prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 5 13:04:27 2020 This file implements linear, exponential, and periodical (sinusoidal) schedules for the temperature in Boltzmann exploration. It was used in an ealier version of SPAQL. Run it to see an example of how the probabilities of picking an action evolve for each schedule. """ import numpy as np eps = 1e-2 def get_linear_alpha(c, I, M): """ c: current iteration I: maximum number of iterations M: maximum alpha """ alpha = 1/I ret = M * (1 - alpha*c) if ret < eps: ret = eps return ret def get_exp_alpha(c, I, M): """ c: current iteration I: maximum number of iterations M: maximum alpha """ alpha = np.log(M + 1)/I ret = np.exp(alpha*(I-c)) - 1 if ret < eps: ret = eps return ret def get_sin_alpha(c, I, M, periods=2): """ c: current iteration I: maximum number of iterations M: maximum alpha periods: number of times actions are uniformly sampled """ alpha = np.pi/I * (2*periods - 1) ret = M * (1 - np.cos(alpha*(I-c)))/2 if ret < eps: ret = eps return ret if __name__ == "__main__": import matplotlib.pyplot as plt nIters = 500 max_alpha = 5 labels = [f"Action {i}" for i in range(1, 6)] fig, ax = plt.subplots(2, 2) ax = ax.flatten() ax1 = ax[0] iteration = np.arange(0, nIters) q = 5 * np.random.random((1,5)) y = np.zeros((iteration.size, q.size)) for a in iteration: alpha = get_linear_alpha(a, nIters/2, max_alpha) q1 = np.exp(q/alpha) y[a,:] = q1/np.sum(q1) ax1.stackplot(iteration, np.transpose(y), labels=labels) ax1.set_xlabel(r"Training iteration") ax1.set_ylabel("P(action)") ax1.legend(loc='upper right') ax1.set_title("Linear schedule") ax2 = ax[1] y = np.zeros((iteration.size, q.size)) for a in iteration: alpha = get_exp_alpha(a, nIters/2, max_alpha) q1 = np.exp(q/alpha) y[a,:] = q1/np.sum(q1) ax2.stackplot(iteration, np.transpose(y), labels=labels) ax2.set_xlabel("Training iteration") ax2.set_ylabel("P(action)") ax2.legend(loc='upper right') ax2.set_title("Exponential schedule") ax3 = ax[2] y = np.zeros((iteration.size, q.size)) for a in iteration: alpha = get_sin_alpha(a, nIters/2, max_alpha, periods=1) q1 = np.exp(q/alpha) y[a,:] = q1/np.sum(q1) ax3.stackplot(iteration, np.transpose(y), labels=labels) ax3.set_xlabel("Training iteration") ax3.set_ylabel("P(action)") ax3.legend(loc='upper right') ax3.set_title("Sinusoidal schedule, 1 period") ax3 = ax[3] y =
np.zeros((iteration.size, q.size))
numpy.zeros
# -*- coding: utf-8 -*- import time import numpy as np import pytest from africanus.gridding.perleypolyhedron import (kernels, gridder, degridder) from africanus.gridding.perleypolyhedron import dask as dwrap from africanus.dft.kernels import im_to_vis from africanus.constants import c as lightspeed class clock: def __init__(self, identifier="untitled"): self._id = identifier self._elapsed = 0.0 self._onenter = 0.0 self._onexit = 0.0 def __enter__(self): self._onenter = time.time() return self def __exit__(self, extype, exval, tb): self._onexit = time.time() self._elapsed = self._onexit - self._onenter @property def elapsed(self): return self._elapsed def __str__(self): res = "{0:s}: Walltime {1:.0f}m{2:.2f}s elapsed".format( self._id, self.elapsed // 60, self.elapsed - (self.elapsed // 60) * 60) return res __repr__ = __str__ def test_gridder_dask(): da = pytest.importorskip("dask.array") with clock("DASK gridding") as tictoc: # construct kernel W = 5 OS = 9 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, OS) nrow = int(1e6) np.random.seed(0) # simulate some ficticious baselines rotated by an hour angle row_chunks = nrow // 10 uvw = np.zeros((nrow, 3), dtype=np.float64) blpos = np.random.uniform(26, 10000, size=(25, 3)) ntime = int(nrow / 25.0) d0 = np.pi / 4.0 for n in range(25): for ih0, h0 in enumerate( np.linspace(np.deg2rad(-20), np.deg2rad(20), ntime)): s = np.sin c = np.cos R = np.array([[s(h0), c(h0), 0], [-s(d0) * c(h0), s(d0) * s(h0), c(d0)], [c(d0) * c(h0), -c(d0) * s(h0), s(d0)]]) uvw[n * ntime + ih0, :] = np.dot(R, blpos[n, :].T) uvw = da.from_array(uvw, chunks=(row_chunks, 3)) pxacrossbeam = 5 nchan = 128 frequency = da.from_array(np.linspace(1.0e9, 1.4e9, nchan), chunks=(nchan, )) wavelength = lightspeed / frequency cell = da.rad2deg( wavelength[0] / (max(da.max(da.absolute(uvw[:, 0])), da.max(da.absolute(uvw[:, 1]))) * pxacrossbeam)) npixfacet = 100 fftpad = 1.1 image_centres = da.from_array(np.array([[0, d0]]), chunks=(1, 2)) chanmap = da.from_array(np.zeros(nchan, dtype=np.int64), chunks=(nchan, )) detaper_facet = kernels.compute_detaper_dft_seperable( int(npixfacet * fftpad), kernels.unpack_kernel(kern, W, OS), W, OS) vis_dft = da.ones(shape=(nrow, nchan, 2), chunks=(row_chunks, nchan, 2), dtype=np.complex64) vis_grid_facet = dwrap.gridder( uvw, vis_dft, wavelength, chanmap, int(npixfacet * fftpad), cell * 3600.0, image_centres, (0, d0), kern, W, OS, "None", "None", "I_FROM_XXYY", "conv_1d_axisymmetric_packed_scatter", do_normalize=True) vis_grid_facet = vis_grid_facet.compute() ftvisfacet = (np.fft.fftshift( np.fft.ifft2(np.fft.ifftshift( vis_grid_facet[0, :, :]))).reshape( (1, int(npixfacet * fftpad), int( npixfacet * fftpad)))).real / detaper_facet * int( npixfacet * fftpad)**2 ftvisfacet = ftvisfacet[:, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet] print(tictoc) assert (np.abs(np.max(ftvisfacet[0, :, :]) - 1.0) < 1.0e-6) def test_gridder_nondask(): with clock("Non-DASK gridding") as tictoc: # construct kernel W = 5 OS = 9 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, OS) nrow = int(1e6) np.random.seed(0) # simulate some ficticious baselines rotated by an hour angle uvw = np.zeros((nrow, 3), dtype=np.float64) blpos = np.random.uniform(26, 10000, size=(25, 3)) ntime = int(nrow / 25.0) d0 = np.pi / 4.0 for n in range(25): for ih0, h0 in enumerate( np.linspace(np.deg2rad(-20), np.deg2rad(20), ntime)): s = np.sin c = np.cos R = np.array([[s(h0), c(h0), 0], [-s(d0) * c(h0), s(d0) * s(h0), c(d0)], [c(d0) * c(h0), -c(d0) * s(h0), s(d0)]]) uvw[n * ntime + ih0, :] = np.dot(R, blpos[n, :].T) pxacrossbeam = 5 nchan = 128 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (max(np.max(np.absolute(uvw[:, 0])), np.max(np.absolute(uvw[:, 1]))) * pxacrossbeam)) npixfacet = 100 fftpad = 1.1 image_centres = np.array([[0, d0]]) chanmap = np.zeros(nchan, dtype=np.int64) detaper_facet = kernels.compute_detaper_dft_seperable( int(npixfacet * fftpad), kernels.unpack_kernel(kern, W, OS), W, OS) vis_dft = np.ones((nrow, nchan, 2), dtype=np.complex64) vis_grid_facet = gridder.gridder( uvw, vis_dft, wavelength, chanmap, int(npixfacet * fftpad), cell * 3600.0, image_centres[0, :], (0, d0), kern, W, OS, "None", "None", "I_FROM_XXYY", "conv_1d_axisymmetric_packed_scatter", do_normalize=True) ftvisfacet = (np.fft.fftshift( np.fft.ifft2(np.fft.ifftshift( vis_grid_facet[0, :, :]))).reshape( (1, int(npixfacet * fftpad), int( npixfacet * fftpad)))).real / detaper_facet * int( npixfacet * fftpad)**2 ftvisfacet = ftvisfacet[:, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet] print(tictoc) assert (np.abs(np.max(ftvisfacet[0, :, :]) - 1.0) < 1.0e-6) def test_degrid_dft_packed_nondask(): # construct kernel W = 5 OS = 3 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, oversample=OS) nrow = int(5e4) uvw = np.column_stack( (5000.0 * np.cos(np.linspace(0, 2 * np.pi, nrow)), 5000.0 * np.sin(np.linspace(0, 2 * np.pi, nrow)), np.zeros(nrow))) pxacrossbeam = 10 nchan = 1024 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (2 * max(np.max(np.abs(uvw[:, 0])), np.max(np.abs(uvw[:, 1]))) * pxacrossbeam)) npix = 512 mod = np.zeros((1, npix, npix), dtype=np.complex64) mod[0, npix // 2 - 5, npix // 2 - 5] = 1.0 ftmod = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift( mod[0, :, :]))).reshape((1, npix, npix)) chanmap = np.zeros(nchan, dtype=np.int64) with clock("Non-DASK degridding") as tictoc: degridder.degridder( uvw, ftmod, wavelength, chanmap, cell * 3600.0, (0, np.pi / 4.0), (0, np.pi / 4.0), kern, W, OS, "None", # no faceting "None", # no faceting "XXYY_FROM_I", "conv_1d_axisymmetric_packed_gather") print(tictoc) def test_degrid_dft_packed_dask(): da = pytest.importorskip("dask.array") # construct kernel W = 5 OS = 3 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, oversample=OS) nrow = int(5e4) nrow_chunk = nrow // 32 uvw = np.column_stack( (5000.0 * np.cos(
np.linspace(0, 2 * np.pi, nrow)
numpy.linspace
import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.cm as cm import netCDF4 import scipy.interpolate as intrp import datetime import gsw import seawater as sw import os from mpl_toolkits.basemap import Basemap import cmocean import pygamma import copy import glob import xarray as xr from holteandtalley import HolteAndTalley import time class grids_one_buoy(): def __init__(self,filename,**kargs): if "den_ml_crit" in kargs: den_ml_crit = kargs["den_ml_crit"] else: den_ml_crit = 0.03 if "DO_ml_crit" in kargs: DO_ml_crit = kargs["DO_ml_crit"] else: #DO_ml_crit = 1. #Kortzinger 2008 proportional to 0.03 kg/m3 if 0.125 kg/m-3 in kortzinger #DO_ml_crit = 5. #Kortzinger 2008 DO_ml_crit = 2.5 if "dz" in kargs: dz = kargs["dz"] else: dz = 5. if "dzLT" in kargs: dzLT = kargs["dzLT"] else: dzLT = 20. if "gridding" in kargs: gridding = kargs["gridding"] else: gridding = False if "display_info" in kargs: display_info = kargs["display_info"] else: display_info = False if "verbose" in kargs: verbose = kargs["verbose"] else: verbose = False if "clear_short" in kargs: #clears short cut propfiles at 950 m clear_short = kargs["clear_short"] else: clear_short = False nfc = netCDF4.Dataset(filename) metadata = nfc.__dict__["Comments"] if display_info: display(nfc) variables = list(nfc.variables.keys()) #print(nfc) self.raw = dict() self.raw["depth"] = nfc["Depth"][:] self.raw["Lat"] = nfc["Lat"][:] self.raw["Lon"] = nfc["Lon"][:] self.raw["Lon"][self.raw["Lon"]>180] = self.raw["Lon"][self.raw["Lon"]>180] - 360. #UOW CODE i0 = filename.rfind("/")+1 i1 = filename.rfind("_") self.raw["code"]= filename[i0:i1] #WMO code WMO_str = "WMO ID:" i0 = metadata.find(WMO_str) + len(WMO_str) + 1 i1 = metadata[i0:].find("\n") + i0 self.raw["WMO_code"] = metadata[i0:i1] ref_date_str = nfc["REFERENCE_DATE_TIME"][:].tostring().decode("ascii") ref_date = datetime.datetime.strptime(ref_date_str,"%Y%m%d%H%M%S") self.raw["date"] = nfc["JULD"][:] + ref_date.toordinal() self.raw["date_dt"] = convert_time_to_date(self.raw["date"]) #reads the variables self.raw["depth"] = nfc["Depth"][:].T if np.ma.isMaskedArray(self.raw["depth"]): self.raw["depth"].mask = (self.raw["depth"].mask) | (nfc["Depth_QFA"][:].T == 8) | (self.raw["depth"]<0) else: self.raw["depth"] = np.ma.array(self.raw["depth"]) self.raw["depth"].mask = (nfc["Depth_QFA"][:].T == 8) self.raw["Pressure"] = nfc["Pressure"][:].T if np.ma.isMaskedArray(self.raw["Pressure"]): self.raw["Pressure"].mask = (self.raw["Pressure"].mask) | (nfc["Pressure_QFA"][:].T == 8) else: self.raw["Pressure"] = np.ma.array(self.raw["Pressure"]) self.raw["Pressure"].mask = (nfc["Pressure_QFA"][:].T == 8) self.raw["Temperature"] = nfc["Temperature"][:].T if np.ma.isMaskedArray(self.raw["Temperature"]): self.raw["Temperature"].mask = (self.raw["Temperature"].mask) | (nfc["Temperature_QFA"][:].T == 8) else: self.raw["Temperature"] = np.ma.array(self.raw["Temperature"]) self.raw["Temperature"].mask = (nfc["Temperature_QFA"][:].T == 8) self.raw["Salinity"] = nfc["Salinity"][:].T if np.ma.isMaskedArray(self.raw["Salinity"]): self.raw["Salinity"].mask = (self.raw["Salinity"].mask) | (nfc["Salinity_QFA"][:].T == 8) else: self.raw["Salinity"] = np.ma.array(self.raw["Salinity"]) self.raw["Salinity"].mask = (nfc["Salinity_QFA"][:].T == 8) #derived values self.raw["SA"] = gsw.SA_from_SP( self.raw["Salinity"], self.raw["Pressure"], self.raw["Lon"], self.raw["Lat"] ) #-10.1325 self.raw["CT"] = gsw.CT_from_t(self.raw["SA"],self.raw["Temperature"],self.raw["Pressure"]) #-10.1325 self.raw["Sigma_theta"] = gsw.sigma0(self.raw["SA"],self.raw["CT"]) self.raw["gamma_n"] = np.transpose(pygamma.gamma_n( self.raw["Salinity"].T, self.raw["Temperature"].T, self.raw["Pressure"].T, self.raw["Lon"], self.raw["Lat"] )[0]) if not np.ma.isMaskedArray(self.raw["gamma_n"]): self.raw["gamma_n"] = np.ma.array( self.raw["gamma_n"] ) self.raw["gamma_n"].mask = np.copy( self.raw["Sigma_theta"].mask ) #biogeochemical bg_vars = ["Oxygen","OxygenSat","Nitrate","DIC_LIAR","TALK_LIAR","pCO2_LIAR","Chla_corr","POC"] self.raw_bg = dict() if "Oxygen" in variables: self.raw_bg["Oxygen"] = nfc["Oxygen"][:].T if np.ma.isMaskedArray(self.raw_bg["Oxygen"]): self.raw_bg["Oxygen"].mask = (self.raw_bg["Oxygen"].mask) | (nfc["Oxygen_QFA"][:].T == 8) else: self.raw_bg["Oxygen"] = np.ma.array(self.raw_bg["Oxygen"]) self.raw_bg["Oxygen"].mask = (nfc["Oxygen_QFA"][:].T == 8) if "OxygenSat" in variables: self.raw_bg["OxygenSat"] = nfc["OxygenSat"][:].T if np.ma.isMaskedArray(self.raw_bg["OxygenSat"]): self.raw_bg["OxygenSat"].mask = (self.raw_bg["OxygenSat"].mask) | (nfc["OxygenSat_QFA"][:].T == 8) else: self.raw_bg["OxygenSat"] = np.ma.array(self.raw_bg["OxygenSat"]) self.raw_bg["OxygenSat"].mask = (nfc["OxygenSat_QFA"][:].T == 8) if "Nitrate" in variables: self.raw_bg["Nitrate"] = nfc["Nitrate"][:].T if np.ma.isMaskedArray(self.raw_bg["Nitrate"]): self.raw_bg["Nitrate"].mask = (self.raw_bg["Nitrate"].mask) | (nfc["Nitrate_QFA"][:].T == 8) else: self.raw_bg["Nitrate"] = np.ma.array(self.raw_bg["Nitrate"]) self.raw_bg["Nitrate"].mask = (nfc["Nitrate_QFA"][:].T == 8) if "DIC_LIAR" in variables: self.raw_bg["DIC_LIAR"] = nfc["DIC_LIAR"][:].T if np.ma.isMaskedArray(self.raw_bg["DIC_LIAR"]): self.raw_bg["DIC_LIAR"].mask = (self.raw_bg["DIC_LIAR"].mask) | (nfc["DIC_LIAR_QFA"][:].T == 8) else: self.raw_bg["DIC_LIAR"] = np.ma.array(self.raw_bg["DIC_LIAR"]) self.raw_bg["DIC_LIAR"].mask = (nfc["DIC_LIAR_QFA"][:].T == 8) if "TALK_LIAR" in variables: self.raw_bg["TALK_LIAR"] = nfc["TALK_LIAR"][:].T if np.ma.isMaskedArray(self.raw_bg["TALK_LIAR"]): self.raw_bg["TALK_LIAR"].mask = (self.raw_bg["TALK_LIAR"].mask) | (nfc["TALK_LIAR_QFA"][:].T == 8) else: self.raw_bg["TALK_LIAR"] = np.ma.array(self.raw_bg["TALK_LIAR"]) self.raw_bg["TALK_LIAR"].mask = (nfc["TALK_LIAR_QFA"][:].T == 8) if "pCO2_LIAR" in variables: self.raw_bg["pCO2_LIAR"] = nfc["pCO2_LIAR"][:].T if np.ma.isMaskedArray(self.raw_bg["pCO2_LIAR"]): self.raw_bg["pCO2_LIAR"].mask = (self.raw_bg["pCO2_LIAR"].mask) | (nfc["pCO2_LIAR_QFA"][:].T == 8) else: self.raw_bg["pCO2_LIAR"] = np.ma.array(self.raw_bg["pCO2_LIAR"]) self.raw_bg["pCO2_LIAR"].mask = (nfc["pCO2_LIAR_QFA"][:].T == 8) if "Chl_a_corr" in variables: self.raw_bg["Chl_a"] = nfc["Chl_a_corr"][:].T if np.ma.isMaskedArray(self.raw_bg["Chl_a"]): self.raw_bg["Chl_a"].mask = (self.raw_bg["Chl_a"].mask) | (nfc["Chl_a_corr_QFA"][:].T == 8) else: self.raw_bg["Chl_a"] = np.ma.array(self.raw_bg["Chl_a"]) self.raw_bg["Chl_a"].mask = (nfc["Chl_a_corr_QFA"][:].T == 8) if "POC" in variables: self.raw_bg["POC"] = nfc["POC"][:].T if np.ma.isMaskedArray(self.raw_bg["POC"]): self.raw_bg["POC"].mask = (self.raw_bg["POC"].mask) | (nfc["POC_QFA"][:].T == 8) else: self.raw_bg["POC"] = np.ma.array(self.raw_bg["POC"]) self.raw_bg["POC"].mask = (nfc["POC_QFA"][:].T == 8) nt = self.raw["Temperature"].shape[1] #LT self.raw["LT_ov"] = np.full( self.raw["Temperature"].shape, np.nan ) self.raw["size_ov"] = np.full( self.raw["Temperature"].shape, np.nan ) #grids self.gr = dict() self.gr["depth"] = np.arange(0,2000+dz,dz) nz = self.gr["depth"].size self.gr["date"] = np.copy(self.raw["date"]) #self.gr["date_dt"] = convert_time_to_date(self.gr["date"]) self.gr["Lon"] = np.copy(self.raw["Lon"]) self.gr["Lat"] = np.copy(self.raw["Lat"]) self.gr["code"] = copy.copy(self.raw["code"]) self.gr["WMO_code"] = copy.copy(self.raw["WMO_code"]) #gridded variables self.gr["Pressure"] = np.full((nz, nt), np.nan) self.gr["Temperature"] = np.full((nz, nt), np.nan) self.gr["Salinity"] = np.full((nz, nt), np.nan) self.gr["SA"] = np.full((nz, nt), np.nan) self.gr["CT"] = np.full((nz, nt), np.nan) self.gr["Sigma_theta"] = np.full((nz, nt), np.nan) self.gr["gamma_n"] = np.full((nz, nt), np.nan) self.gr["N2"] = np.full((nz, nt), np.nan) self.gr["PV"] = np.full((nz, nt), np.nan) #biogeochemical variables for var in bg_vars: self.gr[var] = np.full((nz, nt), np.nan) #mixing parameters self.gr["LT"] = np.full((nz, nt), np.nan) self.gr["mld"] = np.full(nt, np.nan) self.gr["mld_HT"] = np.full(nt, np.nan) #self.gr["gpa0"] = np.full(nt, np.nan) self.gr["mld_DO"] = np.full(nt, np.nan) self.gr["LT_ml"] = np.full(nt, 0.) self.gr["LT_ov"] = np.full((nz,nt), 0.) self.gr["LT_largest_ov"] = np.full(nt, 0.) self.gr["size_largest_ov"] = np.full(nt, 0.) self.gr["h_largest_ov"] = np.full(nt, 0.) self.gr["h_no_ov"] = np.full(nt, 0.) for i in range(nt): if verbose: print("Float %s, profile: %d"%(self.raw["code"],i+1)) #Interpolates temperature ii = np.argsort(self.raw["depth"][:,i]) z0 = self.raw["depth"][ii,i] #deletes profiles shorter than 950 m if clear_short and max(z0)<950: continue p0 = self.raw["Pressure"][ii,i] T0 = self.raw["Temperature"][ii,i] msk = ~((T0.mask) | (z0.mask)) self.gr["Temperature"][:,i] = grids_interpolates(z0[msk], T0[msk], self.gr["depth"], dz, grid = gridding) #Pressure msk = ~((p0.mask) | (z0.mask)) self.gr["Pressure"][:,i] = grids_interpolates(z0[msk], p0[msk], self.gr["depth"], dz, grid = gridding) #Interpolates potential temperature CT0 = self.raw["CT"][ii,i] msk = ~((CT0.mask) | (z0.mask)) self.gr["CT"][:,i] = grids_interpolates(z0[msk], CT0[msk], self.gr["depth"], dz, grid = gridding) #Interpolates salinity S0 = self.raw["Salinity"][ii,i] msk = ~((S0.mask) | (z0.mask)) self.gr["Salinity"][:,i] = grids_interpolates(z0[msk], S0[msk], self.gr["depth"], dz, grid = gridding) #Interpolates SA SA0 = self.raw["SA"][ii,i] msk = ~((SA0.mask) | (z0.mask)) self.gr["SA"][:,i] = grids_interpolates(z0[msk], SA0[msk], self.gr["depth"], dz, grid = gridding) #Interpolates density Sigma_theta0 = self.raw["Sigma_theta"][ii,i] msk = ~((Sigma_theta0.mask) | (z0.mask)) self.gr["Sigma_theta"][:,i] = grids_interpolates(z0[msk], Sigma_theta0[msk], self.gr["depth"], dz, grid = gridding) #Interpolates gamma_n gamma_n0 = self.raw["gamma_n"][ii,i] msk = ~((gamma_n0.mask) | (z0.mask)) self.gr["gamma_n"][:,i] = grids_interpolates(z0[msk].T, gamma_n0[msk].T, self.gr["depth"], dz, grid = gridding) ## #interpolates the biogeochemical variables ## for var in bg_vars: if var in self.raw_bg.keys(): XX = self.raw_bg[var][ii,i] msk = ~((XX.mask) | (z0.mask)) if np.nansum(msk)>10: self.gr[var][:,i] = grids_interpolates(z0[msk], XX[msk],self.gr["depth"], dz, grid = gridding) #mixed layer depth from density msk = ~((Sigma_theta0.mask) | (z0.mask)) self.gr["mld"][i] = mixed_layer_depth(z0[msk],np.sort(np.array([Sigma_theta0[msk]]).T), Dd = den_ml_crit)[0] #Mixed layer Holte and Talley Pgr = self.gr["Pressure"][:,i] CTgr = self.gr["CT"][:,i] SAgr = self.gr["SA"][:,i] STgr = self.gr["Sigma_theta"][:,i] msk = ~( np.isnan(Pgr+CTgr+SAgr+STgr)) if np.sum(msk)>10: html = HolteAndTalley( Pgr[msk], CTgr[msk], SAgr[msk], STgr[msk] ) self.gr["mld_HT"][i] = html.densityMLD #stratification #N2,pmid = gsw.Nsquared( self.gr["SA"][:,i], self.gr["CT"][:,i], self.gr["Pressure"][:,i]-10.1325 ) ddendz = first_centered_differences( -self.gr["depth"], self.gr["Sigma_theta"][:,i] ) self.gr["N2"][:,i] = -(1000+self.gr["Sigma_theta"][:,i])**-1*gsw.grav( self.gr["Pressure"][:,i], self.gr["Lat"][i] )*ddendz #-10.1325 self.gr["PV"][:,i] = (1000+self.gr["Sigma_theta"][:,i])**-1*gsw.f( self.gr["Lat"][i] )*ddendz #self.gr["PV"][:,i] = sw.f( self.gr["Lat"][i] )*self.gr["N2"][:,i] """ #geopotential anomaly msk = ~( (S0.mask) | (T0.mask) | (p0.mask) ) if np.sum(msk)>10: self.gr["gpa0"][i] = geopotential_anomaly(CT0[msk],SA0[msk], p0[msk]) """ #calculates thorpe displacements and mean LT igood = np.where( ~((Sigma_theta0.mask) | (z0.mask) ))[0] if igood.size<10: continue Sigma_theta00 = Sigma_theta0[igood].data z00 = z0[igood].data isort = np.argsort( Sigma_theta00) disp = z00 - z00[isort] nz1000 = np.where( self.gr["depth"]<=1000 )[0][-1] for j in range(nz1000): if self.gr["depth"][j]>1000: break jj = (z00>= self.gr["depth"][j]-dzLT) & (z00<= self.gr["depth"][j]+dzLT) self.gr["LT"][j,i] = np.nanmean(disp[jj]**2)**0.5 #detection of Thorpe overturns ii1000 = (z00<=1000) & (np.isfinite(Sigma_theta00)) zth,LT, ovsize, ovnum = calculates_thorpe_scale(z00[ii1000], Sigma_theta00[ii1000]) self.raw["LT_ov"][:,i] = grids_interpolates(zth,LT,self.raw["depth"][:,i].data, dz, grid = gridding) self.raw["size_ov"][:,i] = grids_interpolates(zth,ovsize,self.raw["depth"][:,i].data,dz) self.gr["LT_ov"][:,i] = grids_interpolates(zth,LT,self.gr["depth"], dz, grid = gridding) #mean thorpe displacement in the mixed layer jjmld = np.where(z00<=self.gr["mld"][i])[0] if jjmld.size>0: self.gr["LT_ml"][i] = np.nanmean( (disp[jjmld]-np.mean(disp[jjmld]))**2)**0.5 else: self.gr["LT_ml"][i] = 0. #stores the size and LT of biggest overturn within the mixed layer jjml = np.where(zth<=self.gr["mld"][i])[0] if jjml.size: j_largest = jjml[ np.argmax(ovsize[jjml]) ] n_largest_ov = ovnum[ j_largest ] j_bot_largest = np.where(ovnum == n_largest_ov)[0][-1] if n_largest_ov>0: self.gr["size_largest_ov"][i] = ovsize[0] self.gr["LT_largest_ov"][i] = LT[0] self.gr["h_largest_ov"][i] = zth[ j_bot_largest] #first depth with no overturn i_nov = np.where(ovsize==0.)[0] if i_nov.size>0: self.gr["h_no_ov"][i] = zth[ i_nov[0] ] else: self.gr["h_no_ov"][i] = zth[ -1 ] #mixed layer from oxygen if "Oxygen" in self.raw_bg.keys(): XX = self.raw_bg["Oxygen"][ii,i] msk = ~XX.mask if np.nansum(msk)>5: mld_DO_0 = mixed_layer_depth(z0[msk], -np.array([XX[msk]]).T, Dd = DO_ml_crit)[0] mld_DO_1 = mixed_layer_depth(z0[msk], np.array([XX[msk]]).T, Dd = DO_ml_crit)[0] self.gr["mld_DO"][i] = np.nanmin(np.array([mld_DO_0,mld_DO_1])) #self.gr["mld_DO"][i] = mixed_layer_depth(z0[msk], -np.array([XX[msk]]).T, Dd = DO_ml_crit, crit = "DO")[0] self.gr["gpa"] = gsw.geo_strf_dyn_height(self.gr["SA"], self.gr["CT"], self.gr["Pressure"], interp_method = "linear", p_ref = 500.) self.gr["gpa_500_1500"] = np.full(nt, np.nan) for i in range(nt): try: j = np.nanargmin(np.abs(self.gr["Pressure"][:,i]-1500. )) except: j = np.nan if np.isnan(j) or np.abs(self.gr["Pressure"][j,i]-1500)>100: continue self.gr["gpa_500_1500"][i] = -self.gr["gpa"][j,i] #other derived variables self.gr["AOU"] = 100*self.gr["Oxygen"]/self.gr["OxygenSat"]-self.gr["Oxygen"] ##calculates PT and SP #self.gr["SP"] = gsw.SP_from_SA( self.gr["SA"], self.gr["Pressure"], self.gr["Lon"], self.gr["Lat"] ) #self.gr["PT"] = gsw.pt_from_CT( self.gr["SA"], self.gr["CT"] ) def calculates_carbon_framework(self,**kargs): #kargs: CO2file (file for xCO2 data), sp (surface pressure in Pa), timemet (meteo time for surface pressure) print("Carbon framework") if "CO2file" in kargs: CO2args = {"textfile": kargs["CO2file"]} else: CO2args = {} if "ML_zero" in kargs: ML_zero = kargs["ML_zero"] else: ML_zero = True intCO2 = reads_CO2_file_cape_grim(interpolation = "linear",plots = False, **CO2args) xCO2 = intCO2(self.gr["date"]) if "sp" in kargs: if type(kargs["timemet"])==np.datetime64: kargs["timemet"] = convert_datetime64_to_time(kargs["timemet"]) sp = np.full( self.gr["date"].size, np.nan ) for i in range(self.gr["date"].size): if i == 0: time0 = self.gr["date"][0]-5. if self.gr["date"].size>1: time1 = 0.5*(self.gr["date"][0]+self.gr["date"][1]) else: time1 = self.gr["date"][0]+5. if i==self.gr["date"].size-1: time0 = 0.5*(self.gr["date"][i-1]+self.gr["date"][i]) time1 = self.gr["date"][i]+5. else: time0 = 0.5*(self.gr["date"][i-1]+self.gr["date"][i]) time1 = 0.5*(self.gr["date"][i]+self.gr["date"][i+1]) ij = np.where( (kargs["timemet"]>=time0) & (kargs["timemet"]<=time1) )[0] if ij.size == 0: continue sp[i] = np.nanmean(kargs["sp"]/101325.) nt = self.gr["date"].size nz = self.gr["depth"].size zM = np.tile(self.gr["depth"],(nt,1)).T mldM = np.tile(self.gr["mld"],(nz,1)) ismld = zM<mldM Tml = np.copy(self.gr["CT"]) Tml[~ismld] = np.nan Tml = np.nanmean(Tml, axis = 0) Sml = np.copy(self.gr["SA"]) Sml[~ismld] = np.nan Sml = np.nanmean(Sml, axis = 0) pH2O = partial_pressure_water_vapour( Sml, Tml ) pCO2atm = xCO2*(sp - pH2O) else: pCO2atm = np.copy(xCO2) self.gr["CF"] = carbon_framework(self.gr["DIC_LIAR"], self.gr["TALK_LIAR"], self.gr["SA"],\ self.gr["CT"], self.gr["Pressure"], self.gr["Lon"], self.gr["Lat"], \ self.gr["AOU"], pCO2atm,self.gr["depth"], mld = self.gr["mld"], ML_zero = ML_zero) self.gr["CF"]["pCO2atm"] = np.copy(pCO2atm) def calculates_CO2_O2_flux(self, met,**kargs): if type(met["time"][0]) == np.datetime64: met["time"] = convert_datetime64_to_time(met["time"]) met["Wsp"],met["wind_dir"] = uv_to_wdir( met["u10"], met["v10"] ) nt = self.gr["date"].size nz = self.gr["depth"].size zM = np.tile(self.gr["depth"],(nt,1)).T mldM = np.tile(self.gr["mld"],(nz,1)) ismld = zM<mldM Tml = np.copy(self.gr["CT"]) Tml[~ismld] = np.nan Tml = np.nanmean(Tml, axis = 0) iif = np.isfinite(Tml) if np.sum(iif)>2: intTml = intrp.interp1d( self.gr["date"][iif], Tml[iif], bounds_error = False ) Tml_met = intTml( met["time"]) iif = np.where(np.isfinite(Tml_met))[0] Tml_met[0:iif[0]] = Tml_met[iif[0]] Tml_met[iif[-1]+1:] = Tml_met[iif[-1]] else: Tml_met = np.nanmean(Tml[iif])*np.ones(met["time"].size) Sml = np.copy(self.gr["SA"]) Sml[~ismld] = np.nan Sml = np.nanmean(Sml, axis = 0) iif = np.isfinite(Sml) if np.sum(iif)>2: intSml = intrp.interp1d( self.gr["date"][iif], Sml[iif], bounds_error = False ) Sml_met = intSml( met["time"]) iif = np.where(np.isfinite(Sml_met))[0] Sml_met[0:iif[0]] = Sml_met[iif[0]] Sml_met[iif[-1]+1:] = Sml_met[iif[-1]] else: Sml_met = np.nanmean(Sml[iif])*np.ones(met["time"].size) denml = np.copy(self.gr["Sigma_theta"]) denml[~ismld] = np.nan denml = np.nanmean(denml, axis = 0) iif = np.isfinite(denml) if np.sum(iif)>2: intdenml = intrp.interp1d( self.gr["date"][iif], denml[iif], bounds_error = False ) denml_met = intdenml( met["time"]) iif = np.where(np.isfinite(denml_met))[0] denml_met[0:iif[0]] = denml_met[iif[0]] denml_met[iif[-1]+1:] = denml_met[iif[-1]] else: denml_met = np.nanmean(denml[iif])*np.ones(met["time"].size) AOUml = np.copy(self.gr["AOU"]) AOUml[~ismld] = np.nan AOUml = np.nanmean(AOUml, axis = 0) iif = np.isfinite(AOUml) if np.sum(iif)>10: intAOUml = intrp.interp1d( self.gr["date"][iif], AOUml[iif], bounds_error = False ) AOUml_met = intAOUml( met["time"]) iif = np.where(np.isfinite(AOUml_met))[0] AOUml_met[0:iif[0]] = AOUml_met[iif[0]] if iif[-1]>= AOUml_met.size*3./4.: AOUml_met[iif[-1]+1:] = AOUml_met[iif[-1]] else: AOUml_met = np.full(met["time"].size, np.nan) pCO2ml = np.copy(self.gr["pCO2_LIAR"]) pCO2ml[~ismld] = np.nan pCO2ml = np.nanmean(pCO2ml, axis = 0) iif = np.isfinite(pCO2ml) if np.sum(iif) > 10: intpCO2ml = intrp.interp1d( self.gr["date"][iif], pCO2ml[iif], bounds_error = False ) pCO2ml_met = intpCO2ml( met["time"]) iif = np.where(np.isfinite(pCO2ml_met))[0] pCO2ml_met[0:iif[0]] = pCO2ml_met[iif[0]] if iif[-1]>= pCO2ml_met.size*3./4.: pCO2ml_met[iif[-1]+1:] = pCO2ml_met[iif[-1]] else: pCO2ml_met = np.full(met["time"].size, np.nan) if "CO2file" in kargs: CO2args = {"textfile": kargs["CO2file"]} else: CO2args = {} intCO2 = reads_CO2_file_cape_grim(interpolation = "linear",plots = False, **CO2args) #interpolates CO2 xCO2met = intCO2(met["time"]) pH2Oatm = partial_pressure_water_vapour( Sml_met, Tml_met ) pCO2atm = xCO2met*(met["sp"]/101325. - pH2Oatm) K0 = CO2_solubility(Sml_met, Tml_met) #gets the CO2 flux kwCO2 = kw_wanninkhof(met["Wsp"],Tml_met, gas = "CO2")/100*24. #m/d FCO2 = kwCO2*K0*(pCO2ml_met - pCO2atm )*365/1000.*(1000+denml_met)/1000 #umol/kg *m/d *365/1000 ~ mol m-2 y-1 #gets the oxygen flux kwO2 = kw_wanninkhof(met["Wsp"],Tml_met, gas = "O2")/100*24. #m/d FO2 = -kwO2*(AOUml_met)*365/1000.*(1000+denml_met)/1000 #umol/kg *m/d *365/1000~ mmol m-2 d-1 ~ mol m-2 y-1 self.gr["FCO2"] = np.full(nt, np.nan) self.gr["FO2"] = np.full(nt, np.nan) for i in range(nt): ij = np.where( (np.abs( self.gr["date"][i] - met["time"] )<5.) )[0] if ij.size == 0: continue if np.isnan(pCO2ml[i]) or np.isnan(Tml[i]): continue #removes data with ice if Tml[i]<-1: if np.sum( np.isfinite(self.gr["CT"][0:2,i]) ) == 0: continue self.gr["FCO2"][i] = np.nanmean(FCO2[ij]) self.gr["FO2"][i] = np.nanmean(FO2[ij]) def plots_all_mixing_profiles(self, save = True, show = False): nprf = self.raw["date"].size for i in range(nprf): print("Plot profile %d of %d"%(i+1, nprf)) self.plots_mixing_layer_profile(i, save = save, show = show) def plots_mixing_layer_profile(self,pn, save = True, show = False): if save: if not os.path.exists('prof_ml'): os.makedirs('prof_ml') date0 = datetime.datetime.fromordinal(int(self.raw["date"][pn])) date_str = date0.strftime("%Y %b %d") if "Oxygen" in self.raw_bg.keys(): nsbp = 4 else: nsbp = 3 xsize = int(np.round(nsbp*2.5)) fig, ax = plt.subplots(1,nsbp, sharey = True, figsize = (xsize,4)) ax[0].plot(self.gr["CT"][:,pn],self.gr["depth"],"k-", ms = 2) ax[0].plot(self.raw["CT"][:,pn],self.raw["depth"][:,pn],"ko", ms = 2, mfc = "w") ax[0].set_ylim(ax[0].get_ylim()[::-1]) ax[0].set_xlabel("$\\Theta$ [$^{\\mathrm{o}}$C]") ax[0].set_ylabel("Depth [m]") ax0 = ax[0].twiny() ax0.plot(self.gr["SA"][:,pn],self.gr["depth"],"-", color = "gray") ax0.plot(self.raw["SA"][:,pn],self.raw["depth"][:,pn],"o", ms = 2, mfc = "w", mec = "gray") ax0.set_xlabel("$S_A$", color = "gray") ax[1].plot(self.gr["Sigma_theta"][:,pn],self.gr["depth"],"k-", ms = 2) ax[1].plot( self.raw["Sigma_theta"][:,pn], self.raw["depth"][:,pn],"ko", ms = 2, mfc = "w") ax[1].set_xlabel("$\\sigma_{\\theta}$ [kg m$^{-3}$]") ax[2].plot(self.raw["size_ov"][:,pn], self.raw["depth"][:,pn], color = "gray", lw = 1) ax[2].plot(self.raw["LT_ov"][:,pn], self.raw["depth"][:,pn], color = "k") ax[2].set_xlabel("$L_T$ (black), $l_{ov}$ (gray)") if "Oxygen" in self.raw_bg: ax[3].plot(self.gr["Oxygen"][:,pn],self.gr["depth"],"k-", ms = 2) ax[3].plot( self.raw_bg["Oxygen"][:,pn], self.raw["depth"][:,pn],"ko", ms = 2, mfc = "w") ax[3].set_xlabel("DO [$\\mu$mol kg$^{-1}$]") ax3 = ax[3].twiny() ax3.plot(self.gr["OxygenSat"][:,pn],self.gr["depth"],"-", ms = 2, color = "gray") ax3.plot( self.raw_bg["OxygenSat"][:,pn], self.raw["depth"][:,pn],"o", ms = 2, mfc = "w", mec = "gray") ax3.set_xlabel("% DO$_{sat}$", color = "gray") for ax0 in ax: l0 = ax0.axhline(self.gr["mld"][pn], color = cm.tab10(0)) l1 = ax0.axhline(self.gr["mld_HT"][pn], color = cm.tab10(2)) l2 = ax0.axhline(self.gr["mld_DO"][pn], color = cm.tab10(3)) l3 = ax0.axhline(self.gr["h_no_ov"][pn], color = cm.tab10(4)) l4 = ax0.axhline(self.gr["h_largest_ov"][pn], color = cm.tab10(5)) l = (l0,l1,l2, l3,l4) ax[1].legend(l, ["mld$_{\\sigma_{\\theta}}$","mld$_{\\mathrm{HT}}$","mld$_{\\mathrm{DO}}$","$l_{ov}=0$ m","larg$^{\\mathrm{st}}$. eddy"] ) fig.suptitle("Float %s, date %s\nLon: %1.2f Lat: %1.2f"%(self.raw["code"], date_str, self.raw["Lon"][pn], self.raw["Lat"][pn])) if save: date_str0 = date0.strftime("%Y%m%d") figname = "prof_ml/%s_%s.png"%(self.raw["code"],date_str0) fig.savefig(figname, dpi = 300, bbox_inches = "tight") if show: plt.show() else: plt.close(fig) def plots_map_main_variables(self, saves = True, shows = False,**kargs): if not os.path.exists('float_maps'): os.makedirs('float_maps') if self.raw["Temperature"].shape[1] == 1: print("Only one profile") return fig = plt.figure(figsize = (14,8)) ax0 = fig.add_axes([0.10,0.67,0.3,0.3]) width = 15e6; lon_0 = 0; lat_0 = -90 m1 = Basemap(width=width,height=width,projection='aeqd', lat_0=lat_0,lon_0=lon_0) m1.drawcoastlines() m1.fillcontinents() m1.drawmapboundary(fill_color='skyblue') m1.fillcontinents(color='#cc9966',lake_color='#99ffff') m1.drawparallels(np.arange(-80,-20,10),labels=[1,0,0,0]) m1.drawmeridians(np.arange(-180,180,30),labels=[0,0,0,1]) x,y = m1( self.raw["Lon"], self.raw["Lat"]) #plt.scatter(x,y,10,T_gr[5,:]) #plt.plot(x,y,color = "crimson") cc = plt.scatter(x,y,20, c = self.raw["date"])#-self.raw["date"][0]) loc = mdates.AutoDateLocator() fig.colorbar(cc, ticks=loc, format=mdates.AutoDateFormatter(loc)) #cb = fig.colorbar(cc) #cb.set_label("Survey day") ax1 = fig.add_axes([0.07,0.35,0.47,0.27]) cfT=ax1.contourf(self.gr["date"], self.gr["depth"], self.gr["CT"],20, cmap = cmocean.cm.thermal) #ccT = ax1.contour(self.gr["date"], self.gr["depth"], self.gr["Temperature"],20, colors = "w", linewidths = 1) ax1.plot(self.gr["date"], self.gr["mld"], color = "w", lw = 1) ax1.plot(self.gr["date"], self.gr["mld_HT"], color = "w", lw = 1, ls = "dotted") ax1.plot(self.gr["date"], self.gr["mld_DO"], ls = "--", color = "w", lw = 1) ax1.plot(self.gr["date"],1990*np.ones(self.gr["date"].size),marker = "|", color = "k") cD = ax1.contour(self.gr["date"], self.gr["depth"], self.gr["gamma_n"],[26.80,27.23,27.50], colors = "skyblue", linewidths = 1) plt.clabel(cD, fmt = "%1.2f", fontsize = 6) cb = fig.colorbar(cfT) ax1.annotate("$\Theta$ [$^{\\mathrm{o}}$C]", xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8)) if "ylim" in kargs: yl = kargs["ylim"] else: yl = ax1.get_ylim()[::-1] ax1.set_ylim(yl) ax1.set_ylabel("Depth [m]") ax1.set_xticklabels([]) #ax1.xaxis.set_major_formatter(mdates.AutoDateFormatter(loc)) ax2 = fig.add_axes([0.07,0.05,0.47,0.27]) cfT=ax2.contourf(self.gr["date"], self.gr["depth"], self.gr["SA"],20, cmap = cmocean.cm.haline) #ccT = ax2.contour(self.gr["date"], self.gr["depth"], self.gr["Salinity"],20, colors = "gray", linewidths = 1) ax2.plot(self.gr["date"], self.gr["mld"], color = "w", lw = 1) ax2.plot(self.gr["date"], self.gr["mld_DO"], ls = "--",color = "w", lw = 1) cb = fig.colorbar(cfT) ax2.annotate("$S_A$", xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8) ) ax2.set_ylim(yl) ax2.set_ylabel("Depth [m]") ax2.xaxis.set_major_formatter(mdates.AutoDateFormatter(loc)) """ ax3 = fig.add_axes([0.54,0.65,0.47,0.27]) ccT = ax3.pcolor(self.gr["date"], self.gr["depth"], self.gr["LT"], cmap = cm.inferno) ax3.plot(self.gr["date"], self.gr["mld"], color = "w", lw = 1) ax3.plot(self.gr["date"], self.gr["mld_DO"], ls ="--",color = "w", lw = 1) plt.colorbar(ccT, ax = ax3) ax3.set_ylim(yl) ax3.set_ylabel("Depth [m]") ax3.set_xticklabels([]) ax3.annotate("$L_T$ [m]", xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8)) ax3.set_title("Float: %s"%(self.raw["code"])) """ if "Nitrate" in self.gr.keys(): ax3 = fig.add_axes([0.54,0.65,0.47,0.27]) ccT = ax3.contourf(self.gr["date"], self.gr["depth"], self.gr["Nitrate"], 20, cmap = cmocean.cm.matter) ax3.plot(self.gr["date"], self.gr["mld"], color = "w", lw = 1) ax3.plot(self.gr["date"], self.gr["mld_DO"], ls ="--",color = "w", lw = 1) plt.colorbar(ccT, ax = ax3) ax3.set_ylim(yl) ax3.set_ylabel("Depth [m]") ax3.set_xticklabels([]) ax3.annotate("Nitrate [$\\mu$mol kg$^{-1}$]" , xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8)) ax3.set_title("Float: %s"%(self.raw["code"])) if "Oxygen" in self.gr.keys(): ax4 = fig.add_axes([0.54,0.35,0.47,0.27]) cfT=ax4.contourf(self.gr["date"], self.gr["depth"], self.gr["Oxygen"]-100*self.gr["Oxygen"]/self.gr["OxygenSat"],20, cmap = cmocean.cm.oxy) #ccT = ax2.contour(self.gr["date"], self.gr["depth"], self.gr["Salinity"],20, colors = "gray", linewidths = 1) ccT = ax4.contour(self.gr["date"], self.gr["depth"], self.gr["Oxygen"]-100*self.gr["Oxygen"]/self.gr["OxygenSat"],[0], colors = "blue", linewidths = 1) ax4.plot(self.gr["date"], self.gr["mld"], color = "k", lw = 1) ax4.plot(self.gr["date"], self.gr["mld_DO"], ls = "--", color = "k", lw = 1) cb = fig.colorbar(cfT) ax4.annotate("DO-DO$_{\\mathrm{sat}}$ [$\\mu$ mol kg$^{-1}$]", xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8)) ax4.set_ylim(yl) ax4.set_yticklabels([]) ax4.set_xticklabels([]) if "DIC_LIAR" in self.gr.keys(): ax5 = fig.add_axes([0.54,0.05,0.47,0.27]) cfT=ax5.contourf(self.gr["date"], self.gr["depth"], self.gr["DIC_LIAR"],20, cmap = cmocean.cm.ice_r) #ccT = ax2.contour(self.gr["date"], self.gr["depth"], self.gr["Salinity"],20, colors = "gray", linewidths = 1) #ccT = ax2.contour(self.gr["date"], self.gr["depth"], self.gr["DIC_LIAR"],[0], colors = "gray", linewidths = 1) ax5.plot(self.gr["date"], self.gr["mld"], color = "k", lw = 1) ax5.plot(self.gr["date"], self.gr["mld_DO"], ls = "--", color = "k", lw = 1) cb = fig.colorbar(cfT) ax5.annotate("DIC [$\\mu$ mol kg$^{-1}$]", xy = (0.02,0.05), xycoords = "axes fraction", fontweight = "bold", color = "k", bbox = dict(facecolor = "w", alpha =0.8)) ax5.set_ylim(yl) ax5.set_yticklabels([]) ax5.xaxis.set_major_formatter(mdates.AutoDateFormatter(loc)) filename = "float_maps/%s_map.png"%(self.raw["code"]) if saves: fig.savefig(filename) plt.close(fig) if shows: plt.show() def grids_interpolates(x0,y0,x,dx, grid = False): y = np.full(x.size,np.nan) if grid: for i in range(x.size): jj = (x0>=x[i]-dx/2.) & (x0<=x[i]+dx/2.) if np.nansum(jj)>0: y[i] = np.mean(y0[jj]) igood = np.isfinite(y) if np.sum(igood)>5: intt = intrp.interp1d( x[igood], y[igood], bounds_error = False) y[~igood] = intt(x[~igood]) elif np.sum(np.isfinite(y0))>5: intt = intrp.interp1d( x0, y0, bounds_error = False) y = intt(x) return y ############################## ######### OTHER FUNCTIONS #### ############################## def mixed_layer_depth(z0, den0, Dd = 0.03, crit = "diff", z_min = 30., intrp = True): #Mixed layer calculation if crit != "diff" and crit != "grad" and crit != "DO": crit = "diff" print("Incorrect criterion, set to diff") c,f = den0.shape MLD = np.full(f, np.nan) for i in range(f): if z0.ndim ==1: z = np.copy(z0) else: z = z0[:,i] #den = np.sort(den0[:,i]) den = den0[:,i] iif = np.isfinite(den+z) if np.sum(iif)<=1: continue den = den[iif] z = z[iif] if np.min(z0)>z_min: continue if crit == "diff": sden = den[0] denp = den-sden imld = np.where( denp>=Dd )[0] if imld.size == 0: MLD[i] = np.max(z) elif imld[0]>0: imld = imld[0] z2 = z[imld] z1 = z[imld-1] denp2 = denp[imld] denp1 = denp[imld-1] if intrp: MLD[i] = (z2-z1)/(denp2-denp1)*(Dd - denp1) + z1 else: MLD[i] = (z1+z2)*0.5 else: MLD[i] = np.max(z) #MLD[i] = z0[0,i] elif crit == "grad": grden = np.abs(first_centered_differences(z, den)) imld = np.where(grden>=Dd)[0] if imld.size == 0: MLD[i] = np.max(z) elif imld[0]>0: imld = imld[0] z2 = z[imld] z1 = z[imld-1] grd2 = grden[imld] grd1 = grden[imld-1] if intrp: MLD[i] = (z2-z1)/(grd2-grd1)*(Dd - grd1) + z1 else: MLD[i] = 0.5*(z1+z2) else: MLD[i] = z[0] if crit == "DO": sden = den[0] denp = den-sden imld = np.where( np.abs(denp)>=Dd )[0] if imld.size == 0: MLD[i] = np.max(z) elif imld[0]>0: imld = imld[0] z2 = z[imld] z1 = z[imld-1] MLD[i] = z1 else: MLD[i] = np.max(z) #MLD[i] = z0[0,i] return MLD def calculates_thorpe_scale(z,dens,PLOT = False): #sorts for ascending depth ii = np.argsort(z) z = z[ii] dens = dens[ii] #sorts for ascending density jj = np.argsort(dens) disp = z - z[jj] nn = disp.size #Looks for individual overturns LT = np.zeros(nn) ov_size = np.zeros(nn) ov_num = np.zeros(nn) ovN0 = 1 i = 0 while True: #plt.plot(dens[i:]-dens[i]) ii_lighter0 = np.where( (dens[i:]-dens[i])<=0 )[0] if ii_lighter0.size>1: ii_lighter = np.arange(i,i+ii_lighter0[-1]+1) #print(ii_lighter0) dens_ov = dens[ii_lighter] z_ov = z[ii_lighter] jj = np.argsort(dens_ov) disp_ov = z_ov - z_ov[jj] #print(disp_ov) LT[ii_lighter] = np.nanmean(disp_ov**2)**0.5 if LT[ii_lighter][0]>0: ov_size[ii_lighter] = np.max(z_ov)-np.min(z_ov) ov_num[ii_lighter] = ovN0 ovN0+=1 i = ii_lighter[-1]+1 else: i+=1 if i>=nn: break if PLOT == True: fig, ax = plt.subplots(1,2, sharey = True) ax[0].plot(dens, z) ax[0].set_ylim(ax[0].get_ylim()[::-1]) ax[0].set_xlabel("$\\sigma_{\\theta}$ [kg m$^{-3}$]") ax[0].set_ylabel("Depth [m]") ax[1].plot(np.abs(disp),z, lw = 1, color = "gray") ax[1].plot(LT,z, color = "k") #ax[1].plot(ov_size,z) ax[1].set_xlabel("$L_T$ [m]") plt.show() return z, LT, ov_size, ov_num def geopotential_anomaly(CT,SA,p, pref = np.array([500.,1500.])): rho = gsw.rho(SA,CT,p) rho0 = gsw.rho(35.,0.,p) delta = rho**-1 - rho0**-1 #delta = gsw.specvol_anom_standard(SA,CT,p+10) if np.max(p)<np.max(pref): return np.nan p_i = np.arange(pref[0], pref[1]+1.,1.) dp = 1.*1e4 #Pa intd = intrp.interp1d( p, delta, bounds_error = False ) delta_i = intd( p_i ) gpa = np.sum(dp*delta_i) return gpa def FCD_2d(x, y, axis = 0): if x.ndim != 2 or y.ndim !=2: sys.exit("Invalid dimensions") if axis != 0 and axis != 1: sys.exit("Invalid axis") if axis == 1: x = x.T y = y.T dy = np.full(y.shape,np.nan) for i in range(x.shape[1]): dy[:,i] = first_centered_differences(x[:,i], y[:,i]) if axis == 1: dy = dy.T return dy def first_centered_differences(x, y, fill = False): if x.size != y.size: print("first-centered differences: vectors do not have the same size") dy = np.full( x.size, np.nan ) iif = np.where( (np.isfinite(x)) & (np.isfinite(y))) [0] if iif.size < 2: return dy x0 = x[iif] y0 = y[iif] dy0 = np.full( x0.size, np.nan ) #calculates differences dy0[0] = (y0[1] - y0[0])/(x0[1]-x0[0]) dy0[-1] = (y0[-1] - y0[-2])/(x0[-1]-x0[-2]) dy0[1:-1] = (y0[2:] - y0[0:-2])/(x0[2:]- x0[0:-2]) dy[iif] = dy0 if fill: dy[0:iif[0]] = dy[iif[0]] dy[iif[-1]+1:] = dy[iif[-1]] return dy def moving_average(x,n, window = "flat"): if n%2 == 0: n+=1 N = x.size cx = np.full(x.size, np.nan) for i in range(N): ii = np.arange(i-n//2, i+n//2+1,1) if window == "flat": ww = np.ones(ii.size) elif window == "gauss": xx = ii - i ww = np.exp(- xx**2/(float(n)/4)**2 ) elif window == "hanning": ww = np.hanning(ii.size) ww = ww[ (ii>=0) & (ii<N)] ii = ii[ (ii>=0) & (ii<N)] kk = np.isfinite(x[ii]) if np.sum(kk)<0.25*ii.size: continue cx[i] = np.sum(x[ii[kk]]*ww[kk])/np.sum(ww[kk]) return cx #time conversion def convert_time_to_date(time): date = [datetime.datetime.fromordinal(int(time0)) + datetime.timedelta(time0%1) for time0 in time] return date def convert_date_to_time(date): N = len(date) time = np.full(N, np.nan) for i in range(N): time[i]=date[i].toordinal() + date[i].hour/24. + date[i].minute/24./60. + date[i].second/24./60./60. + date[i].microsecond/24./60./60./1e6 return time def convert_datetime64_to_date(date64): ts = (date64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's') date = [datetime.datetime.utcfromtimestamp(ts0) for ts0 in ts] return date def convert_datetime64_to_time(date64): ts = (date64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's') date = [datetime.datetime.utcfromtimestamp(ts0) for ts0 in ts] time = convert_date_to_time(date) return time #### ### Meteo functions ### #wind transformations def wdir_to_uv(w,alpha): alpha = 270.-alpha alpha *=np.pi/180 u = w*np.cos(alpha) v = w*np.sin(alpha) return u,v def uv_to_wdir(u,v): w = (u**2+v**2)**0.5 alpha = 180/np.pi*np.arctan2(v,u) alpha = 270.-alpha alpha[alpha>360]-=360 #alpha[alpha>180] = 360 - alpha[alpha>180] return w, alpha def cd_large_and_pond( U10 ): #drag coefficient from Large and Pond 1981 CD = np.full(U10.size, np.nan) CD[U10<11.] = 1.2 CD[U10>=11.] = 0.49 + 0.065*U10[U10>=11.] CD *=1e-3 return CD class ERAmeteo(): def __init__(self, folder, **kargs): if "t_chunks" in kargs: t_chunks = kargs["t_chunks"] else: t_chunks = 24 filelist = sorted(glob.glob(folder + "/*.nc")) self.DATASET = xr.open_mfdataset(filelist, parallel = True, chunks = {"time":t_chunks})#, "latitude": 28, "longitude": 144})# #display(self.DATASET) #self.time = self.DATASET.time.data def get_data(self, date_fl, lon_fl, lat_fl, VARS = ['u10', 'v10', 't2m', 'mslhf', 'msnlwrf', 'msnswrf', 'msshf', 'sst', 'sp']): #transforms time coordinates dt_fl = mdates.num2date(date_fl) dt64_fl = np.array([np.datetime64(dt0) for dt0 in dt_fl]) DATASET = self.DATASET.sel( time = slice(dt64_fl[0]-np.timedelta64(10,"D"), dt64_fl[-1]+np.timedelta64(1,"D"))) DATASET = DATASET.sel(longitude = slice(np.nanmin(lon_fl)-0.5, np.nanmax(lon_fl)+0.5)) DATASET = DATASET.sel(latitude = slice(np.nanmax(lat_fl)+0.5, np.nanmin(lat_fl)-0.5)) display(DATASET) timeERA = DATASET.time.data ntE = timeERA.size ntF = date_fl.size self.ERAhr = dict() for vv in VARS: self.ERAhr[vv] = np.full(ntE, np.nan) self.ERAhr["time"] = timeERA self.ERAlr = dict() for vv in VARS: self.ERAlr[vv] = np.full(ntF, np.nan) self.ERAlr["time"] = timeERA #np.datetime64(datetime.utcnow()).astype(datetime) #interpolated coordinates for i in range(ntF): if i == 0: lon = lon_fl[i] lat = lat_fl[i] time1 = dt64_fl[i] time0 = dt64_fl[i] -np.timedelta64(10,"D") else: lon = 0.5*(lon_fl[i]+lon_fl[i-1]) lat = 0.5*(lat_fl[i]+lat_fl[i-1]) time1 = dt64_fl[i] time0 = dt64_fl[i-1] if time1-time0>np.timedelta64(15,"D"): time0 = time1 - np.timedelta64(10,"D") time_count00 = time.time() print("\nREADING METEO FLOAT %d of %d (%1.2f %%)"%(i+1, ntF, (i)/float(ntF)*100)) print("Float time: %s, Long: %1.2f, Lat: %1.2f"%( dt64_fl[i].astype(datetime.datetime).strftime("%Y/%m/%d %H:%M"), lon_fl[i], lat_fl[i] )) ii = np.where( (timeERA>time0) & (timeERA<=time1))[0] DT = DATASET.sel(time = slice(time0,time1),expver = 1) print("Time for search: %s to %s"%( DT.time.data[0],DT.time.data[-1])) DT = DT.sel( longitude = lon, latitude = lat, method = "nearest" ) #DT = DT.compute() jj = np.where( (DT.time.data>time0) & (DT.time.data<=time1))[0] for vv in VARS: #print(vv) #display(DT[vv]) self.ERAhr[vv][ii] = DT[vv].compute().data[jj] self.ERAlr[vv][i] = np.nanmean(self.ERAhr[vv][ii]) #print(self.ERAlr[vv][i]) print("Elapsed time %1.1f s"%( time.time()-time_count00 )) print("READING ENDED") ## ## GAS FLUXES ## def CO2_solubility(S,T): #CO2 [umol/kg/atm] solubility in seawater according to Weiss 1974 #See McGillis and Wanninkhof (2006). Marine Chemistry 98:100-108 Tk=T+273.15 # in Kelvin lnK0 = -60.2409+93.4517*(100/Tk)+23.3585*np.log(Tk/100)+ S*(0.023517-0.023656*(Tk/100)+0.0047036*(Tk/100)**2) K0 = np.exp(lnK0) return K0 def partial_pressure_water_vapour(S,T): #Partial pressure of water vapour [atm] #See McGillis and Wanninkhof (2006). Marine Chemistry 98:100-108 #it is used to calculate pCO2 from dry air molecular fraction (X) as: # pCO2 = (P - pH2O)*X # see Woolf et al. (2016) J. Geophys. Res: Oceans, 121 (2) : 1229-1248 Tk=T+273.15 pH2O = np.exp( 24.4543 - 67.4509*(100/Tk) - 4.8489*np.log(Tk/100) - 0.000544*S ) return pH2O def reads_CO2_file_cape_grim(textfile = "atm_CO2/CapeGrim_CO2.csv", interpolation = "linear", plots = False): ff = open(textfile) time = [] XCO2 = [] for line in ff.readlines(): lineS = line.split(",") if "Y" not in lineS[0]: date0 = datetime.datetime(int(lineS[0]),int(lineS[1]),int(lineS[2])) time0 =date0.toordinal() XCO20 = float(lineS[4]) time.append(time0) XCO2.append(XCO20) time = np.array(time) XCO2 = np.array(XCO2) if interpolation == "linear": intCO2 = intrp.interp1d( time, XCO2, bounds_error = False ) elif interpolation == "spline": intCO2 = intrp.UnivariateSpline( time, XCO2 ) if plots: xtime = np.arange( np.nanmin(time) , np.nanmax(time) ,1. ) fig, ax = plt.subplots() ax.plot(time, XCO2,".") ax.plot(xtime, intCO2(xtime.astype(float))) plt.show() return intCO2 def kw_wanninkhof(U, T, gas = "CO2"): #wanninkhof 2014 piston velocity kw = 0.251*U**2 Sc = Schmidt_number(T, gas) kw = kw * (Sc/660)**-0.5 return kw def Schmidt_number(T, gas = "CO2"): if gas == "CO2": Scp = np.poly1d( [0.0007555,-0.0923207, 4.7353, -136.25, 2116.8] ) elif gas == "O2": Scp = np.poly1d( [0.00093777,-0.10939, 5.2122, -135.6, 1920.4] ) Sc = Scp(T) return Sc ## ## Carbon framework ## def carbon_framework(DIC, TALK, SA, CT, pres, lon, lat, AOU, pCO2, depth, **kargs): import PyCO2SYS as pyco2 if "ML_zero" in kargs: ML_zero = kargs["ML_zero"] else: ML_zero = True if "prealk_eqn" in kargs: prealk_eqn = kargs["prealk_eqn"] else: prealk_eqn = "GLODAP" RNO = - 16./170 RCO = - 106./170. CF = dict() #calculates PT and SP for pyco2 SP = gsw.SP_from_SA( SA, pres, lon, lat ) PT = gsw.pt_from_CT( SA, CT ) #function for surface alkalinity if prealk_eqn == "GLODAP": ALKpre = 42.5036*SP +825.1583 elif prealk_eqn == "SOCCOM": ALKpre = 2818.56 - 80.81*SA - 4.74 * CT + 1.922 * SA**2 + 0.117 * CT**2 ##"2818.56 - 80.81*SA - 4.74 * CT + 1.922 * SA**2 + 0.117 * CT**2" #ALKpre = eval("%s"%(prealk_eqn)) #preindustrial saturation results = pyco2.sys(ALKpre, 278., 1,4, salinity = SP, temperature = PT) CF["DICsat_prein"] = results["dic"] #results = pyco2.sys(ALKpre, pCO2, 1,4, salinity = SP, temperature = PT) #CF["DICsat_prealk"] = results["dic"] #present day saturation #results = pyco2.sys(ALKpre, pCO2, 1,4, salinity = SP, temperature = PT) results = pyco2.sys(ALKpre, pCO2, 1,4, salinity = SP, temperature = PT) CF["DICsat"] = results["dic"] #with local alkalinity results = pyco2.sys(TALK, pCO2, 1,4, salinity = SP, temperature = PT) CF["DICsat_talk"] = results["dic"] #soft tissue CF["DICsoft"] = - RCO*AOU #carbonate CF["DICcarb"] = 0.5*( TALK - ALKpre - RNO * AOU ) if ML_zero and "mld" in kargs: mld = kargs["mld"] nt = mld.size nz = depth.size #gets indices for mixed layer zM = np.tile(depth,(nt,1)).T mldM = np.tile(mld,(nz,1)) ismld = zM<mldM CF["DICsoft"][ismld] = 0. CF["DICcarb"][ismld] = 0. #DeltaC referenced to pre-industrial levels CF["DICdelta_prein"] = DIC - CF["DICsat_prein"] - CF["DICsoft"] - CF["DICcarb"] #DeltaC referenced to present day CF["DICdelta"] = DIC - CF["DICsat"] - CF["DICsoft"] - CF["DICcarb"] #Disequilibrium C preindustrial CF["DICdis_prein"] = DIC - CF["DICsat_prein"] #Disequilibrium C present day CF["DICdis"] = DIC - CF["DICsat"] #disequilibrium with local talk CF["DICdis_talk"] = DIC - CF["DICsat_talk"] CF["DIC"] = np.copy(DIC) CF["ALKpre"] = np.copy(ALKpre) return CF ### ### Net ecosystem production def NEP_calculation(date, z, Lon, Lat, Nitrate, POC, SA, **kargs): ##FUNCTION TO CALCULATE NEP from nitrate depletion / POC accumulation if "PLOT" in kargs: PLOT = kargs["PLOT"] else: PLOT = False #first I convert the numerical date to a datetime format so I can get the month and year vectors RCN = 106/16. # Redfield ratio nt = date.size dateDT = convert_time_to_date( date ) year = np.full( nt, np.nan ) month = np.full(nt, np.nan) for i in range(nt): year[i] = dateDT[i].year month[i] = dateDT[i].month #integration depth if "mld" in kargs: H = min([np.nanmax(kargs["mld"]),500]) # calculates the maximum ML #print("Integration depth: %1.0f m"%(H)) elif "H" in kargs: H = kargs["H"] else: H = 200. jh = np.where( z>= H)[0][0] # gets the depth index for the maxmum mixed layer #depth integrated nitrate dint_Nitrate = np.nanmean(Nitrate[:jh,:], axis = 0)*H*(1027/1e6) dint_POC = np.nanmean(POC[:jh,:], axis = 0)*H/1000. mSA = np.nanmean( SA[z>500,:], axis = 0 ) #by multiplying by density ~1027 and dividing by 1e6 I get units mol m-2 #for each year calculates the maximum and minimum Uyear = np.unique(year) nyr = Uyear.size date_nit_sum = np.full(nyr, np.nan) date_nit_win = np.full(nyr, np.nan) nit_win = np.full(nyr, np.nan) nit_sum = np.full(nyr, np.nan) nit_win_month_avg = np.full(nyr, np.nan) nit_sum_month_avg = np.full(nyr, np.nan) POC_win = np.full(nyr, np.nan) POC_sum = np.full(nyr, np.nan) POC_win_month_avg = np.full(nyr, np.nan) POC_sum_month_avg = np.full(nyr, np.nan) SA_win = np.full(nyr, np.nan) SA_sum = np.full(nyr, np.nan) Lat_win = np.full(nyr, np.nan) Lat_sum = np.full(nyr, np.nan) Lon_win = np.full(nyr, np.nan) Lon_sum = np.full(nyr, np.nan) flag_nit_NEP = np.full(nyr, False) for i, yr in enumerate(Uyear): #start_summer = datetime.datetime(int(yr),12,1,0,0).toordinal() #end_summer = datetime.datetime(int(yr)+1,4,1,0,0).toordinal() start_summer = datetime.datetime(int(yr)+1,1,1,0,0).toordinal() end_summer = datetime.datetime(int(yr)+1,4,1,0,0).toordinal() it_summer = np.where( (date>= start_summer) & (date<= end_summer) )[0] if it_summer.size > 0: if np.sum(np.isfinite(dint_Nitrate[it_summer]))>0: imin_nit = it_summer[ np.nanargmin( dint_Nitrate[it_summer] ) ] date_nit_sum[i] = date[imin_nit] nit_sum[i] =np.nanmin( dint_Nitrate[it_summer]) POC_sum[i] = dint_POC[imin_nit] #ii_sum_month = np.where( np.abs(date - date[imin_nit] )<15 )[0] ii_sum_month = np.where( (month == month[imin_nit]) & (year == year[imin_nit]) )[0] nit_sum_month_avg[i] =np.nanmean( dint_Nitrate[ii_sum_month]) POC_sum_month_avg[i] =np.nanmean( dint_POC[ii_sum_month]) SA_sum[i] = mSA[imin_nit] Lat_sum[i] = Lat[imin_nit] Lon_sum[i] = Lon[imin_nit] #start_winter = datetime.datetime(int(yr),5,1,0,0).toordinal() #end_winter = datetime.datetime(int(yr),12,1,0,0).toordinal() start_winter = datetime.datetime(int(yr),8,1,0,0).toordinal() end_winter = datetime.datetime(int(yr),12,1,0,0).toordinal() it_winter = np.where( (date>= start_winter) & (date<= end_winter) )[0] if it_winter.size > 0: if np.sum(np.isfinite(dint_Nitrate[it_winter]))>0: imax_nit = it_winter[ np.nanargmax( dint_Nitrate[it_winter] ) ] date_nit_win[i] = date[imax_nit] nit_win[i] = np.nanmax( dint_Nitrate[it_winter]) POC_win[i] = dint_POC[imax_nit] #ii_win_month = np.where( np.abs(date - date[imax_nit] )<15 )[0] ii_win_month = np.where( (month == month[imax_nit]) & (year == year[imax_nit]) )[0] nit_win_month_avg[i] =np.nanmean( dint_Nitrate[ii_win_month]) POC_win_month_avg[i] =np.nanmean( dint_POC[ii_win_month]) SA_win[i] = mSA[imax_nit] Lat_win[i] = Lat[imax_nit] Lon_win[i] = Lon[imax_nit] flag_NEP = (np.abs(date_nit_win-date_nit_sum)<8*30) & (np.abs(SA_win-SA_sum)<0.05) & (np.abs(Lon_win-Lon_sum)<8.) & (np.abs(Lat_win-Lat_sum)<5.) #calculates net ecosystem production (molC m-2 yr-1) NEP = (nit_win - nit_sum)*RCN #from the monthly means NEP_avg = (nit_win_month_avg - nit_sum_month_avg)*RCN NEP_POC = -(POC_win - POC_sum) NEP_POC_avg = -(POC_win_month_avg - POC_sum_month_avg) #gets the date around the depletion date_NEP = 0.5*(date_nit_sum +date_nit_win ) Lon_NEP = 0.5*(Lon_win+Lon_sum) Lat_NEP = 0.5*(Lat_win+Lat_sum) if PLOT: print( "\n-------------------------------------------------------------------------") print("YEAR\t NEP Nit\t <NEP Nit>\t NEP POC\t <NEP POC>" ) print("\t\t\t\t [mol/m2/yr]") print( "-------------------------------------------------------------------------") for i in range(nyr): print("%d-%d\t %1.2f\t\t%1.2f\t\t%1.2f\t\t%1.2f"%(Uyear[i],Uyear[i]+1, NEP[i], NEP_avg[i], NEP_POC[i], NEP_POC_avg[i]) ) print( "-------------------------------------------------------------------------") print("Mean \t%1.2f\t\t%1.2f\t\t%1.2f\t\t%1.2f"%(np.nanmean(NEP), np.nanmean(NEP_avg),np.nanmean(NEP_POC), np.nanmean(NEP_POC_avg))) print( "-------------------------------------------------------------------------") #Plots the results fig, ax = plt.subplots(3,1,figsize = (8,6), sharex = True) ax[0].plot( date, dint_Nitrate, "k" ) l1,=ax[0].plot(date_nit_sum, nit_sum,"o", ms = 10, mec = "k", color = "goldenrod") l2,=ax[0].plot(date_nit_win, nit_win,"o", ms = 10, mec = "k", color = "green") for i in range(nyr): ax[0].plot([date_nit_sum[i]-15,date_nit_sum[i]+15], [nit_sum_month_avg[i],nit_sum_month_avg[i]], color = "k", zorder = -1) ax[0].plot([date_nit_win[i]-15,date_nit_win[i]+15], [nit_win_month_avg[i],nit_win_month_avg[i]], zorder = -1, color = "k") yl = ax[0].get_ylim() for i in range(nyr): ax[0].fill_between( [date_nit_sum[i]-15,date_nit_sum[i]+15], y1 = yl[0], y2 = yl[1], color = l1.get_color(), alpha = 0.3 ) ax[0].fill_between( [date_nit_win[i]-15,date_nit_win[i]+15], y1 = yl[0], y2 = yl[1], color = l2.get_color(), alpha = 0.3 ) ax[0].set_ylim(yl) ax[0].set_ylabel( "$\\int \\mathrm{Nitrate}\, \\rm d z$\n[mol m$^{-2}$]" ) ax[0].grid(True) ax[1].plot( date, dint_POC, "k" ) l1,=ax[1].plot(date_nit_sum, POC_sum,"o", ms = 10, mec = "k", color = "goldenrod") l2,=ax[1].plot(date_nit_win, POC_win,"o", ms = 10, mec = "k", color = "green") for i in range(nyr): ax[1].plot([date_nit_sum[i]-15,date_nit_sum[i]+15], [POC_sum_month_avg[i],POC_sum_month_avg[i]], color = "k", zorder = -1) ax[1].plot([date_nit_win[i]-15,date_nit_win[i]+15], [POC_win_month_avg[i],POC_win_month_avg[i]], zorder = -1, color = "k") yl = ax[1].get_ylim() for i in range(nyr): ax[1].fill_between( [date_nit_sum[i]-15,date_nit_sum[i]+15], y1 = yl[0], y2 = yl[1], color = l1.get_color(), alpha = 0.3 ) ax[1].fill_between( [date_nit_win[i]-15,date_nit_win[i]+15], y1 = yl[0], y2 = yl[1], color = l2.get_color(), alpha = 0.3 ) ax[1].set_ylim(yl) ax[1].set_ylabel( "$\\int \\mathrm{POC}\, \\rm d z$\n[mol m$^{-2}$]" ) ax[1].grid(True) ax[2].bar( date_NEP[flag_NEP]-50, NEP[flag_NEP], width = 50, ec = "k", label = "Nit 1-prof" ) ax[2].bar( date_NEP[flag_NEP]-30, NEP_avg[flag_NEP], width = 50, ec = "k", label = "Nit month" ) ax[2].bar( date_NEP[flag_NEP]+30, NEP_POC[flag_NEP], width = 50, ec = "k", label = "POC 1-prof" ) ax[2].bar( date_NEP[flag_NEP]+50, NEP_POC_avg[flag_NEP], width = 50, ec = "k", label = "POC month" ) ax[2].set_ylabel("NEP\n[molC m$^{-2}$ y$^{-1}$]") ax[2].legend(loc = "center left", bbox_to_anchor = (1.01,0.5)) formatter = mdates.DateFormatter("%Y") ### formatter of the date locator = mdates.YearLocator() ### where to put the labels ax[2].xaxis.set_major_locator(locator) ax[2].xaxis.set_major_formatter(formatter) ax[2].grid(True) return date_NEP, Lon_NEP, Lat_NEP, NEP_avg, NEP_POC_avg, flag_NEP def oxygen_consumption_rate(date, z, Lon, Lat, Oxygen, SA, **kargs): if "PLOT" in kargs: PLOT = kargs["PLOT"] else: PLOT = False if "zmax" in kargs: zmax = kargs["zmax"] else: zmax = 500. if "zmin" in kargs: zmin = kargs["zmin"] else: zmin = 100. RCO = - 106./170. nt = date.size dateDT = convert_time_to_date( date ) year = np.full( nt, np.nan ) month = np.full(nt, np.nan) for i in range(nt): year[i] = dateDT[i].year month[i] = dateDT[i].month dz = z[1]-z[0] jh = np.where((z>=zmin) & (z<=zmax))[0] #depth integrated O2 dint_O2 = moving_average( np.nanmean(Oxygen[jh,:], axis = 0),10) mSA = np.nanmean( SA[z>500,:], axis = 0 ) O2 = np.copy(Oxygen) nz, nt = O2.shape for j in range(nz): O2[j,:] = moving_average(O2[j,:],10) if "mld" in kargs: zM = np.tile(z,(nt,1)).T mldM = np.tile(kargs["mld"],(nz,1)) ismld = zM<mldM O2[ismld] = np.nan #for each year calculates the maximum and minimum Uyear = np.unique(year) nyr = Uyear.size date_O2_sum = np.full(nyr, np.nan) date_O2_win = np.full(nyr, np.nan) R_O2 =
np.full(nyr, np.nan)
numpy.full
""" Utility functions used throughout the code. """ import io import json import os import pickle import logging import numpy as np import pathlib import torch from torch.nn import Sequential, Module, Linear from scipy.sparse import csc_matrix from scipy import optimize, interpolate from scipy.stats import norm as Gaussian from scipy.special import betaln cifar10_label_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def aggregate_by_group(v, g, n): assert g.max() < n return csc_matrix((v, (g, np.zeros_like(g))), shape=(n, 1) ).toarray().squeeze() def subsample_arrays(arrays, n, seed=0): rng_state = np.random.get_state() np.random.seed(seed) take_inds = np.random.choice(len(arrays[0]), n, replace=False) np.random.set_state(rng_state) return [a[take_inds] for a in arrays] def get_weights_norm(model): """Returns the average 2-norm of the weights""" return np.mean([torch.norm(p.data).item() for p in model.parameters()]) def copy_state(model_src, model_tgt): """Copy weights of model_src in model_tgt""" model_tgt.load_state_dict(model_src.state_dict()) return model_tgt def average_step(model, model_avg, step, eta=0.): """In place averaging step from http://proceedings.mlr.press/v28/shamir13.pdf Parameters ---------- model : torch.Module Current model that we optimize model_avg : torch.Module Model corresponding to the averaging of the iterates step : int Current iteration number (starts at 1) eta : float, optional Parameter of [Shamir & Zhang, 2013], eta=0. corresponds to normal averaging Returns ------- model_avg : torch.Module Updated averaged model """ keys = model.state_dict().keys() for k in keys: model_avg.state_dict()[k].mul_(1 - ((eta + 1) / (step + eta))).add_( model.state_dict()[k].mul((eta + 1) / (step + eta))) return model_avg def average_step_ema(model, model_avg, gamma=0.9): """Updates model_avg with an exponential moving average with param gamma""" keys = model.state_dict().keys() for k in keys: model_avg.state_dict()[k].mul_(1 - gamma).add_( model.state_dict()[k].mul(gamma)) return model_avg class SquaredGaussian(object): def __init__(self, loc=0.0, scale=1.0): self.loc = loc self.scale = scale if scale > 0 else 1e-12 self.gaussian = Gaussian(loc=loc, scale=self.scale) def ppf(self, x): def target(a): return self.cdf(a) - x v_hi = self.scale ** 2 while target(v_hi) < 0: v_hi *= 2 return optimize.brentq(target, 0, v_hi) def cdf(self, x): return self.gaussian.cdf(np.sqrt(x)) - self.gaussian.cdf(-np.sqrt(x)) def analytical_dro_objective(p, invcdf, size=1.0, geometry='cvar', reg=0.0, output_lambda=False): if geometry == 'cvar': assert reg == 0.0 opt_lambda = None var = interpolate.interp1d(p, invcdf)(1 - size) ind = np.where(p > 1 - size)[0][0] out = (1 / (p[-1] - 1 + size)) * np.trapz( np.concatenate([[var], invcdf[ind:]]), np.concatenate([[1 - size], p[ind:]])) elif geometry == 'chi-square': if size < np.inf: assert reg == 0.0 def chisquare(eta): r = np.maximum(invcdf - eta, 0) r /= np.trapz(r, p) return 0.5 * np.trapz((r - 1.0) ** 2, p) - size eta_0 = invcdf[0] while chisquare(eta_0) > 0.0: eta_0 = 2 * eta_0 - invcdf[-1] eta_1 = (invcdf[-1] + invcdf[-2]) / 2 if chisquare(eta_1) <= 0.0: eta = eta_1 else: eta = optimize.brentq(chisquare, eta_0, eta_1) r = np.maximum(invcdf - eta, 0) opt_lambda = np.trapz(r, p) r /= opt_lambda out = np.trapz(r * invcdf, p) else: assert reg > 0.0 def target(eta): r = np.maximum(invcdf - eta, 0) return np.trapz(r, p) / reg - 1.0 eta_0 = invcdf[0] while target(eta_0) < 0.0: eta_0 = 2 * eta_0 - invcdf[-1] eta_1 = (invcdf[-1] + invcdf[-2]) / 2 if target(eta_1) >= 0.0: eta = eta_1 else: eta = optimize.brentq(target, eta_0, eta_1) r = np.maximum(invcdf - eta, 0) opt_lambda = np.trapz(r, p) # should be equal to reg! r /= opt_lambda out = 0.5 * (np.trapz(r * invcdf, p) + eta + reg) if output_lambda: return out, opt_lambda else: return out def project_to_cs_ball(v, rho): """Numpy/Scipy projection to chi-square ball of radius rho""" n = len(v) def cs_div(p): return 0.5 * np.mean((n * p - 1)**2) # first, check if a simplex projection is within the chi-square ball target_simplex = lambda eta: np.sum(np.maximum(v - eta, 0)) - 1.0 eta_min_simplex = v.min() - 1 / n eta_max_simplex = v.max() eta_simplex = optimize.brentq( target_simplex, eta_min_simplex, eta_max_simplex) p_candidate = np.maximum(v - eta_simplex, 0) if cs_div(p_candidate) <= rho: return p_candidate # second, compute a chi-square best response def target_cs(eta, return_p=False): p = np.maximum(v - eta, 0) if p.sum() == 0.0: p[np.argmax(v)] = 1.0 else: p /= p.sum() err = cs_div(p) - rho return p if return_p else err eta_max_cs = v.max() eta_min_cs = v.min() if target_cs(eta_max_cs) <= 0: return target_cs(eta_max_cs, return_p=True) while target_cs(eta_min_cs) > 0.0: # find left interval edge for bisection eta_min_cs = 2 * eta_min_cs - eta_max_cs eta_cs = optimize.brentq( target_cs, eta_min_cs, eta_max_cs) p_candidate = target_cs(eta_cs, return_p=True) assert np.abs(cs_div(p_candidate) - rho) < rho * 1e-2 return p_candidate def project_to_cvar_ball(w, alpha): if alpha == 1.0: return
np.ones(n)
numpy.ones
"<NAME> and <NAME>'s soft thresholding procedures for SigClust" import numpy as np import scipy.stats def soft_threshold_hanwen_huang(eigenvalues, sig2b): "Soft threshold eigenvalues to background noise level sig2b according to Hanwen Huang's scheme" optimal_tau = _compute_tau(eigenvalues, sig2b) soft_thresholded_eigenvalues = _shift_and_threshold_eigenvalues(eigenvalues, optimal_tau, sig2b) return soft_thresholded_eigenvalues def soft_threshold_ming_yuan(eigenvalues, sig2b): """Soft thresholds eigenvalues to background noise level sig2b using Ming Yuan's scheme, which maintains total power. Results in an anti-conservative SigClust when the relative size of the first eigenvalue is small.""" # Starting with the smallest eigenvalue, sequentially bring eigenvalues up to # sig2b and distribute the difference equally over the larger eigenvalues # (which maintains the total power). d = len(eigenvalues) eigenvalues_asc =
np.sort(eigenvalues)
numpy.sort
import copy import datetime import heapq import logging import numpy as np from operator import itemgetter, attrgetter from queue import Queue import sys from kaggle_environments.envs.halite.helpers import * MY_DATEFMT = '%M:%S' def easy_log(s, loglevel='D'): pass # print(f'{datetime.datetime.now().strftime(MY_DATEFMT)}{loglevel.upper()[0]} {s}') easy_log('ini begin') MAX_HALITE = 500 MAP_SIZE = 21 HALF_MAP_SIZE = MAP_SIZE // 2 ROWS = MAP_SIZE COLS = MAP_SIZE PLAYERS = 4 MOVE = [ None, ShipAction.NORTH, ShipAction.EAST, ShipAction.SOUTH, ShipAction.WEST, ] LEN_MOVE = len(MOVE) I_MINE = 0 I_NORTH = 1 I_EAST = 2 I_SOUTH = 3 I_WEST = 4 I_NORTH_EAST = 5 I_SOUTH_EAST = 6 I_SOUTH_WEST = 7 I_NORTH_WEST = 8 I_CONVERT = 5 def ship_action_to_int(action, convert_aware=False): if action is None: return I_MINE elif isinstance(action, int): return action elif action == ShipAction.NORTH: return I_NORTH elif action == ShipAction.EAST: return I_EAST elif action == ShipAction.SOUTH: return I_SOUTH elif action == ShipAction.WEST: return I_WEST elif action == ShipAction.CONVERT: if convert_aware: return I_CONVERT return I_MINE DY = [0, 1, 0, -1, 0] DX = [0, 0, 1, 0, -1] def position_to_ij(p): return ROWS - p[1] - 1, p[0] def ij_to_position(i, j): return j, ROWS - i - 1 def mod_map_size_x(x): return (x + MAP_SIZE) % MAP_SIZE def rotated_diff_position_impl(x0, x1): """x1 - x0 の値域 [-20, 20] を [-10, 10] へおさめたい""" d = x1 - x0 if d < -HALF_MAP_SIZE: # [-20, -11] return d + MAP_SIZE # [1, 10] elif HALF_MAP_SIZE < d: # [11, 20] return d - MAP_SIZE # [-10, -1] return d # memorize def initialize_rotated_diff_position(): t = np.zeros((MAP_SIZE, MAP_SIZE), dtype=np.int32) for x0 in range(MAP_SIZE): for x1 in range(MAP_SIZE): t[x0, x1] = rotated_diff_position_impl(x0, x1) t.flags.writeable = False return t ROTATED_DIFF_POSITION = initialize_rotated_diff_position() def rotated_diff_position(x0, x1): return ROTATED_DIFF_POSITION[x0, x1] def distance_impl(x0, x1, y0, y1): dx = abs(rotated_diff_position(x0, x1)) dy = abs(rotated_diff_position(y0, y1)) return dx + dy def initialize_distance(): t = np.zeros((COLS, ROWS, COLS, ROWS), dtype=np.int32) for x0 in range(COLS): for y0 in range(ROWS): for x1 in range(COLS): for y1 in range(ROWS): t[x0, y0, x1, y1] = distance_impl(x0=x0, y0=y0, x1=x1, y1=y1) t.flags.writeable = False return t DISTANCE = initialize_distance() def calculate_distance(p0, p1): return DISTANCE[p0[0], p0[1], p1[0], p1[1]] def initialize_neighbor_positions(sup_d): """マンハッタン距離1ずつ増加していくときの全範囲x, yと距離d""" ts =[] us = [] for d in range(sup_d): n_neighbors = 1 + (d * (d + 1) // 2) * 4 t = np.zeros((n_neighbors, 3), dtype=np.int32) k = 0 for dx in range(-d, d + 1): abs_dx = abs(dx) for dy in range(-d, d + 1): abs_dy = abs(dy) if d < abs_dx + abs_dy: continue t[k, :] = dx, dy, abs_dx + abs_dy k += 1 assert k == n_neighbors u = np.zeros((COLS, ROWS, n_neighbors, 3), dtype=np.int32) for x in range(COLS): for y in range(ROWS): for k, (dx, dy, d) in enumerate(t): x1 = mod_map_size_x(x + dx) y1 = mod_map_size_x(y + dy) u[x, y, k, :] = x1, y1, d t.flags.writeable = False u.flags.writeable = False ts.append(t) us.append(u) return ts, us NEIGHBOR_D_POSITIONS, NEIGHBOR_POSITIONS = initialize_neighbor_positions(sup_d=7) def neighbor_d_positions(d): return NEIGHBOR_D_POSITIONS[d] def neighbor_positions(d, p): return NEIGHBOR_POSITIONS[d][p[0], p[1]] DISTANCE_TO_PREFERENCE = [0.62 + 0.02 * i for i in range(HALF_MAP_SIZE)] + [1.0] + [1.2 + 0.02 * i for i in range(HALF_MAP_SIZE)] def distance_to_preference(d): return DISTANCE_TO_PREFERENCE[d + HALF_MAP_SIZE] def preference_move_to_impl_2(x0, x1, dx_action): abs_dx0 = abs(rotated_diff_position(x0=x0, x1=x1)) x_ = mod_map_size_x(x0 + dx_action) abs_dx_ = abs(rotated_diff_position(x0=x_, x1=x1)) preference = 1.0 dx2 = abs_dx_ - abs_dx0 if dx2 < 0: # 距離縮んだ 遠いほうは abs_dx0 preference *= distance_to_preference(abs_dx0) elif 0 < dx2: # 遠ざかった 遠いほうは abs_dx_ preference *= distance_to_preference(-abs_dx_) return preference def preference_move_to_impl(x0, y0, x1, y1): """x0, y0: 現在位置; x1, y1: 目標位置""" preference = np.ones(LEN_MOVE, dtype=np.float32) for i_action in range(LEN_MOVE): preference[i_action] *= preference_move_to_impl_2( x0=x0, x1=x1, dx_action=DX[i_action]) preference[i_action] *= preference_move_to_impl_2( x0=y0, x1=y1, dx_action=DY[i_action]) if x0 == x1 and y0 == y1: preference[0] *= 1.5 return preference def initialize_preference_move_to(): t = np.zeros((COLS, ROWS, LEN_MOVE), dtype=np.float32) for x1 in range(COLS): for y1 in range(ROWS): t[x1, y1, :] = preference_move_to_impl(x0=0, y0=0, x1=x1, y1=y1) t.flags.writeable = False return t PREFERENCE_MOVE_TO = initialize_preference_move_to() def preference_move_to(p0, p1): x1 = mod_map_size_x(p1[0] - p0[0]) y1 = mod_map_size_x(p1[1] - p0[1]) return PREFERENCE_MOVE_TO[x1, y1] def calculate_next_position(position, next_action): """next_action で移動した後の座標を求める""" p = position if isinstance(next_action, int): next_action = MOVE[next_action] assert (next_action is None) or isinstance(next_action, ShipAction) if next_action == ShipAction.NORTH: p = Point(x=p[0], y=(p[1] + 1) % ROWS) elif next_action == ShipAction.EAST: p = Point(x=(p[0] + 1) % COLS, y=p[1]) elif next_action == ShipAction.SOUTH: p = Point(x=p[0], y=(p[1] + ROWS - 1) % ROWS) elif next_action == ShipAction.WEST: p = Point(x=(p[0] + COLS - 1) % COLS, y=p[1]) return p def direction_to_str(next_action): if next_action == ShipAction.NORTH: return '^' elif next_action == ShipAction.EAST: return '>' elif next_action == ShipAction.SOUTH: return 'v' elif next_action == ShipAction.WEST: return '<' elif next_action == ShipAction.CONVERT: return 'c' return '.' I_FLAG_NEXT_SHIP_POSITION = 0 I_FLAG_MINE_D2 = 1 I_FLAG_MINE_D3 = 2 I_FLAG_MINE_D4 = 3 I_FLAG_GO_HOME_STRAIGHT = 4 N_FLAG_TYPES = 5 I_SCORE_SURROUNDED_HALITE_GROUND = 0 # 隣接4マスのうち何マス halite 増産するか 途中更新なし shipyard 生成破壊で変わりうることに注意 I_SCORE_EMPTY_OPPONENT_D2 = 1 I_SCORE_NON_EMPTY_OPPONENT_D2 = 2 I_SCORE_OPPONENT_D2 = 3 I_SCORE_OPPONENT_D3 = 4 I_SCORE_OPPONENT_SHIPYARD_D6 = 5 I_SCORE_ALLY_SHIPYARD_D1 = 6 I_SCORE_ALLY_SHIPYARD_D4 = 7 I_SCORE_ALLY_SHIPYARD_D7 = 8 I_SCORE_OPPONENT_SHIPYARD_D2 = 9 I_SCORE_OPPONENT_SHIPYARD_D3 = 10 I_SCORE_OPPONENT_SHIPYARD_D4 = 11 I_SCORE_ALLY_D2 = 12 I_SCORE_EMPTY_ALLY_D4 = 13 I_SCORE_NON_EMPTY_ALLY_D4 = 14 I_SCORE_ALLY_D4 = 15 I_SCORE_HALITE = 16 # ただの地面 halite I_SCORE_HALITE_D4 = 17 # 周囲Dマスの halite 和 I_SCORE_SHIPYARD_CANDIDATES_SUB = 18 # halite, 他のshipyard領域なら0 I_SCORE_SHIPYARD_CANDIDATES = 19 # 自分自身の位置と、他のshipyard領域を除く周囲のhalite I_SCORE_MIN_NEIGHBOR_OPPONENT_HALITE = 20 # その場, 隣接 計5マスの敵haliteの最小 I_SCORE_ALLY_REACH = 21 # ally が到達できる最短ターン I_SCORE_EMPTY_ALLY_REACH = 22 # empty ally が到達できる最短ターン I_SCORE_NON_EMPTY_ALLY_REACH = 23 I_SCORE_OPPONENT_REACH = 24 # opponent が到達できる最短ターン I_SCORE_EMPTY_OPPONENT_REACH = 25 # empty opponent が到達できる最短ターン I_SCORE_NON_EMPTY_OPPONENT_REACH = 26 I_SCORE_REACH_ADVANTAGE = 27 # I_SCORE_OPPONENT_REACH - I_SCORE_ALLY_REACH I_SCORE_DETOUR_REACH = 28 # shipyards has neighbor ZOC I_SCORE_OPPONENT_DETOUR_REACH = 29 I_SCORE_DETOUR_ADVANTAGE = 30 I_SCORE_DANGER_ZONE = 31 # rectangle of 2 diagonal shipyards, with edge I_SCORE_DANGER_ZONE_IN = 32 # without edge I_SCORE_HUNT_ZONE = 33 I_SCORE_HUNT_ZONE_IN = 34 I_SCORE_FUTURE_HUNT_ZONE = 35 N_SCORE_TYPES = 36 class FlagsManager(object): def __init__(self): self.flags = np.zeros((N_FLAG_TYPES, ROWS), dtype=np.uint32) def parse(self, i=None, j=None, x=None, y=None): i_ = (ROWS - y - 1) if i is None else i j_ = x if j is None else j assert i_ is not None, f'i={i}, y={y}' assert j_ is not None, f'j={j}, x={x}' return i_, j_ def set_all(self, i_flag_type): self.flags[i_flag_type, ...] = 0xFFFFFFFF def reset_all(self, i_flag_type): self.flags[i_flag_type, ...] = 0 def set(self, i_flag_type, **kwargs): i, j = self.parse(**kwargs) self.flags[i_flag_type, i] |= (1 << j) def reset(self, i_flag_type, **kwargs): i, j = self.parse(**kwargs) self.flags[i_flag_type, i] &= ~(1 << j) def xor(self, i_flag_type, **kwargs): i, j = self.parse(**kwargs) self.flags[i_flag_type, i] ^= (1 << j) def get(self, i_flag_type, **kwargs): i, j = self.parse(**kwargs) return (self.flags[i_flag_type, i] >> j) & 1 def initialize_compound_interest(t_max=400, max_cell_halite=500, regen_rate=0.02): m = np.zeros((t_max + 1, max_cell_halite + 1), dtype=np.float32) m[0, :] = np.arange(max_cell_halite + 1) rate = 1.0 + regen_rate for t in range(t_max): m[t + 1, :] = np.minimum(m[t, :] * rate, max_cell_halite) # for h in range(4, max_cell_halite, 25): # logger.debug(f'h={h}, m[:, h]={m[:, h]}') return m COMPOUND_INTEREST = initialize_compound_interest() HUNT_IMPOSSIBLE = 9 DIAG_DIRECTIONS = ((I_NORTH, I_EAST), (I_EAST, I_SOUTH), (I_SOUTH, I_WEST), (I_WEST, I_NORTH)) def solve_hunt_impl2(m, c, result): if not c: if m == 0x1E: # 全方向にいる return True, result return False, [HUNT_IMPOSSIBLE] * 4 t = [] diag, ij = c[0] for i in ij: # print(f'solve_hunt_impl2: m={m} c={c} result={result} c0={c[0]} i={i}') if i == 0: m_i = m else: m_i = m | (1 << i) r_i = result + [i] success_i, result_i = solve_hunt_impl2(m_i, c[1:], r_i) if success_i: return success_i, result_i return False, [HUNT_IMPOSSIBLE] * 4 def solve_hunt_impl(a): m0 = (a[0] << I_NORTH) | (a[1] << I_EAST) | (a[2] << I_SOUTH) | (a[3] << I_WEST) c = [] for diag, b in enumerate(a[4:]): if b == 0: c.append([diag, (0,)]) # 単にない方角は0とする else: c.append([diag, DIAG_DIRECTIONS[diag]]) return solve_hunt_impl2(m0, c, []) def initialize_hunt_dp(): # ラストの4が解で ne se sw nw に対して行くべき方向 # (I_NORTH or I_EAST), (I_SOUTH or I_EAST), ... # 0だったら2shipsを両側に派遣しろという意味 t = np.zeros((2, 2, 2, 2, 3, 3, 3, 3, 4), dtype=np.int32) for north in range(2): for east in range(2): for south in range(2): for west in range(2): for ne in range(3): for se in range(3): for sw in range(3): for nw in range(3): n = north e = east s = south w = west ne_ = ne se_ = se sw_ = sw nw_ = nw if ne == 2: n = 1 e = 1 ne_ = 0 if se == 2: s = 1 e = 1 se_ = 0 if sw == 2: s = 1 w = 1 sw_ = 0 if nw == 2: n = 1 w = 1 nw_ = 0 a = [n, e, s, w, ne_, se_, sw_, nw_] success, result = solve_hunt_impl(a) if success: if ne == 2: result[0] = 5 if se == 2: result[1] = 5 if sw == 2: result[2] = 5 if nw == 2: result[3] = 5 t[north, east, south, west, ne, se, sw, nw, :] = result # print(f'HUNT_DP[n{north} e{east} s{south} w{west} ne{ne} se{se} sw{sw} nw{nw}]={result}, success={success}') t.flags.writeable = False return t HUNT_DP = initialize_hunt_dp() DIRECTION_MAPPING = np.array([I_MINE, I_MINE, I_NORTH, -1, I_EAST, -1, I_NORTH_EAST, -1, I_SOUTH, -1, -1, -1, I_SOUTH_EAST, -1, -1, -1, I_WEST, -1, I_NORTH_WEST, -1, -1, -1, -1, -1, I_SOUTH_WEST, -1, -1, -1, -1, -1, -1, -1], dtype=np.int32) DIRECTION_MAPPING.flags.writeable = False assert DIRECTION_MAPPING[1 << I_MINE] == I_MINE assert DIRECTION_MAPPING[1 << I_NORTH] == I_NORTH assert DIRECTION_MAPPING[1 << I_EAST] == I_EAST assert DIRECTION_MAPPING[1 << I_SOUTH] == I_SOUTH assert DIRECTION_MAPPING[1 << I_WEST] == I_WEST assert DIRECTION_MAPPING[(1 << I_NORTH) | (1 << I_EAST)] == I_NORTH_EAST assert DIRECTION_MAPPING[(1 << I_EAST) | (1 << I_SOUTH)] == I_SOUTH_EAST assert DIRECTION_MAPPING[(1 << I_SOUTH) | (1 << I_WEST)] == I_SOUTH_WEST assert DIRECTION_MAPPING[(1 << I_WEST) | (1 << I_NORTH)] == I_NORTH_WEST def initialize_both_move_to_halite_nash_equilibrium_impl2(halite, r_wait): h1 = int((halite) * 0.25) h2 = int((halite - h1) * 0.25) h3 = int((halite - h1 - h2) * 0.25) h23 = h2 + h3 # -500, -500 | h1, h23 # h23, h1 | r_wait, r_wait # 後続の掘りの差を出さないためにすぐSPAWNすると仮定 # 本当は1ターン待つと 1.02倍されるので impl2 の r_wait の価値が上がるはずだが、参入できていない # h_next = min(MAX_HALITE, int(halite * 1.02)) # r_p = -MAX_HALITE * p * q + h1 * p * (1 - q) + h23 * (1 - p) * q + r_wait * (1 - p) * (1 - q) # r_q = -MAX_HALITE * p * q + h23 * p * (1 - q) + h1 * (1 - p) * q + r_wait * (1 - p) * (1 - q) # dr_q / dq = -MAX_HALITE * p - h23 * p + h1 * (1 - p) - r_wait * (1 - p) # = p * (-MAX_HALITE - h23 - h1 + r_wait) + (h1 - r_wait) # = 0 # となる p を求める p = max(0.0, (h1 - r_wait) / (MAX_HALITE + h23 + h1 - r_wait)) r_p = -MAX_HALITE * p * p + h1 * p * (1 - p) + h23 * (1 - p) * p + r_wait * (1 - p) * (1 - p) return p, r_p def initialize_both_move_to_halite_nash_equilibrium_impl(halite): r_ng = 0.0 r_ok = MAX_HALITE p_ok = 0.0 gamma = 0.9 while 0.99 < abs(r_ok - r_ng): r_mid = 0.5 * (r_ng + r_ok) p, r_p = initialize_both_move_to_halite_nash_equilibrium_impl2(halite, r_mid * gamma) # print(f'h{halite} r_mid{r_mid:.1f} r_p{r_p:.1f} p{p:.6f}') if r_p < r_mid: # ok r_ok = r_mid p_ok = p else: r_ng = r_mid return p_ok, r_ok def initialize_both_move_to_halite_nash_equilibrium(): t = np.zeros(MAX_HALITE + 1, dtype=np.float32) for halite in range(MAX_HALITE + 1): p, r = initialize_both_move_to_halite_nash_equilibrium_impl(halite) t[halite] = p t.flags.writeable = False return t BOTH_MOVE_TO_HALITE_NASH_EQUILIBRIUM = initialize_both_move_to_halite_nash_equilibrium() def both_move_to_halite_nash_equilibrium(halite): return BOTH_MOVE_TO_HALITE_NASH_EQUILIBRIUM[int(halite)] class Project(object): def __init__(self, project_id, agent, ): self.project_id = project_id self.agent = agent self.priority = 1.0 self.ships = {} # key is ship_id, value is role self.shipyards = {} # key is shipyard_id, value is role self.budget = 0 # Projectで複数stepにまたがって自由に使えるhalite def schedule(self): """Project 継続判断 (True で継続 False なら解体) と priority 設定""" return False def reserve_budget(self, halite): """ free_haliteから予算をhaliteだけ追加確保する 指定したhaliteが負ならfree_haliteへ戻るので Projectが使う際には, 先にfree_haliteを増やしてから reserve_ship なりreserve_shipyardするとよい 次stepへ持ち越す事も可能 すなわち確保したうえで自分が使わなければ次stepでも残っている 次step高優先度projectにもとられない free_halite < haliteなら失敗し, 成功したらTrue 失敗したら現在budgetのままとなる """ d_halite = max(-self.budget, halite) if self.agent.free_halite < d_halite: return False # 足りない self.agent.free_halite -= d_halite self.budget += d_halite assert 0 <= self.budget, f'{self.budget}' return True def maintain_dead_staffs(self): staff_ids = [] b = self.agent.board for ship_id in self.ships: if ship_id not in b.ships: staff_ids.append(ship_id) for shipyard_id in self.shipyards: if shipyard_id not in b.shipyards: staff_ids.append(shipyard_id) self.dismiss_project(staff_ids=staff_ids) def ships_generator(self, with_free=False, with_my_project=False): a = self.agent for ship in a.sorted_ships: if a.determined_ships.get(ship.id, None) is not None: continue project_id = a.belonging_project.get(ship.id, None) if (with_free and (project_id is None)) or (with_my_project and (project_id == self.project_id)): yield ship def run(self): """ 人員と予算と確保し, next_actionを決める 必須人員他に確保されていたらまだ解体ありうる (return True で継続) 前step確保していたstaff_idsはscheduleでリリースしていない限り残る """ # if -1e-6 < self.priority: # self.agent.log(s=f'prj={self.project_id} run prio={self.priority}') return False def discard(self): """ project終了のため, 確保している人員を開放する 予算を戻してもらう """ a = self.agent a.log(step=a.board.step, id_=None, s=f'p{a.player_id} discard project_id={self.project_id}') assert 0 <= self.budget, self.budget self.reserve_budget(-self.budget) self.dismiss_project( staff_ids=list(self.ships.keys()) + list(self.shipyards.keys())) assert self.project_id not in a.belonging_project.values(), f'project_id={self.project_id} belonging_project={a.belonging_project}' if self.project_id in a.projects: del a.projects[self.project_id] def join_project(self, *args, staff_ids, **kwargs): a = self.agent for staff_id in staff_ids: project_id = a.belonging_project.get(staff_id, None) if project_id and project_id != self.project_id: project = a.projects.get(project_id, None) if project: project.dismiss_project(staff_ids=[staff_id]) return self.agent.join_project(*args, staff_ids=staff_ids, project_id=self.project_id, **kwargs) def dismiss_project(self, *args, **kwargs): return self.agent.dismiss_project(*args, project_id=self.project_id, **kwargs) class DefenseShipyardProject(Project): """ priorityはhuntに次ぐ Shipyardが壊されないように守る 敵shipより手前に1shipはいるようにする 張りこまれていたら, 相殺する deposit希望のshipを突っ込ませる運ゲーをマネジメント """ def __init__(self, shipyard_id, *args, **kwargs): project_id = f'defense_yd{shipyard_id}' super().