = sigma80 self.H0 = 100.0 # [h km/s/Mpc] self.q0 = 0.5*self.Om0 - self.Ol0 self.gamma = 0.55 # growth index self._As = None self._sigmav = None self.log_xi_perp_interpolator = None self.xi_para_interpolator = None # Eisenstein & Hu (1998) zero baryon transfer function parameters ombom0 = self.Ob0 / self.Om0 # shorthand om0h2 = self.Om0 * self.h**2 ombh2 = self.Ob0 * self.h**2 self.theta2p7 = self.Tcmb0 / 2.7 # Equation 31 alphaGamma = 1.0 - 0.328*np.log(431.0*om0h2)*ombom0 + 0.38*np.log(22.3*om0h2)*ombom0**2 # Quantities for Equation 30 (computed in transferFunction) self.Gamma1 = self.Om0*self.h*alphaGamma self.Gamma2 = self.Om0*self.h*(1.0-alphaGamma) # Equation 26 self.s_EH98 = 44.5*np.log(9.83/om0h2) / np.sqrt(1.0+10.0*ombh2**0.75) # halofit spectral parameters self.rknl = None self.rneff = None self.rncur = None @property def dH(self): return (SPEEDOFLIGHT_KMS)/self.H0 * 1e3 # c/H_0 [h^-1 kpc] def E_Hub(self, z): """ Computes E(z) = H(z)/H0 """ E2 = self.Om0*(1.+z)**3 + self.Ol0 if np.all(E2 > 0.0): return np.sqrt(E2) else: return np.NaN def Omega_m(self, z): """ Evolution of omega matter with redshift """ EH = self.E_Hub(z) return self.Om0*(1.+z)**3 / EH**2 def Omega_v(self, z): """ Evolution of omega vacuum with redshift """ EH = self.E_Hub(z) return self.Ol0 / EH**2 def chi(self, z, use_lowz=False): """ Computes the comoving distance in units h^-1 kpc """ def _integrand(z): return 1.0/self.E_Hub(z) # 1/E(z) = H0/H(z) if use_lowz: # if z<<1 return self.dH * (z - 0.5*(1.+self.q0)*z**2) else: if np.isclose(z, 0.0): return 0.0 zp1 = z + 1.0 if np.isfinite(_integrand(z)): # prevent negative square roots if np.isclose(self.Om0, 1.0): # EdS return 2.*zp1*(1.-1./np.sqrt(zp1)) * self.dH elif np.isclose(self.Ol0, 1.0): # dS return z * self.dH else: y,err = integrate.quad(_integrand, 0.0, z, epsabs=1e-8) return y * self.dH else: return float(1e7) def chi_lowz(self, z): # accepts array input for z return self.dH*(z - 0.5*(1.+self.q0)*z**2) def ztot(self, z, v=0.0): return (1.0 + z) * (1.0 + v/SPEEDOFLIGHT_KMS) - 1.0 def kappa_v(self, z, v=0.0, use_lowz=False): dA_bar = self.chi(z, use_lowz) / (1.+z) dH = self.dH/self.E_Hub(z) return (1.0 - dH/dA_bar) * (v/SPEEDOFLIGHT_KMS) def dA(self, z, v=0.0, use_lowz=False): """ Computes angular diameter distance in units h^-1 kpc """ ret = self.chi(z, use_lowz) / (1.+z) if v == 0.0: ret *= 1.0 else: ret *= 1.0 - self.kappa_v(z, v, use_lowz) return ret def transferFunction(self, k): """ The zero-baryon transfer function according to Eisenstein & Hu 1998. This fitting function is significantly simpler than the full version and still approximates numerical calculations from a Boltzmann code to better than 10%, and almost as accurate when computing the variance or correlation function (see the Colossus code paper for details). """ kh = k*self.h # convert kh from hMpc^-1 to Mpc^-1 # Equation 30 Gamma = self.Gamma1 + self.Gamma2 / (1.0 + (0.43*kh*self.s_EH98)**4) # Equation 28 q = k * self.theta2p7 * self.theta2p7 / Gamma # Equation 29 C0 = 14.2 + 731.0 / (1.0 + 62.5*q) L0 = np.log(2.0*np.exp(1.0) + 1.8*q) Tk = L0 / (L0 + C0*q*q) return Tk def growthFactor(self, z): # D(a) return 1.0 def growthFactor_approx(self, z): # The Carroll, Press & Turner (1992) approximation, eq. 29 for g(Omega)=D/a om_m = self.Omega_m(z) om_v = self.Omega_v(z) g = 2.5*om_m/(om_m**(4./7.)-om_v+(1.+om_m/2.)*(1.+om_v/70.)) g0 = 2.5*self.Om0/(self.Om0**(4./7.)-self.Ol0+(1.+self.Om0/2.)*(1.+self.Ol0/70.)) return g/g0/(1.+z) # D def matterPowerSpectrum(self, k, z=0.0): """ The (linear) matter power spectrum at scale k k has units h/Mpc so P(k) has units of [k^-3] i.e. (Mpc/h)^3 """ T = self.transferFunction(k) D = self.growthFactor(z) Pk = self.As * D * D * T * T * k**self.ns return Pk def Delta2_L(self, k, z=0.0): """ Linear dimensionless matter power spectrum """ return k**3 * self.matterPowerSpectrum(k,z) / (2.*np.pi**2) @property def As(self): # scalar amplitude A_s of matter power spectrum if self._As is None: sigma80_int = self._sigmaExact() self._As = (self.sigma80 / sigma80_int)**2 return self._As def _sigmaExact(self): """ This computes the integral of sqrt[(sigma_80)^2 / A_s]. The infinite integral over k often causes trouble when the tophat filter is used. Thus we determine sensible limits and integrate over a finite k-volume. """ def _integrand(lnk): k = np.exp(lnk) x = k * 8.0 if x < 1e-3: W = 1.0 else: W = 3.0 / x**3 * (np.sin(x) - x * np.cos(x)) # FT of tophat filter T = self.transferFunction(k) P_unnorm = T * T * k**self.ns # equal to P(k)/A_s ret = P_unnorm * W**2 * k**3 # one factor of k due to the integration in log-k space return ret lnk_min, lnk_max = self._get_lnk_limits(_integrand) sigma2, _ = integrate.quad(_integrand, lnk_min, lnk_max, epsabs=1e-9, limit=100) sigma = np.sqrt(sigma2 / 2.0 / np.pi**2) if np.isnan(sigma): # raise Exception("Result is nan") print('sigma integral is NaN') print('with parameters Om0={}, sigma8={}'.format(self.Om0,self.sigma80)) return sigma def _sep(self, coord_obj1, coord_obj2, use_lowz=False): """ Computes the comoving seperation between two points and the angles made by the two lines of sight and the connecting line. Parameters ------------------------------------------------------- coord_obj1: array-like e.g. 3-tuple (z,RA,DEC) coord_obj2: array-like e.g. 3-tuple (z,RA,DEC) The angular coordinates RA and DEC are in degrees. Returns ------------------------------------------------------- (r,theta1,theta2): 3-tuple r is the comoving seperation (Mpc/h) theta1(2) in radians is the seperation angle between the LOS of object 1(2) and the connecting line. Notes ------------------------------------------------------- rhat is directed from point 1 to point 2 """ deg2rad = np.pi/180 z1, RA1, DEC1 = coord_obj1 z2, RA2, DEC2 = coord_obj2 alpha1 = RA1 * deg2rad alpha2 = RA2 * deg2rad delta1 = DEC1 * deg2rad delta2 = DEC2 * deg2rad nhat1 = nhat(alpha1, delta1) nhat2 = nhat(alpha2, delta2) xvec1 = self.chi(z1, use_lowz) * 1e-3 * nhat1 # since chi in kpc/h and want Mpc/h xvec2 = self.chi(z2, use_lowz) * 1e-3 * nhat2 rvec = xvec2 - xvec1 r = np.sqrt(np.dot(rvec,rvec)) if r < 1e-14: theta1 = np.pi/2 theta2 = np.pi/2 else: rhat = rvec/r theta1 = np.arccos(np.dot(rhat,nhat1)) theta2 = np.arccos(np.dot(rhat,nhat2)) return r, theta1, theta2 # units radians and Mpc/h def xiV_perp(self, r): def _integrand_perp(lnk, r): k = np.exp(lnk) Pk = self.matterPowerSpectrum(k) x = k * r if x < 1e-3: Kperp = 1/3. else: j1 = np.sin(x)/x**2 - np.cos(x)/x Kperp = j1/x ret = k * Pk * Kperp ret *= (self.H0 * self.Om0**self.gamma)**2 / (2*np.pi**2) return ret if self.log_xi_perp_interpolator is not None: ret = 10**self.log_xi_perp_interpolator(r) else: kwargs = {'epsabs':1e-8, 'limit':100} lnk_min = -8 if r > 0.0: lnk_max = min(3, np.log(26.6661/r)) # 8th +ve root of Kperp else: lnk_max = 3 ret, _ = integrate.quad(_integrand_perp, lnk_min, lnk_max, args=(r,), **kwargs) return ret def xiV_para(self, r): def _integrand_para(lnk, r): k = np.exp(lnk) Pk = self.matterPowerSpectrum(k) x = k * r if x < 1e-3: Kpara = 1/3. else: j0 = np.sin(x)/x j1 = np.sin(x)/x**2 - np.cos(x)/x Kpara = j0 - 2.