__init__(*args, project_id=project_id, **kwargs) self.shipyard_id = shipyard_id self.cancel_threshold = 4 # 隣で停止されたときに相殺決断するまで待つ猶予 self.spawn_step_threshold = 250 self.spawn_step_threshold_final = 390 self.o = None self.empty_o_min_d = [] self.last_confirmed_step = -1 self.last_swapped_step = -1 self.info = {} def shipyard_defender_strategy(self, ship): a = self.agent shipyard = a.board.shipyards[self.shipyard_id] o_min_d = self.info['opponent_distance'] e_min_d = self.info.get('empty_ally_ship_distance', 99999) n_min_d = self.info.get('non_empty_ally_ship_distance', 99999) d = calculate_distance(ship.position, shipyard.position) free_steps = o_min_d - d original_free_steps = free_steps if 0 < ship.halite: free_steps -= 1 # 先回りして deposit する必要がある remaining_steps = max(0, 398 - a.board.step - d) free_steps = min(free_steps, remaining_steps) original_free_steps = min(original_free_steps, remaining_steps) a.log(step=a.board.step, id_=ship.id, s=f'yd{shipyard.id} shipyard_defender h{ship.halite} o_min_d={o_min_d} d={d} free_steps={free_steps}') if free_steps < 0: # こいつ任命できないはずなんだが a.log(loglevel='WARNING', id_=ship.id, s=f'defender too far. project_id={self.project_id} h={ship.halite} o_min_d={o_min_d} info={self.info}') return a.ship_strategy(ship) # 基本は帰還 priority = 10000 + a.calculate_collision_priority(ship) q_empty, forced = a.calculate_moving_ship_preference( ship=ship, position=shipyard.position, mode='escape', mine_threshold=None) if o_min_d == 1: # 身を盾にして守る for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[ship.position])): if cell_k.shipyard and cell_k.shipyard.player_id == a.player_id: q_empty[k_action] = max(10.0, q_empty[k_action]) return a.reserve_ship_by_q(ship, q=q_empty, priority=priority) # キリの良い数字になれるならさっさと帰る player_halite = a.board.current_player.halite short_halite = MAX_HALITE - (player_halite % MAX_HALITE) if free_steps == 0 or (player_halite < 1000 and short_halite <= ship.halite): # 最短距離で帰る a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} free_steps{free_steps} q_empty{q_empty} back short_halite{short_halite}') return a.reserve_ship_by_q(ship, q=q_empty, priority=priority) # 今いる場所を掘れるかどうか検討しよう cell = a.board.cells[ship.position] mine_project = a.projects.get(f'mine_{ship.position[0]}_{ship.position[1]}', None) if mine_project: mine_threshold = mine_project.mining_halite_threshold else: mine_threshold = 160.0 if mine_threshold: mode = 'mine' else: mode = 'escape' if mine_threshold < cell.halite: q_mine, forced = a.calculate_moving_ship_preference( ship=ship, position=ship.position, mode=mode, mine_threshold=mine_threshold) else: q_mine = np.copy(q_empty) if mine_threshold <= cell.halite: # 危険な時はq_mine使わないので停止危険チェックはしなくてOK q_mine[0] = max(4.0, q_mine[0]) if free_steps == 1: # 最短 / 1回停止可能 if mine_threshold <= cell.halite: if 0 < ship.halite: # 掘っても free_steps は減らない a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} free_steps{free_steps} q_mine{q_mine} mine_thre{mine_threshold}') return a.reserve_ship_by_q(ship, q=q_mine, priority=priority) elif d == 1 and mine_threshold <= cell.halite: # もし唯一の敵をブロックする位置にいるのなら, halite回収できる for cell_i in a.neighbor_cells(a.board.cells[shipyard.position]): if cell_i.position == ship.position: continue i_, j_ = position_to_ij(cell_i.position) if a.scores[I_SCORE_OPPONENT_REACH, i_, j_] < 1.5: # blockできていないので大人しく帰る return a.reserve_ship_by_q(ship, q=q_empty, priority=priority) a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} blocking. q_mine={q_mine}') return a.reserve_ship_by_q(ship, q=q_mine, priority=priority) a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} free_steps{free_steps} q_empty{q_empty} back') return a.reserve_ship_by_q(ship, q=q_empty, priority=priority) ship_cell = a.board.cells[ship.position] if ((free_steps < 2) or (0 < ship.halite) or (free_steps == 3 and ship.halite == 0 and 0 < d and 80.0 < ship_cell.halite)): # 離れる方向へ移動しても掘れないので自重する has_non_empty_ship = False for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[ship.position])): d_k = calculate_distance(cell_k.position, shipyard.position) if d < d_k: q_mine[k_action] *= 0.3 if d == 0: if cell_k.ship and cell_k.ship.player_id == a.player_id and 0 < cell_k.ship.halite: has_non_empty_ship = True if has_non_empty_ship: # 帰り道を邪魔しない q_mine[I_NORTH:] *= 10.0 a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} free_steps{free_steps} q_mine{q_mine} back with mine has_non_empty_ship={has_non_empty_ship} d{d} original_free_steps{original_free_steps} mine_thre{mine_threshold} mine_prj{mine_project}') return a.reserve_ship_by_q(ship, q=q_mine, priority=priority) # 離れて1回回収するための条件を満たしたので、周囲を探索 positions = neighbor_positions(d=(2 if d == 0 else 1), p=ship.position) max_position = shipyard.position max_halite_diff = 0 for x1, y1, d1 in positions: p1 = Point(x=x1, y=y1) cell1 = a.board.cells[p1] if cell1.halite < 1e-6: continue mine_project1 = a.projects.get(f'mine_{x1}_{y1}', None) if mine_project1: if mine_project1.ships: continue # 競合を避ける mine_threshold1 = mine_project1.halite_threshold else: mine_threshold1 = 40.0 halite_diff = cell1.halite - mine_threshold1 if max_halite_diff < halite_diff: max_position = p1 max_halite_diff = halite_diff q_explore, forced = a.calculate_moving_ship_preference( ship=ship, position=max_position, mode='mine', mine_threshold=mine_threshold) if d == 0 and 2 < o_min_d: # 脅威がない場合のshipyard上での停止は避ける q_explore[0] *= 0.4 a.log(id_=ship.id, s=f'{ship.position} prj={self.project_id} free_steps{free_steps} q_explore{q_explore} max{max_position} h_diff{max_halite_diff}') return a.reserve_ship_by_q(ship, q=q_explore, priority=priority) def defense_shipyard_strategy_ships_generator(self): """ MineProjectは制御を奪ってよい EscortProjectに自分自身が属しているshipは制御を奪ってよい """ a = self.agent for ship in a.sorted_ships: determined = a.determined_ships.get(ship.id, None) if determined is not None: continue project_id = a.belonging_project.get(ship.id, None) if project_id is None: yield ship elif project_id == self.project_id: yield ship elif project_id[:6] == 'escort': escort_project = a.projects.get(project_id, None) if not escort_project: yield ship elif escort_project.has_myself(): yield ship elif project_id[:4] == 'mine': yield ship def find_confirmed_shipyard(self, shipyard): """近くにally shipyardがあるなら、壊されてもいいや""" a = self.agent for x_k, y_k, d_k in neighbor_positions(d=2, p=shipyard.position): if d_k == 0: continue # 自分自身 cell_k = a.board.cells[x_k, y_k] shipyard_k = cell_k.shipyard if shipyard_k is None: continue if shipyard_k.player_id != a.player_id: continue project_id = f'defense_yd{shipyard_k.id}' project = a.projects.get(project_id, None) if project is None: continue last_confirmed_step = project.last_confirmed_step if a.board.step <= last_confirmed_step: return shipyard_k return None def schedule(self): super().schedule() self.info = {} self.maintain_dead_staffs() a = self.agent shipyard = a.board.shipyards.get(self.shipyard_id, None) if shipyard is None or 397 <= a.board.step: return False len_ships = len(a.board.current_player.ships) if len_ships == 1 and a.board.current_player.ships[0].halite == 0 and a.board.current_player.halite < MAX_HALITE: a.log(loglevel='WARNING', id_=shipyard.id, s=f'prj={self.project_id} last_escape_mode') return False # 逃げ専 self.position = shipyard.position self.i, self.j = position_to_ij(self.position) self.shipyard_cell = a.board.cells[self.position] confirmed_shipyard = self.find_confirmed_shipyard(shipyard) if confirmed_shipyard: a.log(id_=shipyard.id, s=f'confirmed_shipyard{confirmed_shipyard.id} found') return False o_min_d = 99999 # opponent empty_o_min_d = 99999 self.o = None for shipyard_i in a.board.shipyards.values(): if shipyard_i.player_id == a.player_id: continue # spawn に 1 step かかるので +1 d = 1 + calculate_distance(self.position, shipyard_i.position) if d < o_min_d: self.o = shipyard_i o_min_d = d empty_o_min_d = d for ship in a.board.ships.values(): if ship.player_id == a.player_id: continue d = calculate_distance(self.position, ship.position) if d < o_min_d: self.o = ship o_min_d = d if ship.halite == 0 and d < empty_o_min_d: empty_o_min_d = d self.info['shipyard_id'] = shipyard.id self.info['opponent_id'] = None if self.o is None else self.o.id self.info['opponent_distance'] = o_min_d self.empty_o_min_d.append(empty_o_min_d) if self.o is None: self.priority = -100.0 elif a.board.step < 9: self.priority = -1.0 else: self.priority = 200000. - o_min_d * 10000. + a.scores[I_SCORE_HALITE_D4, self.i, self.j] if self.priority < 0.0: self.dismiss_project(staff_ids=list(self.ships.keys())) self.last_confirmed_step = a.board.step return True def should_cancel(self, *args, **kwargs): result, condition = self.should_cancel_impl(*args, **kwargs) self.agent.log(s=f'prj={self.project_id} should_cancel={result} {condition}') def should_cancel_impl(self, e, o, cell_o, e_min_d, o_min_d): a = self.agent condition = '' if 2 < o_min_d: return False, '2<o_min_d' if e_min_d != 0: return False, 'e_min_d!=0' if len(self.empty_o_min_d) < 5: return False, f'len(empty_o_min_d)={len(self.empty_o_min_d)}' # 最初期 n_min_d = int(1e-6 + a.scores[I_SCORE_NON_EMPTY_ALLY_REACH, self.i, self.j]) condition += f' n_min_d{n_min_d}' if 2 < n_min_d: condition += ' 2<n_min_d' return False, condition # depositしたいshipがいないなら放置しよう condition0 = (3 == np.sum((np.array(self.empty_o_min_d[-3:]) <= 1).astype(np.int32))) condition1 = (4 <= np.sum((np.array(self.empty_o_min_d[-5:]) <= 1).astype(np.int32))) condition += f' cond0={condition0} cond1={condition1} empty_o_min_d{self.empty_o_min_d[-5:]}' if not (condition0 or condition1): return False, condition previous_o = a.previous_board.ships.get(o.id, None) # 往復にせよ停止にせよ、1ターン前の位置へ突っ込めばよい for k_action, cell_k in enumerate(a.neighbor_cells(a.previous_board.cells[self.position])): if k_action == 0: continue ship_k = cell_k.ship if ship_k is None or 0 < ship_k.halite or ship_k.player_id == a.player_id: continue condition += f' k{k_action}_found' return ship_k.position, condition return False, condition def search_empty_ally(self): """shipyardの隣にいるempty_shipを探す""" ship_candidates = list(self.defense_shipyard_strategy_ships_generator()) for i_action, cell_i in enumerate(self.agent.neighbor_cells(self.shipyard_cell)): if i_action == 0: continue ship_i = cell_i.ship if ship_i is None: continue if 0 < ship_i.halite: continue if ship_i in ship_candidates: return ship_i return None def run_cancel(self, e, target_position): """return done, safe, spawned""" a = self.agent defender = None ally_ship = self.search_empty_ally() shipyard = a.board.shipyards[self.shipyard_id] if ally_ship: self.join_project(staff_ids=[ally_ship.id], role='defender_ally', forced=True) a.moving_ship_strategy(ship=ally_ship, position=self.position, mode='cancel_without_shipyard', mine_threshold=None) a.moving_ship_strategy(ship=e, position=target_position, mode='cancel_without_shipyard', mine_threshold=None) a.log(id_=e.id, s=f'prj={self.project_id} cancel to {target_position}, with ally s{ally_ship.id}') return True, True, False elif MAX_HALITE <= a.free_halite + self.budget: # SPAWN可能 if a.flags.get(I_FLAG_NEXT_SHIP_POSITION, i=self.i, j=self.j): a.log(loglevel='warning', s=f'prj={self.project_id} cannot spawn because someone will return type A') a.reserve_shipyard(shipyard, None) # 誰かが帰還するのでSPAWNしない a.moving_ship_strategy(ship=e, position=target_position, mode='cancel_without_shipyard', mine_threshold=None) return True, False, False elif self.spawn_step_threshold <= a.board.step and 1 < len(a.board.current_player.shipyards): # もう SPAWN するのは勿体ないので, 抑止力で祈る self.reserve_budget(MAX_HALITE - self.budget) a.log(id_=e.id, s=f'prj={self.project_id} cancel to {target_position}, with fake SPAWN') a.reserve_shipyard(shipyard, None) a.moving_ship_strategy(ship=e, position=target_position, mode='cancel_without_shipyard', mine_threshold=None) return True, False, False else: self.reserve_budget(-self.budget) a.log(id_=e.id, s=f'prj={self.project_id} cancel to {target_position}, with SPAWN') a.reserve_shipyard(shipyard, ShipyardAction.SPAWN) a.moving_ship_strategy(ship=e, position=target_position, mode='cancel_without_shipyard', mine_threshold=None) return True, True, True return False, True, False def run(self): """防衛担当者を決める""" super().run() a = self.agent shipyard = a.board.shipyards[self.shipyard_id] if self.shipyard_id not in self.shipyards: self.join_project(staff_ids=[self.shipyard_id], role='defended') if self.priority < 0.0: # 何もしなくてよい. 単にプロジェクト継続 self.info['safe'] = True self.info['empty_ally_ship_id'] = None self.info['empty_ally_ship_distance'] = None self.info['non_empty_ally_ship_id'] = None self.info['non_empty_ally_ship_distance'] = None return True if a.board.step < self.spawn_step_threshold and 0 < self.budget and MAX_HALITE <= a.free_halite + self.budget: # Expeditionから引き継いだbudgetをさっさと使う self.reserve_budget(-self.budget) a.reserve_shipyard(shipyard, ShipyardAction.SPAWN) self.dismiss_project(staff_ids=list(self.ships.keys())) return True cell = a.board.cells[self.position] o_min_d = self.info['opponent_distance'] e_min_d = 99999 # empty e = None n_min_d = 99999 # non empty ally n = None for ship in self.defense_shipyard_strategy_ships_generator(): d = calculate_distance(shipyard.position, ship.position) if ship.halite == 0: if (d < e_min_d): e = ship e_min_d = d elif d < o_min_d: if ((d < n_min_d) or ((d == n_min_d) and (n.halite < ship.halite))): n = ship n_min_d = d if e: self.info['empty_ally_ship_id'] = e.id self.info['empty_ally_ship_distance'] = e_min_d if n: self.info['non_empty_ally_ship_id'] = n.id self.info['non_empty_ally_ship_distance'] = n_min_d safe = False spawned = False defender = None # デフォルト挙動させたい場合に指定する min_d = 99999 if n_min_d < o_min_d: # deposit 間に合う self.dismiss_project(staff_ids=list(self.ships.keys())) self.join_project(staff_ids=[n.id], role='defender') defender = n safe = True elif e_min_d <= o_min_d: self.dismiss_project(staff_ids=list(self.ships.keys())) self.join_project(staff_ids=[e.id], role='defender') opponent_id = self.info['opponent_id'] previous_o = a.previous_board.ships.get(opponent_id, None) o = a.board.ships.get(opponent_id, None) if o is None: o = a.board.shipyards.get(opponent_id, None) # a.log(f'prj={self.project_id} p{a.player_id} self.shipyard_id={self.shipyard_id} opponent_id={opponent_id} previous_o{previous_o} o{o} o_min_d={o_min_d}') cell_o = a.board.cells[o.position] target_position = self.should_cancel(e=e, o=o, cell_o=cell_o, e_min_d=e_min_d, o_min_d=o_min_d) if target_position: # RestrainShipyardProject 対策で相殺しに行く done, safe, spawned = self.run_cancel(e=e, target_position=target_position) else: defender = e safe = True spawned = False elif MAX_HALITE <= a.free_halite + self.budget: someone_arrived = a.flags.get(I_FLAG_NEXT_SHIP_POSITION, i=self.i, j=self.j) if someone_arrived: a.reserve_shipyard(shipyard, None) # 誰かが帰還する safe = False a.log(loglevel='warning', s=f'id={self.project_id} cannot spawn because someone will return type B') elif ((self.spawn_step_threshold_final <= a.board.step) or (self.spawn_step_threshold <= a.board.step and a.scores[I_SCORE_HALITE_D4, self.i, self.j] < 1000. and 1 < len(a.board.current_player.shipyards))): # もう SPAWN するのは勿体ないので, 抑止力で祈る self.reserve_budget(MAX_HALITE - self.budget) a.reserve_shipyard(shipyard, None) safe = False a.log(f'prj={self.project_id} stop spawning because the shipyard is not tasty') else: self.reserve_budget(-self.budget) a.reserve_shipyard(shipyard, ShipyardAction.SPAWN) spawned = True safe = True a.log(f'prj={self.project_id} spawning to protect') someone_arrived = a.flags.get(I_FLAG_NEXT_SHIP_POSITION, i=self.i, j=self.j) if ((not spawned) and (not someone_arrived) and (MAX_HALITE <= a.free_halite + self.budget)): # 不要不急のspawn can_spawn = a.can_spawn(shipyard, budget=self.budget) if can_spawn: a.log(f'prj={self.project_id} unneeded spawn freeh{a.free_halite} budget{self.budget}') self.reserve_budget(-self.budget) a.reserve_shipyard(shipyard, ShipyardAction.SPAWN) spawned = True if defender: # デフォルト挙動 defender = self.swap_project(defender) self.shipyard_defender_strategy(defender) self.info['safe'] = safe a.log(s=f'id={self.project_id} run priority={self.priority} shipyard_info={self.info} ships={self.ships} spawned={spawned}') return True def swap_project(self, ship): """shipyard上待機が原因で味方をブロックしないように役割スワップを検討する""" a = self.agent shipyard = a.board.shipyards[self.shipyard_id] if shipyard.position != ship.position: return ship # 対象 ship が shipyard 上で守っているとき限定 if a.board.step - 1 <= self.last_swapped_step: # 連続してswapするとデッドロックしうるので回避 return ship to_sort = [] for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[ship.position])): if k_action == 0: continue ship_k = cell_k.ship if not ship_k: continue if ship_k.player_id != a.player_id: continue if 0 < ship_k.halite: continue project_id_k = a.belonging_project.get(ship_k.id, None) if project_id_k is None: continue project_k = a.projects.get(project_id_k, None) if project_k is None: continue target_position = None if project_id_k[:6] == 'escort': if project_k.target_ship_id in [ship.id, ship_k.id]: continue # 自分自身のescortは放置 target_ship = a.board.ships.get(project_k.target_ship_id, None) if target_ship is None: continue target_position = target_ship.position priority = 10.0 elif project_id_k[:4] == 'mine': target_position = project_k.position priority = 100.0 else: continue d_k = calculate_distance(ship_k.position, target_position) d = calculate_distance(ship.position, target_position) if d < d_k: priority += d_k to_sort.append((priority, ship_k.id, ship_k, project_k, target_position)) if not to_sort: return ship # join, dismiss 処理をする priority, swapped_ship_id, swapped_ship, project, target_position = sorted(to_sort, reverse=True)[0] ship_role = self.ships[ship.id] swapped_ship_role = project.ships[swapped_ship_id] self.dismiss_project(staff_ids=[ship.id]) project.dismiss_project(staff_ids=[swapped_ship_id]) self.join_project(staff_ids=[swapped_ship_id], role=ship_role) project.join_project(staff_ids=[ship.id], role=swapped_ship_role) if project.project_id[:4] == 'mine': # 取り巻きも Project移動しなければならない old_escort_project_id = f'escort{swapped_ship.id}' old_escort_project = a.projects.get(old_escort_project_id, None) ship_ids = [] if old_escort_project: ship_ids = list(old_escort_project.ships.keys()) old_escort_project.dismiss_project(staff_ids=ship_ids) new_escort_project_id = f'escort{ship.id}' new_escort_project = a.projects.get(new_escort_project_id, None) if new_escort_project: new_escort_project.join_project(staff_ids=ship_ids, role='defender') a.log(id_=ship.id, s=f'swapped. old_escort_prj={old_escort_project_id}({len(old_escort_project.ships)} new_escort_prj={new_escort_project_id}({len(new_escort_project.ships)})') a.log(id_=swapped_ship_id, s=f'swapped. old_escort_prj={old_escort_project_id}({len(old_escort_project.ships)} new_escort_prj={new_escort_project_id}({len(new_escort_project.ships)})') a.log(id_=ship.id, s=f'swapped. s{ship.id}(prj={a.belonging_project.get(ship.id, None)}) s{swapped_ship_id}({a.belonging_project.get(swapped_ship_id, None)}) dk{d_k} target{target_position}') a.log(id_=swapped_ship_id, s=f'swapped. s{ship.id}(prj={a.belonging_project.get(ship.id, None)}) s{swapped_ship_id}({a.belonging_project.get(swapped_ship_id, None)}) dk{d_k} target{target_position}') self.last_swapped_step = a.board.step return swapped_ship class RestrainShipyardProject(Project): """ NOTE: best agent does not use this project 敵のshipyardの隣に1ship常駐し、敵の動向を見る deposit防ぎつつ、相殺もされないのがベスト 無視してshipyard空けたり depositしてくるようならタイミング見計らって特攻する 相殺してくるようなら互いに損なので適度に逃げる メイン目的はHuntProjectの逃げ道防ぐ布石 """ def __init__(self, shipyard_id, *args, **kwargs): project_id = f'restrain_yd{shipyard_id}' super().__init__(*args, project_id=project_id, **kwargs) self.shipyard_id = shipyard_id self.shipyard = None self.shipyards[self.shipyard_id] = 'target_shipyard' self.zero_halite_positions = [] self.stop_canceled_count = [0, 0] self.move_canceled_count = [0, 0] self.d_max_camp_positon_from_ally_shipyard = 7 def feedback(self, shipyard): """味方が前いた位置に相殺しに来ているかをチェック""" a = self.agent if a.previous_board is None: return for ship_id, role in self.ships.items(): ship0 = a.previous_board.ships.get(ship_id, None) if ship0 is None: continue ship1 = a.board.ships.get(ship_id, None) vibrate_canceled = 0 stop_canceled = 0 if ship1 is None: vibrate_canceled = 1 stop_canceled = 1 cell1 = a.board.cells[ship0.position] if cell1.ship and cell1.ship.player_id == shipyard.player_id: stop_canceled = 1 if role == 'stop': self.stop_canceled_count[0] += stop_canceled self.stop_canceled_count[1] += 1 elif role == 'vibrate': self.vibrate_canceled_count[0] += vibrate_canceled self.vibrate_canceled_count[1] += 1 # 全体を見る if 2 <= a.opponent_history[self.shipyard.player_id]['cancel_against_shipyard_attack'][0]: self.stop_canceled_count[0] = max(1, self.stop_canceled_count[0]) self.stop_canceled_count[1] = max(1, self.stop_canceled_count[1]) def can_stop(self): if 0 < self.stop_canceled_count[0]: return False if self.d_max_camp_positon_from_ally_shipyard < self.d_ally_shipyard: return False return True def can_vibrate(self): if 0 < self.vibrate_canceled_count[0]: return False if self.d_max_camp_positon_from_ally_shipyard < self.d_ally_shipyard: return False return True def schedule(self): super().schedule() a = self.agent self.shipyard = a.board.shipyards.get(self.shipyard_id, None) if self.shipyard is None: return False self.feedback(self.shipyard) # HuntProjectで連携したいShipyardの方向を探す self.d_ally_shipyard = a.ally_shipyard_distances[self.shipyard_id]['min'] self.ally_shipyard = None for ally_shipyard_id_k, d_ally_shipyard_k in a.ally_shipyard_distances[self.shipyard_id].items(): if ally_shipyard_id_k == 'min': continue if d_ally_shipyard_k == self.d_ally_shipyard: self.ally_shipyard = a.board.shipyards.get(ally_shipyard_id_k, None) if self.ally_shipyard: break if self.ally_shipyard is None: self.priority = -1.0 return True # ally_shipyardから掘った opponent_ship が逃げていく方向 self.opponent_return_directions = np.zeros(LEN_MOVE, dtype=np.bool) self.dx = rotated_diff_position(self.ally_shipyard.position[0], self.shipyard.position[0]) self.dy = rotated_diff_position(self.ally_shipyard.position[1], self.shipyard.position[1]) if self.dx <= -2: self.opponent_return_directions[I_WEST] = True if 2 <= self.dx: self.opponent_return_directions[I_EAST] = True if self.dy <= -2: self.opponent_return_directions[I_SOUTH] = True if 2 <= self.dy: self.opponent_return_directions[I_NORTH] = True a.log(s=f'prj={self.project_id} ships={list(self.ships.keys())} d_ally_shipyard={self.d_ally_shipyard} op_return_dir{self.opponent_return_directions}') self.join_project(staff_ids=[self.shipyard_id], role='target_shipyard') # self.dismiss_project(staff_ids=list(self.ships.keys())) self.zero_halite_positions = [] self.opponent_working = False self.already_in_position = False has_neighbor_opponent_shipyard = False for x, y, d in neighbor_positions(d=2, p=self.shipyard.position): if d == 0: continue cell_i = a.board.cells[x, y] shipyard_i = cell_i.shipyard if shipyard_i and shipyard_i.player_id != self.shipyard.player_id: # shipyardが密集しているのでスルー has_neighbor_opponent_shipyard = True ship_i = cell_i.ship if ship_i and ship_i.player_id not in [a.player_id, self.shipyard.player_id]: # 他の敵が仕事している self.opponent_working = True if d == 1 and cell_i.halite < 1e-6: self.zero_halite_positions.append(Point(x=x, y=y)) if ship_i and ship_i.player_id == a.player_id: self.already_in_position = True if 10 < self.d_ally_shipyard: self.priority = -1.0 # 初期位置より遠いと牽制する気起きん elif has_neighbor_opponent_shipyard: self.priority = -1.0 # 過密地帯なので勝手に牽制し合っている # elif (not self.already_in_position) and opponent_working: # self.priority = -1.0 else: self.priority = len(self.zero_halite_positions) + 1. if self.priority < 0.0: self.dismiss_project(staff_ids=list(self.ships.keys())) a.log(id_=self.shipyard_id, s=f'prj={self.project_id} prio{self.priority} has_opyd={has_neighbor_opponent_shipyard} already_in_pos={self.already_in_position} op_working={self.opponent_working}') return True def restrain_ships_generator(self): a = self.agent for ship in a.empty_ships: if a.determined_ships.get(ship.id, None) is not None: continue project_id = a.belonging_project.get(ship.id, None) if project_id is None: yield ship elif project_id == self.project_id: yield ship def calculate_target_position(self): a = self.agent p0 = self.ally_shipyard.position p1 = self.shipyard.position positions = [p0] p = p0 for j in range(22): q = preference_move_to(p, p1) action = np.argmax(q) p = Point(x=mod_map_size_x(p[0] + DX[action]), y=mod_map_size_x(p[1] + DY[action])) positions.append(p) # a.log(s=f'prj={self.project_id} p{p} q{q} positions{positions}') if p == p1: break i = min(len(positions) - 2, self.d_max_camp_positon_from_ally_shipyard) a.log(s=f'prj={self.project_id} positions{positions} i{i}') return positions[i] def run(self): super().run() if self.priority < 0.0: return True a = self.agent # 自ship数が少ないときはやらない len_ships = len(a.board.current_player.ships) len_restrain_ships = 0 len_staffs = len(self.ships) restrain_ships = [] for staff_id, project_id in a.belonging_project.items(): if project_id is None: continue if staff_id not in a.board.current_player.ships: continue if project_id[:8] == 'restrain': len_restrain_ships += 1 restrain_ships.append((ship_id, project_id)) len_restrain_ships_allowed = max(0, (len_ships - 15) // 3) len_diff = len_restrain_ships_allowed - len_restrain_ships if len_diff <= 0: max_len_ships = len_staffs else: max_len_ships = max(0, min(1, len_diff)) if max_len_ships <= 0: return True target_position = self.calculate_target_position() a.log(s=f'prj={self.project_id} {target_position} len_ships{len_ships} len_restrain_ships{len_restrain_ships} len_staffs{len_staffs} len_restrain_ships_allowed{len_restrain_ships_allowed} len_diff{len_diff} max_len_ships{max_len_ships} restrain_ships{restrain_ships}') to_sort = [] opponent_ships = [] for opponent_ship in a.board.players[self.shipyard.player_id].ships: if opponent_ship.halite == 0: continue dx_opponent = rotated_diff_position(opponent_ship.position[0], self.shipyard.position[0]) dy_opponent = rotated_diff_position(opponent_ship.position[1], self.shipyard.position[1]) directions = np.zeros(LEN_MOVE, dtype=np.bool) if 0 < dy_opponent and self.opponent_return_directions[I_NORTH]: directions[I_NORTH] = True if 0 < dx_opponent and self.opponent_return_directions[I_EAST]: directions[I_EAST] = True if dy_opponent < 0 and self.opponent_return_directions[I_SOUTH]: directions[I_SOUTH] = True if dx_opponent < 0 and self.opponent_return_directions[I_WEST]: directions[I_WEST] = True if np.any(directions): opponent_ships.append((opponent_ship, dx_opponent, dy_opponent, directions)) a.log(s=f'prj={self.project_id}{self.shipyard.position} test_op{opponent_ship.id}{opponent_ship.position} dxo{dx_opponent} dyo{dy_opponent} dirs{directions}') for ship in self.restrain_ships_generator(): # ブロックできそうなshipはいる? d = calculate_distance(ship.position, target_position) # 正なら西にship, 東にshipyard dx = rotated_diff_position(ship.position[0], self.shipyard.position[0]) # 正なら南にship, 北にshipyard dy = rotated_diff_position(ship.position[1], self.shipyard.position[1]) score = 0 target_opponent_ship = None next_direction = None can_stop = a.board.cells[ship.position].halite < 3.99 condition = '' for opponent_ship, dx_opponent, dy_opponent, directions in opponent_ships: d_min_shipyard = a.opponent_shipyard_distances[opponent_ship.id]['min'] d_shipyard = a.opponent_shipyard_distances[opponent_ship.id][self.shipyard_id] if d_min_shipyard < d_shipyard: continue # 正なら西にally 東にop dx_ships = dx - dx_opponent # 正なら南にally 北にop dy_ships = dy - dy_opponent condition = f'dxs{dx_ships} dys{dy_ships}' abs_dx_ships = abs(dx_ships) abs_dy_ships = abs(dy_ships) if directions[I_NORTH] and 0 < dy < dy_opponent: # 北 shipyard ally op 南 if abs_dx_ships <= abs_dy_ships: # x軸合わせ間に合う score = 1 target_opponent_ship = opponent_ship condition += f' NORTH(' if abs_dx_ships == 0: condition += f' abs_dx_ships0' if 1 < abs_dy_ships: condition += f' 1<abs_dy_ships' next_direction = I_SOUTH elif can_stop: condition += f' can_stop' next_direction = I_MINE elif dx < 0: # 西にshipyard condition += f' dx<0' next_direction = I_WEST elif 0 < dx: # 東にshipyard condition += f' 0<dx' next_direction = I_EAST elif 1 < dy: condition += f' 1<dy' next_direction = I_NORTH else: # 運ゲー condition += f' good_luck' next_direction = I_EAST elif dx_ships < 0: # 西にop condition += f' dx_ships<0' next_direction = I_WEST else: condition += f' 0<dx_ships' next_direction = I_EAST condition += f')' break if directions[I_SOUTH] and dy_opponent < dy < 0: # 北 op ally shipyard 南 if abs_dx_ships <= abs_dy_ships: # x軸合わせ間に合う score = 1 target_opponent_ship = opponent_ship condition += f' SOUTH(' if abs_dx_ships == 0: condition += f' abs_dx_ships0' if 1 < abs_dy_ships: condition += f' 1<abs_dy_ships' next_direction = I_NORTH elif can_stop: condition += f' can_stop' next_direction = I_MINE elif dx < 0: # 西にshipyard condition += f' dx<0' next_direction = I_WEST elif 0 < dx: # 東にshipyard condition += f' 0<dx' next_direction = I_EAST elif dy < -1: condition += f' dy<-1' next_direction = I_SOUTH else: # 運ゲー condition += f' good_luck' next_direction = I_EAST elif dx_ships < 0: # 西にop condition += f' dx_ships<0' next_direction = I_WEST else: condition += f' 0<dx_ships' next_direction = I_EAST condition += f')' break if directions[I_WEST] and dx_opponent < dx < 0: # 東 op ally shipyard 西 if abs_dy_ships <= abs_dx_ships: # y軸合わせ間に合う score = 1 target_opponent_ship = opponent_ship condition += f' WEST(' if abs_dy_ships == 0: condition += f' abs_dy_ships0' if 1 < abs_dx_ships: condition += f' 1<abs_dx_ships' next_direction = I_EAST elif can_stop: condition += f' can_stop' next_direction = I_MINE elif dy < 0: # 南にshipyard condition += f' dy<0' next_direction = I_SOUTH elif 0 < dy: # 北にshipyard condition += f' 0<dy' next_direction = I_NORTH elif dx < -1: condition += f' dx<-1' next_direction = I_WEST else: # 運ゲー condition += f' good_luck' next_direction = I_NORTH elif dy_ships < 0: # 南にop condition += f' dy_ships<0' next_direction = I_SOUTH else: # 北にop condition += f' 0<dy_ships' next_direction = I_NORTH condition += f')' break if directions[I_EAST] and 0 < dx < dx_opponent: # 東 shipyard ally op 西 if abs_dy_ships <= abs_dx_ships: # y軸合わせ間に合う score = 1 target_opponent_ship = opponent_ship condition += f' EAST(' if abs_dy_ships == 0: condition += f' abs_dy_ships0' if 1 < abs_dx_ships: condition += f' 1<abs_dx_ships' next_direction = I_WEST elif can_stop: condition += f' can_stop' next_direction = I_MINE elif dy < 0: # 南にshipyard condition += f' dy<0' next_direction = I_SOUTH elif 0 < dy: # 北にshipyard condition += f' 0<dy' next_direction = I_NORTH elif 1 < dx: condition += f' 1<dx' next_direction = I_EAST else: # 運ゲー condition += f' good_luck' next_direction = I_NORTH elif dy_ships < 0: # 南にop condition += f' dy_ships<0' next_direction = I_SOUTH else: # 北にop condition += f' 0<dy_ships' next_direction = I_NORTH condition += f')' break to_sort.append((-score, d, dx, dy, ship.id, ship, target_opponent_ship, next_direction, condition)) if len(to_sort) == 0: return True to_sort = sorted(to_sort) negative_score, d, dx, dy, ship_id, ship, target_opponent_ship, next_direction, condition = to_sort[0] score = -negative_score opponent_ship_id = None if target_opponent_ship is None else target_opponent_ship.id a.log(id_=ship_id, s=f'prj={self.project_id} {target_position} score{score} d{d} dx{dx} dy{dy}, op{opponent_ship_id} next_dir{next_direction} op_return_dir{self.opponent_return_directions} {condition}') self.dismiss_project(staff_ids=list(self.ships.keys())) role = 'escape' if next_direction is None: # target_position へ移動する mode = 'escape' a.moving_ship_strategy(ship=ship, position=target_position, mode=mode, mine_threshold=None) else: mode = 'cancel' position = calculate_next_position(ship.position, next_direction) a.moving_ship_strategy(ship=ship, position=position, mode=mode, mine_threshold=None) self.join_project(staff_ids=[ship_id], role=role) return True class EscortProject(Project): """ 対象のshipを守りながら移動 対象自体は別Projectに属しているならそちら優先 None ならまとめて管理 (defender に逃げ道潰されるのを防ぐため) """ def __init__(self, target_ship_id, *args, defender_ship_id=None, **kwargs): self.target_ship_id = target_ship_id self.shipyard = None # target_shipが帰還する予定のshipyard self.nearest_shipyard_id = None # 同上 self.defender_ship_id = defender_ship_id self.is_final = False super().__init__(*args, project_id=f'escort{self.target_ship_id}', **kwargs) def has_myself(self): return self.target_ship_id in self.ships.keys() def schedule(self): super().schedule() self.shipyard = None a = self.agent target_ship = a.board.ships.get(self.target_ship_id, None) if not target_ship: return False i_target, j_target = position_to_ij(target_ship.position) project_id = a.belonging_project.get(self.target_ship_id, None) is_project_mine = ((project_id is not None) and (project_id[:4] == 'mine')) self.can_safely_deposit = False if 0 == target_ship.halite: # 普通護衛不要 if is_project_mine: self.priority = 0.001 else: self.priority = -1.0 self.can_safely_deposit = True elif self.ships.get(self.target_ship_id, None): # 自身が属している=帰還したい self.priority = (1.0 + target_ship.halite * 200) else: # 護衛のみ self.priority = (1.0 + target_ship.halite * 100) / 1000 self.shipyard, self.d_target_staff = a.find_nearest_ally_shipyard(target_ship.position) condition = '' if self.shipyard: self.target_staff = self.shipyard target_staff_id = self.target_staff.id if self.target_staff else None condition += 'shipyard' else: self.target_staff, self.d_target_staff = a.find_leader_ship(target_ship.position) condition += 'leader_ship' target_staff_id = self.target_staff.id if self.target_staff else None a.log(s=f'prj={self.project_id} {condition} target_staff_id={target_staff_id}') if self.shipyard and (not is_project_mine): # 間に合うか判定するのだが、 # mine目的の時は今間に合っても暫く掘ると間に合わないかもしれない d_to_shipyard = calculate_distance(target_ship.position, self.shipyard.position) i_shipyard, j_shipyard = position_to_ij(self.shipyard.position) opponent_reach_shipyard = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, i_shipyard, j_shipyard]) i_target, j_target = position_to_ij(target_ship.position) opponent_reach_target = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, i_target, j_target]) if d_to_shipyard < opponent_reach_shipyard: # 間に合う self.can_safely_deposit = True elif d_to_shipyard <= 6 and d_to_shipyard < opponent_reach_target + opponent_reach_shipyard: # shipyard の反対側っぽいのでおおよそ安全 a.log(id_=self.target_ship_id, s=f'{target_ship.position} EscortProject: target can ALMOST safely deposit to {self.shipyard.id}{self.shipyard.position}') self.can_safely_deposit = True original_defender_ship_id = self.defender_ship_id defender_ship = a.board.ships.get(self.defender_ship_id, None) if defender_ship: # 現職の検証 defender_ship_project_id = a.belonging_project.get(defender_ship.id, None) d = calculate_distance(defender_ship.position, target_ship.position) if (5 < d or 0 < defender_ship.halite or ((defender_ship_project_id is not None) and defender_ship_project_id != self.project_id)): # 不適当または雇えない self.dismiss_project(staff_ids=[self.defender_ship_id]) elif self.defender_ship_id: self.dismiss_project(staff_ids=[self.defender_ship_id]) if self.schedule_final(target_ship): self.is_final = True self.priority = 9999999.0 + target_ship.halite else: self.is_final = False if self.can_safely_deposit: # 一旦解散しつつpriority下げて様子見 self.priority *= 0.01 self.dismiss_project(staff_ids=list(self.ships.keys())) elif self.priority < 0.0: self.dismiss_project(staff_ids=list(self.ships.keys())) # a.log(id_=original_defender_ship_id, s=f'prj={self.project_id} prio{self.priority:.3f} def{self.defender_ship_id} belong{a.belonging_project.get(original_defender_ship_id, None)}') return True def update_defender_ship_id(self): self.defender_ship_id = None for ship_id, role in self.ships.items(): if role == 'defender': self.defender_ship_id = ship_id def join_project(self, *args, **kwargs): super().join_project(*args, **kwargs) self.update_defender_ship_id() def dismiss_project(self, *args, **kwargs): super().dismiss_project(*args, **kwargs) self.update_defender_ship_id() def schedule_final(self, target_ship): a = self.agent if a.board.step <= 359: return False if a.determined_ships.get(self.target_ship_id, None) is not None: return False # 1歩進むのに倍ぐらいかかると予想 # ラストescapeだと2手失うので1手余分に確保 steps = 1 + self.d_target_staff + max(0, self.d_target_staff - 3) if a.board.step + steps < 399: return False return True def run(self): super().run() a = self.agent target_project_id = a.belonging_project.get(self.target_ship_id, None) is_defense_shipyard_project = ((target_project_id is not None) and (target_project_id[:10] == 'defense_yd')) if self.priority < 0.0 or is_defense_shipyard_project: self.dismiss_project(staff_ids=list(self.ships.keys())) return True if self.defender_ship_id and a.determined_ships.get(self.defender_ship_id, None): return True # MineProject がrunしていることがある target_ship = a.board.ships[self.target_ship_id] determined = a.determined_ships.get(self.target_ship_id, None) if determined is None: # target_ship 未行動なら自身も加入させる self.join_project(staff_ids=[self.target_ship_id], role='target') defender = None if self.can_safely_deposit: # defender 不要 if self.defender_ship_id is not None: self.dismiss_project(staff_ids=[self.defender_ship_id]) else: if self.defender_ship_id is not None: # HuntProjectに奪われているかもしれないので検証 defender_ship_project_id = a.belonging_project.get(self.defender_ship_id, None) if ((defender_ship_project_id is not None) and defender_ship_project_id != self.project_id): self.defender_ship_id = None if self.defender_ship_id is not None: defender = a.board.ships[self.defender_ship_id] else: to_sort = [] for ship in self.ships_generator(with_free=True): if 0 < ship.halite: continue d = calculate_distance(ship.position, target_ship.position) if 5 < d: continue to_sort.append((ship, d, ship.id)) if not to_sort: # 誰もいませんでした if not self.is_final: return True else: to_sort = sorted(to_sort, key=itemgetter(1, 2)) defender = to_sort[0][0] self.defender_ship_id = defender.id if defender: self.join_project(staff_ids=[defender.id], role='defender') # target_ship を先に移動 if determined is None: mode = 'escape' mine_threshold = 3.99 if self.is_final: if target_ship.halite == 0 and 5 <= len(a.board.current_player.ships): # shipyard_attack opponents = [] for player_id in range(PLAYERS): if player_id != a.player_id: opponents.append(player_id) opponent_shipyard, d_opponent_shipyard = a.find_nearest_shipyard( target_ship.position, player_ids=opponents) if opponent_shipyard: target_position = opponent_shipyard.position mode = 'cancel' mine_threshold = None else: target_position = target_ship.position mode = 'escape' mine_threshold = None else: target_position = self.target_staff.position if 0 < target_ship.halite and self.d_target_staff <= 3: mode = 'merge' mine_threshold = None elif self.shipyard: target_position = self.shipyard.position elif defender: target_position = defender.position else: target_position = target_ship.position if 398 <= a.board.step and 500 < target_ship.halite and 1 < self.d_target_staff: a.reserve_ship(target_ship, ShipAction.CONVERT) a.log(id_=target_ship.id, s=f'h{target_ship.halite} convert at last turn') else: a.moving_ship_strategy( target_ship, position=target_position, mode=mode, mine_threshold=mine_threshold) a.log(id_=target_ship.id, s=f'{target_ship.position}->{target_position} by myself in EscortProject is_final={self.is_final} mode={mode}') else: target_position = None if defender: a.log(id_=defender.id, s=f'{defender.position} escort to {target_ship.id}{target_ship.position} is_final={self.is_final}') a.log(id_=target_ship.id, s=f'{target_ship.position} escorted by {defender.id}{defender.position} is_final={self.is_final}') qs = np.ones((LEN_MOVE, LEN_MOVE), dtype=np.float32) mode = 'escape' if determined is None and 0 < target_ship.halite: # 帰ろうとしているのでcancelも辞さない mode = 'cancel_without_shipyard' for i_action, cell_i in enumerate(a.neighbor_cells(a.board.cells[target_ship.position])): # cell_i: target_ship の次step移動先 # target_position_i: target_shipの目標移動先 if target_position: target_position_i = target_position else: target_position_i = cell_i.position # d_i = calculate_distance(defender.position, cell_i.position) target_d_i = calculate_distance(target_position_i, cell_i.position) # target_position よりも先回りする位置を目標地点とする to_sort_k = [] for k_action, cell_k in enumerate(a.neighbor_cells(cell_i)): target_d_k = calculate_distance(target_position_i, cell_k.position) d_k = calculate_distance(defender.position, cell_k.position) to_sort_k.append((target_d_k, d_k, k_action, cell_k)) target_d_k, d_k, k_action, cell_k = sorted(to_sort_k)[0] if d_k <= 1: # 目標地点到達するときは先回りしているので相殺してよい mode_i = mode else: # 遠いときはcancelしても効果が薄い mode_i = 'escape' q_i, forced = a.calculate_moving_ship_preference( ship=defender, position=cell_k.position, mode=mode_i, mine_threshold=None) a.log(id_=defender.id, s=f'[{i_action}{cell_i.position}] ka{k_action}{cell_k.position} tdk{target_d_k} dk{d_k} mode={mode_i}') qs[i_action, :] = q_i a.reserve_ship_by_q( ship=defender, q=qs, depend_on=target_ship) return True MINE_PRIORITY_BY_DISTANCE = [100.0 * (0.8**t) for t in range(99)] def mine_priority_by_distance(d): if 0 <= d < len(MINE_PRIORITY_BY_DISTANCE): return MINE_PRIORITY_BY_DISTANCE[d] return 0.0 class MineProject(Project): """ 位置を指定して掘る """ def __init__(self, position, *args, **kwargs): super().__init__(*args, project_id=f'mine_{position[0]}_{position[1]}', **kwargs) self.position = position self.i, self.j = position_to_ij(position) self.cell = None self.halite = 0.0 self.halite_threshold = 80.0 self.ally_reach = None self.empty_ally_reach = None self.ally_reach_v2 = None self.opponent_reach = None self.empty_opponent_reach = None self.opponent_reach_v2 = None self.elapsed_steps = 0 self.neighbor_empty_opponent_counter = 0 self.early_game_threshold = 50 # defender なしで project 成立するターン数 self.last_swapped_step = -1 self.last_mined_player_id = self.agent.player_id def run_miner(self, miner, forced=False): a = self.agent overwrite = False determined = a.determined_ships.get(miner.id, None) if determined is not None: overwrite = True if (not forced) or (determined != 'reserved'): a.log(loglevel='warning', id_=miner.id, s=f'prj={project_id} run_miner failed because determined{determined} or not forced') exit() return priority, ship_id, q, ship, forced_, depend_on = a.reserving_ships[miner.id] del a.reserving_ships[miner.id] else: priority = None depend_on = None previous_project_id = a.belonging_project.get(miner.id, None) if previous_project_id is None: self.join_project(staff_ids=[miner.id], role='miner') elif previous_project_id != self.project_id: self.join_project(staff_ids=[miner.id], role='miner', forced=True) miner_d = calculate_distance(miner.position, self.position) target_cell = a.board.cells[self.position] miner_cell = a.board.cells[miner.position] p_success = 1.0 if miner_d == 0: mode = 'mine' q, forced_ = a.calculate_moving_ship_preference( miner, position=self.position, mode=mode, mine_threshold=self.mining_halite_threshold) elif miner_d == 1: # 相殺で突っ込むべきか判断する opponent_exists = np.zeros(PLAYERS, dtype=np.int32) opponent_mining = False wait_opponent_mining = False for k_action, cell_k in enumerate(a.neighbor_cells(target_cell)): if cell_k.ship is None: continue ship_k = cell_k.ship if ship_k.player_id == a.player_id: continue if ship_k.halite < miner.halite: # 無理 a.log(s=f'prj={self.project_id} k{k_action} ship_k{ship_k.id} h{ship_k.halite}') self.d_halite = 0.0 return True if ship_k.halite == miner.halite: if k_action == 0: # 先着されているので待って追い出したい opponent_mining = True if miner_cell.halite <= 3.99 or (100. < miner_cell.halite < self.halite): # 掘りあったら有利 wait_opponent_mining = True a.log(id_=miner.id, loglevel='info', s=f'prj={self.project_id} k{k_action} ship_k{ship_k.id} th{self.halite} miner_cellh{miner_cell.halite} op_mining={opponent_mining} wait_op_mining={wait_opponent_mining}') opponent_exists[ship_k.player_id] = 1 p_stay = np.ones(PLAYERS, dtype=np.float32) # 敵が突っ込んでくる確率を見積り、nash均衡よりも高そうだったらnash均衡、そうでなければ突っ込む p_nash = both_move_to_halite_nash_equilibrium(target_cell.halite) for player_id in range(PLAYERS): if not opponent_exists[player_id]: continue t, u = a.opponent_history[ship_k.player_id].get('cancel_both_move_to_mine', [0, 0]) if u == 0: # 初手は様子見 p_stay[player_id] = 0.0 else: p_stay[player_id] = (u - t) / u p_opponent_go = 1.0 - np.prod(p_stay) if opponent_mining: # 掘らせておこう p_success = 0.0 elif p_opponent_go < 1e-6 + p_nash: # 敵は保守的なのでこっちはちょっと攻めよう p_success = 2.0 * p_nash else: # nash均衡にしておく p_success = p_nash if np.random.rand() < p_success: mode = 'cancel' else: mode = 'escape' if np.any(opponent_exists): a.log(id_=miner.id, s=f'prj={self.project_id} h{miner.halite} p_nash{p_nash:.6f} p_stay{p_stay} p_opponent_go{p_opponent_go:.6f} p_success{p_success:.6f} mode={mode} op_mining={opponent_mining} wait_op_mining={wait_opponent_mining}') if wait_opponent_mining: # 相殺覚悟で隣待ち mode = 'cancel' q, forced_ = a.calculate_moving_ship_preference( miner, position=miner.position, mode=mode, mine_threshold=3.99) else: q, forced_ = a.calculate_moving_ship_preference( miner, position=self.position, mode=mode, mine_threshold=self.mining_halite_threshold) elif miner_d == 2 and self.empty_opponent_reach == 0: # 相殺覚悟で突っ込みさっさと追い払う mode = 'cancel' q, forced_ = a.calculate_moving_ship_preference( miner, position=self.position, mode=mode, mine_threshold=None if miner.halite == 0 else 300.0) else: mode = 'escape' q, forced_ = a.calculate_moving_ship_preference( miner, position=self.position, mode=mode, mine_threshold=None if miner.halite == 0 else 300.0) a.reserve_ship_by_q(miner, q=q, forced=False, priority=priority, depend_on=depend_on) self.update_score() a.log(id_=miner.id, s=f'run_miner h{miner.halite} {miner.position}->{self.position} h{self.halite} prj={previous_project_id}->{self.project_id} prio{self.priority:.1f} noc{self.neighbor_empty_opponent_counter} h_thre{self.halite_threshold} mh_thre{self.mining_halite_threshold} mode={mode}') def swap_mine_project(self, miner, defender, escort_project): """ 役割スワップでターン節約 miner, reserved, old_minerの就職先, 新たなminerに対応するescort_project """ a = self.agent if a.board.step - 1 <= self.last_swapped_step: # 連続してswapするとデッドロックしうるので回避 a.log(s=f'swap failed. last_swapped_step{self.last_swapped_step}') return miner, False, self, escort_project # miner, defender, reserved, old_miner_project, old_defender_project defender_ship_id = defender.id if defender else None to_sort = [] d0 = calculate_distance(miner.position, self.position) condition = f'ground{self.position} miner_id={miner.id}{miner.position} d0={d0}' for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[miner.position])): if k_action == 0: continue ship_k = cell_k.ship if not ship_k: continue condition += f' [{k_action}] {ship_k.id}' determined = a.determined_ships.get(ship_k.id) reserved = None if determined is None: condition += f' not_reserved' reserved = False elif determined == 'reserved': condition += f' reserved' reserved = True else: condition += f' determined.' continue if ship_k.player_id != a.player_id: condition += f' p_diff.' continue if miner.halite != ship_k.halite: condition += f' h_diff.' continue # can_offerが一致するかわからないので金額を同じとき限定にしておく project_id_k = a.belonging_project.get(ship_k.id, None) condition += f' prj={project_id_k}' if project_id_k is None: continue project_k = a.projects.get(project_id_k, None) if project_k is None: condition += f' prj_not_found.' continue target_position = None new_mine_project_k = None if project_id_k == f'escort{miner.id}': # 自分自身をescortしているdefenderとの交換だけにする if (defender is None): condition += f' WARN_defender=None.' continue # 指定されているはずなんだが if (project_k.defender_ship_id is not None and project_k.defender_ship_id != defender_ship_id): condition += f' WARN_defender_ship_id={project_k.defender_ship_id}!={defender_ship_id}.' continue # 指定されているはずなんだが target_ship = a.board.ships.get(project_k.target_ship_id, None) if target_ship is None or target_ship.id != miner.id: condition += f' target_ship_not_found.' continue target_position = target_ship.position condition += f' target_ship{target_ship.id}{target_position}' priority = 10.0 elif project_id_k[:4] == 'mine': target_position = project_k.position condition += f' {target_position}' priority = 100.0 new_mine_project_k = project_k else: condition += f' unsuitable_prj' continue d_k = calculate_distance(ship_k.position, target_position) d0_k = calculate_distance(ship_k.position, self.position) d = calculate_distance(miner.position, target_position) condition += f' d0{d0} dk{d_k} d{d} d0k{d0_k}' if d0 + d_k < d + d0_k: condition += f' far.' priority += 1000. continue # 交換後合計が遠くなるならやらない elif d0 + d_k == d + d0_k and max(d0, d_k) <= max(d, d0_k): condition += f' imbal.' continue # 遠いほうの距離を減らしたい priority += d_k to_sort.append((priority, ship_k.id, ship_k, new_mine_project_k, target_position, reserved)) if not to_sort: a.log(id_=miner.id, s=f'prj={self.project_id} swap no_candidates. cond=({condition})') return miner, False, self, escort_project # join, dismiss 処理をする priority, swapped_ship_id, swapped_ship, new_mine_project, target_position, reserved = sorted(to_sort, reverse=True)[0] ship_role = self.ships[miner.id] self.dismiss_project(staff_ids=[miner.id]) if new_mine_project is None: # defenderとの交換 if defender and swapped_ship_id == defender_ship_id: # swapped_shipをtarget_shipとするescort_projectへ変更する escort_project = a.projects.get(f'escort{swapped_ship_id}', None) if escort_project: escort_project.join_project(staff_ids=[miner.id], role='defender') condition += f' join_to_escort_prj={escort_project.project_id}' return defender, False, escort_project, escort_project else: condition += ' WARN_new_mine_project=None swapped_ship_id{swapped_ship_id} defender_ship_id{defender_ship_id}.' a.log(id_=miner.id, s=f'prj={self.project_id} swap_failed. cond=({condition})') return miner, False, self, escort_project # miner 同士の交換 condition += ' minerXminer' swapped_ship_escort_project = a.projects.get(f'escort{swapped_ship_id}', None) swapped_defender = None if swapped_ship_escort_project: swapped_defender_ship_id = swapped_ship_escort_project.defender_ship_id swapped_defender = a.board.ships.get(swapped_defender_ship_id, None) if swapped_defender: condition += f' has_swapped_defender{swapped_defender_ship_id}_{a.belonging_project.get(swapped_defender_ship_id, None)}' else: condition += 'no_swapped_defender' if defender_ship_id: # 自分に護衛がいるなら、相手にも護衛が確定していないと相手だけ解散して無駄足になりうる condition += f'has_defender{defender_ship_id}' if not swapped_defender: condition += f' no_swapped_defender' a.log(id_=miner.id, s=f'prj={self.project_id} swap_failed. cond=({condition})') return miner, False, self, escort_project elif swapped_defender_ship_id: # 自分に護衛がいないなら、相手にも護衛がいないときだけにしておく return miner, False, self, escort_project swapped_ship_role = new_mine_project.ships[swapped_ship_id] new_mine_project.dismiss_project(staff_ids=[swapped_ship_id]) self.join_project(staff_ids=[swapped_ship_id], role=ship_role) new_mine_project.join_project(staff_ids=[miner.id], role=swapped_ship_role) condition += f' join_to_prj={new_mine_project.project_id}' a.log(id_=miner.id, s=f'prj={self.project_id} swapped. s{miner.id}(prj={a.belonging_project.get(miner.id, None)}) s{swapped_ship_id}({a.belonging_project.get(swapped_ship_id, None)}) d0{d0} dk{d_k} target{target_position} cond({condition})') a.log(id_=swapped_ship_id, s=f'prj={self.project_id} swapped. s{miner.id}(prj={a.belonging_project.get(miner.id, None)}) s{swapped_ship_id}({a.belonging_project.get(swapped_ship_id, None)}) d0{d0} dk{d_k} target{target_position} cond({condition})') self.last_swapped_step = a.board.step return swapped_ship, reserved, new_mine_project, swapped_ship_escort_project def mine_project_ships_generator(self, max_d): a = self.agent for ship in a.sorted_ships: if a.determined_ships.get(ship.id, None) is not None: continue d = calculate_distance(ship.position, self.position) if max_d < d: continue if d == 0 or 0 < ship.halite: neighbor_opponent_count = 0 for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[ship.position])): i_k, j_k = position_to_ij(cell_k.position) if 0.5 < a.scores[I_SCORE_EMPTY_OPPONENT_D2, i_k, j_k]: neighbor_opponent_count += 1 if 3 <= neighbor_opponent_count: # 囲まれそう continue if self.shipyard: nearest_shipyard, d_shipyard = a.find_nearest_shipyard(ship.position) if nearest_shipyard is not None and nearest_shipyard.id != self.shipyard.id: if len(a.ships_by_shipyard[nearest_shipyard.id]) <= 2: continue # 過疎地帯からは引っ張ってこない project_id = a.belonging_project.get(ship.id, None) if project_id is None: yield ship, d continue project = a.projects.get(project_id, None) if project is None: yield ship, d elif project_id == self.project_id: yield ship, d elif project_id[:4] == 'mine': # 距離近めでhalite十分に多かったら上書き可能とする d_other = calculate_distance(ship.position, project.position) dd = d - d_other threshold = 99999.0 if d <= d_other: threshold = 1.0 elif d <= d_other + 1: threshold = 70.0 elif d <= d_other + 2: threshold = 140.0 else: threshold = 99999.0 if project.d_halite + threshold < self.d_halite: a.log(f'prj={self.project_id} other_prj={project_id} d{d} d_other{d_other} dh{self.d_halite} dh_other{project.d_halite}') yield ship, d def update_score(self): a = self.agent if 0 == len(self.ships): return f = a.flags neighbor_positions = NEIGHBOR_POSITIONS[3][self.i, self.j] for i_k, j_k, d_k in neighbor_positions: if d_k < 2: f.set(I_FLAG_MINE_D2, i=i_k, j=j_k) if d_k < 3: f.set(I_FLAG_MINE_D3, i=i_k, j=j_k) if d_k < 4: f.set(I_FLAG_MINE_D4, i=i_k, j=j_k) def update_halite_threshold(self): a = self.agent step = a.board.step if a.previous_board: # 掘られたかチェック previous_cell = a.previous_board.cells[self.position] cell = a.board.cells[self.position] if cell.halite + 1e-6 < previous_cell.halite: if previous_cell.ship: self.last_mined_player_id = previous_cell.ship.player_id ally_d = 99999 opponent_d = 99999 condition = f'last_p{self.last_mined_player_id}' for shipyard in a.board.shipyards.values(): d = calculate_distance(self.position, shipyard.position) if shipyard.player_id == a.player_id: if d < ally_d: ally_d = d elif d < opponent_d: opponent_d = d danger_zone = a.scores[I_SCORE_DANGER_ZONE, self.i, self.j] hunt_zone = a.scores[I_SCORE_HUNT_ZONE_IN, self.i, self.j] condition += f' ally_d{ally_d} op_d{opponent_d} danger_zone{danger_zone:.0f} hunt_zone{hunt_zone:.0f}' nearest_ally_shipyard = a.nearest_ally_shipyard[self.i][self.j] if nearest_ally_shipyard: len_ships = len(a.ships_by_shipyard.get(nearest_ally_shipyard.id, [])) else: len_ships = 0 if ally_d <= opponent_d and danger_zone < 0.5: # 我々の土地 if 3 <= len_ships and 0.5 < hunt_zone and self.last_mined_player_id == a.player_id: if step < 20: self.halite_threshold = 200. elif step < 270: self.halite_threshold = 200.0 else: self.halite_threshold = 20.0 elif ally_d + 1 < opponent_d and ally_d <= 2 and self.last_mined_player_id == a.player_id: # shipyard至近距離 安全なので増やす if step < 20: self.halite_threshold = 140. elif step < 270: self.halite_threshold = 160.0 if ally_d <= 1 else 100.0 else: self.halite_threshold = 20.0 else: if step < 100: self.halite_threshold = 120. elif step < 200: self.halite_threshold = 70.0 elif step < 270: self.halite_threshold = 50.0 else: self.halite_threshold = 20.0 else: # 敵地なので吸いつくす if step < 100: self.halite_threshold = 100. elif step < 270: self.halite_threshold = 30.0 else: self.halite_threshold = 20.0 # 掘り始めたら1回余分に掘る self.mining_halite_threshold = self.halite_threshold * 0.7 condition += f' h_thre{self.halite_threshold} mh_thre{self.mining_halite_threshold}' return condition def calculate_minable_halite(self, advantage): a = self.agent halite = self.halite disadvantage = -min(0, advantage) remaining_halite = self.halite * (0.75**disadvantage) if self.halite_threshold < halite: return halite - self.mining_halite_threshold, 'enough_h' elif self.mining_halite_threshold < halite: # 掘り始めたらしっかり掘る ship = a.board.cells[self.position].ship if ship and ship.player_id == a.player_id and 0 < ship.halite: return halite - self.mining_halite_threshold, 'thre_h_ok' else: return 0.0, 'thre_h_ng' else: return 0.0, 'short_h' def schedule(self): super().schedule() a = self.agent self.maintain_dead_staffs() self.cell = a.board.cells[self.position] self.halite = self.cell.halite if self.halite < 1e-6: return False condition = '' self.priority = 1.0 self.shipyard, self.d_shipyard = a.find_nearest_shipyard(self.position) condition += self.update_halite_threshold() len_ships = len(a.board.current_player.ships) # 間に合わないなら掘らない if self.shipyard is None: condition += f' shipyard=None' if 389 < a.board.step: condition += f' 389<step.' self.priority = -1.0 elif len_ships <= 1 and a.board.current_player.halite < 2 * MAX_HALITE: # もう拠点を構えるのは不可能 condition += f' escape_only len_ships{a.len_ships}.' # a.log(loglevel='WARNING', s=f'cond({condition})') self.priority = -1.0 elif len_ships <= 1 and a.board.current_player.halite < 2 * MAX_HALITE: # 逃げたほうが良い # condition += f' escape_only_with_yd len_ships{a.len_ships}.' # a.log(loglevel='WARNING', s=f'cond({condition})') self.priority = -1.0 elif 399 < a.board.step + self.d_shipyard: condition += f' 399<step+{self.d_shipyard}.' self.priority = -1.0 elif not a.flags.get(I_FLAG_GO_HOME_STRAIGHT, i=self.i, j=self.j): # 迂回が必要なら優先度下げる condition += f' must_detour' self.priority *= 0.1 pass else: d_straight = calculate_distance(self.position, self.shipyard.position) detour_advantage = a.scores[I_SCORE_DETOUR_ADVANTAGE, self.i, self.j] condition += f' d_straight{d_straight} detour_adv{detour_advantage:.0f}' if 2 < d_straight and detour_advantage < -3.5: # 敵の強いところは避ける condition += ' detour_disadv' self.priority *= 0.1 # self.priority = -1.0 if self.priority < -1e-6: self.reset_project() a.log(f'prj={self.project_id} cond=({condition})') return True # shipyard無かったらどこかにできるかもしれないので継続 if 20 < self.elapsed_steps: # timeout 膠着状態かも condition += ' timeout' self.reset_project() # 敵とのレース self.ally_reach = int(1e-6 + a.scores[I_SCORE_ALLY_REACH, self.i, self.j]) self.empty_ally_reach = int(1e-6 + a.scores[I_SCORE_EMPTY_ALLY_REACH, self.i, self.j]) self.ally_reach_v2 = min(self.ally_reach + 1, self.empty_ally_reach) self.opponent_reach = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, self.i, self.j]) self.empty_opponent_reach = int(1e-6 + a.scores[I_SCORE_EMPTY_OPPONENT_REACH, self.i, self.j]) self.opponent_reach_v2 = min(self.opponent_reach + 1, self.empty_opponent_reach) condition += f' a{self.ally_reach}_ea{self.empty_ally_reach}_o{self.opponent_reach}_eo{self.empty_opponent_reach}' if self.opponent_reach_v2 <= self.ally_reach_v2: # 敵が同時/先に着く場合、掘られた後 empty_ship で場所を取り返す advantage = -max(1, self.empty_ally_reach - 1 - self.opponent_reach) condition += f' op_territory' else: advantage = 0 self.d_halite, condition_t = self.calculate_minable_halite(advantage) condition += f' adv{advantage} hth{self.halite_threshold} mth{self.mining_halite_threshold} dh{int(self.d_halite)} {condition_t}' if self.d_halite < 1e-6: self.priority = -1.0 else: self.priority *= self.d_halite # 近いほど優先度高い ally_reach = int(1e-6 + a.scores[I_SCORE_ALLY_REACH, self.i, self.j]) self.priority *= mine_priority_by_distance(self.ally_reach) if a.board.step < 2: self.priority = -1.0 condition += ' too_early_game' has_neighbor_empty_opponent = False for i_action, cell_i in enumerate(a.neighbor_cells(self.cell)): shipyard = cell_i.shipyard if shipyard and shipyard.player_id != a.player_id: # 敵shipyardの隣は優先度下げる self.priority *= 0.1 ship = cell_i.ship if not ship: continue if ship.player_id == a.player_id: if i_action != 0: continue project_id = a.belonging_project.get(ship.id, None) # if project_id == self.project_id or project_id is None: # 既に掘れるなら優先度上げる (他の移動に邪魔されないようにするため, ただしreserving_ships実装してからはこれだけだと不十分) # pass # ally_reach でもう上げている elif i_action == 0: # 敵に先着された condition += ' op_reach' # self.priority = -1.0 elif ship.halite == 0: condition += ' op_neighbor' has_neighbor_empty_opponent = True if has_neighbor_empty_opponent: self.neighbor_empty_opponent_counter += 1 # if 3 <= self.neighbor_empty_opponent_counter: # self.priority = -1.0 # お見合い膠着回避 else: self.neighbor_empty_opponent_counter = 0 if self.priority < 0.0: condition += ' failed' self.reset_project() a.log(f'prj={self.project_id} schedule prio{self.priority:.1f} cond=({condition}) h_thre{self.halite_threshold}') return True def reset_project(self): self.elapsed_steps = 0 if self.ships: self.dismiss_project(staff_ids=list(self.ships.keys())) def can_offer(self, ship_halite, d): """あんまりhalite量が多いならjoinさせない""" a = self.agent if ship_halite == 0: advantage = self.opponent_reach_v2 - d self.d_halite, condition = self.calculate_minable_halite(advantage=advantage) # あんまり遠いならjoinさせない return d <= 8 and 4.9 < self.d_halite if 1000. < ship_halite and 0 < d: return False advantage = self.opponent_reach - d - 1 if 0 < advantage: self.d_halite = self.halite * (1.0 - (0.75 ** advantage)) return True self.d_halite = self.halite * 0.25 if d == 0: # もうちょっと詳しくチェックする opponent_halite = int(1e-6 + a.scores[I_SCORE_MIN_NEIGHBOR_OPPONENT_HALITE, self.i, self.j]) return ship_halite < opponent_halite elif d == 1: opponent_halite = 99999 for x_k, y_k, d_k in neighbor_positions(d=2, p=self.position): cell_k = a.board.cells[x_k, y_k] ship_k = cell_k.ship if ship_k is None: continue if ship_k.player_id == a.player_id: continue opponent_halite = min(ship_k.halite, opponent_halite) return ship_halite < opponent_halite return False def is_current_ship_mining(self): a = self.agent cell = a.board.cells[self.position] if (cell.ship and cell.ship.player_id == a.player_id): determined = a.determined_ships.get(cell.ship.id, None) a.log(s=f'prj={self.project_id} is_current_ship_mining s{cell.ship.id} determined={determined}') if determined is None: pass elif determined == 'reserved': q = a.reserving_ships[cell.ship.id][2] if len(q.shape) == 2: max_i_action = np.argmax(q[0]) else: max_i_action = np.argmax(q) if max_i_action == 0: return True else: next_action = determined[0] if (next_action is None) or (next_action == I_MINE): return True return False def should_have_defender(self, d_shipyard): a = self.agent # o0 = a.previous_len_opponent_ships // 5 d_threshold = [99999, 6, 5, 4, 3] o1 = min(max(0, a.len_opponent_ships - 30) // 5, len(d_threshold) - 1) a.log(f'prj={self.project_id} should_have_defender d_yd{d_shipyard} o1{o1} d_thre{d_threshold[o1]}') return d_threshold[o1] < d_shipyard def run(self): super().run() a = self.agent if self.priority < 0.0: return True # 一旦解放 self.dismiss_project(staff_ids=list(self.ships.keys())) # 他のProject (例えばDefenseShipyardProject)で掘っていることがある if self.is_current_ship_mining(): a.log(s=f'prj={self.project_id} is_current_ship_mining is True') return True len_ships = len(a.board.current_player.ships) if len_ships < 4: i_flag = I_FLAG_MINE_D4 max_d = [8, 1] elif len_ships < 8: i_flag = I_FLAG_MINE_D4 max_d = [12, 2] elif len_ships < 10: i_flag = I_FLAG_MINE_D4 max_d = [16, 2] elif len_ships < 20: i_flag = I_FLAG_MINE_D3 max_d = [22, 1] else: i_flag = I_FLAG_MINE_D2 max_d = [22, 1] if a.flags.get(i_flag, i=self.i, j=self.j): i_max_d = 1 else: i_max_d = 0 to_sort = [] for ship, d in self.mine_project_ships_generator(max_d[i_max_d]): escorted_count = 0 escort_project = a.projects.get(f'escort{ship.id}', None) if escort_project: for ship_id in escort_project.ships: if ship_id == ship.id: continue escorted_count += 1 to_sort.append((ship, d, -escorted_count, -ship.halite, ship.id)) miner = None miner_d = 99999 defender = None for i, (ship, d, negative_escorted_count, negative_halite, ship_id) in enumerate(sorted(to_sort, key=itemgetter(1, 2, 3, 4))): halite = abs(negative_halite) if not self.can_offer(ship_halite=halite, d=d): continue if miner is None: miner = ship miner_d = d elif halite == 0: if d <= miner_d + 3: # 護衛候補が遠すぎるならいないのと同じ defender = ship break if not miner: # a.log(s=f'prj={self.project_id} no miner max_d[{i_max_d}]{max_d[i_max_d]} len(to_sort){len(to_sort)}') self.d_halite = 0.0 return True # 人員確保できませんでした shipyard, d_shipyard = a.find_nearest_shipyard(self.position) if shipyard is None: defender = None escort_project = None elif not self.should_have_defender(d_shipyard): defender = None escort_project = None else: # 中盤以降の遠征では defender 必須 escort_project = a.projects[f'escort{miner.id}'] if escort_project.defender_ship_id is None: if not defender: a.log(s=f'prj={self.project_id} miner{miner.id} no defender') self.d_halite = 0.0 return True escort_project.defender_ship_id = defender.id escort_project.join_project(staff_ids=[defender.id], role='defender') else: defender = a.board.ships[escort_project.defender_ship_id] defender_id = defender.id if defender else None a.log(id_=miner.id, s=f'd_yd={d_shipyard} defender{defender_id}') self.join_project(staff_ids=[miner.id], role='miner') old_miner = miner miner, reserved, old_miner_project, escort_project = self.swap_mine_project(miner, defender, escort_project) if old_miner_project.project_id == self.project_id: # かわりませんでした self.run_miner(miner) elif escort_project and old_miner_project.project_id == escort_project.project_id: # 護衛と交代しました defender = old_miner self.run_miner(miner) else: # MineProject 同士で交換しました self.run_miner(miner, forced=True) if reserved: old_miner_project.run_miner(old_miner) else: pass # old_miner は向こうのrunに任せる if escort_project: # old_miner に対する defender も一緒に動かしてしまう escort_project.schedule() # miner を join_project してから実行すること escort_project.run() defender_ship_id = escort_project.defender_ship_id defender = a.board.ships.get(defender_ship_id, None) a.log(f'miner={miner.id} old_miner={old_miner.id} defender={defender_id}') if defender: a.log(id_=defender_ship_id, s=f'{defender.position} hired by prj={self.project_id}, old_miner{old_miner.id}{old_miner.position} escort_project{escort_project.project_id} prio{escort_project.priority} defprj={a.belonging_project.get(defender_ship_id, None)}') a.log(id_=old_miner.id, s=f'{old_miner.position} hire defender{defender_ship_id} to escort prio{escort_project.priority} defprj={a.belonging_project.get(defender_ship_id, None)}') self.elapsed_steps += 1 return True # MineProject end class ExpeditionProject(Project): """ オイシイ土地へ遠征する 現状CONVERTする前提 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.target_position = None self.early_game_threshold = 50 self.halite_threshold = None self.mine_threshold_before_convert = 50.0 self.last_converted_position = None self.ship_per_neighbor_positions = [None] * LEN_MOVE self.shipyard_halite_threshold = 1500. def schedule(self): super().schedule() a = self.agent self.maintain_dead_staffs() len_ships = len(a.board.current_player.ships) len_shipyards = len(a.board.current_player.shipyards) max_len_opponent_ships = np.max([len(a.board.players[player_id].ships) for player_id in range(PLAYERS)]) if self.last_converted_position: shipyard = a.board.cells[self.last_converted_position].shipyard if shipyard and shipyard.player_id == a.player_id: # 前ターンにこの ExpeditionProject によって作った project_id = f'defense_yd{shipyard.id}' project = a.projects.get(project_id, None) if project: budget = self.budget self.reserve_budget(-self.budget) project.reserve_budget(min(a.free_halite, MAX_HALITE)) a.log(id_=shipyard.id, s=f'hand over budget {self.project_id}={budget} -> {project_id}={project.budget}') else: a.log(loglevel='warning', s=f'prj={self.project_id} hand over failed. {project_id} not found yd{shipyard.id}{shipyard.position}') pass # 一旦解散 return False if a.board.step < 2 or 300 <= a.board.step: return False if a.board.step < a.last_shipyard_attacked_step + 50: self.priority = -1.0 # 陥落したので控える elif (2 <= a.board.step < self.early_game_threshold) and (len_shipyards <= 1): self.priority = 1e8 elif (2 <= a.board.step < 200) and (len_shipyards <= 2) and (len_shipyards * 7 <= len_ships): self.priority = 1e8 elif (self.early_game_threshold <= a.board.step) and (len_shipyards * 6 <= len_ships) and (25000. < a.world_halite or 300.0 < a.halite_per_ship): # 敵が狩りタイプばっかりだと中盤起こる self.priority = 1e8 elif len_shipyards <= 10 and len_shipyards * 4 < len_ships and max_len_opponent_ships <= len_ships: self.priority = 1e6 elif self.ships: self.priority = 1e6 else: self.priority = -1.0 # if 0.0 < self.priority and 3 <= len_shipyards: # 4軒目以降は控えめ # self.reserve_budget(-self.budget) # self.priority = 100.0 # self.halite_threshold = max(1400., 0.8 * a.best_scores[I_SCORE_HALITE_D4]) return True def is_mining_convert_position(self): # convert予定地のmineを開始しているか mining_convert_position = False a = self.agent if self.target_position and a.previous_board: cell = a.board.cells[self.target_position] if cell.ship and cell.ship.player_id == a.player_id: previous_cell = a.previous_board.cells[self.target_position] mining_convert_position = (cell.halite < previous_cell.halite) return mining_convert_position def expedition_ships_generator(self): a = self.agent for ship in a.sorted_ships: if a.determined_ships.get(ship.id, None) is not None: continue project_id = a.belonging_project.get(ship.id, None) if project_id is None: yield ship continue elif project_id[:4] == 'hunt': continue elif project_id[:10] == 'defense_yd': continue yield ship def search_target_position(self): """ self.target_positionを設定 """ a = self.agent queue = Queue() visited = np.zeros((2, COLS, ROWS), dtype=np.bool) best_score = -1.0 best_position = None best_d = None best_ship = None for ship in self.expedition_ships_generator(): is_empty_ship = 1 if ship.halite == 0 else 0 queue.put((ship.position, 0, is_empty_ship, ship)) budget_sufficient = (MAX_HALITE * 2 <= a.free_halite + self.budget) # 幅優先探索 sup_d = 11 best_score = 1.0 best_position = None best_ship = None best_d = 0 min_best_d = None while not queue.empty(): position, d, is_empty_ship, ship = queue.get() if sup_d <= d: break if visited[is_empty_ship, position[0], position[1]]: continue visited[:is_empty_ship+1, position[0], position[1]] = True score = self.calculate_shipyard_position_score(position, min_best_d, d, is_empty_ship) if best_score < score: best_score = score best_position = position best_ship = ship best_d = d if min_best_d is None: min_best_d = d a.log(f'prj={self.project_id} score_updated. d{best_d} score{score:.1f} {position} s{best_ship.id} h{best_ship.halite}') for x2, y2, d2 in neighbor_positions(1, position): d3 = d + d2 if (sup_d <= d3) or visited[is_empty_ship, x2, y2]: continue queue.put(((x2, y2), d3, is_empty_ship, ship)) self.set_target_position(best_position) if best_ship: best_ship_id = best_ship.id self.join_project(staff_ids=[best_ship.id], role='leader', forced=True) else: best_ship_id = None self.d_leader = best_d a.log(s=f'search_target_position={best_position}, leader={best_ship_id} d={best_d} score={best_score}') def set_target_position(self, target_position=None): self.target_position = target_position def calculate_shipyard_position_score(self, position, min_best_d, d, is_empty_ship): a = self.agent i, j = position_to_ij(position) if (not is_empty_ship) or a.board.step < self.early_game_threshold: opponent_reach = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, i, j]) if opponent_reach - 2 <= d: return 0.0 # 敵に邪魔されず CONVERT, SPAWN できる距離限定 if 0.5 < a.scores[I_SCORE_ALLY_SHIPYARD_D7, i, j]: return 0.0 # 近所に作るのはやめよう if 0 < a.len_shipyards: if 0.5 < a.scores[I_SCORE_OPPONENT_SHIPYARD_D6, i, j]: return 0.0 # 近所に作るのはやめよう score_candidates = a.scores[I_SCORE_SHIPYARD_CANDIDATES, i, j] future_hunt_zone = a.scores[I_SCORE_FUTURE_HUNT_ZONE, i, j] score_hunt_zone = 1.0 + 0.15 * future_hunt_zone if min_best_d is None: score_gamma = 1.0 else: score_gamma = 0.9 ** (d - min_best_d) score_opponent_shipyard_d4 = 1 / max(1.0, a.scores[I_SCORE_OPPONENT_SHIPYARD_D4, i, j]) score = score_candidates * score_hunt_zone * score_gamma * score_opponent_shipyard_d4 # a.log(f'prj={self.project_id} {position} d{d} sc_c{score_candidates:.0f} sc_hz{score_hunt_zone:.1f} sc_g{score_gamma:.5f} sc_opyd{score_opponent_shipyard_d4:.0f} sc{score:.1f}') if score < 0.6 * self.shipyard_halite_threshold: return 0.0 # 周囲の halite が足りないなら避けよう elif score < self.shipyard_halite_threshold: # 微妙なライン if 200 < a.board.step: return 0.0 if 0.5 < a.scores[I_SCORE_OPPONENT_SHIPYARD_D4, i, j]: return 0.0 # 敵の近所に作るのはやめよう if -10.5 < a.scores[I_SCORE_DETOUR_ADVANTAGE, i, j]: return 0.0 # 遠征だけにしておこう elif 0.5 < a.scores[I_SCORE_OPPONENT_SHIPYARD_D3, i, j]: return 0.0 # 敵の近所に作るのはやめよう return score def leader_ship_strategy(self, ship, d): a = self.agent a.log(id_=ship.id, s=f'prj={self.project_id} leader d{d}') condition = None if d == 0: # convert予定地 i_, j_ = position_to_ij(ship.position) opponent_reach = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, i_, j_]) safely_convert_without_spawn = 0 for ship_id_c in self.ships.keys(): if ship_id_c == ship.id: continue d_c = a.ally_ship_distances[ship.id][ship_id_c] if (d_c < opponent_reach) or ( (d_c == opponent_reach) and (0 == a.board.ships[ship_id_c].halite)): safely_convert_without_spawn = 1 break sufficient_budget = ((2 - safely_convert_without_spawn) * MAX_HALITE <= self.budget + ship.halite) if ((a.board.cells[ship.position].halite < self.mine_threshold_before_convert or a.scores[I_SCORE_REACH_ADVANTAGE, i_, j_] < 2.5) and sufficient_budget): self.reserve_budget(-max(0, MAX_HALITE - ship.halite)) a.reserve_ship(ship, ShipAction.CONVERT) self.last_converted_position = ship.position condition = 'convert' else: a.moving_ship_strategy(ship, position=self.target_position, mode='mine', mine_threshold=4.0) condition = 'target_reached_mine' else: a.moving_ship_strategy(ship, position=self.target_position, mode='escape', mine_threshold=None) condition = 'move_to_target' if self.last_converted_position: i_action = I_CONVERT else: i_action = I_MINE self.ship_per_neighbor_positions[i_action] = ship a.log(id_=ship.id, s=f'prj={self.project_id} leader {self.target_position} a{i_action} cond({condition})') def coworker_ship_strategy(self, ship, d, leader_ship): a = self.agent best_position = None to_sort = [] for k_action, cell_k in enumerate(a.neighbor_cells(a.board.cells[self.target_position])): if self.ship_per_neighbor_positions[k_action] is not None: continue d_k = calculate_distance(ship.position, cell_k.position) steps_k = d_k - d + 2 # 遠いほど掘れるstep数は減る mine_threshold_k = None halite_k = None priority = None if cell_k.halite < 1e-6: priority = 0.0 else: mine_project = a.projects.get(f'mine_{cell_k.position[0]}_{cell_k.position[1]}', None) if mine_project: mine_threshold_k = mine_project.halite_threshold if mine_project.ships: priority = -100.0 mine_threshold_k = None else: mine_threshold_k = 40.0 if mine_threshold_k: halite_k = cell_k.halite - mine_threshold_k priority = halite_k / steps_k if k_action == 0: priority = -1.0 if self.last_converted_position: # leaderはこのstepでconvertしてくる if 0 < ship.halite: priority = 10003.0 # convertと同時にdepositしたい else: # 同時ガード必要? i_, j_ = position_to_ij(cell_k.position) opponent_reach = int(1e-6 + a.scores[I_SCORE_OPPONENT_REACH, i_, j_]) if d == 1 and opponent_reach <= 1: priority = 10001.0 elif d <= opponent_reach and (self.budget + leader_ship.halite < 2 * MAX_HALITE): priority = 10002.0 a.log(id_=ship.id, s=f'prj={self.project_id} coworker k{k_action}{cell_k.position} prio{priority} h{cell_k.halite} halite_k{halite_k} steps_k{steps_k} budget{self.budget}') to_sort.append([priority, k_action, mine_threshold_k, cell_k]) if not to_sort: priority = None target_position = self.target_position k_action = I_MINE mine_threshold_k = None else: priority, k_action, mine_threshold_k, cell_k = sorted(to_sort, key=itemgetter(0, 1), reverse=True)[0] target_position = cell_k.position self.ship_per_neighbor_positions[k_action] = ship if (ship.position == target_position and mine_threshold_k is not None): mode = 'mine' else: mode = 'escape' preference, forced = a.calculate_moving_ship_preference( ship, position=target_position, mode=mode, mine_threshold=mine_threshold_k) q = np.ones(LEN_MOVE) * preference a.reserve_ship_by_q(ship=ship, q=q, forced=forced, depend_on=leader_ship) a.log(id_=ship.id, s=f'prj={self.project_id} coworker {self.target_position}{k_action}->{target_position} prio{priority}') def run(self): super().run() self.last_converted_position = None if self.priority < 0.0: return False a = self.agent # 予算(CONVERT & SPAWN)と人員の確保 # if len(a.board.current_player.shipyards) <= 2: self.reserve_budget(min(a.free_halite, 2 * MAX_HALITE - self.budget)) # else: # 4軒目以降は保守的 # self.reserve_budget(-self.budget) # if a.free_halite < 4 * MAX_HALITE: # return True self.dismiss_project(staff_ids=list(self.ships.keys())) self.search_target_position() if self.target_position is None: return False len_staffs = len(self.ships) to_sort = [] for ship in self.ships_generator(with_free=True): d = calculate_distance(self.target_position, ship.position) if 0 < d and 0 < ship.halite and self.early_game_threshold <= a.board.step: continue # 中盤以降は原則 empty_ship if self.d_leader + 5 < d: # あんまり遠いならスルー continue to_sort.append((d, -ship.halite, ship.id, ship)) max_staffs = 1 if a.board.step < 50 else 2 to_sort = sorted(to_sort)[:max_staffs - len_staffs] staff_ids = list(map(itemgetter(2), to_sort)) a.log(s=f'prj={self.project_id} target_position={self.target_position} ships={list(self.ships.keys())}+{staff_ids}') # ここから実際に作戦を実行 leader_ship = None for ship_id, role in self.ships.items(): if role == 'leader': leader_ship = a.board.ships.get(ship_id, None) self.leader_ship_strategy(ship=leader_ship, d=self.d_leader) break a.log(s=f'prj={self.project_id} leader{leader_ship.id} staff_ids{staff_ids}') self.join_project(staff_ids=staff_ids, role='coworker') self.ship_per_neighbor_positions = [None] * (LEN_MOVE + 1) for i, (d, negative_halite, ship_id, ship) in enumerate(to_sort): self.coworker_ship_strategy(ship=ship, d=d, leader_ship=leader_ship) return True class HuntProject(Project): """狩り""" def __init__(self, target_ship_id, *args, **kwargs): super().__init__(*args, project_id=f'hunt{target_ship_id}', **kwargs) self.target_ship_id = target_ship_id self.max_staffs = 6 self.max_d = 3 self.center_direction = [] def schedule(self): super().schedule() a = self.agent self.target_ship = a.board.ships.get(self.target_ship_id, None) if self.target_ship is None: # もう死んだ return False self.priority = 1e4 if self.target_ship.halite == 0: self.priority = -1.0 # 生きている限りproject自体は存続 self.opponent_safe_direction = 0x1F p0 = self.target_ship.position cell = a.board.cells[p0] cells = a.neighbor_cells(cell) for k_action, cell_k in enumerate(cells): # 敵にとって安全な移動はあるか? for l_action, cell_l in enumerate(a.neighbor_cells(cell_k)): ship_l = cell_l.ship if (ship_l is None) or ship_l.player_id == self.target_ship.player_id: continue if ship_l.halite < self.target_ship.halite: self.opponent_safe_direction &= ~(1 << k_action) break if self.opponent_safe_direction < 0: defender_count = 0 # 周囲の護衛が多かったらあきらめる for x_k, y_k, d_k in neighbor_positions(d=2, p=self.target_ship.position): cell_k = a.board.cells[x_k, y_k] ship_k = cell_k.ship if (ship_k is None) or (ship_k.player_id != self.target_ship.player_id) or (0 < ship_k.halite): continue defender_count += 1 if 2 <= defender_count: self.priority = -1.0 self.dx_limit = [-self.max_d, self.max_d] self.dy_limit = [-self.max_d, self.max_d] # indexを守るこちらのshipにとって、左右どちらへ行きがちかの情報 # 例: self.opponent_tend_to_move[I_SOUTH] == I_WEST の場合、南南西に敵shipyardがあるイメージ self.opponent_tend_to_move = [None] * LEN_MOVE for shipyard in a.board.players[self.target_ship.player_id].shipyards: dx = rotated_diff_position(self.target_ship.position[0], shipyard.position[0]) dy = rotated_diff_position(self.target_ship.position[1], shipyard.position[1]) abs_dx = abs(dx) abs_dy = abs(dy) if abs_dx <= abs_dy: if dy <= 0 and self.dy_limit[0] <= dy + 1: # 南へ行きたい self.dy_limit[0] = dy + 1 if dx < 0: self.opponent_tend_to_move[I_SOUTH] = I_WEST elif 0 < dx: self.opponent_tend_to_move[I_SOUTH] = I_EAST if 0 <= dy and dy - 1 <= self.dy_limit[1]: # 北へ行きたい self.dy_limit[1] = dy - 1 if dx < 0: self.opponent_tend_to_move[I_NORTH] = I_WEST elif 0 < dx: self.opponent_tend_to_move[I_NORTH] = I_EAST if abs_dy <= abs_dx: if dx <= 0 and self.dx_limit[0] <= dx + 1: # 西へ行きたい self.dx_limit[0] = dx + 1 if dy < 0: self.opponent_tend_to_move[I_WEST] = I_SOUTH elif 0 < dy: self.opponent_tend_to_move[I_WEST] = I_NORTH if 0 <= dx and dx - 1 <= self.dx_limit[1]: # 東へ行きたい self.dx_limit[1] = dx - 1 if dy < 0: self.opponent_tend_to_move[I_EAST] = I_SOUTH elif 0 < dy: self.opponent_tend_to_move[I_EAST] = I_NORTH if not self.assign_candidates(): # 再構成 self.priority = -1.0 if self.priority < 0.0: self.dismiss_project(staff_ids=list(self.ships.keys())) return True def assign_candidates(self): if self.priority < 0.0: return False previous_roles = copy.deepcopy(self.ships) def get_ship_info_for_debug(a_): return list(map(lambda u: f'{u.id}{u.position}', a_)) def get_ship_info_for_debug_2(a_): a2 = [] for t in a_: a2.append(get_ship_info_for_debug(t)) return a2 def get_ship_info_for_debug_3_1(a_): return list(map(lambda u: f'{u[0].id}{u[0].position}', a_)) def get_ship_info_for_debug_3(a_): a2 = [] for t in a_: a2.append(get_ship_info_for_debug_3_1(t)) return a2 a = self.agent self.dismiss_project(staff_ids=list(self.ships.keys())) p0 = self.target_ship.position count = 0 dp_index = [0] * 9 candidates = [[] for _ in range(9)] # limitターン敵が全力で一方向へ逃げた時に追いつくか north_position = Point( x=p0[0], y=mod_map_size_x(p0[1] + self.dy_limit[1])) east_position = Point( x=mod_map_size_x(p0[0] + self.dx_limit[1]), y=p0[1]) south_position = Point( x=p0[0], y=mod_map_size_x(p0[1] + self.dy_limit[0])) west_position = Point( x=mod_map_size_x(p0[0] + self.dx_limit[0]), y=p0[1]) a.log(id_=self.target_ship_id, s=f'{p0} n{north_position} e{east_position} s{south_position} w{west_position} dx_limit{self.dx_limit} dy_limit{self.dy_limit}') for ship in a.sorted_ships: # hunt assign が現状最優先なので、他のproject事情を無視する if a.determined_ships.get(ship.id, None): continue # もう行動されていたらさすがに覆さない project_id = a.belonging_project.get(ship.id, None) if project_id and project_id != self.project_id and project_id[:4] == 'hunt': continue # 他の hunt project if self.target_ship.halite <= ship.halite: continue dx = rotated_diff_position(p0[0], ship.position[0]) dy = rotated_diff_position(p0[1], ship.position[1]) abs_dx = abs(dx) abs_dy = abs(dy) m = 0 d_north = calculate_distance(north_position, ship.position) if d_north <= self.dy_limit[1]: m |= (1 << I_NORTH) d_east = calculate_distance(east_position, ship.position) if d_east <= self.dx_limit[1]: m |= (1 << I_EAST) d_south = calculate_distance(south_position, ship.position) if d_south <= abs(self.dy_limit[0]): m |= (1 << I_SOUTH) d_west = calculate_distance(west_position, ship.position) if d_west <= abs(self.dx_limit[0]): m |= (1 << I_WEST) previous_role = int(previous_roles.get(ship.id, -1)) original_m = m im = None if 0 < m: # 前回やっていた守備範囲を尊重する if I_NORTH <= previous_role and (m & (1 << previous_role)): m = (1 << previous_role) im = DIRECTION_MAPPING[m] if im < I_NORTH_EAST: dp_index[im] = 1 else: dp_index[im] = min(2, dp_index[im] + 1) candidates[im].append(ship) count += 1 # a.log(id_=self.target_ship_id, s=f'assign_candidates 0 s{ship.id}{ship.position} dn{d_north} de{d_east} ds{d_south} dw{d_west} m{m} origm{original_m} prerole{previous_role} im{im}') # a.log(id_=self.target_ship_id, s=f'assign_candidates 1 count{count} candidates{get_ship_info_for_debug_2(candidates)}') if count < 5: return False # 斜めshipの方角割り当ては超面倒なのでHUNT_DPに事前計算してある diag_distribution = HUNT_DP[dp_index[1], dp_index[2], dp_index[3], dp_index[4], dp_index[5], dp_index[6], dp_index[7], dp_index[8]] # a.log(id_=self.target_ship_id, s=f'assign_candidates 2 diag_distribution{diag_distribution}') if diag_distribution[0] == HUNT_IMPOSSIBLE: return False # 8方向から4方向へ削減する candidates2 = [[] for _ in range(LEN_MOVE)] for direction, ships in enumerate(candidates): if not ships: continue ships_d = [(ship, calculate_distance(p0, ship.position)) for ship in ships] if direction < I_NORTH_EAST: candidates2[direction] += ships_d continue diag = direction - I_NORTH_EAST strategy = diag_distribution[diag] if strategy == 5: # 双方向 if len(ships) <= 1: a.log(loglevel='warning', s=f'strategy == 5. len(ships)={len(ships)}') candidates2[DIAG_DIRECTIONS[diag][0]].append(ships_d[0]) candidates2[DIAG_DIRECTIONS[diag][1]] += ships_d[1:] else: candidates2[strategy] += ships_d # [5, 8] ships 決定する key_fn = lambda t: t[1] * 10000 + t[0].halite min_d = 99999 min_direction = None to_sort = [] for direction in range(1, LEN_MOVE): c = sorted(candidates2[direction], key=key_fn) len_c = len(c) if 0 == len_c: c1 = get_ship_info_for_debug_2(candidates) c2 = get_ship_info_for_debug_3(candidates2) a.log(logloevel='warning', s=f'direction={direction} ship candidate not found target{self.target_ship.position} c1={c1} c2={c2} diag_distribution={diag_distribution} dp_index={dp_index}') continue for j in range(2): if len_c <= j: break ship_j, d_j = c[j] pre_project = a.belonging_project.get(ship_j.id, None) self.join_project(staff_ids=[ship_j.id], role=str(direction), forced=True) post_project = a.belonging_project.get(ship_j.id, None) # a.log(id_=self.target_ship_id, s=f'assign_candidates 3 {ship_j.id}{ship_j.position} prerole{previous_roles.get(ship_j.id, -1)} role{self.ships.get(ship_j.id)} preprj={pre_project} postprj={post_project}') to_sort.append([ship_j, d_j, ship_j.id]) if 0 < j: # 遠いほうのshipがカバーできる方から中央へ攻める if d_j < min_d: min_d = d_j min_direction = direction if min_direction is None: c1 = get_ship_info_for_debug_2(candidates) c2 = get_ship_info_for_debug_3(candidates2) a.log(loglevel='warning', s=f'min_ship not found. c1={c1} c2={c2}') self.center_direction = int(min_direction) self.sorted_ships = sorted(to_sort, key=itemgetter(1, 2)) def ships_to_log(): a_ = [] for ship_id, role in self.ships.items(): a_.append(f'{ship_id}{a.board.ships[ship_id].position}={role}') return a_ a.log(id_=self.target_ship_id, s=f'assign_candidates 4 target{self.target_ship.id}{self.target_ship.position} ships{ships_to_log()} center{self.center_direction}') return True def run(self): super().run() if self.priority < 0.0: return True a = self.agent p0 = self.target_ship.position cell = a.board.cells[p0] cells = a.neighbor_cells(cell) center_ship_id = None opponent_safe_direction = self.opponent_safe_direction positions = [] checkmate_count = 0 for ship, d, ship_id in self.sorted_ships: role_s = self.ships.get(ship_id, None) if role_s is None: # EscortProject final にとられていることがある continue role = int(role_s) i, j = position_to_ij(ship.position) cell_r = cells[role] get_halite = int((1e-6 + cell_r.halite) * 0.25) last_stop = self.target_ship.halite <= ship.halite + get_halite p1 = cell_r.position # 1手詰めの目標地点 p2 = p1 # それ以外の目標地点 p_checkmate = cell_r.position # p1 は片方軸合わせしただけのことがあるので checkmate 判定では使えない should_challenge = False # tend = self.opponent_tend_to_move[role] mask_ns = (1 << I_NORTH) | (1 << I_SOUTH) mask_ew = (1 << I_EAST) | (1 << I_WEST) if role == I_NORTH: if ship.position[0] == p1[0]: # x座標はあっている if ship.position[1] != p1[1] or 0 == get_halite or (0 < ship.halite and (not last_stop)): pass # 普通に目標地点向かって距離詰めたり停止すればOK elif (opponent_safe_direction & mask_ew) == (1 << I_EAST): # 東は安全だから東行くっしょ p2 = cell_r.east.position elif (opponent_safe_direction & mask_ew) == (1 << I_WEST): # 西は安全だから西行くっしょ p2 = cell_r.west.position elif self.dy_limit[1] <= 1: # こちらが追い詰められている should_challenge = True else: # 後退して時間稼ぎ p2 = cell_r.north.position else: # 先にx座標を合わせる p1 = Point(x=p0[0], y=ship.position[1]) p2 = p1 elif role == I_EAST: if ship.position[1] == p1[1]: # y座標はあっている if ship.position[0] != p1[0] or 0 == get_halite or (0 < ship.halite and (not last_stop)): pass # 普通に目標地点向かって距離詰めたり停止すればOK elif (opponent_safe_direction & mask_ns) == (1 << I_NORTH): # 北は安全だから北行くっしょ p2 = cell_r.north.position elif (opponent_safe_direction & mask_ns) == (1 << I_SOUTH): # 南は安全だから南行くっしょ p2 = cell_r.south.position elif self.dx_limit[1] <= 1: # こちらが追い詰められている should_challenge = True else: # 後退して時間稼ぎ p2 = cell_r.east.position else: # 先にy座標を合わせる p1 = Point(x=ship.position[0], y=p0[1]) p2 = p1 elif role == I_SOUTH: if ship.position[0] == p1[0]: # x座標はあっている if ship.position[1] != p1[1] or 0 == get_halite or (0 < ship.halite and (not last_stop)): pass # 普通に目標地点向かって距離詰めたり停止すればOK elif (opponent_safe_direction & mask_ew) == (1 << I_EAST): # 東は安全だから東行くっしょ p2 = cell_r.east.position elif (opponent_safe_direction & mask_ew) == (1 << I_WEST): # 西は安全だから西行くっしょ p2 = cell_r.west.position elif -1 <= self.dy_limit[0]: # こちらが追い詰められている should_challenge = True else: # 後退して時間稼ぎ p2 = cell_r.south.position else: # 先にx座標を合わせる p1 = Point(x=p0[0], y=ship.position[1]) p2 = p1 elif role == I_WEST: if ship.position[1] == p1[1]: # y座標はあっている if ship.position[0] != p1[0] or 0 == get_halite or (0 < ship.halite and (not last_stop)): pass # 普通に目標地点向かって距離詰めたり停止すればOK if (opponent_safe_direction & mask_ns) == (1 << I_NORTH): # 北は安全だから北行くっしょ p2 = cell_r.north.position elif (opponent_safe_direction & mask_ns) == (1 << I_SOUTH): # 南は安全だから南行くっしょ p2 = cell_r.south.position elif -1 <= self.dx_limit[0]: # こちらが追い詰められている should_challenge = True else: # 後退して時間稼ぎ p2 = cell_r.west.position else: # 先にy座標を合わせる p1 = Point(x=ship.position[0], y=p0[1]) p2 = p1 if (center_ship_id is None) and (role == self.center_direction): center_ship_id = ship.id if ship.position == p1: p1 = p0 p2 = p0 p_checkmate = p0 self.ships[ship.id] = str(I_MINE) d_r = calculate_distance(ship.position, p_checkmate) if d_r <= 1: bit_flag = (1 << int(self.ships[ship.id])) checkmate_count |= bit_flag # a.log(id_=self.target_ship_id, s=f'ship{ship.id}{ship.position} bit_flag{bit_flag} checkmate{checkmate_count}') positions.append((ship, p1, p2, d_r, last_stop, should_challenge)) for ship, p1, p2, d_r, last_stop, should_challenge in positions: if 0x1F == checkmate_count or should_challenge: p = p1 mine_threshold = 3.99 else: p = p2 if d_r <= 1 and 0 < ship.halite and (not last_stop): mine_threshold = 3.99 else: mine_threshold = None a.log(id_=self.target_ship_id, s=f'p0{p0} s{ship.id}{ship.position}->p1{p1}/p2{p2} checkmate{checkmate_count} p{p} role{self.ships[ship.id]} center{self.center_direction} center_ship{center_ship_id} should_challenge={should_challenge} safe_dir{opponent_safe_direction}') a.moving_ship_strategy(ship, position=p, mode='cancel_without_shipyard', mine_threshold=mine_threshold) return True class MyAgent(object): def __init__(self, player_id, *args, verbose, **kwargs): self.player_id = player_id self.verbose = verbose self.flags = FlagsManager() self.scores = np.zeros((N_SCORE_TYPES, ROWS, COLS), dtype=np.float32) self.best_scores = np.zeros(N_SCORE_TYPES, dtype=np.float32) self.best_score_cells = [None] * N_SCORE_TYPES self.initial_phase_step = 20 self.spawn_step_threshold = 200 # + 50 * self.player_id self.greedily_spawn_step_threshold = 50 # + 50 * self.player_id self.len_ships_threshold = 57 self.len_ships_threshold_weak = 99 #3 # weak用 self.opponent_history = [ { 'defense_against_shipyard_attack': [0, 0], 'deposit_against_shipyard_attack': [0, 0], 'cancel_against_shipyard_attack': [0, 0], 'stop_shipyard_neighbor': [0, 0], # cancel (相殺) 系は empty_ship だけ計上する FUGA 'cancel_any': [0, 0], 'cancel_both_move_to_mine': [0, 0], # おいしい土地かつ敵が真上にいない所に突っ込むか 'cancel_move_to_mining_opponent': [0, 0], # 敵が掘っているところへ突っ込む 'cancel_to_mine_here': [0, 0], # 掘るために相殺覚悟 'cancel_with_rob_chance': [0, 0], # rob優先した結果相殺したっぽい 'shipyard_attacked': [0, 0], # 実際にshipyard破壊された回数 } for i in range(4)] self.last_shipyard_attacked_step = -999 self.opponent_history_queue = [] self.board = None self.previous_board = None self.previous_len_opponent_ships = 3 self.belonging_project = {} # key is ship_id or shipyard_id, value is project_id self.projects = {} # key is project_id, value is Project self.log_step = -1 self.logs = {} self.reserving_ships = {} def dismiss_project(self, project_id, staff_ids): assert isinstance(project_id, str) project = self.projects.get(project_id, None) if project is None: return # staffを解雇 for staff_id in staff_ids: assert isinstance(staff_id, str) self.belonging_project[staff_id] = None if staff_id in project.ships: del project.ships[staff_id] if staff_id in project.shipyards: del project.shipyards[staff_id] def join_project(self, project_id, staff_ids, role='no_role', forced=False): assert isinstance(project_id, str) project = self.projects.get(project_id, None) if project is None: return for staff_id in staff_ids: assert isinstance(staff_id, str) previous_project_id = self.belonging_project.get(staff_id, None) if (previous_project_id is not None) and (project_id != previous_project_id): if not forced: self.log(loglevel='warning', s=f'p{self.player_id} staff_id={staff_id} join to {project_id} but it already belongs to {self.belonging_project[staff_id]}') previous_project = self.projects.get(previous_project_id, None) if previous_project: previous_project.dismiss_project(staff_ids=[staff_id]) self.belonging_project[staff_id] = project_id maybe_ship = self.board.ships.get(staff_id, None) if maybe_ship: project.ships[staff_id] = role maybe_shipyard = self.board.shipyards.get(staff_id, None) if maybe_shipyard: project.shipyards[staff_id] = role def log(self, s, step=None, id_=None, indent=0, loglevel='DEBUG'): if not self.verbose: return level = getattr(logging, loglevel.upper()) if level < logging.DEBUG: return prefix = '' if 0 < indent: prefix += ' ' * indent if step is None: step = self.board.step prefix += f'step{step} ' if self.log_step != step: self.logs.clear() self.log_step = step if id_ is not None: prefix += f'id{id_} ' if id_ not in self.logs: self.logs[id_] = [] if (self.verbose & 4) == 4: self.logs[id_].append(f'{prefix}{s}') if ((self.verbose & 4) == 4) or ((self.verbose & 1) == 1 and logging.DEBUG < level): easy_log(f'{prefix}{s}', loglevel=loglevel) def update_opponent_history(self): if self.previous_board is None: self.log(step=self.board.step, id_=None, s=f'update_opponent_history: previous_board is None') return # 初手は処理しない # defense_against_shipyard_attack, deposit_against_shipyard_attack # stop_shipyard_neighbor for previous_shipyard in self.previous_board.shipyards.values(): player_id = previous_shipyard.player_id position = previous_shipyard.position previous_cell = self.previous_board.cells[position] cell = self.board.cells[position] shipyard = cell.shipyard result = None # 0: 守ってない, 1: 守っている, None: 無効 depositor_result = None # 0: depositしなかった, 1: deposit強行した, None: 無効かdepositorいない cancel_result = None # 0: 安全に相殺できるのにしなかった 1: 相殺した None: その他 shipyard_attacked_result = None # 0=1: shipyard_attackで破壊されたshipyard数 attackers = [] empty_attackers = [] dead_empty_attackers = [] defender_candidates = [] defenders = [] depositors = [] dead_depositors = [] min_attacker_halite = 99999 for previous_cell_i in self.neighbor_cells(previous_cell): ship = previous_cell_i.ship if ship is None: pass elif ship.player_id == player_id: defender_candidates.append(ship) else: attackers.append(ship.id) current_ship = self.board.ships.get(ship.id, None) if ship.halite == 0: empty_attackers.append(ship.id) if current_ship: attacker_result = 1 if (current_ship.position == ship.position) else 0 self.opponent_history[ship.player_id]['stop_shipyard_neighbor'][0] += attacker_result self.opponent_history[ship.player_id]['stop_shipyard_neighbor'][1] += 1 else: dead_empty_attackers.append(ship.id) min_attacker_halite = min(ship.halite, min_attacker_halite) if 0 == len(attackers): # 脅威などなかった continue for candidate in defender_candidates: if candidate.halite <= min_attacker_halite: defenders.append(candidate.id) else: depositors.append(candidate.id) if self.board.ships.get(candidate.id, None) is None: dead_depositors.append(candidate.id) if shipyard is None: result = 0 if dead_depositors: depositor_result = 1 # 正確ではないが多分そうでしょ elif depositors: depositor_result = 0 shipyard_attacked_result = 1 elif dead_empty_attackers: # 相殺した どちらが攻めたのかが問題となる if cell.ship: # shipyard側が攻めたの確定 cancel_result = 1 # depositors が帰還しているなら守っているわけではない if cell.ship.id in depositors: result = 0 depositor_result = 1 else: # 守りも盤石 result = 1 if depositors: depositor_result = 0 else: # どこで相殺したか不明 意味合いも変わるので放置 pass elif cell.ship: # attackerに動きなし 膠着状態か, deposit強行したか if cell.ship.id in depositors: result = 0 depositor_result = 1 else: # 戻ったのはdefender result = 1 if depositors: # deposit できるチャンスの時だけ統計加算 depositor_result = 0 else: # attackerに動きなし shipyardは守られていない result = 0 if depositors: depositor_result = 0 # 少なくとも deposit はしてない if (len(defenders) == 0) and self.previous_board.players[player_id].halite < MAX_HALITE: # halite 足りないときは spawn できないに決まっているので無視 result = None if result is not None: # 分子: 守った回数 self.opponent_history[player_id]['defense_against_shipyard_attack'][0] += result # 分母: 試行回数 self.opponent_history[player_id]['defense_against_shipyard_attack'][1] += 1 if depositor_result is not None: self.opponent_history[player_id]['deposit_against_shipyard_attack'][0] += depositor_result self.opponent_history[player_id]['deposit_against_shipyard_attack'][1] += 1 if cancel_result is not None: self.opponent_history[player_id]['cancel_against_shipyard_attack'][0] += cancel_result self.opponent_history[player_id]['cancel_against_shipyard_attack'][1] += 1 if shipyard_attacked_result is not None: self.opponent_history[player_id]['shipyard_attacked'][0] += shipyard_attacked_result self.opponent_history[player_id]['shipyard_attacked'][1] += 1 if player_id == self.player_id: self.last_shipyard_attacked_step = self.board.step for ship_id, previous_ship in self.previous_board.ships.items(): ship = self.board.ships.get(ship_id, None) player_id = previous_ship.player_id if ship is None: self.log(id_=ship_id, s=f'{previous_ship.position} h{previous_ship.halite} p{player_id} dead') pass if 0 < previous_ship.halite: continue # ひとまず empty_ship だけ調べる # 分母は cancel おきえたか (merge, shipyard_attackは考えない) can_cancel = [False] * LEN_MOVE can_rob = [False] * LEN_MOVE ground_halite = np.zeros(LEN_MOVE, dtype=np.float32) empty_opponent = np.zeros(LEN_MOVE, dtype=np.bool) move_to_cancel_position = False move_to_rob_position = False mine_here = False i_action = None i_action_candidates = np.zeros(LEN_MOVE, dtype=np.bool) # ship いなくなってしまった時に相殺対象がいうる方向 for k_action, cell_k0 in enumerate(self.neighbor_cells(self.previous_board.cells[previous_ship.position])): ground_halite[k_action] = cell_k0.halite for l_action, cell_l0 in enumerate(self.neighbor_cells(self.previous_board.cells[cell_k0.position])): if not cell_l0.ship: continue if cell_l0.ship.player_id == player_id: continue if cell_l0.ship.halite == 0: can_cancel[k_action] = True if l_action == 0: empty_opponent[k_action] = True else: can_rob[k_action] = True ship_l1 = self.board.ships.get(cell_l0.ship.id, None) if ship_l1 is None: i_action_candidates[k_action] = True # 現在board cell_k1 = self.board.cells[cell_k0.position] if k_action == 0: if (not cell_k0.shipyard) and (cell_k1.shipyard): i_action = I_CONVERT elif cell_k0.ship and cell_k0.ship.player_id != player_id and cell_k0.ship.halite == 0: empty_opponent[k_action] = True if cell_k1.ship and cell_k1.ship.id == ship_id: i_action = k_action if i_action == I_CONVERT: continue if ship is None: if not any(i_action_candidates): continue # mergeとかshipyard_attack(含spawn相殺)と思われる # 複数候補あり正確なところがわからないので、保守的な戦略をとっている # (なにかメリットあるところへ相殺しにいった) と仮定する move_to_cancel_position = True move_to_rob_position = any(can_rob) else: i_action_candidates[:] = False i_action_candidates[i_action] = True move_to_cancel_position = can_cancel[i_action] move_to_rob_position = can_rob[i_action] for k_action in range(LEN_MOVE): # cancel しうる場所にしか興味ない if not can_cancel[k_action]: can_rob[k_action] = False ground_halite[k_action] = 0.0 if any(can_cancel): self.opponent_history[player_id]['cancel_any'][1] += 1 if move_to_cancel_position: # self.log(id_=ship_id, s=f'can_cancel{can_cancel} a{i_action}') self.opponent_history[player_id]['cancel_any'][0] += 1 if any(can_rob): self.opponent_history[player_id]['cancel_with_rob_chance'][1] += 1 if move_to_cancel_position: # self.log(id_=ship_id, s=f'can_rob{can_rob} a{i_action}') self.opponent_history[player_id]['cancel_with_rob_chance'][0] += 1 if 1e-6 < ground_halite[I_MINE]: self.opponent_history[player_id]['cancel_to_mine_here'][1] += 1 if i_action_candidates[I_MINE]: self.opponent_history[player_id]['cancel_to_mine_here'][0] += 1 ground_halite[I_MINE] = 0.0 # あとは移動だけなので用済み # 分母増加の halite threshold は保守的にしておく has_ground_halite = 200.0 <
np.array(ground_halite, dtype=np.float32)
numpy.array
# Copyright 2020-present, Netherlands Institute for Sound and Vision (<NAME>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import cv2 import matplotlib.pyplot as plt import numpy as np def mask_clusters(arr, delta_angle): """ Createas a boolean array where clusters are interuptted with an if statement Parameters: ------------------------ arr: np array contains sorted (angle) values, shape [#num_lines, 1] delta_angle: int what is the furthest angle to yield a match? Note that the matches are first filtered on angle and only then on length Returns: bool_arr: pandas DataFrame a boolean array with the same shape as arr """ arr = list(arr) # get just the numbers of the array in the list bool_arr = [] start_cluster_val = arr[0] # first element starts the cluster for cluster_element in arr: if abs(cluster_element - start_cluster_val) <= delta_angle: bool_arr.append(True) else: bool_arr.append(False) start_cluster_val = cluster_element bol_arr = np.array(bool_arr).reshape(-1,1) return bol_arr def apply_hough(img, threshold=100, minLineLength=150, maxLineGap=30): """ Applies the probabilistic Hough transform on the given img with given parameters. Parameters have to be adjusted for the resolution of the image and charactertistics of the input image. The high-res images are recommened to be scaled down to no more than 1500 pixels on the longest dimension as the transform doesn not perform well for higher res images Example parameters that proved to be working in different settings: params_low_res_hough_prob = {"threshold": 100, "minLineLength":150, "maxLineGap":30} # use in case large images (more than 1000 pixels in width/heigh) # for images around 500 pixels width/lentgh params_high_res_hough_prob = {"threshold": 200, "minLineLength":150, "maxLineGap":25} # use in case large images (more than 1000 pixels in width/heigh) # for images around 1000 pixels width/length Parameters: ---------------------------- img: np.array img in the form of a numpy array threshold: int The minimum number of intersections in hough space to "detect" a line. higher -> less lines minLineLength: int the minimum number of points that can form a line. Lines with less than this number of points are disregarded. higher -> less lines maxLineGap: int The maximum gap between two points to be considered in the same line. higher -> more lines Returns: hough_lines: np.array A 3 dimensional array of format [num_lines, 1, 4]. The last dimension stroes x_start, y_start , x_end, y_end of a line. """ rho_resolution = 1 # the discretization parameter for rho: not recommended to change theta_resolution = np.pi / 180 # the discretization parameter for theta: not recommended to change blurred_image = cv2.GaussianBlur(img, (5, 5), 0) # filter out week lines. Bigger filters apply more blure -> less lines edges_image = cv2.Canny(blurred_image, 50, 120, None, apertureSize=3) # applying Canny on the blurred image. hough_lines = cv2.HoughLinesP(edges_image, rho_resolution, theta_resolution, threshold, None, minLineLength, maxLineGap) return hough_lines def get_angle(hough_lines, radians=False): """ Calculates the angle of each line wrt. to the image plain. Parameters: ------------------- hough_lines: np.array A 3 dimensional array of format [num_lines, 1, 4]. The last dimension stroes x_start, y_start , x_end, y_end of a line. radians: bool Whether to use radians. If False, uses degrees (better for numerical stability). Returns: ------------------- out: np.array Array of shape [num_lines, 1] storing the angle of each line. Note that the degrees fall in range [-90,90] degrees. """ if radians: return np.arctan2(hough_lines[:, :, 3] - hough_lines[:, :, 1], hough_lines[:, :, 2] - hough_lines[:, :, 0]) else: return np.arctan2(hough_lines[:, :, 3] - hough_lines[:, :, 1], hough_lines[:, :, 2] - hough_lines[:, :, 0]) * 180 / np.pi # better for numerical stability def plot_lines(img, hough_lines): """ Plots the hough_lines on the orginal image and displays it next to the orginal image. Used in Jupyter Notebook for inspection. Can be modified to save the figure. Parameters: ------------------- img: np.array img in the form of a numpy array hough_lines: np.array A 3 dimensional array of format [num_lines, 1, 4]. The last dimension stroes x_start, y_start , x_end, y_end of a line. Returns: none """ original_image_with_hough_lines = img.copy() cmap = "gray" if img.shape[-1] == 3 else None for i in range(0, len(hough_lines)): l = hough_lines[i][0] cv2.line(original_image_with_hough_lines, (l[0], l[1]), (l[2], l[3]), (0, 0, 255), 3, cv2.LINE_AA) plt.figure(figsize=(15, 10)) plt.subplot(121), plt.imshow(img) plt.subplot(122), plt.imshow(original_image_with_hough_lines, cmap=cmap) class matchingObjects: """ Stores frequently accessed information about the images and contains methods useful for line fitting. Attributes: -------------------- path: str if file is read from directory, path stores that directory img: np.array stores the image in the RGB fashion margin: int defines how much the borders should be clipped. Useful for old images that have black borders resulting in fake line detections shape: np.array stores shape of the image scale: float the scaling factor compared to the original image lines: np.array strores the x_start,y_start, x_end, y_end corrdinates of the line in the image with a given scale and margin (not the orignal image) angle: np.array stores the angle of the detcted lines corresponding to the lines at the same index as in the "lines" atrribute slope: np.array stores the slope of the detcted lines corresponding to the lines at the same index as in the "lines" atrribute. Not used -> commented out. length: stores the length of the detcted lines corresponding to the lines at the same index as in the "lines" atrribute Methods: ------------------- hough_lines(self, radians = False, **kwargs): Applies probabilistic hough transform and calculates the characteristics of found lines rank_and_pick_lines(self, delta_angle = 1, max_lines = None): Filters out lines having similiar angles (taking the longest line out of the "similiar ones") to later limit the dimensionality of the database of lines. """ def __init__(self, path=None, margin=50, img=None, scale=1): """ Parameters: ----------------- path: str if file is read from directory, path stores that directory. If supplied, img is expected to be none. margin: int defines how much the borders should be clipped. Useful for old images that have black borders resulting in fake line detections. Remeber to adjust your margin with scale! scale: float the scaling factor compared to the original image img: np.array stores the image in the RGB fashion. If supplied, path is expected to be none. """ self.scale = scale if img is None: # read in the image from path self.path = path if margin > 0: # deals with black borders that result in many fake line detections self.img = plt.imread(self.path)[margin:-margin, margin:-margin] else: self.img = plt.imread(self.path) elif path is None: # np array image is provided self.path = None if margin > 0: # deals with black borders that result in many fake line detections self.img = img[margin:-margin, margin:-margin] else: self.img = img self.shape = self.img.shape if scale != 1: self.img = cv2.resize(self.img, (int(self.shape[0] * self.scale), int(self.shape[1] * self.scale))) self.shape = self.img.shape def hough_lines(self, radians=False, **kwargs): """ Applies probabilistic hough transform to find lines. Additionally, for each line, it determines the angle, slope and length. Parameters: ----------------- radians: bool Determines whether to use radians. False is preffered due to possible numerical underflow problems later. **kwargs: dict, optional Additional arguments specyfing the parameters of the hough transform. Useful as the default has been optimized for archival, medium resolution photos. """ self.lines = apply_hough(self.img, **kwargs) if self.lines is not None: # if hough found something self.angle = get_angle(self.lines, radians= False) # radians more stable x_diff = self.lines[:, :, 2] - self.lines[:, :, 0] # if 0 then slope will be -inf -> vertical line y_diff = self.lines[:, :, 3] - self.lines[:, :, 1] # self.slope = y_diff/x_diff # can be calculated if needed. self.length = np.sqrt(x_diff ** 2 + y_diff ** 2) def rank_and_pick_lines(self, delta_angle = 1, max_lines = None): """ Filters out lines having similiar angles (taking the longest line out of the "similiar ones") to later limit the dimensionality of the database of lines. Parameters: ----------------- delta_angle: float defines how close the angles have to be considered 'similiar' in terms of the angle max_lines:int specifiecs how many lines should be kept after filtering. The longest max_lines number of lines are kept. """ initial_max = np.max(self.length) if self.lines is not None: lst0 = self.lines order = np.arange(0, len(lst0)).reshape(-1,1) lst1 = self.angle lst2 = self.length merged = np.concatenate([lst1, lst2, order], axis = 1) new_order = np.lexsort((lst2, lst1), axis = 0) # sorts first by angle then by length merged_new = merged[new_order] # grouping_mask = mask_clusters(merged[new_order][:,:,0], delta_angle) accum = [] #stores the longest line from found clusters temp = [] # empty list for booking within clusters of similiar lines #print(grouping_mask) for i in range(len(grouping_mask)): if grouping_mask[i] == True: temp.append(merged_new[i,:,:]) else: accum.append(np.array(temp)[np.argmax(
np.array(temp)
numpy.array
# Copyright 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """fMRI Simulator Simulate fMRI data for a single subject. This code provides a set of functions necessary to produce realistic simulations of fMRI data. There are two main steps: characterizing the signal and generating the noise model, which are then combined to simulate brain data. Tools are included to support the creation of different types of signal, such as region specific differences in univariate activity. To create the noise model the parameters can either be set manually or can be estimated from real fMRI data with reasonable accuracy ( works best when fMRI data has not been preprocessed) Functions: generate_signal Create a volume with activity, of a specified shape and either multivariate or univariate pattern, in a specific region to represent the signal in the neural data. generate_stimfunction Create a timecourse of the signal activation. This can be specified using event onsets and durations from a timing file. This is the time course before convolution and therefore can be at any temporal precision. export_3_column: Generate a three column timing file that can be used with software like FSL to represent event event onsets and duration export_epoch_file: Generate an epoch file from the time course which can be used as an input to brainiak functions convolve_hrf Convolve the signal timecourse with the HRF to model the expected evoked activity apply_signal Combine the signal volume with the HRF, thus giving the signal the temporal properties of the HRF (such as smoothing and lag) calc_noise Estimate the noise properties of a given fMRI volume. Prominently, estimate the smoothing and SFNR of the data generate_noise Create the noise for this run. This creates temporal, spatial task and white noise. Various parameters can be tuned depending on need mask_brain Create a mask volume that has similar contrast as an fMRI image. Defaults to use an MNI grey matter atlas but any image can be supplied to create an estimate. plot_brain Display the brain, timepoint by timepoint, with above threshold voxels highlighted against the outline of the brain. Authors: <NAME> (Princeton) 2016-2017 <NAME> (Princeton) 2016-2017 """ import logging from itertools import product import nitime.algorithms.autoregressive as ar import math import numpy as np from pkg_resources import resource_stream from scipy import stats from scipy import signal import scipy.ndimage as ndimage __all__ = [ "generate_signal", "generate_stimfunction", "export_3_column", "export_epoch_file", "convolve_hrf", "apply_signal", "calc_noise", "generate_noise", "mask_brain", "plot_brain", ] logger = logging.getLogger(__name__) def _generate_feature(feature_type, feature_size, signal_magnitude, thickness=1): """Generate features corresponding to signal Generate a single feature, that can be inserted into the signal volume. A feature is a region of activation with a specific shape such as cube or ring Parameters ---------- feature_type : str What shape signal is being inserted? Options are 'cube', 'loop' (aka ring), 'cavity' (aka hollow sphere), 'sphere'. feature_size : int How big is the signal in diameter? signal_magnitude : float Set the signal size, a value of 1 means the signal is one standard deviation of the noise thickness : int How thick is the surface of the loop/cavity Returns ---------- signal : 3 dimensional array The volume representing the signal """ # If the size is equal to or less than 2 then all features are the same if feature_size <= 2: feature_type = 'cube' # What kind of signal is it? if feature_type == 'cube': # Preset the size of the signal signal = np.ones((feature_size, feature_size, feature_size)) elif feature_type == 'loop': # First make a cube of zeros signal = np.zeros((feature_size, feature_size, feature_size)) # Make a mesh grid of the space seq = np.linspace(0, feature_size - 1, feature_size) xx, yy = np.meshgrid(seq, seq) # Make a disk corresponding to the whole mesh grid xxmesh = (xx - ((feature_size - 1) / 2)) ** 2 yymesh = (yy - ((feature_size - 1) / 2)) ** 2 disk = xxmesh + yymesh # What are the limits of the rings being made outer_lim = disk[int((feature_size - 1) / 2), 0] inner_lim = disk[int((feature_size - 1) / 2), thickness] # What is the outer disk outer = disk <= outer_lim # What is the inner disk inner = disk <= inner_lim # Subtract the two disks to get a loop loop = outer != inner # Check if the loop is a disk if np.all(inner is False): logger.warning('Loop feature reduces to a disk because the loop ' 'is too thick') # If there is complete overlap then make the signal just the # outer one if np.all(loop is False): loop = outer # store the loop signal[0:feature_size, 0:feature_size, int(np.round(feature_size / 2))] = loop elif feature_type == 'sphere' or feature_type == 'cavity': # Make a mesh grid of the space seq = np.linspace(0, feature_size - 1, feature_size) xx, yy, zz = np.meshgrid(seq, seq, seq) # Make a disk corresponding to the whole mesh grid signal = ((xx - ((feature_size - 1) / 2)) ** 2 + (yy - ((feature_size - 1) / 2)) ** 2 + (zz - ((feature_size - 1) / 2)) ** 2) # What are the limits of the rings being made outer_lim = signal[int((feature_size - 1) / 2), int((feature_size - 1) / 2), 0] inner_lim = signal[int((feature_size - 1) / 2), int((feature_size - 1) / 2), thickness] # Is the signal a sphere or a cavity? if feature_type == 'sphere': signal = signal <= outer_lim else: # Get the inner and outer sphere outer = signal <= outer_lim inner = signal <= inner_lim # Subtract the two disks to get a loop signal = outer != inner # Check if the cavity is a sphere if np.all(inner is False): logger.warning('Cavity feature reduces to a sphere because ' 'the cavity is too thick') # If there is complete overlap then make the signal just the # outer one if np.all(signal is False): signal = outer # Assign the signal magnitude signal = signal * signal_magnitude # Return the signal return signal def _insert_idxs(feature_centre, feature_size, dimensions): """Returns the indices of where to put the signal into the signal volume Parameters ---------- feature_centre : list, int List of coordinates for the centre location of the signal feature_size : list, int How big is the signal's diameter. dimensions : 3 length array, int What are the dimensions of the volume you wish to create Returns ---------- x_idxs : tuple The x coordinates of where the signal is to be inserted y_idxs : tuple The y coordinates of where the signal is to be inserted z_idxs : tuple The z coordinates of where the signal is to be inserted """ # Set up the indexes within which to insert the signal x_idx = [int(feature_centre[0] - (feature_size / 2)) + 1, int(feature_centre[0] - (feature_size / 2) + feature_size) + 1] y_idx = [int(feature_centre[1] - (feature_size / 2)) + 1, int(feature_centre[1] - (feature_size / 2) + feature_size) + 1] z_idx = [int(feature_centre[2] - (feature_size / 2)) + 1, int(feature_centre[2] - (feature_size / 2) + feature_size) + 1] # Check for out of bounds # Min Boundary if 0 > x_idx[0]: x_idx[0] = 0 if 0 > y_idx[0]: y_idx[0] = 0 if 0 > z_idx[0]: z_idx[0] = 0 # Max Boundary if dimensions[0] < x_idx[1]: x_idx[1] = dimensions[0] if dimensions[1] < y_idx[1]: y_idx[1] = dimensions[1] if dimensions[2] < z_idx[1]: z_idx[1] = dimensions[2] # Return the idxs for data return x_idx, y_idx, z_idx def generate_signal(dimensions, feature_coordinates, feature_size, feature_type, signal_magnitude=[1], signal_constant=1, ): """Generate volume containing signal Generate signal, of a specific shape in specific regions, for a single volume. This will then be convolved with the HRF across time Parameters ---------- dimensions : 1d array, ndarray What are the dimensions of the volume you wish to create feature_coordinates : multidimensional array What are the feature_coordinates of the signal being created. Be aware of clipping: features far from the centre of the brain will be clipped. If you wish to have multiple features then list these as a features x 3 array. To create a feature of a unique shape then supply all the individual feature_coordinates of the shape and set the feature_size to 1. feature_size : list, int How big is the signal. If feature_coordinates=1 then only one value is accepted, if feature_coordinates>1 then either one value must be supplied or m values feature_type : list, string What feature_type of signal is being inserted? Options are cube, loop, cavity, sphere. If feature_coordinates = 1 then only one value is accepted, if feature_coordinates > 1 then either one value must be supplied or m values signal_magnitude : list, float What is the (average) magnitude of the signal being generated? A value of 1 means that the signal is one standard deviation from the noise signal_constant : list, bool Is the signal constant across the feature (for univariate activity) or is it a random pattern of a given magnitude across the feature (for multivariate activity) Returns ---------- volume_signal : 3 dimensional array, float Creates a single volume containing the signal """ # Preset the volume volume_signal = np.zeros(dimensions) feature_quantity = round(feature_coordinates.shape[0]) # If there is only one feature_size value then make sure to duplicate it # for all signals if len(feature_size) == 1: feature_size = feature_size * feature_quantity # Do the same for feature_type if len(feature_type) == 1: feature_type = feature_type * feature_quantity if len(signal_magnitude) == 1: signal_magnitude = signal_magnitude * feature_quantity # Iterate through the signals and insert in the data for signal_counter in range(feature_quantity): # What is the centre of this signal if len(feature_size) > 1: feature_centre = np.asarray(feature_coordinates[signal_counter, ]) else: feature_centre = np.asarray(feature_coordinates)[0] # Generate the feature to be inserted in the volume signal = _generate_feature(feature_type[signal_counter], feature_size[signal_counter], signal_magnitude[signal_counter], ) # If the signal is a random noise pattern then multiply these ones by # a noise mask if signal_constant == 0: signal = signal * np.random.random([feature_size[signal_counter], feature_size[signal_counter], feature_size[signal_counter]]) # Pull out the idxs for where to insert the data x_idx, y_idx, z_idx = _insert_idxs(feature_centre, feature_size[signal_counter], dimensions) # Insert the signal into the Volume volume_signal[x_idx[0]:x_idx[1], y_idx[0]:y_idx[1], z_idx[0]:z_idx[ 1]] = signal return volume_signal def generate_stimfunction(onsets, event_durations, total_time, weights=[1], timing_file=None, temporal_resolution=100.0, ): """Return the function for the timecourse events When do stimuli onset, how long for and to what extent should you resolve the fMRI time course. There are two ways to create this, either by supplying onset, duration and weight information or by supplying a timing file (in the three column format used by FSL). Parameters ---------- onsets : list, int What are the timestamps (in s) for when an event you want to generate onsets? event_durations : list, int What are the durations (in s) of the events you want to generate? If there is only one value then this will be assigned to all onsets total_time : int How long (in s) is the experiment in total. weights : list, float What is the weight for each event (how high is the box car)? If there is only one value then this will be assigned to all onsets timing_file : string The filename (with path) to a three column timing file (FSL) to make the events. Still requires total_time to work temporal_resolution : float How many elements per second are you modeling for the timecourse. This is useful when you want to model the HRF at an arbitrarily high resolution (and then downsample to your TR later). Returns ---------- stim_function : 1 by timepoint array, float The time course of stimulus evoked activation. This has a temporal resolution of temporal resolution / 1.0 elements per second """ # If the timing file is supplied then use this to acquire the if timing_file is not None: # Read in text file line by line with open(timing_file) as f: text = f.readlines() # Pull out file as a an array # Preset onsets = list() event_durations = list() weights = list() # Pull out the onsets, weights and durations, set as a float for line in text: onset, duration, weight = line.strip().split() # Check if the onset is more precise than the temporal resolution upsampled_onset = float(onset) * temporal_resolution # Because of float precision, the upsampled values might # not round as expected . # E.g. float('1.001') * 1000 = 1000.99 if np.allclose(upsampled_onset, np.round(upsampled_onset)) == 0: warning = 'Your onset: ' + str(onset) + ' has more decimal ' \ 'points than the ' \ 'specified temporal ' \ 'resolution can ' \ 'resolve. This means' \ ' that events might' \ ' be missed. ' \ 'Consider increasing' \ ' the temporal ' \ 'resolution.' logging.warning(warning) onsets.append(float(onset)) event_durations.append(float(duration)) weights.append(float(weight)) # If only one duration is supplied then duplicate it for the length of # the onset variable if len(event_durations) == 1: event_durations = event_durations * len(onsets) if len(weights) == 1: weights = weights * len(onsets) # Check files if np.max(onsets) > total_time: raise ValueError('Onsets outside of range of total time.') # Generate the time course as empty, each element is a millisecond by # default stimfunction = np.zeros((int(round(total_time * temporal_resolution)), 1)) # Cycle through the onsets for onset_counter in list(range(len(onsets))): # Adjust for the resolution onset_idx = int(np.floor(onsets[onset_counter] * temporal_resolution)) # Adjust for the resolution offset_idx = int(np.floor((onsets[onset_counter] + event_durations[ onset_counter]) * temporal_resolution)) # Store the weights stimfunction[onset_idx:offset_idx, 0] = [weights[onset_counter]] # Shorten the data if it's too long if stimfunction.shape[0] > total_time * temporal_resolution: stimfunction = stimfunction[0:int(total_time * temporal_resolution), 0] return stimfunction def export_3_column(stimfunction, filename, temporal_resolution=100.0 ): """ Output a tab separated three column timing file This produces a three column tab separated text file, with the three columns representing onset time (s), event duration (s) and weight, respectively. Useful if you want to run the simulated data through FEAT analyses. In a way, this is the reverse of generate_stimfunction Parameters ---------- stimfunction : timepoint by 1 array The stimulus function describing the time course of events. For instance output from generate_stimfunction. filename : str The name of the three column text file to be output temporal_resolution : float How many elements per second are you modeling with the stimfunction? """ # Iterate through the stim function stim_counter = 0 event_counter = 0 while stim_counter < stimfunction.shape[0]: # Is it an event? if stimfunction[stim_counter, 0] != 0: # When did the event start? event_onset = str(stim_counter / temporal_resolution) # The weight of the stimulus weight = str(stimfunction[stim_counter, 0]) # Reset event_duration = 0 # Is the event still ongoing? while stimfunction[stim_counter, 0] != 0 & stim_counter <= \ stimfunction.shape[0]: # Add one millisecond to each duration event_duration = event_duration + 1 # Increment stim_counter = stim_counter + 1 # How long was the event in seconds event_duration = str(event_duration / temporal_resolution) # Append this row to the data file with open(filename, "a") as file: file.write(event_onset + '\t' + event_duration + '\t' + weight + '\n') # Increment the number of events event_counter = event_counter + 1 # Increment stim_counter = stim_counter + 1 def export_epoch_file(stimfunction, filename, tr_duration, temporal_resolution=100.0 ): """ Output an epoch file, necessary for some inputs into brainiak This takes in the time course of stimulus events and outputs the epoch file used in Brainiak. The epoch file is a way to structure the timing information in fMRI that allows you to flexibly input different stimulus sequences. This is a list with each entry a 3d matrix corresponding to a participant. The dimensions of the 3d matrix are condition by epoch by time Parameters ---------- stimfunction : list of timepoint by condition arrays The stimulus function describing the time course of events. Each list entry is from a different participant, each row is a different timepoint (with the given temporal precision), each column is a different condition. export_epoch_file is looking for differences in the value of stimfunction to identify the start and end of an epoch. If epochs in stimfunction are coded with the same weight and there is no time between blocks then export_epoch_file won't be able to label them as different epochs filename : str The name of the three column text file to be output tr_duration : float How long is each TR in seconds temporal_resolution : float How many elements per second are you modeling with the stimfunction? """ # Cycle through the participants, different entries in the list epoch_file = [0] * len(stimfunction) for participant_counter in range(len(stimfunction)): # What is the time course for the participant (binarized) stimfunction_ppt = np.abs(stimfunction[participant_counter]) > 0 # Cycle through conditions conditions = stimfunction_ppt.shape[1] for condition_counter in range(conditions): # Down sample the stim function stride = tr_duration * temporal_resolution stimfunction_temp = stimfunction_ppt[:, condition_counter] stimfunction_temp = stimfunction_temp[::int(stride)] if condition_counter == 0: # Calculates the number of event onsets (max of all # conditions). This uses changes in value to reflect # different epochs. This might be false in some cases (the # weight is supposed to unfold over an epoch or there is no # break between identically weighted epochs). In such cases # this will not work weight_change = (np.diff(stimfunction_temp, 1, 0) != 0) epochs = int(np.max(np.sum(weight_change, 0)) / 2) # Get other information trs = stimfunction_temp.shape[0] # Make a timing file for this participant epoch_file[participant_counter] = np.zeros((conditions, epochs, trs)) epoch_counter = 0 tr_counter = 0 while tr_counter < stimfunction_temp.shape[0]: # Is it an event? if stimfunction_temp[tr_counter] == 1: # Add a one for this TR epoch_file[participant_counter][condition_counter, epoch_counter, tr_counter] = 1 # Find the next non event value end_idx = np.where(stimfunction_temp[tr_counter:] == 0)[ 0][0] tr_idxs = list(range(tr_counter, tr_counter + end_idx)) # Add ones to all the trs within this event time frame epoch_file[participant_counter][condition_counter, epoch_counter, tr_idxs] = 1 # Start from this index tr_counter += end_idx # Increment epoch_counter += 1 # Increment the counter tr_counter += 1 # Save the file np.save(filename, epoch_file) def _double_gamma_hrf(response_delay=6, undershoot_delay=12, response_dispersion=0.9, undershoot_dispersion=0.9, response_scale=1, undershoot_scale=0.035, temporal_resolution=100.0, ): """Create the double gamma HRF with the timecourse evoked activity. Default values are based on Glover, 1999 and Walvaert, Durnez, Moerkerke, Verdoolaege and Rosseel, 2011 Parameters ---------- response_delay : float How many seconds until the peak of the HRF undershoot_delay : float How many seconds until the trough of the HRF response_dispersion : float How wide is the rising peak dispersion undershoot_dispersion : float How wide is the undershoot dispersion response_scale : float How big is the response relative to the peak undershoot_scale :float How big is the undershoot relative to the trough scale_function : bool Do you want to scale the function to a range of 1 temporal_resolution : float How many elements per second are you modeling for the stimfunction Returns ---------- hrf : multi dimensional array A double gamma HRF to be used for convolution. """ hrf_length = 30 # How long is the HRF being created # How many seconds of the HRF will you model? hrf = [0] * int(hrf_length * temporal_resolution) # When is the peak of the two aspects of the HRF response_peak = response_delay * response_dispersion undershoot_peak = undershoot_delay * undershoot_dispersion for hrf_counter in list(range(len(hrf) - 1)): # Specify the elements of the HRF for both the response and undershoot resp_pow = math.pow((hrf_counter / temporal_resolution) / response_peak, response_delay) resp_exp = math.exp(-((hrf_counter / temporal_resolution) - response_peak) / response_dispersion) response_model = response_scale * resp_pow * resp_exp undershoot_pow = math.pow((hrf_counter / temporal_resolution) / undershoot_peak, undershoot_delay) undershoot_exp = math.exp(-((hrf_counter / temporal_resolution) - undershoot_peak / undershoot_dispersion)) undershoot_model = undershoot_scale * undershoot_pow * undershoot_exp # For this time point find the value of the HRF hrf[hrf_counter] = response_model - undershoot_model return hrf def convolve_hrf(stimfunction, tr_duration, hrf_type='double_gamma', scale_function=True, temporal_resolution=100.0, ): """ Convolve the specified hrf with the timecourse. The output of this is a downsampled convolution of the stimfunction and the HRF function. If temporal_resolution is 1 / tr_duration then the output will be the same length as stimfunction. This time course assumes that slice time correction has occurred and all slices have been aligned to the middle time point in the TR. Be aware that if scaling is on and event durations are less than the duration of a TR then the hrf may or may not come out as anticipated. This is because very short events would evoke a small absolute response after convolution but if there are only short events and you scale then this will look similar to a convolution with longer events. In general scaling is useful, which is why it is the default, but be aware of this edge case and if it is a concern, set the scale_function to false. Parameters ---------- stimfunction : timepoint by timecourse array What is the time course of events to be modelled in this experiment. This can specify one or more timecourses of events. The events can be weighted or binary tr_duration : float How long (in s) between each volume onset hrf_type : str or list Takes in a string describing the hrf that ought to be created. Can instead take in a vector describing the HRF as it was specified by any function. The default is 'double_gamma' in which an initial rise and an undershoot are modelled. scale_function : bool Do you want to scale the function to a range of 1 temporal_resolution : float How many elements per second are you modeling for the stimfunction Returns ---------- signal_function : timepoint by timecourse array The time course of the HRF convolved with the stimulus function. This can have multiple time courses specified as different columns in this array. """ # How will stimfunction be resized stride = int(temporal_resolution * tr_duration) duration = int(stimfunction.shape[0] / stride) # Generate the hrf to use in the convolution if hrf_type == 'double_gamma': hrf = _double_gamma_hrf(temporal_resolution=temporal_resolution) elif isinstance(hrf_type, list): hrf = hrf_type # How many timecourses are there list_num = stimfunction.shape[1] # Create signal functions for each list in the stimfunction for list_counter in range(list_num): # Perform the convolution signal_temp = np.convolve(stimfunction[:, list_counter], hrf) # Down sample the signal function so that it only has one element per # TR. This assumes that all slices are collected at the same time, # which is often the result of slice time correction. In other # words, the output assumes slice time correction signal_temp = signal_temp[:duration * stride] signal_vox = signal_temp[int(stride / 2)::stride] # Scale the function so that the peak response is 1 if scale_function: signal_vox = signal_vox / np.max(signal_vox) # Add this function to the stack if list_counter == 0: signal_function = np.zeros((len(signal_vox), list_num)) signal_function[:, list_counter] = signal_vox return signal_function def apply_signal(signal_function, volume_signal, ): """Combine the signal volume with its timecourse Apply the convolution of the HRF and stimulus time course to the volume. Parameters ---------- signal_function : timepoint by timecourse array, float The timecourse of the signal over time. If there is only one column then the same timecourse is applied to all non-zero voxels in volume_signal. If there is more than one column then each column is paired with a non-zero voxel in the volume_signal (a 3d numpy array generated in generate_signal). volume_signal : multi dimensional array, float The volume containing the signal to be convolved with the same dimensions as the output volume. The elements in volume_signal indicate how strong each signal in signal_function are modulated by in the output volume Returns ---------- signal : multidimensional array, float The convolved signal volume with the same 3d as volume signal and the same 4th dimension as signal_function """ # How many timecourses are there within the signal_function timepoints = signal_function.shape[0] timecourses = signal_function.shape[1] # Preset volume signal = np.zeros([volume_signal.shape[0], volume_signal.shape[ 1], volume_signal.shape[2], timepoints]) # Find all the non-zero voxels in the brain idxs = np.where(volume_signal != 0) if timecourses == 1: # If there is only one time course supplied then duplicate it for # every voxel signal_function = np.matlib.repmat(signal_function, 1, len(idxs[0])) elif len(idxs[0]) != timecourses: raise IndexError('The number of non-zero voxels in the volume and ' 'the number of timecourses does not match. Aborting') # For each coordinate with a non zero voxel, fill in the timecourse for # that voxel for idx_counter in range(len(idxs[0])): x = idxs[0][idx_counter] y = idxs[1][idx_counter] z = idxs[2][idx_counter] # Pull out the function for this voxel signal_function_temp = signal_function[:, idx_counter] # Multiply the voxel value by the function timecourse signal[x, y, z, :] = volume_signal[x, y, z] * signal_function_temp return signal def _calc_fwhm(volume, mask, voxel_size=[1.0, 1.0, 1.0], ): """ Calculate the FWHM of a volume Estimates the FWHM (mm) of a volume's non-masked voxels Parameters ---------- volume : 3 dimensional array Functional data to have the FWHM measured. mask : 3 dimensional array A binary mask of the brain voxels in volume voxel_size : length 3 list, float Millimeters per voxel for x, y and z. Returns ------- fwhm : float, list Returns the FWHM of each TR in mm """ # What are the dimensions of the volume dimensions = volume.shape # Iterate through the TRs, creating a FWHM for each TR # Preset v_count = 0 v_sum = 0 v_sq = 0 d_sum = [0.0, 0.0, 0.0] d_sq = [0.0, 0.0, 0.0] d_count = [0, 0, 0] # Pull out all the voxel coordinates coordinates = list(product(range(dimensions[0]), range(dimensions[1]), range(dimensions[2]))) # Find the sum of squared error for the non-masked voxels in the brain for i in list(range(len(coordinates))): # Pull out this coordinate x, y, z = coordinates[i] # Is this within the mask? if mask[x, y, z] > 0: # Find the the volume sum and squared values v_count += 1 v_sum += np.abs(volume[x, y, z]) v_sq += volume[x, y, z] ** 2 # Get the volume variance v_var = (v_sq - ((v_sum ** 2) / v_count)) / (v_count - 1) for i in list(range(len(coordinates))): # Pull out this coordinate x, y, z = coordinates[i] # Is this within the mask? if mask[x, y, z] > 0: # For each xyz dimension calculate the squared # difference of this voxel and the next in_range = (x < dimensions[0] - 1) in_mask = in_range and (mask[x + 1, y, z] > 0) included = in_mask and (~np.isnan(volume[x + 1, y, z])) if included: d_sum[0] += volume[x, y, z] - volume[x + 1, y, z] d_sq[0] += (volume[x, y, z] - volume[x + 1, y, z]) ** 2 d_count[0] += 1 in_range = (y < dimensions[1] - 1) in_mask = in_range and (mask[x, y + 1, z] > 0) included = in_mask and (~np.isnan(volume[x, y + 1, z])) if included: d_sum[1] += volume[x, y, z] - volume[x, y + 1, z] d_sq[1] += (volume[x, y, z] - volume[x, y + 1, z]) ** 2 d_count[1] += 1 in_range = (z < dimensions[2] - 1) in_mask = in_range and (mask[x, y, z + 1] > 0) included = in_mask and (~np.isnan(volume[x, y, z + 1])) if included: d_sum[2] += volume[x, y, z] - volume[x, y, z + 1] d_sq[2] += (volume[x, y, z] - volume[x, y, z + 1]) ** 2 d_count[2] += 1 # Find the variance d_var = np.divide((d_sq - np.divide(
np.power(d_sum, 2)
numpy.power
"""Parse CaffeModel. Helped by caffe2theano, MarcBS's Caffe2Keras module. Author: <NAME> Email : <EMAIL> """ from __future__ import print_function from collections import OrderedDict import numpy as np from scipy.io import loadmat from transcaffe import caffe_pb2, utils from google.protobuf.text_format import Merge from keras.models import Model from transcaffe import layers as L v1_map = {0: 'NONE', 1: 'ACCURACY', 2: 'BNLL', 3: 'CONCAT', 4: 'CONVOLUTION', 5: 'DATA', 6: 'DROPOUT', 7: 'EUCLIDEANLOSS', 8: 'FLATTEN', 9: 'HDF5DATA', 10: 'HDF5OUTPUT', 11: 'IM2COL', 12: 'IMAGEDATA', 13: 'INFOGAINLOSS', 14: 'INNERPRODUCT', 15: 'LRN', 16: 'MULTINOMIALLOGISTICLOSS', 17: 'POOLING', 18: 'RELU', 19: 'SIGMOID', 20: 'SOFTMAX', 21: 'SOFTMAXWITHLOSS', 22: 'SPLIT', 23: 'TANH', 24: 'WINDOWDATA', 25: 'ELTWISE', 26: 'POWER', 27: 'SIGMOIDCROSSENTROPYLOSS', 28: 'HINGELOSS', 29: 'MEMORYDATA', 30: 'ARGMAX', 31: 'THRESHOLD', 32: 'DUMMY_DATA', 33: 'SLICE', 34: 'MVN', 35: 'ABSVAL', 36: 'SILENCE', 37: 'CONTRASTIVELOSS', 38: 'EXP', 39: 'DECONVOLUTION'} def load(model_def, model_bin, target_lib="keras"): """Load a Caffe model and convert to target library. Parameters ---------- model_def : string absolute path of a given .protobuf text model_bin : string absolute path of a given .caffemodel binary target_lib : string target library, currently only Keras is supported. In planning: Lasagne, TensorFlow Returns ------- model : keras.models.model a loaded model. """ print ("[MESSAGE] Target model is loading...") net_param = parse_protobuf(model_def) layers, version = get_layers(net_param) input_dim = get_input_size(net_param) model = get_model(layers, 1, tuple(input_dim[1:]), net_param.name) print ("[MESSAGE] Printing converted model...") model.summary() print ("[MESSAGE] The model is built.") print ("[MESSAGE] Parsing network parameters...") param_layers, _ = parse_caffemodel(model_bin) net_weights = get_network_weights(param_layers, version) print ("[MESSAGE] Loading parameters into network...") build_model(model, net_weights) print ("[MESSAGE] The model is loaded successfully.") return model def parse_caffemodel(filename): """Parse a given caffemodel. Parameters ---------- filename : string absolute path of a given .caffemodel Returns ------- layers : list The list representation of the network version : string pretrined network version """ utils.file_checker(filename) net_param = caffe_pb2.NetParameter() f = open(filename, mode="rb") contents = f.read() f.close() net_param.ParseFromString(contents) return get_layers(net_param) def parse_mean_file(filename, mode="proto"): """Parse a mean file by given path. TODO: complete more options based on different Caffe Models Parameters ---------- filename : string absolute path of the mean file mode : string "proto" for .binaryproto file "mat" for MAT binary file Returns ------- mean_mat : numpy.ndarray an array that contains the mean values """ utils.file_checker(filename) if mode == "proto": tp = caffe_pb2.TransformationParameter() f = open(filename, mode="rb") mean_contents = f.read() f.close() tp.ParseFromString(mean_contents) mean_mat = np.array(tp.mean_value).reshape((3, tp.crop_size, tp.crop_size)) mean_mat = np.transpose(mean_mat, (1, 2, 0)) elif mode == "mat": # based on VGG's Mat file. mean_contents = loadmat(filename) mean_mat = mean_contents["image_mean"] print(mean_mat.shape) return mean_mat def parse_protobuf(filename): """Parse a given protobuf file. Parameters ---------- filename : string absolute path of .prototxt file Returns ------- net_param : caffe_pb2.NetParameter The parsed .prototxt structure. """ utils.file_checker(filename) f = open(filename, mode="rb") net_param = caffe_pb2.NetParameter() net_def = f.read() # append quotes around type information if needed. # it seems not working because has newer definititon? # net_def = f.read().split("\n") # for i, line in enumerate(net_def): # l = line.strip().replace(" ", "").split('#')[0] # if len(l) > 6 and l[:5] == 'type:' and l[5] != "\'" and l[5] != '\"': # type_ = l[5:] # net_def[i] = ' type: "' + type_ + '"' # # net_def = '\n'.join(net_def) # Check before Merge? For V1? Merge(net_def, net_param) f.close() return net_param def get_layers(net_param): """Get layers information. Parameters ---------- net_param : caffe_pb2.NetParameter A pretrined network description. Returns ------- layers : list description of the layers. version : string version information of the pretrained model. """ if len(net_param.layers) > 0: return net_param.layers[:], "V1" elif len(net_param.layer) > 0: return net_param.layer[:], "V2" else: raise Exception("Couldn't find layers!") def get_layer_type(layer): """Get a given layer type. Parameters ---------- layer : caffe_pb2.V1LayerParameter a given layer in the network Returns ------- type : int or string type of the layer. """ if type(layer.type) == int: return str(v1_map[layer.type]).lower() else: return str(layer.type).lower() def get_input_size(net_param): """Get input parameters, or guess one at least. Parameters ---------- net_param : caffe_pb2.NetParameter structure that contains all the network parameters Returns ------- in_size : tuple tuple that defines the input size """ if len(net_param.input_dim) != 0: return net_param.input_dim elif len(net_param.input_shape) != 0: return net_param.input_shape else: print("[MESSAGE] Couldn't find Input shape in the Network Parameters." "The returned shape is inferenced from the network name") # try: # scale = layer.transform_param.scale # scale = 1 if scale <= 0 else scale # except AttributeError: # pass return [] def check_phase(layer, phase): """Check if the layer matches with the target phase. Parameters ---------- layer : caffe_pb2.V1LayerParameter A given layer. phase : int 0 : train 1 : test """ try: return True if layer.include[0].phase == phase else False except IndexError: return True def get_network(layers, phase): """Get structure of the network. Parameters ---------- layers : list list of layers parsed from network parameters phase : int 0 : train 1 : test """ num_layers = len(layers) network = OrderedDict() for i in xrange(num_layers): layer = layers[i] if check_phase(layer, phase): layer_id = "trans_layer_"+str(i) if layer_id not in network: network[layer_id] = [] prev_blobs = map(str, layer.bottom) next_blobs = map(str, layer.top) for blob in prev_blobs+next_blobs: if blob not in network: network[blob] = [] for blob in prev_blobs: network[blob].append(layer_id) network[layer_id].extend(next_blobs) network = remove_loops(network) network = remove_blobs(network) return network def remove_loops(network): """Remove potential loops from the network. Parameters ---------- network : OrderedDict given network dictionary new_network : OrderedDict a loops free altered network. """ for e in network: if e.startswith("trans_layer_"): continue idx = 0 while idx < len(network[e]): next_e = network[e][idx] if e in network[next_e]: new_e = e+"_"+str(idx) network[e].remove(next_e) network[new_e] = network[e] network[e] = [next_e] network[next_e] = [new_e] for n in network[new_e]: if network[n] == [e]: network[n] = [new_e] e = new_e idx = 0 else: idx += 1 return network def remove_blobs(network): """Remove blobs from network. Parameters ---------- network : OrderedDict given network dictionary Returns ------- new_network : OrderedDict blobs removed network dictionary """ new_network = OrderedDict() def get_idx(x): return int(x[12:]) for e in network: if e.startswith("trans_layer_"): idx = get_idx(e) if idx not in new_network: new_network[idx] = [] for next_e in network[e]: next_es = map(get_idx, network[next_e]) new_network[idx].extend(next_es) return new_network def reverse_net(network): """Reverse a network. Parameters ---------- network : OrderedDict A parsed network Returns ------- rev : OrderedDict reversed network """ rev = OrderedDict() for node in network.keys(): rev[node] = [] for node in network.keys(): for n in network[node]: rev[n].append(node) return rev def get_input_layers(network): """Get input layers (layers with zero in-order). Parameters ---------- network : OrderedDict A parsed network Returns ------- in_layers : list a list of input layers """ return get_output_layers(reverse_net(network)) def get_output_layers(network): """Get output layers (layers with zero out-order). Parameters ---------- network : OrderedDict A parsed network Returns ------- out_layers : list a list of out layers """ out_layers = [] for idx in network: if network[idx] == []: out_layers.append(idx) return out_layers def get_model(layers, phase, input_dim, model_name, lib_type="keras"): """Get a model by given network parameters. Parameters ---------- layers : list network structure by given parsed network. phase : int 0 : train 1 : test input_dim : list the input dimension model_name : string the name of the given model. lib_type : string currently only Keras is supported. """ network = get_network(layers, phase) if len(network) == 0: raise Exception("No valid network is parsed!") in_layers = get_input_layers(network) out_layers = get_output_layers(network) rev_network = reverse_net(network) def data_layer(x): get_layer_type(x) in ['data', 'imagedata', 'memorydata', 'hdf5data', 'windowdata'] # remove the link from input to output. for in_idx in in_layers: for out_idx in out_layers: if out_idx in network[in_idx] and data_layer(layers[in_idx]): network[in_idx].remove[out_idx] net = [None]*(max(network)+1) for layer_id in network: layer = layers[layer_id] layer_name = layer.name layer_type = get_layer_type(layer) if layer_id in in_layers: net[layer_id] = L.input_layer(input_dim, layer_name) else: layer_in = [None]*(len(rev_network[layer_id])) for l in xrange(len(rev_network[layer_id])): layer_in[l] = net[rev_network[layer_id][l]] if layer_type in ["relu", "sigmoid", "softmax", "softmaxwithloss", "split", "tanh"]: net[layer_id] = L.activation(act_type=layer_type, name=layer_name)(layer_in) elif layer_type == "batchnorm": epsilon = layer.batchnorm_param.eps axis = layer.scale_param.axis net[layer_id] = L.batch_norm(epsilon=epsilon, axis=axis, name=layer_name)(layer_in) elif layer_type == "lrn": alpha = layer.lrn_param.alpha k = layer.lrn_param.k beta = layer.lrn_param.beta n = layer.lrn_param.local_size net[layer_id] = L.lrn(alpha, k, beta, n, layer_name)(layer_in) elif layer_type == "scale": axis = layer.scale_param.axis net[layer_id] = L.scale(axis, layer_name)(layer_in) elif layer_type == "dropout": prob = layer.dropout_param.dropout_ratio net[layer_id] = L.dropout(prob, name=layer_name)(layer_in) elif layer_type == "flatten": net[layer_id] = L.flatten(name=layer_name)(layer_in) elif layer_type == "concat": axis = layer.concat_param.axis net[layer_id] = L.merge(layer_in, mode='concat', concat_axis=1, name=layer_name) elif layer_type == "eltwise": axis = layer.scale_param.axis op = layer.eltwise_param.operation if op == 0: mode = "mul" elif op == 1: mode = "sum" elif op == 2: mode == "max" else: raise NotImplementedError("Operation is not implemented!") net[layer_id] = L.merge(layer_in, mode=mode, concat_axis=axis, name=layer_name) elif layer_type == "innerproduct": output_dim = layer.inner_product_param.num_output if len(layer_in[0]._keras_shape[1:]) > 1: layer_in = L.flatten(name=layer_name+"_flatten")(layer_in) net[layer_id] = L.dense(output_dim, name=layer_name)(layer_in) elif layer_type == "convolution": has_bias = layer.convolution_param.bias_term nb_filter = layer.convolution_param.num_output nb_col = (layer.convolution_param.kernel_size or [layer.convolution_param.kernel_h])[0] nb_row = (layer.convolution_param.kernel_size or [layer.convolution_param.kernel_w])[0] stride_h = (layer.convolution_param.stride or [layer.convolution_param.stride_h])[0] or 1 stride_w = (layer.convolution_param.stride or [layer.convolution_param.stride_w])[0] or 1 pad_h = (layer.convolution_param.pad or [layer.convolution_param.pad_h])[0] pad_w = (layer.convolution_param.pad or [layer.convolution_param.pad_w])[0] if pad_h + pad_w > 0: layer_in = L.zeropadding(padding=(pad_h, pad_w), name=layer_name)(layer_in) net[layer_id] = L.convolution(nb_filter, nb_row, nb_col, bias=has_bias, subsample=(stride_h, stride_w), name=layer_name)(layer_in) elif layer_type == "pooling": kernel_h = layer.pooling_param.kernel_size or \ layer.pooling_param.kernel_h kernel_w = layer.pooling_param.kernel_size or \ layer.pooling_param.kernel_w stride_h = layer.pooling_param.stride or \ layer.pooling_param.stride_h or 1 stride_w = layer.pooling_param.stride or \ layer.pooling_param.stride_w or 1 pad_h = layer.pooling_param.pad or layer.pooling_param.pad_h pad_w = layer.pooling_param.pad or layer.pooling_param.pad_w if pad_h + pad_w > 0: layer_in = L.zeropadding(padding=(pad_h, pad_w), name=layer_name)(layer_in) net[layer_id] = L.pooling(pool_size=(kernel_h, kernel_w), strides=(stride_h, stride_w), pool_type=layer.pooling_param.pool, name=layer_name)(layer_in) in_l = [None]*(len(in_layers)) out_l = [None]*(len(out_layers)) for i in xrange(len(in_layers)): in_l[i] = net[in_layers[i]] for i in xrange(len(out_layers)): out_l[i] = net[out_layers[i]] return Model(input=in_l, output=out_l, name=model_name) def get_network_weights(layers, version): """Parse network weights. Parameters ---------- layers : list List of parameter layers from caffemodel version : "string" "V1" or "V2" Return ------ net_weights : OrderedDict network's weights """ net_weights = OrderedDict() for layer in layers: layer_type = get_layer_type(layer) if layer_type == "innerproduct": blobs = layer.blobs if (version == "V1"): num_filters = blobs[0].num num_channels = blobs[0].channels num_col = blobs[0].height num_row = blobs[0].width elif (version == "V2"): if (len(blobs[0].shape.dim) == 4): num_filters = int(blobs[0].shape.dim[0]) num_channels = int(blobs[0].shape.dim[1]) num_col = int(blobs[0].shape.dim[2]) num_row = int(blobs[0].shape.dim[3]) else: num_filters = 1 num_channels = 1 num_col = int(blobs[0].shape.dim[0]) num_row = int(blobs[0].shape.dim[1]) else: raise Exception("Can't recognize the version %s" % (version)) W = np.array(blobs[0].data).reshape(num_filters, num_channels, num_col, num_row)[0, 0, :, :] W = W.T b = np.array(blobs[1].data) layer_weights = [W.astype(dtype=np.float32), b.astype(dtype=np.float32)] net_weights[layer.name] = layer_weights elif layer_type == "convolution": blobs = layer.blobs if (version == "V1"): num_filters = blobs[0].num num_channels = blobs[0].channels num_col = blobs[0].height num_row = blobs[0].width elif (version == "V2"): num_filters = int(blobs[0].shape.dim[0]) num_channels = int(blobs[0].shape.dim[1]) num_col = int(blobs[0].shape.dim[2]) num_row = int(blobs[0].shape.dim[3]) else: raise Exception("Can't recognize the version %s" % (version)) num_group = layer.convolution_param.group num_channels *= num_group W = np.zeros((num_filters, num_channels, num_col, num_row)) if layer.convolution_param.bias_term: b = np.array(blobs[1].data) else: b = None group_ds = len(blobs[0].data) // num_group ncs_group = num_channels // num_group nfs_group = num_filters // num_group for i in range(num_group): group_weights = W[i*nfs_group: (i+1)*nfs_group, i*ncs_group: (i+1)*ncs_group, :, :] group_weights[:] = np.array( blobs[0].data[i*group_ds: (i+1)*group_ds]).reshape(group_weights.shape) for i in range(W.shape[0]): for j in range(W.shape[1]): W[i, j] = np.rot90(W[i, j], 2) if b is not None: layer_weights = [W.astype(dtype=np.float32), b.astype(dtype=np.float32)] else: layer_weights = [W.astype(dtype=np.float32)] net_weights[layer.name] = layer_weights elif layer_type == "batchnorm": blobs = layer.blobs if (version == "V2"): num_kernels = int(blobs[0].shape.dim[0]) else: raise NotImplementedError("Batchnorm is not " "implemented in %s" % (version)) W_mean = np.array(blobs[0].data) W_std =
np.array(blobs[1].data)
numpy.array
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import numpy as np import pandas as pd import cloudpickle from ... import opcodes as OperandDef from ...config import options from ...serialize import StringField, AnyField, BoolField, \ ListField, Int64Field, Float64Field, BytesField from ...tensor.utils import normalize_chunk_sizes from ..operands import DataFrameOperand, DataFrameOperandMixin, ObjectType from ..utils import parse_index class DataFrameReadSQLTable(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.READ_SQL_TABLE _table_name = StringField('table_name') _con = StringField('con') _schema = StringField('schema') _index_col = AnyField('index_col') _coerce_float = BoolField('coerce_float') _parse_dates = AnyField('parse_dates') _columns = ListField('columns') _chunksize = Int64Field('chunksize') _engine_kwargs = BytesField('engine_kwargs', on_serialize=cloudpickle.dumps, on_deserialize=cloudpickle.loads) _row_memory_usage = Float64Field('row_memory_usage') # for chunks _offset = Int64Field('offset') def __init__(self, table_name=None, con=None, schema=None, index_col=None, coerce_float=None, parse_dates=None, columns=None, chunksize=None, engine_kwargs=None, row_memory_usage=None, offset=None, object_type=None, gpu=None, **kw): super().__init__(_table_name=table_name, _con=con, _schema=schema, _index_col=index_col, _coerce_float=coerce_float, _parse_dates=parse_dates, _columns=columns, _chunksize=chunksize, _engine_kwargs=engine_kwargs, _row_memory_usage=row_memory_usage, _offset=offset, _object_type=object_type, _gpu=gpu, **kw) if self._object_type is None: self._object_type = ObjectType.dataframe @property def table_name(self): return self._table_name @property def con(self): return self._con @property def schema(self): return self._schema @property def index_col(self): return self._index_col @property def coerce_float(self): return self._coerce_float @property def parse_dates(self): return self._parse_dates @property def columns(self): return self._columns @property def chunksize(self): return self._chunksize @property def engine_kwargs(self): return self._engine_kwargs @property def row_memory_usage(self): return self._row_memory_usage @property def offset(self): return self._offset def _collect_info(self, engine_or_conn, table, columns, test_rows): from sqlalchemy import sql # fetch test DataFrame query = sql.select(columns).limit(test_rows) test_df = pd.read_sql(query, engine_or_conn, index_col=self._index_col, coerce_float=self._coerce_float, parse_dates=self._parse_dates) self._row_memory_usage = \ test_df.memory_usage(deep=True, index=True).sum() / test_rows # fetch size size = list(engine_or_conn.execute( sql.select([sql.func.count()]).select_from(table)))[0][0] shape = (size, test_df.shape[1]) return test_df, shape @contextmanager def _create_con(self): import sqlalchemy as sa from sqlalchemy.engine import Connection, Engine # process con con = self._con engine = None if isinstance(con, Connection): self._con = str(con.engine.url) # connection create by user close = False dispose = False elif isinstance(con, Engine): self._con = str(con.url) con = con.connect() close = True dispose = False else: engine = sa.create_engine(con, **(self._engine_kwargs or dict())) con = engine.connect() close = True dispose = True yield con if close: con.close() if dispose: engine.dispose() def __call__(self, test_rows, chunk_size): import sqlalchemy as sa from sqlalchemy.sql import elements with self._create_con() as con: # process table_name if isinstance(self._table_name, sa.Table): table = self._table_name self._table_name = table.name else: m = sa.MetaData() table = sa.Table(self._table_name, m, autoload=True, autoload_with=con, schema=self._schema) # process index_col index_col = self._index_col if index_col is not None: if not isinstance(index_col, (list, tuple)): index_col = (index_col,) new_index_col = [] sa_index_col = [] for col in index_col: if isinstance(col, (sa.Column, elements.Label)): new_index_col.append(col.name) sa_index_col.append(col) elif isinstance(col, str): sa_index_col.append(table.columns[col]) new_index_col.append(col) elif col is not None: raise TypeError('unknown index_col type: {}'.format(type(col))) self._index_col = new_index_col index_col = sa_index_col # process columns columns = self._columns if self._columns is not None else table.columns new_columns = [] sa_columns = [] for col in columns: if isinstance(col, str): new_columns.append(col) sa_columns.append(table.columns[col]) else: new_columns.append(col.name) sa_columns.append(col) self._columns = new_columns if self._index_col is not None: for icol in index_col: sa_columns.append(icol) test_df, shape = self._collect_info(con, table, sa_columns, test_rows) if isinstance(test_df.index, pd.RangeIndex): index_value = parse_index(pd.RangeIndex(shape[0])) else: index_value = parse_index(test_df.index) columns_value = parse_index(test_df.columns, store_data=True) return self.new_dataframe(None, shape=shape, dtypes=test_df.dtypes, index_value=index_value, columns_value=columns_value, raw_chunk_size=chunk_size) @classmethod def tile(cls, op): df = op.outputs[0] chunk_size = df.extra_params.raw_chunk_size or options.chunk_size if chunk_size is None: chunk_size = (int(options.chunk_store_limit / op.row_memory_usage), df.shape[1]) row_chunk_sizes = normalize_chunk_sizes(df.shape, chunk_size)[0] offsets =
np.cumsum((0,) + row_chunk_sizes)
numpy.cumsum
import math import json import random import numpy as np import multiprocessing NUM_CENTROIDS = 256 def segregate(attributearray, value): outlist = [] for i in range(0, len(attributearray)): if(attributearray[i] == value): outlist.append(i) return outlist def select_labels(labels, ids): result = [] for i in ids: result.append(labels[i]) return result def map_mean_function(x): y = np.array(x) #y = x if(y.size > 0): return np.mean(x, axis=0) else: return np.array([]) #Features features_file = open("data/intrusion.features", "r") features_str = features_file.read() features = features_str.split("\n") print("Reading features from file...") for idx, item in enumerate(features): item = item.split(": ") item[-1] = item[-1][:-1] features[idx] = item features = features[:-1] #print(features) features_file.close() # Get continuous and non-continuous continuous = [] not_continuous = [] for idx, item in enumerate(features): if "continuous" in item[1]: continuous.append(idx) else: not_continuous.append(idx) traindata_file = open("data/intrusion.traindata", "r") traindata_str = traindata_file.read() traindata = traindata_str.split("\n") traindata_continuous = [] traindata_discrete = [] td_len = len(traindata) print("Reading traindata from file...") for idx, item in enumerate(traindata): item = item.split(",") item[-1] = item[-1][:-1] traindata[idx] = item if(idx < td_len - 1): c = [float(item[index]) for index in continuous] d = [item[index] for index in not_continuous] d.append(item[-1]) traindata_continuous.append(c) traindata_discrete.append(d) if(idx % 10000 == 0): print("Done reading " + str(idx) + " traindata") traindata = traindata[:-1] #traindata_continuous = traindata_continuous[:-1] #print(traindata) print("size of traindata: ", len(traindata)) print("size of traindata_continous: ", len(traindata_continuous)) print("size of traindata_discrete: ", len(traindata_discrete)) num_inst = len(traindata_continuous) num_cattr = len(continuous) num_dattr = len(not_continuous) traindata_file.close() print("Reading attacktypes from file...") attacktypes_file = open("data/attacktypes.list", "r") attacktypes_str = attacktypes_file.read() attacktypes = attacktypes_str.split("\n") attacktypes = attacktypes[:-1] attacktypes_map = {} for idx, item in enumerate(attacktypes): item = item.split(" ") attacktypes_map[item[0]] = item[1] attacktypes[idx] = item #print(attacktypes) #print(attacktypes_map) attacktypes_file.close() print("converting to numpy matrix....") cTraindata = np.array(traindata_continuous) # print("removing not conituous columns....") # cTraindata = np.delete(traindata_np, not_continuous, 1) #cTraindata = cTraindata.astype('float32') print("calculating the mean for each column....") all_mean = np.mean(cTraindata, axis=0) #print("all_mean: ", all_mean) print("calculating the std for each column....") all_std =
np.std(cTraindata, axis=0)
numpy.std
import numpy as np atts = np.load('./data/attypes.npy', allow_pickle=True) uatoms = np.unique(np.concatenate(atts)) reps = np.load('./data/aslatms.npy', allow_pickle=True) reps = [
np.array(rep)
numpy.array