*j1/x ret = k * Pk * Kpara ret *= (self.H0 * self.Om0**self.gamma)**2 / (2*np.pi**2) return ret if self.xi_para_interpolator is not None: ret = self.xi_para_interpolator(r) else: kwargs = {'epsabs':1e-8, 'limit':100} lnk_min = -8 if r > 0.0: lnk_max = min(3, np.log(25.0528/r)) # 8th +ve root of Kpara else: lnk_max = 3 ret, _ = integrate.quad(_integrand_para, lnk_min, lnk_max, args=(r,), **kwargs) return ret def init_xiV_interpolation(self, rmax=400.0, Nperp=30, Npara=70, use_deriv=False): """ Notes ------------------------------------------------------- To minimise number of calls to xiV_perp we note that it is a positive definite function and when transformed to logspace is close to linear which is why we use a smaller number of sampling points. We thus interpolate this function in logspace. xiV_para crosses zero so we interpolate as normal. """ self.log_xi_perp_interpolator = None self.xi_para_interpolator = None self.dlog_xi_perp_interpolator = None r_perp = np.linspace(0, rmax, Nperp) xi_perp = np.array([self.xiV_perp(r) for r in r_perp]) if use_deriv: # setting s=0 interpolates all points self.log_xi_perp_interpolator = interpolate.UnivariateSpline(r_perp, np.log10(xi_perp), s=0, k=3) self.dlog_xi_perp_interpolator = self.log_xi_perp_interpolator.derivative() else: r_para = np.linspace(0, rmax, Npara) xi_para = np.array([self.xiV_para(r) for r in r_para]) self.log_xi_perp_interpolator = interpolate.interp1d(r_perp, np.log10(xi_perp)) self.xi_para_interpolator = interpolate.interp1d(r_para, xi_para) def xiV(self, coord_obj1, coord_obj2, use_interpolation=False, use_lowz=False, use_deriv=False): """ The velocity correlation function for two objects seperated by r in units Mpc/h. The two angles are the angular seperations made by the LOS (x2) and connecting line between each object. We assume no evolution in the power spectrum and hence correlation function. Parameters ------------------------------------------------------- coord_obj1: array-like e.g. 3-tuple (z,RA,DEC) coord_obj2: array-like e.g. 3-tuple (z,RA,DEC) The angular coordinates RA and DEC are in degrees. use_interpolation: bool If is true interpolate perp and para correlation functions as function of seperation r use_lowz: bool If is true evaluate distances using the low-z Taylor approximation. use_deriv: bool If is true evaluate xi_para using that xi_para = d(r * xi_perp)/dr Returns ------------------------------------------------------- xi_V: float the velocity correlation in units (km/s)^2 """ r, theta1, theta2 = self._sep(coord_obj1, coord_obj2, use_lowz) if use_interpolation: if self.log_xi_perp_interpolator is None: self.init_xiV_interpolation() xi_perp = 10**self.log_xi_perp_interpolator(r) if use_deriv: xi_para = xi_perp * (1. + np.log(10.)*r*self.dlog_xi_perp_interpolator(r)) else: xi_para = self.xi_para_interpolator(r) else: if r < 1e-14: # points very close together so compute autocorrelation xi_perp = self.xiV_perp(r) return xi_perp # equal to xi_para which is equal to xi_v(r=0) else: xi_perp = self.xiV_perp(r) xi_para = self.xiV_para(r) ret = np.sin(theta1)*np.sin(theta2)*xi_perp + np.cos(theta1)*np.cos(theta2)*xi_para return ret @property def sigmav(self): # 1D velocity dispersion at z=0 in km/s if self._sigmav is None: coord = (1e-10, 1.0, 1.0) sigmav2 = self.xiV(coord, coord) self._sigmav = np.sqrt(sigmav2) return self._sigmav def xiV_correlation(self, coord_obj1, coord_obj2): xiV_11 = self.xiV(coord_obj1, coord_obj1) xiV_22 = self.xiV(coord_obj2, coord_obj2) xiV_12 = self.xiV(coord_obj1, coord_obj2) rho = xiV_12 / np.sqrt(xiV_11 * xiV_22) return rho @staticmethod def _get_lnk_limits(FCN_integrand, test_k_min=1e-20, test_k_max=1e20): """ The integration limits are determined by demanding that the integrand is some factor 1e-6 smaller than at its maximum. This method should be called when performing Bessel integrals. """ test_integrand_min = 1e-6 test_lnk_min = np.log(test_k_min * 1.0001) test_lnk_max = np.log(test_k_max * 0.9999) test_lnk = np.arange(test_lnk_min, test_lnk_max, 2.0) # array of ln(k)'s test_k_integrand = np.zeros_like(test_lnk) n_test = len(test_lnk) for i in range(n_test): test_k_integrand[i] = FCN_integrand(test_lnk[i]) integrand_max = np.max(test_k_integrand) min_index = 0 while test_k_integrand[min_index] < integrand_max * test_integrand_min: min_index += 1 if min_index > n_test - 2: raise Exception("Could not find lower integration limit") lnk_min = test_lnk[min_index] min_index -= 1 max_index = min_index + 1 while test_k_integrand[max_index] > integrand_max * test_integrand_min: max_index += 1 if max_index == n_test: raise Exception("Could not find upper integration limit") lnk_max = test_lnk[max_index] return lnk_min, lnk_max def _get_halofit_spectral_pars(self): # Halofit """ Computes rknl: wavenumber where nonlinearity begins (S03 eqn C6) rneff: effective spectral index (S03 eqn C7) rncur: second derivative of the power spectrum at rknl (S03 eqn C8) taken from Smith and Peacock halofit fortran code see https://www.roe.ac.uk/~jap/haloes/ """ if any(p is None for p in [self.rknl, self.rneff, self.rncur]): xlogr1 = -2.0 xlogr2 = 3.5 not_converged = True while not_converged: rmid = 10**((xlogr2+xlogr1)/2.) sig,d1,d2 = self.wint(rmid) diff = sig - 1.0 if diff > 0.001: xlogr1 = np.log10(rmid) not_converged = True elif diff < -0.001: xlogr2 = np.log10(rmid) not_converged = True else: self.rknl = 1./rmid self.rneff = -3-d1 self.rncur = -d2 not_converged = False else: pass def wint(self, r): # Halofit """ The subroutine wint, finds the effective spectral quantities rknl, rneff & rncur. This it does by calculating the radius of the Gaussian filter at which the variance is unity = rknl. rneff is defined as the first derivative of the variance, calculated at the nonlinear wavenumber and similarly the rncur is the second derivative at the nonlinear wavenumber. Taken from Smith and Peacock halofit fortran code see https://www.roe.ac.uk/~jap/haloes/ """ nint = 3000 t = (np.arange(nint)+0.5)/nint y = 1./t - 1. rk = y d2 = self.Delta2_L(rk) x2 = y*y*r*r w1 = np.exp(-x2) w2 = 2*x2*w1 w3 = 4*x2*(1-x2)*w1 fn = d2/y/t/t sum1 = np.sum(w1*fn)/nint sum2 = np.sum(w2*fn)/nint sum3 = np.sum(w3*fn)/nint sig = np.sqrt(sum1) d1 = -sum2/sum1 d2 = -sum2*sum2/sum1/sum1 - sum3/sum1 return sig, d1, d2 def _Delta2_NL_S03(self, k, z=0.0): # Halofit Smith+ 2003 original self._get_halofit_spectral_pars() rn = self.rneff rncur = self.rncur rknl = self.rknl gam = 0.86485 + 0.2989*rn + 0.1631*rncur a = 10**(1.4861 + 1.83693*rn + 1.67618*rn*rn + 0.7940*rn*rn*rn \ + 0.1670756*rn*rn*rn*rn - 0.620695*rncur) b = 10**(0.9463 + 0.9466*rn + 0.3084*rn*rn - 0.940*rncur) c = 10**(-0.2807 + 0.6669*rn + 0.3214*rn*rn - 0.0793*rncur) xmu = 10**(-3.54419 + 0.19086*rn) xnu = 10**(0.95897 + 1.2857*rn) alpha = 1.38848 + 0.3701*rn - 0.1452*rn*rn beta = 0.8291 + 0.9854*rn + 0.3400*rn**2 om_m = self.Omega_m(z) om_v = self.Omega_v(z) if abs(1-om_m) > 0.01: # omega evolution f1a = om_m**(-0.0732) f2a = om_m**(-0.1423) f3a = om_m**(0.0725) f1b = om_m**(-0.0307) f2b = om_m**(-0.0585) f3b = om_m**(0.0743) frac = om_v/(1.-om_m) f1 = frac*f1b + (1-frac)*f1a f2 = frac*f2b + (1-frac)*f2a f3 = frac*f3b + (1-frac)*f3a else: f1 = 1.0 f2 = 1.0 f3 = 1.0 y = (k/rknl) plin = self.Delta2_L(k,z) ph = a*y**(f1*3) / (1+b*y**(f2)+(f3*c*y)**(3-gam)) ph /= (1+xmu*y**(-1)+xnu*y**(-2)) pq = plin * (1+plin)**beta/(1+plin*alpha) *