# MIT License # Copyright 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Functions that transform the raw data into trainable data.""" from itertools import product, starmap from functools import partial from typing import List, Tuple import numpy as np from sklearn.metrics.pairwise import euclidean_distances, cosine_similarity from tqdm import tqdm def get_claim_map( n:int, source_locations: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], ) -> np.ndarray: def get_n_closest_sources_encode( n:int, # max number of sources to include source_locations:np.ndarray, # locations of sources as an array of y,x idxs ij:Tuple[int,int], # the index to retrieve the sources for ) -> Tuple[List[int], Tuple[int, int]]: # The n sources ordered by proximity idxs and the idx ij distances = np.linalg.norm(source_locations-np.array(ij), axis=1) closest_n_sources = np.argsort(distances)[:n] if len(closest_n_sources) < n: closest_n_sources = np.pad( closest_n_sources, (0, n-len(closest_n_sources)), mode="constant", constant_values = len(model_src_vals), ) assert closest_n_sources.shape[0] == n return (closest_n_sources, ij) def get_src_flx( scarlet_data:List[np.ndarray], # SCARLET data src_idxs:List[int], # idx of source in the SCARLET output ij:Tuple[List[np.ndarray], Tuple[int, int]], # idx in image space ) -> np.ndarray: # the source value at i,j in each of the bands i, j = ij # each element in this list is an array of the flux # values that belong to each source # [n, b, 1, 1] src_flux_values = None try: src_flux_values = np.array([scarlet_data[src_idx][:, i, j] for src_idx in src_idxs if (src_idx != len(scarlet_data))]) except: print(src_idxs) print(len(scarlet_data)) raise ValueError("") # this should be [n, b] if src_flux_values.shape[0] < len(src_idxs): src_flux_values = np.pad( src_flux_values, ( (0, len(src_idxs)-src_flux_values.shape[0]), (0, 0) ), mode="constant", constant_values=0, ) assert src_flux_values.shape[0]==len(src_idxs), f"{src_flux_values.shape}, {src_idxs}" assert src_flux_values.shape[1]==scarlet_data[0].shape[0], f"{src_flux_values.shape}, {scarlet_data[0].shape}" return (src_flux_values, ij) def update_image( output_array:np.ndarray, # [h, w, b, n] normed_flux_vals:np.ndarray, # [n, b] ij:Tuple[int, int], # pixel location ) -> None: i, j = ij output_array[i, j, ...] = normed_flux_vals.T[:] def normed_combined_flux( src_flux_values:np.ndarray, # [n, bands] ij:Tuple[int, int] ) -> Tuple[List[np.ndarray], Tuple[int, int]]: # restrict flux to positive values src_flux_cmb = np.clip(np.array(src_flux_values), a_min=0, a_max=None) # [n, b] flux_norm = src_flux_cmb.sum(axis=0) # [b,] total flux for each band normed = src_flux_cmb / flux_norm try: normed[np.isnan(normed)] = 1 / src_flux_cmb.shape[0] except: print(src_flux_values) print(src_flux_values.shape) print(src_flux_cmb) print(src_flux_cmb.shape) raise ValueError() return (normed, ij) out_shape = list(model_src_vals[0].shape[1:]) + [model_src_vals[0].shape[0], n] output_array = np.zeros(out_shape, dtype=np.float32) get_n_src_f = partial(get_n_closest_sources_encode, n, source_locations) get_src_flx_f = partial(get_src_flx, model_src_vals) update_output_f = partial(update_image, output_array) img_shape = model_src_vals[0].shape[1:] idxs = product(range(img_shape[0]), range(img_shape[1])) n_srcs_per_pixel = map(get_n_src_f, idxs) src_flx_per_pixel = starmap(get_src_flx_f, n_srcs_per_pixel) normed_src_flx_per_pixel = starmap(normed_combined_flux, src_flx_per_pixel) for _ in starmap(update_output_f, normed_src_flx_per_pixel):pass return output_array # ============================================================================== # Discretize claim vector directions # ============================================================================== # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv # ENCODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def get_claim_vector_magnitudes_single_pixel( neighborhood_vectors: np.ndarray, claim_vector_magnitude: np.ndarray, claim_map: np.ndarray, model_vals: List[np.ndarray], src_centers: np.ndarray, y: int, x: int, b: int ) -> None: relative_vectors = src_centers - np.array([y, x]) src_fluxes = np.array([max(model_vals[i][b, y, x], 0) for i in range(len(model_vals))]) max_flux = src_fluxes.max() normed_flux = src_fluxes / max_flux if max_flux > 0 else src_fluxes flx_sum = src_fluxes.sum() uniform_dist = np.ones_like(src_fluxes) / src_fluxes.shape[0] normed_sum_to_one = src_fluxes / src_fluxes.sum() if flx_sum > 0 else uniform_dist cosine_measure = cosine_similarity(neighborhood_vectors, relative_vectors) euclidean_distance = euclidean_distances(neighborhood_vectors, relative_vectors) euclidean_norm = np.maximum(euclidean_distance.max(axis=1, keepdims=True), 1e-5) normed_euclidean_distance = euclidean_distance / euclidean_norm metric = cosine_measure * (1 - normed_euclidean_distance) * (normed_flux[np.newaxis, :]) closest_srcs = np.argmax(metric, axis=1) selected_srcs = relative_vectors[closest_srcs, :] _claim_magnitudes = (selected_srcs * neighborhood_vectors).sum(axis=1) idxs, counts = np.unique(closest_srcs, return_counts=True) coefs = np.reciprocal(counts.astype(np.float32)) _claim_map = np.array(list(map( lambda i: coefs[idxs==i][0] * normed_sum_to_one[i], closest_srcs ))) claim_vector_magnitude[y, x, b, :] = _claim_magnitudes claim_map[y, x, b, :] = _claim_map def get_claim_vector_image_and_map_discrete_directions( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], ): b, h, w = bhw idxs = product(range(h), range(w), range(b)) neighborhood_vectors = np.array(list(product([0, -1, 1], [0, -1, 1]))[1:], dtype=np.float32) neighborhood_vectors /= np.linalg.norm(neighborhood_vectors, axis=-1)[:, np.newaxis] claim_vector_magnitude = np.zeros([h, w, b, 8], dtype=np.float32) claim_map = np.zeros([h, w, b, 8], dtype=np.float32) src_ys, src_xs = np.nonzero(source_locations) src_centers = np.array([src_ys, src_xs]).T # [n, 2] encode_f = partial( get_claim_vector_magnitudes_single_pixel, neighborhood_vectors, claim_vector_magnitude, claim_map, model_src_vals, src_centers ) for _ in starmap(encode_f, idxs): pass return claim_vector_magnitude, claim_map # ENCODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # DECODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def decode_discrete_vectors_single_pixel( output:np.ndarray, # [n, h, w, b] neighborhood_vectors: np.ndarray, # [8, 2] flux:np.ndarray, # [h, w, b] claim_vector_magnitude:np.ndarray, # [h, w, b, 8] claim_map:np.ndarray, # [h, w, b, 8] src_centers:np.ndarray, # [n, 2] y:int, x:int, b:int ) -> None: pixel_flux = flux[y, x, b] pixel_magnitudes = claim_vector_magnitude[y, x, b, :].copy() pixel_claim_map = claim_map[y, x, b, :].copy() relative_vectors = neighborhood_vectors * pixel_magnitudes[:, np.newaxis] relative_centers = src_centers - np.array([y, x]) distances = euclidean_distances(relative_vectors, relative_centers) # [n_neighborhood, n_centers] closest_src = np.argmin(distances, axis=1) distributed_flux = pixel_flux * pixel_claim_map def update_output(src_idx:int, flx:float): output[src_idx, y, x, b] += flx for _ in starmap(update_output, zip(closest_src, distributed_flux)): pass def get_sources_discrete_directions( flux_image: np.ndarray, # [h, w, b] claim_vector_magnitude: np.ndarray, # [h, w, b, 8] claim_map: np.ndarray, # [h, w, b, 8] background_map: np.ndarray, # [h, w] center_of_mass: np.ndarray, # [h, w] bkg_thresh_coef: float = 0.7, ) -> np.ndarray: # [n, h, w, b] y, x, b = flux_image.shape src_locations = non_maximum_suppression(7, 0.1, center_of_mass) # [h, w] src_centers = np.stack(np.nonzero(src_locations), axis=1) + 0.5 # [n, 2] output = np.zeros([src_centers.shape[0], y, x, b], dtype=np.float32) neighborhood_vectors = np.array(list(product([0, -1, 1], [0, -1, 1]))[1:], dtype=np.float32) neighborhood_vectors /= np.linalg.norm(neighborhood_vectors, axis=-1)[:, np.newaxis] idxs = product(range(y), range(x), range(b)) decode_f = partial( decode_discrete_vectors_single_pixel, output, neighborhood_vectors, flux_image, claim_vector_magnitude, claim_map, src_centers ) for _ in starmap(decode_f, idxs): pass #filter out background pixels #bkg_filter = background_map[np.newaxis, :, :, np.newaxis] > bkg_thresh_coef #return output * bkg_filter return output # DECODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Discretize claim vector directions # ============================================================================== # ============================================================================== # Closest n-sources claim vector # ============================================================================== # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv # ENCODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def get_n_closest_claim_vectors_single_pixel( claim_vectors: np.ndarray, # [h, w, b, n, 2] claim_map: np.ndarray, # [h, w, b, n] model_vals: List[np.ndarray], src_centers: np.ndarray, # [n, 2] n: int, y: int, x: int, b: int, ) -> None: relative_vectors = src_centers - np.array([y, x]) # [n_srcs, 2] relative_distances = np.linalg.norm(relative_vectors, axis=-1) # [n_srcs,] raw_closest_sources = np.argsort(relative_distances)[:n] # [n, ] num_pad = n - raw_closest_sources.shape[0] if num_pad > 0: n_closest_sources = np.pad(raw_closest_sources, (0, num_pad), mode="edge") else: n_closest_sources = raw_closest_sources selected_srcs = relative_vectors[n_closest_sources] src_fluxes = np.array([max(model_vals[i][b, y, x], 0) for i in raw_closest_sources]) sum_flux = src_fluxes.sum() if sum_flux > 0: normed_flux = src_fluxes / sum_flux else: raw_n = raw_closest_sources.shape[0] normed_flux = np.ones([raw_n], dtype=np.float32) / raw_n idxs, counts = np.unique(n_closest_sources, return_counts=True) coefs = np.reciprocal(counts.astype(np.float32)) claim = np.array(list(map( lambda i: coefs[idxs==i][0] * normed_flux[i==raw_closest_sources][0], n_closest_sources ))) claim_vectors[y, x, b, ...] = selected_srcs claim_map[y, x, b, ...] = claim def get_n_closest_claim_vectors( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], n: int, ) -> Tuple[np.ndarray, np.ndarray]: # [h, w, b, n], [h, w, b, n, 2] b, y, x = bhw src_ys, src_xs = np.nonzero(source_locations) src_centers = np.array([src_ys, src_xs]).T # [n, 2] idxs = product(range(y), range(x), range(b)) claim_vector = np.zeros([y, x, b, n, 2], dtype=np.float32) claim_map = np.zeros([y, x, b, n], dtype=np.float32) encode_f = partial( get_n_closest_claim_vectors_single_pixel, claim_vector, claim_map, model_src_vals, src_centers, n, ) for _ in starmap(encode_f, idxs): pass return claim_vector, claim_map # ENCODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # DECODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def decode_n_closest_sources_single_pixel( output:np.ndarray, flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray, y:int, x:int, b:int, ) -> None: pixel_flux = flux[y, x, b] pixel_vectors = claim_vector[y, x, b, ...].copy() # [n, 2] pixel_claim_map = claim_map[y, x, b, ...].copy() # [n,] relative_centers = src_centers - np.array([y, x]) distances = euclidean_distances(pixel_vectors, relative_centers) #[n, n_src_centers] closest_srcs = np.argmin(distances, axis=1) distributed_flux = pixel_flux * pixel_claim_map def update_output(src_idx:int, flx:float): output[src_idx, y, x, b] += flx for _ in starmap(update_output, zip(closest_srcs, distributed_flux)): pass def decode_n_closest_sources( flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray, background_map: np.ndarray, # [h, w] center_of_mass: np.ndarray, # [h, w] bkg_thresh_coef: float = 0.7, ) -> np.ndarray: src_locations = non_maximum_suppression(7, 0.1, center_of_mass) # [h, w] src_centers = np.stack(np.nonzero(src_locations), axis=1) + 0.5 # [n, 2] y, x, b = flux.shape output = np.zeros([src_centers.shape[0], y, x, b], dtype=np.float32) idxs = product(range(y), range(x), range(b)) decode_f = partial( decode_n_closest_sources_single_pixel, output, flux, claim_vector, claim_map, src_centers, ) for _ in starmap(decode_f, tqdm(idxs, total=y*x*b)): pass return output # DECODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Closest n-sources claim vector # ============================================================================== # ============================================================================== # Closest flux-weighted n-sources claim vector # ============================================================================== # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv # ENCODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def get_n_closest_fw_claim_vectors_single_pixel( claim_vectors: np.ndarray, # [h, w, b, n, 2] claim_map: np.ndarray, # [h, w, b, n] model_vals: List[np.ndarray], # list(n) src_centers: np.ndarray, # [n, 2] n: int, y: int, x: int, b: int, ) -> None: relative_vectors = src_centers - np.array([y, x]) # [n_srcs, 2] relative_distances = np.linalg.norm(relative_vectors, axis=-1) # [n_srcs,] normed_distances = relative_distances / relative_distances.max() # [n_srcs, ] src_fluxes = np.array([max(model_vals[i][b, y, x], 0) for i in range(len(model_vals))]) # [n_srcs, ] max_flux = src_fluxes.max() if max_flux <= 0: normed_flux = np.ones([src_fluxes.shape[0]]) / src_fluxes.shape[0] # [n_srcs, ] normed_sum_to_one = np.ones([src_fluxes.shape[0]]) / src_fluxes.shape[0] # [n_srcs, ] else: normed_flux = src_fluxes / src_fluxes.max() # [n_srcs, ] normed_sum_to_one = src_fluxes / src_fluxes.sum() # [n_srcs, ] metric = (1 - normed_distances) * normed_flux # [n_srcs, ] top_srcs = np.argsort(-metric)[:n] # [min(n, n_srcs), ] num_pad = n - top_srcs.shape[0] if num_pad > 0: n_closest_sources = np.pad(top_srcs, (0, num_pad), mode="edge") # [n, ] else: n_closest_sources = top_srcs # [n, ] selected_srcs = relative_vectors[n_closest_sources] # [n, 2] src_fluxes = np.array([max(model_vals[i][b, y, x], 0) for i in top_srcs]) # [min(n, n_srcs), ] sum_flux = src_fluxes.sum() if sum_flux > 0: normed_flux = src_fluxes / sum_flux # [min(n, n_srcs), ] else: normed_flux = np.ones([src_fluxes.shape[0]], dtype=np.float32) / n # [min(n, n_srcs), ] idxs, counts = np.unique(n_closest_sources, return_counts=True) # [min(n, n_srcs), ], [min(n, n_srcs), ] coefs = np.reciprocal(counts.astype(np.float32)) # [min(n, n_srcs), ] claim = np.array(list(map( lambda i: coefs[idxs==i][0] * normed_flux[i==top_srcs][0], n_closest_sources ))) claim_vectors[y, x, b, ...] = selected_srcs claim_map[y, x, b, ...] = claim def get_n_closest_fw_claim_vectors_maps( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], n: int, ) -> Tuple[np.ndarray, np.ndarray]: # [h, w, b, n], [h, w, b, n, 2] b, y, x = bhw src_ys, src_xs = np.nonzero(source_locations) src_centers = np.array([src_ys, src_xs]).T # [n, 2] idxs = product(range(y), range(x), range(b)) claim_vector = np.zeros([y, x, b, n, 2], dtype=np.float32) claim_map = np.zeros([y, x, b, n], dtype=np.float32) encode_f = partial( get_n_closest_fw_claim_vectors_single_pixel, claim_vector, claim_map, model_src_vals, src_centers, n, ) for _ in starmap(encode_f, idxs): pass return claim_vector, claim_map # ENCODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # DECODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def decode_n_closest_fw_sources_single_pixel( output:np.ndarray, flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray, y:int, x:int, b:int, ) -> None: pixel_flux = flux[y, x, b] pixel_vectors = claim_vector[y, x, b, ...].copy() # [n, 2] pixel_claim_map = claim_map[y, x, b, ...].copy() # [n,] relative_centers = src_centers - np.array([y, x]) distances = euclidean_distances(pixel_vectors, relative_centers) #[n, n_src_centers] closest_srcs = np.argmin(distances, axis=1) distributed_flux = pixel_flux * pixel_claim_map def update_output(src_idx:int, flx:float): output[src_idx, y, x, b] += flx for _ in starmap(update_output, zip(closest_srcs, distributed_flux)): pass def decode_n_closest_fw_sources( flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray ) -> np.ndarray: y, x, b = flux.shape output = np.zeros([src_centers.shape[0], y, x, b], dtype=np.float32) idxs = product(range(y), range(x), range(b)) decode_f = partial( decode_n_closest_fw_sources_single_pixel, output, flux, claim_vector, claim_map, src_centers, ) for _ in starmap(decode_f, tqdm(idxs, total=y*x*b)): pass return output # DECODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Closest flux-weighted n-sources claim vector # ============================================================================== # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Closest n-sources claim vector avg map # ============================================================================== # ENCODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def get_n_closest_avg_claim_vector_single_pixel( claim_vectors: np.ndarray, # [h, w, n, 2] claim_map: np.ndarray, # [h, w, n] model_vals: List[np.ndarray], # list(n) src_centers: np.ndarray, # [n, 2] n: int, y: int, x: int, ) -> None: relative_vectors = src_centers - np.array([y, x]) # [n_srcs, 2] relative_distances = np.linalg.norm(relative_vectors, axis=-1) # [n_srcs,] raw_closest_sources = np.argsort(relative_distances)[:n] # [n, ] num_pad = n - raw_closest_sources.shape[0] if num_pad > 0: n_closest_sources = raw_closest_sources else: n_closest_sources = np.pad(raw_closest_sources, (0, num_pad), mode="edge") selected_srcs = relative_vectors[n_closest_sources] claim_vectors[y, x, ...] = selected_srcs def get_normed_src_fluxes(band:int): src_fluxes = np.array([max(model_vals[i][band, y, x], 0) for i in raw_closest_sources]) sum_flux = src_fluxes.sum() if sum_flux > 0: normed_flux = src_fluxes / sum_flux else: normed_flux = np.ones([n], dtype=np.float32) / n return normed_flux n_bands = model_vals[0].shape[0] avg_flux_contrib = np.array(list(map(get_normed_src_fluxes, range(n_bands)))).mean(axis=0) normed_avg_flux_contrib = avg_flux_contrib / avg_flux_contrib.sum() idxs, counts = np.unique(n_closest_sources, return_counts=True) coefs = np.reciprocal(counts.astype(np.float32)) claim = np.array(list(map( lambda i: coefs[idxs==i][0] * normed_avg_flux_contrib[i==raw_closest_sources][0], n_closest_sources ))) claim_map[y, x, ...] = claim def get_n_closest_avg_claim_vector( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], n: int, ) -> Tuple[np.ndarray, np.ndarray]: # [h, w, n], [h, w, n, 2] _, y, x = bhw src_ys, src_xs = np.nonzero(source_locations) src_centers = np.array([src_ys, src_xs]).T # [n, 2] idxs = product(range(y), range(x)) claim_vector = np.zeros([y, x, n, 2], dtype=np.float32) claim_map = np.zeros([y, x, n], dtype=np.float32) encode_f = partial( get_n_closest_avg_claim_vector_single_pixel, claim_vector, claim_map, model_src_vals, src_centers, n, ) for _ in starmap(encode_f, idxs): pass claim_vector, claim_map # ENCODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # DECODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def decode_n_closest_avg_claim_vector_single_pixel( output:np.ndarray, flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray, y:int, x:int, b:int, ) -> None: pixel_flux = flux[y, x, b] pixel_vectors = claim_vector[y, x, ...].copy() # [n, 2] pixel_claim_map = claim_map[y, x, ...].copy() # [n,] relative_centers = src_centers - np.array([y, x]) distances = euclidean_distances(pixel_vectors, relative_centers) #[n, n_src_centers] closest_srcs = np.argmin(distances, axis=1) distributed_flux = pixel_flux * pixel_claim_map def update_output(src_idx:int, flx:float): output[src_idx, y, x, b] += flx for _ in starmap(update_output, zip(closest_srcs, distributed_flux)): pass def decode_n_closest_fw_sources( flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray ) -> np.ndarray: y, x, b = flux.shape output = np.zeros([src_centers.shape[0], y, x, b], dtype=np.float32) idxs = product(range(y), range(x), range(b)) decode_f = partial( decode_n_closest_avg_claim_vector_single_pixel, output, flux, claim_vector, claim_map, src_centers, ) for _ in starmap(decode_f, tqdm(idxs, total=y*x*b)): pass return output # DECODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Closest n-sources claim vector avg map # ============================================================================== # ============================================================================== # Closest n-sources claim vector limit bands # ============================================================================== # ENCODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def get_n_closest_claim_vector_map_limit_bands_single_pixel( claim_vectors: np.ndarray, # [h, w, n, 2] claim_map: np.ndarray, # [h, w, b, n] model_vals: List[np.ndarray], src_centers: np.ndarray, # [n_srcs, 2] n: int, n_bands: int, y: int, x: int, ) -> None: # Claim vectors ============================================================ relative_vectors = src_centers - np.array([y, x]) # [n_srcs, 2] relative_distances = np.linalg.norm(relative_vectors, axis=-1) # [n_srcs,] raw_closest_sources = np.argsort(relative_distances)[:n] # [min(n_srcs, n), ] num_pad = n - raw_closest_sources.shape[0] if num_pad > 0: n_closest_sources = np.pad(raw_closest_sources, (0, num_pad), mode="edge") # [n,] else: n_closest_sources = raw_closest_sources # [n,] selected_srcs = relative_vectors[n_closest_sources] # [n, 2] claim_vectors[y, x, ...] = selected_srcs # Claim vectors ============================================================ # Claim maps =============================================================== raw_n = raw_closest_sources.shape[0] def get_normed_src_fluxes(band:int): src_fluxes = np.array([max(model_vals[i][band, y, x], 0) for i in raw_closest_sources]) sum_flux = src_fluxes.sum() if sum_flux > 0: normed_flux = src_fluxes / sum_flux else: normed_flux = np.ones([raw_n], dtype=np.float32) / raw_n return normed_flux band_normed_flux = np.array(list(map(get_normed_src_fluxes, range(n_bands)))) # [n_bands, min(n_src, n)] if num_pad > 0: padded_band_normed_flux = np.pad(band_normed_flux, ((0, 0), (0, num_pad)), mode="edge") else: padded_band_normed_flux = band_normed_flux idxs, counts = np.unique(n_closest_sources, return_counts=True) # [min(n_srcs, n), ], [min(n_srcs, n), ] coefs = np.reciprocal(counts.astype(np.float32)) # [min(n_srcs, n), ] coef_map = np.array([coefs[idxs==i][0] for i in n_closest_sources])[np.newaxis, :] #[1, n] try: claim = padded_band_normed_flux * coef_map except: print("raw_closest_sources: ", raw_closest_sources.shape) print("selected_srcs_shape: ", selected_srcs.shape) print("band_normed_flux: ", band_normed_flux.shape) print("padded_band_normed_flux: ", padded_band_normed_flux.shape) print("coefs: ", coefs.shape) print("coef_map: ", coef_map.shape) raise ValueError("Things Broke! Oh Man!") claim_map[y, x, ...] = claim # Claim maps =============================================================== def get_n_closest_claim_vector_map_limit_bands( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], n: int, n_bands:int, ) -> Tuple[np.ndarray, np.ndarray]: # [h, w, bands, n], [h, w, bands, n, 2] b, y, x = bhw src_ys, src_xs = np.nonzero(source_locations) src_centers = np.array([src_ys, src_xs]).T # [n, 2] idxs = product(range(y), range(x)) claim_vector = np.zeros([y, x, n, 2], dtype=np.float32) claim_map = np.zeros([y, x, n_bands, n], dtype=np.float32) encode_f = partial( get_n_closest_claim_vector_map_limit_bands_single_pixel, claim_vector, claim_map, model_src_vals, src_centers, n, n_bands, ) for _ in starmap(encode_f, idxs): pass return claim_vector, claim_map # ENCODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # DECODER vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv def decode_n_closest_claim_vector_map_limit_bands_single_pixel( output:np.ndarray, flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray, y:int, x:int, b:int, ) -> None: pixel_flux = flux[y, x, b] pixel_vectors = claim_vector[y, x, b, ...].copy() # [n, 2] pixel_claim_map = claim_map[y, x, b, ...].copy() # [n,] relative_centers = src_centers - np.array([y, x]) distances = euclidean_distances(pixel_vectors, relative_centers) #[n, n_src_centers] closest_srcs = np.argmin(distances, axis=1) distributed_flux = pixel_flux * pixel_claim_map def update_output(src_idx:int, flx:float): output[src_idx, y, x, b] += flx for _ in starmap(update_output, zip(closest_srcs, distributed_flux)): pass def decode_n_closest_claim_vector_map_limit_bands( flux:np.ndarray, claim_vector:np.ndarray, claim_map:np.ndarray, src_centers:np.ndarray ) -> np.ndarray: y, x, b = flux.shape output = np.zeros([src_centers.shape[0], y, x, b], dtype=np.float32) idxs = product(range(y), range(x), range(b)) decode_f = partial( decode_n_closest_fw_sources_single_pixel, output, flux, claim_vector, claim_map, src_centers, ) for _ in starmap(decode_f, tqdm(idxs, total=y*x*b)): pass return output # DECODER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # ============================================================================== # Closest n-sources claim vector limit bands # ============================================================================== def get_claim_vector_image_and_map( source_locations: np.ndarray, bkg: np.ndarray, bhw: Tuple[int, int, int], model_src_vals: List[np.ndarray], ): # Updates claim_vector_image and claim_map_image in place def single_pixel_vector( claim_vector_image: np.ndarray, claim_map_image: np.ndarray, centers: np.ndarray, bkg:np.ndarray, i: int, j: int, b: int, ) -> None: ijb_src_flux = np.array([m[b, i, j] for m in model_src_vals]) ijb_src_flux_mask = ijb_src_flux > 0 if bkg[i, j, 0] > 0.9 or ijb_src_flux_mask.sum()==0: idxs = list(product([-1, 0, 1], [-1, 0, 1])) idxs.remove((0, 0)) claim_vector_image[i, j, b, ...] =
np.array(idxs)
numpy.array
'Volume generation and augmentation' # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # MIT License import keras import os.path import numpy as np from tqdm import tqdm from sklearn.neighbors import KDTree from sklearn.decomposition import PCA from enzynet.PDB import PDB_backbone current_directory = os.path.dirname(os.path.abspath(__file__)) precomputed_path = os.path.join(current_directory, '../files/precomputed/') PDB_path = os.path.join(current_directory, '../files/PDB/') class VolumeDataGenerator(keras.utils.Sequence): """ Generates batches of volumes containing 3D structure of enzymes as well as their associated class labels on the fly. To be passed as argument in the fit_generator function of Keras. Parameters ---------- v_size : int (optional, default is 32) Size of each side of the output volumes. flips : tuple of floats (optional, default is (0.2, 0.2, 0.2)) Probabilities that the volumes are flipped respectively with respect to x, y, and z. batch_size : int (optional, default is 32) Number of samples in output array of each iteration of the 'generate' method. directory_precomputed : string (optional, default points to 'files/precomputed') Path of the precomputed files. directory_pdb : string (optional, default points to 'files/PDB') Path of the PDB files. labels : dict Dictionary linking PDB IDs to their labels. list_enzymes : list of strings List of enzymes to generate. shuffle : boolean (optional, default is True) If True, shuffles order of exploration. p : int (optional, default is 5) Interpolation of enzymes with p added coordinates between each pair of consecutive atoms. max_radius : float (optional, default is 40) Maximum radius of sphere that will completely fit into the volume. noise_treatment : boolean (optional, default is False) If True, voxels with no direct neighbor will be deleted. weights : list of strings (optional, default is []) List of weights (among the values ['hydropathy', 'charge']) to consider as additional channels. scaling_weights : boolean (optional, default is True) If True, divides all weights by the weight that is maximum in absolute value. Example ------- >>> from enzynet.volume import VolumeDataGenerator >>> from enzynet.tools import read_dict >>> labels = read_dict('../datasets/dataset_single.csv') >>> partition_red = read_dict('../../datasets/partition_single_red.csv') >>> exec("partition_red['train'] = " + partition_red['train']) >>> generator = VolumeDataGenerator(partition_red['train'], labels, v_size=64, flips=(0.2, 0.2, 0.2), batch_size=32, shuffle=True, p=5, max_radius=40, noise_treatment=False, weights=[], scaling_weights=True) """ def __init__(self, list_enzymes, labels, v_size=32, flips=(0.2, 0.2, 0.2), batch_size=32, directory_precomputed=precomputed_path, directory_pdb=PDB_path, shuffle=True, p=5, max_radius=40, noise_treatment=False, weights=[], scaling_weights=True): 'Initialization' self.batch_size = batch_size self.directory_precomputed = directory_precomputed self.directory_pdb = directory_pdb self.flips = flips self.labels = labels self.list_enzymes = list_enzymes self.max_radius = max_radius self.noise_treatment = noise_treatment self.n_channels = max(1, len(weights)) self.p = p self.scaling_weights = scaling_weights self.shuffle = shuffle self.v_size = v_size self.weights = weights self.on_epoch_end() def check_precomputed(self): 'Checks if all coordinates and weights have been precomputed, and precomputes them otherwise' # Initialization list_enzymes = list(self.labels) counter = 0 # Loop over all enzymes for pdb_id in tqdm(list_enzymes): # Find name of paths names = [precomputed_name(pdb_id, self.directory_precomputed, 'coords', self.p)] + \ [precomputed_name(pdb_id, self.directory_precomputed, 'weights', self.p, weight, self.scaling_weights) for weight in self.weights] # Precomputes all files if all([os.path.isfile(name) for name in names]): # Check if all already exist pass else: # Precomputes files otherwise save_coords_weights(pdb_id, self.weights, self.p, self.scaling_weights, self.directory_pdb, self.directory_precomputed) counter += 1 print("Had to compute files of {0} enzymes.".format(counter)) def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_enzymes)) if self.shuffle == True: np.random.shuffle(self.indexes) def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.list_enzymes) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs list_enzymes_temp = [self.list_enzymes[k] for k in indexes] # Generate data X, y = self.__data_augmentation(list_enzymes_temp) return X, y def __data_augmentation(self, list_enzymes_temp): 'Returns augmented data with batch_size enzymes' # X : (n_samples, v_size, v_size, v_size, n_channels) # Initialization X = np.empty((self.batch_size, # n_enzymes self.v_size, # dimension w.r.t. x self.v_size, # dimension w.r.t. y self.v_size, # dimension w.r.t. z self.n_channels)) # n_channels y = np.empty((self.batch_size), dtype=int) # Computations for i in range(self.batch_size): # Store class y[i] = self.labels[list_enzymes_temp[i]] # Load precomputed coordinates coords = load_coords(list_enzymes_temp[i], self.p, self.directory_precomputed) coords = coords_center_to_zero(coords) coords = adjust_size(coords, v_size=self.v_size, max_radius=self.max_radius) # Get weights local_weights = [] for weight in self.weights: local_weight = load_weights(list_enzymes_temp[i], weight, self.p, self.scaling_weights, self.directory_precomputed) # Compute extended weights local_weights += [local_weight] # Store # PCA coords = PCA(n_components=3).fit_transform(coords) # Do flip coords_temp = flip_around_axis(coords, axis=self.flips) if len(self.weights) == 0: # Convert to volume and store X[i, :, :, :, 0] = coords_to_volume(coords_temp, self.v_size, noise_treatment=self.noise_treatment) else: # Compute to weights of volume and store for k in range(self.n_channels): X[i, :, :, :, k] = weights_to_volume(coords_temp, local_weights[k], self.v_size, noise_treatment=self.noise_treatment) return X, sparsify(y) def coords_to_volume(coords, v_size, noise_treatment=False): 'Converts coordinates to binary voxels' # Input is centered on [0,0,0] return weights_to_volume(coords=coords, weights=1, v_size=v_size, noise_treatment=noise_treatment) def weights_to_volume(coords, weights, v_size, noise_treatment=False): 'Converts coordinates to voxels with weights' # Input is centered on [0,0,0] # Initialization volume = np.zeros((v_size, v_size, v_size)) # Translate center coords = coords + np.full((coords.shape[0], 3), (v_size-1)/2) # Round components coords = coords.astype(int) # Filter rows with values that are out of the grid mask = ((coords >= 0) & (coords < v_size)).all(axis=1) # Convert to volume volume[tuple(coords[mask].T)] = weights[mask] if type(weights) != int else weights # Remove noise if noise_treatment == True: volume = remove_noise(coords, volume) return volume def coords_center_to_zero(coords): 'Centering coordinates on [0,0,0]' barycenter = get_barycenter(coords) return coords - np.full((coords.shape[0], 3), barycenter) def adjust_size(coords, v_size=32, max_radius=40): return np.multiply((v_size/2-1)/max_radius, coords) def sparsify(y): 'Returns labels in binary NumPy array' n_classes = 6 return np.array([[1 if y[i] == j+1 else 0 for j in range(n_classes)] for i in range(y.shape[0])]) def flip_around_axis(coords, axis=(0.2, 0.2, 0.2)): 'Flips coordinates randomly w.r.t. each axis with its associated probability' for col in range(3): if np.random.binomial(1, axis[col]): coords[:,col] = np.negative(coords[:,col]) return coords def get_barycenter(coords): 'Gets barycenter point of a Nx3 matrix' return np.array([
np.mean(coords, axis=0)
numpy.mean
import numpy as np import matplotlib.pyplot as plt from scipy.stats import multivariate_normal as mvn cov = np.array([[1,0.8],[0.8,3]]) # a covariance matrix mu =
np.array([0,2])
numpy.array
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import numpy as np import tsim import sys """ Vector Bit Slice and Pack Function Parameters ---------- A : Vector to be sliced and packed slice_width : slice width Returnsi --------- C: 2d matrix where each cloumn (because of bit packing) represents each bit slice of A """ def slice(A, slice_width): assert np.log2(slice_width) % 1 == 0, "only power of 2 is supported" dtype = type(A[0]) row = 0 # currently only supports uint if dtype is np.uint8: row = 8 // slice_width elif dtype is np.uint16: row = 16 // slice_width elif dtype is np.uint32: row = 32 // slice_width elif dtype is np.uint64: row = 64 // slice_width else: raise ValueError("datatype " + str(dtype) + "currently not supported") if (row >= 8): dtype = 'uint' + str(row) else: dtype = 'uint8' C = np.zeros((row, len(A))).astype(dtype) # sliced and transform # create mask slice_mask = 2**(slice_width)-1 # slice and pack for x in range(len(A)): for y in range(row): C[y][x] = (np.uint64(A[x]) >> np.uint64(slice_width * y)) & np.uint64(slice_mask) return C """ Matrix Multiplication Function Parameters ---------- A : Matrix A B: Matrix B w_width : weight slice width a_width : activation slice width Returns --------- C: result of A * B """ # A is a n*m matrix, B is a m*p matrix(not transposed yet) def matrix_multiply(A, B, w_width, a_width): assert A.shape[1] == B.shape[0], "can't perform multiplication" BT = B.transpose() cycles = 0 C = np.zeros((A.shape[0], B.shape[1])).astype('uint64') for i in range(A.shape[0]): for j in range(B.shape[1]): # C[i, j] = A[i].dot(BT[j]) A_sliced = slice(A[i], w_width) B_sliced = slice(BT[j], a_width) C[i, j] = compute(A_sliced, B_sliced, w_width, a_width) test = test_accel(A_sliced, B_sliced, w_width, a_width) cycles += test[1] np.testing.assert_equal(C[i,j], A[i].astype('uint64').dot(BT[j])) print("PASS SW serial & parallel") np.testing.assert_equal(test[0], C[i, j]) print("PASS SW & HW bit serial") np.testing.assert_equal(test[0], A[i].astype('uint64').dot(BT[j])) print("PASS SW bit parallel & HW bit parallel") print("result: ") print(C) print("ALL TESTS PASSED, cycles: " + str(cycles)) return C """ Software Verification Function""" # takes 2 matrix input (sliced and packed) def compute(A, B, w_width, a_width): assert A.shape[1] == B.shape[1], "sliced shape not match" # reset hardware accumulator accum = 0 for x in range(A.shape[0]): for y in range(B.shape[0]): # hardware implementation accum += np.uint64(A[x]).dot(np.uint64(B[y])) << np.uint64(x*w_width + y*a_width) # get value from accumulator return accum """Testing Function for Dot Product""" def test_accel(A, B, w_width, a_width): assert A.shape[1] == B.shape[1], "sliced shape not match" dtype = A.dtype ctx = tvm.cpu(0) f = tsim.load_module() a_arr = [] b_arr = [] for i in range(A.shape[0]): list_a = np.zeros(A.shape[1]).astype(dtype) for j in range(A.shape[1]): list_a[j] = A[i][j] a_arr.append(tvm.nd.array(list_a.astype(dtype), ctx)) for i in range(B.shape[0]): list_b = np.zeros(B.shape[1]).astype(dtype) for j in range(B.shape[1]): list_b[j] = B[i][j] b_arr.append(tvm.nd.array(list_b.astype(dtype), ctx)) cycles = 0 accum = tvm.nd.array(np.array([0]).astype("uint64"), ctx) for i in range(len(a_arr)): for j in range(len(b_arr)): shift =
np.uint8(i*w_width + j*a_width)
numpy.uint8
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """Generate map plots. Example:: $ python plot_maps.py -c : plot from files from combined output file $ python plot_maps.py -m max_id : plot from files with maximal subset id of max_id $ python plot_maps.py -h : display this help """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.colors as colors from matplotlib.ticker import LogFormatter import cartopy import cartopy.crs as ccrs # General plot settings. cline_label_format_default = '%.1f' n_fill_levels_default = 14 n_line_levels_default = 6 color_map = plt.get_cmap('YlOrRd') # 'coolwarm' 'RdBu' 'bwr' # plt.get_cmap('YlOrRd') if __name__ == "__main__": # TODO this has to be changed to work via class! # from ..utils.convenience_utils import hour_to_date_str from plotting_utils import read_dataset_user_input # Load the processed data from the NetCDF files specified in the input. nc = read_dataset_user_input() # TODO remove - use config for this! lons = nc['longitude'].values lats = nc['latitude'].values height_range_floor = 50. height_range_ceilings = list(nc['height_range_ceiling'].values) fixed_heights = list(nc['fixed_height'].values) integration_range_ids = list(nc['integration_range_id'].values) p_integral_mean = nc['p_integral_mean'].values # Hours since 1900-01-01 00:00:00, see: print(nc['time'].values). hours = nc['time'].values # print("Analyzing " + hour_to_date_str(hours[0]) + " till " # + hour_to_date_str(hours[-1])) # TODO fix from config else: lons = list(np.arange(-20, 20.25, .25)) lats = list(np.arange(65, 29.75, -.25)) # #lons = np.arange(-12, -5.0, .25) # config.Data.all_lons # #lats = np.arange(51, 56.25, .25) # config.Data.all_lats # else: # # TODO make more understandable # # TODO make into utils -> use for map plots in production # # TODO fix from config # # Ireland # # lons = list(np.arange(-12, -5.0, .25)) # -5.75, .25)) # # lats = list(np.arange(51, 56.25, .25)) # # Europe map # lons = list(np.arange(-20, 20.25, .25)) # lats = list(np.arange(65, 29.75, -.25)) # Plotting map - region selection # TODO rework -> config plot_northern_germany = False label_cities = False map_plot_aspect_ratio = 9 / 12.5 # len(lons)/len(lats) # TODO this makes sense - adapt fixed number later on -> adaptable mrc = ccrs.Mercator() def calc_fig_height(fig_width, subplot_shape, plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right): """"Calculate figure height, such that all maps have the same resolution. Args: fig_width (float): Figure width in inches. subplot_shape (tuple of int): Containing number of rows and columns of subplot. plot_frame_top (float): Top of plot as a fraction of the figure window height w.r.t. bottom. plot_frame_bottom (float): Bottom of plot as a fraction of the figure window height w.r.t. bottom. plot_frame_left (float): Left side of plot as a fraction of the figure window width w.r.t. left. plot_frame_right (float): Right side of plot as a fraction of the figure window width w.r.t. left. Returns: float: Figure height in inches. """ plot_frame_width = fig_width*(plot_frame_right - plot_frame_left) plot_frame_height = plot_frame_width/(map_plot_aspect_ratio * subplot_shape[1] / subplot_shape[0]) fig_height = plot_frame_height/(plot_frame_top - plot_frame_bottom) return fig_height def eval_contour_fill_levels(plot_items): """"Evaluate the plot data, e.g. if values are within contour fill levels limits. Args: plot_items (list of dict): List containing the plot property dicts. """ for i, item in enumerate(plot_items): max_value = np.amax(item['data']) min_value = np.amin(item['data']) print("Max and min value of plot" " {}: {:.3f} and {:.3f}".format(i, max_value, min_value)) if item['contour_fill_levels'][-1] < max_value: print("Contour fills " "(max={:.3f}) do not cover max value of plot {}" .format(item['contour_fill_levels'][-1], i)) if item['contour_fill_levels'][0] > min_value: print("Contour fills " "(min={:.3f}) do not cover min value of plot {}" .format(item['contour_fill_levels'][0], i)) def individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cline_label_format_default, log_scale=False, extend="neither", overflow=None): """"Individual plot of coastlines and contours. Args: z (ndarray): 2D array containing contour plot data. cf_lvls (list): Contour fill levels. cl_lvls (list): Contour line levels. cline_label_format (str, optional): Contour line label format string. Defaults to `cline_label_format_default`. log_scale (bool): Logarithmic scaled contour levels are used if True, linearly scaled if False. extend (str): Setting for extension of contour fill levels. Returns: QuadContourSet: Contour fills object. """ # Care if colorbar ticks are set beforehand, see plot_single_map # colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56)) # colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200)) # # combine them and build a new colormap # colors_stack = np.vstack((colors_undersea, colors_land)) # color_map = colors.LinearSegmentedColormap.from_list('color_map', # colors_stack) color_map = plt.get_cmap('YlOrRd') if overflow is not None: n_normal = 224 n_over = 32 top_overflow = overflow colors_underflow = [] underflow_bounds = [] min_val = np.min(z) if isinstance(overflow, list): top_overflow = overflow[1] min_val = overflow[0] n_over = int(n_over/2) colors_underflow = list(plt.get_cmap('coolwarm')( np.linspace(0, 0.21, n_over))) underflow_bounds = list(np.linspace(np.min(z), min_val, n_over+1))[:-1] colors_normal = list(plt.get_cmap('YlOrRd')( np.linspace(0, .9, n_normal))) colors_overflow = list( plt.get_cmap('Greens')(np.linspace(0.5, 1, n_over))) all_colors = colors_underflow + colors_normal + colors_overflow color_map = mpl.colors.LinearSegmentedColormap.from_list( 'color_map', all_colors) normal_bounds = list(np.linspace(min_val, top_overflow, n_normal+1))[:-1] overflow_bounds = list(np.linspace(top_overflow, np.max(z), n_over)) bounds = underflow_bounds + normal_bounds + overflow_bounds norm = mpl.colors.BoundaryNorm(boundaries=bounds, ncolors=256) elif log_scale: norm = colors.LogNorm(vmin=cf_lvls[0], vmax=cf_lvls[-1]) else: norm = None if extend == 'neither': # plot with appropriate parameters # zorder: put the filled-contour below coastlines contour_fills = plt.contourf(lons, lats, z, cf_lvls, transform=cartopy.crs.PlateCarree(), zorder=0.5, cmap=color_map, norm=norm) else: contour_fills = plt.contourf(lons, lats, z, cf_lvls, transform=cartopy.crs.PlateCarree(), zorder=0.5, cmap=color_map, norm=norm, extend=extend) contour_lines = plt.contour(lons, lats, z, cl_lvls, colors='0.1', transform=cartopy.crs.PlateCarree(), linewidths=1) # Label levels with specially formatted floats plt.rcParams['font.weight'] = 'bold' plt.clabel(contour_lines, fmt=cline_label_format, inline=1, fontsize=9, colors='k') plt.rcParams['font.weight'] = 'normal' if label_cities: # TODO remove/ better: test locations HH = (53.551086, 9.993682) Hannover = (52.373954, 9.741647) Bremen = (53.075176, 8.801850) city_labels = ['Hamburg', 'Hannover', 'Bremen'] x_cities, y_cities = plt([HH[1], Hannover[1], Bremen[1]], [HH[0], Hannover[0], Bremen[0]]) plt.plot(x_cities, y_cities, 'o', color='darkslategrey', markersize=4) for label, xpt, ypt in zip(city_labels, x_cities, y_cities): plt.text(xpt+0.5, ypt+0.01, label, color='darkslategrey', fontsize=6) return contour_fills def plot_single_panel(plot_item, plot_title='', overflow=None): """"Plot panel with one individual plot. Args: plot_item (dict): Individual properties of the plots. plot_title (string, optional): Title to be written above the plot. """ # Set up figure, calculate figure height corresponding to desired width. plot_frame_top, plot_frame_bottom, plot_frame_left, \ plot_frame_right = .95, 0.15, 0., 1. bottom_pos_colorbar = .09 fig_width = 3 if plot_title == '': plot_frame_top = 1. plot_frame_width = plot_frame_right - plot_frame_left width_colorbar = plot_frame_width*0.9 fig_height = calc_fig_height(fig_width, (1, 1), plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right) fig, ax = plt.subplots(1, 1, figsize=(fig_width, fig_height), dpi=150, subplot_kw={'projection': mrc}) fig.subplots_adjust(top=plot_frame_top, bottom=plot_frame_bottom, left=plot_frame_left, right=plot_frame_right, hspace=0.0, wspace=0.0) ax.coastlines(color='darkslategrey') # TODO resolution='50m', color='black', linewidth=1) # Plot the data. # Mapping individual properties of the plots. z = plot_item['data'] cf_lvls = plot_item['contour_fill_levels'] cl_lvls = plot_item['contour_line_levels'] cb_ticks = plot_item['colorbar_ticks'] cb_tick_fmt = plot_item['colorbar_tick_fmt'] apply_log_scale = plot_item.get('log_scale', False) extend = plot_item.get('extend', "neither") cl_label_fmt = plot_item.get('contour_line_label_fmt', None) if cl_label_fmt is None: cl_label_fmt = cb_tick_fmt.replace("{:", "%").replace("}", "") plt.title(plot_title) contour_fills = individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cl_label_fmt, log_scale=apply_log_scale, extend=extend, overflow=overflow) # Add axis for colorbar. i = 0 left_pos_colorbar = plot_frame_width*i + \ (plot_frame_width-width_colorbar)/2 + plot_frame_left cbar_ax = fig.add_axes([left_pos_colorbar, bottom_pos_colorbar, width_colorbar, 0.035]) if apply_log_scale: formatter = LogFormatter(10, labelOnlyBase=False) else: formatter = None cbar = plt.colorbar(contour_fills, orientation="horizontal", cax=cbar_ax, ticks=cb_ticks, format=formatter) cbar.ax.set_xticklabels([cb_tick_fmt.format(t) for t in cb_ticks]) cbar.set_label(plot_item['colorbar_label']) def plot_panel_1x3(plot_items, column_titles, row_item): """"Plot panel with 3 columns of individual plots. Args: plot_items (list of dict): Individual properties of the plots. column_titles (list): Plot titles per column. row_item (dict): General properties of the plots. """ # Set up figure, calculate figure height corresponding to desired width. bottom_pos_colorbar = .09 fig_width = 9. plot_frame_top, plot_frame_bottom, plot_frame_left, \ plot_frame_right = .95, 0, .035, 0.88 fig_height = calc_fig_height(fig_width, (1, 3), plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right) fig, axs = plt.subplots(1, 3, figsize=(fig_width, fig_height), dpi=150, subplot_kw={'projection': mrc}) fig.subplots_adjust(top=plot_frame_top, bottom=plot_frame_bottom, left=plot_frame_left, right=plot_frame_right, hspace=0.0, wspace=0.0) # Mapping general properties of the plots. cf_lvls = row_item['contour_fill_levels'] cb_tick_fmt = row_item.get('colorbar_tick_fmt', "{:.1f}") cl_label_fmt = row_item.get('contour_line_label_fmt', None) if cl_label_fmt is None: cl_label_fmt = cb_tick_fmt.replace("{:", "%").replace("}", "") # Plot the data. for ax, title, plot_item in zip(axs, column_titles, plot_items): # Mapping individual properties of the plots. z = plot_item['data'] cl_lvls = plot_item['contour_line_levels'] plt.axes(ax) ax.coastlines(color='darkslategrey') # TODO resolution='50m', color='black', linewidth=1) plt.title(title) contour_fills = individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cl_label_fmt) # Add axis for colorbar. height_colorbar = .85 bottom_pos_colorbar = (plot_frame_top - height_colorbar)/2 cbar_ax = fig.add_axes([0.91, bottom_pos_colorbar, 0.02, height_colorbar]) cbar = fig.colorbar(contour_fills, cax=cbar_ax, ticks=row_item['colorbar_ticks']) cbar.ax.set_yticklabels([cb_tick_fmt.format(t) for t in row_item['colorbar_ticks']]) cbar.set_label(row_item['colorbar_label']) def plot_panel_1x3_seperate_colorbar(plot_items, column_titles): """"Plot panel with 3 columns of individual plots using solely seperate plot properties. Args: plot_items (list of dict): Individual properties of the plots. column_titles (list): Plot titles per column. """ # Set up figure, calculate figure height corresponding to desired width. plot_frame_top, plot_frame_bottom, plot_frame_left, \ plot_frame_right = .95, 0.17, 0., 1. width_colorbar = .27 bottom_pos_colorbar = .1 fig_width = 9.*(0.88-.035) if column_titles is None: plot_frame_top = 1. column_titles = [None]*3 plot_frame_width = plot_frame_right - plot_frame_left fig_height = calc_fig_height(fig_width, (1, 3), plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right) fig, axs = plt.subplots(1, 3, figsize=(fig_width, fig_height), dpi=150, subplot_kw={'projection': mrc}) fig.subplots_adjust(top=plot_frame_top, bottom=plot_frame_bottom, left=plot_frame_left, right=plot_frame_right, hspace=0.0, wspace=0.0) # Plot the data. for i, (ax, title, plot_item) in enumerate(zip(axs, column_titles, plot_items)): # Mapping individual properties of the plots. z = plot_item['data'] cf_lvls = plot_item['contour_fill_levels'] cl_lvls = plot_item['contour_line_levels'] cb_ticks = plot_item['colorbar_ticks'] cb_tick_fmt = plot_item['colorbar_tick_fmt'] apply_log_scale = plot_item.get('log_scale', False) extend = plot_item.get('extend', "neither") cl_label_fmt = plot_item.get('contour_line_label_fmt', None) if cl_label_fmt is None: cl_label_fmt = cb_tick_fmt.replace("{:", "%").replace("}", "") plt.axes(ax) ax.coastlines(color='darkslategrey') # TODO resolution='50m', color='black', linewidth=1) plt.title(title) contour_fills = individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cl_label_fmt, log_scale=apply_log_scale, extend=extend) # Add axis for colorbar. left_pos_colorbar = plot_frame_width/3*i + \ (plot_frame_width/3-width_colorbar)/2 + plot_frame_left cbar_ax = fig.add_axes([left_pos_colorbar, bottom_pos_colorbar, width_colorbar, 0.035]) if apply_log_scale: formatter = LogFormatter(10, labelOnlyBase=False) else: formatter = None cbar = plt.colorbar(contour_fills, orientation="horizontal", cax=cbar_ax, ticks=cb_ticks, format=formatter) cbar.ax.set_xticklabels([cb_tick_fmt.format(t) for t in cb_ticks]) cbar.set_label(plot_item['colorbar_label']) def plot_panel_2x3(plot_items, column_titles, row_items): """"Plot panel with 2 rows and 3 columns of individual plots. Args: plot_items (list of dict): Individual properties of the plots. column_titles (list): Plot titles per column. row_items (list of dict): Properties of the plots shared per row. """ # Set up figure, calculate determine figure height corresponding to # desired width. plot_frame_top, plot_frame_bottom, plot_frame_left, \ plot_frame_right = .96, 0.0, .035, 0.88 fig_width = 9. fig_height = calc_fig_height(fig_width, (2, 3), plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right) fig, axs = plt.subplots(2, 3, figsize=(fig_width, fig_height), dpi=150, subplot_kw={'projection': mrc}) fig.subplots_adjust(top=plot_frame_top, bottom=plot_frame_bottom, left=plot_frame_left, right=plot_frame_right, hspace=0.0, wspace=0.0) # Positioning of colorbars. height_colorbar = .4 right_pos_colorbar = .9 for i_row, row_item in enumerate(row_items): # Mapping properties of the plots shared per row. cb_tick_fmt = row_item.get('colorbar_tick_fmt', "{:.1f}") extend = row_item.get('extend', "neither") cl_label_fmt = row_item.get('contour_line_label_fmt', None) if cl_label_fmt is None: cl_label_fmt = cb_tick_fmt.replace("{:", "%").replace("}", "") cf_lvls = row_items[i_row]['contour_fill_levels'] # First row of plots. for ax, plot_item in zip(axs[i_row, :], plot_items[i_row]): # Mapping individual properties of the plots. z = plot_item['data'] cl_lvls = plot_item['contour_line_levels'] plt.axes(ax) ax.coastlines(color='darkslategrey') # TODO resolution='50m', color='black', linewidth=1) contour_fills = individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cl_label_fmt, extend=extend) # Add axis for colorbar. bottom_pos_colorbar = (1-i_row)*plot_frame_top/2 + \ (plot_frame_top/2-height_colorbar)/2 cbar_ax = fig.add_axes([right_pos_colorbar, bottom_pos_colorbar, 0.02, height_colorbar]) cbar = fig.colorbar(contour_fills, cax=cbar_ax, ticks=row_item['colorbar_ticks']) cbar.ax.set_yticklabels([cb_tick_fmt.format(t) for t in row_item['colorbar_ticks']]) cbar.set_label(row_item['colorbar_label']) # Add subplot row and column labels. row_titles = [r['title'] for r in row_items] for ax, col in zip(axs[0], column_titles): ax.annotate(col, xy=(0.5, 1), xytext=(0, 5.), xycoords='axes fraction', textcoords='offset points', size='large', ha='center', va='baseline') for ax, row in zip(axs[:, 0], row_titles): ax.annotate(row, xy=(0, 0.5), xytext=(-ax.yaxis.labelpad + 2., 0), xycoords=ax.yaxis.label, textcoords='offset points', size='large', ha='right', va='center', rotation=90) def percentile_plots(plot_var, i_case, plot_settings): """" Reading processed data and plotting the 5th, 32nd, 50th percentile maps. Used for figure 3. Args: plot_var (str): Name of plotting variable in netCDF source file. i_case (int): Id of plotted case. plot_settings (dict): Individual and shared properties of the plots. """ column_titles = ["5th percentile", "32nd percentile", "50th percentile"] plot_var_suffix = ["_perc5", "_perc32", "_perc50"] # Read data from NetCDF source file. plot_items = [] plot_data_max = 0 for s in plot_var_suffix: d = nc[plot_var+s].values[i_case, :, :] if plot_var[0] == "p": d *= 1e-3 plot_items.append({'data': d}) if np.amax(d) > plot_data_max: plot_data_max = np.amax(d) # Mapping plot properties and splitting up into individual and # shared properties. plot_handling = plot_settings["plot_handling"] contour_fill_levels = plot_handling["contour_fill_levels"] contour_line_levels = plot_handling.get("contour_line_levels", 3 * [contour_fill_levels]) colorbar_ticks = plot_handling.get("colorbar_ticks", contour_fill_levels) colorbar_label = plot_settings["color_label"] # Write the contour handling to plot_items. for i, plot_item in enumerate(plot_items): plot_item['contour_line_levels'] = contour_line_levels[i] # Write the row dependent settings to row_items. row_item = { 'colorbar_ticks': colorbar_ticks, 'colorbar_label': colorbar_label, 'contour_fill_levels': contour_fill_levels, } if 'colorbar_tick_fmt' in plot_handling: row_item['colorbar_tick_fmt'] = plot_handling["colorbar_tick_fmt"] if 'contour_line_label_fmt' in plot_handling: row_item['contour_line_label_fmt'] = \ plot_handling["contour_line_label_fmt"] plot_panel_1x3(plot_items, column_titles, row_item) def percentile_plots_ref(plot_var, i_case, plot_var_ref, i_case_ref, plot_settings_abs, plot_settings_rel): """" Reading processed data and plotting the 5th, 32nd, 50th percentile maps on the first row and the relative increase w.r.t the reference case on the second row. Used for figure 7. Args: plot_var (str): Name of plotting variable in netCDF source file. i_case (int): Id of plotted case. plot_var_ref (str): Name of reference variable in netCDF source file. i_case_ref (int): Id of reference case plot_settings_abs (dict): Individual and shared properties of the top row plots. plot_settings_rel (dict): Individual and shared properties of the bottom row plots. """ column_titles = ["5th percentile", "32nd percentile", "50th percentile"] row_titles = ['Absolute value', 'Relative to reference case'] plot_var_suffix = ["_perc5", "_perc32", "_perc50"] # Read data from NetCDF source file. plot_items = [[], []] plot_data_max, plot_data_relative_max = 0, 0 for s in plot_var_suffix: d = nc[plot_var+s].values[i_case, :, :] if plot_var[0] == "p": d *= 1e-3 plot_items[0].append({'data': d}) if np.amax(d) > plot_data_max: plot_data_max = np.amax(d) d_ref = nc[plot_var_ref+s].values[i_case_ref, :, :] if plot_var[0] == "p": d_ref *= 1e-3 d_relative = d/d_ref plot_items[1].append({'data': d_relative}) if np.amax(d_relative) > plot_data_relative_max: plot_data_relative_max = np.amax(d_relative) print("Max absolute and relative value are respectively {:.2f} and {:.2f}" .format(plot_data_max, plot_data_relative_max)) # Mapping plot properties and splitting up into individual and shared properties. plot_handling = plot_settings_abs["plot_handling"] contour_fill_levels = plot_handling["contour_fill_levels"] contour_line_levels = plot_handling.get("contour_line_levels", 3*[contour_fill_levels]) colorbar_ticks = plot_handling.get("colorbar_ticks", contour_fill_levels) contour_fill_levels_rel = plot_settings_rel["contour_fill_levels"] contour_line_levels_rel = plot_settings_rel.get("contour_line_levels", 3*[contour_fill_levels_rel]) colorbar_ticks_rel = plot_settings_rel.get("colorbar_ticks", contour_fill_levels_rel) # Write the contour handling to plot_items. for i, plot_item in enumerate(plot_items[0]): plot_item['contour_line_levels'] = contour_line_levels[i] for i, plot_item in enumerate(plot_items[1]): plot_item['contour_line_levels'] = contour_line_levels_rel[i] # Write the row dependent settings to row_items. row_items = [] for i in range(2): row_items.append({ 'title': row_titles[i], }) row_items[0]['colorbar_ticks'] = colorbar_ticks row_items[0]['colorbar_label'] = plot_settings_abs["color_label"] row_items[0]['contour_fill_levels'] = contour_fill_levels if 'colorbar_tick_fmt' in plot_handling: row_items[0]['colorbar_tick_fmt'] = plot_handling["colorbar_tick_fmt"] row_items[0]['contour_line_label_fmt'] = '%.1f' row_items[1]['colorbar_ticks'] = colorbar_ticks_rel row_items[1]['colorbar_label'] = "Increase factor [-]" row_items[1]['contour_fill_levels'] = contour_fill_levels_rel if 'colorbar_tick_fmt' in plot_settings_rel: row_items[1]['colorbar_tick_fmt'] = plot_settings_rel["colorbar_tick_fmt"] row_items[1]['extend'] = plot_settings_rel.get('extend', "neither") plot_panel_2x3(plot_items, column_titles, row_items) def plot_figure5(): """" Generate integrated mean power plot. """ column_titles = ["50 - 150m", "10 - 500m", "Ratio"] linspace0 = np.linspace(0, .31, 21) plot_item0 = { 'data': p_integral_mean[0, :, :]*1e-6, 'contour_line_levels': linspace0[::4], 'contour_fill_levels': linspace0, 'colorbar_ticks': linspace0[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': '[$MWm/m^2$]', } linspace1 = np.linspace(0, 1.5, 21) plot_item1 = { 'data': p_integral_mean[1, :, :]*1e-6, 'contour_line_levels': linspace1[::4], 'contour_fill_levels': linspace1, 'colorbar_ticks': linspace1[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': '[$MWm/m^2$]', } logspace2 = np.logspace(np.log10(4), np.log10(28.0), num=17) plot_item2 = { 'data': plot_item1['data']/plot_item0['data'], 'contour_line_levels': [10, 15], 'contour_fill_levels': logspace2, 'colorbar_ticks': logspace2[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Increase factor [-]', } plot_items = [plot_item0, plot_item1, plot_item2] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_figure3(): """" Generate fixed height wind speed plot. """ plot_settings = { "color_label": 'Wind speed [m/s]', "plot_handling": { "contour_fill_levels": np.arange(0, 15.1, 0.5), # 13.1, 1), "contour_line_levels": [ [1., 2., 3., 4.], [3., 5., 7., 9.], [5., 7., 9., 11.], ], "colorbar_ticks": np.arange(0, 15, 2), # 13, 2), "colorbar_tick_fmt": "{:.0f}", 'contour_line_label_fmt': '%.1f', }, } percentile_plots("v_fixed", 0, plot_settings) def plot_figure4(): """" Generate fixed height power density plot. """ column_titles = ["5th percentile", "32nd percentile", "50th percentile"] fixed_height_ref = 100. fixed_height_id = list(fixed_heights).index(fixed_height_ref) linspace0 = np.linspace(0, 0.027, 21) # np.linspace(0, .033, 21) plot_item0 = { 'data': nc["p_fixed_perc5"].values[fixed_height_id, :, :]*1e-3, 'contour_fill_levels': linspace0, 'contour_line_levels': sorted([.003]+list(linspace0[::5])), 'contour_line_label_fmt': '%.3f', 'colorbar_ticks': linspace0[::5], 'colorbar_tick_fmt': '{:.3f}', 'colorbar_label': 'Power density [$kW/m^2$]', } linspace1 = np.linspace(0, 0.45, 21) # np.linspace(0, .45, 21) plot_item1 = { 'data': nc["p_fixed_perc32"].values[fixed_height_id, :, :]*1e-3, 'contour_fill_levels': linspace1, 'contour_line_levels': sorted([.04]+list(linspace1[::4])), 'contour_line_label_fmt': '%.2f', 'colorbar_ticks': linspace1[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': 'Power density [$kW/m^2$]', } linspace2 = np.linspace(0, 0.95, 21) # np.linspace(0, 1, 21) plot_item2 = { 'data': nc["p_fixed_perc50"].values[fixed_height_id, :, :]*1e-3, 'contour_fill_levels': linspace2, 'contour_line_levels': sorted([.1]+list(linspace2[::4])), 'contour_line_label_fmt': '%.2f', 'colorbar_ticks': linspace2[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': 'Power density [$kW/m^2$]', } plot_items = [plot_item0, plot_item1, plot_item2] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_figure8(): """" Generate baseline comparison wind speed plot. """ linspace_absolute = np.linspace(0, 15, 21) # np.arange(0, 15.1, 1) plot_settings_absolute_row = { "color_label": 'Wind speed [m/s]', "plot_handling": { "contour_fill_levels": linspace_absolute, "colorbar_ticks": linspace_absolute[::2], "contour_line_levels": [ linspace_absolute, [5., 7., 9., 10.], [7., 9., 11., 13.], ], "colorbar_tick_fmt": "{:.0f}", }, } linspace_relative = np.linspace(0, 2, 21) # np.linspace(1., 2.2, 21) plot_settings_relative_row = { "contour_fill_levels": linspace_relative, "colorbar_ticks": linspace_relative[::4], "contour_line_levels": [ [1.1, 1.4, 1.7], [1.1, 1.4, 1.7], [1.1, 1.4, 1.7], ], 'extend': 'max', } percentile_plots_ref("v_ceiling", height_range_ceilings.index(500), "v_fixed", fixed_heights.index(100), plot_settings_absolute_row, plot_settings_relative_row) def plot_figure9_upper(): """" Generate baseline comparison wind power plot - upper part. """ column_titles = ["5th percentile", "32nd percentile", "50th percentile"] height_ceiling = 500. height_ceiling_id = list(height_range_ceilings).index(height_ceiling) linspace0 = np.linspace(0, .04, 21) plot_item0 = { 'data': nc["p_ceiling_perc5"].values[height_ceiling_id, :, :]*1e-3, 'contour_fill_levels': linspace0, 'contour_line_levels': linspace0[::5], 'contour_line_label_fmt': '%.2f', 'colorbar_ticks': linspace0[::5], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': 'Power density [$kW/m^2$]', } linspace1 = np.linspace(0, .6, 21) plot_item1 = { 'data': nc["p_ceiling_perc32"].values[height_ceiling_id, :, :]*1e-3, 'contour_fill_levels': linspace1, 'contour_line_levels': linspace1[::4], 'contour_line_label_fmt': '%.2f', 'colorbar_ticks': linspace1[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': 'Power density [$kW/m^2$]', } linspace2 = np.linspace(0, 1.3, 21) plot_item2 = { 'data': nc["p_ceiling_perc50"].values[height_ceiling_id, :, :]*1e-3, 'contour_fill_levels': linspace2, 'contour_line_levels': linspace2[::4], 'contour_line_label_fmt': '%.2f', 'colorbar_ticks': linspace2[::4], 'colorbar_tick_fmt': '{:.2f}', 'colorbar_label': 'Power density [$kW/m^2$]', } plot_items = [plot_item0, plot_item1, plot_item2] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_figure9_lower(): """" Generate baseline comparison wind power plot - lower part. """ column_titles = None height_ceiling = 500. height_ceiling_id = list(height_range_ceilings).index(height_ceiling) fixed_height_ref = 100. fixed_height_id = list(fixed_heights).index(fixed_height_ref) linspace0 = np.linspace(0, 20, 21) plot_item0 = { 'data': nc["p_ceiling_perc5"].values[height_ceiling_id, :, :] / nc["p_fixed_perc5"].values[fixed_height_id, :, :], 'contour_fill_levels': linspace0, 'contour_line_levels': np.arange(2., 5., 1.), 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace0[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': 'Increase factor [-]', 'extend': 'max', } linspace1 = np.linspace(0, 10, 21) plot_item1 = { 'data': nc["p_ceiling_perc32"].values[height_ceiling_id, :, :] / nc["p_fixed_perc32"].values[fixed_height_id, :, :], 'contour_fill_levels': linspace1, 'contour_line_levels': linspace1[::4], 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace1[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': 'Increase factor [-]', 'extend': 'max', } linspace2 = np.linspace(0, 10, 21) plot_item2 = { 'data': nc["p_ceiling_perc50"].values[height_ceiling_id, :, :] / nc["p_fixed_perc50"].values[fixed_height_id, :, :], 'contour_fill_levels': linspace2, 'contour_line_levels': linspace2[::4], 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace2[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': 'Increase factor [-]', 'extend': 'max', } plot_items = [plot_item0, plot_item1, plot_item2] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_figure10(): """" Generate power availability plot. """ height_ceiling = 500. height_ceiling_id = list(height_range_ceilings).index(height_ceiling) linspace00 = np.linspace(0, 100, 21) plot_item00 = { 'data': 100.-nc["p_ceiling_rank40"].values[height_ceiling_id, :, :], 'contour_fill_levels': linspace00, 'contour_line_levels': [70., 80., 90., 95.], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace00[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', 'extend': 'min', } linspace01 = np.linspace(0, 100, 21) plot_item01 = { 'data': 100.-nc["p_ceiling_rank300"].values[height_ceiling_id, :, :], 'contour_fill_levels': linspace01, 'contour_line_levels': linspace01[::4][2:], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace01[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', } linspace02 = np.linspace(0, 70, 21) plot_item02 = { 'data': 100.-nc["p_ceiling_rank1600"].values[height_ceiling_id, :, :], 'contour_fill_levels': linspace02, 'contour_line_levels': linspace02[::4][2:], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace02[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', } column_titles = ["40 $W/m^2$", "300 $W/m^2$", "1600 $W/m^2$"] plot_items = [plot_item00, plot_item01, plot_item02] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) linspace10 = np.linspace(0., 50., 21) plot_item10 = { 'data': (100.-nc["p_ceiling_rank40"].values[height_ceiling_id, :, :]) - (100.-nc["p_fixed_rank40"].values[0, :, :]), 'contour_fill_levels': linspace10, 'contour_line_levels': sorted([1.1, 2.2]+list(linspace10[::4][:-2])), 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace10[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability increase [%]', } linspace11 = np.linspace(0., 55., 21) plot_item11 = { 'data': (100.-nc["p_ceiling_rank300"].values[height_ceiling_id, :, :]) - (100.-nc["p_fixed_rank300"].values[0, :, :]), 'contour_fill_levels': linspace11, 'contour_line_levels': linspace11[::4][:-2], 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace11[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability increase [%]', } linspace12 = np.linspace(0., 45., 21) plot_item12 = { 'data': (100.-nc["p_ceiling_rank1600"].values[height_ceiling_id, :, :]) - (100.-nc["p_fixed_rank1600"].values[0, :, :]), 'contour_fill_levels': linspace12, 'contour_line_levels': linspace12[::4][:-2], 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace12[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability increase [%]', } column_titles = None plot_items = [plot_item10, plot_item11, plot_item12] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_figure11(): """" Generate 40 W/m^2 power availability plot for alternative height ceilings. """ height_ceilings = [300., 1000., 1250.] height_ceiling_ids = [list(height_range_ceilings).index(height_ceiling) for height_ceiling in height_ceilings] baseline_height_ceiling = 500. baseline_height_ceiling_id = list(height_range_ceilings).index(baseline_height_ceiling) linspace00 = np.linspace(0, 100, 21) plot_item00 = { 'data': 100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[0], :, :], 'contour_fill_levels': linspace00, 'contour_line_levels': [70., 80., 90., 95.], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace00[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', 'extend': 'min', } linspace01 = np.linspace(10, 100, 21) plot_item01 = { 'data': 100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[1], :, :], 'contour_fill_levels': linspace01, 'contour_line_levels': [70., 80., 90., 95.], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace01[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', 'extend': 'min', } linspace02 = np.linspace(10, 100, 21) plot_item02 = { 'data': 100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[2], :, :], 'contour_fill_levels': linspace02, 'contour_line_levels': [70., 80., 90., 95.], 'contour_line_label_fmt': '%.0f', 'colorbar_ticks': linspace02[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability [%]', 'extend': 'min', } column_titles = ["300 m", "1000 m", "1250 m"] plot_items = [plot_item00, plot_item01, plot_item02] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) linspace10 = np.linspace(0., 22., 21) plot_item10 = { 'data': -(100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[0], :, :]) + (100.-nc["p_ceiling_rank40"].values[baseline_height_ceiling_id, :, :]), 'contour_fill_levels': linspace10, 'contour_line_levels': sorted([1.1]+list(linspace10[::4])), 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace10[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability decrease [%]', } linspace11 = np.linspace(0., 38., 21) plot_item11 = { 'data': (100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[1], :, :]) - (100.-nc["p_ceiling_rank40"].values[baseline_height_ceiling_id, :, :]), 'contour_fill_levels': linspace11, 'contour_line_levels': sorted([2.3]+list(linspace11[::4])), 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace11[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability increase [%]', } linspace12 = np.linspace(0., 50., 21) plot_item12 = { 'data': (100.-nc["p_ceiling_rank40"].values[height_ceiling_ids[2], :, :]) - (100.-nc["p_ceiling_rank40"].values[baseline_height_ceiling_id, :, :]), 'contour_fill_levels': linspace12, 'contour_line_levels': sorted([3.8]+list(linspace12[::4])), 'contour_line_label_fmt': '%.1f', 'colorbar_ticks': linspace12[::4], 'colorbar_tick_fmt': '{:.0f}', 'colorbar_label': 'Availability increase [%]', } column_titles = None plot_items = [plot_item10, plot_item11, plot_item12] eval_contour_fill_levels(plot_items) plot_panel_1x3_seperate_colorbar(plot_items, column_titles) def plot_mean_and_ratio(data_type='v', fill_range=[0, 20], ratio_range=[0, 2], line_levels=[2, 5, 15, 20], n_decimals=0): if data_type == 'v': label = r'v [m/s]' scale = 1 ratio_levels = [1.1, 1.3, 1.6] elif data_type == 'p': label = r'Power density [$kW/m^2$]' scale = 10**(-3) ratio_levels = [1, 3, 4.5] height_ceiling = 500. height_ceiling_id = list(height_range_ceilings).index(height_ceiling) fixed_height_ref = 100. fixed_height_id = list(fixed_heights).index(fixed_height_ref) # TODO automatize with data? plot_title = '500m ceiling' linspace00 = np.linspace(fill_range[0], fill_range[1], 21) plot_item = { 'data': nc['{}_ceiling_mean'.format(data_type)].values[height_ceiling_id, :, :]*scale, 'contour_fill_levels': linspace00, 'contour_line_levels': line_levels, 'contour_line_label_fmt': '%.{}f'.format(n_decimals), 'colorbar_ticks': linspace00[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': label, 'extend': 'max', } eval_contour_fill_levels([plot_item]) plot_single_panel(plot_item, plot_title=plot_title) plot_title = '100m fixed' linspace00 = np.linspace(fill_range[0], fill_range[1], 21) plot_item = { 'data': nc['{}_fixed_mean'.format(data_type)].values[fixed_height_id, :, :]*scale, 'contour_fill_levels': linspace00, 'contour_line_levels': line_levels, 'contour_line_label_fmt': '%.{}f'.format(n_decimals), 'colorbar_ticks': linspace00[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': label, 'extend': 'max', } eval_contour_fill_levels([plot_item]) plot_single_panel(plot_item, plot_title=plot_title) plot_title = 'Ratio using 100m' linspace00 = np.linspace(ratio_range[0], ratio_range[1], 25) plot_item = { 'data': nc['{}_ceiling_mean'.format(data_type)].values[height_ceiling_id, :, :]/nc[ '{}_fixed_mean'.format(data_type)].values[fixed_height_id, :, :], 'contour_fill_levels': linspace00, 'contour_line_levels': ratio_levels, 'contour_line_label_fmt': '%.{}f'.format(1), 'colorbar_ticks': linspace00[::4], 'colorbar_tick_fmt': '{:.1f}', 'colorbar_label': '{}/{}_ref [-]'.format(data_type, data_type), 'extend': 'max', } eval_contour_fill_levels([plot_item]) plot_single_panel(plot_item, plot_title=plot_title) def plot_surface_elevation_from_geopotential(): from process_data_paper import get_surface_elevation data = get_surface_elevation(lats, lons, remove_neg=False, revert_lat=True) data[np.logical_and(data < 20, data > 0)] = 0 plot_title = 'Topography' # color_map = plt.get_cmap('terrain') # Set range such that 0 is at blue part min_range_data, max_range = np.min(data), np.max(data) blue = 56/256. min_range = blue/(1 - blue) * max_range if -min_range > min_range_data: print('Min range does not cover full min range.') linspace00 =
np.linspace(-min_range, max_range, 42)
numpy.linspace
"""FILE CREATED BY: <NAME>, <EMAIL> Copyright by RoMeLa (Robotics and Mechanisms Laboratory, University of California, Los Angeles)""" # This file provides a stochastic and robust model predictive controller for a simple unmanned ground vehicle that # moves a ground vehicle to any desired goal location, while considering obstacles (represented as polygons and circles) # and with cross communication consideration with another robot (using cooperative localization algorithms) from casadi import * import numpy as np from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection import mpl_toolkits.mplot3d.art3d as art3d from matplotlib.patches import Circle from scipy.spatial import distance import matplotlib.pyplot as plt import math as m import control from scipy.stats import linregress #from ROS_interface import * class SMPC_UGV_Planner(): def __init__(self, dT, mpc_horizon, curr_pos, robot_size, lb_state, ub_state, lb_control, ub_control, Q, R, angle_noise_r1, angle_noise_r2, relative_measurement_noise_cov, maxComm_distance, obs, animate): # initialize Optistack class self.opti = casadi.Opti() # dt = discretized time difference self.dT = dT # mpc_horizon = number of time steps for the mpc to look ahead self.N = mpc_horizon # robot_size = input a radius value, where the corresponding circle represents the size of the robot self.robot_size = robot_size # lower_bound_state = numpy array corresponding to the lower limit of the robot states, e.g. # lb_state = np.array([[-20], [-20], [-pi], dtype=float), the same for the upper limit (ub). Similar symbolic # representation for the controls (lb_control and ub_control) as well self.lb_state = lb_state self.ub_state = ub_state self.lb_control = lb_control self.ub_control = ub_control # Q and R diagonal matrices, used for the MPC objective function, Q is 3x3, R is 4x4 (first 2 diagonals # represent the cost on linear and angular velocity, the next 2 diagonals represent cost on state slack, # and terminal slack respectively. The P diagonal matrix represents the cost on the terminal constraint. self.Q = Q self.R_dare = R self.R = np.array([[R[0,0], 0], [0, R[2,2]]]) # initialize discretized state matrices A and B (note, A is constant, but B will change as it is a function of # state theta) self.A =
np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
numpy.array