np.exp(-y/4.0-y**2/8.0)
numpy.exp
import logging import pickle import random from collections import Counter from itertools import chain, permutations from typing import Any, Dict, List, NamedTuple, Optional, Set, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.optim as optim from snorkel.analysis import Scorer from snorkel.labeling.analysis import LFAnalysis from snorkel.labeling.model.graph_utils import get_clique_tree from snorkel.labeling.model.logger import Logger from snorkel.types import Config from snorkel.utils import probs_to_preds from snorkel.utils.config_utils import merge_config from snorkel.utils.lr_schedulers import LRSchedulerConfig from snorkel.utils.optimizers import OptimizerConfig Metrics = Dict[str, float] class TrainConfig(Config): """Settings for the fit() method of LabelModel. Parameters ---------- n_epochs The number of epochs to train (where each epoch is a single optimization step) lr Base learning rate (will also be affected by lr_scheduler choice and settings) l2 Centered L2 regularization strength optimizer Which optimizer to use (one of ["sgd", "adam", "adamax"]) optimizer_config Settings for the optimizer lr_scheduler Which lr_scheduler to use (one of ["constant", "linear", "exponential", "step"]) lr_scheduler_config Settings for the LRScheduler prec_init LF precision initializations / priors seed A random seed to initialize the random number generator with log_freq Report loss every this many epochs (steps) mu_eps Restrict the learned conditional probabilities to [mu_eps, 1-mu_eps] """ n_epochs: int = 100 lr: float = 0.01 l2: float = 0.0 optimizer: str = "sgd" optimizer_config: OptimizerConfig = OptimizerConfig() # type: ignore lr_scheduler: str = "constant" lr_scheduler_config: LRSchedulerConfig = LRSchedulerConfig() # type: ignore prec_init: float = 0.7 seed: int = np.random.randint(1e6) log_freq: int = 10 mu_eps: Optional[float] = None class LabelModelConfig(Config): """Settings for the LabelModel initialization. Parameters ---------- verbose Whether to include print statements device What device to place the model on ('cpu' or 'cuda:0', for example) """ verbose: bool = True device: str = "cpu" class _CliqueData(NamedTuple): start_index: int end_index: int max_cliques: Set[int] class LabelModel(nn.Module): r"""A model for learning the LF accuracies and combining their output labels. This class learns a model of the labeling functions' conditional probabilities of outputting the true (unobserved) label `Y`, `P(\lf | Y)`, and uses this learned model to re-weight and combine their output labels. This class is based on the approach in [Training Complex Models with Multi-Task Weak Supervision](https://arxiv.org/abs/1810.02840), published in AAAI'19. In this approach, we compute the inverse generalized covariance matrix of the junction tree of a given LF dependency graph, and perform a matrix completion-style approach with respect to these empirical statistics. The result is an estimate of the conditional LF probabilities, `P(\lf | Y)`, which are then set as the parameters of the label model used to re-weight and combine the labels output by the LFs. Currently this class uses a conditionally independent label model, in which the LFs are assumed to be conditionally independent given `Y`. Examples -------- >>> label_model = LabelModel() >>> label_model = LabelModel(cardinality=3) >>> label_model = LabelModel(cardinality=3, device='cpu') >>> label_model = LabelModel(cardinality=3) Parameters ---------- cardinality Number of classes, by default 2 **kwargs Arguments for changing config defaults Raises ------ ValueError If config device set to cuda but only cpu is available Attributes ---------- cardinality Number of classes, by default 2 config Training configuration seed Random seed """ def __init__(self, cardinality: int = 2, **kwargs: Any) -> None: super().__init__() self.config: LabelModelConfig = LabelModelConfig(**kwargs) self.cardinality = cardinality # Confirm that cuda is available if config is using CUDA if self.config.device != "cpu" and not torch.cuda.is_available(): raise ValueError("device=cuda but CUDA not available.") # By default, put model in eval mode; switch to train mode in training self.eval() def _create_L_ind(self, L: np.ndarray) -> np.ndarray: """Convert a label matrix with labels in 0...k to a one-hot format. Parameters ---------- L An [n,m] label matrix with values in {0,1,...,k} Returns ------- np.ndarray An [n,m*k] dense np.ndarray with values in {0,1} """ L_ind = np.zeros((self.n, self.m * self.cardinality)) for y in range(1, self.cardinality + 1): # A[x::y] slices A starting at x at intervals of y # e.g., np.arange(9)[0::3] == np.array([0,3,6]) L_ind[:, (y - 1) :: self.cardinality] = np.where(L == y, 1, 0) return L_ind def _get_augmented_label_matrix( self, L: np.ndarray, higher_order: bool = False ) -> np.ndarray: """Create augmented version of label matrix. In augmented version, each column is an indicator for whether a certain source or clique of sources voted in a certain pattern. Parameters ---------- L An [n,m] label matrix with values in {0,1,...,k} higher_order Whether to include higher-order correlations (e.g. LF pairs) in matrix Returns ------- np.ndarray An [n,m*k] dense matrix with values in {0,1} """ # Create a helper data structure which maps cliques (as tuples of member # sources) --> {start_index, end_index, maximal_cliques}, where # the last value is a set of indices in this data structure self.c_data: Dict[int, _CliqueData] = {} for i in range(self.m): self.c_data[i] = _CliqueData( start_index=i * self.cardinality, end_index=(i + 1) * self.cardinality, max_cliques=set( [ j for j in self.c_tree.nodes() if i in self.c_tree.node[j]["members"] ] ), ) L_ind = self._create_L_ind(L) # Get the higher-order clique statistics based on the clique tree # First, iterate over the maximal cliques (nodes of c_tree) and # separator sets (edges of c_tree) if higher_order: L_aug = np.copy(L_ind) for item in chain(self.c_tree.nodes(), self.c_tree.edges()): if isinstance(item, int): C = self.c_tree.node[item] elif isinstance(item, tuple): C = self.c_tree[item[0]][item[1]] else: raise