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import math import onnx from onnx import helper, TensorProto, mapping import torch import torchvision import topi import topi.testing import tvm from tvm import te from tvm import relay from tvm.contrib import graph_runtime from tvm.relay.testing.config import ctx_list import scipy def get_input_data_shape_dict(graph_def, input_data): if isinstance(input_data, list): input_names = {} shape_dict = {} for i, _ in enumerate(input_data): input_names[i] = graph_def.graph.input[i].name shape_dict[input_names[i]] = input_data[i].shape else: input_names = graph_def.graph.input[0].name shape_dict = {input_names: input_data.shape} return input_names, shape_dict def get_tvm_output_with_vm(graph_def, input_data, target, ctx, opset=None): """ Generic function to execute and get tvm output with vm executor""" _, shape_dict = get_input_data_shape_dict(graph_def, input_data) mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset) ex = relay.create_executor('vm', mod=mod, ctx=ctx, target=target) indata = tvm.nd.array(input_data) result = ex.evaluate()(indata) return result.asnumpy() def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output_dtype='float32', opset=None): """ Generic function to execute and get tvm output""" target = 'llvm' input_names, shape_dict = get_input_data_shape_dict(graph_def, input_data) mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset) with tvm.transform.PassContext(opt_level=1): graph, lib, params = relay.build(mod, target, params=params) ctx = tvm.cpu(0) m = graph_runtime.create(graph, lib, ctx) # set inputs if isinstance(input_data, list): for i, e in enumerate(input_names): # Its possible for some onnx inputs to not be needed in the tvm # module, confirm its present before setting. try: m.set_input(input_names[i], tvm.nd.array( input_data[i].astype(input_data[i].dtype))) except: continue else: m.set_input(input_names, tvm.nd.array( input_data.astype(input_data.dtype))) m.set_input(**params) # execute m.run() # get outputs if isinstance(output_shape, list) and isinstance(output_dtype, list): tvm_output_list = [] for i, _ in enumerate(output_shape): tvm_output = m.get_output(i) tvm_output_list.append(tvm_output.asnumpy()) return tvm_output_list else: tvm_output = m.get_output(0) return tvm_output.asnumpy() def get_onnxruntime_output(model, inputs, dtype='float32'): import onnxruntime.backend rep = onnxruntime.backend.prepare(model, 'CPU') if isinstance(inputs, list) and len(inputs) > 1: ort_out = rep.run(inputs) else: x = inputs.astype(dtype) ort_out = rep.run(x)[0] return ort_out def verify_onnx_forward_impl(graph_file, data_shape, out_shape): dtype = 'float32' x = np.random.uniform(size=data_shape) model = onnx.load_model(graph_file) c2_out = get_onnxruntime_output(model, x, dtype) for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, x, target, ctx, out_shape, dtype) tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5) def test_reshape(): in_shape = (4, 3, 3, 4) ref_shape = (6, 2, 4, 3) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node('Constant', inputs=[], outputs=['ref_in'], value=onnx.helper.make_tensor(name='const_tensor', data_type=onnx.TensorProto.INT32, dims=ref_array.shape, vals=ref_array.flatten().astype(int))) reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"]) graph = helper.make_graph([ref_node, reshape_node], "reshape_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_shape))]) model = helper.make_model(graph, producer_name='reshape_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('int32') tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32') tvm.testing.assert_allclose(ref_shape, tvm_out.shape) def test_expand(): def _test_expand(name, data, shape, ref_data): shape_array = np.array(shape) shape_node = onnx.helper.make_node('Constant', inputs=[], outputs=['shape'], value=onnx.helper.make_tensor(name = 'const_tensor', data_type = onnx.TensorProto.INT32, dims = shape_array.shape, vals = shape_array.flatten().astype('int32'))) expand_node = helper.make_node("Expand", ["in", "shape"], ["out"]) graph = helper.make_graph([shape_node, expand_node], "expand_test", inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(data.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_data.shape))]) model = helper.make_model(graph, producer_name=name) for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, data, target, ctx, ref_data.shape, 'float32') tvm.testing.assert_allclose(ref_data, tvm_out) in_shape = (3, 1) shape = (3, 4) data = np.random.uniform(size=in_shape).astype(np.float32) ref_data = np.tile(data, 4) _test_expand('expand_with_dim_unchanged_test', data, shape, ref_data) in_shape = (3, 1) shape = (2, 1, 6) data = np.random.uniform(size=in_shape).astype(np.float32) ref_data = data * np.ones(shape, dtype=np.float32) _test_expand('expand_with_dim_changed_test', data, shape, ref_data) def verify_depth_to_space(inshape, outshape, mode, blockSize): node = onnx.helper.make_node('DepthToSpace', inputs=['x'], outputs=['y'], blocksize=blockSize) graph = helper.make_graph([node], "depth_to_space_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))]) model = helper.make_model(graph, producer_name='depth_to_space_test') for target, ctx in ctx_list(): x = np.random.uniform(size=inshape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32') onnx_out = get_onnxruntime_output(model, x, 'float32') tvm.testing.assert_allclose(onnx_out, tvm_out) def test_depth_to_space(): # current onnx.checker use OpSet-1 version of DepthToSpace, which doesn't have a mode argument. # TO-DO, we can add mode arguement to test CRD mode and DCR mode # in the future when we update to a newer onnx version. verify_depth_to_space((1, 8, 2, 3), (1, 2, 4, 6), mode="CRD", blockSize=2) def verify_space_to_depth(inshape, outshape, blockSize): node = onnx.helper.make_node('SpaceToDepth', inputs=['x'], outputs=['y'], blocksize=blockSize) graph = helper.make_graph([node], "space_to_depth_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))]) model = helper.make_model(graph, producer_name='space_to_depth_test') for target, ctx in ctx_list(): x = np.random.uniform(size=inshape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32') onnx_out = get_onnxruntime_output(model, x, 'float32') tvm.testing.assert_allclose(onnx_out, tvm_out) def test_space_to_depth(): verify_space_to_depth((1, 1, 4, 6), (1, 4, 2, 3), 2) def test_shape(): in_shape = (4, 3, 3, 4) ref_shape = (6, 2, 4, 3) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node('Constant', inputs=[], outputs=['ref_in'], value=onnx.helper.make_tensor(name='const_tensor', data_type=onnx.TensorProto.INT32, dims=ref_array.shape, vals=ref_array.flatten().astype(int))) reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"]) shape_node = helper.make_node("Shape", ['out'], ['final_out']) graph = helper.make_graph([ref_node, reshape_node, shape_node], "shape_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("final_out", TensorProto.FLOAT, list(ref_shape))]) model = helper.make_model(graph, producer_name='shape_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('int32') tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'int32') tvm.testing.assert_allclose(ref_shape, tvm_out) def _test_power_iteration(x_shape, y_shape): if isinstance(y_shape, int): y_shape = [y_shape] x = np.random.uniform(size=x_shape).astype(np.float32) y = np.random.uniform(size=y_shape).astype(np.float32) np_res = np.power(x, y).astype(np.float32) res = helper.make_node("Pow", ['x', 'y'], ['out']) graph = helper.make_graph([res], 'power_test', inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(np_res.shape))]) model = helper.make_model(graph, producer_name='power_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape) tvm.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5) def test_power(): _test_power_iteration((1, 3), (1)) _test_power_iteration((2, 3), (2, 3)) _test_power_iteration((2, 3), (1, 3)) def test_squeeze(): in_shape = (1, 3, 1, 3, 1, 1) out_shape = (3, 3) y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5]) graph = helper.make_graph([y], 'squeeze_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_shape, tvm_out.shape) def test_flatten(): in_shape = (1, 3, 4, 4) axis = 1 ref_shape = (1, 48) flatten_node = helper.make_node("Flatten", ["in"], ["out"], axis=axis) graph = helper.make_graph([flatten_node], "flatten_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_shape))]) model = helper.make_model(graph, producer_name='flatten_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('int32') tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32') tvm.testing.assert_allclose(ref_shape, tvm_out.shape) def test_unsqueeze(): in_shape = (3, 3) axis = (0, 3, 4) out_shape = (1, 3, 3, 1, 1) y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis)) graph = helper.make_graph([y], 'squeeze_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_shape, tvm_out.shape) def verify_gather(in_shape, indices, axis, dtype): x = np.random.uniform(size=in_shape).astype(dtype) indices = np.array(indices, dtype="int32") out_np = np.take(x, indices, axis=axis) y = helper.make_node("Gather", ['in', 'indices'], ['out'], axis=axis) graph = helper.make_graph([y], 'gather_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("indices", TensorProto.INT32, list(indices.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='gather_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [x, indices], target, ctx, out_np.shape) tvm.testing.assert_allclose(out_np, tvm_out) def test_gather(): verify_gather((4,), [1], 0, 'int32') verify_gather((1, 4), [0], 0, 'int32') verify_gather((4,), [[[1, 0], [0, 1]]], 0, 'float32') verify_gather((2, 2), [[[1, 0], [0, 1]]], 1, 'int32') verify_gather((3, 3, 3), [[[1, 0]]], -1, 'int32') verify_gather((4, 3, 5, 6), [[2, 1, 0, 0]], 0, 'float32') def verify_scatter(in_shape, indices, axis): x = np.random.uniform(size=in_shape).astype("float32") indices = np.array(indices, dtype="int32") updates = np.random.uniform(size=indices.shape).astype("float32") y = helper.make_node("ScatterElements", ['data', 'indices', 'updates'], ['output'], axis=axis) graph = helper.make_graph([y], 'scatter_test', inputs=[helper.make_tensor_value_info("data", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("indices", TensorProto.INT32, list(indices.shape)), helper.make_tensor_value_info("updates", TensorProto.FLOAT, list(indices.shape))], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(in_shape))]) model = helper.make_model(graph, producer_name='scatter_test') onnx_out = get_onnxruntime_output(model, [x, indices, updates]) for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [x, indices, updates], target, ctx, onnx_out[0].shape) tvm.testing.assert_allclose(onnx_out[0], tvm_out) def test_scatter(): verify_scatter((4,), [1], 0) verify_scatter((1, 4), [[0]], 0) verify_scatter((4,), [2, 3], 0) verify_scatter((2, 2), [[1, 0], [0, 1]], 1) verify_scatter((3, 3, 3), [[[-1, -3]]], -1) verify_scatter((4, 3, 5, 6), [[[[2, 1, 0, 0]]]], 0) def _test_slice_iteration_v1(indata, outdata, starts, ends, axes=None): if axes: y = helper.make_node( "Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends) else: y = helper.make_node( "Slice", ['in'], ['out'], starts=starts, ends=ends) graph = helper.make_graph([y], 'slice_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='slice_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, indata, target, ctx, outdata.shape, 'float32', opset=1) tvm.testing.assert_allclose(outdata, tvm_out) def _test_slice_iteration_v10(indata, outdata, starts, ends, axes=None): if isinstance(starts, int): starts = (starts, ) if isinstance(ends, int): ends = (ends, ) if isinstance(axes, int): axes = (axes, ) starts = np.asarray(starts) ends = np.asarray(ends) inputs = [ helper.make_tensor_value_info("data", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("starts", TensorProto.INT32, list(starts.shape)), helper.make_tensor_value_info("ends", TensorProto.INT32, list(ends.shape)) ] initializer = [ helper.make_tensor("starts", TensorProto.INT32, list(starts.shape), starts), helper.make_tensor("ends", TensorProto.INT32, list(ends.shape), ends) ] if axes: axes = np.asarray(axes) y = helper.make_node("Slice", ["data", "starts", "ends", "axes"], ["out"]) inputs.append( helper.make_tensor_value_info("axes", TensorProto.INT32, list(axes.shape))) initializer.append( helper.make_tensor("axes", TensorProto.INT32, list(axes.shape), axes)) else: y = helper.make_node("Slice", ["data", "starts", "ends"], ["out"]) graph = helper.make_graph([y], 'slice_test', inputs=inputs, outputs=[ helper.make_tensor_value_info( "out", TensorProto.FLOAT, list(outdata.shape)) ], initializer=initializer) model = helper.make_model(graph, producer_name='slice_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32', opset=10) tvm.testing.assert_allclose(outdata, tvm_out) def test_slice(): x = np.random.randn(20, 10, 5).astype(np.float32) _test_slice_iteration_v1(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1)) _test_slice_iteration_v1(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4)) _test_slice_iteration_v1(x, x[:, 1:1000], (1), (1000), (1)) _test_slice_iteration_v1(x, x[:, 0:-1], (0), (-1), (1)) _test_slice_iteration_v10(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1)) _test_slice_iteration_v10(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4)) _test_slice_iteration_v10(x, x[:, 1:1000], (1), (1000), (1)) _test_slice_iteration_v10(x, x[:, 0:-1], (0), (-1), (1)) def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.uniform(-1, 1, size=inshape).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ['in'], ['out'], **kwargs) graph = helper.make_graph([y], opname+'_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, indata, target, ctx, outdata.shape, dtype) tvm.testing.assert_allclose(outdata, tvm_out) def test_floor(): _test_onnx_op_elementwise((2, 4, 5, 6), np.floor, {}, 'float32', 'Floor', {}) def test_ceil(): _test_onnx_op_elementwise((2, 4, 5, 6), np.ceil, {}, 'float32', 'Ceil', {}) def test_clip(): _test_onnx_op_elementwise((2, 4, 5, 6), np.clip, {'a_min': -1.0, 'a_max': 1.0}, 'float32', 'Clip', {'min': -1.0, 'max': 1.0}) def test_round(): _test_onnx_op_elementwise((2, 4, 5, 6), np.round, {}, 'float32', 'Round', {}) def _test_finite_ops(inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.choice(a=[np.nan, np.inf, -np.inf, 0.5, 1.0, 0], size=inshape).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ['in'], ['out'], **kwargs) graph = helper.make_graph([y], opname+'_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, indata, target, ctx, outdata.shape, dtype) tvm.testing.assert_allclose(outdata, tvm_out) def test_isinf(): _test_finite_ops((2, 4, 5, 6), np.isinf, {}, 'float32', 'IsInf', {}) def test_isnan(): _test_finite_ops((2, 4, 5, 6), np.isnan, {}, 'float32', 'IsNaN', {}) def verify_gather_nd(in_shape, indices, dtype): x = np.random.uniform(size=in_shape).astype(dtype) indices = np.array(indices, dtype="int32") out_np = topi.testing.gather_nd_python(x, indices) y = helper.make_node("GatherND", ['in', 'indices'], ['out']) graph = helper.make_graph([y], 'gather_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("indices", TensorProto.INT32, list(indices.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='gather_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [x, indices], target, ctx, out_np.shape) tvm.testing.assert_allclose(out_np, tvm_out) def test_gather_nd(): verify_gather_nd((2, 2), [[0,0],[1,1]], 'int32') verify_gather_nd((3, 3, 3), [[0,1],[1,0]] , 'float32') verify_gather_nd((4, 3, 5, 6), [[2, 1, 0, 0]], 'float32') def test_onehot(): indices_shape = [10] indices_array = np.random.randint( low=0, high=9, size=indices_shape, dtype='int32') depth = 10 values = np.asarray([0, 1]) out_np = np.eye(depth)[indices_array.reshape(-1)] onehot_node = helper.make_node( "OneHot", ["indices", "depth", "values"], ["out"]) graph = helper.make_graph([onehot_node], "onehot_test", inputs=[helper.make_tensor_value_info("indices", TensorProto.INT32, indices_shape), helper.make_tensor_value_info("depth", TensorProto.INT32, [1]), helper.make_tensor_value_info("values", TensorProto.INT32, values.shape)], initializer=[helper.make_tensor("depth", TensorProto.INT32, [1], [depth]), helper.make_tensor("values", TensorProto.INT32, values.shape, values)], outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, out_np.shape)]) model = helper.make_model(graph, producer_name="onehot_test") for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [indices_array], target, ctx, out_np.shape) tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) def test_matmul(): a_shape = (4, 3) b_shape = (3, 4) a_array = np.random.uniform(size=a_shape).astype('float32') b_array = np.random.uniform(size=b_shape).astype('float32') out_np = np.matmul(a_array, b_array) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph([mul_node], "matmul_test", inputs=[helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='matmul_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_array, b_array], target, ctx, out_np.shape) tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) def verify_batch_matmul(a_shape, b_shape): a_array = np.random.uniform(size=a_shape).astype('float32') b_array = np.random.uniform(size=b_shape).astype('float32') out_np = np.matmul(a_array, b_array) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph([mul_node], "matmul_test", inputs=[helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='matmul_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_array, b_array], target, ctx, out_np.shape) tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) def test_batch_matmul(): verify_batch_matmul((2, 3, 4, 3), (2, 3, 3, 4)) verify_batch_matmul((2, 4, 3), (3, 4)) verify_batch_matmul((2, 3, 4, 3), (3, 4)) def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None): in_array = np.random.uniform(size=shape).astype(dtype) if alpha == None and beta == None and bias == None: alpha = 0.0001 beta = 0.75 bias = 1.0 node = onnx.helper.make_node( 'LRN', inputs=['in'], outputs=['out'], size=nsize) else: node = onnx.helper.make_node('LRN', inputs=['in'], outputs=['out'], alpha=alpha, beta=beta, bias=bias, size=nsize) graph = helper.make_graph([node], "lrn_test", inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))]) model = helper.make_model(graph, producer_name='lrn_test') def _get_python_lrn(): square_sum = np.zeros(shape).astype(dtype) for n, c, h, w in np.ndindex(in_array.shape): square_sum[n, c, h, w] = sum(in_array[n, max(0, c - int(math.floor((nsize - 1) / 2))): min(5, c + int(math.ceil((nsize - 1) / 2)) + 1), h, w] ** 2) py_out = in_array / ((bias + (alpha / nsize) * square_sum) ** beta) return py_out for target, ctx in ctx_list(): input_name = model.graph.input[0].name py_out = _get_python_lrn() tvm_out = get_tvm_output( model, in_array, target, ctx, py_out.shape, 'float32') tvm.testing.assert_allclose(py_out, tvm_out, rtol=1e-5, atol=1e-5) def test_lrn(): verify_lrn((5, 5, 5, 5), 3, 'float32') verify_lrn((5, 5, 5, 5), 3, 'float32', alpha=0.0002, beta=0.5, bias=2.0) def verify_instance_norm(shape, axis=1): def _get_python_instance_norm(x, gamma, beta, epsilon=1e-5): dims_x = len(x.shape) axis = tuple(range(2, dims_x)) mean = np.mean(x, axis=axis, keepdims=True) var = np.var(x, axis=axis, keepdims=True) dim_ones = (1,) * (dims_x - 2) gamma = gamma.reshape(-1, *dim_ones) beta = beta.reshape(-1, *dim_ones) return gamma * (x - mean) / np.sqrt(var + epsilon) + beta x = np.random.randn(*shape).astype(np.float32) gamma = np.random.randn(shape[1]).astype(np.float32) beta = np.random.randn(shape[1]).astype(np.float32) epsilon = 1e-5 y = _get_python_instance_norm(x, gamma, beta, epsilon).astype(np.float32) node = onnx.helper.make_node( 'InstanceNormalization', inputs=['x', 'gamma', 'beta'], outputs=['y'], epsilon=epsilon, ) graph = helper.make_graph([node], "instance_norm_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(shape)), helper.make_tensor_value_info( "gamma", TensorProto.FLOAT, (shape[1],)), helper.make_tensor_value_info("beta", TensorProto.FLOAT, (shape[1],))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(shape))]) model = helper.make_model(graph, producer_name='instance_norm_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [x, gamma, beta], target, ctx, shape, 'float32') tvm.testing.assert_allclose(y, tvm_out, rtol=1e-5, atol=1e-5) def test_instance_norm(): verify_instance_norm((2, 3, 4, 5)) verify_instance_norm((32, 64, 80, 64)) verify_instance_norm((8, 6, 5)) verify_instance_norm((8, 7, 6, 5, 4)) def _test_upsample_nearest(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], [ 'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.upsampling_python( in_array, (scale, scale), "NCHW") graph = helper.make_graph([y], 'upsample_nearest_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_nearest_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, in_array, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_array, tvm_out) def _test_upsample3d_nearest(): scale = 2 in_shape = (1, 1, 3, 3, 3) out_shape = (1, 1, 3*scale, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], [ 'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.upsampling3d_python( in_array, (scale, scale, scale), "NCDHW") graph = helper.make_graph([y], 'upsample_nearest_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_nearest_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, in_array, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_array, tvm_out) def _test_upsample_bilinear(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], [ 'out'], mode='linear', scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.bilinear_resize_python( in_array, (3*scale, 3*scale), "NCHW") graph = helper.make_graph([y], 'upsample_bilinear_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_bilinear_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, in_array, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) def _test_upsample_bilinear_opset9(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear') scales = [1, 1, 2, 2] in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.bilinear_resize_python( in_array, (3*scale, 3*scale), "NCHW") ref_node = helper.make_node('Constant', inputs=[], outputs=['const'], value=onnx.helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=scales, vals=np.random.random(scales).flatten().astype(float))) shape_node = helper.make_node("Shape", ['const'], ['scales']) graph = helper.make_graph([ref_node, shape_node, y], 'upsample_bilinear_opset9_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model( graph, producer_name='upsample_bilinear_opset9_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, in_array, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) def _test_upsample3d_trilinear(): scale = 2 in_shape = (1, 1, 3, 3, 3) out_shape = (1, 1, 3*scale, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear') scales = [1.0, 1.0, 2.0, 2.0, 2.0] in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.trilinear_resize3d_python( in_array, (3*scale, 3*scale, 3*scale), "NCDHW", coordinate_transformation_mode="half_pixel") ref_array = np.array(scales) ref_node = helper.make_node('Constant', inputs=[], outputs=['scales'], value=onnx.helper.make_tensor(name='const_tensor', data_type=TensorProto.FLOAT, dims=ref_array.shape, vals=ref_array.flatten().astype(float))) graph = helper.make_graph([ref_node, y], 'upsample_trilinear_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model( graph, producer_name='upsample_trilinear_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, in_array, target, ctx, out_shape, 'float32') tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) def test_upsample(): _test_upsample_nearest() _test_upsample_bilinear() _test_upsample_bilinear_opset9() _test_upsample3d_nearest() _test_upsample3d_trilinear() def _test_softmax(inshape, axis): opname = 'Softmax' indata = np.random.uniform(size=inshape).astype(np.float32) outshape = inshape outdata = topi.testing.softmax_python(indata) if isinstance(axis, int): y = helper.make_node(opname, ['in'], ['out'], axis=axis) elif axis is None: y = helper.make_node(opname, ['in'], ['out']) graph = helper.make_graph([y], opname+'_test', inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, indata, target, ctx, outshape, 'float32') tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) def test_softmax(): _test_softmax((1, 10), None) _test_softmax((1, 10), 1) def verify_min(input_dim): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.min((a_np1, a_np2, a_np3), axis=0) min_node = helper.make_node("Min", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph([min_node], "Min_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='Min_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_min(): verify_min((1, 3, 20, 20)) verify_min((20, 20)) def verify_max(input_dim): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.max((a_np1, a_np2, a_np3), axis=0) max_node = helper.make_node("Max", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph([max_node], "Max_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='Max_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_max(): verify_max((1, 3, 20, 20)) verify_max((20, 20)) def verify_mean(input_dim): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.mean((a_np1, a_np2, a_np3), axis=0) mean_node = helper.make_node("Mean", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph([mean_node], "Mean_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='Mean_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_mean(): verify_mean((1, 3, 20, 20)) verify_mean((20, 20)) def verify_hardsigmoid(input_dim, alpha, beta): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.clip(a_np1 * alpha + beta, 0, 1) hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], [ "out"], alpha=alpha, beta=beta) graph = helper.make_graph([hardsigmoid_node], "HardSigmoid_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='HardSigmoid_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_hardsigmoid(): verify_hardsigmoid((1, 3, 20, 20), 0.5, 0.6) verify_hardsigmoid((20, 20), 0.3, 0.4) def verify_argmin(input_dim, axis=None, keepdims=None): def _argmin_numpy(data, axis=0, keepdims=True): result = np.argmin(data, axis=axis) if (keepdims == 1): result = np.expand_dims(result, axis) return result.astype(data.dtype) a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32) if keepdims is None and axis is None: b_np = _argmin_numpy(a_np1) node = onnx.helper.make_node('ArgMin', inputs=['a_np1'], outputs=['out']) elif axis is None: b_np = _argmin_numpy(a_np1, keepdims=keepdims) node = onnx.helper.make_node('ArgMin', inputs=['a_np1'], outputs=['out'], keepdims=keepdims) elif keepdims is None: b_np = _argmin_numpy(a_np1, axis=axis) node = onnx.helper.make_node('ArgMin', inputs=['a_np1'], outputs=['out'], axis=axis) else: b_np = _argmin_numpy(a_np1, axis=axis, keepdims=keepdims) node = onnx.helper.make_node('ArgMin', inputs=['a_np1'], outputs=['out'], axis=axis, keepdims=keepdims) graph = helper.make_graph([node], "argmin_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.INT32, list(a_np1.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, list(b_np.shape))]) model = helper.make_model(graph, producer_name='argmin_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_np1], target, ctx, b_np.shape, b_np.dtype) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def verify_argmax(input_dim, axis=None, keepdims=None): def _argmax_numpy(data, axis=0, keepdims=True): result = np.argmax(data, axis=axis) if (keepdims == 1): result = np.expand_dims(result, axis) return result.astype(data.dtype) a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32) if keepdims is None and axis is None: b_np = _argmax_numpy(a_np1) node = onnx.helper.make_node('ArgMax', inputs=['a_np1'], outputs=['out']) elif axis is None: b_np = _argmax_numpy(a_np1, keepdims=keepdims) node = onnx.helper.make_node('ArgMax', inputs=['a_np1'], outputs=['out'], keepdims=keepdims) elif keepdims is None: b_np = _argmax_numpy(a_np1, axis=axis) node = onnx.helper.make_node('ArgMax', inputs=['a_np1'], outputs=['out'], axis=axis) else: b_np = _argmax_numpy(a_np1, axis=axis, keepdims=keepdims) node = onnx.helper.make_node('ArgMax', inputs=['a_np1'], outputs=['out'], axis=axis, keepdims=keepdims) graph = helper.make_graph([node], "argmax_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.INT32, list(a_np1.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, list(b_np.shape))]) model = helper.make_model(graph, producer_name='argmax_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, [a_np1], target, ctx, b_np.shape, b_np.dtype) tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_arg_min_max(): '''Verify argmin and argmax''' verify_argmin([3, 4, 4]) verify_argmax([3, 4, 4]) verify_argmin([3, 4, 4], axis=1) verify_argmax([3, 4, 4], axis=0) verify_argmin([3, 4, 4], keepdims=0) verify_argmax([3, 4, 4], keepdims=1) for axis in [None, 0, 1, 2]: for keepdims in [None, True, False]: verify_argmin([3, 4, 4], axis, keepdims) verify_argmax([3, 4, 4], axis, keepdims) def verify_constantofshape(input_dim, value, dtype): out = np.empty(shape=input_dim, dtype=dtype) out.fill(value) fill_node = helper.make_node("ConstantOfShape", ["input"], ["output"], value=helper.make_tensor( 'value', mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], (1, ), (value, ))) inputs = [ helper.make_tensor_value_info("input", TensorProto.FLOAT, input_dim) ] graph = helper.make_graph( [fill_node], "fill_test", inputs, outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(out.shape)) ], initializer=[ helper.make_tensor("input", TensorProto.INT32, (len(input_dim), ), input_dim) ]) model = helper.make_model(graph, producer_name='fill_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [], target, ctx, out.shape) tvm.testing.assert_allclose(out, tvm_out, rtol=1e-5, atol=1e-5) def test_constantofshape(): verify_constantofshape((2, 3, 4, 5), 10, 'float32') verify_constantofshape((3, 3), 0, 'int32') verify_constantofshape((1, 2, 3), -1, 'float32') def verify_pad(indata, pads, mode='constant', value=0.0): indata = np.array(indata).astype(np.float32) # numpy expect result len_dim = len(pads) // 2 np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)] # onnx graph if mode in ['edge', 'reflect']: outdata = np.pad(indata, pad_width=np_pads, mode=mode) node = helper.make_node( 'Pad', inputs=['input'], outputs=['output'], mode=mode, pads=pads, ) else: outdata = np.pad(indata, pad_width=np_pads, mode='constant', constant_values=value) node = helper.make_node( 'Pad', inputs=['input'], outputs=['output'], mode='constant', pads=pads, value=value ) graph = helper.make_graph([node], 'pad_test', inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='pad_test') # tvm result for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, indata, target, ctx, outdata.shape, 'float32', opset=2) tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) def verify_pad_v11(indata, pads, mode='constant', value=0.0): indata = np.array(indata).astype(np.float32) # numpy expect result len_dim = len(pads) // 2 np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)] pads = np.array(pads) # onnx graph if mode in ['edge', 'reflect']: inputs = [indata, pads] outdata = np.pad(indata, pad_width=np_pads, mode=mode) node = helper.make_node( 'Pad', inputs=['input', 'pads'], outputs=['output'], mode=mode ) graph = helper.make_graph([node], 'pad_test', inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("pads", TensorProto.INT64,(len(pads),))], initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads)], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape))]) else: inputs = [indata, pads, np.array([value])] outdata = np.pad(indata, pad_width=np_pads, mode='constant', constant_values=value) node = helper.make_node( 'Pad', inputs=['input', 'pads', 'constant_value'], outputs=['output'], mode='constant' ) graph = helper.make_graph([node], 'pad_test', inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("pads", TensorProto.INT64,(len(pads),)), helper.make_tensor_value_info("constant_value", TensorProto.INT64,(1,)), ], initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads), helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value])], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='pad_test') # tvm result for target, ctx in ctx_list(): tvm_out = get_tvm_output( model, inputs, target, ctx, outdata.shape, 'float32', opset=11) tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5) def test_pad(): verify_pad(np.random.randn(2, 2).astype( np.float32), [0, 1, 0, 0], 'constant', 0.0) verify_pad(np.random.randn(2, 3).astype( np.float32), [1, 0, 0, 1], 'constant', 0.0) verify_pad(np.random.randn(3, 2).astype( np.float32), [0, 0, 1, 0], 'constant', 5.0) verify_pad(np.random.randn(1, 3, 4, 5).astype( np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge') verify_pad(np.random.randn(1, 3, 4, 5).astype( np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect') verify_pad_v11(np.random.randn(2, 2).astype( np.float32), [0, 1, 0, 0], 'constant', 0.0) verify_pad_v11(np.random.randn(2, 3).astype( np.float32), [1, 0, 0, 1], 'constant', 0.0) verify_pad_v11(np.random.randn(3, 2).astype( np.float32), [0, 0, 1, 0], 'constant', 5.0) verify_pad_v11(np.random.randn(1, 3, 4, 5).astype( np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge') verify_pad_v11(np.random.randn(1, 3, 4, 5).astype( np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect') def verify_reduce_func(func, data, axis, keepdims): inshape = data.shape outshape = np.sum(data, axis=axis, keepdims=keepdims == 1).shape if axis: node = onnx.helper.make_node(func, inputs=['x'], outputs=['y'], axes=axis, keepdims=keepdims) else: node = onnx.helper.make_node(func, inputs=['x'], outputs=['y'], keepdims=keepdims) graph = helper.make_graph([node], "reduce_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))]) model = helper.make_model(graph, producer_name='reduce_test') onnx_out = get_onnxruntime_output(model, data, 'float32') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, data, target, ctx, outshape, 'float32') tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5) def test_all_reduce_funcs(): funcs = ["ReduceMax", "ReduceMean", "ReduceMin", "ReduceProd", "ReduceSum", 'ReduceSumSquare', "ReduceLogSum", "ReduceLogSumExp", "ReduceL1", "ReduceL2"] for func in funcs: for keepdims in [True, False]: verify_reduce_func(func, np.random.randn(3, 2, 2).astype(np.float32), axis=None, keepdims=keepdims) verify_reduce_func(func, np.random.randn(3, 2, 3).astype(np.float32), axis=None, keepdims=keepdims) verify_reduce_func(func, np.random.randn(3, 3, 3).astype(np.float32), axis=(1,), keepdims=keepdims) verify_reduce_func(func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1, 2), keepdims=keepdims) verify_reduce_func(func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1,), keepdims=keepdims) verify_reduce_func(func, np.random.randn(1, 3, 4, 1).astype(np.float32), axis=(1,), keepdims=keepdims) def verify_split(indata, outdatas, split, axis=0): indata = np.array(indata).astype(np.float32) outdatas = [np.array(o).astype(np.float32) for o in outdatas] if split: split_index = range(len(split)) else: split_index = range(len(outdatas)) node = helper.make_node( 'Split', inputs=['input'], outputs=['output_{}'.format(i) for i in range(len(split_index))], axis=axis, split=split ) graph = helper.make_graph([node], 'split_test', inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("output_{}".format(i), TensorProto.FLOAT, list(outdatas[i].shape)) for i in range(len(split_index)) ]) model = helper.make_model(graph, producer_name='split_test') for target, ctx in ctx_list(): output_shape = [o.shape for o in outdatas] output_type = ['float32', 'float32', 'float32'] tvm_out = get_tvm_output( model, indata, target, ctx, output_shape, output_type) for o, t in zip(outdatas, tvm_out): tvm.testing.assert_allclose(o, t) def test_split(): # 1D verify_split([1., 2., 3., 4., 5., 6.], [ [1., 2.], [3., 4.], [5., 6.]], [2, 2, 2], 0) verify_split([1., 2., 3., 4., 5., 6.], [ [1., 2.], [3.], [4., 5., 6.]], [2, 1, 3], 0) # 2D verify_split([[1., 2., 3., 4.], [7., 8., 9., 10.]], [[[1., 2.], [7., 8.]], [[3., 4.], [9., 10.]]], [2, 2], 1) # Split evenly (unstack) verify_split([1, 2, 3], [[1], [2], [3]], False) def test_binary_ops(): in_shape = (1, 2, 3, 3) dtype = "float32" out_shape = in_shape def verify_binary_ops(op, x, y, out_np, x_name='in1', y_name='in2', broadcast=None): if broadcast is None: z = helper.make_node(op, [x_name, y_name], ['out']) else: z = helper.make_node(op, [x_name, y_name], ['out'], broadcast=1) graph = helper.make_graph([z], '_test', inputs=[helper.make_tensor_value_info(x_name, TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info(y_name, TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx) tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) x = np.random.uniform(size=in_shape).astype(dtype) y = np.random.uniform(size=in_shape).astype(dtype) z = np.random.uniform(size=(3,)).astype(dtype) verify_binary_ops("Add", x, y, x + y, broadcast=None) verify_binary_ops("Add", x, z, x + z, broadcast=True) verify_binary_ops("Sub", x, y, x - y, broadcast=None) verify_binary_ops("Sub", x, z, x - z, broadcast=True) verify_binary_ops("Mul", x, y, x * y, broadcast=None) verify_binary_ops("Mul", x, z, x * z, broadcast=True) verify_binary_ops("Mul", x, x, x * x, x_name='in1', y_name='in1', broadcast=None) verify_binary_ops("Div", x, y, x / y, broadcast=None) verify_binary_ops("Div", x, z, x / z, broadcast=True) verify_binary_ops("Sum", x, y, x + y, broadcast=None) verify_binary_ops("Greater", x, y, x > y, broadcast=True) verify_binary_ops("Less", x, y, x < y, broadcast=True) verify_binary_ops("Equal", x, y, x == y, broadcast=True) def test_single_ops(): in_shape = (1, 2, 3, 3) dtype = "float32" out_shape = in_shape def verify_single_ops(op, x, out_np, rtol=1e-5, atol=1e-5): z = helper.make_node(op, ['in1'], ['out']) graph = helper.make_graph([z], '_test', inputs=[helper.make_tensor_value_info("in1", TensorProto.FLOAT, list(in_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x], target, ctx) tvm.testing.assert_allclose(out_np, tvm_out, rtol=rtol, atol=atol) x = np.random.uniform(size=in_shape).astype(dtype) verify_single_ops("Neg", x, -x) verify_single_ops("Abs", x, np.abs(x)) verify_single_ops("Reciprocal", x, 1/x) verify_single_ops("Sqrt", x, np.sqrt(x)) verify_single_ops("Relu", x, np.maximum(x, 0)) verify_single_ops("Exp", x, np.exp(x)) verify_single_ops("Log", x, np.log(x)) verify_single_ops("Log", x, np.log(x)) verify_single_ops("ACos", x, np.arccos(x)) verify_single_ops("ACosh", x, np.arccosh(x)) verify_single_ops("ASin", x, np.arcsin(x)) verify_single_ops("ASinh", x, np.arcsinh(x)) verify_single_ops("ATan", x, np.arctan(x)) verify_single_ops("ATanh", x, np.arctanh(x)) verify_single_ops("Cos", x, np.cos(x)) verify_single_ops("Cosh", x, np.cosh(x)) verify_single_ops("Sin", x, np.sin(x)) verify_single_ops("Sinh", x, np.sinh(x)) verify_single_ops("Tan", x, np.tan(x)) verify_single_ops("Tanh", x, np.tanh(x)) verify_single_ops("Sigmoid", x, 1 / (1 + np.exp(-x))) verify_single_ops("Softsign", x, x / (1 + np.abs(x))) verify_single_ops("SoftPlus", x, np.log(1 + np.exp(x))) def test_leaky_relu(): def leaky_relu_x(x, alpha): return np.where(x >= 0, x, x * alpha) _test_onnx_op_elementwise((2, 4, 5, 6), leaky_relu_x, {'alpha': 0.25}, 'float32', 'LeakyRelu', {'alpha': 0.25}) def test_elu(): def elu_x(x, alpha): return np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) _test_onnx_op_elementwise((2, 4, 5, 6), elu_x, {'alpha': 0.25}, 'float32', 'Elu', {'alpha': 0.25}) def test_selu(): def selu_x(x, alpha, gamma): return gamma * np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) _test_onnx_op_elementwise((2, 4, 5, 6), selu_x, {'alpha': 0.25, 'gamma': 0.3}, 'float32', 'Selu', {'alpha': 0.25, 'gamma': 0.3}) def test_prelu(): def verify_prelu(x_shape, a_shape): node = helper.make_node('PRelu', inputs=['X', 'slope'], outputs=['Y']) graph = helper.make_graph([node], "prelu_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("slope", TensorProto.FLOAT, list(a_shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(x_shape))]) model = helper.make_model(graph, producer_name='prelu_test') indata = np.random.uniform(-10, 10, x_shape).astype(np.float32) slopedata = np.random.uniform(-10, 10, a_shape).astype(np.float32) onnx_out = get_onnxruntime_output(model, [indata, slopedata]) for target, ctx in [('llvm', tvm.cpu())]: tvm_out = get_tvm_output(model, [indata, slopedata], target, ctx, list(x_shape), output_dtype='float32') tvm.testing.assert_allclose(onnx_out[0], tvm_out, rtol=1e-05, atol=1e-05) verify_prelu([3,4,5,6], [1, 4, 1, 1]) verify_prelu([1,8,5,6], [1, 8, 1, 1]) verify_prelu([2,12,16,16], [1, 12, 1, 1]) def test_ThresholdedRelu(): def ThresholdedRelu_x(x, alpha): out_np = np.clip(x, alpha, np.inf) out_np[out_np == alpha] = 0 return out_np _test_onnx_op_elementwise((2, 4, 5, 6), ThresholdedRelu_x, {'alpha': 0.25}, 'float32', 'ThresholdedRelu', {'alpha': 0.25}) def test_ScaledTanh(): def ScaledTanh_x(x, alpha, beta): return alpha * np.tanh(beta * x) _test_onnx_op_elementwise((2, 4, 5, 6), ScaledTanh_x, {'alpha': 0.25, 'beta': 0.3}, 'float32', 'ScaledTanh', {'alpha': 0.25, 'beta': 0.3}) def test_ParametricSoftplus(): def ParametricSoftplus_x(x, alpha, beta): return alpha * np.log(np.exp(beta * x) + 1) _test_onnx_op_elementwise((2, 4, 5, 6), ParametricSoftplus_x, {'alpha': 0.25, 'beta': 0.3}, 'float32', 'ParametricSoftplus', {'alpha': 0.25, 'beta': 0.3}) def test_Scale(): def Scale_x(x, scale): return scale * x _test_onnx_op_elementwise((2, 4, 5, 6), Scale_x, {'scale': 0.25}, 'float32', 'Scale', {'scale': 0.25}) def test_LogSoftmax(): _test_onnx_op_elementwise((1, 4), topi.testing.log_softmax_python, {}, 'float32', 'LogSoftmax', {'axis': 1}) def check_torch_conversion(model, input_size): dummy_input = torch.randn(*input_size) file_name = '{}.onnx'.format(model.__name__) # Set verbose=True for more output torch.onnx.export(model(), dummy_input, file_name, export_params=True, verbose=False) onnx_model = onnx.load(file_name) for target, ctx in ctx_list(): input_data = np.random.uniform(size=input_size).astype('int32') c2_out = get_onnxruntime_output(onnx_model, input_data) tvm_out = get_tvm_output(onnx_model, input_data, target, ctx) tvm.testing.assert_allclose(c2_out, tvm_out) def test_resnet(): check_torch_conversion(torchvision.models.resnet18, (1, 3, 224, 224)) # check_torch_conversion(torchvision.models.resnet101, (1,3,224,224)) # def test_alexnet(): # Torch's ONNX export does not support the adaptive pooling used by AlexNet? # check_torch_conversion(torchvision.models.alexnet, (1,3,224,224)) # Torch's ONNX export does not support the adaptive pooling used by vgg16? # def test_vgg16(): # check_torch_conversion(torchvision.models.vgg16, (1,3,224,224)) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_squeezenet(): # # Torch's ONNX export does not support the max pooling used by Squezenet # check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224)) def test_densenet(): check_torch_conversion(torchvision.models.densenet161, (1, 3, 224, 224)) def test_inception(): check_torch_conversion(torchvision.models.inception_v3, (1, 3, 224, 224)) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_googlenet(): # check_torch_conversion(torchvision.models.googlenet, (1,3,224,224)) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_shufflenetv2(): # check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224)) def test_sign(): def Sign_x(x): return np.sign(x) _test_onnx_op_elementwise((3, 4, 5, 6), Sign_x, {}, 'float32', 'Sign', {}) def verify_not(indata, dtype): x = indata.astype(dtype) outdata = np.logical_not(x) node = helper.make_node('Not', inputs=['in'], outputs=['out'],) graph = helper.make_graph([node], 'not_test', inputs=[helper.make_tensor_value_info( "in", TensorProto.BOOL, list(x.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))]) model = helper.make_model(graph, producer_name='not_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x], target, ctx, outdata.shape) tvm.testing.assert_allclose(outdata, tvm_out) def test_not(): # 2d verify_not(indata=(np.random.randn(3, 4) > 0), dtype=bool) # 3d verify_not(indata=(np.random.randn(3, 4, 5) > 0), dtype=bool) # 4d verify_not(indata=(np.random.randn(3, 4, 5, 6) > 0), dtype=bool) def verify_and(indata, dtype): x = indata[0].astype(dtype) y = indata[1].astype(dtype) outdata = np.logical_and(x, y) node = helper.make_node('And', inputs=['in1', 'in2'], outputs=['out'], ) graph = helper.make_graph([node], 'and_test', inputs=[helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)), helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))]) model = helper.make_model(graph, producer_name='and_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx, outdata.shape) tvm.testing.assert_allclose(outdata, tvm_out) def test_and(): # 2d x = (np.random.randn(3, 4) > 0) y = (np.random.randn(3, 4) > 0) verify_and(indata=[x, y], dtype=bool) # 3d x = (np.random.randn(3, 4, 5) > 0) y = (
np.random.randn(3, 4, 5)
numpy.random.randn
from PyQt5 import QtWidgets, uic, QtCore, Qt from PyQt5.QtWidgets import QAction, QMessageBox, QFileDialog, QDesktopWidget, QColorDialog, QFontDialog, QDialog, QTableWidgetItem, QVBoxLayout, QSplashScreen, QProgressBar from PyQt5.QtGui import QIcon, QPixmap import sys, os, time from webbrowser import open_new_tab import xlwt import subprocess as sp from plotting import * from mode import * from recorder import * from read_outfiles import * from utilities import * import matplotlib as mpl from RS import* import numpy as np import pandas as pd from pyvistaqt import QtInteractor main=None class FeViewMain(QtWidgets.QMainWindow): def __init__(self, parent=None): super(FeViewMain, self).__init__(parent) # load MainWindows.ui from Qt Designer uic.loadUi('UI\MainWindows.ui', self) # add the pyvista interactor object vlayout = QVBoxLayout() self.p=self.plot_widget = QtInteractor(self.frame) self.p.show_axes() vlayout.addWidget(self.plot_widget.interactor) self.frame.setLayout(vlayout) self.setCentralWidget(self.frame) vlayout.setContentsMargins(0, 0, 0, 0) # add some tool bar self.btn_tool_openTCL = QAction(QIcon('UI/icon/Open.png'),'Open TCL File', self) self.btn_tool_editTCL = QAction(QIcon('UI/icon/edit.png'),'Edit TCL File with CypressEditor', self) self.btn_tool_run_OS = QAction(QIcon('UI/icon/run.png'),'run TCL file with OpenSees', self) self.btn_iso = QAction(QIcon('UI/icon/iso.png'),'View isometric', self) self.btn_iso.setCheckable(True) # toolbar button checkable self.btn_xy_zpluss = QAction(QIcon('UI/icon/xy_zpluss.png'), 'View xy_zpluss', self) self.btn_xy_zpluss.setCheckable(True) self.btn_xy_zminus = QAction(QIcon('UI/icon/xy_zminus.png'), 'View xy_zminus', self) self.btn_xy_zminus.setCheckable(True) self.btn_xz_ypluss = QAction(QIcon('UI/icon/xz_ypluss.png'), 'View xz_ypluss', self) self.btn_xz_ypluss.setCheckable(True) self.btn_xz_yminus = QAction(QIcon('UI/icon/xz_yminus.png'), 'View xz_yminus', self) self.btn_xz_yminus.setCheckable(True) self.btn_yz_xpluss = QAction(QIcon('UI/icon/yz_xpluss.png'), 'View yz_xpluss', self) self.btn_yz_xpluss.setCheckable(True) self.btn_yz_xminus = QAction(QIcon('UI/icon/yz_xminus.png'), 'View yz_xminus', self) self.btn_yz_xminus.setCheckable(True) self.btn_node_label = QAction(QIcon('UI/icon/nl.png'), 'View Node Label', self) self.btn_node_label.setCheckable(True) self.btn_node_cord = QAction(QIcon('UI/icon/nc.png'), 'View Node Co-ordinate', self) self.btn_node_cord.setCheckable(True) self.btn_load = QAction(QIcon('UI/icon/load.png'), 'View Point Load', self) self.btn_load.setCheckable(True) self.btn_color_plot_background= QAction(QIcon('UI/icon/color_plot_background.png'), 'Change Plot Background Color', self) self.btn_color_gui = QAction(QIcon('UI/icon/color_gui.png'), 'Change Theme Color', self) self.btn_font = QAction(QIcon('UI/icon/font.png'), 'Change Font Style', self) self.btn_plot_image = QAction(QIcon('UI/icon/plot_image.png'), 'Save Plot as Image', self) self.btn_plot_image_wb = QAction(QIcon('UI/icon/plot_image_wb.png'), 'Save Plot as Image with White Background', self) self.btn_calc = QAction(QIcon('UI/icon/calculator.png'), 'Calculator', self) self.btn_minumize = QAction(QIcon('UI/icon/minimize.png'), 'Mimimize the Window', self) self.btn_maximize = QAction(QIcon('UI/icon/maximize.png'), 'Maximize the Window', self) self.btn_full_s = QAction(QIcon('UI/icon/full_s.png'), 'Fullscreen', self) self.btn_center = QAction(QIcon('UI/icon/center.png'), 'Center', self) self.btn_min_s = QAction(QIcon('UI/icon/min.png'), 'Minimum Window Size', self) self.btn_max_s = QAction(QIcon('UI/icon/max.png'), 'Maximum Window Size', self) self.btn_restore = QAction(QIcon('UI/icon/rest_w.png'), 'Restore Window', self) self.btn_help = QAction(QIcon('UI/icon/help.png'), 'Help', self) self.btn_about = QAction(QIcon('UI/icon/info.png'), 'Info', self) self.btn_close = QAction(QIcon('UI/icon/close.png'), 'Exir', self) toolbar = self.addToolBar('Exit') toolbar.addAction(self.btn_tool_openTCL) toolbar.addAction(self.btn_tool_editTCL) toolbar.addAction(self.btn_tool_run_OS) toolbar.addSeparator() toolbar.addAction(self.btn_iso) toolbar.addAction(self.btn_xy_zpluss) toolbar.addAction(self.btn_xy_zminus) toolbar.addAction(self.btn_xz_ypluss) toolbar.addAction(self.btn_xz_yminus) toolbar.addAction(self.btn_yz_xpluss) toolbar.addAction(self.btn_yz_xminus) toolbar.addSeparator()# add separator toolbar.addAction(self.btn_node_label) toolbar.addAction(self.btn_node_cord) toolbar.addAction(self.btn_load) toolbar.addSeparator() toolbar.addAction(self.btn_color_plot_background) toolbar.addAction(self.btn_color_gui) toolbar.addAction(self.btn_font) toolbar.addSeparator() toolbar.addAction(self.btn_plot_image) toolbar.addAction(self.btn_plot_image_wb) toolbar.addAction(self.btn_calc) toolbar.addSeparator() toolbar.addAction(self.btn_minumize) toolbar.addAction(self.btn_maximize) toolbar.addAction(self.btn_full_s) toolbar.addAction(self.btn_center) toolbar.addAction(self.btn_min_s) toolbar.addAction(self.btn_max_s) toolbar.addAction(self.btn_restore) toolbar.addSeparator() toolbar.addAction(self.btn_help) toolbar.addAction(self.btn_about) toolbar.addAction(self.btn_close) toolbar.addSeparator() # margin & layout setting for toolbar toolbar.setContentsMargins(0, 0, 0, 0) toolbar.layout().setSpacing(0) toolbar.layout().setContentsMargins(0, 0, 0, 0) self.btn_tool_openTCL.triggered.connect(self.openTCL) # call function for 'Open TCL file' toolbar button self.actionOpen.triggered.connect(self.openTCL) # call function for 'Open TCL file' main manu button self.btn_apply_static.clicked.connect(self.DispStatic) self.actionApply_Static.triggered.connect(self.DispStatic) self.btn_apply_modal.clicked.connect(self.DispModal) self.actionApply_Modal.triggered.connect(self.DispModal) self.btn_apply_dynamic.clicked.connect(self.DispDynamic) self.Apply_Dyanamic.triggered.connect(self.DispDynamic) self.btn_response_static.clicked.connect(self.res_static) self.actionShow_Response.triggered.connect(self.res_static) self.btn_response_dynamic.clicked.connect(self.res_dynamic) self.actionShow_Response_dynamic.triggered.connect(self.res_dynamic) self.btn_tool_editTCL.triggered.connect(self.edit_TCL) self.actionEdit.triggered.connect(self.edit_TCL) self.btn_tool_run_OS.triggered.connect(self.runOS) self.actionRun_OpenSees.triggered.connect(self.runOS) self.btn_iso.triggered.connect(self.iso) self.btn_xy_zpluss.triggered.connect(self.xy_zpluss) self.btn_xy_zminus.triggered.connect(self.xy_zminus) self.btn_xz_ypluss.triggered.connect(self.xz_ypluss) self.btn_xz_yminus.triggered.connect(self.xz_yminus) self.btn_yz_xpluss.triggered.connect(self.yz_xpluss) self.btn_yz_xminus.triggered.connect(self.yz_xminus) self.actionFeView.triggered.connect(self.about_feview) self.btn_about.triggered.connect(self.about_feview) self.actionPlot_Background_Color.triggered.connect(self.Plot_Background_Color) self.btn_color_plot_background.triggered.connect(self.Plot_Background_Color) self.actionGUI_Font.triggered.connect(self.GUI_Font) self.btn_font.triggered.connect(self.GUI_Font) self.actionTheme_Color.triggered.connect(self.gui_color) self.btn_color_gui.triggered.connect(self.gui_color) self.btn_plot_image.triggered.connect(self.savePlot) self.actionWith_background.triggered.connect(self.savePlot) self.btn_plot_image_wb.triggered.connect(self.savePlot_wb) self.actionWhite_Background.triggered.connect(self.savePlot_wb) self.btn_calc.triggered.connect(self.calculator) self.actionMinimize.triggered.connect(lambda: self.showMinimized()) self.btn_minumize.triggered.connect(lambda: self.showMinimized()) self.actionMaximize.triggered.connect(lambda: self.showMaximized()) self.btn_maximize.triggered.connect(lambda: self.showMaximized()) self.actionFull_Screen.triggered.connect(lambda: self.showFullScreen()) self.btn_full_s.triggered.connect(lambda: self.showFullScreen()) self.actionCenter.triggered.connect(lambda: self.center()) self.btn_center.triggered.connect(lambda: self.center()) self.actionMinimum_Size.triggered.connect(lambda: self.resize(self.minimumSize())) self.btn_min_s.triggered.connect(lambda: self.resize(self.minimumSize())) self.actionMaximum_Size.triggered.connect(lambda: self.resize(self.maximumSize())) self.btn_max_s.triggered.connect(lambda: self.resize(self.maximumSize())) self.actionRestore.triggered.connect(lambda: self.showNormal()) self.btn_restore.triggered.connect(lambda: self.showNormal()) self.actionSSL.triggered.connect(lambda: open_new_tab('Help\FeView_Help.chm')) self.btn_help.triggered.connect(lambda: open_new_tab('Help\FeView_Help.chm')) self.actionOpenSees.triggered.connect(lambda: open_new_tab('https://opensees.berkeley.edu')) self.actionSSL_Website.triggered.connect(lambda: open_new_tab('http://www.kim2kie.com/3_ach/SSL_Software.php')) self.actionFeView_Website.triggered.connect(lambda: open_new_tab('http://www.kim2kie.com/3_ach/FeView/FeView.php')) self.btn_node_label.triggered.connect(self.nodelebels) self.actionNode_Label.triggered.connect(self.nodelebels) self.btn_node_cord.triggered.connect(self.nodecoordinates) self.actionNode_Coordinate.triggered.connect(self.nodecoordinates) self.btn_load.triggered.connect(self.pointload_show) self.actionLoad.triggered.connect(self.pointload_show) self.actionExit.triggered.connect(self.close) self.btn_close.triggered.connect(self.close) self.actionMesh_Fiew.triggered.connect(self.mesh_view_model) self.actionSmooth_View.triggered.connect(self.smoth_view_model) self.actionWireframe.triggered.connect(self.wiremesh_model) self.actionMesh_View_2.triggered.connect(self.mesh_view_model_deform) self.actionSmooth_View_2.triggered.connect(self.smoth_view_model_deform) self.actionMesh_View_Wiremesh_undeform.triggered.connect(self.mesh_wiremesh_model_deform) self.actionSmooth_View_Wiremesh_undeform.triggered.connect(self.smooth_wiremesh_model_deform) self.btn_datatable_static.clicked.connect(self.data_table_static) self.actionData_Table.triggered.connect(self.data_table_static) self.btn_datatable_modal.clicked.connect(self.data_table_modal) self.actionData_Table_modal.triggered.connect(self.data_table_modal) self.btn_datatable_dynamic.clicked.connect(self.data_table_dynamic) self.actionData_Table_dynamic.triggered.connect(self.data_table_dynamic) self.actionView_load.triggered.connect(self.load_setting_arrow) self.reportEdit.keyReleaseEvent = self.handleKeyRelease self.addInfoText("Opend tcl file") self.prgb = QProgressBar(self) self.statusBar().addPermanentWidget(self.prgb) self.dialogs = list() def progress(self, value, newLines): #self.te.append('\n'.join(newLines)) self.prgb.setValue(value) def addInfoText(self, text): """Adds info text""" return self.reportEdit.insertPlainText("\n >>"+str(text)) def handleKeyRelease(self, event): """Handles key inputs to report box""" if(event.key() == Qt.Key_Return or event.key() == Qt.Key_Enter): self.interpretUserInput(self.reportEdit.toPlainText()) # function to unchecked another model display style setting except 'mesh view' def mesh_view_model(self): self.actionSmooth_View.setChecked(False) self.actionWireframe.setChecked(False) # function to unchecked another model display style setting except 'smooth view' def smoth_view_model(self): self.actionMesh_Fiew.setChecked(False) self.actionWireframe.setChecked(False) # function to unchecked another model display style setting except 'wiremesh view' def wiremesh_model(self): self.actionMesh_Fiew.setChecked(False) self.actionSmooth_View.setChecked(False) # function to unchecked another deform model display style setting except 'mesh view' def mesh_view_model_deform(self): self.actionSmooth_View_2.setChecked(False) self.actionMesh_View_Wiremesh_undeform.setChecked(False) self.actionSmooth_View_Wiremesh_undeform.setChecked(False) # function to unchecked another deform model display style setting except 'smooth view' def smoth_view_model_deform(self): self.actionMesh_View_2.setChecked(False) self.actionMesh_View_Wiremesh_undeform.setChecked(False) self.actionSmooth_View_Wiremesh_undeform.setChecked(False) # function to unchecked another deform model display style setting except 'mesh view+wiremesh' def mesh_wiremesh_model_deform(self): self.actionMesh_View_2.setChecked(False) self.actionSmooth_View_2.setChecked(False) self.actionSmooth_View_Wiremesh_undeform.setChecked(False) # function to unchecked another deform model display style setting except 'smooth view+wiremesh' def smooth_wiremesh_model_deform(self): self.actionMesh_View_2.setChecked(False) self.actionSmooth_View_2.setChecked(False) self.actionMesh_View_Wiremesh_undeform.setChecked(False) def openTCL(self): try: global numModes #set numModes as global variable # create file dialog function to browse file path options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog self.fileName, _ = QFileDialog.getOpenFileName(self, "OpenSees File", "","OpenSees File (*.tcl)", options=options) self.file_path, self.file_name = os.path.split(self.fileName) [filename0, sep, ext] = self.file_name.partition('.') # make path for output files self.result_directory = os.path.join(self.file_path, r'out_files_%s' % filename0) if not os.path.exists(self.result_directory): # create directory for output files os.mkdir(self.result_directory) # clear all actors from plot interface self.prgb.setMaximum(len(node(self.fileName))) self.p.clear() if self.actionSmooth_View.isChecked() == True: # call plotter considering smooth view plotter(self.p, self.fileName, 'smooth_view',NodeCoords(self.fileName), None, None) elif self.actionWireframe.isChecked() == True: # call plotter considering wiremesh view plotter(self.p, self.fileName, 'wireframe', NodeCoords(self.fileName),None, None) elif self.actionMesh_Fiew.isChecked() == True: # call plotter considering mesh view plotter(self.p, self.fileName, 'mesh_view',NodeCoords(self.fileName), None, None) #plotter_rigiddiaphram(self.p, self.fileName, NodeCoords(self.fileName)) if (ndm_v(self.fileName))==2: self.p.view_xy() # initial setting for 2d interface considering x-y axis view else: self.p.view_isometric() # initial setting for 3d interface considering isometric view # read number of modes as "numModes" numModes=modeNumber(self.fileName) # clear previous item from "Mode Num." Combobox self.cb_numNodes.clear() if numModes.size>0: for i in range(int(numModes)): # add item to "Mode Num." combobox as Mode_1... self.cb_numNodes.addItem('Mode_'+str(i+1)) self.recorder_disp, self.recorder_rot, self.recorder_force, self.recorder_moment, self.recorder_accel, self.recorder_vel = recorder_types( self.fileName) if self.recorder_disp==1: # add item to "Component" combobox for displacement in static analysis result self.cb_node_contour_static.addItem('Displacement, Ux',) self.cb_node_contour_static.addItem('Displacement, Uy') self.cb_node_contour_static.addItem('Displacement, Uz') self.cb_node_contour_static.addItem('Displacement, Uxyz') if self.recorder_rot==1: # add item to "Component" combobox for rotation in static analysis result self.cb_node_contour_static.addItem('Rotation, Rx') self.cb_node_contour_static.addItem('Rotation, Ry') self.cb_node_contour_static.addItem('Rotation, Rz') self.cb_node_contour_static.addItem('Rotation, Rxyz') if self.recorder_force==1: # add item to "Component" combobox for force reaction in static analysis result self.cb_node_contour_static.addItem('Force Reaction, RFx') self.cb_node_contour_static.addItem('Force Reaction, RFy') self.cb_node_contour_static.addItem('Force Reaction, RFz') self.cb_node_contour_static.addItem('Force Reaction, RFxyz') if self.recorder_moment==1: # add item to "Component" combobox for moment reaction in static analysis result self.cb_node_contour_static.addItem('Moment Reaction, RMx') self.cb_node_contour_static.addItem('Moment Reaction, RMy') self.cb_node_contour_static.addItem('Moment Reaction, RMz') self.cb_node_contour_static.addItem('Moment Reaction, RMxyz') if self.recorder_disp == 1: # add item to "Component" combobox for displacement in dynamic analysis result self.cb_node_contour_dynamic.addItem('Displacement, Ux') self.cb_node_contour_dynamic.addItem('Displacement, Uy') self.cb_node_contour_dynamic.addItem('Displacement, Uz') self.cb_node_contour_dynamic.addItem('Displacement, Uxyz') if self.recorder_rot == 1: # add item to "Component" combobox for rotation in dynamic analysis result self.cb_node_contour_dynamic.addItem('Rotation, Rx') self.cb_node_contour_dynamic.addItem('Rotation, Ry') self.cb_node_contour_dynamic.addItem('Rotation, Rz') self.cb_node_contour_dynamic.addItem('Rotation, Rxyz') if self.recorder_force == 1: # add item to "Component" combobox for force reaction in dynamic analysis result self.cb_node_contour_dynamic.addItem('Force Reaction, RFx') self.cb_node_contour_dynamic.addItem('Force Reaction, RFy') self.cb_node_contour_dynamic.addItem('Force Reaction, RFz') self.cb_node_contour_dynamic.addItem('Force Reaction, RFxyz') if self.recorder_moment == 1: # add item to "Component" combobox for moment reaction in dynamic analysis result self.cb_node_contour_dynamic.addItem('Moment Reaction, RMx') self.cb_node_contour_dynamic.addItem('Moment Reaction, RMy') self.cb_node_contour_dynamic.addItem('Moment Reaction, RMz') self.cb_node_contour_dynamic.addItem('Moment Reaction, RMxyz') if self.recorder_accel == 1: # add item to "Component" combobox for acceleration in dynamic analysis result self.cb_node_contour_dynamic.addItem('Acceleration, Ax') self.cb_node_contour_dynamic.addItem('Acceleration, Ay') self.cb_node_contour_dynamic.addItem('Acceleration, Az') self.cb_node_contour_dynamic.addItem('Acceleration, Axyz') if self.recorder_vel == 1: # add item to "Component" combobox for velocity in dynamic analysis result self.cb_node_contour_dynamic.addItem('Velocity, Vx') self.cb_node_contour_dynamic.addItem('Velocity, Vy') self.cb_node_contour_dynamic.addItem('Velocity, Vz') self.cb_node_contour_dynamic.addItem('Velocity, Vxyz') self.setWindowTitle( # windows title to show file path and filename "{}[*] - {}".format((self.fileName + ' ['+filename0)+']', 'FeView')) try: # show total node and element in status bar self.statusBar().showMessage('Total Node : '+str(len(node(self.fileName)))+'; Total Element :'+total_element(self.fileName)) except: QMessageBox.critical(self, "Error", "No node or element found") if self.actionView_load.isChecked()==True: # show point load point_load(self.fileName,self.p,load_arrow_size, load_font_size,load_arrow_color,load_font_color) if self.actionView_Support.isChecked() == True: # show support support(self.fileName,self.p) self.addInfoText("Successfully loaded file \n" + self.fileName) except: QMessageBox.critical(self, "Error", "Please check TCL file") def DispStatic(self): try: self.btn_apply_modal.setChecked(False) self.btn_apply_dynamic.setChecked(False) scalefactor = float(self.tb_sef_scale_factor.text()) # scale factor for diformation (static, modal and dynamic analysis) if self.recorder_disp==1: # read output files for displacement self.outdispFile = OpenSeesOutputRead(os.path.join(self.result_directory,'Node_displacements.out')) if step_static(self.fileName).size>0: # number of steps for static (if dynamic/transient analysis also included) self.step_statics=int(step_static(self.fileName)) else: # number of steps for only static analysis self.step_statics = len(self.outdispFile[:, 1]) self.step_dynamic = len(self.outdispFile[:, 1]) - self.step_statics # steps for transient analysis if self.recorder_disp == 1: # read output files for displacement self.deformation=(out_response((os.path.join(self.result_directory,'Node_displacements.out')), self.step_statics, ndm_v(self.fileName),'all')) self.dispNodeCoords = NodeCoords(self.fileName) + (scalefactor * self.deformation) if self.recorder_rot == 1: # read output files for rotation self.rotation=(out_response((os.path.join(self.result_directory,'Node_rotations.out')), self.step_statics, ndm_v(self.fileName),'rotation_moment')) self.outrotFile = OpenSeesOutputRead(os.path.join(self.result_directory, 'Node_rotations.out')) if self.recorder_force == 1: # read output files for force reaction self.forcereaction=(out_response((os.path.join(self.result_directory,'Node_forceReactions.out')), self.step_statics, ndm_v(self.fileName),'all')) self.outfreactFile = OpenSeesOutputRead(os.path.join(self.result_directory, 'Node_forceReactions.out')) if self.recorder_moment == 1: # read output files for moment reaction self.momentreaction = (out_response((os.path.join(self.result_directory, 'Node_momentReactions.out')), self.step_statics,ndm_v(self.fileName),'rotation_moment')) self.outmreactFile = OpenSeesOutputRead(os.path.join(self.result_directory, 'Node_momentReactions.out')) self.p.clear() node_contour_type = (self.cb_node_contour_static.currentText()) # get current text from "Component" combobox (Static result) if self.actionMesh_View_2.isChecked() == True: if node_contour_type=='Displacement, Ux': scalars = self.deformation[:, 0] d_max_x= np.max(np.abs(self.deformation[:, 0])) stitle = 'Displacement, Ux (Max. = '+str(d_max_x)+')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Displacement, Uy': scalars = self.deformation[:, 1] d_max_y = np.max(np.abs(self.deformation[:, 1])) stitle = 'Displacement, Uy (Max. = ' + str(d_max_y) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Displacement, Uz': scalars = self.deformation[:, 2] d_max_z = np.max(np.abs(self.deformation[:, 2])) stitle = 'Displacement, Uz (Max. = ' + str(d_max_z) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Displacement, Uxyz': scalars = self.deformation[:, :3] scalars = (scalars * scalars).sum(1) ** 0.5 d_max_xyz = np.max(np.abs(scalars)) stitle = 'Displacement, Uxyz (Max. = ' + str(d_max_xyz) + ')\n' plotter(self.p, self.fileName, 'mesh_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Rotation, Rx': scalars = self.rotation[:, 0] stitle = 'Rotation, Rx (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Rotation, Ry': scalars = self.rotation[:, 1] stitle = 'Rotation, Ry (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Rotation, Rz': scalars = self.rotation[:, 2] stitle = 'Rotation, Rz (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Rotation, Rxyz': scalars = self.rotation[:, :3] scalars = (scalars * scalars).sum(1) ** 0.5 stitle = 'Rotation, Rxyz (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Force Reaction, RFx': scalars = self.forcereaction[:, 0] stitle = 'Force Reaction, RFx (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Force Reaction, RFy': scalars = self.forcereaction[:, 1] stitle = 'Force Reaction, RFy (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Force Reaction, RFz': scalars = self.forcereaction[:, 2] stitle = 'Force Reaction, RFz (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Force Reaction, RFxyz': scalars = self.forcereaction[:, :3] scalars = (scalars * scalars).sum(1) ** 0.5 stitle = 'Force Reaction, RFxyz (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Moment Reaction, RMx': scalars = self.momentreaction[:, 0] stitle = 'Moment Reaction, RMx (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Moment Reaction, RMy': scalars = self.momentreaction[:, 1] stitle = 'Moment Reaction, RMy (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' #stitle = 'Moment Reaction, RMx\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Moment Reaction, RMz': scalars = self.momentreaction[:, 2] stitle = 'Moment Reaction, RMz (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' #stitle = 'Moment Reaction, RMz\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif node_contour_type=='Moment Reaction, RMxyz': scalars = self.momentreaction[:, :3] stitle = 'Moment Reaction, RMxyz (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'mesh_view',self.dispNodeCoords, scalars, stitle) elif self.actionSmooth_View_2.isChecked() == True: if node_contour_type == 'Displacement, Ux': scalars = self.deformation[:, 0] d_max_x = np.max(np.abs(self.deformation[:, 0])) stitle = 'Displacement, Ux (Max. = ' + str(d_max_x) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Displacement, Uy': scalars = self.deformation[:, 1] d_max_y = np.max(np.abs(self.deformation[:, 1])) stitle = 'Displacement, Uy (Max. = ' + str(d_max_y) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Displacement, Uz': scalars = self.deformation[:, 2] d_max_z = np.max(np.abs(self.deformation[:, 2])) stitle = 'Displacement, Uz (Max. = ' + str(d_max_z) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Displacement, Uxyz': scalars = self.deformation[:, :3] scalars = (scalars * scalars).sum(1) ** 0.5 d_max_xyz = np.max(np.abs(scalars)) stitle = 'Displacement, Uxyz (Max. = ' + str(d_max_xyz) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Rotation, Rx': scalars = self.rotation[:, 2] stitle = 'Rotation, Rx (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Rotation, Ry': scalars = self.rotation[:, 1] stitle = 'Rotation, Ry (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Rotation, Rz': scalars = self.rotation[:, 0] stitle = 'Rotation, Rz (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Rotation, Rxyz': scalars = self.rotation[:, :3] scalars = (scalars * scalars).sum(1) ** 0.5 stitle = 'Rotation, Rxyz (rad) (Max. = ' + str(np.max(np.abs(scalars))) + ')\n' plotter(self.p, self.fileName, 'smooth_view', self.dispNodeCoords, scalars, stitle) elif node_contour_type == 'Force Reaction, RFx': scalars = self.forcereaction[:, 0] stitle = 'Force Reaction, RFx (Max. = ' + str(np.max(
np.abs(scalars)
numpy.abs
import os import traceback import tensorflow as tf import numpy as np import ray from deephyper.nas.metrics import selectMetric from deephyper.ensemble import BaseEnsemble from deephyper.nas.run._util import set_memory_growth_for_visible_gpus def mse(y_true, y_pred): return tf.square(y_true - y_pred) @ray.remote(num_cpus=1) def model_predict(model_path, X, batch_size=32, verbose=0): """Perform an inference of the model located at ``model_path``. :meta private: Args: model_path (str): Path to the ``h5`` file to load to perform the inferencec. X (array): array of input data for which we perform the inference. batch_size (int, optional): Batch size used to perform the inferencec. Defaults to 32. verbose (int, optional): Verbose option. Defaults to 0. Returns: array: The prediction based on the provided input data. """ # GPU Configuration if available set_memory_growth_for_visible_gpus(True) tf.keras.backend.clear_session() model_file = model_path.split("/")[-1] try: if verbose: print(f"Loading model {model_file}", flush=True) model = tf.keras.models.load_model(model_path, compile=False) except: if verbose: print(f"Could not load model {model_file}", flush=True) traceback.print_exc() model = None if model: y = model.predict(X, batch_size=batch_size) else: y = None return y class BaggingEnsemble(BaseEnsemble): """Ensemble based on uniform averaging of the predictions of each members. :meta private: Args: model_dir (str): Path to directory containing saved Keras models in .h5 format. loss (callable): a callable taking (y_true, y_pred) as input. size (int, optional): Number of unique models used in the ensemble. Defaults to 5. verbose (bool, optional): Verbose mode. Defaults to True. ray_address (str, optional): Address of the Ray cluster. If "auto" it will try to connect to an existing cluster. If "" it will start a local Ray cluster. Defaults to "". num_cpus (int, optional): Number of CPUs allocated to load one model and predict. Defaults to 1. num_gpus (int, optional): Number of GPUs allocated to load one model and predict. Defaults to None. batch_size (int, optional): Batch size used batchify the inference of loaded models. Defaults to 32. selection (str, optional): Selection strategy to build the ensemble. Value in ``["topk"]``. Default to ``topk``. mode (str, optional): Value in ``["regression", "classification"]``. Default to ``"regression"``. """ def __init__( self, model_dir, loss=mse, size=5, verbose=True, ray_address="", num_cpus=1, num_gpus=None, batch_size=32, selection="topk", mode="regression", ): super().__init__( model_dir, loss, size, verbose, ray_address, num_cpus, num_gpus, batch_size, ) assert selection in ["topk"] self.selection = selection assert mode in ["regression", "classification"] self.mode = mode def __repr__(self) -> str: out = super().__repr__() out += f"Mode: {self.mode}\n" out += f"Selection: {self.selection}\n" return out def fit(self, X, y): """Fit the current algorithm to the provided data. Args: X (array): The input data. y (array): The output data. Returns: BaseEnsemble: The current fitted instance. """ X_id = ray.put(X) model_files = self._list_files_in_model_dir() model_path = lambda f: os.path.join(self.model_dir, f) y_pred = ray.get( [ model_predict.options( num_cpus=self.num_cpus, num_gpus=self.num_gpus ).remote(model_path(f), X_id, self.batch_size, self.verbose) for f in model_files ] ) y_pred = np.array([arr for arr in y_pred if arr is not None]) members_indexes = topk(self.loss, y_true=y, y_pred=y_pred, k=self.size) self.members_files = [model_files[i] for i in members_indexes] return self def predict(self, X) -> np.ndarray: """Execute an inference of the ensemble for the provided data. Args: X (array): An array of input data. Returns: array: The prediction. """ # make predictions X_id = ray.put(X) model_path = lambda f: os.path.join(self.model_dir, f) y_pred = ray.get( [ model_predict.options( num_cpus=self.num_cpus, num_gpus=self.num_gpus ).remote(model_path(f), X_id, self.batch_size, self.verbose) for f in self.members_files ] ) y_pred =
np.array([arr for arr in y_pred if arr is not None])
numpy.array
"""Auditory Filterbanks and scales for Speech and Audio Analysis. The Gammatone filterbank is a direct translation of <NAME>' Gammatone-like spectrograms package [1], which is partly and a direct translation of Malcolm Slaney's Auditory toolbox [2]. References: [1]: https://labrosa.ee.columbia.edu/matlab/gammatonegram/ [2]: https://engineering.purdue.edu/~malcolm/interval/1998-010/ """ import numpy as np from scipy import signal from .util import fftfreqz, freqz def dft2mel(nfft, sr=8000., nfilts=0, width=1., minfrq=0., maxfrq=4000., sphinx=False, constamp=True): """Map linear discrete frequencies to Mel scale.""" if nfilts == 0: nfilts = np.int(np.ceil(hz2mel(np.array([maxfrq]), sphinx)[0]/2)) weights = np.zeros((nfilts, nfft)) # dft index -> linear frequency in hz dftfrqs = np.arange(nfft/2+1, dtype=np.float)/nfft * sr maxmel, minmel = hz2mel(np.array([maxfrq, minfrq]), sphinx) binfrqs = mel2hz(minmel+np.linspace(0., 1., nfilts+2) * (maxmel-minmel), sphinx) for i in range(nfilts): fs = binfrqs[i:i+3].copy() fs = fs[1] + width*(fs-fs[1]) # adjust bandwidth if needed loslope = (dftfrqs - fs[0])/(fs[1] - fs[0]) hislope = (fs[2] - dftfrqs)/(fs[2] - fs[1]) weights[i, 0:nfft/2+1] = np.maximum(0, np.minimum(loslope, hislope)) if constamp: # Slaney-style mel is scaled to be approx constant E per channel weights = np.diag( 2/(binfrqs[2:nfilts+2]-binfrqs[:nfilts])).dot(weights) weights[:, nfft/2+1:] = 0 # avoid aliasing return weights, binfrqs[1:] def hz2dft(freq, sr, nfft): """Map frequency in Hz to discrete Fourier transform bins. Parameters ---------- freq: array_like Frequency in hz sr: int Sampling rate in hz nfft: int Number of DFT bins in range [0, 2*pi) Returns ------- bins: array_like Frequency bin numbers """ return (freq/sr * nfft).astype('int') def hz2mel(f, sphinx=True): """Convert linear frequency to mel frequency scale.""" if sphinx: return 2595. * np.log10(1+f/700.) # match Slaney's toolbox f0, f_sp, brkfrq = 0., 200./3, 1000. brkpt = (brkfrq - f0) / f_sp logstep = np.exp(np.log(6.4)/27.) z = np.empty_like(f) lower = f < brkfrq # np.less(f,brkfrq) higher = np.logical_not(lower) z[lower] = (f[lower] - f0) / f_sp z[higher] = brkpt + np.log(f[higher]/brkfrq) / np.log(logstep) return z def mel2hz(z, sphinx=True): """Convert Mel frequency to linear frequency scale.""" if sphinx: return 700*(10**(z/2595.)-1) f0, f_sp, brkfrq = 0., 200./3, 1000. brkpt = (brkfrq - f0) / f_sp logstep = np.exp(np.log(6.4)/27.) f = np.empty_like(z) lower = z < brkpt # np.less(z,brkpt) higher = np.logical_not(lower) f[lower] = f0 + z[lower] * f_sp f[higher] = brkfrq * np.exp(np.log(logstep)*(z[higher]-brkpt)) return f # ERB-related Functions starting below # Global Parameters # Change the following three parameters if you wish to use a different # ERB scale. Must change in MakeERBCoeffs too. ERB_EAR_Q = 9.26449 # Glasberg and Moore Parameters ERB_MIN_BW = 24.7 ERB_ORDER = 1 # Process an input waveform with a gammatone filter bank. This function # takes a single sound vector, and returns an array of filter outputs, one # channel per row. # # The fcoefs parameter, which completely specifies the Gammatone filterbank, # should be designed with the MakeERBFilters function. If it is omitted, # the filter coefficients are computed for you assuming a 22050Hz sampling # rate and 64 filters regularly spaced on an ERB scale from fs/2 down to 100Hz. # # <NAME> @ Interval, June 11, 1998. # (c) 1998 Interval Research Corporation # Thanks to <NAME>' for his suggestions and improvements. def erb_fbank(sig, A0, A11, A12, A13, A14, A2, B0, B1, B2, gain, cascade=True): """Filter a signal using ERB filterbanks.""" if cascade: # original implementation. Might be numerically more stable. y1 = signal.lfilter([A0/gain, A11/gain, A2/gain], [B0, B1, B2], sig) y2 = signal.lfilter([A0, A12, A2], [B0, B1, B2], y1) y3 = signal.lfilter([A0, A13, A2], [B0, B1, B2], y2) y = signal.lfilter([A0, A14, A2], [B0, B1, B2], y3) return y else: # merge the difference EQ above into one b = np.convolve(np.convolve([A0, A11, A2], [A0, A12, A2]), np.convolve([A0, A13, A2], [A0, A14, A2])) / gain a = np.convolve(np.convolve([B0, B1, B2], [B0, B1, B2]), np.convolve([B0, B1, B2], [B0, B1, B2])) return signal.lfilter(b, a, sig) def erb_fftfreqz(A0, A11, A12, A13, A14, A2, B0, B1, B2, gain, nfft): """Compute frequency reponse given one ERB filter parameters.""" ww, h1 = fftfreqz([A0/gain, A11/gain, A2/gain], [B0, B1, B2], nfft) _, h2 = fftfreqz([A0, A12, A2], [B0, B1, B2], nfft) _, h3 = fftfreqz([A0, A13, A2], [B0, B1, B2], nfft) _, h4 = fftfreqz([A0, A14, A2], [B0, B1, B2], nfft) return ww, h1*h2*h3*h4 def erb_freqz(A0, A11, A12, A13, A14, A2, B0, B1, B2, gain, omegas): h1 = freqz([A0/gain, A11/gain, A2/gain], [B0, B1, B2], omegas) h2 = freqz([A0, A12, A2], [B0, B1, B2], omegas) h3 = freqz([A0, A13, A2], [B0, B1, B2], omegas) h4 = freqz([A0, A14, A2], [B0, B1, B2], omegas) return h1 * h2 * h3 * h4 # Directly copy from Ellis' package. Below is his description: # This function computes the filter coefficients for a bank of # Gammatone filters. These filters were defined by Patterson and # Holdworth for simulating the cochlea. # # The result is returned as an array of filter coefficients. Each row # of the filter arrays contains the coefficients for four second order # filters. The transfer function for these four filters share the same # denominator (poles) but have different numerators (zeros). All of these # coefficients are assembled into one vector that the **ERBFilterBank** # can take apart to implement the filter. # # The filter bank contains **num_chan** channels that extend from # half the sampling rate (fs) to **low_freq**. Alternatively, if the num_chan # input argument is a vector, then the values of this vector are taken to # be the center frequency of each desired filter. (The low_freq argument is # ignored in this case.) # # Note this implementation fixes a problem in the original code by # computing four separate second order filters. This avoids a big # problem with round off errors in cases of very small cfs (100Hz) and # large sample rates (44kHz). The problem is caused by roundoff error # when a number of poles are combined, all very close to the unit # circle. Small errors in the eigth order coefficient, are multiplied # when the eigth root is taken to give the pole location. These small # errors lead to poles outside the unit circle and instability. Thanks # to <NAME> for leading me to the proper explanation. def erb_filters(sr, cf): """Construct ERB filterbanks.""" T = 1./sr ERB = ((cf/ERB_EAR_Q)**ERB_ORDER + ERB_MIN_BW**ERB_ORDER)**(1/ERB_ORDER) B = 1.019*2*np.pi*ERB A0 = T A2 = 0. B0 = 1. B1 = -2*np.cos(2*cf*np.pi*T) / np.exp(B*T) B2 = np.exp(-2*B*T) A11 = -(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T) + 2*np.sqrt(3+2**1.5)*T*np.sin(2*cf*np.pi*T) / np.exp(B*T))/2 A12 = -(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T) - 2*np.sqrt(3+2**1.5)*T*np.sin(2*cf*np.pi*T) / np.exp(B*T))/2 A13 = -(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T) + 2*np.sqrt(3-2**1.5)*T*np.sin(2*cf*np.pi*T) / np.exp(B*T))/2 A14 = -(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T) - 2*np.sqrt(3-2**1.5)*T*np.sin(2*cf*np.pi*T) / np.exp(B*T))/2 gain = np.abs( (-2*np.exp(4*1j*cf*np.pi*T)*T + 2*np.exp(-(B*T) + 2*1j*cf*np.pi*T)*T * (np.cos(2*cf*np.pi*T) - np.sqrt(3 - 2**(3./2)) * np.sin(2*cf*np.pi*T))) * (-2*np.exp(4*1j*cf*np.pi*T)*T + 2*np.exp(-(B*T) + 2*1j*cf*np.pi*T)*T * (np.cos(2*cf*np.pi*T) + np.sqrt(3 - 2**(3./2)) * np.sin(2*cf*np.pi*T))) * (-2*np.exp(4*1j*cf*np.pi*T)*T + 2*np.exp(-(B*T) + 2*1j*cf*np.pi*T)*T * (np.cos(2*cf*np.pi*T) - np.sqrt(3 + 2**(3./2))*np.sin(2*cf*np.pi*T))) * (-2*np.exp(4*1j*cf*np.pi*T)*T+2*np.exp(-(B*T)+2*1j*cf*np.pi*T)*T * (np.cos(2*cf*np.pi*T) +
np.sqrt(3+2**(3./2))
numpy.sqrt
#!/usr/bin/env python # -*- coding: utf-8 -*- """Module for data simulation, to test algorithms utilized in diagnostics. <NAME> <<EMAIL>> 2017-03-27 11:22:25 AM EDT """ from phantasy.library.physics import Point import numpy as np class Distribution(object): """Particle distribution for transverse plane, i.e. ``x-o-y`` plane, default is Gaussian distribution. Parameters ---------- x0 : float Mean value along ``x`` direction. y0 : float Mean value along ``y`` direction. sx : float Standard deviation along ``x`` direction. sy : float Standard deviation along ``y`` direction. N : int Total point number of particle distribution. Keyword Arguments ----------------- mean : list Central point, ``[x0, y0]``, overrides *x0* and *y0*. cov : list Covariance matrix, overrides *sx* and *sy*. rho : float Correlation between ``x`` and ``y``, should be within ``[-1, 1]``. distfile : string Name of data file to load distribution, contains x and y data, if *distfile* is valid, the internal data generation would be ignored. distdata : array Array with shape of ``(2,n)`` to initialize distribution. """ def __init__(self, x0=0, y0=0, sx=0.1, sy=0.1, N=1000, **kws): self.distype = None distfile = kws.get('distfile', None) distdata = kws.get('distdata', None) # try to load data from array if distdata is not None: self.particles = distdata else: # generate internally if not self.load_distfile(distfile): self._x, self._y = None, None if kws.get('mean', None) is not None: mean = kws.get('mean') else: mean = [x0, y0] if kws.get('cov', None) is not None: cov = kws.get('cov') else: rho = kws.get('rho', None) if -1.0 <= rho <= 1.0: cxy = rho * sx * sy else: cxy = 0 cov = [[sx ** 2, cxy], [cxy, sy ** 2]] self.distype = 'gaussian' self.particles = Distribution.generate_gaussian_distrubution( mean, cov, N) else: # load from external file print("Load distribution from '{}'".format(distfile)) def load_distfile(self, distfile): try: data = np.loadtxt(distfile) if data.shape[0] == 2: self._x, self._y = data else: self._x, self._y = data.T self.distype = 'external' return True except: return False @property def particles(self): """tuple: Array of x, y distribution.""" return self._x, self._y @particles.setter def particles(self, p): self._x, self._y = p @staticmethod def generate_gaussian_distrubution(mean, cov, N): """Generate random two-dimensional distribution. """ x, y =
np.random.multivariate_normal(mean, cov, N)
numpy.random.multivariate_normal
# Copyright (C) by <NAME>. See LICENSE.txt for licensing information. import unittest from PMC import * class TestOperatorOverloads(unittest.TestCase): def test_pmc_numbers_equal(self): self.assertEqual(Py2PMC(42), Py2PMC(42)) self.assertEqual(Py2PMC(4.2), Py2PMC(4.2)) self.assertNotEqual(Py2PMC(4.2), Py2PMC(2.4)) def test_pmc_arrays_equal(self): try: import numpy except ImportError: return self.assertEqual(Py2PMC(numpy.array([], numpy.int16)), Py2PMC(numpy.array([], numpy.int16))) self.assertEqual(Py2PMC(
numpy.array([1, 2, 3, 4], numpy.int16)
numpy.array
import matplotlib.pyplot as plt import os import numpy as np SMALL_SIZE = 24 MEDIUM_SIZE = 24 BIGGER_SIZE = 24 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title base_dir = './results_usrnet_8iter' result_list = sorted(os.listdir(base_dir)) default_psnr = list() default_ssim = list() k_gan_psnr = list() k_gan_ssim = list() noise_est_psnr = list() noise_est_ssim = list() noise_kernel_psnr = list() noise_kernel_ssim = list() for ind,folder in enumerate(result_list): if not os.path.exists(os.path.join(base_dir,folder,'psnr_log.txt')): continue with open(os.path.join(base_dir,folder,'psnr_log.txt'), 'r') as f: data = f.readlines() default_psnr.append(float(data[0].split()[4])) default_ssim.append(float(data[0].split()[-1])) k_gan_psnr.append(float(data[1].split()[4])) k_gan_ssim.append(float(data[1].split()[-1])) noise_est_psnr.append(float(data[2].split()[4])) noise_est_ssim.append(float(data[2].split()[-1])) noise_kernel_psnr.append(float(data[3].split()[4])) noise_kernel_ssim.append(float(data[3].split()[-1])) print(f'Default PSNR: {np.mean(default_psnr):.3f}, STD: {np.std(default_psnr):.3f}') print(f'Default SSIM: {np.mean(default_ssim):.3f}, STD: {np.std(default_ssim):.3f}') print(f'noise PSNR: {np.mean(noise_est_psnr):.3f}, STD: {np.std(noise_est_psnr):.3f}') print(f'noise SSIM: {
np.mean(noise_est_ssim)
numpy.mean
import glob import os from typing import List, Tuple import cv2 import h5py import numpy as np import scipy.io as sio from tqdm import tqdm from mmhuman3d.core.conventions.keypoints_mapping import convert_kps from mmhuman3d.data.data_structures.human_data import HumanData from .base_converter import BaseModeConverter from .builder import DATA_CONVERTERS @DATA_CONVERTERS.register_module() class MpiInf3dhpConverter(BaseModeConverter): """MPI-INF-3DHP dataset `Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision' 3DC`2017 More details can be found in the `paper. <https://arxiv.org/pdf/1611.09813.pdf>`__. Args: modes (list): 'test' or 'train' for accepted modes extract_img (bool): Store True to extract images into a separate folder. Default: False. """ ACCEPTED_MODES = ['test', 'train'] def __init__(self, modes: List = [], extract_img: bool = False) -> None: super(MpiInf3dhpConverter, self).__init__(modes) self.extract_img = extract_img def extract_keypoints( self, keypoints2d: np.ndarray, keypoints3d: np.ndarray, num_keypoints: int ) -> Tuple[bool, np.ndarray, np.ndarray, List[float]]: """Check keypoints validiy and add confidence and bbox.""" bbox_xyxy = [ min(keypoints2d[:, 0]), min(keypoints2d[:, 1]), max(keypoints2d[:, 0]), max(keypoints2d[:, 1]) ] bbox_xyxy = self._bbox_expand(bbox_xyxy, scale_factor=1.2) bbox_xywh = self._xyxy2xywh(bbox_xyxy) # check that all joints are visible h, w = 2048, 2048 x_in = np.logical_and(keypoints2d[:, 0] < w, keypoints2d[:, 0] >= 0) y_in = np.logical_and(keypoints2d[:, 1] < h, keypoints2d[:, 1] >= 0) ok_pts = np.logical_and(x_in, y_in) if np.sum(ok_pts) < num_keypoints: valid = False # add confidence column keypoints2d = np.hstack([keypoints2d, np.ones((num_keypoints, 1))]) keypoints3d = np.hstack([keypoints3d, np.ones((num_keypoints, 1))]) valid = True return valid, keypoints2d, keypoints3d, bbox_xywh def convert_by_mode(self, dataset_path: str, out_path: str, mode: str) -> dict: """ Args: dataset_path (str): Path to directory where raw images and annotations are stored. out_path (str): Path to directory to save preprocessed npz file mode (str): Mode in accepted modes Returns: dict: A dict containing keys image_path, bbox_xywh, keypoints2d, keypoints2d_mask, keypoints3d, keypoints3d_mask stored in HumanData() format """ # use HumanData to store all data human_data = HumanData() image_path_, bbox_xywh_, keypoints2d_, keypoints3d_ = [], [], [], [] # training data if mode == 'train': user_list = range(1, 9) seq_list = range(1, 3) vid_list = list(range(3)) + list(range(4, 9)) counter = 0 for user_i in tqdm(user_list, desc='user list'): for seq_i in seq_list: seq_path = os.path.join(dataset_path, 'S' + str(user_i), 'Seq' + str(seq_i)) # mat file with annotations annot_file = os.path.join(seq_path, 'annot.mat') annot2 = sio.loadmat(annot_file)['annot2'] annot3 = sio.loadmat(annot_file)['annot3'] for j, vid_i in tqdm(enumerate(vid_list), desc='vid list'): # image folder imgs_path = os.path.join(seq_path, 'video_' + str(vid_i)) # extract frames from video file if self.extract_img: # if doesn't exist if not os.path.isdir(imgs_path): os.makedirs(imgs_path) # video file vid_file = os.path.join( seq_path, 'imageSequence', 'video_' + str(vid_i) + '.avi') vidcap = cv2.VideoCapture(vid_file) # process video frame = 0 while 1: # extract all frames success, image = vidcap.read() if not success: break frame += 1 # image name imgname = os.path.join( imgs_path, 'frame_%06d.jpg' % frame) # save image cv2.imwrite(imgname, image) # per frame pattern = os.path.join(imgs_path, '*.jpg') img_list = glob.glob(pattern) for i, img_i in enumerate(sorted(img_list)): # for each image we store the relevant annotations img_name = img_i.split('/')[-1] image_path = os.path.join('S' + str(user_i), 'Seq' + str(seq_i), 'video_' + str(vid_i), img_name) # 2D keypoints keypoints2d = np.reshape(annot2[vid_i][0][i], (28, 2)) # 3D keypoints keypoints3d = np.reshape(annot3[vid_i][0][i], (28, 3)) / 1000 keypoints3d = keypoints3d - keypoints3d[ 4] # 4 is the root valid, keypoints2d, keypoints3d, bbox_xywh = \ self.extract_keypoints( keypoints2d, keypoints3d, 28) if not valid: continue # because of the dataset size, # we only keep every 10th frame counter += 1 if counter % 10 != 1: continue # store the data image_path_.append(image_path) bbox_xywh_.append(bbox_xywh) keypoints2d_.append(keypoints2d) keypoints3d_.append(keypoints3d) bbox_xywh_ = np.array(bbox_xywh_).reshape((-1, 4)) bbox_xywh_ = np.hstack( [bbox_xywh_, np.ones([bbox_xywh_.shape[0], 1])]) keypoints2d_ = np.array(keypoints2d_).reshape((-1, 28, 3)) keypoints2d_, mask = convert_kps(keypoints2d_, 'mpi_inf_3dhp', 'human_data') keypoints3d_ = np.array(keypoints3d_).reshape((-1, 28, 4)) keypoints3d_, _ = convert_kps(keypoints3d_, 'mpi_inf_3dhp', 'human_data') elif mode == 'test': # test data user_list = range(1, 7) for user_i in tqdm(user_list, desc='user'): seq_path = os.path.join(dataset_path, 'mpi_inf_3dhp_test_set', 'TS' + str(user_i)) # mat file with annotations annot_file = os.path.join(seq_path, 'annot_data.mat') mat_as_h5 = h5py.File(annot_file, 'r') annot2 = np.array(mat_as_h5['annot2']) annot3 = np.array(mat_as_h5['univ_annot3']) valid = np.array(mat_as_h5['valid_frame']) for frame_i, valid_i in tqdm(enumerate(valid), desc='frame'): if valid_i == 0: continue image_path = os.path.join( 'mpi_inf_3dhp_test_set', 'TS' + str(user_i), 'imageSequence', 'img_' + str(frame_i + 1).zfill(6) + '.jpg') keypoints2d = annot2[frame_i, 0, :, :] keypoints3d = annot3[frame_i, 0, :, :] / 1000 keypoints3d = keypoints3d - keypoints3d[14] # 14 is pelvis valid, keypoints2d, keypoints3d, bbox_xywh = \ self.extract_keypoints(keypoints2d, keypoints3d, 17) if not valid: continue # store the data image_path_.append(image_path) bbox_xywh_.append(bbox_xywh) keypoints2d_.append(keypoints2d) keypoints3d_.append(keypoints3d) bbox_xywh_ =
np.array(bbox_xywh_)
numpy.array
import numpy as np from .Gaussianformula.baseFunc import * from .Gaussianformula.ordering import * import matplotlib.pyplot as plt class Gaussian(): def __init__(self, N): self.N = N self.V = (np.eye(2 * N)) * 0.5 self.mu = np.zeros(2 * N) def mean(self, idx): res = np.copy(self.mu[2 * idx:2 * idx + 2]) return res def cov(self, idx): res = np.copy(self.V[(2 * idx):(2 * idx + 2), (2 * idx):(2 * idx + 2)]) return res def S(self, idx, r): self.Xsqueeze(idx, r) def Xsqueeze(self, idx, r): idx = 2 * idx S = np.eye(2 * self.N) S[idx:idx+2, idx:idx+2] = np.array([[np.exp(-r), 0], [0, np.exp(r)]]) self.V = np.dot(S, np.dot(self.V, S.T)) self.mu = np.dot(S, self.mu) def Psqueeze(self, idx, r): idx = 2 * idx S = np.eye(2 * self.N) S[idx:idx+2, idx:idx+2] = np.array([[np.exp(r), 0], [0, np.exp(-r)]]) self.V = np.dot(S, np.dot(self.V, S.T)) self.mu = np.dot(S, self.mu) def R(self, idx, theta): idx = 2 * idx S = np.eye(2 * self.N) S[idx:idx+2, idx:idx+2] = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) self.V = np.dot(S, np.dot(self.V, S.T)) self.mu = np.dot(S, self.mu) # 10.1103/RevModPhys.77.513 def BS(self, idx1, idx2, theta): idx1 = 2 * idx1 idx2 = 2 * idx2 S = np.eye(2 * self.N) S[idx1:idx1+2, idx1:idx1+2] = np.array([[np.cos(theta), 0], [0, np.cos(theta)]]) S[idx1:idx1+2, idx2:idx2+2] = np.array([[np.sin(theta), 0], [0, np.sin(theta)]]) S[idx2:idx2+2, idx1:idx1+2] = np.array([[-np.sin(theta), 0], [0, -np.sin(theta)]]) S[idx2:idx2+2, idx2:idx2+2] = np.array([[np.cos(theta), 0], [0, np.cos(theta)]]) self.V = np.dot(S, np.dot(self.V, S.T)) self.mu = np.dot(S, self.mu) def twoModeSqueezing(self, idx1, idx2, r): idx1 = 2 * idx1 idx2 = 2 * idx2 S = np.eye(2 * self.N) S[idx1:idx1+2, idx1:idx1+2] = np.array([[np.cosh(r), 0], [0, np.cosh(r)]]) S[idx1:idx1+2, idx2:idx2+2] = np.array([[np.sinh(r), 0], [0, -np.sinh(r)]]) S[idx2:idx2+2, idx1:idx1+2] = np.array([[np.sinh(r), 0], [0, -np.sinh(r)]]) S[idx2:idx2+2, idx2:idx2+2] = np.array([[np.cosh(r), 0], [0, np.cosh(r)]]) self.V = np.dot(S, np.dot(self.V, S.T)) self.mu = np.dot(S, self.mu) def D(self, idx, alpha): dx =
np.real(alpha)
numpy.real
""" Layout helper functions. Author: <NAME> @thomaslima and <NAME> @lukasc-ubc The following functions are useful for scripted layout, or making PDK Pcells. TODO: enhance documentation TODO: make some of the functions in util use these. """ from itertools import repeat import pya import numpy as np from numpy import cos, sin, pi, sqrt from functools import reduce from .sampling import sample_function from .geometry import rotate90, rotate, bezier_optimal, curve_length def insert_shape(cell, layer, shape): if layer is not None: cell.shapes(layer).insert(shape) class DSimplePolygon(pya.DSimplePolygon): """ DSimplePolygon with some added functionalities: - transform_and_rotate - clip - layout - layout_drc_exclude - resize - round_corners """ def transform_and_rotate(self, center, ex=None): """ Translates the polygon by 'center' and rotates by the 'ex' orientation. Example: if current polygon is a unit square with bottom-left corner at (0,0), then square.transform_and_rotate(DPoint(0, 1), DVector(0, 1)) will rotate the square by 90 degrees and translate it by 1 y-unit. The new square's bottom-left corner will be at (-1, 1). """ if ex is None: ex = pya.DPoint(1, 0) ey = rotate90(ex) polygon_dpoints_transformed = [center + p.x * ex + p.y * ey for p in self.each_point()] self.assign(pya.DSimplePolygon(polygon_dpoints_transformed)) return self def clip(self, x_bounds=(-np.inf, np.inf), y_bounds=(-np.inf, np.inf)): ''' Clips the polygon at four possible boundaries. The boundaries are tuples based on absolute coordinates and cartesian axes. This method is very powerful when used with transform_and_rotate. ''' # Add points exactly at the boundary, so that the filter below works. x_bounds = (np.min(x_bounds), np.max(x_bounds)) y_bounds = (np.min(y_bounds), np.max(y_bounds)) check_within_bounds = lambda p: x_bounds[0] <= p.x and x_bounds[1] >= p.x and \ y_bounds[0] <= p.y and y_bounds[1] >= p.y def intersect_left_boundary(p1, p2, x_bounds, y_bounds): left_most, right_most = (p1, p2) if p1.x < p2.x else (p2, p1) bottom_most, top_most = (p1, p2) if p1.y < p2.y else (p2, p1) if left_most.x < x_bounds[0]: # intersection only if right_most crosses x_bound[0] if right_most.x > x_bounds[0]: # outside the box, on the left y_intersect = np.interp(x_bounds[0], [left_most.x, right_most.x], [ left_most.y, right_most.y]) if y_bounds[0] < y_intersect and y_bounds[1] > y_intersect: return pya.DPoint(float(x_bounds[0]), float(y_intersect)) return None def intersect(p1, p2, x_bounds, y_bounds): intersect_list = list() last_intersect = None def rotate_bounds90(x_bounds, y_bounds, i_times): for i in range(i_times): x_bounds, y_bounds = (-y_bounds[1], -y_bounds[0]), (x_bounds[0], x_bounds[1]) return x_bounds, y_bounds for i in range(4): p1i, p2i = rotate(p1, i * pi / 2), rotate(p2, i * pi / 2) x_boundsi, y_boundsi = rotate_bounds90(x_bounds, y_bounds, i) p = intersect_left_boundary(p1i, p2i, x_boundsi, y_boundsi) if p is not None: last_intersect = i intersect_list.append(rotate(p, -i * pi / 2)) return intersect_list, last_intersect polygon_dpoints_clipped = list() polygon_dpoints = list(self.each_point()) def boundary_vertex(edge_from, edge_to): # left edge:0, top edge:1 etc. # returns the vertex between two edges assert abs(edge_from - edge_to) == 1 if edge_from % 2 == 0: vertical_edge = edge_from horizontal_edge = edge_to else: vertical_edge = edge_to horizontal_edge = edge_from x = x_bounds[(vertical_edge // 2) % 2] y = y_bounds[((horizontal_edge - 1) // 2) % 2] return pya.DPoint(x, y) # Rotate point list so we can start from a point inside # (helps the boundary_vertex algorithm) for idx, point in enumerate(polygon_dpoints): if check_within_bounds(point): break else: # polygon was never within bounds # this can only happen if boundaries are finite # return boundary vertices boundary_vertices = [boundary_vertex(i, i - 1) for i in range(4, 0, -1)] self.assign(pya.DSimplePolygon(boundary_vertices)) return self idx += 1 # make previous_point below already be inside polygon_dpoints = polygon_dpoints[idx:] + polygon_dpoints[:idx] previous_point = polygon_dpoints[-1] previous_intersect = None for point in polygon_dpoints: # compute new intersecting point and add to list intersected_points, last_intersect = intersect( previous_point, point, x_bounds, y_bounds) if previous_intersect is not None and last_intersect is not None and \ last_intersect != previous_intersect: if check_within_bounds(point): # this means that we are entering the box at a different edge # need to add the edge points # this assumes a certain polygon orientation # assume points go counterlockwise, which means that # from edge 0 to 2, it goes through 3 i = previous_intersect while i % 4 != last_intersect: polygon_dpoints_clipped.append(boundary_vertex(i, i - 1)) i = i - 1 polygon_dpoints_clipped.extend(intersected_points) if check_within_bounds(point): polygon_dpoints_clipped.append(point) previous_point = point if last_intersect is not None: previous_intersect = last_intersect self.assign(pya.DSimplePolygon(polygon_dpoints_clipped)) return self def layout(self, cell, layer): """ Places polygon as a shape into a cell at a particular layer.""" return insert_shape(cell, layer, self) def layout_drc_exclude(self, cell, drclayer, ex): """ Places a drc exclude square at every corner. A corner is defined by an outer angle greater than 85 degrees (conservative) """ if drclayer is not None: points = list(self.each_point()) assert len(points) > 3 prev_delta = points[-1] - points[-2] prev_angle = np.arctan2(prev_delta.y, prev_delta.x) for i in range(len(points)): delta = points[i] - points[i - 1] angle = np.arctan2(delta.y, delta.x) if delta.y == 0 or delta.x == 0: thresh_angle = pi / 2 else: thresh_angle = pi * 85 / 180 delta_angle = angle - prev_angle delta_angle = abs(((delta_angle + pi) % (2 * pi)) - pi) if delta_angle > thresh_angle: layout_square(cell, drclayer, points[i - 1], 0.1, ex) prev_delta, prev_angle = delta, angle def resize(self, dx, dbu): """ Resizes the polygon by a positive or negative quantity dx. Args: dbu: typically 0.001 """ dpoly = pya.DPolygon(self) dpoly.size(dx, 5) dpoly = pya.EdgeProcessor().simple_merge_p2p([dpoly.to_itype(dbu)], False, False, 1) dpoly = dpoly[0].to_dtype(dbu) # pya.DPolygon def norm(p): return sqrt(p.x**2 + p.y**2) # Filter edges if they are too small points = list(dpoly.each_point_hull()) new_points = list([points[0]]) for i in range(0, len(points)): delta = points[i] - new_points[-1] if norm(delta) > min(10 * dbu, abs(dx)): new_points.append(points[i]) sdpoly = DSimplePolygon(new_points) # convert to SimplePolygon self.assign(sdpoly) return self def round_corners(self, radius, N): """ This only works if the polygon edges are longer than the radius.""" dpoly = super().round_corners(radius, radius, N) self.assign(dpoly) return self def moved(self, dx_or_dpoint, dy=None): if isinstance(dx_or_dpoint, (pya.DPoint, pya.DVector)): dx_or_dpoint = dx_or_dpoint.x dy = dx_or_dpoint.y pya_dpoly = super().moved(dx_or_dpoint, dy) siepic_dpoly = self.__class__() siepic_dpoly.__dict__.update(pya_dpoly) return siepic_dpoly def waveguide_dpolygon(points_list, width, dbu, smooth=True): """ Returns a polygon outlining a waveguide. This was updated over many iterations of failure. It can be used for both smooth optical waveguides or DC metal traces with corners. It is better than klayout's Path because it can have varying width. Args: points_list: list of pya.DPoint (at least 2 points) width (microns): constant or list. If list, then it has to have the same length as points dbu: dbu: typically 0.001, only used for accuracy calculations. smooth: tries to smooth final polygons to avoid very sharp edges (greater than 130 deg) Returns: polygon DPoints """ if len(points_list) < 2: raise NotImplementedError("ERROR: points_list too short") return def norm(self): return sqrt(self.x**2 + self.y**2) try: if len(width) == len(points_list): width_iterator = iter(width) elif len(width) == 2: # assume width[0] is initial width and # width[1] is final width # interpolate with points_list L = curve_length(points_list) distance = 0 widths_list = [width[0]] widths_func = lambda t: (1 - t) * width[0] + t * width[1] old_point = points_list[0] for point in points_list[1:]: distance += norm(point - old_point) old_point = point widths_list.append(widths_func(distance / L)) width_iterator = iter(widths_list) else: width_iterator = repeat(width[0]) except TypeError: width_iterator = repeat(width) finally: points_iterator = iter(points_list) points_low = list() points_high = list() def cos_angle(point1, point2): cos_angle = point1 * point2 / norm(point1) / norm(point2) # ensure it's between -1 and 1 (nontrivial numerically) if abs(cos_angle) > 1: return cos_angle / abs(cos_angle) else: return cos_angle def sin_angle(point1, point2): return sin(np.arccos(cos_angle(point1, point2))) point_width_list = list(zip(points_iterator, width_iterator)) N = len(point_width_list) first_point, first_width = point_width_list[0] next_point, next_width = point_width_list[1] delta = next_point - first_point theta = np.arctan2(delta.y, delta.x) first_high_point = first_point + 0.5 * first_width * \ pya.DPoint(cos(theta + pi / 2), sin(theta + pi / 2)) first_low_point = first_point + 0.5 * first_width * \ pya.DPoint(cos(theta - pi / 2), sin(theta - pi / 2)) points_high.append(first_high_point) points_low.append(first_low_point) for i in range(1, N - 1): prev_point, prev_width = point_width_list[i - 1] point, width = point_width_list[i] next_point, next_width = point_width_list[i + 1] delta_prev = point - prev_point delta_next = next_point - point theta_prev = np.arctan2(delta_prev.y, delta_prev.x) theta_next = np.arctan2(delta_next.y, delta_next.x) next_point_high = (next_point + 0.5 * next_width * pya.DPoint(cos(theta_next + pi / 2), sin(theta_next + pi / 2))) next_point_low = (next_point + 0.5 * next_width * pya.DPoint(cos(theta_next - pi / 2), sin(theta_next - pi / 2))) forward_point_high = (point + 0.5 * width * pya.DPoint(cos(theta_next + pi / 2), sin(theta_next + pi / 2))) forward_point_low = (point + 0.5 * width * pya.DPoint(cos(theta_next - pi / 2), sin(theta_next - pi / 2))) prev_point_high = (prev_point + 0.5 * prev_width * pya.DPoint(cos(theta_prev + pi / 2), sin(theta_prev + pi / 2))) prev_point_low = (prev_point + 0.5 * prev_width * pya.DPoint(cos(theta_prev - pi / 2), sin(theta_prev - pi / 2))) backward_point_high = (point + 0.5 * width * pya.DPoint(cos(theta_prev + pi / 2), sin(theta_prev + pi / 2))) backward_point_low = (point + 0.5 * width * pya.DPoint(cos(theta_prev - pi / 2), sin(theta_prev - pi / 2))) fix_angle = lambda theta: ((theta + pi) % (2 * pi)) - pi # High point decision next_high_edge = pya.DEdge(forward_point_high, next_point_high) prev_high_edge = pya.DEdge(backward_point_high, prev_point_high) if next_high_edge.crossed_by(prev_high_edge): intersect_point = next_high_edge.crossing_point(prev_high_edge) points_high.append(intersect_point) else: cos_dd = cos_angle(delta_next, delta_prev) if width * (1 - cos_dd) > dbu and fix_angle(theta_next - theta_prev) < 0: points_high.append(backward_point_high) points_high.append(forward_point_high) else: points_high.append((backward_point_high + forward_point_high) * 0.5) # Low point decision next_low_edge = pya.DEdge(forward_point_low, next_point_low) prev_low_edge = pya.DEdge(backward_point_low, prev_point_low) if next_low_edge.crossed_by(prev_low_edge): intersect_point = next_low_edge.crossing_point(prev_low_edge) points_low.append(intersect_point) else: cos_dd = cos_angle(delta_next, delta_prev) if width * (1 - cos_dd) > dbu and fix_angle(theta_next - theta_prev) > 0: points_low.append(backward_point_low) points_low.append(forward_point_low) else: points_low.append((backward_point_low + forward_point_low) * 0.5) last_point, last_width = point_width_list[-1] point, width = point_width_list[-2] delta = last_point - point theta = np.arctan2(delta.y, delta.x) final_high_point = last_point + 0.5 * last_width * \ pya.DPoint(cos(theta + pi / 2), sin(theta + pi / 2)) final_low_point = last_point + 0.5 * last_width * \ pya.DPoint(cos(theta - pi / 2), sin(theta - pi / 2)) if (final_high_point - points_high[-1]) * delta > 0: points_high.append(final_high_point) if (final_low_point - points_low[-1]) * delta > 0: points_low.append(final_low_point) # Append point only if change in direction is less than 130 degrees. def smooth_append(point_list, point): if len(point_list) < 1: point_list.append(point) return point_list elif len(point_list) < 2: curr_edge = point - point_list[-1] if norm(curr_edge) >= dbu: point_list.append(point) return point_list curr_edge = point - point_list[-1] if norm(curr_edge) >= dbu: prev_edge = point_list[-1] - point_list[-2] if norm(prev_edge) * abs(sin_angle(curr_edge + prev_edge, prev_edge)) > dbu: if smooth: # avoid corners when smoothing if cos_angle(curr_edge, prev_edge) > cos(130 / 180 * pi): point_list.append(point) else: # edge case when there is prev_edge is small and # needs to be deleted to get rid of the corner if norm(curr_edge) > norm(prev_edge): point_list[-1] = point else: point_list.append(point) # avoid unnecessary points else: point_list[-1] = point return point_list if debug and False: print("Points to be smoothed:") for point, width in point_width_list: print(point, width) smooth_points_high = list(reduce(smooth_append, points_high, list())) smooth_points_low = list(reduce(smooth_append, points_low, list())) # smooth_points_low = points_low # polygon_dpoints = points_high + list(reversed(points_low)) # polygon_dpoints = list(reduce(smooth_append, polygon_dpoints, list())) polygon_dpoints = smooth_points_high + list(reversed(smooth_points_low)) return DSimplePolygon(polygon_dpoints) def layout_waveguide(cell, layer, points_list, width): """ Lays out a waveguide (or trace) with a certain width with along given points. This is very useful for laying out Bezier curves with or without adiabatic tapers. Args: cell: cell to place into layer: layer to place into. It is done with cell.shapes(layer).insert(pya.Polygon) points_list: list of pya.DPoint (at least 2 points) width (microns): constant or list. If list, then it has to have the same length as points """ if len(points_list) < 2: raise NotImplemented("ERROR: points_list too short") return try: if len(width) == len(points_list): width_iterator = iter(width) else: width_iterator = repeat(width[0]) except TypeError: width_iterator = repeat(width) finally: points_iterator = iter(points_list) dbu = cell.layout().dbu points_low = list() points_high = list() def norm(self): return sqrt(self.x**2 + self.y**2) def cos_angle(point1, point2): return point1 * point2 / norm(point1) / norm(point2) point_width_list = list(zip(points_iterator, width_iterator)) N = len(point_width_list) first_point, first_width = point_width_list[0] next_point, next_width = point_width_list[1] delta = next_point - first_point theta = np.arctan2(delta.y, delta.x) first_high_point = first_point + 0.5 * first_width * \ pya.DPoint(cos(theta + pi / 2), sin(theta + pi / 2)) first_low_point = first_point + 0.5 * first_width * \ pya.DPoint(cos(theta - pi / 2), sin(theta - pi / 2)) points_high.append(first_high_point) points_low.append(first_low_point) for i in range(1, N - 1): prev_point, prev_width = point_width_list[i - 1] point, width = point_width_list[i] next_point, next_width = point_width_list[i + 1] delta_prev = point - prev_point delta_next = next_point - point theta_prev = np.arctan2(delta_prev.y, delta_prev.x) theta_next = np.arctan2(delta_next.y, delta_next.x) next_point_high = (next_point + 0.5 * next_width * pya.DPoint(cos(theta_next + pi / 2), sin(theta_next + pi / 2))) next_point_low = (next_point + 0.5 * next_width * pya.DPoint(cos(theta_next - pi / 2), sin(theta_next - pi / 2))) forward_point_high = (point + 0.5 * width * pya.DPoint(cos(theta_next + pi / 2), sin(theta_next + pi / 2))) forward_point_low = (point + 0.5 * width * pya.DPoint(cos(theta_next - pi / 2), sin(theta_next - pi / 2))) prev_point_high = (prev_point + 0.5 * prev_width * pya.DPoint(cos(theta_prev + pi / 2), sin(theta_prev + pi / 2))) prev_point_low = (prev_point + 0.5 * prev_width * pya.DPoint(cos(theta_prev - pi / 2), sin(theta_prev - pi / 2))) backward_point_high = (point + 0.5 * width * pya.DPoint(cos(theta_prev + pi / 2), sin(theta_prev + pi / 2))) backward_point_low = (point + 0.5 * width * pya.DPoint(cos(theta_prev - pi / 2), sin(theta_prev - pi / 2))) # High point decision next_high_edge = pya.DEdge(forward_point_high, next_point_high) prev_high_edge = pya.DEdge(backward_point_high, prev_point_high) if next_high_edge.crossed_by(prev_high_edge): intersect_point = next_high_edge.crossing_point(prev_high_edge) points_high.append(intersect_point) else: if width * (1 - cos_angle(delta_next, delta_prev)) > dbu: points_high.append(backward_point_high) points_high.append(forward_point_high) else: points_high.append((backward_point_high + forward_point_high) * 0.5) # Low point decision next_low_edge = pya.DEdge(forward_point_low, next_point_low) prev_low_edge = pya.DEdge(backward_point_low, prev_point_low) if next_low_edge.crossed_by(prev_low_edge): intersect_point = next_low_edge.crossing_point(prev_low_edge) points_low.append(intersect_point) else: if width * (1 - cos_angle(delta_next, delta_prev)) > dbu: points_low.append(backward_point_low) points_low.append(forward_point_low) else: points_low.append((backward_point_low + forward_point_low) * 0.5) last_point, last_width = point_width_list[-1] point, width = point_width_list[-2] delta = last_point - point theta = np.arctan2(delta.y, delta.x) final_high_point = last_point + 0.5 * last_width * \ pya.DPoint(cos(theta + pi / 2), sin(theta + pi / 2)) final_low_point = last_point + 0.5 * last_width * \ pya.DPoint(cos(theta - pi / 2), sin(theta - pi / 2)) if (final_high_point - points_high[-1]) * delta > 0: points_high.append(final_high_point) if (final_low_point - points_low[-1]) * delta > 0: points_low.append(final_low_point) # Append point only if change in direction is less than 120 degrees. def smooth_append(point_list, point): if point_list is None: print(point) if len(point_list) < 1: point_list.append(point) return point_list elif len(point_list) < 2: curr_edge = point - point_list[-1] if norm(curr_edge) > dbu: point_list.append(point) return point_list curr_edge = point - point_list[-1] if norm(curr_edge) > dbu: prev_edge = point_list[-1] - point_list[-2] if cos_angle(curr_edge, prev_edge) > cos(120 / 180 * pi): point_list.append(point) return point_list polygon_points = points_low + list(reversed(points_high)) polygon_points = list(reduce(smooth_append, polygon_points, list())) poly = pya.DPolygon(polygon_points) cell.shapes(layer).insert(poly) def layout_waveguide2(TECHNOLOGY, layout, cell, layers, widths, offsets, pts, radius, adiab, bezier): ''' Create a waveguide, in a specific technology inputs - TECHNOLOGY, layout, cell: from SiEPIC.utils import get_layout_variables TECHNOLOGY, lv, layout, cell = get_layout_variables() - layers: list of text names, e.g., ['Waveguide'] - widths: list of floats in units Microns, e.g., [0.50] - offsets: list of floats in units Microns, e.g., [0] - pts: a list of pya.Points, e.g. L=15/dbu pts = [Point(0,0), Point(L,0), Point(L,L)] - radius: in Microns, e.g., 5 - adiab: 1 = Bezier curve, 0 = radial bend (arc) - bezier: the bezier parameter, between 0 and 0.45 (almost a radial bend) Note: bezier parameters need to be simulated and optimized, and will depend on wavelength, polarization, width, etc. TM and rib waveguides don't benefit from bezier curves most useful for TE ''' from SiEPIC.utils import arc_xy, arc_bezier, angle_vector, angle_b_vectors, inner_angle_b_vectors, translate_from_normal from SiEPIC.extend import to_itype from pya import Path, Polygon, Trans dbu = layout.dbu width=widths[0] turn=0 waveguide_length = 0 for lr in range(0, len(layers)): wg_pts = [pts[0]] layer = layout.layer(TECHNOLOGY[layers[lr]]) width = to_itype(widths[lr],dbu) offset = to_itype(offsets[lr],dbu) for i in range(1,len(pts)-1): turn = ((angle_b_vectors(pts[i]-pts[i-1],pts[i+1]-pts[i])+90)%360-90)/90 dis1 = pts[i].distance(pts[i-1]) dis2 = pts[i].distance(pts[i+1]) angle = angle_vector(pts[i]-pts[i-1])/90 pt_radius = to_itype(radius,dbu) # determine the radius, based on how much space is available if len(pts)==3: pt_radius = min (dis1, dis2, pt_radius) else: if i==1: if dis1 <= pt_radius: pt_radius = dis1 elif dis1 < 2*pt_radius: pt_radius = dis1/2 if i==len(pts)-2: if dis2 <= pt_radius: pt_radius = dis2 elif dis2 < 2*pt_radius: pt_radius = dis2/2 # waveguide bends: if abs(turn)==1: if(adiab): wg_pts += Path(arc_bezier(pt_radius, 270, 270 + inner_angle_b_vectors(pts[i-1]-pts[i], pts[i+1]-pts[i]), bezier, DevRec='DevRec' in layers[lr]), 0).transformed(Trans(angle, turn < 0, pts[i])).get_points() else: wg_pts += Path(arc_xy(-pt_radius, pt_radius, pt_radius, 270, 270 + inner_angle_b_vectors(pts[i-1]-pts[i], pts[i+1]-pts[i]),DevRec='DevRec' in layers[lr]), 0).transformed(Trans(angle, turn < 0, pts[i])).get_points() wg_pts += [pts[-1]] wg_pts = pya.Path(wg_pts, 0).unique_points().get_points() wg_polygon = Polygon(translate_from_normal(wg_pts, width/2 + (offset if turn > 0 else - offset))+translate_from_normal(wg_pts, -width/2 + (offset if turn > 0 else - offset))[::-1]) cell.shapes(layer).insert(wg_polygon) if layout.layer(TECHNOLOGY['Waveguide']) == layer: waveguide_length = wg_polygon.area() / width * dbu return waveguide_length def layout_rectangle(cell, layer, center, width, height, ex): """ Lays out a rectangle Args: center: pya.DPoint (um units) width: float (um units) height: float (um unit) ex: orientation """ rectangle = rectangle_dpolygon(center, width, height, ex=ex) insert_shape(cell, layer, rectangle) return rectangle def layout_disk(cell, layer, center, r): """ function to produce the layout of a disk cell: layout cell to place the layout layer: which layer to use center: origin DPoint r: radius units in microns """ # outer arc # optimal sampling radius = r assert radius > 0 arc_function = lambda t: np.array([radius * np.cos(t), radius * np.sin(t)]) t, coords = sample_function(arc_function, [0, 2 * pi], tol=0.002 / radius) # create original waveguide poligon prior to clipping and rotation points_hull = [center + pya.DPoint(x, y) for x, y in zip(*coords)] del points_hull[-1] dpoly = pya.DPolygon(points_hull) insert_shape(cell, layer, dpoly) return dpoly def layout_ring(cell, layer, center, r, w): """ function to produce the layout of a ring cell: layout cell to place the layout layer: which layer to use center: origin DPoint r: radius w: waveguide width units in microns """ # outer arc # optimal sampling assert r - w / 2 > 0 radius = r + w / 2 arc_function = lambda t: np.array([radius * np.cos(t), radius * np.sin(t)]) t, coords = sample_function(arc_function, [0, 2 * pi], tol=0.002 / radius) # create original waveguide poligon prior to clipping and rotation points_hull = [center + pya.DPoint(x, y) for x, y in zip(*coords)] del points_hull[-1] radius = r - w / 2 arc_function = lambda t: np.array([radius * np.cos(t), radius * np.sin(t)]) t, coords = sample_function(arc_function, [0, 2 * pi], tol=0.002 / radius) # create original waveguide poligon prior to clipping and rotation points_hole = [center + pya.DPoint(x, y) for x, y in zip(*coords)] del points_hole[-1] dpoly = pya.DPolygon(list(reversed(points_hull))) dpoly.insert_hole(points_hole) dpoly.compress(True) insert_shape(cell, layer, dpoly) return dpoly def layout_arc(cell, layer, center, r, w, theta_start, theta_end, ex=None, x_bounds=(-np.inf, np.inf), y_bounds=(-np.inf, np.inf)): """ function to produce the layout of an arc cell: layout cell to place the layout layer: which layer to use center: origin DPoint (not affected by ex) r: radius w: waveguide width theta_start, theta_end: angle in radians x_bounds and y_bounds relative to the center, before rotation by ex. units in microns returns a dpolygon """ # fetch the database parameters if r <= 0: raise RuntimeError(f"Please give me a positive radius. Bad r={r}") # optimal sampling if theta_end < theta_start: theta_start, theta_end = theta_end, theta_start arc_function = lambda t: np.array([r * np.cos(t), r * np.sin(t)]) t, coords = sample_function(arc_function, [theta_start, theta_end], tol=0.002 / r) # # This yields a better polygon coords = np.insert(coords, 0, arc_function(theta_start - 0.001), axis=1) # start the waveguide a little bit before coords = np.append(coords, np.atleast_2d(arc_function(theta_end + 0.001)).T, axis=1) # finish the waveguide a little bit after # create original waveguide poligon prior to clipping and rotation dpoints_list = [pya.DPoint(x, y) for x, y in zip(*coords)] dpolygon = waveguide_dpolygon(dpoints_list, w, cell.layout().dbu) # clip dpolygon to bounds dpolygon.clip(x_bounds=x_bounds, y_bounds=y_bounds) # Transform points (translation + rotation) dpolygon.transform_and_rotate(center, ex) dpolygon.compress(True) dpolygon.layout(cell, layer) return dpolygon def layout_arc2(cell, layer, center, r1, r2, theta_start, theta_end, ex=None, x_bounds=(-np.inf, np.inf), y_bounds=(-np.inf, np.inf)): ''' modified layout_arc with r1 and r2, instead of r (radius) and w (width). ''' r1, r2 = min(r1, r2), max(r1, r2) r = (r1 + r2) / 2 w = (r2 - r1) return layout_arc(cell, layer, center, r, w, theta_start, theta_end, ex=ex, x_bounds=x_bounds, y_bounds=y_bounds) def layout_section(cell, layer, center, r2, theta_start, theta_end, ex=None, x_bounds=(-np.inf, np.inf), y_bounds=(-np.inf, np.inf)): ''' Layout section of a circle. cell: layout cell to place the layout layer: which layer to use center: origin DPoint (not affected by ex) r2: radius theta_start, theta_end: angle in radians x_bounds and y_bounds relative to the center, before rotation by ex. units in microns returns a dpolygon ''' assert r2 > 0 # optimal sampling arc_function = lambda t: np.array([r2 * np.cos(t), r2 * np.sin(t)]) t, coords = sample_function(arc_function, [theta_start, theta_end], tol=0.002 / r2) # # This yields a better polygon if theta_end < theta_start: theta_start, theta_end = theta_end, theta_start coords = np.insert(coords, 0, arc_function(theta_start - 0.001), axis=1) # start the waveguide a little bit before coords = np.append(coords, np.atleast_2d(arc_function(theta_end + 0.001)).T, axis=1) # finish the waveguide a little bit after # create original waveguide poligon prior to clipping and rotation dpoints_list = [pya.DPoint(x, y) for x, y in zip(*coords)] dpolygon = DSimplePolygon(dpoints_list + [pya.DPoint(0, 0)]) # clip dpolygon to bounds dpolygon.clip(x_bounds=x_bounds, y_bounds=y_bounds) # Transform points (translation + rotation) dpolygon.transform_and_rotate(center, ex) dpolygon.compress(True) dpolygon.layout(cell, layer) return dpolygon def layout_arc_drc_exclude(cell, drc_layer, center, r, w, theta_start, theta_end, ex=None): ''' Places squares of 100nm size in the drc_layer located in corners of arc. Try to use DSimplePolygon.layout_drc_exclude instead. ''' corner_points = [center + (r + w / 2) * rotate(ex, theta_start), center + (r - w / 2) * rotate(ex, theta_start), center + (r + w / 2) * rotate(ex, theta_end), center + (r - w / 2) * rotate(ex, theta_end)] for corner_point in corner_points: layout_square(cell, drc_layer, corner_point, 0.1, ex) def layout_arc_with_drc_exclude(cell, layer, drc_layer, center, r, w, theta_start, theta_end, ex=None, **kwargs): ''' Layout arc with drc exclude squares ''' dpoly = layout_arc(cell, layer, center, r, w, theta_start, theta_end, ex, **kwargs) dpoly.layout_drc_exclude(cell, drc_layer, ex) return dpoly def layout_circle(cell, layer, center, r): """ function to produce the layout of a filled circle cell: layout cell to place the layout layer: which layer to use center: origin DPoint r: radius w: waveguide width theta_start, theta_end: angle in radians units in microns optimal sampling """ arc_function = lambda t: np.array([center.x + r *
np.cos(t)
numpy.cos
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the available built-in discrete-variable quantum operations. """ import pytest import functools import numpy as np from numpy.linalg import multi_dot from scipy.linalg import block_diag import pennylane as qml from pennylane.templates.layers import StronglyEntanglingLayers from gate_data import I, X, Y, Z, H, CNOT, SWAP, CZ, S, T, CSWAP, Toffoli # Standard observables, their matrix representation, and eigenvlaues OBSERVABLES = [ (qml.PauliX, X, [1, -1]), (qml.PauliY, Y, [1, -1]), (qml.PauliZ, Z, [1, -1]), (qml.Hadamard, H, [1, -1]), (qml.Identity, I, [1, 1]), ] # Hermitian matrices, their corresponding eigenvalues and eigenvectors. EIGVALS_TEST_DATA = [ (np.array([[1, 0], [0, 1]]), np.array([1.0, 1.0]), np.array([[1.0, 0.0], [0.0, 1.0]])), ( np.array([[0, 1], [1, 0]]), np.array([-1.0, 1.0]), np.array([[-0.70710678, 0.70710678], [0.70710678, 0.70710678]]), ), ( np.array([[0, -1j], [1j, 0]]), np.array([-1.0, 1.0]), np.array( [[-0.70710678 + 0.0j, -0.70710678 + 0.0j], [0.0 + 0.70710678j, 0.0 - 0.70710678j]] ), ), (np.array([[1, 0], [0, -1]]), np.array([-1.0, 1.0]), np.array([[0.0, 1.0], [1.0, 0.0]])), ( 1 / np.sqrt(2) * np.array([[1, 1], [1, -1]]), np.array([-1.0, 1.0]), np.array([[0.38268343, -0.92387953], [-0.92387953, -0.38268343]]), ), ] EIGVALS_TEST_DATA_MULTI_WIRES = [ functools.reduce(np.kron, [Y, I, Z]) ] @pytest.mark.usefixtures("tear_down_hermitian") class TestObservables: """Tests for observables""" @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_diagonalization(self, obs, mat, eigs, tol): """Test the method transforms standard observables into the Z-gate.""" ob = obs(wires=0) A = ob.matrix diag_gates = ob.diagonalizing_gates() U = np.eye(2) if diag_gates: mats = [i.matrix for i in diag_gates] # Need to revert the order in which the matrices are applied such that they adhere to the order # of matrix multiplication # E.g. for PauliY: [PauliZ(wires=self.wires), S(wires=self.wires), Hadamard(wires=self.wires)] # becomes Hadamard @ S @ PauliZ, where @ stands for matrix multiplication mats = mats[::-1] U = multi_dot([np.eye(2)] + mats) res = U @ A @ U.conj().T expected = np.diag(eigs) assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_eigvals(self, obs, mat, eigs, tol): """Test eigenvalues of standard observables are correct""" obs = obs(wires=0) res = obs.eigvals assert np.allclose(res, eigs, atol=tol, rtol=0) @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_matrices(self, obs, mat, eigs, tol): """Test matrices of standard observables are correct""" obs = obs(wires=0) res = obs.matrix assert np.allclose(res, mat, atol=tol, rtol=0) @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_eigegendecomposition_single_wire( self, observable, eigvals, eigvecs, tol ): """Tests that the eigendecomposition property of the Hermitian class returns the correct results for a single wire.""" eigendecomp = qml.Hermitian(observable, wires=0).eigendecomposition assert np.allclose(eigendecomp["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(eigendecomp["eigvec"], eigvecs, atol=tol, rtol=0) key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable", EIGVALS_TEST_DATA_MULTI_WIRES) def test_hermitian_eigegendecomposition_multiple_wires( self, observable, tol ): """Tests that the eigendecomposition property of the Hermitian class returns the correct results for multiple wires.""" num_wires = int(np.log2(len(observable))) eigendecomp = qml.Hermitian(observable, wires=list(range(num_wires))).eigendecomposition eigvals, eigvecs = np.linalg.eigh(observable) assert np.allclose(eigendecomp["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(eigendecomp["eigvec"], eigvecs, atol=tol, rtol=0) key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("obs1", EIGVALS_TEST_DATA) @pytest.mark.parametrize("obs2", EIGVALS_TEST_DATA) def test_hermitian_eigvals_eigvecs_two_different_observables(self, obs1, obs2, tol): """Tests that the eigvals method of the Hermitian class returns the correct results for two observables.""" if np.all(obs1[0] == obs2[0]): pytest.skip("Test only runs for pairs of differing observable") observable_1 = obs1[0] observable_1_eigvals = obs1[1] observable_1_eigvecs = obs1[2] key = tuple(observable_1.flatten().tolist()) qml.Hermitian(observable_1, 0).eigvals assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_1_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_1_eigvecs, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 1 observable_2 = obs2[0] observable_2_eigvals = obs2[1] observable_2_eigvecs = obs2[2] key_2 = tuple(observable_2.flatten().tolist()) qml.Hermitian(observable_2, 0).eigvals assert np.allclose( qml.Hermitian._eigs[key_2]["eigval"], observable_2_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key_2]["eigvec"], observable_2_eigvecs, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 2 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_eigvals_eigvecs_same_observable_twice( self, observable, eigvals, eigvecs, tol ): """Tests that the eigvals method of the Hermitian class keeps the same dictionary entries upon multiple calls.""" key = tuple(observable.flatten().tolist()) qml.Hermitian(observable, 0).eigvals assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 qml.Hermitian(observable, 0).eigvals assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates(self, observable, eigvals, eigvecs, tol): """Tests that the diagonalizing_gates method of the Hermitian class returns the correct results.""" qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("obs1", EIGVALS_TEST_DATA) @pytest.mark.parametrize("obs2", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates_two_different_observables(self, obs1, obs2, tol): """Tests that the diagonalizing_gates method of the Hermitian class returns the correct results for two observables.""" if np.all(obs1[0] == obs2[0]): pytest.skip("Test only runs for pairs of differing observable") observable_1 = obs1[0] observable_1_eigvals = obs1[1] observable_1_eigvecs = obs1[2] qubit_unitary = qml.Hermitian(observable_1, wires=[0]).diagonalizing_gates() key = tuple(observable_1.flatten().tolist()) assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_1_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_1_eigvecs, atol=tol, rtol=0 ) assert np.allclose(qubit_unitary[0].params, observable_1_eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 observable_2 = obs2[0] observable_2_eigvals = obs2[1] observable_2_eigvecs = obs2[2] qubit_unitary_2 = qml.Hermitian(observable_2, wires=[0]).diagonalizing_gates() key = tuple(observable_2.flatten().tolist()) assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_2_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_2_eigvecs, atol=tol, rtol=0 ) assert np.allclose( qubit_unitary_2[0].params, observable_2_eigvecs.conj().T, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 2 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gatesi_same_observable_twice( self, observable, eigvals, eigvecs, tol ): """Tests that the diagonalizing_gates method of the Hermitian class keeps the same dictionary entries upon multiple calls.""" qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates_integration(self, observable, eigvals, eigvecs, tol): """Tests that the diagonalizing_gates method of the Hermitian class diagonalizes the given observable.""" tensor_obs = np.kron(observable, observable) eigvals =
np.kron(eigvals, eigvals)
numpy.kron
# MIT License # # Copyright (c) 2019 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Equations for 9-spin Ising model. # Written on 2019/03/12. from numpy import zeros, exp, array, prod, isnan from ..enumerate import fast_logsumexp def calc_observables(params): """ Give all parameters concatenated into one array from lowest to highest order. Returns all correlations. """ Cout = zeros((45)) H = params[0:9] J = params[9:45] energyTerms = array([ +0, +H[8]+0, +H[7]+0, +H[7]+H[8]+J[35], +H[6]+0, +H[6]+H[8]+J[34], +H[6]+H[7]+J[33], +H[6]+H[7]+H[8]+ J[33]+J[34]+J[35], +H[5]+0, +H[5]+H[8]+J[32], +H[5]+H[7]+J[31], +H[5]+H[7]+H[8]+J[31]+J[32]+J[35], + H[5]+H[6]+J[30], +H[5]+H[6]+H[8]+J[30]+J[32]+J[34], +H[5]+H[6]+H[7]+J[30]+J[31]+J[33], +H[5]+H[6]+H[7]+ H[8]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[4]+0, +H[4]+H[8]+J[29], +H[4]+H[7]+J[28], +H[4]+H[7]+H[8]+ J[28]+J[29]+J[35], +H[4]+H[6]+J[27], +H[4]+H[6]+H[8]+J[27]+J[29]+J[34], +H[4]+H[6]+H[7]+J[27]+J[28]+ J[33], +H[4]+H[6]+H[7]+H[8]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[4]+H[5]+J[26], +H[4]+H[5]+H[8]+J[26]+ J[29]+J[32], +H[4]+H[5]+H[7]+J[26]+J[28]+J[31], +H[4]+H[5]+H[7]+H[8]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], + H[4]+H[5]+H[6]+J[26]+J[27]+J[30], +H[4]+H[5]+H[6]+H[8]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[4]+H[5]+ H[6]+H[7]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[4]+H[5]+H[6]+H[7]+H[8]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[3]+0, +H[3]+H[8]+J[25], +H[3]+H[7]+J[24], +H[3]+H[7]+H[8]+J[24]+J[25]+ J[35], +H[3]+H[6]+J[23], +H[3]+H[6]+H[8]+J[23]+J[25]+J[34], +H[3]+H[6]+H[7]+J[23]+J[24]+J[33], +H[3]+ H[6]+H[7]+H[8]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[3]+H[5]+J[22], +H[3]+H[5]+H[8]+J[22]+J[25]+J[32], + H[3]+H[5]+H[7]+J[22]+J[24]+J[31], +H[3]+H[5]+H[7]+H[8]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[3]+H[5]+ H[6]+J[22]+J[23]+J[30], +H[3]+H[5]+H[6]+H[8]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[3]+H[5]+H[6]+H[7]+ J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[3]+H[5]+H[6]+H[7]+H[8]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[3]+H[4]+J[21], +H[3]+H[4]+H[8]+J[21]+J[25]+J[29], +H[3]+H[4]+H[7]+J[21]+J[24]+ J[28], +H[3]+H[4]+H[7]+H[8]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[3]+H[4]+H[6]+J[21]+J[23]+J[27], + H[3]+H[4]+H[6]+H[8]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[3]+H[4]+H[6]+H[7]+J[21]+J[23]+J[24]+J[27]+ J[28]+J[33], +H[3]+H[4]+H[6]+H[7]+H[8]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[3]+H[4]+H[5]+J[21]+J[22]+J[26], +H[3]+H[4]+H[5]+H[8]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[3]+H[4]+ H[5]+H[7]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[3]+H[4]+H[5]+H[7]+H[8]+J[21]+J[22]+J[24]+J[25]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[3]+H[4]+H[5]+H[6]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[3]+H[4]+ H[5]+H[6]+H[8]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[3]+H[4]+H[5]+H[6]+H[7]+ J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[21]+J[22]+ J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+0, +H[2]+H[8]+J[20], + H[2]+H[7]+J[19], +H[2]+H[7]+H[8]+J[19]+J[20]+J[35], +H[2]+H[6]+J[18], +H[2]+H[6]+H[8]+J[18]+J[20]+J[34], + H[2]+H[6]+H[7]+J[18]+J[19]+J[33], +H[2]+H[6]+H[7]+H[8]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[2]+H[5]+ J[17], +H[2]+H[5]+H[8]+J[17]+J[20]+J[32], +H[2]+H[5]+H[7]+J[17]+J[19]+J[31], +H[2]+H[5]+H[7]+H[8]+J[17]+ J[19]+J[20]+J[31]+J[32]+J[35], +H[2]+H[5]+H[6]+J[17]+J[18]+J[30], +H[2]+H[5]+H[6]+H[8]+J[17]+J[18]+J[20]+ J[30]+J[32]+J[34], +H[2]+H[5]+H[6]+H[7]+J[17]+J[18]+J[19]+J[30]+J[31]+J[33], +H[2]+H[5]+H[6]+H[7]+H[8]+ J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+H[4]+J[16], +H[2]+H[4]+H[8]+J[16]+ J[20]+J[29], +H[2]+H[4]+H[7]+J[16]+J[19]+J[28], +H[2]+H[4]+H[7]+H[8]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], + H[2]+H[4]+H[6]+J[16]+J[18]+J[27], +H[2]+H[4]+H[6]+H[8]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[2]+H[4]+ H[6]+H[7]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[2]+H[4]+H[6]+H[7]+H[8]+J[16]+J[18]+J[19]+J[20]+J[27]+ J[28]+J[29]+J[33]+J[34]+J[35], +H[2]+H[4]+H[5]+J[16]+J[17]+J[26], +H[2]+H[4]+H[5]+H[8]+J[16]+J[17]+J[20]+ J[26]+J[29]+J[32], +H[2]+H[4]+H[5]+H[7]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31], +H[2]+H[4]+H[5]+H[7]+H[8]+ J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[2]+H[4]+H[5]+H[6]+J[16]+J[17]+J[18]+ J[26]+J[27]+J[30], +H[2]+H[4]+H[5]+H[6]+H[8]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], + H[2]+H[4]+H[5]+H[6]+H[7]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[2]+H[4]+H[5]+ H[6]+H[7]+H[8]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[2]+H[3]+J[15], +H[2]+H[3]+H[8]+J[15]+J[20]+J[25], +H[2]+H[3]+H[7]+J[15]+J[19]+J[24], +H[2]+H[3]+H[7]+ H[8]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[2]+H[3]+H[6]+J[15]+J[18]+J[23], +H[2]+H[3]+H[6]+H[8]+J[15]+ J[18]+J[20]+J[23]+J[25]+J[34], +H[2]+H[3]+H[6]+H[7]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[2]+H[3]+ H[6]+H[7]+H[8]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[2]+H[3]+H[5]+J[15]+J[17]+ J[22], +H[2]+H[3]+H[5]+H[8]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32], +H[2]+H[3]+H[5]+H[7]+J[15]+J[17]+J[19]+ J[22]+J[24]+J[31], +H[2]+H[3]+H[5]+H[7]+H[8]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], + H[2]+H[3]+H[5]+H[6]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[2]+H[3]+H[5]+H[6]+H[8]+J[15]+J[17]+J[18]+ J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[2]+H[3]+H[5]+H[6]+H[7]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+ J[24]+J[30]+J[31]+J[33], +H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+ J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+H[3]+H[4]+J[15]+J[16]+J[21], +H[2]+H[3]+H[4]+H[8]+J[15]+ J[16]+J[20]+J[21]+J[25]+J[29], +H[2]+H[3]+H[4]+H[7]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], +H[2]+H[3]+ H[4]+H[7]+H[8]+J[15]+J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[2]+H[3]+H[4]+H[6]+J[15]+ J[16]+J[18]+J[21]+J[23]+J[27], +H[2]+H[3]+H[4]+H[6]+H[8]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+ J[29]+J[34], +H[2]+H[3]+H[4]+H[6]+H[7]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], + H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+ J[33]+J[34]+J[35], +H[2]+H[3]+H[4]+H[5]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[2]+H[3]+H[4]+H[5]+H[8]+ J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[2]+H[3]+H[4]+H[5]+H[7]+J[15]+J[16]+J[17]+ J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[15]+J[16]+J[17]+J[19]+J[20]+ J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[2]+H[3]+H[4]+H[5]+H[6]+J[15]+J[16]+J[17]+ J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[15]+J[16]+J[17]+J[18]+J[20]+ J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[15]+J[16]+ J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[2]+H[3]+H[4]+H[5]+ H[6]+H[7]+H[8]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+0, +H[1]+H[8]+J[14], +H[1]+H[7]+J[13], +H[1]+H[7]+H[8]+J[13]+ J[14]+J[35], +H[1]+H[6]+J[12], +H[1]+H[6]+H[8]+J[12]+J[14]+J[34], +H[1]+H[6]+H[7]+J[12]+J[13]+J[33], + H[1]+H[6]+H[7]+H[8]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35], +H[1]+H[5]+J[11], +H[1]+H[5]+H[8]+J[11]+J[14]+ J[32], +H[1]+H[5]+H[7]+J[11]+J[13]+J[31], +H[1]+H[5]+H[7]+H[8]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35], + H[1]+H[5]+H[6]+J[11]+J[12]+J[30], +H[1]+H[5]+H[6]+H[8]+J[11]+J[12]+J[14]+J[30]+J[32]+J[34], +H[1]+H[5]+ H[6]+H[7]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33], +H[1]+H[5]+H[6]+H[7]+H[8]+J[11]+J[12]+J[13]+J[14]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[4]+J[10], +H[1]+H[4]+H[8]+J[10]+J[14]+J[29], +H[1]+H[4]+H[7]+ J[10]+J[13]+J[28], +H[1]+H[4]+H[7]+H[8]+J[10]+J[13]+J[14]+J[28]+J[29]+J[35], +H[1]+H[4]+H[6]+J[10]+J[12]+ J[27], +H[1]+H[4]+H[6]+H[8]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34], +H[1]+H[4]+H[6]+H[7]+J[10]+J[12]+J[13]+ J[27]+J[28]+J[33], +H[1]+H[4]+H[6]+H[7]+H[8]+J[10]+J[12]+J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[1]+H[4]+H[5]+J[10]+J[11]+J[26], +H[1]+H[4]+H[5]+H[8]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32], +H[1]+H[4]+ H[5]+H[7]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31], +H[1]+H[4]+H[5]+H[7]+H[8]+J[10]+J[11]+J[13]+J[14]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[4]+H[5]+H[6]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30], +H[1]+H[4]+ H[5]+H[6]+H[8]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[4]+H[5]+H[6]+H[7]+ J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[4]+H[5]+H[6]+H[7]+H[8]+J[10]+J[11]+ J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[3]+J[9], +H[1]+ H[3]+H[8]+J[9]+J[14]+J[25], +H[1]+H[3]+H[7]+J[9]+J[13]+J[24], +H[1]+H[3]+H[7]+H[8]+J[9]+J[13]+J[14]+ J[24]+J[25]+J[35], +H[1]+H[3]+H[6]+J[9]+J[12]+J[23], +H[1]+H[3]+H[6]+H[8]+J[9]+J[12]+J[14]+J[23]+J[25]+ J[34], +H[1]+H[3]+H[6]+H[7]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33], +H[1]+H[3]+H[6]+H[7]+H[8]+J[9]+J[12]+ J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[1]+H[3]+H[5]+J[9]+J[11]+J[22], +H[1]+H[3]+H[5]+H[8]+ J[9]+J[11]+J[14]+J[22]+J[25]+J[32], +H[1]+H[3]+H[5]+H[7]+J[9]+J[11]+J[13]+J[22]+J[24]+J[31], +H[1]+H[3]+ H[5]+H[7]+H[8]+J[9]+J[11]+J[13]+J[14]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[1]+H[3]+H[5]+H[6]+J[9]+ J[11]+J[12]+J[22]+J[23]+J[30], +H[1]+H[3]+H[5]+H[6]+H[8]+J[9]+J[11]+J[12]+J[14]+J[22]+J[23]+J[25]+J[30]+ J[32]+J[34], +H[1]+H[3]+H[5]+H[6]+H[7]+J[9]+J[11]+J[12]+J[13]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], + H[1]+H[3]+H[5]+H[6]+H[7]+H[8]+J[9]+J[11]+J[12]+J[13]+J[14]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[1]+H[3]+H[4]+J[9]+J[10]+J[21], +H[1]+H[3]+H[4]+H[8]+J[9]+J[10]+J[14]+J[21]+J[25]+ J[29], +H[1]+H[3]+H[4]+H[7]+J[9]+J[10]+J[13]+J[21]+J[24]+J[28], +H[1]+H[3]+H[4]+H[7]+H[8]+J[9]+J[10]+ J[13]+J[14]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[1]+H[3]+H[4]+H[6]+J[9]+J[10]+J[12]+J[21]+J[23]+J[27], + H[1]+H[3]+H[4]+H[6]+H[8]+J[9]+J[10]+J[12]+J[14]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[1]+H[3]+H[4]+ H[6]+H[7]+J[9]+J[10]+J[12]+J[13]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[1]+H[3]+H[4]+H[6]+H[7]+H[8]+ J[9]+J[10]+J[12]+J[13]+J[14]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[1]+H[3]+ H[4]+H[5]+J[9]+J[10]+J[11]+J[21]+J[22]+J[26], +H[1]+H[3]+H[4]+H[5]+H[8]+J[9]+J[10]+J[11]+J[14]+J[21]+ J[22]+J[25]+J[26]+J[29]+J[32], +H[1]+H[3]+H[4]+H[5]+H[7]+J[9]+J[10]+J[11]+J[13]+J[21]+J[22]+J[24]+J[26]+ J[28]+J[31], +H[1]+H[3]+H[4]+H[5]+H[7]+H[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[21]+J[22]+J[24]+J[25]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[3]+H[4]+H[5]+H[6]+J[9]+J[10]+J[11]+J[12]+J[21]+J[22]+J[23]+J[26]+ J[27]+J[30], +H[1]+H[3]+H[4]+H[5]+H[6]+H[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[21]+J[22]+J[23]+J[25]+J[26]+ J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+J[9]+J[10]+J[11]+J[12]+J[13]+J[21]+J[22]+ J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[9]+J[10]+J[11]+ J[12]+J[13]+J[14]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+ J[35], +H[1]+H[2]+J[8], +H[1]+H[2]+H[8]+J[8]+J[14]+J[20], +H[1]+H[2]+H[7]+J[8]+J[13]+J[19], +H[1]+H[2]+ H[7]+H[8]+J[8]+J[13]+J[14]+J[19]+J[20]+J[35], +H[1]+H[2]+H[6]+J[8]+J[12]+J[18], +H[1]+H[2]+H[6]+H[8]+ J[8]+J[12]+J[14]+J[18]+J[20]+J[34], +H[1]+H[2]+H[6]+H[7]+J[8]+J[12]+J[13]+J[18]+J[19]+J[33], +H[1]+H[2]+ H[6]+H[7]+H[8]+J[8]+J[12]+J[13]+J[14]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[1]+H[2]+H[5]+J[8]+J[11]+ J[17], +H[1]+H[2]+H[5]+H[8]+J[8]+J[11]+J[14]+J[17]+J[20]+J[32], +H[1]+H[2]+H[5]+H[7]+J[8]+J[11]+J[13]+ J[17]+J[19]+J[31], +H[1]+H[2]+H[5]+H[7]+H[8]+J[8]+J[11]+J[13]+J[14]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35], + H[1]+H[2]+H[5]+H[6]+J[8]+J[11]+J[12]+J[17]+J[18]+J[30], +H[1]+H[2]+H[5]+H[6]+H[8]+J[8]+J[11]+J[12]+J[14]+ J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[1]+H[2]+H[5]+H[6]+H[7]+J[8]+J[11]+J[12]+J[13]+J[17]+J[18]+J[19]+ J[30]+J[31]+J[33], +H[1]+H[2]+H[5]+H[6]+H[7]+H[8]+J[8]+J[11]+J[12]+J[13]+J[14]+J[17]+J[18]+J[19]+J[20]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[2]+H[4]+J[8]+J[10]+J[16], +H[1]+H[2]+H[4]+H[8]+J[8]+J[10]+ J[14]+J[16]+J[20]+J[29], +H[1]+H[2]+H[4]+H[7]+J[8]+J[10]+J[13]+J[16]+J[19]+J[28], +H[1]+H[2]+H[4]+H[7]+ H[8]+J[8]+J[10]+J[13]+J[14]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[1]+H[2]+H[4]+H[6]+J[8]+J[10]+J[12]+ J[16]+J[18]+J[27], +H[1]+H[2]+H[4]+H[6]+H[8]+J[8]+J[10]+J[12]+J[14]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], + H[1]+H[2]+H[4]+H[6]+H[7]+J[8]+J[10]+J[12]+J[13]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[1]+H[2]+H[4]+ H[6]+H[7]+H[8]+J[8]+J[10]+J[12]+J[13]+J[14]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[1]+H[2]+H[4]+H[5]+J[8]+J[10]+J[11]+J[16]+J[17]+J[26], +H[1]+H[2]+H[4]+H[5]+H[8]+J[8]+J[10]+J[11]+J[14]+ J[16]+J[17]+J[20]+J[26]+J[29]+J[32], +H[1]+H[2]+H[4]+H[5]+H[7]+J[8]+J[10]+J[11]+J[13]+J[16]+J[17]+J[19]+ J[26]+J[28]+J[31], +H[1]+H[2]+H[4]+H[5]+H[7]+H[8]+J[8]+J[10]+J[11]+J[13]+J[14]+J[16]+J[17]+J[19]+J[20]+ J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[2]+H[4]+H[5]+H[6]+J[8]+J[10]+J[11]+J[12]+J[16]+J[17]+J[18]+ J[26]+J[27]+J[30], +H[1]+H[2]+H[4]+H[5]+H[6]+H[8]+J[8]+J[10]+J[11]+J[12]+J[14]+J[16]+J[17]+J[18]+J[20]+ J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+J[8]+J[10]+J[11]+J[12]+J[13]+J[16]+ J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[10]+ J[11]+J[12]+J[13]+J[14]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+ J[34]+J[35], +H[1]+H[2]+H[3]+J[8]+J[9]+J[15], +H[1]+H[2]+H[3]+H[8]+J[8]+J[9]+J[14]+J[15]+J[20]+J[25], + H[1]+H[2]+H[3]+H[7]+J[8]+J[9]+J[13]+J[15]+J[19]+J[24], +H[1]+H[2]+H[3]+H[7]+H[8]+J[8]+J[9]+J[13]+J[14]+ J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[1]+H[2]+H[3]+H[6]+J[8]+J[9]+J[12]+J[15]+J[18]+J[23], +H[1]+H[2]+ H[3]+H[6]+H[8]+J[8]+J[9]+J[12]+J[14]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[1]+H[2]+H[3]+H[6]+H[7]+ J[8]+J[9]+J[12]+J[13]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[1]+H[2]+H[3]+H[6]+H[7]+H[8]+J[8]+J[9]+ J[12]+J[13]+J[14]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[1]+H[2]+H[3]+H[5]+ J[8]+J[9]+J[11]+J[15]+J[17]+J[22], +H[1]+H[2]+H[3]+H[5]+H[8]+J[8]+J[9]+J[11]+J[14]+J[15]+J[17]+J[20]+ J[22]+J[25]+J[32], +H[1]+H[2]+H[3]+H[5]+H[7]+J[8]+J[9]+J[11]+J[13]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31], + H[1]+H[2]+H[3]+H[5]+H[7]+H[8]+J[8]+J[9]+J[11]+J[13]+J[14]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+ J[31]+J[32]+J[35], +H[1]+H[2]+H[3]+H[5]+H[6]+J[8]+J[9]+J[11]+J[12]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], + H[1]+H[2]+H[3]+H[5]+H[6]+H[8]+J[8]+J[9]+J[11]+J[12]+J[14]+J[15]+J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+ J[30]+J[32]+J[34], +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+J[8]+J[9]+J[11]+J[12]+J[13]+J[15]+J[17]+J[18]+J[19]+ J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[11]+J[12]+J[13]+ J[14]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+ H[2]+H[3]+H[4]+J[8]+J[9]+J[10]+J[15]+J[16]+J[21], +H[1]+H[2]+H[3]+H[4]+H[8]+J[8]+J[9]+J[10]+J[14]+J[15]+ J[16]+J[20]+J[21]+J[25]+J[29], +H[1]+H[2]+H[3]+H[4]+H[7]+J[8]+J[9]+J[10]+J[13]+J[15]+J[16]+J[19]+J[21]+ J[24]+J[28], +H[1]+H[2]+H[3]+H[4]+H[7]+H[8]+J[8]+J[9]+J[10]+J[13]+J[14]+J[15]+J[16]+J[19]+J[20]+J[21]+ J[24]+J[25]+J[28]+J[29]+J[35], +H[1]+H[2]+H[3]+H[4]+H[6]+J[8]+J[9]+J[10]+J[12]+J[15]+J[16]+J[18]+J[21]+ J[23]+J[27], +H[1]+H[2]+H[3]+H[4]+H[6]+H[8]+J[8]+J[9]+J[10]+J[12]+J[14]+J[15]+J[16]+J[18]+J[20]+J[21]+ J[23]+J[25]+J[27]+J[29]+J[34], +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+J[8]+J[9]+J[10]+J[12]+J[13]+J[15]+J[16]+ J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+ J[12]+J[13]+J[14]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+ J[35], +H[1]+H[2]+H[3]+H[4]+H[5]+J[8]+J[9]+J[10]+J[11]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[1]+H[2]+ H[3]+H[4]+H[5]+H[8]+J[8]+J[9]+J[10]+J[11]+J[14]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+ J[32], +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+J[8]+J[9]+J[10]+J[11]+J[13]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+ J[24]+J[26]+J[28]+J[31], +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[2]+H[3]+ H[4]+H[5]+H[6]+J[8]+J[9]+J[10]+J[11]+J[12]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], + H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+ J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[8]+J[9]+ J[10]+J[11]+J[12]+J[13]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+ J[31]+J[33], +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[0]+0, +H[0]+H[8]+J[7], +H[0]+H[7]+J[6], +H[0]+H[7]+H[8]+J[6]+J[7]+J[35], +H[0]+ H[6]+J[5], +H[0]+H[6]+H[8]+J[5]+J[7]+J[34], +H[0]+H[6]+H[7]+J[5]+J[6]+J[33], +H[0]+H[6]+H[7]+H[8]+J[5]+ J[6]+J[7]+J[33]+J[34]+J[35], +H[0]+H[5]+J[4], +H[0]+H[5]+H[8]+J[4]+J[7]+J[32], +H[0]+H[5]+H[7]+J[4]+ J[6]+J[31], +H[0]+H[5]+H[7]+H[8]+J[4]+J[6]+J[7]+J[31]+J[32]+J[35], +H[0]+H[5]+H[6]+J[4]+J[5]+J[30], + H[0]+H[5]+H[6]+H[8]+J[4]+J[5]+J[7]+J[30]+J[32]+J[34], +H[0]+H[5]+H[6]+H[7]+J[4]+J[5]+J[6]+J[30]+J[31]+ J[33], +H[0]+H[5]+H[6]+H[7]+H[8]+J[4]+J[5]+J[6]+J[7]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[4]+ J[3], +H[0]+H[4]+H[8]+J[3]+J[7]+J[29], +H[0]+H[4]+H[7]+J[3]+J[6]+J[28], +H[0]+H[4]+H[7]+H[8]+J[3]+J[6]+ J[7]+J[28]+J[29]+J[35], +H[0]+H[4]+H[6]+J[3]+J[5]+J[27], +H[0]+H[4]+H[6]+H[8]+J[3]+J[5]+J[7]+J[27]+J[29]+ J[34], +H[0]+H[4]+H[6]+H[7]+J[3]+J[5]+J[6]+J[27]+J[28]+J[33], +H[0]+H[4]+H[6]+H[7]+H[8]+J[3]+J[5]+J[6]+ J[7]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[4]+H[5]+J[3]+J[4]+J[26], +H[0]+H[4]+H[5]+H[8]+J[3]+ J[4]+J[7]+J[26]+J[29]+J[32], +H[0]+H[4]+H[5]+H[7]+J[3]+J[4]+J[6]+J[26]+J[28]+J[31], +H[0]+H[4]+H[5]+ H[7]+H[8]+J[3]+J[4]+J[6]+J[7]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[4]+H[5]+H[6]+J[3]+J[4]+J[5]+ J[26]+J[27]+J[30], +H[0]+H[4]+H[5]+H[6]+H[8]+J[3]+J[4]+J[5]+J[7]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], + H[0]+H[4]+H[5]+H[6]+H[7]+J[3]+J[4]+J[5]+J[6]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[4]+H[5]+H[6]+ H[7]+H[8]+J[3]+J[4]+J[5]+J[6]+J[7]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[3]+J[2], +H[0]+H[3]+H[8]+J[2]+J[7]+J[25], +H[0]+H[3]+H[7]+J[2]+J[6]+J[24], +H[0]+H[3]+H[7]+H[8]+J[2]+ J[6]+J[7]+J[24]+J[25]+J[35], +H[0]+H[3]+H[6]+J[2]+J[5]+J[23], +H[0]+H[3]+H[6]+H[8]+J[2]+J[5]+J[7]+J[23]+ J[25]+J[34], +H[0]+H[3]+H[6]+H[7]+J[2]+J[5]+J[6]+J[23]+J[24]+J[33], +H[0]+H[3]+H[6]+H[7]+H[8]+J[2]+J[5]+ J[6]+J[7]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[3]+H[5]+J[2]+J[4]+J[22], +H[0]+H[3]+H[5]+H[8]+ J[2]+J[4]+J[7]+J[22]+J[25]+J[32], +H[0]+H[3]+H[5]+H[7]+J[2]+J[4]+J[6]+J[22]+J[24]+J[31], +H[0]+H[3]+ H[5]+H[7]+H[8]+J[2]+J[4]+J[6]+J[7]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[3]+H[5]+H[6]+J[2]+J[4]+ J[5]+J[22]+J[23]+J[30], +H[0]+H[3]+H[5]+H[6]+H[8]+J[2]+J[4]+J[5]+J[7]+J[22]+J[23]+J[25]+J[30]+J[32]+ J[34], +H[0]+H[3]+H[5]+H[6]+H[7]+J[2]+J[4]+J[5]+J[6]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[0]+H[3]+ H[5]+H[6]+H[7]+H[8]+J[2]+J[4]+J[5]+J[6]+J[7]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[0]+H[3]+H[4]+J[2]+J[3]+J[21], +H[0]+H[3]+H[4]+H[8]+J[2]+J[3]+J[7]+J[21]+J[25]+J[29], +H[0]+H[3]+H[4]+ H[7]+J[2]+J[3]+J[6]+J[21]+J[24]+J[28], +H[0]+H[3]+H[4]+H[7]+H[8]+J[2]+J[3]+J[6]+J[7]+J[21]+J[24]+J[25]+ J[28]+J[29]+J[35], +H[0]+H[3]+H[4]+H[6]+J[2]+J[3]+J[5]+J[21]+J[23]+J[27], +H[0]+H[3]+H[4]+H[6]+H[8]+ J[2]+J[3]+J[5]+J[7]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[3]+H[4]+H[6]+H[7]+J[2]+J[3]+J[5]+J[6]+ J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[3]+H[4]+H[6]+H[7]+H[8]+J[2]+J[3]+J[5]+J[6]+J[7]+J[21]+J[23]+ J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[3]+H[4]+H[5]+J[2]+J[3]+J[4]+J[21]+J[22]+J[26], + H[0]+H[3]+H[4]+H[5]+H[8]+J[2]+J[3]+J[4]+J[7]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[3]+H[4]+H[5]+ H[7]+J[2]+J[3]+J[4]+J[6]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[3]+H[4]+H[5]+H[7]+H[8]+J[2]+J[3]+ J[4]+J[6]+J[7]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[3]+H[4]+H[5]+H[6]+ J[2]+J[3]+J[4]+J[5]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[3]+H[4]+H[5]+H[6]+H[8]+J[2]+J[3]+J[4]+ J[5]+J[7]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[3]+H[4]+H[5]+H[6]+H[7]+ J[2]+J[3]+J[4]+J[5]+J[6]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[3]+H[4]+ H[5]+H[6]+H[7]+H[8]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+J[1], +H[0]+H[2]+H[8]+J[1]+J[7]+J[20], +H[0]+H[2]+H[7]+ J[1]+J[6]+J[19], +H[0]+H[2]+H[7]+H[8]+J[1]+J[6]+J[7]+J[19]+J[20]+J[35], +H[0]+H[2]+H[6]+J[1]+J[5]+J[18], + H[0]+H[2]+H[6]+H[8]+J[1]+J[5]+J[7]+J[18]+J[20]+J[34], +H[0]+H[2]+H[6]+H[7]+J[1]+J[5]+J[6]+J[18]+J[19]+ J[33], +H[0]+H[2]+H[6]+H[7]+H[8]+J[1]+J[5]+J[6]+J[7]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[0]+H[2]+ H[5]+J[1]+J[4]+J[17], +H[0]+H[2]+H[5]+H[8]+J[1]+J[4]+J[7]+J[17]+J[20]+J[32], +H[0]+H[2]+H[5]+H[7]+J[1]+ J[4]+J[6]+J[17]+J[19]+J[31], +H[0]+H[2]+H[5]+H[7]+H[8]+J[1]+J[4]+J[6]+J[7]+J[17]+J[19]+J[20]+J[31]+J[32]+ J[35], +H[0]+H[2]+H[5]+H[6]+J[1]+J[4]+J[5]+J[17]+J[18]+J[30], +H[0]+H[2]+H[5]+H[6]+H[8]+J[1]+J[4]+J[5]+ J[7]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[0]+H[2]+H[5]+H[6]+H[7]+J[1]+J[4]+J[5]+J[6]+J[17]+J[18]+ J[19]+J[30]+J[31]+J[33], +H[0]+H[2]+H[5]+H[6]+H[7]+H[8]+J[1]+J[4]+J[5]+J[6]+J[7]+J[17]+J[18]+J[19]+J[20]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[4]+J[1]+J[3]+J[16], +H[0]+H[2]+H[4]+H[8]+J[1]+J[3]+ J[7]+J[16]+J[20]+J[29], +H[0]+H[2]+H[4]+H[7]+J[1]+J[3]+J[6]+J[16]+J[19]+J[28], +H[0]+H[2]+H[4]+H[7]+ H[8]+J[1]+J[3]+J[6]+J[7]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[0]+H[2]+H[4]+H[6]+J[1]+J[3]+J[5]+J[16]+ J[18]+J[27], +H[0]+H[2]+H[4]+H[6]+H[8]+J[1]+J[3]+J[5]+J[7]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[0]+ H[2]+H[4]+H[6]+H[7]+J[1]+J[3]+J[5]+J[6]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[0]+H[2]+H[4]+H[6]+H[7]+ H[8]+J[1]+J[3]+J[5]+J[6]+J[7]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[2]+ H[4]+H[5]+J[1]+J[3]+J[4]+J[16]+J[17]+J[26], +H[0]+H[2]+H[4]+H[5]+H[8]+J[1]+J[3]+J[4]+J[7]+J[16]+J[17]+ J[20]+J[26]+J[29]+J[32], +H[0]+H[2]+H[4]+H[5]+H[7]+J[1]+J[3]+J[4]+J[6]+J[16]+J[17]+J[19]+J[26]+J[28]+ J[31], +H[0]+H[2]+H[4]+H[5]+H[7]+H[8]+J[1]+J[3]+J[4]+J[6]+J[7]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[2]+H[4]+H[5]+H[6]+J[1]+J[3]+J[4]+J[5]+J[16]+J[17]+J[18]+J[26]+J[27]+J[30], + H[0]+H[2]+H[4]+H[5]+H[6]+H[8]+J[1]+J[3]+J[4]+J[5]+J[7]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+ J[32]+J[34], +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+J[1]+J[3]+J[4]+J[5]+J[6]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+ J[28]+J[30]+J[31]+J[33], +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[3]+J[4]+J[5]+J[6]+J[7]+J[16]+J[17]+ J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+J[1]+ J[2]+J[15], +H[0]+H[2]+H[3]+H[8]+J[1]+J[2]+J[7]+J[15]+J[20]+J[25], +H[0]+H[2]+H[3]+H[7]+J[1]+J[2]+J[6]+ J[15]+J[19]+J[24], +H[0]+H[2]+H[3]+H[7]+H[8]+J[1]+J[2]+J[6]+J[7]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], + H[0]+H[2]+H[3]+H[6]+J[1]+J[2]+J[5]+J[15]+J[18]+J[23], +H[0]+H[2]+H[3]+H[6]+H[8]+J[1]+J[2]+J[5]+J[7]+ J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[0]+H[2]+H[3]+H[6]+H[7]+J[1]+J[2]+J[5]+J[6]+J[15]+J[18]+J[19]+ J[23]+J[24]+J[33], +H[0]+H[2]+H[3]+H[6]+H[7]+H[8]+J[1]+J[2]+J[5]+J[6]+J[7]+J[15]+J[18]+J[19]+J[20]+J[23]+ J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[5]+J[1]+J[2]+J[4]+J[15]+J[17]+J[22], +H[0]+H[2]+H[3]+ H[5]+H[8]+J[1]+J[2]+J[4]+J[7]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32], +H[0]+H[2]+H[3]+H[5]+H[7]+J[1]+J[2]+ J[4]+J[6]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31], +H[0]+H[2]+H[3]+H[5]+H[7]+H[8]+J[1]+J[2]+J[4]+J[6]+J[7]+ J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[2]+H[3]+H[5]+H[6]+J[1]+J[2]+J[4]+ J[5]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[0]+H[2]+H[3]+H[5]+H[6]+H[8]+J[1]+J[2]+J[4]+J[5]+J[7]+J[15]+ J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+J[1]+J[2]+J[4]+ J[5]+J[6]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+ H[8]+J[1]+J[2]+J[4]+J[5]+J[6]+J[7]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+ J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[4]+J[1]+J[2]+J[3]+J[15]+J[16]+J[21], +H[0]+H[2]+H[3]+H[4]+ H[8]+J[1]+J[2]+J[3]+J[7]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29], +H[0]+H[2]+H[3]+H[4]+H[7]+J[1]+J[2]+J[3]+ J[6]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], +H[0]+H[2]+H[3]+H[4]+H[7]+H[8]+J[1]+J[2]+J[3]+J[6]+J[7]+J[15]+ J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+H[2]+H[3]+H[4]+H[6]+J[1]+J[2]+J[3]+J[5]+ J[15]+J[16]+J[18]+J[21]+J[23]+J[27], +H[0]+H[2]+H[3]+H[4]+H[6]+H[8]+J[1]+J[2]+J[3]+J[5]+J[7]+J[15]+J[16]+ J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+J[1]+J[2]+J[3]+J[5]+ J[6]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+ J[1]+J[2]+J[3]+J[5]+J[6]+J[7]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+ J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[4]+H[5]+J[1]+J[2]+J[3]+J[4]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], + H[0]+H[2]+H[3]+H[4]+H[5]+H[8]+J[1]+J[2]+J[3]+J[4]+J[7]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+ J[29]+J[32], +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+J[1]+J[2]+J[3]+J[4]+J[6]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+ J[24]+J[26]+J[28]+J[31], +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[6]+J[7]+J[15]+J[16]+ J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[2]+H[3]+H[4]+ H[5]+H[6]+J[1]+J[2]+J[3]+J[4]+J[5]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+ H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[7]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+ J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[1]+J[2]+J[3]+ J[4]+J[5]+J[6]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], + H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[15]+J[16]+J[17]+J[18]+J[19]+ J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[1]+J[0], +H[0]+H[1]+H[8]+J[0]+J[7]+J[14], +H[0]+H[1]+H[7]+J[0]+J[6]+J[13], +H[0]+H[1]+H[7]+H[8]+J[0]+ J[6]+J[7]+J[13]+J[14]+J[35], +H[0]+H[1]+H[6]+J[0]+J[5]+J[12], +H[0]+H[1]+H[6]+H[8]+J[0]+J[5]+J[7]+J[12]+ J[14]+J[34], +H[0]+H[1]+H[6]+H[7]+J[0]+J[5]+J[6]+J[12]+J[13]+J[33], +H[0]+H[1]+H[6]+H[7]+H[8]+J[0]+J[5]+ J[6]+J[7]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35], +H[0]+H[1]+H[5]+J[0]+J[4]+J[11], +H[0]+H[1]+H[5]+H[8]+ J[0]+J[4]+J[7]+J[11]+J[14]+J[32], +H[0]+H[1]+H[5]+H[7]+J[0]+J[4]+J[6]+J[11]+J[13]+J[31], +H[0]+H[1]+ H[5]+H[7]+H[8]+J[0]+J[4]+J[6]+J[7]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35], +H[0]+H[1]+H[5]+H[6]+J[0]+J[4]+ J[5]+J[11]+J[12]+J[30], +H[0]+H[1]+H[5]+H[6]+H[8]+J[0]+J[4]+J[5]+J[7]+J[11]+J[12]+J[14]+J[30]+J[32]+ J[34], +H[0]+H[1]+H[5]+H[6]+H[7]+J[0]+J[4]+J[5]+J[6]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33], +H[0]+H[1]+ H[5]+H[6]+H[7]+H[8]+J[0]+J[4]+J[5]+J[6]+J[7]+J[11]+J[12]+J[13]+J[14]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[0]+H[1]+H[4]+J[0]+J[3]+J[10], +H[0]+H[1]+H[4]+H[8]+J[0]+J[3]+J[7]+J[10]+J[14]+J[29], +H[0]+H[1]+H[4]+ H[7]+J[0]+J[3]+J[6]+J[10]+J[13]+J[28], +H[0]+H[1]+H[4]+H[7]+H[8]+J[0]+J[3]+J[6]+J[7]+J[10]+J[13]+J[14]+ J[28]+J[29]+J[35], +H[0]+H[1]+H[4]+H[6]+J[0]+J[3]+J[5]+J[10]+J[12]+J[27], +H[0]+H[1]+H[4]+H[6]+H[8]+ J[0]+J[3]+J[5]+J[7]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34], +H[0]+H[1]+H[4]+H[6]+H[7]+J[0]+J[3]+J[5]+J[6]+ J[10]+J[12]+J[13]+J[27]+J[28]+J[33], +H[0]+H[1]+H[4]+H[6]+H[7]+H[8]+J[0]+J[3]+J[5]+J[6]+J[7]+J[10]+J[12]+ J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[4]+H[5]+J[0]+J[3]+J[4]+J[10]+J[11]+J[26], + H[0]+H[1]+H[4]+H[5]+H[8]+J[0]+J[3]+J[4]+J[7]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32], +H[0]+H[1]+H[4]+H[5]+ H[7]+J[0]+J[3]+J[4]+J[6]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31], +H[0]+H[1]+H[4]+H[5]+H[7]+H[8]+J[0]+J[3]+ J[4]+J[6]+J[7]+J[10]+J[11]+J[13]+J[14]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[1]+H[4]+H[5]+H[6]+ J[0]+J[3]+J[4]+J[5]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30], +H[0]+H[1]+H[4]+H[5]+H[6]+H[8]+J[0]+J[3]+J[4]+ J[5]+J[7]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[4]+H[5]+H[6]+H[7]+ J[0]+J[3]+J[4]+J[5]+J[6]+J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[4]+ H[5]+H[6]+H[7]+H[8]+J[0]+J[3]+J[4]+J[5]+J[6]+J[7]+J[10]+J[11]+J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+J[0]+J[2]+J[9], +H[0]+H[1]+H[3]+H[8]+J[0]+J[2]+ J[7]+J[9]+J[14]+J[25], +H[0]+H[1]+H[3]+H[7]+J[0]+J[2]+J[6]+J[9]+J[13]+J[24], +H[0]+H[1]+H[3]+H[7]+H[8]+ J[0]+J[2]+J[6]+J[7]+J[9]+J[13]+J[14]+J[24]+J[25]+J[35], +H[0]+H[1]+H[3]+H[6]+J[0]+J[2]+J[5]+J[9]+J[12]+ J[23], +H[0]+H[1]+H[3]+H[6]+H[8]+J[0]+J[2]+J[5]+J[7]+J[9]+J[12]+J[14]+J[23]+J[25]+J[34], +H[0]+H[1]+ H[3]+H[6]+H[7]+J[0]+J[2]+J[5]+J[6]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33], +H[0]+H[1]+H[3]+H[6]+H[7]+H[8]+ J[0]+J[2]+J[5]+J[6]+J[7]+J[9]+J[12]+J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+ H[5]+J[0]+J[2]+J[4]+J[9]+J[11]+J[22], +H[0]+H[1]+H[3]+H[5]+H[8]+J[0]+J[2]+J[4]+J[7]+J[9]+J[11]+J[14]+ J[22]+J[25]+J[32], +H[0]+H[1]+H[3]+H[5]+H[7]+J[0]+J[2]+J[4]+J[6]+J[9]+J[11]+J[13]+J[22]+J[24]+J[31], + H[0]+H[1]+H[3]+H[5]+H[7]+H[8]+J[0]+J[2]+J[4]+J[6]+J[7]+J[9]+J[11]+J[13]+J[14]+J[22]+J[24]+J[25]+J[31]+ J[32]+J[35], +H[0]+H[1]+H[3]+H[5]+H[6]+J[0]+J[2]+J[4]+J[5]+J[9]+J[11]+J[12]+J[22]+J[23]+J[30], +H[0]+ H[1]+H[3]+H[5]+H[6]+H[8]+J[0]+J[2]+J[4]+J[5]+J[7]+J[9]+J[11]+J[12]+J[14]+J[22]+J[23]+J[25]+J[30]+J[32]+ J[34], +H[0]+H[1]+H[3]+H[5]+H[6]+H[7]+J[0]+J[2]+J[4]+J[5]+J[6]+J[9]+J[11]+J[12]+J[13]+J[22]+J[23]+J[24]+ J[30]+J[31]+J[33], +H[0]+H[1]+H[3]+H[5]+H[6]+H[7]+H[8]+J[0]+J[2]+J[4]+J[5]+J[6]+J[7]+J[9]+J[11]+J[12]+ J[13]+J[14]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+H[4]+J[0]+J[2]+ J[3]+J[9]+J[10]+J[21], +H[0]+H[1]+H[3]+H[4]+H[8]+J[0]+J[2]+J[3]+J[7]+J[9]+J[10]+J[14]+J[21]+J[25]+J[29], + H[0]+H[1]+H[3]+H[4]+H[7]+J[0]+J[2]+J[3]+J[6]+J[9]+J[10]+J[13]+J[21]+J[24]+J[28], +H[0]+H[1]+H[3]+H[4]+ H[7]+H[8]+J[0]+J[2]+J[3]+J[6]+J[7]+J[9]+J[10]+J[13]+J[14]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+ H[1]+H[3]+H[4]+H[6]+J[0]+J[2]+J[3]+J[5]+J[9]+J[10]+J[12]+J[21]+J[23]+J[27], +H[0]+H[1]+H[3]+H[4]+H[6]+ H[8]+J[0]+J[2]+J[3]+J[5]+J[7]+J[9]+J[10]+J[12]+J[14]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[1]+ H[3]+H[4]+H[6]+H[7]+J[0]+J[2]+J[3]+J[5]+J[6]+J[9]+J[10]+J[12]+J[13]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], + H[0]+H[1]+H[3]+H[4]+H[6]+H[7]+H[8]+J[0]+J[2]+J[3]+J[5]+J[6]+J[7]+J[9]+J[10]+J[12]+J[13]+J[14]+J[21]+ J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+H[4]+H[5]+J[0]+J[2]+J[3]+J[4]+ J[9]+J[10]+J[11]+J[21]+J[22]+J[26], +H[0]+H[1]+H[3]+H[4]+H[5]+H[8]+J[0]+J[2]+J[3]+J[4]+J[7]+J[9]+J[10]+ J[11]+J[14]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[1]+H[3]+H[4]+H[5]+H[7]+J[0]+J[2]+J[3]+J[4]+ J[6]+J[9]+J[10]+J[11]+J[13]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[1]+H[3]+H[4]+H[5]+H[7]+H[8]+ J[0]+J[2]+J[3]+J[4]+J[6]+J[7]+J[9]+J[10]+J[11]+J[13]+J[14]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+J[0]+J[2]+J[3]+J[4]+J[5]+J[9]+J[10]+J[11]+J[12]+J[21]+ J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+H[8]+J[0]+J[2]+J[3]+J[4]+J[5]+J[7]+J[9]+ J[10]+J[11]+J[12]+J[14]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[3]+ H[4]+H[5]+H[6]+H[7]+J[0]+J[2]+J[3]+J[4]+J[5]+J[6]+J[9]+J[10]+J[11]+J[12]+J[13]+J[21]+J[22]+J[23]+J[24]+ J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+J[0]+J[1]+J[8], +H[0]+H[1]+H[2]+H[8]+J[0]+J[1]+J[7]+J[8]+ J[14]+J[20], +H[0]+H[1]+H[2]+H[7]+J[0]+J[1]+J[6]+J[8]+J[13]+J[19], +H[0]+H[1]+H[2]+H[7]+H[8]+J[0]+J[1]+ J[6]+J[7]+J[8]+J[13]+J[14]+J[19]+J[20]+J[35], +H[0]+H[1]+H[2]+H[6]+J[0]+J[1]+J[5]+J[8]+J[12]+J[18], + H[0]+H[1]+H[2]+H[6]+H[8]+J[0]+J[1]+J[5]+J[7]+J[8]+J[12]+J[14]+J[18]+J[20]+J[34], +H[0]+H[1]+H[2]+H[6]+ H[7]+J[0]+J[1]+J[5]+J[6]+J[8]+J[12]+J[13]+J[18]+J[19]+J[33], +H[0]+H[1]+H[2]+H[6]+H[7]+H[8]+J[0]+J[1]+ J[5]+J[6]+J[7]+J[8]+J[12]+J[13]+J[14]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[5]+J[0]+ J[1]+J[4]+J[8]+J[11]+J[17], +H[0]+H[1]+H[2]+H[5]+H[8]+J[0]+J[1]+J[4]+J[7]+J[8]+J[11]+J[14]+J[17]+J[20]+ J[32], +H[0]+H[1]+H[2]+H[5]+H[7]+J[0]+J[1]+J[4]+J[6]+J[8]+J[11]+J[13]+J[17]+J[19]+J[31], +H[0]+H[1]+ H[2]+H[5]+H[7]+H[8]+J[0]+J[1]+J[4]+J[6]+J[7]+J[8]+J[11]+J[13]+J[14]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35], + H[0]+H[1]+H[2]+H[5]+H[6]+J[0]+J[1]+J[4]+J[5]+J[8]+J[11]+J[12]+J[17]+J[18]+J[30], +H[0]+H[1]+H[2]+H[5]+ H[6]+H[8]+J[0]+J[1]+J[4]+J[5]+J[7]+J[8]+J[11]+J[12]+J[14]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[0]+ H[1]+H[2]+H[5]+H[6]+H[7]+J[0]+J[1]+J[4]+J[5]+J[6]+J[8]+J[11]+J[12]+J[13]+J[17]+J[18]+J[19]+J[30]+J[31]+ J[33], +H[0]+H[1]+H[2]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[4]+J[5]+J[6]+J[7]+J[8]+J[11]+J[12]+J[13]+J[14]+ J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[4]+J[0]+J[1]+J[3]+J[8]+ J[10]+J[16], +H[0]+H[1]+H[2]+H[4]+H[8]+J[0]+J[1]+J[3]+J[7]+J[8]+J[10]+J[14]+J[16]+J[20]+J[29], +H[0]+ H[1]+H[2]+H[4]+H[7]+J[0]+J[1]+J[3]+J[6]+J[8]+J[10]+J[13]+J[16]+J[19]+J[28], +H[0]+H[1]+H[2]+H[4]+H[7]+ H[8]+J[0]+J[1]+J[3]+J[6]+J[7]+J[8]+J[10]+J[13]+J[14]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[0]+H[1]+ H[2]+H[4]+H[6]+J[0]+J[1]+J[3]+J[5]+J[8]+J[10]+J[12]+J[16]+J[18]+J[27], +H[0]+H[1]+H[2]+H[4]+H[6]+H[8]+ J[0]+J[1]+J[3]+J[5]+J[7]+J[8]+J[10]+J[12]+J[14]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[0]+H[1]+H[2]+ H[4]+H[6]+H[7]+J[0]+J[1]+J[3]+J[5]+J[6]+J[8]+J[10]+J[12]+J[13]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], + H[0]+H[1]+H[2]+H[4]+H[6]+H[7]+H[8]+J[0]+J[1]+J[3]+J[5]+J[6]+J[7]+J[8]+J[10]+J[12]+J[13]+J[14]+J[16]+ J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[4]+H[5]+J[0]+J[1]+J[3]+J[4]+ J[8]+J[10]+J[11]+J[16]+J[17]+J[26], +H[0]+H[1]+H[2]+H[4]+H[5]+H[8]+J[0]+J[1]+J[3]+J[4]+J[7]+J[8]+J[10]+ J[11]+J[14]+J[16]+J[17]+J[20]+J[26]+J[29]+J[32], +H[0]+H[1]+H[2]+H[4]+H[5]+H[7]+J[0]+J[1]+J[3]+J[4]+ J[6]+J[8]+J[10]+J[11]+J[13]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31], +H[0]+H[1]+H[2]+H[4]+H[5]+H[7]+H[8]+ J[0]+J[1]+J[3]+J[4]+J[6]+J[7]+J[8]+J[10]+J[11]+J[13]+J[14]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+J[0]+J[1]+J[3]+J[4]+J[5]+J[8]+J[10]+J[11]+J[12]+J[16]+ J[17]+J[18]+J[26]+J[27]+J[30], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+H[8]+J[0]+J[1]+J[3]+J[4]+J[5]+J[7]+J[8]+ J[10]+J[11]+J[12]+J[14]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+ H[4]+H[5]+H[6]+H[7]+J[0]+J[1]+J[3]+J[4]+J[5]+J[6]+J[8]+J[10]+J[11]+J[12]+J[13]+J[16]+J[17]+J[18]+J[19]+ J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[8]+J[10]+J[11]+J[12]+J[13]+J[14]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+J[0]+J[1]+J[2]+J[8]+J[9]+J[15], +H[0]+H[1]+H[2]+ H[3]+H[8]+J[0]+J[1]+J[2]+J[7]+J[8]+J[9]+J[14]+J[15]+J[20]+J[25], +H[0]+H[1]+H[2]+H[3]+H[7]+J[0]+J[1]+ J[2]+J[6]+J[8]+J[9]+J[13]+J[15]+J[19]+J[24], +H[0]+H[1]+H[2]+H[3]+H[7]+H[8]+J[0]+J[1]+J[2]+J[6]+J[7]+ J[8]+J[9]+J[13]+J[14]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[0]+H[1]+H[2]+H[3]+H[6]+J[0]+J[1]+J[2]+ J[5]+J[8]+J[9]+J[12]+J[15]+J[18]+J[23], +H[0]+H[1]+H[2]+H[3]+H[6]+H[8]+J[0]+J[1]+J[2]+J[5]+J[7]+J[8]+ J[9]+J[12]+J[14]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[0]+H[1]+H[2]+H[3]+H[6]+H[7]+J[0]+J[1]+J[2]+ J[5]+J[6]+J[8]+J[9]+J[12]+J[13]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[0]+H[1]+H[2]+H[3]+H[6]+H[7]+ H[8]+J[0]+J[1]+J[2]+J[5]+J[6]+J[7]+J[8]+J[9]+J[12]+J[13]+J[14]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+ J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+H[5]+J[0]+J[1]+J[2]+J[4]+J[8]+J[9]+J[11]+J[15]+J[17]+J[22], + H[0]+H[1]+H[2]+H[3]+H[5]+H[8]+J[0]+J[1]+J[2]+J[4]+J[7]+J[8]+J[9]+J[11]+J[14]+J[15]+J[17]+J[20]+J[22]+ J[25]+J[32], +H[0]+H[1]+H[2]+H[3]+H[5]+H[7]+J[0]+J[1]+J[2]+J[4]+J[6]+J[8]+J[9]+J[11]+J[13]+J[15]+J[17]+ J[19]+J[22]+J[24]+J[31], +H[0]+H[1]+H[2]+H[3]+H[5]+H[7]+H[8]+J[0]+J[1]+J[2]+J[4]+J[6]+J[7]+J[8]+J[9]+ J[11]+J[13]+J[14]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+H[3]+ H[5]+H[6]+J[0]+J[1]+J[2]+J[4]+J[5]+J[8]+J[9]+J[11]+J[12]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[0]+ H[1]+H[2]+H[3]+H[5]+H[6]+H[8]+J[0]+J[1]+J[2]+J[4]+J[5]+J[7]+J[8]+J[9]+J[11]+J[12]+J[14]+J[15]+J[17]+ J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+J[0]+J[1]+J[2]+ J[4]+J[5]+J[6]+J[8]+J[9]+J[11]+J[12]+J[13]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], + H[0]+H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[2]+J[4]+J[5]+J[6]+J[7]+J[8]+J[9]+J[11]+J[12]+J[13]+ J[14]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[1]+H[2]+H[3]+H[4]+J[0]+J[1]+J[2]+J[3]+J[8]+J[9]+J[10]+J[15]+J[16]+J[21], +H[0]+H[1]+H[2]+H[3]+H[4]+ H[8]+J[0]+J[1]+J[2]+J[3]+J[7]+J[8]+J[9]+J[10]+J[14]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29], +H[0]+H[1]+ H[2]+H[3]+H[4]+H[7]+J[0]+J[1]+J[2]+J[3]+J[6]+J[8]+J[9]+J[10]+J[13]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], + H[0]+H[1]+H[2]+H[3]+H[4]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[6]+J[7]+J[8]+J[9]+J[10]+J[13]+J[14]+J[15]+J[16]+ J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+J[0]+J[1]+J[2]+J[3]+ J[5]+J[8]+J[9]+J[10]+J[12]+J[15]+J[16]+J[18]+J[21]+J[23]+J[27], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+H[8]+ J[0]+J[1]+J[2]+J[3]+J[5]+J[7]+J[8]+J[9]+J[10]+J[12]+J[14]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+ J[27]+J[29]+J[34], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+J[0]+J[1]+J[2]+J[3]+J[5]+J[6]+J[8]+J[9]+J[10]+ J[12]+J[13]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+ H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[5]+J[6]+J[7]+J[8]+J[9]+J[10]+J[12]+J[13]+J[14]+J[15]+J[16]+J[18]+J[19]+ J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+J[0]+ J[1]+J[2]+J[3]+J[4]+J[8]+J[9]+J[10]+J[11]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[0]+H[1]+H[2]+H[3]+ H[4]+H[5]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[7]+J[8]+J[9]+J[10]+J[11]+J[14]+J[15]+J[16]+J[17]+J[20]+J[21]+ J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+J[0]+J[1]+J[2]+J[3]+J[4]+J[6]+J[8]+ J[9]+J[10]+J[11]+J[13]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[1]+H[2]+ H[3]+H[4]+H[5]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[6]+J[7]+J[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+ H[3]+H[4]+H[5]+H[6]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+J[8]+J[9]+J[10]+J[11]+J[12]+J[15]+J[16]+J[17]+J[18]+ J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+ J[5]+J[7]+J[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+J[23]+J[25]+J[26]+ J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+ J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+ J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35],]) logZ = fast_logsumexp(energyTerms)[0] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[0] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[1] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[2] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[3] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[4] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1, 1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[5] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1, 1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1, 1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0, 0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1, 0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1, 1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[6] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[7] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[8] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[9] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[10] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[11] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[12] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1, 1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[13] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1, 0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1, 1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[14] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[15] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[16] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[17] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[18] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[19] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[20] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1, 1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[21] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[22] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[23] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[24] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[25] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1, 1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[26] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1, 1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1, 1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[27] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[28] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[29] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]) Cout[30] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[31] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[32] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[33] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[34] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]) Cout[35] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0, 