ValueError(item) members = list(C["members"]) # With unary maximal clique, just store its existing index C["start_index"] = members[0] * self.cardinality C["end_index"] = (members[0] + 1) * self.cardinality return L_aug else: return L_ind def _build_mask(self) -> None: """Build mask applied to O^{-1}, O for the matrix approx constraint.""" self.mask = torch.ones(self.d, self.d).byte() for ci in self.c_data.values(): si = ci.start_index ei = ci.end_index for cj in self.c_data.values(): sj, ej = cj.start_index, cj.end_index # Check if ci and cj are part of the same maximal clique # If so, mask out their corresponding blocks in O^{-1} if len(ci.max_cliques.intersection(cj.max_cliques)) > 0: self.mask[si:ei, sj:ej] = 0 self.mask[sj:ej, si:ei] = 0 def _generate_O(self, L: np.ndarray, higher_order: bool = False) -> None: """Generate overlaps and conflicts matrix from label matrix. Parameters ---------- L An [n,m] label matrix with values in {0,1,...,k} higher_order Whether to include higher-order correlations (e.g. LF pairs) in matrix """ L_aug = self._get_augmented_label_matrix(L, higher_order=higher_order) self.d = L_aug.shape[1] self.O = ( torch.from_numpy(L_aug.T @ L_aug / self.n).float().to(self.config.device) ) def _init_params(self) -> None: r"""Initialize the learned params. - \mu is the primary learned parameter, where each row corresponds to the probability of a clique C emitting a specific combination of labels, conditioned on different values of Y (for each column); that is: self.mu[i*self.cardinality + j, y] = P(\lambda_i = j | Y = y) and similarly for higher-order cliques. Raises ------ ValueError If prec_init shape does not match number of LFs """ # Initialize mu so as to break basic reflective symmetry # Note that we are given either a single or per-LF initial precision # value, prec_i = P(Y=y|\lf=y), and use: # mu_init = P(\lf=y|Y=y) = P(\lf=y) * prec_i / P(Y=y) # Handle single values if isinstance(self.train_config.prec_init, (int, float)): self._prec_init = self.train_config.prec_init * torch.ones(self.m) if self._prec_init.shape[0] != self.m: raise ValueError(f"prec_init must have shape {self.m}.") # Get the per-value labeling propensities # Note that self.O must have been computed already! lps = torch.diag(self.O).cpu().detach().numpy() # TODO: Update for higher-order cliques! self.mu_init = torch.zeros(self.d, self.cardinality) for i in range(self.m): for y in range(self.cardinality): idx = i * self.cardinality + y mu_init = torch.clamp(lps[idx] * self._prec_init[i] / self.p[y], 0, 1) self.mu_init[idx, y] += mu_init # Initialize randomly based on self.mu_init self.mu = nn.Parameter(self.mu_init.clone() * np.random.random()).float() # Build the mask over O^{-1} self._build_mask() def _get_conditional_probs(self, mu: np.ndarray) -> np.ndarray: r"""Return the estimated conditional probabilities table given parameters mu. Given a parameter vector mu, return the estimated conditional probabilites table cprobs, where cprobs is an (m, k+1, k)-dim np.ndarray with: cprobs[i, j, k] = P(\lf_i = j-1 | Y = k) where m is the number of LFs, k is the cardinality, and cprobs includes the conditional abstain probabilities P(\lf_i = -1 | Y = y). Parameters ---------- mu An [m * k, k] np.ndarray with entries in [0, 1] Returns ------- np.ndarray An [m, k + 1, k] np.ndarray conditional probabilities table. """ cprobs = np.zeros((self.m, self.cardinality + 1, self.cardinality)) for i in range(self.m): # si = self.c_data[(i,)]['start_index'] # ei = self.c_data[(i,)]['end_index'] # mu_i = mu[si:ei, :] mu_i = mu[i * self.cardinality : (i + 1) * self.cardinality, :] cprobs[i, 1:, :] = mu_i # The 0th row (corresponding to abstains) is the difference between # the sums of the other rows and one, by law of total probability cprobs[i, 0, :] = 1 - mu_i.sum(axis=0) return cprobs def get_conditional_probs(self) -> np.ndarray: r"""Return the estimated conditional probabilities table. Return the estimated conditional probabilites table cprobs, where cprobs is an (m, k+1, k)-dim np.ndarray with: cprobs[i, j, k] = P(\lf_i = j-1 | Y = k) where m is the number of LFs, k is the cardinality, and cprobs includes the conditional abstain probabilities P(\lf_i = -1 | Y = y). Returns ------- np.ndarray An [m, k + 1, k] np.ndarray conditional probabilities table. """ return self._get_conditional_probs(self.mu.cpu().detach().numpy()) def get_weights(self) -> np.ndarray: """Return the vector of learned LF weights for combining LFs. Returns ------- np.ndarray [m,1] vector of learned LF weights for combining LFs. Example ------- >>> L = np.array([[1, 1, 1], [1, 1, -1], [-1, 0, 0], [0, 0, 0]]) >>> label_model = LabelModel(verbose=False) >>> label_model.fit(L, seed=123) >>> np.around(label_model.get_weights(), 2) # doctest: +SKIP array([0.99, 0.99, 0.99]) """ accs = np.zeros(self.m) cprobs = self.get_conditional_probs() for i in range(self.m): accs[i] = np.diag(cprobs[i, 1:, :] @ self.P.cpu().detach().numpy()).sum() return np.clip(accs / self.coverage, 1e-6, 1.0) def predict_proba(self, L: np.ndarray) -> np.ndarray: r"""Return label probabilities P(Y | \lambda). Parameters ---------- L An [n,m] matrix with values in {-1,0,1,...,k-1}f Returns ------- np.ndarray An [n,k] array of probabilistic labels Example ------- >>> L = np.array([[0, 0, 0], [1, 1, 1], [1, 1, 1]]) >>> label_model = LabelModel(verbose=False) >>> label_model.fit(L, seed=123) >>> np.around(label_model.predict_proba(L), 1) # doctest: +SKIP array([[1., 0.], [0., 1.], [0., 1.]]) """ L_shift = L + 1 # convert to {0, 1, ..., k} self._set_constants(L_shift) L_aug = self._get_augmented_label_matrix(L_shift) mu = self.mu.cpu().detach().numpy() jtm = np.ones(L_aug.shape[1]) # Note: We omit abstains, effectively assuming uniform distribution here X = np.exp(L_aug @ np.diag(jtm) @ np.log(mu) + np.log(self.p)) Z = np.tile(X.sum(axis=1).reshape(-1, 1), self.cardinality) return X / Z def predict( self, L: np.ndarray, return_probs: Optional[bool] = False, tie_break_policy: str = "abstain", ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Return predicted labels, with ties broken according to policy. Policies to break ties include: "abstain": return an abstain vote (-1) "true-random": randomly choose among the tied options "random": randomly choose among tied option using deterministic hash NOTE: if tie_break_policy="true-random", repeated runs may have slightly different results due to difference in broken ties Parameters ---------- L An [n,m] matrix with values in {-1,0,1,...,k-1} return_probs Whether to return probs along with preds tie_break_policy Policy to break ties when converting probabilistic labels to predictions Returns ------- np.ndarray An [n,1] array of integer labels (np.ndarray, np.ndarray) An [n,1] array of integer labels and an [n,k] array of probabilistic labels Example ------- >>> L = np.array([[0, 0, -1], [1, 1, -1], [0, 0, -1]]) >>> label_model = LabelModel(verbose=False) >>> label_model.fit(L) >>> label_model.predict(L) array([0, 1, 0]) """ Y_probs = self.predict_proba(L) Y_p = probs_to_preds(Y_probs, tie_break_policy) if return_probs: return Y_p, Y_probs return Y_p def score( self, L: np.ndarray, Y: np.ndarray, metrics: Optional[List[str]] = ["accuracy"], tie_break_policy: str = "abstain", ) -> Dict[str, float]: """Calculate one or more scores from user-specified and/or user-defined metrics. Parameters ---------- L An [n,m] matrix with values in {-1,0,1,...,k-1} Y Gold labels associated with data points in L metrics A list of metric names tie_break_policy Policy to break ties when converting probabilistic labels to predictions Returns ------- Dict[str, float] A dictionary mapping metric names to metric scores Example ------- >>> L = np.array([[1, 1, -1], [0, 0, -1], [1, 1, -1]]) >>> label_model = LabelModel(verbose=False) >>> label_model.fit(L) >>> label_model.score(L, Y=np.array([1, 1, 1])) {'accuracy': 0.6666666666666666} >>> label_model.score(L, Y=np.array([1, 1, 1]), metrics=["f1"]) {'f1': 0.8} """ if tie_break_policy == "abstain": # pragma: no cover logging.warning( "Metrics calculated over data points with non-abstain labels only" ) Y_pred, Y_prob = self.predict( L, return_probs=True, tie_break_policy=tie_break_policy ) scorer = Scorer(metrics=metrics) results = scorer.score(Y, Y_pred, Y_prob) return results # These loss functions get all their data directly from the LabelModel # (for better or worse). The unused *args make these compatible with the # Classifer._train() method which expect loss functions to accept an input. def _loss_l2(self, l2: float = 0) -> torch.Tensor: r"""L2 loss centered around mu_init, scaled optionally per-source. In other words, diagonal Tikhonov regularization, ||D(\mu-\mu_{init})||_2^2 where D is diagonal. Parameters ---------- l2 A float or np.array representing the per-source regularization strengths to use, by default 0 Returns ------- torch.Tensor L2 loss between learned mu and initial mu """ if isinstance(l2, (int, float)): D = l2 * torch.eye(self.d) else: D = torch.diag(torch.from_numpy(l2)).type(torch.float32) D = D.to(self.config.device) # Note that mu is a matrix and this is the *Frobenius norm* return torch.norm(D @ (self.mu - self.mu_init)) ** 2 def _loss_mu(self, l2: float = 0) -> torch.Tensor: r"""Overall mu loss. Parameters ---------- l2 A float or np.array representing the per-source regularization strengths to use, by default 0 Returns ------- torch.Tensor Overall mu loss between learned mu and initial mu """ loss_1 = torch.norm((self.O - self.mu @ self.P @ self.mu.t())[self.mask]) ** 2 loss_2 = torch.norm(torch.sum(self.mu @ self.P, 1) - torch.diag(self.O)) ** 2 return loss_1 + loss_2 + self._loss_l2(l2=l2) def _set_class_balance( self, class_balance: Optional[List[float]], Y_dev: np.ndarray ) -> None: """Set a prior for the class balance. In order of preference: 1) Use user-provided class_balance 2) Estimate balance from Y_dev 3) Assume uniform class distribution """ if class_balance is not None: self.p = np.array(class_balance) if len(self.p) != self.cardinality: raise ValueError( f"class_balance has {len(self.p)} entries. Does not match LabelModel cardinality {self.cardinality}." ) elif Y_dev is not None: class_counts = Counter(Y_dev) sorted_counts = np.array([v for k, v in sorted(class_counts.items())]) self.p = sorted_counts / sum(sorted_counts) if len(self.p) != self.cardinality: raise ValueError( f"Y_dev has {len(self.p)} class(es). Does not match LabelModel cardinality {self.cardinality}." ) else: self.p = (1 / self.cardinality) * np.ones(self.cardinality) if np.any(self.p == 0): raise ValueError( f"Class balance prior is 0 for class(es) {np.where(self.p)[0]}." ) self.P = torch.diag(torch.from_numpy(self.p)).float().to(self.config.device) def _set_constants(self, L: np.ndarray) -> None: self.n, self.m = L.shape if self.m < 3: raise ValueError(f"L_train should have at least 3 labeling functions") self.t = 1 def _create_tree(self) -> None: nodes = range(self.m) self.c_tree = get_clique_tree(nodes, []) def _execute_logging(self, loss: torch.Tensor) -> Metrics: self.eval() self.running_examples: int self.running_loss: float self.running_loss += loss.item() self.running_examples += 1 # Always add average loss metrics_dict = {"train/loss": self.running_loss / self.running_examples} if self.logger.check(): if self.config.verbose: self.logger.log(metrics_dict) # Reset running loss and examples counts self.running_loss = 0.0 self.running_examples = 0 self.train() return metrics_dict def _set_logger(self) -> None: self.logger = Logger(self.train_config.log_freq) def _set_optimizer(self) -> None: parameters = filter(lambda p: p.requires_grad, self.parameters()) optimizer_config = self.train_config.optimizer_config optimizer_name = self.train_config.optimizer optimizer: optim.Optimizer # type: ignore if optimizer_name == "sgd": optimizer = optim.SGD( # type: ignore parameters, lr=self.train_config.lr, weight_decay=self.train_config.l2, **optimizer_config.sgd_config._asdict(), ) elif optimizer_name == "adam": optimizer = optim.Adam( parameters, lr=self.train_config.lr, weight_decay=self.train_config.l2, **optimizer_config.adam_config._asdict(), ) elif optimizer_name == "adamax": optimizer = optim.Adamax( # type: ignore parameters, lr=self.train_config.lr, weight_decay=self.train_config.l2, **optimizer_config.adamax_config._asdict(), ) else: raise ValueError(f"Unrecognized optimizer option '{optimizer_name}'") self.optimizer = optimizer def _set_lr_scheduler(self) -> None: # Set warmup scheduler self._set_warmup_scheduler() # Set lr scheduler lr_scheduler_name = self.train_config.lr_scheduler lr_scheduler_config = self.train_config.lr_scheduler_config lr_scheduler: Optional[optim.lr_scheduler._LRScheduler] if lr_scheduler_name == "constant": lr_scheduler = None elif lr_scheduler_name == "linear": total_steps = self.train_config.n_epochs linear_decay_func = lambda x: (total_steps - self.warmup_steps - x) / ( total_steps - self.warmup_steps ) lr_scheduler = optim.lr_scheduler.LambdaLR( # type: ignore self.optimizer, linear_decay_func ) elif lr_scheduler_name == "exponential": lr_scheduler = optim.lr_scheduler.ExponentialLR( self.optimizer, **lr_scheduler_config.exponential_config._asdict() ) elif lr_scheduler_name == "step": lr_scheduler = optim.lr_scheduler.StepLR( self.optimizer, **lr_scheduler_config.step_config._asdict() ) else: raise ValueError(f"Unrecognized lr scheduler option '{lr_scheduler_name}'") self.lr_scheduler = lr_scheduler def _set_warmup_scheduler(self) -> None: warmup_scheduler: Optional[optim.lr_scheduler.LambdaLR] if self.train_config.lr_scheduler_config.warmup_steps: warmup_steps = self.train_config.lr_scheduler_config.warmup_steps if warmup_steps < 0: raise ValueError(f"warmup_steps much greater or equal than 0.") warmup_unit = self.train_config.lr_scheduler_config.warmup_unit if warmup_unit == "epochs": self.warmup_steps = int(warmup_steps) else: raise ValueError( "LabelModel does not support any warmup_unit other than 'epochs'." ) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( # type: ignore self.optimizer, linear_warmup_func ) if self.config.verbose: # pragma: no cover logging.info(f"Warmup {self.warmup_steps} steps.") elif self.train_config.lr_scheduler_config.warmup_percentage: warmup_percentage = self.train_config.lr_scheduler_config.warmup_percentage self.warmup_steps = int(warmup_percentage * self.train_config.n_epochs) linear_warmup_func = lambda x: x / self.warmup_steps warmup_scheduler = optim.lr_scheduler.LambdaLR( # type: ignore self.optimizer, linear_warmup_func ) if self.config.verbose: # pragma: no cover logging.info(f"Warmup {self.warmup_steps} steps.") else: warmup_scheduler = None self.warmup_steps = 0 self.warmup_scheduler = warmup_scheduler def _update_lr_scheduler(self, step: int) -> None: if self.warmup_scheduler and step < self.warmup_steps: self.warmup_scheduler.step() # type: ignore elif self.lr_scheduler is not None: self.lr_scheduler.step() # type: ignore min_lr = self.train_config.lr_scheduler_config.min_lr if min_lr and self.optimizer.param_groups[0]["lr"] < min_lr: self.optimizer.param_groups[0]["lr"] = min_lr def _clamp_params(self) -> None: """Clamp the values of the learned parameter vector. Clamp the entries of self.mu to be in [mu_eps, 1 - mu_eps], where mu_eps is either set by the user, or defaults to 1 / 10 ** np.ceil(np.log10(self.n)). Note that if mu_eps is set too high, e.g. in sparse settings where LFs mostly abstain, this will result in learning conditional probabilities all equal to mu_eps (and/or 1 - mu_eps)! See issue #1422. Note: Use user-provided value of mu_eps in train_config, else default to mu_eps = 1 / 10 ** np.ceil(np.log10(self.n)) this rounding is done to make it more obvious when the parameters have been clamped. """ if self.train_config.mu_eps is not None: mu_eps = self.train_config.mu_eps else: mu_eps = min(0.01, 1 / 10 ** np.ceil(
np.log10(self.n)
numpy.log10
""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import torch from torch.utils.data import Dataset import numpy as np import time import os import cv2 import sys import utils from datasets.scannet_scene import ScanNetScene class PlaneDatasetSingle(Dataset): def __init__(self, options, config, split, random=True, loadNeighborImage=False, load_semantics=False, load_boundary=False): self.options = options self.config = config self.split = split self.random = random self.dataFolder = options.dataFolder self.scenes = [] self.sceneImageIndices = [] self.loadClassMap() planenet_scene_ids_val = np.load('datasets/scene_ids_val.npy') planenet_scene_ids_val = {scene_id.decode('utf-8'): True for scene_id in planenet_scene_ids_val} with open(self.dataFolder + '/ScanNet/Tasks/Benchmark/scannetv1_' + split + '.txt') as f: for line in f: scene_id = line.strip() if split == 'test': ## Remove scenes which are in PlaneNet's training set for fair comparison if scene_id not in planenet_scene_ids_val: continue pass scenePath = self.dataFolder + '/scans/' + scene_id if not os.path.exists(scenePath + '/' + scene_id + '.txt') or not os.path.exists(scenePath + '/annotation/planes.npy'): continue scene = ScanNetScene(options, scenePath, scene_id, self.confident_labels, self.layout_labels, load_semantics=load_semantics, load_boundary=load_boundary) self.scenes.append(scene) self.sceneImageIndices += [[len(self.scenes) - 1, imageIndex] for imageIndex in range(len(scene.imagePaths))] continue pass if random: t = int(time.time() * 1000000) np.random.seed(((t & 0xff000000) >> 24) + ((t & 0x00ff0000) >> 8) + ((t & 0x0000ff00) << 8) + ((t & 0x000000ff) << 24)) else: np.random.seed(0) pass np.random.shuffle(self.sceneImageIndices) self.invalid_indices = {} with open(self.dataFolder + '/invalid_indices_' + split + '.txt', 'r') as f: for line in f: tokens = line.split(' ') if len(tokens) == 3: assert(int(tokens[2]) < 10000) invalid_index = int(tokens[1]) * 10000 + int(tokens[2]) if invalid_index not in self.invalid_indices: self.invalid_indices[invalid_index] = True pass pass continue pass self.sceneImageIndices = [[sceneIndex, imageIndex] for sceneIndex, imageIndex in self.sceneImageIndices if (sceneIndex * 10000 + imageIndex) not in self.invalid_indices] print('num images', len(self.sceneImageIndices)) self.anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, config.BACKBONE_SHAPES, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) self.loadNeighborImage = loadNeighborImage return def loadClassMap(self): classLabelMap = {} with open(self.dataFolder + '/scannetv2-labels.combined.tsv') as info_file: line_index = 0 for line in info_file: if line_index > 0: line = line.split('\t') key = line[1].strip() if line[4].strip() != '': label = int(line[4].strip()) else: label = -1 pass classLabelMap[key] = label classLabelMap[key + 's'] = label classLabelMap[key + 'es'] = label pass line_index += 1 continue pass confidentClasses = {'wall': True, 'floor': True, 'cabinet': True, 'bed': True, 'chair': False, 'sofa': False, 'table': True, 'door': True, 'window': True, 'bookshelf': False, 'picture': True, 'counter': True, 'blinds': False, 'desk': True, 'shelf': False, 'shelves': False, 'curtain': False, 'dresser': True, 'pillow': False, 'mirror': False, 'entrance': True, 'floor mat': True, 'clothes': False, 'ceiling': True, 'book': False, 'books': False, 'refridgerator': True, 'television': True, 'paper': False, 'towel': False, 'shower curtain': False, 'box': True, 'whiteboard': True, 'person': False, 'night stand': True, 'toilet': False, 'sink': False, 'lamp': False, 'bathtub': False, 'bag': False, 'otherprop': False, 'otherstructure': False, 'otherfurniture': False, 'unannotated': False, '': False } self.confident_labels = {} for name, confidence in confidentClasses.items(): if confidence and name in classLabelMap: self.confident_labels[classLabelMap[name]] = True pass continue self.layout_labels = {1: True, 2: True, 22: True, 9: True} return def __len__(self): return len(self.sceneImageIndices) def transformPlanes(self, transformation, planes): planeOffsets = np.linalg.norm(planes, axis=-1, keepdims=True) centers = planes centers = np.concatenate([centers, np.ones((planes.shape[0], 1))], axis=-1) newCenters = np.transpose(np.matmul(transformation, np.transpose(centers))) newCenters = newCenters[:, :3] / newCenters[:, 3:4] refPoints = planes - planes / np.maximum(planeOffsets, 1e-4) refPoints = np.concatenate([refPoints, np.ones((planes.shape[0], 1))], axis=-1) newRefPoints = np.transpose(np.matmul(transformation, np.transpose(refPoints))) newRefPoints = newRefPoints[:, :3] / newRefPoints[:, 3:4] planeNormals = newRefPoints - newCenters planeNormals /= np.linalg.norm(planeNormals, axis=-1, keepdims=True) planeOffsets = np.sum(newCenters * planeNormals, axis=-1, keepdims=True) newPlanes = planeNormals * planeOffsets return newPlanes def __getitem__(self, index): t = int(time.time() * 1000000) np.random.seed(((t & 0xff000000) >> 24) + ((t & 0x00ff0000) >> 8) + ((t & 0x0000ff00) << 8) + ((t & 0x000000ff) << 24)) if self.config.ANCHOR_TYPE == 'layout': return self.getItemLayout(index) if self.config.ANCHOR_TYPE == 'structure': return self.getItemStructure(index) while True: if self.random: index = np.random.randint(len(self.sceneImageIndices)) else: index = index % len(self.sceneImageIndices) pass sceneIndex, imageIndex = self.sceneImageIndices[index] scene = self.scenes[sceneIndex] try: image, planes, plane_info, segmentation, depth, camera, extrinsics = scene[imageIndex] if len(planes) == 0: index += 1 continue except: index += 1 continue pass if segmentation.max() < 0: index += 1 continue break instance_masks = [] class_ids = [] parameters = [] if len(planes) > 0: if 'joint' in self.config.ANCHOR_TYPE: distances = np.linalg.norm(np.expand_dims(planes, 1) - self.config.ANCHOR_PLANES, axis=-1) plane_anchors = distances.argmin(-1) elif self.config.ANCHOR_TYPE == 'Nd': plane_offsets = np.linalg.norm(planes, axis=-1) plane_normals = planes / np.expand_dims(plane_offsets, axis=-1) distances_N = np.linalg.norm(
np.expand_dims(plane_normals, 1)
numpy.expand_dims
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import sys, os import corgi import pyplasma as plasma from configSetup import Configuration import initialize as init from visualize import plotNode from visualize_amr import plotXmesh from visualize import plotJ, plotE, plotDens from visualize import saveVisz from visualize import get_yee import injector from timer import Timer # Generic function to fill the velocity mesh # # Maxwellian plasma with Brownian noise # where delgam = kT/m_i c^2 # def filler(xloc, uloc, ispcs, conf): mux_noise = 0.0 delgam_noise = 0.0 brownian_noise = 0.0 x = xloc[0] y = xloc[1] z = xloc[2] ux = uloc[0] uy = uloc[1] uz = uloc[2] #print("uy={} uz={}".format(uy,uz)) #1d filler if not( (np.abs(uy) < 0.01) and (np.abs(uz) < 0.01) ): return 0.0 #electrons if ispcs == 0: delgam = conf.delgam *
np.abs(conf.mi / conf.me)
numpy.abs
# -*- coding: utf-8 -*- """ last mod 5/22/19 """ import numpy as np import numba as nb from math import floor as mathfloor from config import lidar_files from config import present_boxes_file from config import grndstart, grndstep, grndlen, ground_planes_by_file from config import anchorstart, anchorstep, anchorlen from config import nlocaltiles, localgridlen from config import grnd2checkgrid, grnd4localgrid from config import anchorinlocalgrid_strided as anchorinlocalgrid from config import anchorangles_strided as anchorangles from config import anchornangles_strided as anchornangles from ground2 import planes2Transforms, tilePoints from calibs import calib_extrinsics, calib_map anchorcossins = np.column_stack((np.cos(anchorangles), np.sin(anchorangles))) anchorcenterpoints = (anchorinlocalgrid - localgridlen//2 - anchorstart[:2])*anchorstep[:2] anchorcenter2 = np.einsum(anchorcenterpoints, [0,1], anchorcossins[:,0], [2], [2,0,1]) anchorcenter2[:,:,0] -= np.outer(anchorcossins[:,1], anchorcenterpoints[:,1]) anchorcenter2[:,:,1] += np.outer(anchorcossins[:,1], anchorcenterpoints[:,0]) anchorcenterpoints = anchorcenter2 #@nb.njit(nb.void(nb.f8[:,:], nb.f8[:], nb.f8, nb.b1[:,:,:])) #def fillPositiveSample(pts, positionnoise, anglenoise, grid): # for pt in pts @nb.njit(nb.void(nb.f8[:,:], nb.i8[:], nb.i8, nb.i8, nb.f8[:,:], nb.b1[:,:,:,:])) def fillLocalGrid(pts, tileidxs, tilex, tiley, groundT, grid): grid[:] = False for grnd4localidx in xrange(grnd4localgrid.shape[0]): tilex2, tiley2 = grnd4localgrid[grnd4localidx] tile = (tilex+tilex2)*grndlen[1] + tiley+tiley2 pts_idxstart, pts_idxend = tileidxs[tile:tile+2] for ptsidx in xrange(pts_idxstart, pts_idxend): pt = pts[ptsidx] grndpt = np.dot(groundT[:3,:3], pt) + groundT[:3,3] z = int(mathfloor(grndpt[2]/anchorstep[2])) - anchorstart[2] if z < 0 or z >= anchorlen[2]: continue for angle in xrange(anchornangles): xf = anchorcossins[angle,0]*grndpt[0] + anchorcossins[angle,1]*grndpt[1] x = int(mathfloor(xf/anchorstep[0])) + localgridlen[0]//2 yf = anchorcossins[angle,0]*grndpt[1] - anchorcossins[angle,1]*grndpt[0] y = int(mathfloor(yf/anchorstep[1])) + localgridlen[1]//2 if x >= 0 and x < localgridlen[0] and y >= 0 and y < localgridlen[1]: grid[angle,x,y,z] = True @nb.njit(nb.b1(nb.f8,nb.f8,nb.f8,nb.f8,nb.f8,nb.f8, nb.f8,nb.f8,nb.f8,nb.f8,nb.f8,nb.f8, nb.f8)) def rectOverlap(x1,y1,c1,s1,l1,w1, x2,y2,c2,s2,l2,w2, overlap_buffer): x2in1 = (x2-x1)*c1 + (y2-y1)*s1 y2in1 = (y2-y1)*c1 - (x2-x1)*s1 x1in2 = (x1-x2)*c2 + (y1-y2)*s2 y1in2 = (y1-y2)*c2 - (x1-x2)*s2 cos = abs(c1*c2+s1*s2) sin = abs(c1*s2-c2*s1) return not (l1 + l2*cos + w2*sin - abs(x2in1) < overlap_buffer or w1 + l2*sin + w2*cos - abs(y2in1) < overlap_buffer or l2 + l1*cos + w1*sin - abs(x1in2) < overlap_buffer or w2 + l1*sin + w1*cos - abs(y1in2) < overlap_buffer) # return not (x2in1 + l2*cos + w2*sin + l1 < overlap_buffer or # l1 - x2in1 + l2*cos + w2*sin < overlap_buffer or # y2in1 + l2*sin + w2*cos + w1 < overlap_buffer or # w1 - y2in1 + l2*sin + w2*cos < overlap_buffer or # x1in2 + l1*cos + w1*sin + l2 < overlap_buffer or # l2 - x1in2 + l1*cos + w1*sin < overlap_buffer or # y1in2 + l1*sin + w1*cos + w2 < overlap_buffer or # w2 - y1in2 + l1*sin + w1*cos < overlap_buffer) @nb.njit(nb.b1[:,:,:,:]()) def prepLocalNms(): nanchors = anchorinlocalgrid.shape[0] overlaps = np.zeros((anchornangles, anchornangles, nanchors, nanchors), dtype=np.bool8) # length in each direction # set a little low to only catch close objs obj_len = 2. obj_wid = 1. obj_hypot = np.hypot(obj_len, obj_wid) overlap_buffer = .4 for angleidx1, angleidx2, anchoridx1, anchoridx2 in np.ndindex( anchornangles, anchornangles, nanchors, nanchors): if angleidx2 < angleidx1 or anchoridx2 < anchoridx1: continue x1, y1 = anchorcenterpoints[angleidx1, anchoridx1] x2, y2 = anchorcenterpoints[angleidx2, anchoridx2] overlap = False centerdist = np.hypot(x1-x2, y1-y2) if centerdist < obj_wid*2 - overlap_buffer: overlap = True elif centerdist > obj_hypot*2 - overlap_buffer: overlap = False else: cos1, sin1 = anchorcossins[angleidx1] cos2, sin2 = anchorcossins[angleidx2] overlap = rectOverlap(x1,y1,cos1,sin1,obj_len,obj_wid, x2,y2,cos2,sin2,obj_len,obj_wid, overlap_buffer) if overlap: overlaps[angleidx1, angleidx2, anchoridx1, anchoridx2] = True overlaps[angleidx2, angleidx1, anchoridx2, anchoridx1] = True return overlaps @nb.njit(nb.void(nb.b1[:,:,:], nb.b1[:,:,:])) def prepRough(grid, roughX): xc, yc, zc = grid.shape roughX[:] = False for x,y,z in np.ndindex(xc,yc,zc): roughX[x//3,y//3,z//3] |= grid[x,y,z] @nb.njit(nb.b1(nb.b1[:,:,:], nb.b1[:,:,:], nb.i8, nb.i8, nb.i8, nb.i8, nb.i8, nb.i8)) def