0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]) Cout[36] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0, 0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1, 1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1, 0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]) Cout[37] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0, 1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1, 0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) Cout[38] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0, 0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0, 0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1, 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]) Cout[39] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0, 0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0, 1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1, 1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0, 0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0, 0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0, 0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0, 0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1, 0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0, 0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1]) Cout[40] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0, 0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1, 0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0, 1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0, 0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0, 1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1, 0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0, 0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0, 0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0, 1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0, 0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0, 0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1, 0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0, 0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1]) Cout[41] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0, 0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0, 0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1, 1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0, 0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0, 0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0, 1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0, 0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0, 0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0, 0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1, 1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0, 0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0, 0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1]) Cout[42] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0, 1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0, 0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0, 1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0, 0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0, 0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1, 0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0, 0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0, 1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0, 0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0, 1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0, 0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0, 0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1]) Cout[43] = exp( num[0] - logZ ) * num[1] num = fast_logsumexp(energyTerms, [0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0, 0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, 1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, 0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0, 0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, 1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, 0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0, 0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0, 0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0, 1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1, 0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0, 0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1]) Cout[44] = exp( num[0] - logZ ) * num[1] Cout[isnan(Cout)] = 0. return(Cout) def p(params): """ Give all parameters concatenated into one array from lowest to highest order. Returns probabilities of all configurations. """ Cout = zeros((45)) H = params[0:9] J = params[9:45] H = params[0:9] J = params[9:45] Pout = zeros((512)) energyTerms = array([ +0, +H[8]+0, +H[7]+0, +H[7]+H[8]+J[35], +H[6]+0, +H[6]+H[8]+J[34], +H[6]+H[7]+J[33], +H[6]+H[7]+H[8]+ J[33]+J[34]+J[35], +H[5]+0, +H[5]+H[8]+J[32], +H[5]+H[7]+J[31], +H[5]+H[7]+H[8]+J[31]+J[32]+J[35], + H[5]+H[6]+J[30], +H[5]+H[6]+H[8]+J[30]+J[32]+J[34], +H[5]+H[6]+H[7]+J[30]+J[31]+J[33], +H[5]+H[6]+H[7]+ H[8]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[4]+0, +H[4]+H[8]+J[29], +H[4]+H[7]+J[28], +H[4]+H[7]+H[8]+ J[28]+J[29]+J[35], +H[4]+H[6]+J[27], +H[4]+H[6]+H[8]+J[27]+J[29]+J[34], +H[4]+H[6]+H[7]+J[27]+J[28]+ J[33], +H[4]+H[6]+H[7]+H[8]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[4]+H[5]+J[26], +H[4]+H[5]+H[8]+J[26]+ J[29]+J[32], +H[4]+H[5]+H[7]+J[26]+J[28]+J[31], +H[4]+H[5]+H[7]+H[8]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], + H[4]+H[5]+H[6]+J[26]+J[27]+J[30], +H[4]+H[5]+H[6]+H[8]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[4]+H[5]+ H[6]+H[7]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[4]+H[5]+H[6]+H[7]+H[8]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[3]+0, +H[3]+H[8]+J[25], +H[3]+H[7]+J[24], +H[3]+H[7]+H[8]+J[24]+J[25]+ J[35], +H[3]+H[6]+J[23], +H[3]+H[6]+H[8]+J[23]+J[25]+J[34], +H[3]+H[6]+H[7]+J[23]+J[24]+J[33], +H[3]+ H[6]+H[7]+H[8]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[3]+H[5]+J[22], +H[3]+H[5]+H[8]+J[22]+J[25]+J[32], + H[3]+H[5]+H[7]+J[22]+J[24]+J[31], +H[3]+H[5]+H[7]+H[8]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[3]+H[5]+ H[6]+J[22]+J[23]+J[30], +H[3]+H[5]+H[6]+H[8]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[3]+H[5]+H[6]+H[7]+ J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[3]+H[5]+H[6]+H[7]+H[8]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[3]+H[4]+J[21], +H[3]+H[4]+H[8]+J[21]+J[25]+J[29], +H[3]+H[4]+H[7]+J[21]+J[24]+ J[28], +H[3]+H[4]+H[7]+H[8]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[3]+H[4]+H[6]+J[21]+J[23]+J[27], + H[3]+H[4]+H[6]+H[8]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[3]+H[4]+H[6]+H[7]+J[21]+J[23]+J[24]+J[27]+ J[28]+J[33], +H[3]+H[4]+H[6]+H[7]+H[8]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[3]+H[4]+H[5]+J[21]+J[22]+J[26], +H[3]+H[4]+H[5]+H[8]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[3]+H[4]+ H[5]+H[7]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[3]+H[4]+H[5]+H[7]+H[8]+J[21]+J[22]+J[24]+J[25]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[3]+H[4]+H[5]+H[6]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[3]+H[4]+ H[5]+H[6]+H[8]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[3]+H[4]+H[5]+H[6]+H[7]+ J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[21]+J[22]+ J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+0, +H[2]+H[8]+J[20], + H[2]+H[7]+J[19], +H[2]+H[7]+H[8]+J[19]+J[20]+J[35], +H[2]+H[6]+J[18], +H[2]+H[6]+H[8]+J[18]+J[20]+J[34], + H[2]+H[6]+H[7]+J[18]+J[19]+J[33], +H[2]+H[6]+H[7]+H[8]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[2]+H[5]+ J[17], +H[2]+H[5]+H[8]+J[17]+J[20]+J[32], +H[2]+H[5]+H[7]+J[17]+J[19]+J[31], +H[2]+H[5]+H[7]+H[8]+J[17]+ J[19]+J[20]+J[31]+J[32]+J[35], +H[2]+H[5]+H[6]+J[17]+J[18]+J[30], +H[2]+H[5]+H[6]+H[8]+J[17]+J[18]+J[20]+ J[30]+J[32]+J[34], +H[2]+H[5]+H[6]+H[7]+J[17]+J[18]+J[19]+J[30]+J[31]+J[33], +H[2]+H[5]+H[6]+H[7]+H[8]+ J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+H[4]+J[16], +H[2]+H[4]+H[8]+J[16]+ J[20]+J[29], +H[2]+H[4]+H[7]+J[16]+J[19]+J[28], +H[2]+H[4]+H[7]+H[8]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], + H[2]+H[4]+H[6]+J[16]+J[18]+J[27], +H[2]+H[4]+H[6]+H[8]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[2]+H[4]+ H[6]+H[7]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[2]+H[4]+H[6]+H[7]+H[8]+J[16]+J[18]+J[19]+J[20]+J[27]+ J[28]+J[29]+J[33]+J[34]+J[35], +H[2]+H[4]+H[5]+J[16]+J[17]+J[26], +H[2]+H[4]+H[5]+H[8]+J[16]+J[17]+J[20]+ J[26]+J[29]+J[32], +H[2]+H[4]+H[5]+H[7]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31], +H[2]+H[4]+H[5]+H[7]+H[8]+ J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[2]+H[4]+H[5]+H[6]+J[16]+J[17]+J[18]+ J[26]+J[27]+J[30], +H[2]+H[4]+H[5]+H[6]+H[8]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], + H[2]+H[4]+H[5]+H[6]+H[7]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[2]+H[4]+H[5]+ H[6]+H[7]+H[8]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[2]+H[3]+J[15], +H[2]+H[3]+H[8]+J[15]+J[20]+J[25], +H[2]+H[3]+H[7]+J[15]+J[19]+J[24], +H[2]+H[3]+H[7]+ H[8]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[2]+H[3]+H[6]+J[15]+J[18]+J[23], +H[2]+H[3]+H[6]+H[8]+J[15]+ J[18]+J[20]+J[23]+J[25]+J[34], +H[2]+H[3]+H[6]+H[7]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[2]+H[3]+ H[6]+H[7]+H[8]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[2]+H[3]+H[5]+J[15]+J[17]+ J[22], +H[2]+H[3]+H[5]+H[8]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32], +H[2]+H[3]+H[5]+H[7]+J[15]+J[17]+J[19]+ J[22]+J[24]+J[31], +H[2]+H[3]+H[5]+H[7]+H[8]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], + H[2]+H[3]+H[5]+H[6]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[2]+H[3]+H[5]+H[6]+H[8]+J[15]+J[17]+J[18]+ J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[2]+H[3]+H[5]+H[6]+H[7]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+ J[24]+J[30]+J[31]+J[33], +H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+ J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[2]+H[3]+H[4]+J[15]+J[16]+J[21], +H[2]+H[3]+H[4]+H[8]+J[15]+ J[16]+J[20]+J[21]+J[25]+J[29], +H[2]+H[3]+H[4]+H[7]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], +H[2]+H[3]+ H[4]+H[7]+H[8]+J[15]+J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[2]+H[3]+H[4]+H[6]+J[15]+ J[16]+J[18]+J[21]+J[23]+J[27], +H[2]+H[3]+H[4]+H[6]+H[8]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+ J[29]+J[34], +H[2]+H[3]+H[4]+H[6]+H[7]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], + H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+ J[33]+J[34]+J[35], +H[2]+H[3]+H[4]+H[5]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[2]+H[3]+H[4]+H[5]+H[8]+ J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[2]+H[3]+H[4]+H[5]+H[7]+J[15]+J[16]+J[17]+ J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[15]+J[16]+J[17]+J[19]+J[20]+ J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[2]+H[3]+H[4]+H[5]+H[6]+J[15]+J[16]+J[17]+ J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[15]+J[16]+J[17]+J[18]+J[20]+ J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[15]+J[16]+ J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[2]+H[3]+H[4]+H[5]+ H[6]+H[7]+H[8]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+0, +H[1]+H[8]+J[14], +H[1]+H[7]+J[13], +H[1]+H[7]+H[8]+J[13]+ J[14]+J[35], +H[1]+H[6]+J[12], +H[1]+H[6]+H[8]+J[12]+J[14]+J[34], +H[1]+H[6]+H[7]+J[12]+J[13]+J[33], + H[1]+H[6]+H[7]+H[8]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35], +H[1]+H[5]+J[11], +H[1]+H[5]+H[8]+J[11]+J[14]+ J[32], +H[1]+H[5]+H[7]+J[11]+J[13]+J[31], +H[1]+H[5]+H[7]+H[8]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35], + H[1]+H[5]+H[6]+J[11]+J[12]+J[30], +H[1]+H[5]+H[6]+H[8]+J[11]+J[12]+J[14]+J[30]+J[32]+J[34], +H[1]+H[5]+ H[6]+H[7]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33], +H[1]+H[5]+H[6]+H[7]+H[8]+J[11]+J[12]+J[13]+J[14]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[4]+J[10], +H[1]+H[4]+H[8]+J[10]+J[14]+J[29], +H[1]+H[4]+H[7]+ J[10]+J[13]+J[28], +H[1]+H[4]+H[7]+H[8]+J[10]+J[13]+J[14]+J[28]+J[29]+J[35], +H[1]+H[4]+H[6]+J[10]+J[12]+ J[27], +H[1]+H[4]+H[6]+H[8]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34], +H[1]+H[4]+H[6]+H[7]+J[10]+J[12]+J[13]+ J[27]+J[28]+J[33], +H[1]+H[4]+H[6]+H[7]+H[8]+J[10]+J[12]+J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[1]+H[4]+H[5]+J[10]+J[11]+J[26], +H[1]+H[4]+H[5]+H[8]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32], +H[1]+H[4]+ H[5]+H[7]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31], +H[1]+H[4]+H[5]+H[7]+H[8]+J[10]+J[11]+J[13]+J[14]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[4]+H[5]+H[6]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30], +H[1]+H[4]+ H[5]+H[6]+H[8]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[4]+H[5]+H[6]+H[7]+ J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[4]+H[5]+H[6]+H[7]+H[8]+J[10]+J[11]+ J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[3]+J[9], +H[1]+ H[3]+H[8]+J[9]+J[14]+J[25], +H[1]+H[3]+H[7]+J[9]+J[13]+J[24], +H[1]+H[3]+H[7]+H[8]+J[9]+J[13]+J[14]+ J[24]+J[25]+J[35], +H[1]+H[3]+H[6]+J[9]+J[12]+J[23], +H[1]+H[3]+H[6]+H[8]+J[9]+J[12]+J[14]+J[23]+J[25]+ J[34], +H[1]+H[3]+H[6]+H[7]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33], +H[1]+H[3]+H[6]+H[7]+H[8]+J[9]+J[12]+ J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[1]+H[3]+H[5]+J[9]+J[11]+J[22], +H[1]+H[3]+H[5]+H[8]+ J[9]+J[11]+J[14]+J[22]+J[25]+J[32], +H[1]+H[3]+H[5]+H[7]+J[9]+J[11]+J[13]+J[22]+J[24]+J[31], +H[1]+H[3]+ H[5]+H[7]+H[8]+J[9]+J[11]+J[13]+J[14]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[1]+H[3]+H[5]+H[6]+J[9]+ J[11]+J[12]+J[22]+J[23]+J[30], +H[1]+H[3]+H[5]+H[6]+H[8]+J[9]+J[11]+J[12]+J[14]+J[22]+J[23]+J[25]+J[30]+ J[32]+J[34], +H[1]+H[3]+H[5]+H[6]+H[7]+J[9]+J[11]+J[12]+J[13]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], + H[1]+H[3]+H[5]+H[6]+H[7]+H[8]+J[9]+J[11]+J[12]+J[13]+J[14]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[1]+H[3]+H[4]+J[9]+J[10]+J[21], +H[1]+H[3]+H[4]+H[8]+J[9]+J[10]+J[14]+J[21]+J[25]+ J[29], +H[1]+H[3]+H[4]+H[7]+J[9]+J[10]+J[13]+J[21]+J[24]+J[28], +H[1]+H[3]+H[4]+H[7]+H[8]+J[9]+J[10]+ J[13]+J[14]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[1]+H[3]+H[4]+H[6]+J[9]+J[10]+J[12]+J[21]+J[23]+J[27], + H[1]+H[3]+H[4]+H[6]+H[8]+J[9]+J[10]+J[12]+J[14]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[1]+H[3]+H[4]+ H[6]+H[7]+J[9]+J[10]+J[12]+J[13]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[1]+H[3]+H[4]+H[6]+H[7]+H[8]+ J[9]+J[10]+J[12]+J[13]+J[14]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[1]+H[3]+ H[4]+H[5]+J[9]+J[10]+J[11]+J[21]+J[22]+J[26], +H[1]+H[3]+H[4]+H[5]+H[8]+J[9]+J[10]+J[11]+J[14]+J[21]+ J[22]+J[25]+J[26]+J[29]+J[32], +H[1]+H[3]+H[4]+H[5]+H[7]+J[9]+J[10]+J[11]+J[13]+J[21]+J[22]+J[24]+J[26]+ J[28]+J[31], +H[1]+H[3]+H[4]+H[5]+H[7]+H[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[21]+J[22]+J[24]+J[25]+J[26]+ J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[3]+H[4]+H[5]+H[6]+J[9]+J[10]+J[11]+J[12]+J[21]+J[22]+J[23]+J[26]+ J[27]+J[30], +H[1]+H[3]+H[4]+H[5]+H[6]+H[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[21]+J[22]+J[23]+J[25]+J[26]+ J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+J[9]+J[10]+J[11]+J[12]+J[13]+J[21]+J[22]+ J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[9]+J[10]+J[11]+ J[12]+J[13]+J[14]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+ J[35], +H[1]+H[2]+J[8], +H[1]+H[2]+H[8]+J[8]+J[14]+J[20], +H[1]+H[2]+H[7]+J[8]+J[13]+J[19], +H[1]+H[2]+ H[7]+H[8]+J[8]+J[13]+J[14]+J[19]+J[20]+J[35], +H[1]+H[2]+H[6]+J[8]+J[12]+J[18], +H[1]+H[2]+H[6]+H[8]+ J[8]+J[12]+J[14]+J[18]+J[20]+J[34], +H[1]+H[2]+H[6]+H[7]+J[8]+J[12]+J[13]+J[18]+J[19]+J[33], +H[1]+H[2]+ H[6]+H[7]+H[8]+J[8]+J[12]+J[13]+J[14]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[1]+H[2]+H[5]+J[8]+J[11]+ J[17], +H[1]+H[2]+H[5]+H[8]+J[8]+J[11]+J[14]+J[17]+J[20]+J[32], +H[1]+H[2]+H[5]+H[7]+J[8]+J[11]+J[13]+ J[17]+J[19]+J[31], +H[1]+H[2]+H[5]+H[7]+H[8]+J[8]+J[11]+J[13]+J[14]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35], + H[1]+H[2]+H[5]+H[6]+J[8]+J[11]+J[12]+J[17]+J[18]+J[30], +H[1]+H[2]+H[5]+H[6]+H[8]+J[8]+J[11]+J[12]+J[14]+ J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[1]+H[2]+H[5]+H[6]+H[7]+J[8]+J[11]+J[12]+J[13]+J[17]+J[18]+J[19]+ J[30]+J[31]+J[33], +H[1]+H[2]+H[5]+H[6]+H[7]+H[8]+J[8]+J[11]+J[12]+J[13]+J[14]+J[17]+J[18]+J[19]+J[20]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+H[2]+H[4]+J[8]+J[10]+J[16], +H[1]+H[2]+H[4]+H[8]+J[8]+J[10]+ J[14]+J[16]+J[20]+J[29], +H[1]+H[2]+H[4]+H[7]+J[8]+J[10]+J[13]+J[16]+J[19]+J[28], +H[1]+H[2]+H[4]+H[7]+ H[8]+J[8]+J[10]+J[13]+J[14]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[1]+H[2]+H[4]+H[6]+J[8]+J[10]+J[12]+ J[16]+J[18]+J[27], +H[1]+H[2]+H[4]+H[6]+H[8]+J[8]+J[10]+J[12]+J[14]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], + H[1]+H[2]+H[4]+H[6]+H[7]+J[8]+J[10]+J[12]+J[13]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[1]+H[2]+H[4]+ H[6]+H[7]+H[8]+J[8]+J[10]+J[12]+J[13]+J[14]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], + H[1]+H[2]+H[4]+H[5]+J[8]+J[10]+J[11]+J[16]+J[17]+J[26], +H[1]+H[2]+H[4]+H[5]+H[8]+J[8]+J[10]+J[11]+J[14]+ J[16]+J[17]+J[20]+J[26]+J[29]+J[32], +H[1]+H[2]+H[4]+H[5]+H[7]+J[8]+J[10]+J[11]+J[13]+J[16]+J[17]+J[19]+ J[26]+J[28]+J[31], +H[1]+H[2]+H[4]+H[5]+H[7]+H[8]+J[8]+J[10]+J[11]+J[13]+J[14]+J[16]+J[17]+J[19]+J[20]+ J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[2]+H[4]+H[5]+H[6]+J[8]+J[10]+J[11]+J[12]+J[16]+J[17]+J[18]+ J[26]+J[27]+J[30], +H[1]+H[2]+H[4]+H[5]+H[6]+H[8]+J[8]+J[10]+J[11]+J[12]+J[14]+J[16]+J[17]+J[18]+J[20]+ J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+J[8]+J[10]+J[11]+J[12]+J[13]+J[16]+ J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[10]+ J[11]+J[12]+J[13]+J[14]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+ J[34]+J[35], +H[1]+H[2]+H[3]+J[8]+J[9]+J[15], +H[1]+H[2]+H[3]+H[8]+J[8]+J[9]+J[14]+J[15]+J[20]+J[25], + H[1]+H[2]+H[3]+H[7]+J[8]+J[9]+J[13]+J[15]+J[19]+J[24], +H[1]+H[2]+H[3]+H[7]+H[8]+J[8]+J[9]+J[13]+J[14]+ J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[1]+H[2]+H[3]+H[6]+J[8]+J[9]+J[12]+J[15]+J[18]+J[23], +H[1]+H[2]+ H[3]+H[6]+H[8]+J[8]+J[9]+J[12]+J[14]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[1]+H[2]+H[3]+H[6]+H[7]+ J[8]+J[9]+J[12]+J[13]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[1]+H[2]+H[3]+H[6]+H[7]+H[8]+J[8]+J[9]+ J[12]+J[13]+J[14]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[1]+H[2]+H[3]+H[5]+ J[8]+J[9]+J[11]+J[15]+J[17]+J[22], +H[1]+H[2]+H[3]+H[5]+H[8]+J[8]+J[9]+J[11]+J[14]+J[15]+J[17]+J[20]+ J[22]+J[25]+J[32], +H[1]+H[2]+H[3]+H[5]+H[7]+J[8]+J[9]+J[11]+J[13]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31], + H[1]+H[2]+H[3]+H[5]+H[7]+H[8]+J[8]+J[9]+J[11]+J[13]+J[14]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+ J[31]+J[32]+J[35], +H[1]+H[2]+H[3]+H[5]+H[6]+J[8]+J[9]+J[11]+J[12]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], + H[1]+H[2]+H[3]+H[5]+H[6]+H[8]+J[8]+J[9]+J[11]+J[12]+J[14]+J[15]+J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+ J[30]+J[32]+J[34], +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+J[8]+J[9]+J[11]+J[12]+J[13]+J[15]+J[17]+J[18]+J[19]+ J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[11]+J[12]+J[13]+ J[14]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[1]+ H[2]+H[3]+H[4]+J[8]+J[9]+J[10]+J[15]+J[16]+J[21], +H[1]+H[2]+H[3]+H[4]+H[8]+J[8]+J[9]+J[10]+J[14]+J[15]+ J[16]+J[20]+J[21]+J[25]+J[29], +H[1]+H[2]+H[3]+H[4]+H[7]+J[8]+J[9]+J[10]+J[13]+J[15]+J[16]+J[19]+J[21]+ J[24]+J[28], +H[1]+H[2]+H[3]+H[4]+H[7]+H[8]+J[8]+J[9]+J[10]+J[13]+J[14]+J[15]+J[16]+J[19]+J[20]+J[21]+ J[24]+J[25]+J[28]+J[29]+J[35], +H[1]+H[2]+H[3]+H[4]+H[6]+J[8]+J[9]+J[10]+J[12]+J[15]+J[16]+J[18]+J[21]+ J[23]+J[27], +H[1]+H[2]+H[3]+H[4]+H[6]+H[8]+J[8]+J[9]+J[10]+J[12]+J[14]+J[15]+J[16]+J[18]+J[20]+J[21]+ J[23]+J[25]+J[27]+J[29]+J[34], +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+J[8]+J[9]+J[10]+J[12]+J[13]+J[15]+J[16]+ J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+ J[12]+J[13]+J[14]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+ J[35], +H[1]+H[2]+H[3]+H[4]+H[5]+J[8]+J[9]+J[10]+J[11]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[1]+H[2]+ H[3]+H[4]+H[5]+H[8]+J[8]+J[9]+J[10]+J[11]+J[14]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+ J[32], +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+J[8]+J[9]+J[10]+J[11]+J[13]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+ J[24]+J[26]+J[28]+J[31], +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[1]+H[2]+H[3]+ H[4]+H[5]+H[6]+J[8]+J[9]+J[10]+J[11]+J[12]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], + H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+ J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[8]+J[9]+ J[10]+J[11]+J[12]+J[13]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+ J[31]+J[33], +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+ J[33]+J[34]+J[35], +H[0]+0, +H[0]+H[8]+J[7], +H[0]+H[7]+J[6], +H[0]+H[7]+H[8]+J[6]+J[7]+J[35], +H[0]+ H[6]+J[5], +H[0]+H[6]+H[8]+J[5]+J[7]+J[34], +H[0]+H[6]+H[7]+J[5]+J[6]+J[33], +H[0]+H[6]+H[7]+H[8]+J[5]+ J[6]+J[7]+J[33]+J[34]+J[35], +H[0]+H[5]+J[4], +H[0]+H[5]+H[8]+J[4]+J[7]+J[32], +H[0]+H[5]+H[7]+J[4]+ J[6]+J[31], +H[0]+H[5]+H[7]+H[8]+J[4]+J[6]+J[7]+J[31]+J[32]+J[35], +H[0]+H[5]+H[6]+J[4]+J[5]+J[30], + H[0]+H[5]+H[6]+H[8]+J[4]+J[5]+J[7]+J[30]+J[32]+J[34], +H[0]+H[5]+H[6]+H[7]+J[4]+J[5]+J[6]+J[30]+J[31]+ J[33], +H[0]+H[5]+H[6]+H[7]+H[8]+J[4]+J[5]+J[6]+J[7]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[4]+ J[3], +H[0]+H[4]+H[8]+J[3]+J[7]+J[29], +H[0]+H[4]+H[7]+J[3]+J[6]+J[28], +H[0]+H[4]+H[7]+H[8]+J[3]+J[6]+ J[7]+J[28]+J[29]+J[35], +H[0]+H[4]+H[6]+J[3]+J[5]+J[27], +H[0]+H[4]+H[6]+H[8]+J[3]+J[5]+J[7]+J[27]+J[29]+ J[34], +H[0]+H[4]+H[6]+H[7]+J[3]+J[5]+J[6]+J[27]+J[28]+J[33], +H[0]+H[4]+H[6]+H[7]+H[8]+J[3]+J[5]+J[6]+ J[7]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[4]+H[5]+J[3]+J[4]+J[26], +H[0]+H[4]+H[5]+H[8]+J[3]+ J[4]+J[7]+J[26]+J[29]+J[32], +H[0]+H[4]+H[5]+H[7]+J[3]+J[4]+J[6]+J[26]+J[28]+J[31], +H[0]+H[4]+H[5]+ H[7]+H[8]+J[3]+J[4]+J[6]+J[7]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[4]+H[5]+H[6]+J[3]+J[4]+J[5]+ J[26]+J[27]+J[30], +H[0]+H[4]+H[5]+H[6]+H[8]+J[3]+J[4]+J[5]+J[7]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], + H[0]+H[4]+H[5]+H[6]+H[7]+J[3]+J[4]+J[5]+J[6]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[4]+H[5]+H[6]+ H[7]+H[8]+J[3]+J[4]+J[5]+J[6]+J[7]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[3]+J[2], +H[0]+H[3]+H[8]+J[2]+J[7]+J[25], +H[0]+H[3]+H[7]+J[2]+J[6]+J[24], +H[0]+H[3]+H[7]+H[8]+J[2]+ J[6]+J[7]+J[24]+J[25]+J[35], +H[0]+H[3]+H[6]+J[2]+J[5]+J[23], +H[0]+H[3]+H[6]+H[8]+J[2]+J[5]+J[7]+J[23]+ J[25]+J[34], +H[0]+H[3]+H[6]+H[7]+J[2]+J[5]+J[6]+J[23]+J[24]+J[33], +H[0]+H[3]+H[6]+H[7]+H[8]+J[2]+J[5]+ J[6]+J[7]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[3]+H[5]+J[2]+J[4]+J[22], +H[0]+H[3]+H[5]+H[8]+ J[2]+J[4]+J[7]+J[22]+J[25]+J[32], +H[0]+H[3]+H[5]+H[7]+J[2]+J[4]+J[6]+J[22]+J[24]+J[31], +H[0]+H[3]+ H[5]+H[7]+H[8]+J[2]+J[4]+J[6]+J[7]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[3]+H[5]+H[6]+J[2]+J[4]+ J[5]+J[22]+J[23]+J[30], +H[0]+H[3]+H[5]+H[6]+H[8]+J[2]+J[4]+J[5]+J[7]+J[22]+J[23]+J[25]+J[30]+J[32]+ J[34], +H[0]+H[3]+H[5]+H[6]+H[7]+J[2]+J[4]+J[5]+J[6]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[0]+H[3]+ H[5]+H[6]+H[7]+H[8]+J[2]+J[4]+J[5]+J[6]+J[7]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[0]+H[3]+H[4]+J[2]+J[3]+J[21], +H[0]+H[3]+H[4]+H[8]+J[2]+J[3]+J[7]+J[21]+J[25]+J[29], +H[0]+H[3]+H[4]+ H[7]+J[2]+J[3]+J[6]+J[21]+J[24]+J[28], +H[0]+H[3]+H[4]+H[7]+H[8]+J[2]+J[3]+J[6]+J[7]+J[21]+J[24]+J[25]+ J[28]+J[29]+J[35], +H[0]+H[3]+H[4]+H[6]+J[2]+J[3]+J[5]+J[21]+J[23]+J[27], +H[0]+H[3]+H[4]+H[6]+H[8]+ J[2]+J[3]+J[5]+J[7]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[3]+H[4]+H[6]+H[7]+J[2]+J[3]+J[5]+J[6]+ J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[3]+H[4]+H[6]+H[7]+H[8]+J[2]+J[3]+J[5]+J[6]+J[7]+J[21]+J[23]+ J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[3]+H[4]+H[5]+J[2]+J[3]+J[4]+J[21]+J[22]+J[26], + H[0]+H[3]+H[4]+H[5]+H[8]+J[2]+J[3]+J[4]+J[7]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[3]+H[4]+H[5]+ H[7]+J[2]+J[3]+J[4]+J[6]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[3]+H[4]+H[5]+H[7]+H[8]+J[2]+J[3]+ J[4]+J[6]+J[7]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[3]+H[4]+H[5]+H[6]+ J[2]+J[3]+J[4]+J[5]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[3]+H[4]+H[5]+H[6]+H[8]+J[2]+J[3]+J[4]+ J[5]+J[7]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[3]+H[4]+H[5]+H[6]+H[7]+ J[2]+J[3]+J[4]+J[5]+J[6]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[3]+H[4]+ H[5]+H[6]+H[7]+H[8]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+J[1], +H[0]+H[2]+H[8]+J[1]+J[7]+J[20], +H[0]+H[2]+H[7]+ J[1]+J[6]+J[19], +H[0]+H[2]+H[7]+H[8]+J[1]+J[6]+J[7]+J[19]+J[20]+J[35], +H[0]+H[2]+H[6]+J[1]+J[5]+J[18], + H[0]+H[2]+H[6]+H[8]+J[1]+J[5]+J[7]+J[18]+J[20]+J[34], +H[0]+H[2]+H[6]+H[7]+J[1]+J[5]+J[6]+J[18]+J[19]+ J[33], +H[0]+H[2]+H[6]+H[7]+H[8]+J[1]+J[5]+J[6]+J[7]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[0]+H[2]+ H[5]+J[1]+J[4]+J[17], +H[0]+H[2]+H[5]+H[8]+J[1]+J[4]+J[7]+J[17]+J[20]+J[32], +H[0]+H[2]+H[5]+H[7]+J[1]+ J[4]+J[6]+J[17]+J[19]+J[31], +H[0]+H[2]+H[5]+H[7]+H[8]+J[1]+J[4]+J[6]+J[7]+J[17]+J[19]+J[20]+J[31]+J[32]+ J[35], +H[0]+H[2]+H[5]+H[6]+J[1]+J[4]+J[5]+J[17]+J[18]+J[30], +H[0]+H[2]+H[5]+H[6]+H[8]+J[1]+J[4]+J[5]+ J[7]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[0]+H[2]+H[5]+H[6]+H[7]+J[1]+J[4]+J[5]+J[6]+J[17]+J[18]+ J[19]+J[30]+J[31]+J[33], +H[0]+H[2]+H[5]+H[6]+H[7]+H[8]+J[1]+J[4]+J[5]+J[6]+J[7]+J[17]+J[18]+J[19]+J[20]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[4]+J[1]+J[3]+J[16], +H[0]+H[2]+H[4]+H[8]+J[1]+J[3]+ J[7]+J[16]+J[20]+J[29], +H[0]+H[2]+H[4]+H[7]+J[1]+J[3]+J[6]+J[16]+J[19]+J[28], +H[0]+H[2]+H[4]+H[7]+ H[8]+J[1]+J[3]+J[6]+J[7]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[0]+H[2]+H[4]+H[6]+J[1]+J[3]+J[5]+J[16]+ J[18]+J[27], +H[0]+H[2]+H[4]+H[6]+H[8]+J[1]+J[3]+J[5]+J[7]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[0]+ H[2]+H[4]+H[6]+H[7]+J[1]+J[3]+J[5]+J[6]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], +H[0]+H[2]+H[4]+H[6]+H[7]+ H[8]+J[1]+J[3]+J[5]+J[6]+J[7]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[2]+ H[4]+H[5]+J[1]+J[3]+J[4]+J[16]+J[17]+J[26], +H[0]+H[2]+H[4]+H[5]+H[8]+J[1]+J[3]+J[4]+J[7]+J[16]+J[17]+ J[20]+J[26]+J[29]+J[32], +H[0]+H[2]+H[4]+H[5]+H[7]+J[1]+J[3]+J[4]+J[6]+J[16]+J[17]+J[19]+J[26]+J[28]+ J[31], +H[0]+H[2]+H[4]+H[5]+H[7]+H[8]+J[1]+J[3]+J[4]+J[6]+J[7]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[2]+H[4]+H[5]+H[6]+J[1]+J[3]+J[4]+J[5]+J[16]+J[17]+J[18]+J[26]+J[27]+J[30], + H[0]+H[2]+H[4]+H[5]+H[6]+H[8]+J[1]+J[3]+J[4]+J[5]+J[7]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+ J[32]+J[34], +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+J[1]+J[3]+J[4]+J[5]+J[6]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+ J[28]+J[30]+J[31]+J[33], +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[3]+J[4]+J[5]+J[6]+J[7]+J[16]+J[17]+ J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+J[1]+ J[2]+J[15], +H[0]+H[2]+H[3]+H[8]+J[1]+J[2]+J[7]+J[15]+J[20]+J[25], +H[0]+H[2]+H[3]+H[7]+J[1]+J[2]+J[6]+ J[15]+J[19]+J[24], +H[0]+H[2]+H[3]+H[7]+H[8]+J[1]+J[2]+J[6]+J[7]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], + H[0]+H[2]+H[3]+H[6]+J[1]+J[2]+J[5]+J[15]+J[18]+J[23], +H[0]+H[2]+H[3]+H[6]+H[8]+J[1]+J[2]+J[5]+J[7]+ J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[0]+H[2]+H[3]+H[6]+H[7]+J[1]+J[2]+J[5]+J[6]+J[15]+J[18]+J[19]+ J[23]+J[24]+J[33], +H[0]+H[2]+H[3]+H[6]+H[7]+H[8]+J[1]+J[2]+J[5]+J[6]+J[7]+J[15]+J[18]+J[19]+J[20]+J[23]+ J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[5]+J[1]+J[2]+J[4]+J[15]+J[17]+J[22], +H[0]+H[2]+H[3]+ H[5]+H[8]+J[1]+J[2]+J[4]+J[7]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32], +H[0]+H[2]+H[3]+H[5]+H[7]+J[1]+J[2]+ J[4]+J[6]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31], +H[0]+H[2]+H[3]+H[5]+H[7]+H[8]+J[1]+J[2]+J[4]+J[6]+J[7]+ J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[2]+H[3]+H[5]+H[6]+J[1]+J[2]+J[4]+ J[5]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[0]+H[2]+H[3]+H[5]+H[6]+H[8]+J[1]+J[2]+J[4]+J[5]+J[7]+J[15]+ J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+J[1]+J[2]+J[4]+ J[5]+J[6]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+ H[8]+J[1]+J[2]+J[4]+J[5]+J[6]+J[7]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+ J[32]+J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[4]+J[1]+J[2]+J[3]+J[15]+J[16]+J[21], +H[0]+H[2]+H[3]+H[4]+ H[8]+J[1]+J[2]+J[3]+J[7]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29], +H[0]+H[2]+H[3]+H[4]+H[7]+J[1]+J[2]+J[3]+ J[6]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], +H[0]+H[2]+H[3]+H[4]+H[7]+H[8]+J[1]+J[2]+J[3]+J[6]+J[7]+J[15]+ J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+H[2]+H[3]+H[4]+H[6]+J[1]+J[2]+J[3]+J[5]+ J[15]+J[16]+J[18]+J[21]+J[23]+J[27], +H[0]+H[2]+H[3]+H[4]+H[6]+H[8]+J[1]+J[2]+J[3]+J[5]+J[7]+J[15]+J[16]+ J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+J[1]+J[2]+J[3]+J[5]+ J[6]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+ J[1]+J[2]+J[3]+J[5]+J[6]+J[7]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+ J[33]+J[34]+J[35], +H[0]+H[2]+H[3]+H[4]+H[5]+J[1]+J[2]+J[3]+J[4]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], + H[0]+H[2]+H[3]+H[4]+H[5]+H[8]+J[1]+J[2]+J[3]+J[4]+J[7]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+ J[29]+J[32], +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+J[1]+J[2]+J[3]+J[4]+J[6]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+ J[24]+J[26]+J[28]+J[31], +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[6]+J[7]+J[15]+J[16]+ J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[2]+H[3]+H[4]+ H[5]+H[6]+J[1]+J[2]+J[3]+J[4]+J[5]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+ H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[7]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+ J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[1]+J[2]+J[3]+ J[4]+J[5]+J[6]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], + H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[15]+J[16]+J[17]+J[18]+J[19]+ J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[1]+J[0], +H[0]+H[1]+H[8]+J[0]+J[7]+J[14], +H[0]+H[1]+H[7]+J[0]+J[6]+J[13], +H[0]+H[1]+H[7]+H[8]+J[0]+ J[6]+J[7]+J[13]+J[14]+J[35], +H[0]+H[1]+H[6]+J[0]+J[5]+J[12], +H[0]+H[1]+H[6]+H[8]+J[0]+J[5]+J[7]+J[12]+ J[14]+J[34], +H[0]+H[1]+H[6]+H[7]+J[0]+J[5]+J[6]+J[12]+J[13]+J[33], +H[0]+H[1]+H[6]+H[7]+H[8]+J[0]+J[5]+ J[6]+J[7]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35], +H[0]+H[1]+H[5]+J[0]+J[4]+J[11], +H[0]+H[1]+H[5]+H[8]+ J[0]+J[4]+J[7]+J[11]+J[14]+J[32], +H[0]+H[1]+H[5]+H[7]+J[0]+J[4]+J[6]+J[11]+J[13]+J[31], +H[0]+H[1]+ H[5]+H[7]+H[8]+J[0]+J[4]+J[6]+J[7]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35], +H[0]+H[1]+H[5]+H[6]+J[0]+J[4]+ J[5]+J[11]+J[12]+J[30], +H[0]+H[1]+H[5]+H[6]+H[8]+J[0]+J[4]+J[5]+J[7]+J[11]+J[12]+J[14]+J[30]+J[32]+ J[34], +H[0]+H[1]+H[5]+H[6]+H[7]+J[0]+J[4]+J[5]+J[6]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33], +H[0]+H[1]+ H[5]+H[6]+H[7]+H[8]+J[0]+J[4]+J[5]+J[6]+J[7]+J[11]+J[12]+J[13]+J[14]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], + H[0]+H[1]+H[4]+J[0]+J[3]+J[10], +H[0]+H[1]+H[4]+H[8]+J[0]+J[3]+J[7]+J[10]+J[14]+J[29], +H[0]+H[1]+H[4]+ H[7]+J[0]+J[3]+J[6]+J[10]+J[13]+J[28], +H[0]+H[1]+H[4]+H[7]+H[8]+J[0]+J[3]+J[6]+J[7]+J[10]+J[13]+J[14]+ J[28]+J[29]+J[35], +H[0]+H[1]+H[4]+H[6]+J[0]+J[3]+J[5]+J[10]+J[12]+J[27], +H[0]+H[1]+H[4]+H[6]+H[8]+ J[0]+J[3]+J[5]+J[7]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34], +H[0]+H[1]+H[4]+H[6]+H[7]+J[0]+J[3]+J[5]+J[6]+ J[10]+J[12]+J[13]+J[27]+J[28]+J[33], +H[0]+H[1]+H[4]+H[6]+H[7]+H[8]+J[0]+J[3]+J[5]+J[6]+J[7]+J[10]+J[12]+ J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[4]+H[5]+J[0]+J[3]+J[4]+J[10]+J[11]+J[26], + H[0]+H[1]+H[4]+H[5]+H[8]+J[0]+J[3]+J[4]+J[7]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32], +H[0]+H[1]+H[4]+H[5]+ H[7]+J[0]+J[3]+J[4]+J[6]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31], +H[0]+H[1]+H[4]+H[5]+H[7]+H[8]+J[0]+J[3]+ J[4]+J[6]+J[7]+J[10]+J[11]+J[13]+J[14]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[1]+H[4]+H[5]+H[6]+ J[0]+J[3]+J[4]+J[5]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30], +H[0]+H[1]+H[4]+H[5]+H[6]+H[8]+J[0]+J[3]+J[4]+ J[5]+J[7]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[4]+H[5]+H[6]+H[7]+ J[0]+J[3]+J[4]+J[5]+J[6]+J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[4]+ H[5]+H[6]+H[7]+H[8]+J[0]+J[3]+J[4]+J[5]+J[6]+J[7]+J[10]+J[11]+J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+ J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+J[0]+J[2]+J[9], +H[0]+H[1]+H[3]+H[8]+J[0]+J[2]+ J[7]+J[9]+J[14]+J[25], +H[0]+H[1]+H[3]+H[7]+J[0]+J[2]+J[6]+J[9]+J[13]+J[24], +H[0]+H[1]+H[3]+H[7]+H[8]+ J[0]+J[2]+J[6]+J[7]+J[9]+J[13]+J[14]+J[24]+J[25]+J[35], +H[0]+H[1]+H[3]+H[6]+J[0]+J[2]+J[5]+J[9]+J[12]+ J[23], +H[0]+H[1]+H[3]+H[6]+H[8]+J[0]+J[2]+J[5]+J[7]+J[9]+J[12]+J[14]+J[23]+J[25]+J[34], +H[0]+H[1]+ H[3]+H[6]+H[7]+J[0]+J[2]+J[5]+J[6]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33], +H[0]+H[1]+H[3]+H[6]+H[7]+H[8]+ J[0]+J[2]+J[5]+J[6]+J[7]+J[9]+J[12]+J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+ H[5]+J[0]+J[2]+J[4]+J[9]+J[11]+J[22], +H[0]+H[1]+H[3]+H[5]+H[8]+J[0]+J[2]+J[4]+J[7]+J[9]+J[11]+J[14]+ J[22]+J[25]+J[32], +H[0]+H[1]+H[3]+H[5]+H[7]+J[0]+J[2]+J[4]+J[6]+J[9]+J[11]+J[13]+J[22]+J[24]+J[31], + H[0]+H[1]+H[3]+H[5]+H[7]+H[8]+J[0]+J[2]+J[4]+J[6]+J[7]+J[9]+J[11]+J[13]+J[14]+J[22]+J[24]+J[25]+J[31]+ J[32]+J[35], +H[0]+H[1]+H[3]+H[5]+H[6]+J[0]+J[2]+J[4]+J[5]+J[9]+J[11]+J[12]+J[22]+J[23]+J[30], +H[0]+ H[1]+H[3]+H[5]+H[6]+H[8]+J[0]+J[2]+J[4]+J[5]+J[7]+J[9]+J[11]+J[12]+J[14]+J[22]+J[23]+J[25]+J[30]+J[32]+ J[34], +H[0]+H[1]+H[3]+H[5]+H[6]+H[7]+J[0]+J[2]+J[4]+J[5]+J[6]+J[9]+J[11]+J[12]+J[13]+J[22]+J[23]+J[24]+ J[30]+J[31]+J[33], +H[0]+H[1]+H[3]+H[5]+H[6]+H[7]+H[8]+J[0]+J[2]+J[4]+J[5]+J[6]+J[7]+J[9]+J[11]+J[12]+ J[13]+J[14]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+H[4]+J[0]+J[2]+ J[3]+J[9]+J[10]+J[21], +H[0]+H[1]+H[3]+H[4]+H[8]+J[0]+J[2]+J[3]+J[7]+J[9]+J[10]+J[14]+J[21]+J[25]+J[29], + H[0]+H[1]+H[3]+H[4]+H[7]+J[0]+J[2]+J[3]+J[6]+J[9]+J[10]+J[13]+J[21]+J[24]+J[28], +H[0]+H[1]+H[3]+H[4]+ H[7]+H[8]+J[0]+J[2]+J[3]+J[6]+J[7]+J[9]+J[10]+J[13]+J[14]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+ H[1]+H[3]+H[4]+H[6]+J[0]+J[2]+J[3]+J[5]+J[9]+J[10]+J[12]+J[21]+J[23]+J[27], +H[0]+H[1]+H[3]+H[4]+H[6]+ H[8]+J[0]+J[2]+J[3]+J[5]+J[7]+J[9]+J[10]+J[12]+J[14]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34], +H[0]+H[1]+ H[3]+H[4]+H[6]+H[7]+J[0]+J[2]+J[3]+J[5]+J[6]+J[9]+J[10]+J[12]+J[13]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], + H[0]+H[1]+H[3]+H[4]+H[6]+H[7]+H[8]+J[0]+J[2]+J[3]+J[5]+J[6]+J[7]+J[9]+J[10]+J[12]+J[13]+J[14]+J[21]+ J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[3]+H[4]+H[5]+J[0]+J[2]+J[3]+J[4]+ J[9]+J[10]+J[11]+J[21]+J[22]+J[26], +H[0]+H[1]+H[3]+H[4]+H[5]+H[8]+J[0]+J[2]+J[3]+J[4]+J[7]+J[9]+J[10]+ J[11]+J[14]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[1]+H[3]+H[4]+H[5]+H[7]+J[0]+J[2]+J[3]+J[4]+ J[6]+J[9]+J[10]+J[11]+J[13]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[1]+H[3]+H[4]+H[5]+H[7]+H[8]+ J[0]+J[2]+J[3]+J[4]+J[6]+J[7]+J[9]+J[10]+J[11]+J[13]+J[14]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+J[0]+J[2]+J[3]+J[4]+J[5]+J[9]+J[10]+J[11]+J[12]+J[21]+ J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+H[8]+J[0]+J[2]+J[3]+J[4]+J[5]+J[7]+J[9]+ J[10]+J[11]+J[12]+J[14]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[3]+ H[4]+H[5]+H[6]+H[7]+J[0]+J[2]+J[3]+J[4]+J[5]+J[6]+J[9]+J[10]+J[11]+J[12]+J[13]+J[21]+J[22]+J[23]+J[24]+ J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+J[0]+J[1]+J[8], +H[0]+H[1]+H[2]+H[8]+J[0]+J[1]+J[7]+J[8]+ J[14]+J[20], +H[0]+H[1]+H[2]+H[7]+J[0]+J[1]+J[6]+J[8]+J[13]+J[19], +H[0]+H[1]+H[2]+H[7]+H[8]+J[0]+J[1]+ J[6]+J[7]+J[8]+J[13]+J[14]+J[19]+J[20]+J[35], +H[0]+H[1]+H[2]+H[6]+J[0]+J[1]+J[5]+J[8]+J[12]+J[18], + H[0]+H[1]+H[2]+H[6]+H[8]+J[0]+J[1]+J[5]+J[7]+J[8]+J[12]+J[14]+J[18]+J[20]+J[34], +H[0]+H[1]+H[2]+H[6]+ H[7]+J[0]+J[1]+J[5]+J[6]+J[8]+J[12]+J[13]+J[18]+J[19]+J[33], +H[0]+H[1]+H[2]+H[6]+H[7]+H[8]+J[0]+J[1]+ J[5]+J[6]+J[7]+J[8]+J[12]+J[13]+J[14]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[5]+J[0]+ J[1]+J[4]+J[8]+J[11]+J[17], +H[0]+H[1]+H[2]+H[5]+H[8]+J[0]+J[1]+J[4]+J[7]+J[8]+J[11]+J[14]+J[17]+J[20]+ J[32], +H[0]+H[1]+H[2]+H[5]+H[7]+J[0]+J[1]+J[4]+J[6]+J[8]+J[11]+J[13]+J[17]+J[19]+J[31], +H[0]+H[1]+ H[2]+H[5]+H[7]+H[8]+J[0]+J[1]+J[4]+J[6]+J[7]+J[8]+J[11]+J[13]+J[14]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35], + H[0]+H[1]+H[2]+H[5]+H[6]+J[0]+J[1]+J[4]+J[5]+J[8]+J[11]+J[12]+J[17]+J[18]+J[30], +H[0]+H[1]+H[2]+H[5]+ H[6]+H[8]+J[0]+J[1]+J[4]+J[5]+J[7]+J[8]+J[11]+J[12]+J[14]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34], +H[0]+ H[1]+H[2]+H[5]+H[6]+H[7]+J[0]+J[1]+J[4]+J[5]+J[6]+J[8]+J[11]+J[12]+J[13]+J[17]+J[18]+J[19]+J[30]+J[31]+ J[33], +H[0]+H[1]+H[2]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[4]+J[5]+J[6]+J[7]+J[8]+J[11]+J[12]+J[13]+J[14]+ J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[4]+J[0]+J[1]+J[3]+J[8]+ J[10]+J[16], +H[0]+H[1]+H[2]+H[4]+H[8]+J[0]+J[1]+J[3]+J[7]+J[8]+J[10]+J[14]+J[16]+J[20]+J[29], +H[0]+ H[1]+H[2]+H[4]+H[7]+J[0]+J[1]+J[3]+J[6]+J[8]+J[10]+J[13]+J[16]+J[19]+J[28], +H[0]+H[1]+H[2]+H[4]+H[7]+ H[8]+J[0]+J[1]+J[3]+J[6]+J[7]+J[8]+J[10]+J[13]+J[14]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35], +H[0]+H[1]+ H[2]+H[4]+H[6]+J[0]+J[1]+J[3]+J[5]+J[8]+J[10]+J[12]+J[16]+J[18]+J[27], +H[0]+H[1]+H[2]+H[4]+H[6]+H[8]+ J[0]+J[1]+J[3]+J[5]+J[7]+J[8]+J[10]+J[12]+J[14]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34], +H[0]+H[1]+H[2]+ H[4]+H[6]+H[7]+J[0]+J[1]+J[3]+J[5]+J[6]+J[8]+J[10]+J[12]+J[13]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33], + H[0]+H[1]+H[2]+H[4]+H[6]+H[7]+H[8]+J[0]+J[1]+J[3]+J[5]+J[6]+J[7]+J[8]+J[10]+J[12]+J[13]+J[14]+J[16]+ J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[4]+H[5]+J[0]+J[1]+J[3]+J[4]+ J[8]+J[10]+J[11]+J[16]+J[17]+J[26], +H[0]+H[1]+H[2]+H[4]+H[5]+H[8]+J[0]+J[1]+J[3]+J[4]+J[7]+J[8]+J[10]+ J[11]+J[14]+J[16]+J[17]+J[20]+J[26]+J[29]+J[32], +H[0]+H[1]+H[2]+H[4]+H[5]+H[7]+J[0]+J[1]+J[3]+J[4]+ J[6]+J[8]+J[10]+J[11]+J[13]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31], +H[0]+H[1]+H[2]+H[4]+H[5]+H[7]+H[8]+ J[0]+J[1]+J[3]+J[4]+J[6]+J[7]+J[8]+J[10]+J[11]+J[13]+J[14]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+ J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+J[0]+J[1]+J[3]+J[4]+J[5]+J[8]+J[10]+J[11]+J[12]+J[16]+ J[17]+J[18]+J[26]+J[27]+J[30], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+H[8]+J[0]+J[1]+J[3]+J[4]+J[5]+J[7]+J[8]+ J[10]+J[11]+J[12]+J[14]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+ H[4]+H[5]+H[6]+H[7]+J[0]+J[1]+J[3]+J[4]+J[5]+J[6]+J[8]+J[10]+J[11]+J[12]+J[13]+J[16]+J[17]+J[18]+J[19]+ J[26]+J[27]+J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[8]+J[10]+J[11]+J[12]+J[13]+J[14]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+ J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+J[0]+J[1]+J[2]+J[8]+J[9]+J[15], +H[0]+H[1]+H[2]+ H[3]+H[8]+J[0]+J[1]+J[2]+J[7]+J[8]+J[9]+J[14]+J[15]+J[20]+J[25], +H[0]+H[1]+H[2]+H[3]+H[7]+J[0]+J[1]+ J[2]+J[6]+J[8]+J[9]+J[13]+J[15]+J[19]+J[24], +H[0]+H[1]+H[2]+H[3]+H[7]+H[8]+J[0]+J[1]+J[2]+J[6]+J[7]+ J[8]+J[9]+J[13]+J[14]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35], +H[0]+H[1]+H[2]+H[3]+H[6]+J[0]+J[1]+J[2]+ J[5]+J[8]+J[9]+J[12]+J[15]+J[18]+J[23], +H[0]+H[1]+H[2]+H[3]+H[6]+H[8]+J[0]+J[1]+J[2]+J[5]+J[7]+J[8]+ J[9]+J[12]+J[14]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34], +H[0]+H[1]+H[2]+H[3]+H[6]+H[7]+J[0]+J[1]+J[2]+ J[5]+J[6]+J[8]+J[9]+J[12]+J[13]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33], +H[0]+H[1]+H[2]+H[3]+H[6]+H[7]+ H[8]+J[0]+J[1]+J[2]+J[5]+J[6]+J[7]+J[8]+J[9]+J[12]+J[13]+J[14]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+ J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+H[5]+J[0]+J[1]+J[2]+J[4]+J[8]+J[9]+J[11]+J[15]+J[17]+J[22], + H[0]+H[1]+H[2]+H[3]+H[5]+H[8]+J[0]+J[1]+J[2]+J[4]+J[7]+J[8]+J[9]+J[11]+J[14]+J[15]+J[17]+J[20]+J[22]+ J[25]+J[32], +H[0]+H[1]+H[2]+H[3]+H[5]+H[7]+J[0]+J[1]+J[2]+J[4]+J[6]+J[8]+J[9]+J[11]+J[13]+J[15]+J[17]+ J[19]+J[22]+J[24]+J[31], +H[0]+H[1]+H[2]+H[3]+H[5]+H[7]+H[8]+J[0]+J[1]+J[2]+J[4]+J[6]+J[7]+J[8]+J[9]+ J[11]+J[13]+J[14]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+H[3]+ H[5]+H[6]+J[0]+J[1]+J[2]+J[4]+J[5]+J[8]+J[9]+J[11]+J[12]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30], +H[0]+ H[1]+H[2]+H[3]+H[5]+H[6]+H[8]+J[0]+J[1]+J[2]+J[4]+J[5]+J[7]+J[8]+J[9]+J[11]+J[12]+J[14]+J[15]+J[17]+ J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+J[0]+J[1]+J[2]+ J[4]+J[5]+J[6]+J[8]+J[9]+J[11]+J[12]+J[13]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33], + H[0]+H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[2]+J[4]+J[5]+J[6]+J[7]+J[8]+J[9]+J[11]+J[12]+J[13]+ J[14]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35], +H[0]+ H[1]+H[2]+H[3]+H[4]+J[0]+J[1]+J[2]+J[3]+J[8]+J[9]+J[10]+J[15]+J[16]+J[21], +H[0]+H[1]+H[2]+H[3]+H[4]+ H[8]+J[0]+J[1]+J[2]+J[3]+J[7]+J[8]+J[9]+J[10]+J[14]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29], +H[0]+H[1]+ H[2]+H[3]+H[4]+H[7]+J[0]+J[1]+J[2]+J[3]+J[6]+J[8]+J[9]+J[10]+J[13]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28], + H[0]+H[1]+H[2]+H[3]+H[4]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[6]+J[7]+J[8]+J[9]+J[10]+J[13]+J[14]+J[15]+J[16]+ J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+J[0]+J[1]+J[2]+J[3]+ J[5]+J[8]+J[9]+J[10]+J[12]+J[15]+J[16]+J[18]+J[21]+J[23]+J[27], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+H[8]+ J[0]+J[1]+J[2]+J[3]+J[5]+J[7]+J[8]+J[9]+J[10]+J[12]+J[14]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+ J[27]+J[29]+J[34], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+J[0]+J[1]+J[2]+J[3]+J[5]+J[6]+J[8]+J[9]+J[10]+ J[12]+J[13]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33], +H[0]+H[1]+H[2]+H[3]+H[4]+H[6]+ H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[5]+J[6]+J[7]+J[8]+J[9]+J[10]+J[12]+J[13]+J[14]+J[15]+J[16]+J[18]+J[19]+ J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+J[0]+ J[1]+J[2]+J[3]+J[4]+J[8]+J[9]+J[10]+J[11]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26], +H[0]+H[1]+H[2]+H[3]+ H[4]+H[5]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[7]+J[8]+J[9]+J[10]+J[11]+J[14]+J[15]+J[16]+J[17]+J[20]+J[21]+ J[22]+J[25]+J[26]+J[29]+J[32], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+J[0]+J[1]+J[2]+J[3]+J[4]+J[6]+J[8]+ J[9]+J[10]+J[11]+J[13]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31], +H[0]+H[1]+H[2]+ H[3]+H[4]+H[5]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[6]+J[7]+J[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[15]+ J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35], +H[0]+H[1]+H[2]+ H[3]+H[4]+H[5]+H[6]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+J[8]+J[9]+J[10]+J[11]+J[12]+J[15]+J[16]+J[17]+J[18]+ J[21]+J[22]+J[23]+J[26]+J[27]+J[30], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+ J[5]+J[7]+J[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+J[23]+J[25]+J[26]+ J[27]+J[29]+J[30]+J[32]+J[34], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+ J[28]+J[30]+J[31]+J[33], +H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[1]+J[2]+J[3]+J[4]+J[5]+ J[6]+J[7]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+ J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35],]) logZ = fast_logsumexp(energyTerms)[0] Pout[0] = exp( +0 - logZ ) Pout[1] = exp( +H[8]+0 - logZ ) Pout[2] = exp( +H[7]+0 - logZ ) Pout[3] = exp( +H[7]+H[8]+J[35] - logZ ) Pout[4] = exp( +H[6]+0 - logZ ) Pout[5] = exp( +H[6]+H[8]+J[34] - logZ ) Pout[6] = exp( +H[6]+H[7]+J[33] - logZ ) Pout[7] = exp( +H[6]+H[7]+H[8]+J[33]+J[34]+J[35] - logZ ) Pout[8] = exp( +H[5]+0 - logZ ) Pout[9] = exp( +H[5]+H[8]+J[32] - logZ ) Pout[10] = exp( +H[5]+H[7]+J[31] - logZ ) Pout[11] = exp( +H[5]+H[7]+H[8]+J[31]+J[32]+J[35] - logZ ) Pout[12] = exp( +H[5]+H[6]+J[30] - logZ ) Pout[13] = exp( +H[5]+H[6]+H[8]+J[30]+J[32]+J[34] - logZ ) Pout[14] = exp( +H[5]+H[6]+H[7]+J[30]+J[31]+J[33] - logZ ) Pout[15] = exp( +H[5]+H[6]+H[7]+H[8]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[16] = exp( +H[4]+0 - logZ ) Pout[17] = exp( +H[4]+H[8]+J[29] - logZ ) Pout[18] = exp( +H[4]+H[7]+J[28] - logZ ) Pout[19] = exp( +H[4]+H[7]+H[8]+J[28]+J[29]+J[35] - logZ ) Pout[20] = exp( +H[4]+H[6]+J[27] - logZ ) Pout[21] = exp( +H[4]+H[6]+H[8]+J[27]+J[29]+J[34] - logZ ) Pout[22] = exp( +H[4]+H[6]+H[7]+J[27]+J[28]+J[33] - logZ ) Pout[23] = exp( +H[4]+H[6]+H[7]+H[8]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[24] = exp( +H[4]+H[5]+J[26] - logZ ) Pout[25] = exp( +H[4]+H[5]+H[8]+J[26]+J[29]+J[32] - logZ ) Pout[26] = exp( +H[4]+H[5]+H[7]+J[26]+J[28]+J[31] - logZ ) Pout[27] = exp( +H[4]+H[5]+H[7]+H[8]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[28] = exp( +H[4]+H[5]+H[6]+J[26]+J[27]+J[30] - logZ ) Pout[29] = exp( +H[4]+H[5]+H[6]+H[8]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[30] = exp( +H[4]+H[5]+H[6]+H[7]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[31] = exp( +H[4]+H[5]+H[6]+H[7]+H[8]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[32] = exp( +H[3]+0 - logZ ) Pout[33] = exp( +H[3]+H[8]+J[25] - logZ ) Pout[34] = exp( +H[3]+H[7]+J[24] - logZ ) Pout[35] = exp( +H[3]+H[7]+H[8]+J[24]+J[25]+J[35] - logZ ) Pout[36] = exp( +H[3]+H[6]+J[23] - logZ ) Pout[37] = exp( +H[3]+H[6]+H[8]+J[23]+J[25]+J[34] - logZ ) Pout[38] = exp( +H[3]+H[6]+H[7]+J[23]+J[24]+J[33] - logZ ) Pout[39] = exp( +H[3]+H[6]+H[7]+H[8]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[40] = exp( +H[3]+H[5]+J[22] - logZ ) Pout[41] = exp( +H[3]+H[5]+H[8]+J[22]+J[25]+J[32] - logZ ) Pout[42] = exp( +H[3]+H[5]+H[7]+J[22]+J[24]+J[31] - logZ ) Pout[43] = exp( +H[3]+H[5]+H[7]+H[8]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[44] = exp( +H[3]+H[5]+H[6]+J[22]+J[23]+J[30] - logZ ) Pout[45] = exp( +H[3]+H[5]+H[6]+H[8]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[46] = exp( +H[3]+H[5]+H[6]+H[7]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[47] = exp( +H[3]+H[5]+H[6]+H[7]+H[8]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[48] = exp( +H[3]+H[4]+J[21] - logZ ) Pout[49] = exp( +H[3]+H[4]+H[8]+J[21]+J[25]+J[29] - logZ ) Pout[50] = exp( +H[3]+H[4]+H[7]+J[21]+J[24]+J[28] - logZ ) Pout[51] = exp( +H[3]+H[4]+H[7]+H[8]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[52] = exp( +H[3]+H[4]+H[6]+J[21]+J[23]+J[27] - logZ ) Pout[53] = exp( +H[3]+H[4]+H[6]+H[8]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[54] = exp( +H[3]+H[4]+H[6]+H[7]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[55] = exp( +H[3]+H[4]+H[6]+H[7]+H[8]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[56] = exp( +H[3]+H[4]+H[5]+J[21]+J[22]+J[26] - logZ ) Pout[57] = exp( +H[3]+H[4]+H[5]+H[8]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[58] = exp( +H[3]+H[4]+H[5]+H[7]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[59] = exp( +H[3]+H[4]+H[5]+H[7]+H[8]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[60] = exp( +H[3]+H[4]+H[5]+H[6]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[61] = exp( +H[3]+H[4]+H[5]+H[6]+H[8]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[62] = exp( +H[3]+H[4]+H[5]+H[6]+H[7]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[63] = exp( +H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[64] = exp( +H[2]+0 - logZ ) Pout[65] = exp( +H[2]+H[8]+J[20] - logZ ) Pout[66] = exp( +H[2]+H[7]+J[19] - logZ ) Pout[67] = exp( +H[2]+H[7]+H[8]+J[19]+J[20]+J[35] - logZ ) Pout[68] = exp( +H[2]+H[6]+J[18] - logZ ) Pout[69] = exp( +H[2]+H[6]+H[8]+J[18]+J[20]+J[34] - logZ ) Pout[70] = exp( +H[2]+H[6]+H[7]+J[18]+J[19]+J[33] - logZ ) Pout[71] = exp( +H[2]+H[6]+H[7]+H[8]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35] - logZ ) Pout[72] = exp( +H[2]+H[5]+J[17] - logZ ) Pout[73] = exp( +H[2]+H[5]+H[8]+J[17]+J[20]+J[32] - logZ ) Pout[74] = exp( +H[2]+H[5]+H[7]+J[17]+J[19]+J[31] - logZ ) Pout[75] = exp( +H[2]+H[5]+H[7]+H[8]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35] - logZ ) Pout[76] = exp( +H[2]+H[5]+H[6]+J[17]+J[18]+J[30] - logZ ) Pout[77] = exp( +H[2]+H[5]+H[6]+H[8]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34] - logZ ) Pout[78] = exp( +H[2]+H[5]+H[6]+H[7]+J[17]+J[18]+J[19]+J[30]+J[31]+J[33] - logZ ) Pout[79] = exp( +H[2]+H[5]+H[6]+H[7]+H[8]+J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[80] = exp( +H[2]+H[4]+J[16] - logZ ) Pout[81] = exp( +H[2]+H[4]+H[8]+J[16]+J[20]+J[29] - logZ ) Pout[82] = exp( +H[2]+H[4]+H[7]+J[16]+J[19]+J[28] - logZ ) Pout[83] = exp( +H[2]+H[4]+H[7]+H[8]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35] - logZ ) Pout[84] = exp( +H[2]+H[4]+H[6]+J[16]+J[18]+J[27] - logZ ) Pout[85] = exp( +H[2]+H[4]+H[6]+H[8]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34] - logZ ) Pout[86] = exp( +H[2]+H[4]+H[6]+H[7]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33] - logZ ) Pout[87] = exp( +H[2]+H[4]+H[6]+H[7]+H[8]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[88] = exp( +H[2]+H[4]+H[5]+J[16]+J[17]+J[26] - logZ ) Pout[89] = exp( +H[2]+H[4]+H[5]+H[8]+J[16]+J[17]+J[20]+J[26]+J[29]+J[32] - logZ ) Pout[90] = exp( +H[2]+H[4]+H[5]+H[7]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31] - logZ ) Pout[91] = exp( +H[2]+H[4]+H[5]+H[7]+H[8]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[92] = exp( +H[2]+H[4]+H[5]+H[6]+J[16]+J[17]+J[18]+J[26]+J[27]+J[30] - logZ ) Pout[93] = exp( +H[2]+H[4]+H[5]+H[6]+H[8]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[94] = exp( +H[2]+H[4]+H[5]+H[6]+H[7]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[95] = exp( +H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[96] = exp( +H[2]+H[3]+J[15] - logZ ) Pout[97] = exp( +H[2]+H[3]+H[8]+J[15]+J[20]+J[25] - logZ ) Pout[98] = exp( +H[2]+H[3]+H[7]+J[15]+J[19]+J[24] - logZ ) Pout[99] = exp( +H[2]+H[3]+H[7]+H[8]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35] - logZ ) Pout[100] = exp( +H[2]+H[3]+H[6]+J[15]+J[18]+J[23] - logZ ) Pout[101] = exp( +H[2]+H[3]+H[6]+H[8]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34] - logZ ) Pout[102] = exp( +H[2]+H[3]+H[6]+H[7]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33] - logZ ) Pout[103] = exp( +H[2]+H[3]+H[6]+H[7]+H[8]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[104] = exp( +H[2]+H[3]+H[5]+J[15]+J[17]+J[22] - logZ ) Pout[105] = exp( +H[2]+H[3]+H[5]+H[8]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32] - logZ ) Pout[106] = exp( +H[2]+H[3]+H[5]+H[7]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31] - logZ ) Pout[107] = exp( +H[2]+H[3]+H[5]+H[7]+H[8]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[108] = exp( +H[2]+H[3]+H[5]+H[6]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30] - logZ ) Pout[109] = exp( +H[2]+H[3]+H[5]+H[6]+H[8]+J[15]+J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[110] = exp( +H[2]+H[3]+H[5]+H[6]+H[7]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[111] = exp( +H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[112] = exp( +H[2]+H[3]+H[4]+J[15]+J[16]+J[21] - logZ ) Pout[113] = exp( +H[2]+H[3]+H[4]+H[8]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29] - logZ ) Pout[114] = exp( +H[2]+H[3]+H[4]+H[7]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28] - logZ ) Pout[115] = exp( +H[2]+H[3]+H[4]+H[7]+H[8]+J[15]+J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[116] = exp( +H[2]+H[3]+H[4]+H[6]+J[15]+J[16]+J[18]+J[21]+J[23]+J[27] - logZ ) Pout[117] = exp( +H[2]+H[3]+H[4]+H[6]+H[8]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[118] = exp( +H[2]+H[3]+H[4]+H[6]+H[7]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[119] = exp( +H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[120] = exp( +H[2]+H[3]+H[4]+H[5]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26] - logZ ) Pout[121] = exp( +H[2]+H[3]+H[4]+H[5]+H[8]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[122] = exp( +H[2]+H[3]+H[4]+H[5]+H[7]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[123] = exp( +H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[15]+J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[124] = exp( +H[2]+H[3]+H[4]+H[5]+H[6]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[125] = exp( +H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[126] = exp( +H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[127] = exp( +H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[128] = exp( +H[1]+0 - logZ ) Pout[129] = exp( +H[1]+H[8]+J[14] - logZ ) Pout[130] = exp( +H[1]+H[7]+J[13] - logZ ) Pout[131] = exp( +H[1]+H[7]+H[8]+J[13]+J[14]+J[35] - logZ ) Pout[132] = exp( +H[1]+H[6]+J[12] - logZ ) Pout[133] = exp( +H[1]+H[6]+H[8]+J[12]+J[14]+J[34] - logZ ) Pout[134] = exp( +H[1]+H[6]+H[7]+J[12]+J[13]+J[33] - logZ ) Pout[135] = exp( +H[1]+H[6]+H[7]+H[8]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35] - logZ ) Pout[136] = exp( +H[1]+H[5]+J[11] - logZ ) Pout[137] = exp( +H[1]+H[5]+H[8]+J[11]+J[14]+J[32] - logZ ) Pout[138] = exp( +H[1]+H[5]+H[7]+J[11]+J[13]+J[31] - logZ ) Pout[139] = exp( +H[1]+H[5]+H[7]+H[8]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35] - logZ ) Pout[140] = exp( +H[1]+H[5]+H[6]+J[11]+J[12]+J[30] - logZ ) Pout[141] = exp( +H[1]+H[5]+H[6]+H[8]+J[11]+J[12]+J[14]+J[30]+J[32]+J[34] - logZ ) Pout[142] = exp( +H[1]+H[5]+H[6]+H[7]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33] - logZ ) Pout[143] = exp( +H[1]+H[5]+H[6]+H[7]+H[8]+J[11]+J[12]+J[13]+J[14]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[144] = exp( +H[1]+H[4]+J[10] - logZ ) Pout[145] = exp( +H[1]+H[4]+H[8]+J[10]+J[14]+J[29] - logZ ) Pout[146] = exp( +H[1]+H[4]+H[7]+J[10]+J[13]+J[28] - logZ ) Pout[147] = exp( +H[1]+H[4]+H[7]+H[8]+J[10]+J[13]+J[14]+J[28]+J[29]+J[35] - logZ ) Pout[148] = exp( +H[1]+H[4]+H[6]+J[10]+J[12]+J[27] - logZ ) Pout[149] = exp( +H[1]+H[4]+H[6]+H[8]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34] - logZ ) Pout[150] = exp( +H[1]+H[4]+H[6]+H[7]+J[10]+J[12]+J[13]+J[27]+J[28]+J[33] - logZ ) Pout[151] = exp( +H[1]+H[4]+H[6]+H[7]+H[8]+J[10]+J[12]+J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[152] = exp( +H[1]+H[4]+H[5]+J[10]+J[11]+J[26] - logZ ) Pout[153] = exp( +H[1]+H[4]+H[5]+H[8]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32] - logZ ) Pout[154] = exp( +H[1]+H[4]+H[5]+H[7]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31] - logZ ) Pout[155] = exp( +H[1]+H[4]+H[5]+H[7]+H[8]+J[10]+J[11]+J[13]+J[14]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[156] = exp( +H[1]+H[4]+H[5]+H[6]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30] - logZ ) Pout[157] = exp( +H[1]+H[4]+H[5]+H[6]+H[8]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[158] = exp( +H[1]+H[4]+H[5]+H[6]+H[7]+J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[159] = exp( +H[1]+H[4]+H[5]+H[6]+H[7]+H[8]+J[10]+J[11]+J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[160] = exp( +H[1]+H[3]+J[9] - logZ ) Pout[161] = exp( +H[1]+H[3]+H[8]+J[9]+J[14]+J[25] - logZ ) Pout[162] = exp( +H[1]+H[3]+H[7]+J[9]+J[13]+J[24] - logZ ) Pout[163] = exp( +H[1]+H[3]+H[7]+H[8]+J[9]+J[13]+J[14]+J[24]+J[25]+J[35] - logZ ) Pout[164] = exp( +H[1]+H[3]+H[6]+J[9]+J[12]+J[23] - logZ ) Pout[165] = exp( +H[1]+H[3]+H[6]+H[8]+J[9]+J[12]+J[14]+J[23]+J[25]+J[34] - logZ ) Pout[166] = exp( +H[1]+H[3]+H[6]+H[7]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33] - logZ ) Pout[167] = exp( +H[1]+H[3]+H[6]+H[7]+H[8]+J[9]+J[12]+J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[168] = exp( +H[1]+H[3]+H[5]+J[9]+J[11]+J[22] - logZ ) Pout[169] = exp( +H[1]+H[3]+H[5]+H[8]+J[9]+J[11]+J[14]+J[22]+J[25]+J[32] - logZ ) Pout[170] = exp( +H[1]+H[3]+H[5]+H[7]+J[9]+J[11]+J[13]+J[22]+J[24]+J[31] - logZ ) Pout[171] = exp( +H[1]+H[3]+H[5]+H[7]+H[8]+J[9]+J[11]+J[13]+J[14]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[172] = exp( +H[1]+H[3]+H[5]+H[6]+J[9]+J[11]+J[12]+J[22]+J[23]+J[30] - logZ ) Pout[173] = exp( +H[1]+H[3]+H[5]+H[6]+H[8]+J[9]+J[11]+J[12]+J[14]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[174] = exp( +H[1]+H[3]+H[5]+H[6]+H[7]+J[9]+J[11]+J[12]+J[13]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[175] = exp( +H[1]+H[3]+H[5]+H[6]+H[7]+H[8]+J[9]+J[11]+J[12]+J[13]+J[14]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[176] = exp( +H[1]+H[3]+H[4]+J[9]+J[10]+J[21] - logZ ) Pout[177] = exp( +H[1]+H[3]+H[4]+H[8]+J[9]+J[10]+J[14]+J[21]+J[25]+J[29] - logZ ) Pout[178] = exp( +H[1]+H[3]+H[4]+H[7]+J[9]+J[10]+J[13]+J[21]+J[24]+J[28] - logZ ) Pout[179] = exp( +H[1]+H[3]+H[4]+H[7]+H[8]+J[9]+J[10]+J[13]+J[14]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[180] = exp( +H[1]+H[3]+H[4]+H[6]+J[9]+J[10]+J[12]+J[21]+J[23]+J[27] - logZ ) Pout[181] = exp( +H[1]+H[3]+H[4]+H[6]+H[8]+J[9]+J[10]+J[12]+J[14]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[182] = exp( +H[1]+H[3]+H[4]+H[6]+H[7]+J[9]+J[10]+J[12]+J[13]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[183] = exp( +H[1]+H[3]+H[4]+H[6]+H[7]+H[8]+J[9]+J[10]+J[12]+J[13]+J[14]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[184] = exp( +H[1]+H[3]+H[4]+H[5]+J[9]+J[10]+J[11]+J[21]+J[22]+J[26] - logZ ) Pout[185] = exp( +H[1]+H[3]+H[4]+H[5]+H[8]+J[9]+J[10]+J[11]+J[14]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[186] = exp( +H[1]+H[3]+H[4]+H[5]+H[7]+J[9]+J[10]+J[11]+J[13]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[187] = exp( +H[1]+H[3]+H[4]+H[5]+H[7]+H[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[188] = exp( +H[1]+H[3]+H[4]+H[5]+H[6]+J[9]+J[10]+J[11]+J[12]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[189] = exp( +H[1]+H[3]+H[4]+H[5]+H[6]+H[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[190] = exp( +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+J[9]+J[10]+J[11]+J[12]+J[13]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[191] = exp( +H[1]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[192] = exp( +H[1]+H[2]+J[8] - logZ ) Pout[193] = exp( +H[1]+H[2]+H[8]+J[8]+J[14]+J[20] - logZ ) Pout[194] = exp( +H[1]+H[2]+H[7]+J[8]+J[13]+J[19] - logZ ) Pout[195] = exp( +H[1]+H[2]+H[7]+H[8]+J[8]+J[13]+J[14]+J[19]+J[20]+J[35] - logZ ) Pout[196] = exp( +H[1]+H[2]+H[6]+J[8]+J[12]+J[18] - logZ ) Pout[197] = exp( +H[1]+H[2]+H[6]+H[8]+J[8]+J[12]+J[14]+J[18]+J[20]+J[34] - logZ ) Pout[198] = exp( +H[1]+H[2]+H[6]+H[7]+J[8]+J[12]+J[13]+J[18]+J[19]+J[33] - logZ ) Pout[199] = exp( +H[1]+H[2]+H[6]+H[7]+H[8]+J[8]+J[12]+J[13]+J[14]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35] - logZ ) Pout[200] = exp( +H[1]+H[2]+H[5]+J[8]+J[11]+J[17] - logZ ) Pout[201] = exp( +H[1]+H[2]+H[5]+H[8]+J[8]+J[11]+J[14]+J[17]+J[20]+J[32] - logZ ) Pout[202] = exp( +H[1]+H[2]+H[5]+H[7]+J[8]+J[11]+J[13]+J[17]+J[19]+J[31] - logZ ) Pout[203] = exp( +H[1]+H[2]+H[5]+H[7]+H[8]+J[8]+J[11]+J[13]+J[14]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35] - logZ ) Pout[204] = exp( +H[1]+H[2]+H[5]+H[6]+J[8]+J[11]+J[12]+J[17]+J[18]+J[30] - logZ ) Pout[205] = exp( +H[1]+H[2]+H[5]+H[6]+H[8]+J[8]+J[11]+J[12]+J[14]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34] - logZ ) Pout[206] = exp( +H[1]+H[2]+H[5]+H[6]+H[7]+J[8]+J[11]+J[12]+J[13]+J[17]+J[18]+J[19]+J[30]+J[31]+J[33] - logZ ) Pout[207] = exp( +H[1]+H[2]+H[5]+H[6]+H[7]+H[8]+J[8]+J[11]+J[12]+J[13]+J[14]+J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[208] = exp( +H[1]+H[2]+H[4]+J[8]+J[10]+J[16] - logZ ) Pout[209] = exp( +H[1]+H[2]+H[4]+H[8]+J[8]+J[10]+J[14]+J[16]+J[20]+J[29] - logZ ) Pout[210] = exp( +H[1]+H[2]+H[4]+H[7]+J[8]+J[10]+J[13]+J[16]+J[19]+J[28] - logZ ) Pout[211] = exp( +H[1]+H[2]+H[4]+H[7]+H[8]+J[8]+J[10]+J[13]+J[14]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35] - logZ ) Pout[212] = exp( +H[1]+H[2]+H[4]+H[6]+J[8]+J[10]+J[12]+J[16]+J[18]+J[27] - logZ ) Pout[213] = exp( +H[1]+H[2]+H[4]+H[6]+H[8]+J[8]+J[10]+J[12]+J[14]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34] - logZ ) Pout[214] = exp( +H[1]+H[2]+H[4]+H[6]+H[7]+J[8]+J[10]+J[12]+J[13]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33] - logZ ) Pout[215] = exp( +H[1]+H[2]+H[4]+H[6]+H[7]+H[8]+J[8]+J[10]+J[12]+J[13]+J[14]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[216] = exp( +H[1]+H[2]+H[4]+H[5]+J[8]+J[10]+J[11]+J[16]+J[17]+J[26] - logZ ) Pout[217] = exp( +H[1]+H[2]+H[4]+H[5]+H[8]+J[8]+J[10]+J[11]+J[14]+J[16]+J[17]+J[20]+J[26]+J[29]+J[32] - logZ ) Pout[218] = exp( +H[1]+H[2]+H[4]+H[5]+H[7]+J[8]+J[10]+J[11]+J[13]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31] - logZ ) Pout[219] = exp( +H[1]+H[2]+H[4]+H[5]+H[7]+H[8]+J[8]+J[10]+J[11]+J[13]+J[14]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[220] = exp( +H[1]+H[2]+H[4]+H[5]+H[6]+J[8]+J[10]+J[11]+J[12]+J[16]+J[17]+J[18]+J[26]+J[27]+J[30] - logZ ) Pout[221] = exp( +H[1]+H[2]+H[4]+H[5]+H[6]+H[8]+J[8]+J[10]+J[11]+J[12]+J[14]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[222] = exp( +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+J[8]+J[10]+J[11]+J[12]+J[13]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[223] = exp( +H[1]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[10]+J[11]+J[12]+J[13]+J[14]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[224] = exp( +H[1]+H[2]+H[3]+J[8]+J[9]+J[15] - logZ ) Pout[225] = exp( +H[1]+H[2]+H[3]+H[8]+J[8]+J[9]+J[14]+J[15]+J[20]+J[25] - logZ ) Pout[226] = exp( +H[1]+H[2]+H[3]+H[7]+J[8]+J[9]+J[13]+J[15]+J[19]+J[24] - logZ ) Pout[227] = exp( +H[1]+H[2]+H[3]+H[7]+H[8]+J[8]+J[9]+J[13]+J[14]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35] - logZ ) Pout[228] = exp( +H[1]+H[2]+H[3]+H[6]+J[8]+J[9]+J[12]+J[15]+J[18]+J[23] - logZ ) Pout[229] = exp( +H[1]+H[2]+H[3]+H[6]+H[8]+J[8]+J[9]+J[12]+J[14]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34] - logZ ) Pout[230] = exp( +H[1]+H[2]+H[3]+H[6]+H[7]+J[8]+J[9]+J[12]+J[13]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33] - logZ ) Pout[231] = exp( +H[1]+H[2]+H[3]+H[6]+H[7]+H[8]+J[8]+J[9]+J[12]+J[13]+J[14]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[232] = exp( +H[1]+H[2]+H[3]+H[5]+J[8]+J[9]+J[11]+J[15]+J[17]+J[22] - logZ ) Pout[233] = exp( +H[1]+H[2]+H[3]+H[5]+H[8]+J[8]+J[9]+J[11]+J[14]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32] - logZ ) Pout[234] = exp( +H[1]+H[2]+H[3]+H[5]+H[7]+J[8]+J[9]+J[11]+J[13]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31] - logZ ) Pout[235] = exp( +H[1]+H[2]+H[3]+H[5]+H[7]+H[8]+J[8]+J[9]+J[11]+J[13]+J[14]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[236] = exp( +H[1]+H[2]+H[3]+H[5]+H[6]+J[8]+J[9]+J[11]+J[12]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30] - logZ ) Pout[237] = exp( +H[1]+H[2]+H[3]+H[5]+H[6]+H[8]+J[8]+J[9]+J[11]+J[12]+J[14]+J[15]+J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[238] = exp( +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+J[8]+J[9]+J[11]+J[12]+J[13]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[239] = exp( +H[1]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[11]+J[12]+J[13]+J[14]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[240] = exp( +H[1]+H[2]+H[3]+H[4]+J[8]+J[9]+J[10]+J[15]+J[16]+J[21] - logZ ) Pout[241] = exp( +H[1]+H[2]+H[3]+H[4]+H[8]+J[8]+J[9]+J[10]+J[14]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29] - logZ ) Pout[242] = exp( +H[1]+H[2]+H[3]+H[4]+H[7]+J[8]+J[9]+J[10]+J[13]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28] - logZ ) Pout[243] = exp( +H[1]+H[2]+H[3]+H[4]+H[7]+H[8]+J[8]+J[9]+J[10]+J[13]+J[14]+J[15]+J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[244] = exp( +H[1]+H[2]+H[3]+H[4]+H[6]+J[8]+J[9]+J[10]+J[12]+J[15]+J[16]+J[18]+J[21]+J[23]+J[27] - logZ ) Pout[245] = exp( +H[1]+H[2]+H[3]+H[4]+H[6]+H[8]+J[8]+J[9]+J[10]+J[12]+J[14]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[246] = exp( +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+J[8]+J[9]+J[10]+J[12]+J[13]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[247] = exp( +H[1]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+J[12]+J[13]+J[14]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[248] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+J[8]+J[9]+J[10]+J[11]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26] - logZ ) Pout[249] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[8]+J[8]+J[9]+J[10]+J[11]+J[14]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[250] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+J[8]+J[9]+J[10]+J[11]+J[13]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[251] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[13]+J[14]+J[15]+J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[252] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+J[8]+J[9]+J[10]+J[11]+J[12]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[253] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[14]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[254] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[255] = exp( +H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[8]+J[9]+J[10]+J[11]+J[12]+J[13]+J[14]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[256] = exp( +H[0]+0 - logZ ) Pout[257] = exp( +H[0]+H[8]+J[7] - logZ ) Pout[258] = exp( +H[0]+H[7]+J[6] - logZ ) Pout[259] = exp( +H[0]+H[7]+H[8]+J[6]+J[7]+J[35] - logZ ) Pout[260] = exp( +H[0]+H[6]+J[5] - logZ ) Pout[261] = exp( +H[0]+H[6]+H[8]+J[5]+J[7]+J[34] - logZ ) Pout[262] = exp( +H[0]+H[6]+H[7]+J[5]+J[6]+J[33] - logZ ) Pout[263] = exp( +H[0]+H[6]+H[7]+H[8]+J[5]+J[6]+J[7]+J[33]+J[34]+J[35] - logZ ) Pout[264] = exp( +H[0]+H[5]+J[4] - logZ ) Pout[265] = exp( +H[0]+H[5]+H[8]+J[4]+J[7]+J[32] - logZ ) Pout[266] = exp( +H[0]+H[5]+H[7]+J[4]+J[6]+J[31] - logZ ) Pout[267] = exp( +H[0]+H[5]+H[7]+H[8]+J[4]+J[6]+J[7]+J[31]+J[32]+J[35] - logZ ) Pout[268] = exp( +H[0]+H[5]+H[6]+J[4]+J[5]+J[30] - logZ ) Pout[269] = exp( +H[0]+H[5]+H[6]+H[8]+J[4]+J[5]+J[7]+J[30]+J[32]+J[34] - logZ ) Pout[270] = exp( +H[0]+H[5]+H[6]+H[7]+J[4]+J[5]+J[6]+J[30]+J[31]+J[33] - logZ ) Pout[271] = exp( +H[0]+H[5]+H[6]+H[7]+H[8]+J[4]+J[5]+J[6]+J[7]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[272] = exp( +H[0]+H[4]+J[3] - logZ ) Pout[273] = exp( +H[0]+H[4]+H[8]+J[3]+J[7]+J[29] - logZ ) Pout[274] = exp( +H[0]+H[4]+H[7]+J[3]+J[6]+J[28] - logZ ) Pout[275] = exp( +H[0]+H[4]+H[7]+H[8]+J[3]+J[6]+J[7]+J[28]+J[29]+J[35] - logZ ) Pout[276] = exp( +H[0]+H[4]+H[6]+J[3]+J[5]+J[27] - logZ ) Pout[277] = exp( +H[0]+H[4]+H[6]+H[8]+J[3]+J[5]+J[7]+J[27]+J[29]+J[34] - logZ ) Pout[278] = exp( +H[0]+H[4]+H[6]+H[7]+J[3]+J[5]+J[6]+J[27]+J[28]+J[33] - logZ ) Pout[279] = exp( +H[0]+H[4]+H[6]+H[7]+H[8]+J[3]+J[5]+J[6]+J[7]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[280] = exp( +H[0]+H[4]+H[5]+J[3]+J[4]+J[26] - logZ ) Pout[281] = exp( +H[0]+H[4]+H[5]+H[8]+J[3]+J[4]+J[7]+J[26]+J[29]+J[32] - logZ ) Pout[282] = exp( +H[0]+H[4]+H[5]+H[7]+J[3]+J[4]+J[6]+J[26]+J[28]+J[31] - logZ ) Pout[283] = exp( +H[0]+H[4]+H[5]+H[7]+H[8]+J[3]+J[4]+J[6]+J[7]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[284] = exp( +H[0]+H[4]+H[5]+H[6]+J[3]+J[4]+J[5]+J[26]+J[27]+J[30] - logZ ) Pout[285] = exp( +H[0]+H[4]+H[5]+H[6]+H[8]+J[3]+J[4]+J[5]+J[7]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[286] = exp( +H[0]+H[4]+H[5]+H[6]+H[7]+J[3]+J[4]+J[5]+J[6]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[287] = exp( +H[0]+H[4]+H[5]+H[6]+H[7]+H[8]+J[3]+J[4]+J[5]+J[6]+J[7]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[288] = exp( +H[0]+H[3]+J[2] - logZ ) Pout[289] = exp( +H[0]+H[3]+H[8]+J[2]+J[7]+J[25] - logZ ) Pout[290] = exp( +H[0]+H[3]+H[7]+J[2]+J[6]+J[24] - logZ ) Pout[291] = exp( +H[0]+H[3]+H[7]+H[8]+J[2]+J[6]+J[7]+J[24]+J[25]+J[35] - logZ ) Pout[292] = exp( +H[0]+H[3]+H[6]+J[2]+J[5]+J[23] - logZ ) Pout[293] = exp( +H[0]+H[3]+H[6]+H[8]+J[2]+J[5]+J[7]+J[23]+J[25]+J[34] - logZ ) Pout[294] = exp( +H[0]+H[3]+H[6]+H[7]+J[2]+J[5]+J[6]+J[23]+J[24]+J[33] - logZ ) Pout[295] = exp( +H[0]+H[3]+H[6]+H[7]+H[8]+J[2]+J[5]+J[6]+J[7]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[296] = exp( +H[0]+H[3]+H[5]+J[2]+J[4]+J[22] - logZ ) Pout[297] = exp( +H[0]+H[3]+H[5]+H[8]+J[2]+J[4]+J[7]+J[22]+J[25]+J[32] - logZ ) Pout[298] = exp( +H[0]+H[3]+H[5]+H[7]+J[2]+J[4]+J[6]+J[22]+J[24]+J[31] - logZ ) Pout[299] = exp( +H[0]+H[3]+H[5]+H[7]+H[8]+J[2]+J[4]+J[6]+J[7]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[300] = exp( +H[0]+H[3]+H[5]+H[6]+J[2]+J[4]+J[5]+J[22]+J[23]+J[30] - logZ ) Pout[301] = exp( +H[0]+H[3]+H[5]+H[6]+H[8]+J[2]+J[4]+J[5]+J[7]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[302] = exp( +H[0]+H[3]+H[5]+H[6]+H[7]+J[2]+J[4]+J[5]+J[6]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[303] = exp( +H[0]+H[3]+H[5]+H[6]+H[7]+H[8]+J[2]+J[4]+J[5]+J[6]+J[7]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[304] = exp( +H[0]+H[3]+H[4]+J[2]+J[3]+J[21] - logZ ) Pout[305] = exp( +H[0]+H[3]+H[4]+H[8]+J[2]+J[3]+J[7]+J[21]+J[25]+J[29] - logZ ) Pout[306] = exp( +H[0]+H[3]+H[4]+H[7]+J[2]+J[3]+J[6]+J[21]+J[24]+J[28] - logZ ) Pout[307] = exp( +H[0]+H[3]+H[4]+H[7]+H[8]+J[2]+J[3]+J[6]+J[7]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[308] = exp( +H[0]+H[3]+H[4]+H[6]+J[2]+J[3]+J[5]+J[21]+J[23]+J[27] - logZ ) Pout[309] = exp( +H[0]+H[3]+H[4]+H[6]+H[8]+J[2]+J[3]+J[5]+J[7]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[310] = exp( +H[0]+H[3]+H[4]+H[6]+H[7]+J[2]+J[3]+J[5]+J[6]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[311] = exp( +H[0]+H[3]+H[4]+H[6]+H[7]+H[8]+J[2]+J[3]+J[5]+J[6]+J[7]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[312] = exp( +H[0]+H[3]+H[4]+H[5]+J[2]+J[3]+J[4]+J[21]+J[22]+J[26] - logZ ) Pout[313] = exp( +H[0]+H[3]+H[4]+H[5]+H[8]+J[2]+J[3]+J[4]+J[7]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[314] = exp( +H[0]+H[3]+H[4]+H[5]+H[7]+J[2]+J[3]+J[4]+J[6]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[315] = exp( +H[0]+H[3]+H[4]+H[5]+H[7]+H[8]+J[2]+J[3]+J[4]+J[6]+J[7]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[316] = exp( +H[0]+H[3]+H[4]+H[5]+H[6]+J[2]+J[3]+J[4]+J[5]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[317] = exp( +H[0]+H[3]+H[4]+H[5]+H[6]+H[8]+J[2]+J[3]+J[4]+J[5]+J[7]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[318] = exp( +H[0]+H[3]+H[4]+H[5]+H[6]+H[7]+J[2]+J[3]+J[4]+J[5]+J[6]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[319] = exp( +H[0]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[320] = exp( +H[0]+H[2]+J[1] - logZ ) Pout[321] = exp( +H[0]+H[2]+H[8]+J[1]+J[7]+J[20] - logZ ) Pout[322] = exp( +H[0]+H[2]+H[7]+J[1]+J[6]+J[19] - logZ ) Pout[323] = exp( +H[0]+H[2]+H[7]+H[8]+J[1]+J[6]+J[7]+J[19]+J[20]+J[35] - logZ ) Pout[324] = exp( +H[0]+H[2]+H[6]+J[1]+J[5]+J[18] - logZ ) Pout[325] = exp( +H[0]+H[2]+H[6]+H[8]+J[1]+J[5]+J[7]+J[18]+J[20]+J[34] - logZ ) Pout[326] = exp( +H[0]+H[2]+H[6]+H[7]+J[1]+J[5]+J[6]+J[18]+J[19]+J[33] - logZ ) Pout[327] = exp( +H[0]+H[2]+H[6]+H[7]+H[8]+J[1]+J[5]+J[6]+J[7]+J[18]+J[19]+J[20]+J[33]+J[34]+J[35] - logZ ) Pout[328] = exp( +H[0]+H[2]+H[5]+J[1]+J[4]+J[17] - logZ ) Pout[329] = exp( +H[0]+H[2]+H[5]+H[8]+J[1]+J[4]+J[7]+J[17]+J[20]+J[32] - logZ ) Pout[330] = exp( +H[0]+H[2]+H[5]+H[7]+J[1]+J[4]+J[6]+J[17]+J[19]+J[31] - logZ ) Pout[331] = exp( +H[0]+H[2]+H[5]+H[7]+H[8]+J[1]+J[4]+J[6]+J[7]+J[17]+J[19]+J[20]+J[31]+J[32]+J[35] - logZ ) Pout[332] = exp( +H[0]+H[2]+H[5]+H[6]+J[1]+J[4]+J[5]+J[17]+J[18]+J[30] - logZ ) Pout[333] = exp( +H[0]+H[2]+H[5]+H[6]+H[8]+J[1]+J[4]+J[5]+J[7]+J[17]+J[18]+J[20]+J[30]+J[32]+J[34] - logZ ) Pout[334] = exp( +H[0]+H[2]+H[5]+H[6]+H[7]+J[1]+J[4]+J[5]+J[6]+J[17]+J[18]+J[19]+J[30]+J[31]+J[33] - logZ ) Pout[335] = exp( +H[0]+H[2]+H[5]+H[6]+H[7]+H[8]+J[1]+J[4]+J[5]+J[6]+J[7]+J[17]+J[18]+J[19]+J[20]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[336] = exp( +H[0]+H[2]+H[4]+J[1]+J[3]+J[16] - logZ ) Pout[337] = exp( +H[0]+H[2]+H[4]+H[8]+J[1]+J[3]+J[7]+J[16]+J[20]+J[29] - logZ ) Pout[338] = exp( +H[0]+H[2]+H[4]+H[7]+J[1]+J[3]+J[6]+J[16]+J[19]+J[28] - logZ ) Pout[339] = exp( +H[0]+H[2]+H[4]+H[7]+H[8]+J[1]+J[3]+J[6]+J[7]+J[16]+J[19]+J[20]+J[28]+J[29]+J[35] - logZ ) Pout[340] = exp( +H[0]+H[2]+H[4]+H[6]+J[1]+J[3]+J[5]+J[16]+J[18]+J[27] - logZ ) Pout[341] = exp( +H[0]+H[2]+H[4]+H[6]+H[8]+J[1]+J[3]+J[5]+J[7]+J[16]+J[18]+J[20]+J[27]+J[29]+J[34] - logZ ) Pout[342] = exp( +H[0]+H[2]+H[4]+H[6]+H[7]+J[1]+J[3]+J[5]+J[6]+J[16]+J[18]+J[19]+J[27]+J[28]+J[33] - logZ ) Pout[343] = exp( +H[0]+H[2]+H[4]+H[6]+H[7]+H[8]+J[1]+J[3]+J[5]+J[6]+J[7]+J[16]+J[18]+J[19]+J[20]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[344] = exp( +H[0]+H[2]+H[4]+H[5]+J[1]+J[3]+J[4]+J[16]+J[17]+J[26] - logZ ) Pout[345] = exp( +H[0]+H[2]+H[4]+H[5]+H[8]+J[1]+J[3]+J[4]+J[7]+J[16]+J[17]+J[20]+J[26]+J[29]+J[32] - logZ ) Pout[346] = exp( +H[0]+H[2]+H[4]+H[5]+H[7]+J[1]+J[3]+J[4]+J[6]+J[16]+J[17]+J[19]+J[26]+J[28]+J[31] - logZ ) Pout[347] = exp( +H[0]+H[2]+H[4]+H[5]+H[7]+H[8]+J[1]+J[3]+J[4]+J[6]+J[7]+J[16]+J[17]+J[19]+J[20]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[348] = exp( +H[0]+H[2]+H[4]+H[5]+H[6]+J[1]+J[3]+J[4]+J[5]+J[16]+J[17]+J[18]+J[26]+J[27]+J[30] - logZ ) Pout[349] = exp( +H[0]+H[2]+H[4]+H[5]+H[6]+H[8]+J[1]+J[3]+J[4]+J[5]+J[7]+J[16]+J[17]+J[18]+J[20]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[350] = exp( +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+J[1]+J[3]+J[4]+J[5]+J[6]+J[16]+J[17]+J[18]+J[19]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[351] = exp( +H[0]+H[2]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[3]+J[4]+J[5]+J[6]+J[7]+J[16]+J[17]+J[18]+J[19]+J[20]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[352] = exp( +H[0]+H[2]+H[3]+J[1]+J[2]+J[15] - logZ ) Pout[353] = exp( +H[0]+H[2]+H[3]+H[8]+J[1]+J[2]+J[7]+J[15]+J[20]+J[25] - logZ ) Pout[354] = exp( +H[0]+H[2]+H[3]+H[7]+J[1]+J[2]+J[6]+J[15]+J[19]+J[24] - logZ ) Pout[355] = exp( +H[0]+H[2]+H[3]+H[7]+H[8]+J[1]+J[2]+J[6]+J[7]+J[15]+J[19]+J[20]+J[24]+J[25]+J[35] - logZ ) Pout[356] = exp( +H[0]+H[2]+H[3]+H[6]+J[1]+J[2]+J[5]+J[15]+J[18]+J[23] - logZ ) Pout[357] = exp( +H[0]+H[2]+H[3]+H[6]+H[8]+J[1]+J[2]+J[5]+J[7]+J[15]+J[18]+J[20]+J[23]+J[25]+J[34] - logZ ) Pout[358] = exp( +H[0]+H[2]+H[3]+H[6]+H[7]+J[1]+J[2]+J[5]+J[6]+J[15]+J[18]+J[19]+J[23]+J[24]+J[33] - logZ ) Pout[359] = exp( +H[0]+H[2]+H[3]+H[6]+H[7]+H[8]+J[1]+J[2]+J[5]+J[6]+J[7]+J[15]+J[18]+J[19]+J[20]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[360] = exp( +H[0]+H[2]+H[3]+H[5]+J[1]+J[2]+J[4]+J[15]+J[17]+J[22] - logZ ) Pout[361] = exp( +H[0]+H[2]+H[3]+H[5]+H[8]+J[1]+J[2]+J[4]+J[7]+J[15]+J[17]+J[20]+J[22]+J[25]+J[32] - logZ ) Pout[362] = exp( +H[0]+H[2]+H[3]+H[5]+H[7]+J[1]+J[2]+J[4]+J[6]+J[15]+J[17]+J[19]+J[22]+J[24]+J[31] - logZ ) Pout[363] = exp( +H[0]+H[2]+H[3]+H[5]+H[7]+H[8]+J[1]+J[2]+J[4]+J[6]+J[7]+J[15]+J[17]+J[19]+J[20]+J[22]+J[24]+J[25]+J[31]+J[32]+J[35] - logZ ) Pout[364] = exp( +H[0]+H[2]+H[3]+H[5]+H[6]+J[1]+J[2]+J[4]+J[5]+J[15]+J[17]+J[18]+J[22]+J[23]+J[30] - logZ ) Pout[365] = exp( +H[0]+H[2]+H[3]+H[5]+H[6]+H[8]+J[1]+J[2]+J[4]+J[5]+J[7]+J[15]+J[17]+J[18]+J[20]+J[22]+J[23]+J[25]+J[30]+J[32]+J[34] - logZ ) Pout[366] = exp( +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+J[1]+J[2]+J[4]+J[5]+J[6]+J[15]+J[17]+J[18]+J[19]+J[22]+J[23]+J[24]+J[30]+J[31]+J[33] - logZ ) Pout[367] = exp( +H[0]+H[2]+H[3]+H[5]+H[6]+H[7]+H[8]+J[1]+J[2]+J[4]+J[5]+J[6]+J[7]+J[15]+J[17]+J[18]+J[19]+J[20]+J[22]+J[23]+J[24]+J[25]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[368] = exp( +H[0]+H[2]+H[3]+H[4]+J[1]+J[2]+J[3]+J[15]+J[16]+J[21] - logZ ) Pout[369] = exp( +H[0]+H[2]+H[3]+H[4]+H[8]+J[1]+J[2]+J[3]+J[7]+J[15]+J[16]+J[20]+J[21]+J[25]+J[29] - logZ ) Pout[370] = exp( +H[0]+H[2]+H[3]+H[4]+H[7]+J[1]+J[2]+J[3]+J[6]+J[15]+J[16]+J[19]+J[21]+J[24]+J[28] - logZ ) Pout[371] = exp( +H[0]+H[2]+H[3]+H[4]+H[7]+H[8]+J[1]+J[2]+J[3]+J[6]+J[7]+J[15]+J[16]+J[19]+J[20]+J[21]+J[24]+J[25]+J[28]+J[29]+J[35] - logZ ) Pout[372] = exp( +H[0]+H[2]+H[3]+H[4]+H[6]+J[1]+J[2]+J[3]+J[5]+J[15]+J[16]+J[18]+J[21]+J[23]+J[27] - logZ ) Pout[373] = exp( +H[0]+H[2]+H[3]+H[4]+H[6]+H[8]+J[1]+J[2]+J[3]+J[5]+J[7]+J[15]+J[16]+J[18]+J[20]+J[21]+J[23]+J[25]+J[27]+J[29]+J[34] - logZ ) Pout[374] = exp( +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+J[1]+J[2]+J[3]+J[5]+J[6]+J[15]+J[16]+J[18]+J[19]+J[21]+J[23]+J[24]+J[27]+J[28]+J[33] - logZ ) Pout[375] = exp( +H[0]+H[2]+H[3]+H[4]+H[6]+H[7]+H[8]+J[1]+J[2]+J[3]+J[5]+J[6]+J[7]+J[15]+J[16]+J[18]+J[19]+J[20]+J[21]+J[23]+J[24]+J[25]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[376] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+J[1]+J[2]+J[3]+J[4]+J[15]+J[16]+J[17]+J[21]+J[22]+J[26] - logZ ) Pout[377] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[8]+J[1]+J[2]+J[3]+J[4]+J[7]+J[15]+J[16]+J[17]+J[20]+J[21]+J[22]+J[25]+J[26]+J[29]+J[32] - logZ ) Pout[378] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+J[1]+J[2]+J[3]+J[4]+J[6]+J[15]+J[16]+J[17]+J[19]+J[21]+J[22]+J[24]+J[26]+J[28]+J[31] - logZ ) Pout[379] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[6]+J[7]+J[15]+J[16]+J[17]+J[19]+J[20]+J[21]+J[22]+J[24]+J[25]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[380] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+J[1]+J[2]+J[3]+J[4]+J[5]+J[15]+J[16]+J[17]+J[18]+J[21]+J[22]+J[23]+J[26]+J[27]+J[30] - logZ ) Pout[381] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[7]+J[15]+J[16]+J[17]+J[18]+J[20]+J[21]+J[22]+J[23]+J[25]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[382] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+J[1]+J[2]+J[3]+J[4]+J[5]+J[6]+J[15]+J[16]+J[17]+J[18]+J[19]+J[21]+J[22]+J[23]+J[24]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[383] = exp( +H[0]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7]+H[8]+J[1]+J[2]+J[3]+J[4]+J[5]+J[6]+J[7]+J[15]+J[16]+J[17]+J[18]+J[19]+J[20]+J[21]+J[22]+J[23]+J[24]+J[25]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[384] = exp( +H[0]+H[1]+J[0] - logZ ) Pout[385] = exp( +H[0]+H[1]+H[8]+J[0]+J[7]+J[14] - logZ ) Pout[386] = exp( +H[0]+H[1]+H[7]+J[0]+J[6]+J[13] - logZ ) Pout[387] = exp( +H[0]+H[1]+H[7]+H[8]+J[0]+J[6]+J[7]+J[13]+J[14]+J[35] - logZ ) Pout[388] = exp( +H[0]+H[1]+H[6]+J[0]+J[5]+J[12] - logZ ) Pout[389] = exp( +H[0]+H[1]+H[6]+H[8]+J[0]+J[5]+J[7]+J[12]+J[14]+J[34] - logZ ) Pout[390] = exp( +H[0]+H[1]+H[6]+H[7]+J[0]+J[5]+J[6]+J[12]+J[13]+J[33] - logZ ) Pout[391] = exp( +H[0]+H[1]+H[6]+H[7]+H[8]+J[0]+J[5]+J[6]+J[7]+J[12]+J[13]+J[14]+J[33]+J[34]+J[35] - logZ ) Pout[392] = exp( +H[0]+H[1]+H[5]+J[0]+J[4]+J[11] - logZ ) Pout[393] = exp( +H[0]+H[1]+H[5]+H[8]+J[0]+J[4]+J[7]+J[11]+J[14]+J[32] - logZ ) Pout[394] = exp( +H[0]+H[1]+H[5]+H[7]+J[0]+J[4]+J[6]+J[11]+J[13]+J[31] - logZ ) Pout[395] = exp( +H[0]+H[1]+H[5]+H[7]+H[8]+J[0]+J[4]+J[6]+J[7]+J[11]+J[13]+J[14]+J[31]+J[32]+J[35] - logZ ) Pout[396] = exp( +H[0]+H[1]+H[5]+H[6]+J[0]+J[4]+J[5]+J[11]+J[12]+J[30] - logZ ) Pout[397] = exp( +H[0]+H[1]+H[5]+H[6]+H[8]+J[0]+J[4]+J[5]+J[7]+J[11]+J[12]+J[14]+J[30]+J[32]+J[34] - logZ ) Pout[398] = exp( +H[0]+H[1]+H[5]+H[6]+H[7]+J[0]+J[4]+J[5]+J[6]+J[11]+J[12]+J[13]+J[30]+J[31]+J[33] - logZ ) Pout[399] = exp( +H[0]+H[1]+H[5]+H[6]+H[7]+H[8]+J[0]+J[4]+J[5]+J[6]+J[7]+J[11]+J[12]+J[13]+J[14]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[400] = exp( +H[0]+H[1]+H[4]+J[0]+J[3]+J[10] - logZ ) Pout[401] = exp( +H[0]+H[1]+H[4]+H[8]+J[0]+J[3]+J[7]+J[10]+J[14]+J[29] - logZ ) Pout[402] = exp( +H[0]+H[1]+H[4]+H[7]+J[0]+J[3]+J[6]+J[10]+J[13]+J[28] - logZ ) Pout[403] = exp( +H[0]+H[1]+H[4]+H[7]+H[8]+J[0]+J[3]+J[6]+J[7]+J[10]+J[13]+J[14]+J[28]+J[29]+J[35] - logZ ) Pout[404] = exp( +H[0]+H[1]+H[4]+H[6]+J[0]+J[3]+J[5]+J[10]+J[12]+J[27] - logZ ) Pout[405] = exp( +H[0]+H[1]+H[4]+H[6]+H[8]+J[0]+J[3]+J[5]+J[7]+J[10]+J[12]+J[14]+J[27]+J[29]+J[34] - logZ ) Pout[406] = exp( +H[0]+H[1]+H[4]+H[6]+H[7]+J[0]+J[3]+J[5]+J[6]+J[10]+J[12]+J[13]+J[27]+J[28]+J[33] - logZ ) Pout[407] = exp( +H[0]+H[1]+H[4]+H[6]+H[7]+H[8]+J[0]+J[3]+J[5]+J[6]+J[7]+J[10]+J[12]+J[13]+J[14]+J[27]+J[28]+J[29]+J[33]+J[34]+J[35] - logZ ) Pout[408] = exp( +H[0]+H[1]+H[4]+H[5]+J[0]+J[3]+J[4]+J[10]+J[11]+J[26] - logZ ) Pout[409] = exp( +H[0]+H[1]+H[4]+H[5]+H[8]+J[0]+J[3]+J[4]+J[7]+J[10]+J[11]+J[14]+J[26]+J[29]+J[32] - logZ ) Pout[410] = exp( +H[0]+H[1]+H[4]+H[5]+H[7]+J[0]+J[3]+J[4]+J[6]+J[10]+J[11]+J[13]+J[26]+J[28]+J[31] - logZ ) Pout[411] = exp( +H[0]+H[1]+H[4]+H[5]+H[7]+H[8]+J[0]+J[3]+J[4]+J[6]+J[7]+J[10]+J[11]+J[13]+J[14]+J[26]+J[28]+J[29]+J[31]+J[32]+J[35] - logZ ) Pout[412] = exp( +H[0]+H[1]+H[4]+H[5]+H[6]+J[0]+J[3]+J[4]+J[5]+J[10]+J[11]+J[12]+J[26]+J[27]+J[30] - logZ ) Pout[413] = exp( +H[0]+H[1]+H[4]+H[5]+H[6]+H[8]+J[0]+J[3]+J[4]+J[5]+J[7]+J[10]+J[11]+J[12]+J[14]+J[26]+J[27]+J[29]+J[30]+J[32]+J[34] - logZ ) Pout[414] = exp( +H[0]+H[1]+H[4]+H[5]+H[6]+H[7]+J[0]+J[3]+J[4]+J[5]+J[6]+J[10]+J[11]+J[12]+J[13]+J[26]+J[27]+J[28]+J[30]+J[31]+J[33] - logZ ) Pout[415] = exp( +H[0]+H[1]+H[4]+H[5]+H[6]+H[7]+H[8]+J[0]+J[3]+J[4]+J[5]+J[6]+J[7]+J[10]+J[11]+J[12]+J[13]+J[14]+J[26]+J[27]+J[28]+J[29]+J[30]+J[31]+J[32]+J[33]+J[34]+J[35] - logZ ) Pout[416] = exp( +H[0]+H[1]+H[3]+J[0]+J[2]+J[9] - logZ ) Pout[417] = exp( +H[0]+H[1]+H[3]+H[8]+J[0]+J[2]+J[7]+J[9]+J[14]+J[25] - logZ ) Pout[418] = exp( +H[0]+H[1]+H[3]+H[7]+J[0]+J[2]+J[6]+J[9]+J[13]+J[24] - logZ ) Pout[419] = exp( +H[0]+H[1]+H[3]+H[7]+H[8]+J[0]+J[2]+J[6]+J[7]+J[9]+J[13]+J[14]+J[24]+J[25]+J[35] - logZ ) Pout[420] = exp( +H[0]+H[1]+H[3]+H[6]+J[0]+J[2]+J[5]+J[9]+J[12]+J[23] - logZ ) Pout[421] = exp( +H[0]+H[1]+H[3]+H[6]+H[8]+J[0]+J[2]+J[5]+J[7]+J[9]+J[12]+J[14]+J[23]+J[25]+J[34] - logZ ) Pout[422] = exp( +H[0]+H[1]+H[3]+H[6]+H[7]+J[0]+J[2]+J[5]+J[6]+J[9]+J[12]+J[13]+J[23]+J[24]+J[33] - logZ ) Pout[423] = exp( +H[0]+H[1]+H[3]+H[6]+H[7]+H[8]+J[0]+J[2]+J[5]+J[6]+J[7]+J[9]+J[12]+J[13]+J[14]+J[23]+J[24]+J[25]+J[33]+J[34]+J[35] - logZ ) Pout[424] =
exp( +H[0]+H[1]+H[3]+H[5]+J[0]+J[2]+J[4]+J[9]+J[11]+J[22] - logZ )
numpy.exp