splitGrid(grid, roughgrid, x1,y1,z1,x2,y2,z2): #x1,x2,y1,y2,z1,z2 = split largex1 = x1//3 smallx1 = largex1 if x1 == largex1*3 else largex1 + 1 smallx2 = x2//3 largex2 = smallx2 if x2 == smallx2*3 else smallx2 + 1 largey1 = y1//3 smally1 = largey1 if y1 == largey1*3 else largey1 + 1 smally2 = y2//3 largey2 = smally2 if y2 == smally2*3 else smally2 + 1 largez1 = z1//3 smallz1 = largez1 if z1 == largez1*3 else largez1 + 1 smallz2 = z2//3 largez2 = smallz2 if z2 == smallz2*3 else smallz2 + 1 if np.any(roughgrid[smallx1:smallx2, smally1:smally2, smallz1:smallz2]): return True if not np.any(roughgrid[largex1:largex2, largey1:largey2, largez1:largez2]): return False return np.any(grid[x1:x2, y1:y2, z1:z2]) @nb.njit(nb.f8(nb.b1[:,:,:], nb.b1[:,:,:], nb.i8, nb.i8, nb.i8, nb.i8[:,:,:], nb.f8[:,:], nb.i8)) def useBoostedTree2(grid, roughgrid, anchorx, anchory, direction, btsplits, btleaves, ntrees): score = 0. for tree in range(ntrees): splitidx = 0 for depth in range(3): tsplit = btsplits[tree, splitidx] if direction == 0: x1 = anchorx + tsplit[0] x2 = anchorx + tsplit[3] y1 = anchory + tsplit[1] y2 = anchory + tsplit[4] else: x1 = anchorx + 48 - tsplit[3] ### change when changing anchor!!! x2 = anchorx + 48 - tsplit[0] ### change when changing anchor!!! y1 = anchory + 32 - tsplit[4] ### change when changing anchor!!! y2 = anchory + 32 - tsplit[1] ### change when changing anchor!!! z1 = tsplit[2] z2 = tsplit[5] splitidx = splitidx*2+2 if splitGrid(grid, roughgrid, x1,y1,z1,x2,y2,z2): splitidx -= 1 score += btleaves[tree, splitidx - 7] if score < btleaves[tree, 8]: score = -50. break return score """ returns the samples with the top predictions for a single lidar sweep """ @nb.njit(nb.i8(nb.f8[:,:], nb.i8[:], nb.f8[:,:,:,:], nb.i8[:,:,:], nb.f8[:,:], nb.f8[:,:], nb.b1[:,:,:,:], nb.i8)) def predictNegs(pts, tileidxs, groundTs, btsplits, btleaves, pts2suppress, detections, detectioncount): gridshape = (anchornangles, localgridlen[0], localgridlen[1], anchorlen[2]) grid = np.zeros(gridshape, dtype=np.bool8) nanchors = len(anchorinlocalgrid) ndetections = detections.shape[0] ntrees = btsplits.shape[0] pts2suppress_range = 2+localgridlen*anchorstep[:2]/2. centerpoint_grid = np.zeros(2, dtype=np.float64) roughgridshape = (localgridlen[0]//3+1, localgridlen[1]//3+1, anchorlen[2]//3+1) roughgrid = np.zeros(roughgridshape, dtype=np.bool8) for grnd2checkgrididx in range(grnd2checkgrid.shape[0]): centerx, centery = grnd2checkgrid[grnd2checkgrididx] # determine which suppress points are important centerpoint_grid[0] = grndstep[0]*(grndstart[0]+centerx+.5) centerpoint_grid[1] = grndstep[1]*(grndstart[1]+centery+.5) pts2suppressidxs = np.abs(pts2suppress[:,0]-centerpoint_grid[0]) < pts2suppress_range[0] pts2suppressidxs &= np.abs(pts2suppress[:,1]-centerpoint_grid[1]) < pts2suppress_range[1] pts2suppress_local = pts2suppress[pts2suppressidxs].copy() pts2suppress_local[:,:2] -= centerpoint_grid npts2suppress = pts2suppress_local.shape[0] groundT = groundTs[centerx, centery] fillLocalGrid(pts, tileidxs, centerx, centery, groundT, grid) for angle in range(anchornangles): angcos, angsin = anchorcossins[angle] thisgrid = grid[angle] prepRough(thisgrid, roughgrid) for anchoridx in range(nanchors): anchorx, anchory = anchorinlocalgrid[anchoridx] anchorcenterptx, anchorcenterpty = anchorcenterpoints[angle,anchoridx] suppressed = False for pt2suppressidx in range(npts2suppress): ptx,pty,ptcos,ptsin = pts2suppress_local[pt2suppressidx] if (np.hypot(ptx-anchorcenterptx, pty-anchorcenterpty) < 2. and abs(ptcos*angsin - ptsin*angcos) < .8): suppressed = True suppressed |= ((anchorcenterptx+centerpoint_grid[0])*.866 - 1.3 < abs(anchorcenterpty+centerpoint_grid[1])) if suppressed: continue score1 = useBoostedTree2(thisgrid, roughgrid, anchorx, anchory, 0, btsplits, btleaves, ntrees) score2 = useBoostedTree2(thisgrid, roughgrid, anchorx, anchory, 1, btsplits, btleaves, ntrees) if score1 > score2: score = score1 direction = 0 else: score = score2 direction = 1 if score > -30: # otherwise, consider culled if detectioncount < ndetections: detectionidx = detectioncount else: detectionidx = np.random.randint(detectioncount+1) if detectionidx < ndetections: sample = grid[angle, anchorx:anchorx+anchorlen[0], anchory:anchory+anchorlen[1], :] if direction: sample = sample[::-1,::-1] detections[detectionidx] = sample detectioncount += 1 return detectioncount def prepForPredicting(fileidx, objects_to_suppress): data = np.fromfile(lidar_files.format(fileidx), dtype=np.float32).reshape((-1,4))[:,:3] calib_extrinsic = calib_extrinsics[calib_map[fileidx]].copy() calib_extrinsic[2,3] += 1.65 data = data.dot(calib_extrinsic[:3,:3].T) + calib_extrinsic[:3,3] # get ground ground = np.load(ground_planes_by_file.format(fileidx)) pts, tileidxs = tilePoints(data, grndstart, grndstep, grndlen) groundTs = planes2Transforms(ground) # get suppressed objects suppress_start, suppress_end = np.searchsorted(objects_to_suppress[:,0], [fileidx, fileidx+1]) pts2suppress = objects_to_suppress[suppress_start:suppress_end, 1:3].copy() pts2suppress = np.zeros((suppress_end-suppress_start, 4)) pts2suppress[:,:2] = objects_to_suppress[suppress_start:suppress_end, 1:3] pts2suppress[:,2] = np.cos(objects_to_suppress[suppress_start:suppress_end,0]) pts2suppress[:,2] = np.sin(objects_to_suppress[suppress_start:suppress_end,0]) return pts, tileidxs, pts2suppress, groundTs if __name__ == '__main__': from config import training_file_start, training_file_end from time import time starttime = time() BT_load_file = '../dataApril19/BT29.npz' #np.random.seed(200) nnegatives = 7150 nfilesfornegatives = 60 BTstruct = np.load(BT_load_file) btsplits = BTstruct['splits'] btleaves = BTstruct['leaves'] files2use = np.random.choice(np.arange(training_file_start, training_file_end), nfilesfornegatives, replace=False) objects_to_suppress = np.load(present_boxes_file) anchoroverlaps = prepLocalNms() globaldetections = np.zeros( (nnegatives, anchorlen[0], anchorlen[1], anchorlen[2]), dtype=bool) detectioncount = 0 for file_idx in files2use: # load relevant data data = np.fromfile(lidar_files.format(file_idx), dtype=np.float32).reshape((-1,4))[:,:3] calib_extrinsic = calib_extrinsics[calib_map[file_idx]].copy() calib_extrinsic[2,3] += 1.65 data = data.dot(calib_extrinsic[:3,:3].T) + calib_extrinsic[:3,3] # get ground ground = np.load(ground_planes_by_file.format(file_idx)) pts, tileidxs = tilePoints(data, grndstart, grndstep, grndlen) groundTs = planes2Transforms(ground) # get suppressed objects suppress_start, suppress_end = np.searchsorted(objects_to_suppress[:,0], [file_idx, file_idx+1]) pts2suppress = objects_to_suppress[suppress_start:suppress_end, 1:3].copy() pts2suppress = np.zeros((suppress_end-suppress_start, 4)) pts2suppress[:,:2] = objects_to_suppress[suppress_start:suppress_end, 1:3] pts2suppress[:,2] =
np.cos(objects_to_suppress[suppress_start:suppress_end,0])
numpy.cos