import pandas as pd import sys import sqlite3 import urllib import os from multiprocessing import Pool import numpy as np data = pd.read_csv("../data/complete_smiles.csv") data["is_np"] = pd.read_csv("../data/coconut_decoy.csv", usecols=["is_np"]) data = data[data.is_np==0] zinc_id = list() for i, smiles in enumerate(data.smiles): print(i) try: zinc_id.append( get_zincid_from_smile(smiles)[0] ) except: zinc_id.append(None) zinc_fast(data.smiles.iloc[0]) a_pool = Pool(30) result = a_pool.map(zinc_fast,data.smiles.tolist()) result = np.array(result) np.sum(result==None) data.loc[data.is_np==0,["ZINC_ID"]] = result data.to_csv("../data/publish_data.csv", index =False) check = data.loc[data["is_np"]==0, ["smiles","ZINC_ID"]] () np.sum(result== None) check[check.ZINC_ID.isna()].iloc[1,0] a_pool = Pool(30) result2 = a_pool.map(zinc_fast,check[check.ZINC_ID.isna()].smiles.tolist()) result2 = np.array(result2) check.loc[check.ZINC_ID.isna(),"ZINC_ID"] =result2
np.sum(result2==None)
numpy.sum
""" Power Flow Analysis: Support Functions Created By: <NAME> <NAME> """ import numpy as np from numpy.linalg import inv import pandas as pd """ Imports Bus and line data from excel sheets Takes in an array containing ['File Location', 'Sheet Name'] Returns two panda data frames for the bus and line data """ def import_BusAndLineData(BusData_Location, LineData_Location): BusData = pd.read_excel(BusData_Location[0], sheet_name=BusData_Location[1]) LineData = pd.read_excel(LineData_Location[0], sheet_name=LineData_Location[1]) return BusData, LineData """ Builds G and B matrices to be used in Power Flow calculations Takes in data frame containing all line information, and number of busses in system Returns G and B arrays """ def build_AdmittanceMatrix(LineData, sys_Size): col = np.array(LineData.columns) line_From = np.array(LineData[col[0]]) line_To = np.array(LineData[col[1]]) line_R = np.array(LineData[col[2]]) line_X = np.array(LineData[col[3]]) line_Z = np.array(LineData[col[2]]) + 1j*np.array(LineData[col[3]]) line_Y = 1/line_Z line_B = np.array(LineData[col[4]]) line_Fmax = np.array(LineData[col[5]]) sys_Y = np.array([[0 for j in range(sys_Size)] for i in range(sys_Size)], dtype = complex) sys_G = np.zeros((sys_Size, sys_Size)) sys_B = np.zeros((sys_Size, sys_Size)) #X_ij for i in range(sys_Size): #Row for j in range(sys_Size): #Column if i==j: # Diagonal, sum of Y(From==i || To==i) + .5B(From==i || To ==i) sys_Y[i][j] = np.sum(line_Y[np.array(line_From==i+1) + np.array(line_To==i+1)]) \ +.5j*np.sum(line_B[np.array(line_From==i+1) + np.array(line_To==i+1)]) elif i<j: #Non Diagonal, -Y(From==i && To==j) sys_Y[i][j] = -np.sum(line_Y[np.multiply(np.array(line_From==i+1), np.array(line_To==j+1))]) else: #i>j =[j][i] sys_Y[i][j] = sys_Y[j][i] sys_G = sys_Y.real sys_B = sys_Y.imag return sys_Y, sys_G, sys_B """ Parses intial bus information from data Takes in Bus Data data frame Returns sys_: LoadP - active power consumed at node LoadQ - reactive power consumed at node BusType - type of bus<(S)lack, (G)enerator, (D)rain> PGen - Active Power produced by each generator node VRef - Reference voltages at PV busses """ def init_BusData(BusData): col = np.array(BusData.columns) sys_BusNum = np.array(BusData[col[0]]) sys_LoadP = np.array(BusData[col[1]]) sys_LoadQ = np.array(BusData[col[2]]) sys_BusType = np.array(BusData[col[3]]) sys_PGen = np.array(BusData[col[4]]) sys_VRef = np.array(BusData[col[5]]) return sys_BusNum, sys_LoadP, sys_LoadQ, sys_BusType, sys_PGen, sys_VRef """ Initializes System Data for processing Takes in sys_: LoadP - active power consumed at node LoadQ - reactive power consumed at node BusType - type of bus<(S)lack, (G)enerator, (D)rain> PGen - Active Power produced by each generator node VRef - Reference voltages at PV busses Returns a 2D array containing each buses's current information [i,:] - Bus i's information [:,0] - Bus # [:,1] - Voltage (V) [:,2] - Angle (T) [:,3] - Active Power (P_inj) [:,4] - P(T,V)-P_inj (mismatch) [:,5] - Reactive Power (Q_inj) [:,6] - Q(T,V)-Q_inj (mismatch) """ def init_SysData(sys_BusNum, sys_LoadP, sys_LoadQ, sys_BusType, sys_PGen, sys_VRef, sys_G, sys_B, S_Base): n= sys_LoadP.size sys_Data = np.zeros((n,7)) sys_Data[:,0] = sys_BusNum sys_Data[:,1] = sys_VRef #Sets initial voltages to provided reference sys_Data[:,2] = np.zeros(n) #Sets initial angles to zero sys_Data[:,3] = (sys_PGen-sys_LoadP)/S_Base #Sets initial power inject to Bus generation minus load in per unit sys_Data[sys_BusType=='S',3] = (np.sum(sys_LoadP)-np.sum(sys_PGen))/S_Base #Sets initial guess for active power required from slack bus sys_Data[:,5] = (-sys_LoadQ)/S_Base #Sets initial power inject to Bus generation minus load in per unit sys_Data[sys_BusType=='S',5] = (-np.sum(sys_LoadQ))/S_Base #Sets initial guess for reactive power required from slack bus for i in range(n): #Sets initial mismatch to calculated power from (V,T) minus expected inject sys_Data[i,4] = -sys_Data[i,3] sys_Data[i,6] = -sys_Data[i,5] for j in range(n): sys_Data[i,4] += sys_Data[i,1]*sys_Data[j,1]*\ (sys_G[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2])+\ sys_B[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2])) sys_Data[i,6] += sys_Data[i,1]*sys_Data[j,1]*\ (sys_G[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2])-\ sys_B[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2])) return sys_Data """ Determines Jacobian value for a given J_11 cell (dP/dT) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_11(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = -Q_i - B_ij*(V_i**2) else: J_ij = V_i*V_j*(G_ij*np.sin(T_i-T_j)-B_ij*np.cos(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_12 cell (dP/dV) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_12(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = (P_i/V_i) + G_ij*V_i else: J_ij = V_i*(G_ij*np.cos(T_i-T_j)+B_ij*np.sin(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_21 cell (dQ/dT) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_21(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = P_i-G_ij*(V_i**2) else: J_ij = -V_i*V_j*(G_ij*np.cos(T_i-T_j)+B_ij*np.sin(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_22 cell (dQ/dV) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_22(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = (Q_i/V_i)-B_ij*V_i else: J_ij = V_i*(G_ij*np.sin(T_i-T_j)-B_ij*np.cos(T_i-T_j)) return J_ij """ Processes 1 iteration of current system data Takes in sys_Data, a 2D array containing each node's current information [0] - Bus # [1] - Voltage (V) [2] - Angle (T) [3] - Active Power (P_inj) [4] - P(T,V)-P_inj (mismatch) [5] - Reactive Power (Q_inj) [6] - Q(T,V)-Q_inj (mismatch) As well as, the systems G and B matrices, and node types Returns the updated array """ def update_SysData(sys_Data, sys_G, sys_B, sys_BusType): n = sys_BusType.size D_index = sys_BusType=='D' G_index = sys_BusType=='G' S_index = sys_BusType=='S' """Determine Jacobian""" J = np.zeros((2*n,2*n)) for i in range(n): for j in range(n): #(i, j, V_i, V_j, T_i, T_j, P_i(T,V), Q_i(T,V), G_ij, B_ij) J[i,j] = Jacobian_PowerFlow_11(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i,j+n] = Jacobian_PowerFlow_12(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i+n,j] = Jacobian_PowerFlow_21(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i+n,j+n] =Jacobian_PowerFlow_22(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) """Remove non-implicit values""" for i in range(n-1,-1,-1): if S_index[i]: J=np.delete(J, i+n, 0) J=np.delete(J, i+n, 1) J=np.delete(J, i, 0) J=np.delete(J, i, 1) elif G_index[i]: J=np.delete(J, i+n, 0) J=np.delete(J, i+n, 1) """Determine Inverse""" J_inv =
inv(J)
numpy.linalg.inv
import os import time import datetime import numpy as np import tensorflow as tf import utils.data_utils as utils from models.quinn import Quinn tf.logging.set_verbosity(tf.logging.ERROR) train_file = './data/dumps/train.pckl' val_file = './data/dumps/val.pckl' # Model Parameters max_length = 600 vocab_size = 3193 embedding_dims = 300 hidden_layers = 256 # Training Parameters l2_lambda = 1e-4 batch_size = 64 num_epochs = 100 num_checkpoints = 3 checkpoint_every = 10 # Prepare and load training and validation data if not os.path.exists(train_file): print ("Train dump not found. Preparing data ...") train_tsv_path = './data/english/All_Train.tsv' utils.create_dump(train_tsv_path, train_file) if not os.path.exists(val_file): print ("Validation dump not found. Preparing data ...") val_tsv_path = './data/english/All_Dev.tsv' utils.create_dump(val_tsv_path, val_file) print ('Loading dataset from ./data/dumps/ ...') x_train, x_train_map, y_train, y_train_prob = utils.fetch(train_file) x_val, x_val_map, y_val, y_val_prob = utils.fetch(val_file) # Load embeddings embedding_path = './data/dumps/embeddings.npy' embedding = utils.load_embeddings(embedding_path, vocab_size, dimensions=300) print ("Embeddings loaded, Vocabulary Size: {:d}.".format(vocab_size)) # Shuffle training data
np.random.seed(10)
numpy.random.seed
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ The Phantom class is instantiated with a ground-truth phantom and corresponding material properties data. The get_projections method simulates data acquisition and returns radiographs for the specified theta values. """ import sys import os import numpy as np import pandas as pd from scipy import misc import h5py import time from scipy.integrate import simps import matplotlib.pyplot as plt import cv2 from tomopy import project from scipy.ndimage.filters import gaussian_filter from tomo_twin.pg_filter import add_phase_contrast model_data_path = '../model_data' class Phantom: def __init__(self, vol, materials, res, energy_pts, bits = 16, data_path = model_data_path): ''' Parameters ---------- vol : np.array labeled (segmented / ground-truth) volume. voxel values are in finite range [0,...n_materials-1]. materials : dict dict of material names and their respective density g/cc, e.g. {"Fe" : 7.87, "Al": 2.7} res : float voxel size in microns energy_pts : float or np.array list of energies bits : int 16 for 16 bit camera data_path : str path to exported XOP data ''' # deal with materials self.bits = bits self.res = res self.data_path = data_path self.energy_pts =
np.asarray(energy_pts)
numpy.asarray
import os import sys from glob import glob from tqdm import tqdm import numpy as np import pandas as pd import SimpleITK as sitk from torch.utils.data import Dataset, DataLoader import nibabel from scipy import ndimage import time import torch import torch.nn as nn import fire import time import pydicom import shutil def read_config_file(config_file): ''' config_file: '../data/config/肝穿病人给放射科和合作者.xlsx' 表头:['编号', '住院号', '姓名', 'series uid', 'Unnamed: 4', '性别1男2女', '年龄', 'MRS脂肪峰面积', '水峰面积', '脂肪含量', 'Fat', 'necrosisfoci', 'ballooning', 'NAS(total)', 'fibrosis', 'NAS大于4', '进展性纤维化', '脂肪肝病理评分'] 此处用到 'series uid', 'fibrosis' debug cmd: read_config_file('../data/config/肝穿病人给放射科和合作者.xlsx') ''' df = pd.read_excel(config_file) series_fib_dict = {} for index, row in df.iterrows(): series_fib_dict[row['series uid']] = int(row['fibrosis']) return series_fib_dict def read_dcm_file(in_dcm_path): series_reader = sitk.ImageSeriesReader() dicomfilenames = series_reader.GetGDCMSeriesFileNames(in_dcm_path) series_reader.SetFileNames(dicomfilenames) series_reader.MetaDataDictionaryArrayUpdateOn() series_reader.LoadPrivateTagsOn() image = series_reader.Execute() return image def split_data_to_two_phase_one_case(series_path, out_dir): ''' debug cmd: split_data_to_two_phase_one_case('../data/images_mr_filtered/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0', '') ''' in_files1 = glob((series_path, '*.dcm')) in_files2 = glob((series_path, '*.DCM')) in_files = in_files1 + in_files2 echo_1_files = [] echo_2_files = [] for infile in in_files: metadata = pydicom.dcmread(infile) if 1 == metadata.EchoNumbers: echo_1_files.append(infile) elif 2 == metadata.EchoNumbers: echo_2_files.append(infile) series_uid = os.path.basename(series_path) out_series_path = os.path.join(out_dir, series_uid) out_echo_1_path = os.path.join(out_series_path, 'echo_1') out_echo_2_path = os.path.join(out_series_path, 'echo_2') os.makedirs(out_series_path, exist_ok=True) os.makedirs(out_echo_1_path, exist_ok=True) os.makedirs(out_echo_2_path, exist_ok=True) assert len(echo_1_files) == len(echo_2_files) for src_file in echo_1_files: dst_file = os.path.join(out_echo_1_path, os.path.basename(src_file)) shutil.copyfile(src_file, dst_file) print('====> copy from {} to {}'.format(src_file, dst_file)) for src_file in echo_2_files: dst_file = os.path.join(out_echo_2_path, os.path.basename(src_file)) shutil.copyfile(src_file, dst_file) print('====> copy from {} to {}'.format(src_file, dst_file)) def split_data_to_two_phase_singletask(in_dir, out_dir, config_file): ''' indir: ../data/images_mr_filtered outdir: ../data/experiment_0/0.ori config_file: '../data/config/肝穿病人给放射科和合作者.xlsx' 根据配置文件确定需要进入后续操作的series,这里为防止文件夹中混入非序列的子文件夹 debug cmd: split_data_to_two_phase_singletask('../data/images_mr_filtered', '../data/experiment_0/0.ori', '../data/config/肝穿病人给放射科和合作者.xlsx') invoke cmd: python FattyLiverDatasets.py split_data_to_two_phase_singletask '../data/images_mr_filtered' '../data/experiment_0/0.ori' '../data/config/肝穿病人给放射科和合作者.xlsx' ''' series_fib_dict = read_config_file(config_file) series_uids = os.listdir(in_dir) series_paths = [] for series_uid in series_uids: if not series_uid in series_fib_dict: continue series_path = os.path.join(in_dir, series_uid) series_paths.append(series_path) split_data_to_two_phase_one_case(series_path, out_dir) def resample_sitkImage_by_spacing(sitkImage, newSpacing, vol_default_value='min', interpolator=sitk.sitkNearestNeighbor): """ :param sitkImage: :param newSpacing: :return: """ if sitkImage == None: return None if newSpacing is None: return None dim = sitkImage.GetDimension() if len(newSpacing) != dim: return None # determine the default value vol_value = 0.0 if vol_default_value == 'min': vol_value = float(np.ndarray.min(sitk.GetArrayFromImage(sitkImage))) elif vol_default_value == 'zero': vol_value = 0.0 elif str(vol_default_value).isnumeric(): vol_value = float(vol_default_value) # calculate new size np_oldSize = np.array(sitkImage.GetSize()) np_oldSpacing = np.array(sitkImage.GetSpacing()) np_newSpacing = np.array(newSpacing) np_newSize = np.divide(np.multiply(np_oldSize, np_oldSpacing), np_newSpacing) newSize = tuple(np_newSize.astype(np.uint).tolist()) # resample sitkImage into new specs transform = sitk.Transform() return sitk.Resample(sitkImage, newSize, transform, interpolator, sitkImage.GetOrigin(), newSpacing, sitkImage.GetDirection(), vol_value, sitkImage.GetPixelID()) def resample_data_one_case(series_path, out_dir, z_mul:int): ''' series_path: ../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0/11 resample_data_one_case('../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0/echo_1', '../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0', 1) ''' beg = time.time() print('====> processing {}'.format(series_path)) image = read_dcm_file(series_path) basename = os.path.basename(series_path) # 1. 保存原始分辨率数据的nii.gz out_raw_file = os.path.join(out_dir, '{}.nii.gz'.format(basename)) # sitk.WriteImage(image, out_raw_file) # 2. resample, base x-spacing # spc = image.GetSpacing() # mults = [1,2,4,8] # for z_mul in mults: # out_resampled_file = os.path.join(out_dir, '{}_z_mul{}.nii.gz'.format(basename, z_mul)) # new_spc = [spc[0]] + [spc[0]] + [spc[0]*z_mul] # resampled_img = resample_sitkImage_by_spacing(image, new_spc, interpolator=sitk.sitkLinear) # sitk.WriteImage(resampled_img, out_resampled_file) end = time.time() print('=====> finish {}, time elapsed is {:.3f}s'.format(series_path, end-beg)) return out_raw_file def resample_data_singletask(series_paths): ''' indir: ../data/experiment_0/0.ori debug cmd: resample_data_singletask('../data/experiment_0/0.ori') invoke cmd: python FattyLiverDatasets.py resample_data_singletask '../data/experiment_0/0.ori' ''' print(series_paths) for series_path in tqdm(series_paths): if not os.path.isdir(series_path): continue echo_1_path = os.path.join(series_path, 'echo_1') echo_2_path = os.path.join(series_path, 'echo_2') out_dir = series_path if not os.path.isdir(echo_1_path): print('{} echo 1 data not exist!'.format(series_path)) continue if not os.path.isdir(echo_2_path): print('{} echo 2 data not exist!'.format(series_path)) continue out_echo_1_file = resample_data_one_case(echo_1_path, out_dir, 1) out_echo_2_file = resample_data_one_case(echo_2_path, out_dir, 1) echo_1_image = sitk.ReadImage(out_echo_1_file) echo_2_image = sitk.ReadImage(out_echo_2_file) echo_1_arr = sitk.GetArrayFromImage(echo_1_image) echo_2_arr = sitk.GetArrayFromImage(echo_2_image) echo_1_arr =
np.array(echo_1_arr, dtype=np.int16)
numpy.array
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Reliability calibration plugins.""" import operator import warnings import iris import numpy as np import scipy from improver import BasePlugin, PostProcessingPlugin from improver.calibration.utilities import ( check_forecast_consistency, create_unified_frt_coord, filter_non_matching_cubes, ) from improver.metadata.probabilistic import ( find_threshold_coordinate, probability_is_above_or_below, ) from improver.metadata.utilities import generate_mandatory_attributes from improver.utilities.cube_manipulation import MergeCubes, collapsed class ConstructReliabilityCalibrationTables(BasePlugin): """A plugin for creating and populating reliability calibration tables.""" def __init__( self, n_probability_bins=5, single_value_lower_limit=False, single_value_upper_limit=False, ): """ Initialise class for creating reliability calibration tables. These tables include data columns entitled observation_count, sum_of_forecast_probabilities, and forecast_count, defined below. n_probability_bins (int): The total number of probability bins required in the reliability tables. If single value limits are turned on, these are included in this total. single_value_lower_limit (bool): Mandates that the lowest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus 0 to 1.0E-6. single_value_upper_limit (bool): Mandates that the highest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus (1 - 1.0E-6) to 1. """ self.single_value_tolerance = 1.0e-6 self.probability_bins = self._define_probability_bins( n_probability_bins, single_value_lower_limit, single_value_upper_limit ) self.table_columns = np.array( ["observation_count", "sum_of_forecast_probabilities", "forecast_count"] ) self.expected_table_shape = (len(self.table_columns), n_probability_bins) def __repr__(self): """Represent the configured plugin instance as a string.""" bin_values = ", ".join( ["[{:1.2f} --> {:1.2f}]".format(*item) for item in self.probability_bins] ) result = "<ConstructReliabilityCalibrationTables: " "probability_bins: {}>" return result.format(bin_values) def _define_probability_bins( self, n_probability_bins, single_value_lower_limit, single_value_upper_limit ): """ Define equally sized probability bins for use in a reliability table. The range 0 to 1 is divided into ranges to give n_probability bins. If single_value_lower_limit and / or single_value_upper_limit are True, additional bins corresponding to values of 0 and / or 1 will be created, each with a width defined by self.single_value_tolerance. Args: n_probability_bins (int): The total number of probability bins desired in the reliability tables. This number includes the extrema bins (equals 0 and equals 1) if single value limits are turned on, in which case the minimum number of bins is 3. single_value_lower_limit (bool): Mandates that the lowest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus 0 to 1.0E-6. single_value_upper_limit (bool): Mandates that the highest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus (1 - 1.0E-6) to 1. Returns: numpy.ndarray: An array of 2-element arrays that contain the bounds of the probability bins. These bounds are non-overlapping, with adjacent bin boundaries spaced at the smallest representable interval. Raises: ValueError: If trying to use both single_value_lower_limit and single_value_upper_limit with 2 or fewer probability bins. """ if single_value_lower_limit and single_value_upper_limit: if n_probability_bins <= 2: msg = ( "Cannot use both single_value_lower_limit and " "single_value_upper_limit with 2 or fewer " "probability bins." ) raise ValueError(msg) n_probability_bins = n_probability_bins - 2 elif single_value_lower_limit or single_value_upper_limit: n_probability_bins = n_probability_bins - 1 bin_lower = np.linspace(0, 1, n_probability_bins + 1, dtype=np.float32) bin_upper = np.nextafter(bin_lower, 0, dtype=np.float32) bin_upper[-1] = 1.0 bins = np.stack([bin_lower[:-1], bin_upper[1:]], 1).astype(np.float32) if single_value_lower_limit: bins[0, 0] = np.nextafter(self.single_value_tolerance, 1, dtype=np.float32) lowest_bin = np.array([0, self.single_value_tolerance], dtype=np.float32) bins = np.vstack([lowest_bin, bins]).astype(np.float32) if single_value_upper_limit: bins[-1, 1] = np.nextafter( 1.0 - self.single_value_tolerance, 0, dtype=np.float32 ) highest_bin = np.array( [1.0 - self.single_value_tolerance, 1], dtype=np.float32 ) bins = np.vstack([bins, highest_bin]).astype(np.float32) return bins def _create_probability_bins_coord(self): """ Construct a dimension coordinate describing the probability bins of the reliability table. Returns: iris.coords.DimCoord: A dimension coordinate describing probability bins. """ values = np.mean(self.probability_bins, axis=1, dtype=np.float32) probability_bins_coord = iris.coords.DimCoord( values, long_name="probability_bin", units=1, bounds=self.probability_bins ) return probability_bins_coord def _create_reliability_table_coords(self): """ Construct coordinates that describe the reliability table rows. These are observation_count, sum_of_forecast_probabilities, and forecast_count. The order used here is the order in which the table data is populated, so these must remain consistent with the _populate_reliability_bins function. Returns: (tuple): tuple containing: **index_coord** (iris.coords.DimCoord): A numerical index dimension coordinate. **name_coord** (iris.coords.AuxCoord): An auxiliary coordinate that assigns names to the index coordinates, where these names correspond to the reliability table rows. """ index_coord = iris.coords.DimCoord( np.arange(len(self.table_columns), dtype=np.int32), long_name="table_row_index", units=1, ) name_coord = iris.coords.AuxCoord( self.table_columns, long_name="table_row_name", units=1 ) return index_coord, name_coord @staticmethod def _define_metadata(forecast_slice): """ Define metadata that is specifically required for reliability table cubes, whilst ensuring any mandatory attributes are also populated. Args: forecast_slice (iris.cube.Cube): The source cube from which to get pre-existing metadata of use. Returns: dict: A dictionary of attributes that are appropriate for the reliability table cube. """ attributes = generate_mandatory_attributes([forecast_slice]) attributes["title"] = "Reliability calibration data table" return attributes def _create_reliability_table_cube(self, forecast, threshold_coord): """ Construct a reliability table cube and populate it with the provided data. The returned cube will include a cycle hour coordinate, which describes the model cycle hour at which the forecast data was produced. It will further include the forecast period, threshold coordinate, and spatial coordinates from the forecast cube. Args: forecast (iris.cube.Cube): A cube slice across the spatial dimensions of the forecast data. This slice provides the time and threshold values that relate to the reliability_table_data. threshold_coord (iris.coords.DimCoord): The threshold coordinate. Returns: iris.cube.Cube: A reliability table cube. """ def _get_coords_and_dims(coord_names): """Obtain the requested coordinates and their dimension index from the forecast slice cube.""" coords_and_dims = [] leading_coords = [probability_bins_coord, reliability_index_coord] for coord_name in coord_names: crd = forecast_slice.coord(coord_name) crd_dim = forecast_slice.coord_dims(crd) crd_dim = crd_dim[0] + len(leading_coords) if crd_dim else () coords_and_dims.append((crd, crd_dim)) return coords_and_dims forecast_slice = next(forecast.slices_over(["time", threshold_coord])) expected_shape = self.expected_table_shape + forecast_slice.shape dummy_data = np.zeros((expected_shape)) diagnostic = find_threshold_coordinate(forecast).name() attributes = self._define_metadata(forecast) # Define reliability table specific coordinates probability_bins_coord = self._create_probability_bins_coord() ( reliability_index_coord, reliability_name_coord, ) = self._create_reliability_table_coords() frt_coord = create_unified_frt_coord(forecast.coord("forecast_reference_time")) # List of required non-spatial coordinates from the forecast non_spatial_coords = ["forecast_period", diagnostic] # Construct a list of coordinates in the desired order dim_coords = [forecast.coord(axis=dim).name() for dim in ["x", "y"]] dim_coords_and_dims = _get_coords_and_dims(dim_coords) aux_coords_and_dims = _get_coords_and_dims(non_spatial_coords) dim_coords_and_dims.append((reliability_index_coord, 0)) aux_coords_and_dims.append((reliability_name_coord, 0)) dim_coords_and_dims.append((probability_bins_coord, 1)) reliability_cube = iris.cube.Cube( dummy_data, units=1, attributes=attributes, dim_coords_and_dims=dim_coords_and_dims, aux_coords_and_dims=aux_coords_and_dims, ) reliability_cube.add_aux_coord(frt_coord) reliability_cube.rename("reliability_calibration_table") return reliability_cube def _populate_reliability_bins(self, forecast, truth): """ For an x-y slice at a single validity time and threshold, populate a reliability table using the provided truth. Args: forecast (numpy.ndarray or numpy.ma.MaskedArray): An array containing data over an xy slice for a single validity time and threshold. truth (numpy.ndarray or numpy.ma.MaskedArray): An array containing a thresholded gridded truth at an equivalent validity time to the forecast array. Returns: numpy.ma.MaskedArray: An array containing reliability table data for a single time and threshold. The leading dimension corresponds to the rows of a calibration table, the second dimension to the number of probability bins, and the trailing dimensions are the spatial dimensions of the forecast and truth cubes (which are equivalent). """ observation_counts = [] forecast_probabilities = [] forecast_counts = [] for bin_min, bin_max in self.probability_bins: observation_mask = ( ((forecast >= bin_min) & (forecast <= bin_max)) & (np.isclose(truth, 1)) ).astype(int) forecast_mask = ((forecast >= bin_min) & (forecast <= bin_max)).astype(int) forecasts_probability_values = forecast * forecast_mask observation_counts.append(observation_mask) forecast_probabilities.append(forecasts_probability_values) forecast_counts.append(forecast_mask) reliability_table = np.ma.stack( [ np.ma.stack(observation_counts), np.ma.stack(forecast_probabilities), np.ma.stack(forecast_counts), ] ) return reliability_table.astype(np.float32) def _populate_masked_reliability_bins(self, forecast, truth): """ Support populating the reliability table bins with a masked truth. If a masked truth is provided, a masked reliability table is returned. Args: forecast (numpy.ndarray): An array containing data over an xy slice for a single validity time and threshold. truth (numpy.ma.MaskedArray): An array containing a thresholded gridded truth at an equivalent validity time to the forecast array. Returns: numpy.ma.MaskedArray: An array containing reliability table data for a single time and threshold. The leading dimension corresponds to the rows of a calibration table, the second dimension to the number of probability bins, and the trailing dimensions are the spatial dimensions of the forecast and truth cubes (which are equivalent). """ forecast = np.ma.masked_where(np.ma.getmask(truth), forecast) table = self._populate_reliability_bins(forecast, truth) # Zero data underneath mask to support bitwise addition of masks. table.data[table.mask] = 0 return table def _add_reliability_tables(self, forecast, truth, threshold_reliability): """ Add reliability tables. The presence of a masked truth is handled separately to ensure support for a mask that changes with validity time. Args: forecast (numpy.ndarray): An array containing data over an xy slice for a single validity time and threshold. truth (numpy.ndarray or numpy.ma.MaskedArray): An array containing a thresholded gridded truth at an equivalent validity time to the forecast array. threshold_reliability (numpy.ndarray or numpy.ma.MaskedArray): The current reliability table that will be added to. Returns: numpy.ndarray or numpy.ma.MaskedArray: An array containing reliability table data for a single time and threshold. The leading dimension corresponds to the rows of a calibration table, the second dimension to the number of probability bins, and the trailing dimensions are the spatial dimensions of the forecast and truth cubes (which are equivalent). """ if np.ma.is_masked(truth.data): table = self._populate_masked_reliability_bins(forecast.data, truth.data) # Bitwise addition of masks. This ensures that only points that are # masked in both the existing and new reliability tables are kept # as being masked within the resulting reliability table. mask = threshold_reliability.mask & table.mask threshold_reliability = np.ma.array( threshold_reliability.data + table.data, mask=mask, dtype=np.float32, ) else: np.add( threshold_reliability, self._populate_reliability_bins(forecast.data, truth.data), out=threshold_reliability, dtype=np.float32, ) return threshold_reliability def process(self, historic_forecasts, truths): """ Slice data over threshold and time coordinates to construct reliability tables. These are summed over time to give a single table for each threshold, constructed from all the provided historic forecasts and truths. If a masked truth is provided, a masked reliability table is returned. If the mask within the truth varies at different timesteps, any point that is unmasked for at least one timestep will have unmasked values within the reliability table. Therefore historic forecast points will only be used if they have a corresponding valid truth point for each timestep. .. See the documentation for an example of the resulting reliability table cube. .. include:: extended_documentation/calibration/ reliability_calibration/reliability_calibration_examples.rst Note that the forecast and truth data used is probabilistic, i.e. has already been thresholded relative to the thresholds of interest, using the equality operator required. As such this plugin is agnostic as to whether the data is thresholded below or above a given diagnostic threshold. Args: historic_forecasts (iris.cube.Cube): A cube containing the historical forecasts used in calibration. These are expected to all have a consistent cycle hour, that is the hour in the forecast reference time. truths (iris.cube.Cube): A cube containing the thresholded gridded truths used in calibration. Returns: iris.cube.CubeList: A cubelist of reliability table cubes, one for each threshold in the historic forecast cubes. Raises: ValueError: If the forecast and truth cubes have differing threshold coordinates. """ historic_forecasts, truths = filter_non_matching_cubes( historic_forecasts, truths ) threshold_coord = find_threshold_coordinate(historic_forecasts) truth_threshold_coord = find_threshold_coordinate(truths) if not threshold_coord == truth_threshold_coord: msg = "Threshold coordinates differ between forecasts and truths." raise ValueError(msg) time_coord = historic_forecasts.coord("time") check_forecast_consistency(historic_forecasts) reliability_cube = self._create_reliability_table_cube( historic_forecasts, threshold_coord ) populate_bins_func = self._populate_reliability_bins if
np.ma.is_masked(truths.data)
numpy.ma.is_masked
''' author: bg goal: type: Image Clustering DL learn <-- VGG Auto-encoder (AE) + how: DCNN clustering - Local Aggregation by Zhuang et al (2019) + SegNet method of AE arch ref: https://towardsdatascience.com/image-clustering-implementation-with-pytorch-587af1d14123 refactors: ''' import numpy as np import torch from torch import nn import torch.nn.functional as F from torchvision import models from sklearn.neighbors import NearestNeighbors from sklearn.cluster import KMeans from sklearn.preprocessing import normalize from scipy.spatial.distance import cosine as cosine_distance from tqdm import tqdm import preprocess, utilz from skimage import img_as_uint ### ============= 1. AutoEncoder ============ class EncoderVGG( nn.Module ): ## VGG16 based channels_in = 3 channels_code = 512 def __init__(self, pretrained=True, n_channelz = 3, code_channels=512): super(EncoderVGG, self).__init__() self.channels_in = n_channelz self.channels_code = code_channels ## setup vgg encoder - chuck classifier and avg pool layers < only keep feature extraction layers vgg = models.vgg16_bn(pretrained=pretrained) del vgg.classifier del vgg.avgpool self.encoder = self._encodify(vgg ) def _encodify(self, encoder): ## adjust: avail pooling indices from encoder.max_pool to the decoder unpooling layers ## the models.vgg16_bn does not generate the indices --> so reinitialilze them so tha they can do that modulez = nn.ModuleList() for mod in encoder.features: if isinstance(mod, nn.MaxPool2d): mod_add = nn.MaxPool2d( kernel_size = mod.kernel_size, stride = mod.stride, padding = mod.padding, return_indices = True ) modulez.append( mod_add ) else: modulez.append( mod ) return modulez def forward(self, x): ## forward pass pool_indicies = [] ## to be passed to decoder for unpooling x_current = x for mod_encode in self.encoder: outie = mod_encode( x_current ) # pooling layers return two outputs; 2nd is the indices if isinstance(outie, tuple) and len(outie) == 2: x_current, idx = outie pool_indicies.append( idx ) else: x_current = outie return x_current, pool_indicies class DecoderVGG(nn.Module): ## sorta transposed version of the VGG16 network => looks like the encoder in reverse but not strictly so channels_in = EncoderVGG.channels_code channels_out = EncoderVGG.channels_in def __init__(self, encoder): super(DecoderVGG, self).__init__() self.decoder = self._invert(encoder) def _invert(self, encoder): ## decoder as a somewhat mirror of encoder ## BUT/AND: 1, 2D transpose convolution + 2. 2D unpooling ## 1. 2D transpose convolution + batch norm + activation ## convert encoder.conv to decoder.transposed conv ## 2. 2d unpool : conver encoder.pool to decoder.unpool modulez = [] for mod in reversed( encoder ): if isinstance(mod, nn.Conv2d): kwargz = {'in_channels':mod.out_channels, 'out_channels':mod.in_channels, 'kernel_size':mod.kernel_size, 'stride': mod.stride, 'padding':mod.padding } mod_trans = nn.ConvTranspose2d( **kwargz ) mod_norm = nn.BatchNorm2d( mod.in_channels ) mod_act = nn.ReLU(inplace=True) modulez += [mod_trans, mod_norm, mod_act ] elif isinstance(mod, nn.MaxPool2d): kwargz = {'kernel_size': mod.kernel_size, 'stride':mod.stride, 'padding':mod.padding} modulez.append( nn.MaxUnpool2d(**kwargz) ) ## drop last norm and activation so that final output is from a conv with bias modulez = modulez[:-2] return nn.ModuleList( modulez ) def forward(self, x, pool_indices ): ## x is a tensor from encoder and pool_indices is the list from encoder x_current = x k_pool = 0 rev_pool_indices = list(reversed(pool_indices)) for mod in self.decoder: ## if @ unpooling make use of the indices for that layer if isinstance(mod, nn.MaxUnpool2d): x_current = mod(x_current, indices=rev_pool_indices[k_pool]) k_pool += 1 else: x_current = mod(x_current) return x_current class AutoEncoderVGG(nn.Module): ## now combine the encoder and decoder channels_in = EncoderVGG.channels_in channels_out = DecoderVGG.channels_out channels_code = EncoderVGG.channels_code def __init__(self, pretrained=True, n_channelz=3,out_size=512): super(AutoEncoderVGG, self).__init__( ) self.encoder = EncoderVGG(pretrained=pretrained, n_channelz=n_channelz, code_channels=out_size) self.decoder = DecoderVGG(self.encoder.encoder) print("Setup AE") def forward(self, x): x_, idx = self.encoder(x) x_ = self.decoder(x_, idx) return x_ def get_params(self): return list(self.encoder.parameters() ) + list(self.decoder.parameters() ) ''' NOTES: - Use MSE to quantify diff --> nn.MSELoss as objective fx ''' def train_autoencoder(model, X_data, n_epoch=3): loss_fx = nn.MSELoss() o_k = {'lr':0.001, 'momentum':0.9} # paramz = model.encoder.parameters() + model.decoder.parameters() paramz = model.get_params() optimizer = torch.optim.SGD( paramz, **o_k) # 1. train model model.train() for epoch in tqdm( range(n_epoch) ): running_loss = 0 n_inst = 0 for x in X_data: # zero the grads > compute loss > backprop optimizer.zero_grad() outie = model(x.float() ) loss = loss_fx(outie, x.float() ) loss.backward() optimizer.step() # update aggregates and reporting running_loss += loss.item() #running_loss = running_loss/batch_size print(f"E {epoch}: loss {running_loss}") def predict_autoencoder(model, x): model.eval() outie = model(x.float() ) O_ = [] ## what is this bit doing ?? for img in outie: img = img.detach() O_.append( img ) yield torch.stack( O_ ) ### ============= 2. Clustering ============ ''' NOtes on clustering - Local Aggregation Loss method (Zhuang et al, 2019, arXiv:1903.12355v2) - Images with similar xtics will have small L2 on encoded values, but encoded values are nonlinear --> not large deviations inter-cluster - AutoEncoder == compress form high D to low D - Now learn 'fundusness' and also values easily 'clusterable' Local Aggregation Loss Method - entropy based cost/objective function for clusters <-- p(cluster membership) - TODO: review algz again - implement custom loss function - Memory Bank - arXiv:1903.12355v2 - a way to deal with fact that the gradient of the LA obj func depends on the gradiens of all codes of the dataset - efficiently computing gradients during backprop << the tangled gradients of the codes w /r/t decoder params must be computed regardless - b/c clustering @ comparing each element to all other elements in the dataset thus entablement - memory bank trick is to treat other codes, other than those in minibatch/current, as constants. - entanglement with derivatives of other codes thus goes away - as long as approximated gradients are good enough to guide optimization towards a minimum, it is good ''' class MemoryBank: def __init__(self, n_vecs, dim_vecs, memory_mixing_rate): self.dim_vecs = dim_vecs self.vecs = np.array([ marsaglia(dim_vecs) for _ in range(n_vecs)]) self.memory_mixing_rate = memory_mixing_rate self.mask_init = np.array([False]*n_vecs) def update_memory(self, vectors, index): if isinstance(index, int): self.vecs[index] = self._update(vectors, self.vecs[index]) elif isinstance(index, np.ndarray): for idx, vev in zip(index, vectors): self.vecs[idx] = self._update(vec, self.vecs[idx] ) def mask(self, inds_int): outie = [] for r in inds_int: row_mask = np.full(self.vecs.shape[0], False) row_mask[ r.astype(int) ] = True outie.append( row_mask ) return np.array( outie ) def _update(self, vec_new, vec_recall): return vec_new * self.memory_mixing_rate + vec_recall * (1. - self.memory_mixing_rate) class LocalAggregationLoss(nn.Module): def __init__(self, temperature, knns, clustering_repeats, n_centroids, memory_bank, kmeans_n_init=1, nn_metric=cosine_distance, nn_metric_params={} ): super(LocalAggregationLoss, self).__init__() self.temperature = temperature self.memory_bank = memory_bank ## 1. Distance: Efficiently compute nearest neighbors << set B in alg self.neighbour_finder = NearestNeighbors(n_neighbors=knns+1, algorithm='ball_tree', metric=nn_metric, metric_params=nn_metric_params) ## 2. Clusters: efficiently compute clusters << set C ini alg self.clusterer = [] for k_clusterer in range(clustering_repeats): self.clusterer.append( KMeans(n_clusters=n_centroids, init='random', n_init=kmeans_n_init) ) def forward(self, codes, indices): assert codes.shape[0] == len(indices) codes = codes.type( torch.DoubleTensor ) code_data = normalize( codes.detach().numpy(), axis=1) ##constants in the loss function; no gradients@backpass self.memory_bank.update_memory(code_data, indices) bg_neighbours = self._nearest_neighbours(code_data, indices) close_neighbours = self._close_grouper(indices) neighbour_inersect = self._intersecter(bg_neighbours, close_neighbours) ## compute pdf v = F.normalize(codes, p=2, dim=1) d1 = self._prob_density(v, bg_neighbours) d2 = self._prob_density(v, neighbour_inersect) return torch.sum(torch.log(d1) - torch.log(d2))/codes.shape[0] def _nearest_neighbours(self, codes_data, indices): self.neighbour_finder.fit(self.memory_bank.vectors ) indices_nearest = self.neighbour_finder.kneighbours(codes_data, return_distance=False) return self.memory_bank.mask( indices_nearest ) def _close_grouper(self, indices): ## ascertain memberships = [[]]*len(indices) for clusterer in self.clusterer: clusterer.fit( self.memory_bank.vectors ) for k_idx, cluster_idx in enumerate(clusterer.labels_[indices]) : other_members = np.where( clusterer.labels_ == cluster_idx)[0] other_members_union = np.union1d(memberships[k_idx], other_members) memberships[k_idx] = other_members_union.astype(int) return self.memory_bank.mask( np.array(memberships, dtype=object ) ) def _intersecter(self, n1, n2): return np.array([ [v1 and v2 for v1, v2 in zip(n1_x, n2_x)] for n1_x, n2_x in zip(n1, n2 ) ]) def _prob_density(self, codes, indices): ## unormalized differentiable probability densities ragged = len(set([np.count_nonzero(idx) for idx in indices ] )) != 1 # In case the subsets of memory vectors are all of the same size, broadcasting can be used and the # batch dimension is handled concisely. This will always be true for the k-nearest neighbour density if not ragged: vals = torch.tensor([np.compress(ind, self.memory_bank.vectors, axis=0) for ind in indices], requires_grad=False) v_dots = torch.matmul(vals, codes.unsqueeze(-1)) exp_values = torch.exp(torch.div(v_dots, self.temperature)) pdensity = torch.sum(exp_values, dim=1).squeeze(-1) # Broadcasting not possible if the subsets of memory vectors are of different size, so then manually loop # over the batch dimension and stack results else: xx_container = [] for k_item in range(codes.size(0)): vals = torch.tensor(np.compress(indices[k_item], self.memory_bank.vectors, axis=0), requires_grad=False) v_dots_prime = torch.mv(vals, codes[k_item]) exp_values_prime = torch.exp(torch.div(v_dots_prime, self.temperature)) xx_prime = torch.sum(exp_values_prime, dim=0) xx_container.append(xx_prime) pdensity = torch.stack(xx_container, dim=0) return pdensity ''' Combining Envoder and LALoss ''' def combine_run_LAClustering(X_data, merger_type='mean', n_vecs=5400, knns=500, n_centroids=600,n_epochs=3): model = EncoderVGGMerged(merger_type=merger_type) memory_bank = MemoryBank(n_vecs=n_vecs, dim_vecs=model.channels_code, memory_mixing_rate=0.5) memory_bank.vecs = normalize( model.eval_codes_for_(X_data), axis=1) loss_fx = LocalAggregationLoss(memory_bank=memory_bank, temperature=0.07, knns = knns, clustering_repeats=6, n_centroids=n_centroids) o_k = {'lr':0.001, 'momentum':0.9} paramz = model.get_params() ## parameters optimizer = torch.optim.SGD( paramz, **o_k) # 1. train model model.train() for epoch in tqdm( range(n_epoch) ): running_loss = 0 n_inst = 0 for x in X_data: # zero the grads > compute loss > backprop optimizer.zero_grad() outie = model(x.float() ) loss = loss_fx(outie, x.float() ) loss.backward() optimizer.step() # update aggregates and reporting running_loss += loss.item() #running_loss = running_loss/batch_size print(f"E {epoch}: loss {running_loss}") class EncoderVGGMerged(EncoderVGG): def __init__(self, merger_type='mean', pretrained=True ): super(EncoderVGGMerged, self).__init__(pretrained=pretrained) if merger_type is None: self.code_post_process = lambda x: x self.code_post_process_kwargz = {} elif merger_type == 'mean': self.code_post_process = torch.mean self.code_post_process_kwargz = {'dim':(-2, -1)} if merger_type == 'flatten': self.code_post_process = torch.flatten self.code_post_process_kwargz = {'start_dim':1, 'end_dim':-1} else: raise ValueError("Unknown merger type for the encoder {}".format(merger_type) ) def forward(self, x): x_current, _ = super().forward(x) x_code = self.code_post_process(x_current, **self.code_post_process_kwargz) return x_code ## -========================== if __name__ == "__main__": print("****** STARTING ******") img_dim = (1, 3,224, 224) fetch_image = lambda x: utilz.Image.fetch_and_resize_image(x, img_dim).astype('f') # cnn = AutoEncoderVGG(pretrained=True) # print(cnn) # X_data = [ torch.tensor(np.random.rand( *img_dim ).astype('f') ) for i in range(5) ] fdir = "/mnt/externz/zRepoz/datasets/fundus/stare/" filez = [ f'{fdir}/im0012.ppm', f"{fdir}/im0232.ppm"] _IMAGEZ = [fetch_image(x) for x in filez] # X_data = [torch.tensor( x ) for x in _IMAGEZ ] # train_autoencoder(cnn, X_data) # x_pred = torch.tensor( np.random.rand( *img_dim ).astype('f') ) # pred = list(predict_autoencoder(cnn, x_pred)) # print( len(pred) , type(pred[0])) # reformat_output_img = lambda x: x.reshape(224,224,3) # img_as_uint( ) # utilz.Image.plot_images_list( [ reformat_output_img(x) for x in X_data], nc=len(X_data) ) # utilz.Image.plot_images_list([ reformat_output_img(x) for x in pred], nc=len(pred) ) # print("****** FIN ******") print("****** KMEANS *****") import cv2 import os from glob import glob import matplotlib.pyplot as plt # img_dim = (224, 224, 3) # img_dim = (32, 32, 3) # def fetch_image(x): # # utilz.Image.fetch_and_resize_image(x, img_dim).astype('f') # o = cv2.imread( x ) # o = cv2.cvtColor(o, cv2.COLOR_BGR2RGB) # o = np.float32( o.reshape((-1, 3)) ) # return o # fdir = "/mnt/externz/zRepoz/datasets/fundus/stare/" # filez = [ f'{fdir}/im0012.ppm', f"{fdir}/im0232.ppm"] ## glob( f"{fdir}/*.ppm") # #flattent into 3 color values per pixed 2D array # _IMAGEZ = [fetch_image(x) for x in filez] np.random.seed(1234) n_clusters = 4 _N = 10000 _FILEZ = [] i = 0 for f in glob( f"{fdir}/*.ppm"): _FILEZ.append( f ) i+=1 if i >= _N: break fetch_name = lambda x: (os.path.basename(x).split(".")[0] , np.random.randint(0, n_clusters) ) # X_data = np.array( [ fetch_image(x).reshape( (-1, 3) ) for x in _FILEZ ] ) ##_IMAGEZ # X_data_fnames = np.array( [ ((i%10 + i//33),*fetch_name(x)) for i, x in enumerate(_FILEZ) ] ) ##_IMAGEZ # ## ==== Open CV K-Means ==== # stopping_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) # _, labels, (centers ) = cv2.kmeans(X_data, n_clusters, None, # stopping_criteria, 10, cv2.KMEANS_RANDOM_CENTERS ) # centers = np.uint8( centers ) # labels =labels.flatten() # ## show clusters # def fetch_cluster(i): # # dat = np.array([x[0] for x in X_data_fnames] ) # # return dat[ dat == i ] # o_ = [] # for d in X_data_fnames: # if int(d[2]) == i: # o_.append( (d[0], d[2]) ) # # print( f"cluster {i}: {o_}") # return np.array(o_) # # clusters = [ X_data_fnames[0][labels == i] for i in range(n_clusters ) ] # clusters = [fetch_cluster(i) for i in range(n_clusters ) ] # colorz = ('r', 'b', 'g', 'black') # numeric = lambda X : [ int(x) for x in X] # for clust, colr in zip(clusters, colorz[:len(clusters) ] ): # plt.scatter( numeric(clust[0]), numeric(clust[1]), c=colr) # plt.show() # print( centers.shape , labels.shape ) # # print(labels) # ## show centers # img_centers = [x.reshape(img_dim) for x in centers] # utilz.Image.plot_images_list( img_centers, nc=len(img_centers)) # ## segmenting using the centroids # ## covert all pixels to the color of the centroids # segmented_imagez = [ c[l].reshape( img_dim ) for c, l in zip(centers, labels)] # utilz.Image.plot_images_list( segmented_imagez, nc=len(segmented_imagez)) ### ==== K-NN clutering print("****** K-NN <<<< is supervised *****") # from sklearn.neighbors import KNeighborsClassifier # X_data = np.array( [ fetch_image(x).flatten() for x in _FILEZ ] ) # import cv2 # def extract_color_hist(img, bins=(8,8,8)): # hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) # hist = cv2.calcHist([hsv], [0,1,2], None, bins, [0, 180, 0, 256, 0, 256]) # cv2.normalize(hist, hist) ## hist = cv2.normalize(hist) # return hist.flatten() # X_histz = [extract_color_hist(x.reshape(img_dim)) for x in X_data] # model = KNeighborsClassifier(n_neighbors=n_clusters ) # model.fit(X_data) # # print(">>>>ACCURACY**: ", model.score()) # model = KNeighborsClassifier(n_neighbors=n_clusters ) # model.fit(X_histz) # X_data = [torch.tensor( x ) for x in _IMAGEZ ] # train_autoencoder(cnn, X_data) print("****** K-MEANS on VGG encoded data *****") reformat_output_img = lambda x: x.reshape(224,224,3) # img_as_uint( ) X_data = [torch.tensor( fetch_image(x) ) for x in _FILEZ ] print("1. Data Loaded") cnn = AutoEncoderVGG(pretrained=True) train_autoencoder(cnn, X_data) print("2. Encoder trained") X_encoded = [ list(predict_autoencoder(cnn, x)) for x in X_data] print( len(X_encoded) , type(X_encoded[0])) print("3. data encoded") # print(X_encoded[0]) ## ==== Open CV K-Means ==== X_data2 = np.array( [
np.dstack(x)
numpy.dstack
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import from soma import aims, aimsalgo import numpy import os import six import sys from six.moves import range def mergeLabelsFromTexture(tex, labels_list, new_label): """ inputs: tex: labeled texture ( from FreeSurfer or an other ) labels_list, new_label: you can overwrite numbers ( labels_list ) with your own number ( new_label ) ouput: otex: labeled texture with merged regions """ otex = aims.TimeTexture_S16() tex_ar = tex[0].arraydata() otex[0].assign(tex_ar) otex_ar = otex[0].arraydata() for i in labels_list: otex_ar[otex_ar == int(i)] = new_label return otex def extractLabelsFromTexture(tex, labels_list, new_label): """ inputs: tex: labeled texture ( from FreeSurfer or an other ) labels_list, new_label: you can overwrite numbers ( labels_list ) with your own number ( new_label ) output: otex: labeled texture with merged regions only """ otex = aims.TimeTexture_S16() otex[0].reserve(tex[0].nItem()) for i in range(tex[0].nItem()): otex[0].push_back(0) tex_ar = tex[0].arraydata() otex_ar = otex[0].arraydata() for i in labels_list: otex_ar[tex_ar == int(i)] = new_label return otex def connectedComponents(mesh, tex, areas_mode=0): """ Parameters ---------- mesh tex: aimsTimeTexture_S16 (one time step) labeled between 1 and LabelsNb, background = 0, ignored_vertex = -1. areas_mode: if = 1: computing area measures of the connected components, if = 0: no measure (by default). Returns ------- step_cc: connectedComponentTex: aimsTimeTexture_S16 time step = LabelsNb, for each time step (label in the tex), texture of the connected components corresponding to this label (background = -1, and connected components = values between 1 and nb_cc). areas_measure: python dictionary areas_measures[label] = [16.5, 6.0] (numpy array) if label (in tex) has two connected Components 1 and 2 with area = 16.5 and 6.0 respectively, areas are in square mm """ # create a numpy array from aims object dtex = tex[0].arraydata() # number of vertices nbvert = len(mesh.vertex()) # test for homogeneity dimension if len(dtex) != nbvert: raise exceptions.ValueError( 'mesh and texture have not the same dimension...') # list of existing labels labels = numpy.unique(dtex) # remove a specific elements if 0 in labels: numpy.delete(labels, numpy.where(labels == 0)) if -1 in labels: numpy.delete(labels, numpy.where(labels == -1)) otex = aims.TimeTexture_S16() step_cc = aims.TimeTexture_S16() if areas_mode: areas_measures = {} for label in labels: otex[0].assign((dtex == label)) label_cc = aimsalgo.AimsMeshLabelConnectedComponent(mesh, otex, 0, 0) # transform aims.TimeTexture_S16 to numpy array label_cc_np = label_cc[0].arraydata() step_cc[label-1].assign(label_cc_np) if areas_mode: nb_cc = label_cc_np.max() areas_measures[label] = numpy.zeros(nb_cc) for c in range(nb_cc): # extracts a sub-mesh defined by a texture label value (c+1) mesh_cc = aims.SurfaceManip.meshExtract(mesh, label_cc, c+1)[0] # surface area of a triangular mesh (in mm2) area_cc = aims.SurfaceManip.meshArea(mesh_cc) areas_measures[label][c] = area_cc if areas_mode: return step_cc, areas_measures else: return step_cc def remove_non_principal_connected_components(mesh, tex, trash_label): """Keep only the largest connected component in each label, for a label texture. Parameters ---------- mesh: tex: label texture (S16, int) trash_label: value to replace non-principal components Returns ------- out_tex: label texture """ t0 = tex[0].arraydata() t0 += 1 # 0 is a real label conn_comp, areas = connectedComponents(mesh, tex, areas_mode=True) t0 -= 1 dtype = tex[0].arraydata().dtype out_tex = aims.TimeTexture(dtype=dtype) out_tex[0].assign(numpy.zeros(tex[0].size(), dtype=dtype)) out_arr = out_tex[0].arraydata() out_arr[:] = trash_label for label in conn_comp.keys(): comps = conn_comp[label] largest = numpy.argmax(areas[label + 1]) + 1 comp_arr = comps.arraydata() out_arr[comp_arr==largest] = label return out_tex def meshDiceIndex(mesh, texture1, texture2, timestep1=0, timestep2=0, labels_table1=None, labels_table2=None): """DICE index calculation between two sets of regions defined by label textures on a common mesh. texture1, texture2: aims.TimeTexture instances, should be int (labels). timestep1, timestep2: timestep to use in texture1 and texture2. labels_table1, labels_table2: optional labels translation tables (dicts or arrays) to translate values of texture1 and/or texture2. return """ tex1 = texture1[timestep1].arraydata() tex2 = texture2[timestep2].arraydata() if labels_table1 is not None: tex1 = numpy.array([labels_table1[x] for x in tex1]) if labels_table2 is not None: tex2 = numpy.array([labels_table2[x] for x in tex2]) regions = max(numpy.max(tex1), numpy.max(tex2)) + 1 areas1 = numpy.zeros((regions, )) areas2 = numpy.zeros((regions, )) inter = numpy.zeros((regions, )) vertices = mesh.vertex() polygons = mesh.polygon() for poly in polygons: p = vertices[poly[0]] u1 = vertices[poly[1]] - p u2 = vertices[poly[2]] - p area = u1.crossed(u2).norm() / 6 # 1/3 area for each vertex l1 = tex1[poly[0]] l2 = tex2[poly[0]] areas1[l1] += area areas2[l2] += area if l1 == l2: # intersection inter[l1] += area l1 = tex1[poly[1]] l2 = tex2[poly[1]] areas1[l1] += area areas2[l2] += area if l1 == l2: # intersection inter[l1] += area l1 = tex1[poly[2]] l2 = tex2[poly[2]] areas1[l1] += area areas2[l2] += area if l1 == l2: # intersection inter[l1] += area dice = inter * 2 / (areas1 + areas2) return dice, areas1, areas2, inter def average_texture(output, inputs): """ Create average gyri texture from a group of subject. """ # read textures tex = [] for fname in inputs: tex.append(aims.read(fname)) # make a 2D array from a series of textures ar = numpy.vstack([t[0].arraydata() for t in tex]) # replace the negative values by positive integers if len(ar[ar == -1]) != 0: tmp_label = numpy.max(ar) + 1 ar[ar == -1] = tmp_label # count occurrences N = numpy.max(ar) def bin_resized(x): y = numpy.bincount(x) y.resize(N + 1) # labels: 1 to 72 return y cnt = numpy.apply_along_axis(bin_resized, 0, ar) # get max of occurrences in each vertex maj = numpy.argmax(cnt, axis=0) # to keep the same labels, replace (max + 1) by -1 if tmp_label: maj[maj == tmp_label] = -1 # make an aims texture from result (numpy array) otex = aims.TimeTexture('S16') otex[0].assign(maj) otex.header().update(tex[0].header()) aims.write(otex, output) def nomenclature_to_colormap(hierarchy, labels_list, as_float=True, default_color=[0.3, 0.6, 1., 1.]): """ Make a colormap from labels and colors of a nomenclature (hierarchy), following a labels_list order. Parameters ---------- hierarchy: Hierarchy object nomenclature labels_list: list of strings labels with order. The returned colormap will follow this ordering. as_float: bool (optional, default: True) if True, colors will be float values in the [0-1] range. If False, they will be int values in the [0-255] range. default_color: list (4 floats) (optional) Color used for labels not found in the nomenclature. It is given as floats ([0-1] range). Returns ------- colormap: numpy array array of colors (4 float values in [0-1] range) """ colors = [] for label in labels_list: try: color = hierarchy.find_color(label, default_color=default_color) color = list(color) if len(color) < 4: color.append(1.) except: color = default_color if not as_float: color = [int(c*255.9) for c in color] colors.append(list(color)) return numpy.array(colors) def vertex_texture_to_polygon_texture(mesh, tex, allow_cut=False): """Make a "polygon texture" from a vartex-based label texture. A polygon texture has a value for each polygon. For a given polygon the value is taken as the majority of values on its vertices. If an absolute majority cannot be obtained, the mesh polygons may be cut to avoid losing precision. This is done if allow_cut is True. When allow_cut is False, the returned value is the polygon texture. It may work on meshes of any polygon size (triangles, quads, segments...) When allow_cut is True, the returned value is a tuple: * polygon texture * new mesh with possibly split triangles It only works for meshes of triangles. """ dtype = tex[list(tex.keys())[0]].arraydata().dtype poly_tex = aims.TimeTexture(dtype=dtype) if allow_cut: out_mesh = mesh.__class__(mesh) for t, tex0 in six.iteritems(tex): tdata = tex0.arraydata() ptex0 = poly_tex[t] ptex0.resize(len(mesh.polygon(t))) poly_labels = ptex0.arraydata() if allow_cut: added_vert = {} vertex = out_mesh.vertex(t) polygon = out_mesh.polygon(t) for p, poly in enumerate(mesh.polygon(t)): D = len(poly) labels = [tdata[v] for v in poly] ulabels = numpy.unique(labels) ilabels = [numpy.where(labels==u)[0] for u in ulabels] nlabels = [len(u) for u in ilabels] if not allow_cut: maj = ulabels[numpy.argmax(nlabels)] poly_labels[p] = maj else: # WARNING this only works for triangles. if len(ulabels) == 1: poly_labels[p] = ulabels[0] elif len(ulabels) == 2: # cut off one vertex iother = labels.index(ulabels[numpy.argmin(nlabels)]) ikeep = [i for i in range(D) if i!=iother] iv0 = poly[iother] iv1 = poly[(iother-1) % D] ind = (min((iv0, iv1)), max((iv0, iv1))) ivn1 = added_vert.get(ind) if ivn1 is None: v1 = (vertex[iv0] + vertex[iv1]) * 0.5 ivn1 = len(vertex) vertex.append(v1) added_vert[ind] = ivn1 iv2 = poly[(iother+1) % D] ind = (min((iv0, iv2)), max((iv0, iv2))) ivn2 = added_vert.get(ind) if ivn2 is None: v2 = (vertex[iv0] + vertex[iv2]) * 0.5 ivn2 = len(vertex) vertex.append(v2) added_vert[ind] = ivn2 polygon[p][(iother-1) % D] = ivn1 polygon[p][(iother+1) % D] = ivn2 polygon.append(poly.__class__(iv1, ivn1, ivn2)) polygon.append(poly.__class__(ivn2, iv2, iv1)) poly_labels[p] = tdata[iv0] ptex0.append(tdata[iv1]) ptex0.append(tdata[iv2]) else: # cut in 3 regions bs0 = (min(poly[0], poly[1]), max(poly[0], poly[1])) bs1 = (min(poly[1], poly[2]), max(poly[1], poly[2])) bs2 = (min(poly[2], poly[0]), max(poly[2], poly[0])) bi0 = added_vert.get(bs0) if bi0 is None: v0 = (vertex[poly[0]] + vertex[poly[1]]) * 0.5 bi0 = len(vertex) added_vert[bs0] = bi0 vertex.append(v0) bi1 = added_vert.get(bs1) if bi1 is None: v1 = (vertex[poly[1]] + vertex[poly[2]]) * 0.5 bi1 = len(vertex) added_vert[bs1] = bi1 vertex.append(v1) bi2 = added_vert.get(bs2) if bi2 is None: v2 = (vertex[poly[2]] + vertex[poly[0]]) * 0.5 bi2 = len(vertex) added_vert[bs2] = bi2 vertex.append(v2) bi3 = len(vertex) v3 = (vertex[poly[0]] + vertex[poly[1]] + vertex[poly[2]]) / 3. vertex.append(v3) polygon[p][1] = bi0 polygon[p][2] = bi3 polygon.append(poly.__class__(bi3, bi2, poly[0])) polygon.append(poly.__class__(poly[1], bi1, bi3)) polygon.append(poly.__class__(poly[1], bi3, bi0)) polygon.append(poly.__class__(poly[2], bi2, bi3)) polygon.append(poly.__class__(poly[2], bi3, bi1)) poly_labels[p] = labels[0] ptex0.append(labels[0]) ptex0.append(labels[1]) ptex0.append(labels[1]) ptex0.append(labels[2]) ptex0.append(labels[2]) if allow_cut: return (poly_tex, out_mesh) else: return poly_tex def mesh_to_polygon_textured_mesh(mesh, poly_tex): """ """ out_mesh = mesh.__class__() out_tex = poly_tex.__class__() polygons = mesh.polygon() dtype = poly_tex[list(poly_tex.keys())[0]].arraydata().dtype for t, tex0 in six.iteritems(poly_tex): print('t:', t) overt = out_mesh.vertex(t) overt.assign(mesh.vertex()) onorm = out_mesh.normal(t) onorm.assign(mesh.vertex()) opoly = out_mesh.polygon(t) opoly.assign(mesh.polygon()) otex = out_tex[t] otex.assign(numpy.zeros(mesh.vertex().size(), dtype=dtype) - 1) #otex_arr = otex.arraydata() tex_arr = tex0.arraydata() added = {} for p in range(len(mesh.polygon())): plabel = tex_arr[p] poly = opoly[p] for i, v in enumerate(poly): if otex[v] < 0: otex[v] = plabel elif otex[v] != plabel: old_new = added.get((v, plabel)) if old_new: # already added, just change triangle poly[i] = old_new else: # add a new vertex, and change triangle vb = overt.size() overt.append(overt[v]) poly[i] = vb otex.data().append(plabel) added[(v, plabel)] = vb #otex_arr = otex.arraydata() out_mesh.updateNormals() return out_mesh, out_tex def change_wrong_labels(cc_label, label, gyri_tex, mesh_neighbors_vector, cc_tex_label): """After a study of its neighbors, wrong label is replaced by the correct number. Parameters ---------- cc_label: label of connected component in cc_tex_label label: label of associated vertices in gyri texture gyri_tex (aims time texture S16): gyri texture mesh_neighbors_vector : aims.SurfaceManip.surfaceNeighbours(mesh) cc_tex_label : texture representing connected components of label Returns ------- gyri_tex (aims time texture S16): new gyri_tex texture, without isolated vertex. winner_label: the correct number. """ indexes = numpy.where(cc_tex_label == cc_label)[0] neighbor_labels = [] print('Nb of wrong indexes: ', indexes.size) for i in indexes: for n in mesh_neighbors_vector[i]: n_label = gyri_tex[0][n] if n_label != label: neighbor_labels.append(n_label) v_labels = numpy.unique(neighbor_labels) max_count = 0 winnner_label = -1 for l in v_labels: nb_v_labels = neighbor_labels.count(l) if nb_v_labels > max_count: print('Number of neighbor labels: ', nb_v_labels, 'for', l) winnner_label = l max_count = nb_v_labels for i in indexes: gyri_tex[0][i] = winnner_label return gyri_tex, winnner_label def find_wrong_labels(mesh, gyriTex): """ Parameters ---------- mesh: gyriTex: gyri texture Returns ------- wrong_labels: list of wrong labels [cctex: connectedComponentTex: aimsTimeTexture_S16, time step = LabelsNb, for each time step (label in the tex), texture of the connected components corresponding to this label (background = -1, and connected components = values between 1 and ccNb) areas_measures = python dictionary, areas_measures[label] = [16.5, 6.0] (numpy array) if label (in tex) has two connected Components 1 and 2 with area = 16.5 and 6.0 respectively, areas are in square mm] """ meshNeighborsVector = aims.SurfaceManip.surfaceNeighbours(mesh) cctex, areas_measures = connectedComponents( mesh, gyriTex, areas_mode=1) wrong_labels = [] for label in areas_measures.keys(): if areas_measures[label].size != 1: wrong_labels.append(label) return wrong_labels def clean_gyri_texture(mesh, gyri_tex): """Cleaning a gyri texture by using connected components. Parameters ---------- mesh (aims time surface): white mesh associated to gyri_tex gyri_tex (aims time texture S16): gyri texture as full FreeSurfer parcellation. Return ------ gyri_tex (aims time texture S16): new gyri texture, without isolated vertex. """ # get a list of neighbouring nodes from a surface mesh mesh_neighbors_vector = aims.SurfaceManip.surfaceNeighbours(mesh) cc_tex, areas_measures = connectedComponents( mesh, gyri_tex, areas_mode=1) wrong_labels = [] for label in areas_measures.keys(): if areas_measures[label].size != 1: wrong_labels.append(label) for label in wrong_labels: cc_tex_label = cc_tex[label - 1].arraydata() areas_measures_cc = areas_measures[label] cc_nb = areas_measures_cc.size for l in range(1, cc_nb): gyri_tex, win = change_wrong_labels( l + 1, label, gyri_tex, mesh_neighbors_vector, cc_tex_label) return gyri_tex def set_texture_colormap(texture, colormap, cmap_name='custom', tex_max=None, tex_min=None, tex_index=0, col_mapping='all'): """ Set a colormap in a texture object header. The texture object may be any kind of textured object: a TimeTexture instance, or a Volume. Parameters ---------- texture: TimeTexture, Volume... The texture object should have a header() method. colormap: array, Volume, or filename The colormap may be provided as RGB or RGBA, and as an aims Volume object, or a numpy array, or as an image filename. It should be a 1D colormap (for now at least). cmap_name: str (optional) name of the colormap to be used in Anatomist. tex_max: float (optional) Max texture value to be mapped to the colormap bounds. It is used to scale the max value of the colormap in Anatomist. If not specified, the texture or volume max will be looked for in the texture object. Used only if col_mapping is "one". tex_min: float (optional) Min texture value to be mapped to the colormap bounds. It is used to scale the max value of the colormap in Anatomist. If not specified, the texture or volume max will be looked for in the texture object. Used only if col_mapping is "one". tex_index: int (optional) Texture index in the textured object col_mapping: str or None (optional) "all": map the full texture range to the colormap bounds (default); "one": one-to-one mapping between colors and values (int values); "none" or None: don't force any mapping - anatomist will choose to use a histogram if needed. """ header = texture.header() if isinstance(colormap, str): # colormap is a filename colormap = aims.read(colormap) if hasattr(colormap, 'np'): cmap = colormap['v'] else: # assume already a np array nx3 or nx4 cmap = colormap if cmap.shape[-1] ==4: mode = 'rgba' else: mode = 'rgb' cols = cmap.flatten().tolist() nmax = cmap.shape[0] params = {} if col_mapping not in (None, "none"): if col_mapping == "all": params['min'] = 0. params['max'] = 1. elif col_mapping == "one": if tex_max is None: if hasattr(texture, 'max'): # volume ? tex_max = texture.max() elif hasattr(texture, 'np'): # volume also ? tex_max =
numpy.max(texture.np)
numpy.max
import unittest import numpy as np from sotodlib import core class TestAxisManager(unittest.TestCase): # Basic behavior of each axis type. def test_100_index(self): a1 = np.zeros(100) a1[10] = 1. aman = core.AxisManager(core.IndexAxis('samps', len(a1))) aman.wrap('a1', a1, [(0, 'samps')]) aman.restrict('samps', (10, 30)) self.assertNotEqual(aman.a1[0], 0.) self.assertEqual(len(aman.a1), 20) def test_110_offset(self): a1 =
np.zeros(100)
numpy.zeros
import cv2 import numpy as np ## aug functions def identity_func(img): return img def autocontrast_func(img, cutoff=0): ''' same output as PIL.ImageOps.autocontrast ''' n_bins = 256 def tune_channel(ch): n = ch.size cut = cutoff * n // 100 if cut == 0: high, low = ch.max(), ch.min() else: hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) low = np.argwhere(
np.cumsum(hist)
numpy.cumsum
import os import numpy as np import json from ._base_dataset import _BaseDataset from ..utils import TrackEvalException from .. import utils from .. import _timing class YouTubeVIS(_BaseDataset): """Dataset class for YouTubeVIS tracking""" @staticmethod def get_default_dataset_config(): """Default class config values""" code_path = utils.get_code_path() default_config = { 'GT_FOLDER': os.path.join(code_path, 'data/gt/youtube_vis/'), # Location of GT data 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/youtube_vis/'), # Trackers location 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) 'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes) 'SPLIT_TO_EVAL': 'train_sub_split', # Valid: 'train', 'val', 'train_sub_split' 'PRINT_CONFIG': True, # Whether to print current config 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL } return default_config def __init__(self, config=None): """Initialise dataset, checking that all required files are present""" super().__init__() # Fill non-given config values with defaults self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) self.gt_fol = self.config['GT_FOLDER'] + 'youtube_vis_' + self.config['SPLIT_TO_EVAL'] self.tracker_fol = self.config['TRACKERS_FOLDER'] + 'youtube_vis_' + self.config['SPLIT_TO_EVAL'] self.use_super_categories = False self.should_classes_combine = True self.output_fol = self.config['OUTPUT_FOLDER'] if self.output_fol is None: self.output_fol = self.tracker_fol self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] if not os.path.exists(self.gt_fol): print("GT folder not found: " + self.gt_fol) raise TrackEvalException("GT folder not found: " + os.path.basename(self.gt_fol)) gt_dir_files = [file for file in os.listdir(self.gt_fol) if file.endswith('.json')] if len(gt_dir_files) != 1: raise TrackEvalException(self.gt_fol + ' does not contain exactly one json file.') with open(os.path.join(self.gt_fol, gt_dir_files[0])) as f: self.gt_data = json.load(f) # Get classes to eval self.valid_classes = [cls['name'] for cls in self.gt_data['categories']] cls_name_to_cls_id_map = {cls['name']: cls['id'] for cls in self.gt_data['categories']} if self.config['CLASSES_TO_EVAL']: self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None for cls in self.config['CLASSES_TO_EVAL']] if not all(self.class_list): raise TrackEvalException('Attempted to evaluate an invalid class. Only classes ' + ', '.join(self.valid_classes) + ' are valid.') else: self.class_list = [cls['name'] for cls in self.gt_data['categories']] self.class_name_to_class_id = {k: v for k, v in cls_name_to_cls_id_map.items() if k in self.class_list} # Get sequences to eval and check gt files exist self.seq_list = [vid['file_names'][0].split('/')[0] for vid in self.gt_data['videos']] self.seq_name_to_seq_id = {vid['file_names'][0].split('/')[0]: vid['id'] for vid in self.gt_data['videos']} self.seq_lengths = {vid['id']: len(vid['file_names']) for vid in self.gt_data['videos']} # encode masks and compute track areas self._prepare_gt_annotations() # Get trackers to eval if self.config['TRACKERS_TO_EVAL'] is None: self.tracker_list = os.listdir(self.tracker_fol) else: self.tracker_list = self.config['TRACKERS_TO_EVAL'] if self.config['TRACKER_DISPLAY_NAMES'] is None: self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) else: raise TrackEvalException('List of tracker files and tracker display names do not match.') # counter for globally unique track IDs self.global_tid_counter = 0 self.tracker_data = dict() for tracker in self.tracker_list: tracker_dir_path = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol) tr_dir_files = [file for file in os.listdir(tracker_dir_path) if file.endswith('.json')] if len(tr_dir_files) != 1: raise TrackEvalException(tracker_dir_path + ' does not contain exactly one json file.') with open(os.path.join(tracker_dir_path, tr_dir_files[0])) as f: curr_data = json.load(f) self.tracker_data[tracker] = curr_data def get_display_name(self, tracker): return self.tracker_to_disp[tracker] def _load_raw_file(self, tracker, seq, is_gt): """Load a file (gt or tracker) in the YouTubeVIS format If is_gt, this returns a dict which contains the fields: [gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). [gt_dets]: list (for each timestep) of lists of detections. [classes_to_gt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as keys and corresponding segmentations as values) for each track [classes_to_gt_track_ids, classes_to_gt_track_areas, classes_to_gt_track_iscrowd]: dictionary with class values as keys and lists (for each track) as values if not is_gt, this returns a dict which contains the fields: [tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). [tracker_dets]: list (for each timestep) of lists of detections. [classes_to_dt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as keys and corresponding segmentations as values) for each track [classes_to_dt_track_ids, classes_to_dt_track_areas]: dictionary with class values as keys and lists as values [classes_to_dt_track_scores]: dictionary with class values as keys and 1D numpy arrays as values """ # select sequence tracks seq_id = self.seq_name_to_seq_id[seq] if is_gt: tracks = [ann for ann in self.gt_data['annotations'] if ann['video_id'] == seq_id] else: tracks = self._get_tracker_seq_tracks(tracker, seq_id) # Convert data to required format num_timesteps = self.seq_lengths[seq_id] data_keys = ['ids', 'classes', 'dets'] if not is_gt: data_keys += ['tracker_confidences'] raw_data = {key: [None] * num_timesteps for key in data_keys} for t in range(num_timesteps): raw_data['dets'][t] = [track['segmentations'][t] for track in tracks if track['segmentations'][t]] raw_data['ids'][t] = np.atleast_1d([track['id'] for track in tracks if track['segmentations'][t]]).astype(int) raw_data['classes'][t] = np.atleast_1d([track['category_id'] for track in tracks if track['segmentations'][t]]).astype(int) if not is_gt: raw_data['tracker_confidences'][t] = np.atleast_1d([track['score'] for track in tracks if track['segmentations'][t]]).astype(float) if is_gt: key_map = {'ids': 'gt_ids', 'classes': 'gt_classes', 'dets': 'gt_dets'} else: key_map = {'ids': 'tracker_ids', 'classes': 'tracker_classes', 'dets': 'tracker_dets'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) all_cls_ids = {self.class_name_to_class_id[cls] for cls in self.class_list} classes_to_tracks = {cls: [track for track in tracks if track['category_id'] == cls] for cls in all_cls_ids} # mapping from classes to track representations and track information raw_data['classes_to_tracks'] = {cls: [{i: track['segmentations'][i] for i in range(len(track['segmentations']))} for track in tracks] for cls, tracks in classes_to_tracks.items()} raw_data['classes_to_track_ids'] = {cls: [track['id'] for track in tracks] for cls, tracks in classes_to_tracks.items()} raw_data['classes_to_track_areas'] = {cls: [track['area'] for track in tracks] for cls, tracks in classes_to_tracks.items()} if is_gt: raw_data['classes_to_gt_track_iscrowd'] = {cls: [track['iscrowd'] for track in tracks] for cls, tracks in classes_to_tracks.items()} else: raw_data['classes_to_dt_track_scores'] = {cls: np.array([track['score'] for track in tracks]) for cls, tracks in classes_to_tracks.items()} if is_gt: key_map = {'classes_to_tracks': 'classes_to_gt_tracks', 'classes_to_track_ids': 'classes_to_gt_track_ids', 'classes_to_track_areas': 'classes_to_gt_track_areas'} else: key_map = {'classes_to_tracks': 'classes_to_dt_tracks', 'classes_to_track_ids': 'classes_to_dt_track_ids', 'classes_to_track_areas': 'classes_to_dt_track_areas'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) raw_data['num_timesteps'] = num_timesteps raw_data['seq'] = seq return raw_data @_timing.time def get_preprocessed_seq_data(self, raw_data, cls): """ Preprocess data for a single sequence for a single class ready for evaluation. Inputs: - raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). - cls is the class to be evaluated. Outputs: - data is a dict containing all of the information that metrics need to perform evaluation. It contains the following fields: [num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. [gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). [gt_dets, tracker_dets]: list (for each timestep) of lists of detections. [similarity_scores]: list (for each timestep) of 2D NDArrays. Notes: General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. 1) Extract only detections relevant for the class to be evaluated (including distractor detections). 2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a distractor class, or otherwise marked as to be removed. 3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain other criteria (e.g. are too small). 4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. After the above preprocessing steps, this function also calculates the number of gt and tracker detections and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are unique within each timestep. YouTubeVIS: In YouTubeVIS, the 4 preproc steps are as follow: 1) There are 40 classes which are evaluated separately. 2) No matched tracker dets are removed. 3) No unmatched tracker dets are removed. 4) No gt dets are removed. Further, for TrackMAP computation track representations for the given class are accessed from a dictionary and the tracks from the tracker data are sorted according to the tracker confidence. """ cls_id = self.class_name_to_class_id[cls] data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores'] data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} unique_gt_ids = [] unique_tracker_ids = [] num_gt_dets = 0 num_tracker_dets = 0 for t in range(raw_data['num_timesteps']): # Only extract relevant dets for this class for eval (cls) gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id) gt_class_mask = gt_class_mask.astype(np.bool) gt_ids = raw_data['gt_ids'][t][gt_class_mask] gt_dets = [raw_data['gt_dets'][t][ind] for ind in range(len(gt_class_mask)) if gt_class_mask[ind]] tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) tracker_class_mask = tracker_class_mask.astype(np.bool) tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] tracker_dets = [raw_data['tracker_dets'][t][ind] for ind in range(len(tracker_class_mask)) if tracker_class_mask[ind]] similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] data['tracker_ids'][t] = tracker_ids data['tracker_dets'][t] = tracker_dets data['gt_ids'][t] = gt_ids data['gt_dets'][t] = gt_dets data['similarity_scores'][t] = similarity_scores unique_gt_ids += list(np.unique(data['gt_ids'][t])) unique_tracker_ids += list(
np.unique(data['tracker_ids'][t])
numpy.unique
""" Run the test step on all the LAMOST DR2 objects. """ import numpy as np import glob import matplotlib.pyplot as plt import sys sys.path.insert(0, '/home/annaho') #from lamost import load_spectra #import dataset #import model from TheCannon import dataset from TheCannon import model #from astropy.table import Table from matplotlib.colors import LogNorm from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import os def test_step_iteration(ds, m, starting_guess): errs, chisq = m.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def test_step(date): direc = "../xcalib_4labels" wl = np.load("%s/wl.npz" %direc)['arr_0'] test_ID = np.load("%s/output/%s_ids.npz" %(direc, date))['arr_0'] print(str(len(test_ID)) + " objects") test_flux = np.load("%s/output/%s_norm.npz" %(direc,date))['arr_0'] test_ivar =
np.load("%s/output/%s_norm.npz" %(direc,date))
numpy.load
import pkg_resources import re import requests import numpy as np import scipy as sp import scipy.sparse import scipy.sparse.linalg from . import index __all__ = ['PowerNetwork', 'load_case'] class PowerNetwork: def __init__(self, basemva, bus=None, gen=None, gencost=None, branch=None, perunit=True): if type(basemva) is dict: data = basemva self.baseMVA = data['baseMVA'] self.branch = dict() for i, col in enumerate(index.branch): self.branch[col] = data['branch'][:, i] self.bus = dict() for i, col in enumerate(index.bus): self.bus[col] = data['bus'][:, i] self.gen = dict() for i, col in enumerate(index.gen): self.gen[col] = data['gen'][:, i] self.gencost = dict() for i, col in enumerate(index.cost): if col == 'COST': self.gencost[col] = data['gencost'][:, i:] break self.gencost[col] = data['gencost'][:, i] elif self.bus is not None and self.gen is not None and self.gencost is not None and self.branch is not None: self.baseMVA = basemva self.bus = dict() for i, col in enumerate(index.bus): self.bus[col] = bus[:, i] self.gen = dict() for i, col in enumerate(index.gen): self.gen[col] = gen[:, i] self.gencost = dict() for i, col in enumerate(index.cost): if col == 'COST': self.gencost[col] = gencost[:, i:] break self.gencost[col] = gencost[:, i] self.branch = dict() for i, col in enumerate(index.branch): self.branch[col] = branch[:, i] else: raise TypeError('Invalid input to power network. Must be either dict or all arguments must be filled.') self.n_l = int(np.sum(self.branch['BR_STATUS'])) self.n_b = len(self.bus['BUS_I']) self.n_g = len(self.gen['GEN_BUS']) # Per-unit transformations if perunit: self.bus['PD'] /= self.baseMVA self.bus['QD'] /= self.baseMVA self.gen['PG'] /= self.baseMVA self.gen['QG'] /= self.baseMVA self.gen['QMAX'] /= self.baseMVA self.gen['QMIN'] /= self.baseMVA self.gen['VG'] /= self.baseMVA self.gen['PMAX'] /= self.baseMVA self.gen['PMIN'] /= self.baseMVA self.gen['PC1'] /= self.baseMVA self.gen['PC2'] /= self.baseMVA self.gen['QC1MIN'] /= self.baseMVA self.gen['QC1MAX'] /= self.baseMVA self.gen['QC2MIN'] /= self.baseMVA self.gen['QC2MAX'] /= self.baseMVA self.gen['RAMP_AGC'] /= self.baseMVA self.gen['RAMP_10'] /= self.baseMVA self.gen['RAMP_30'] /= self.baseMVA self.gen['RAMP_Q'] /= self.baseMVA self.gencost['COST'] /= self.baseMVA self.branch['RATE_A'] /= self.baseMVA self.branch['RATE_B'] /= self.baseMVA self.branch['RATE_C'] /= self.baseMVA # Add nodal value of lost load self.voll = 70 * np.max(self.gencost['COST'][:, -2]) * np.ones((self.n_b,)) self.Bbus = None self.Bf = None self.Pbusinj = None self.Pfinj = None self.ISF = None self.lineOutages = None def setContingencyLimits(self, force=False): # Artificially enforce DA and SE limits if unenforced if force or np.all(self.branch['RATE_A'] >= self.branch['RATE_B']): self.branch['RATE_B'] *= 1.1 if force or np.all(self.branch['RATE_A'] >= self.branch['RATE_C']): self.branch['RATE_C'] *= 1.7 # Artificially set ramp capacity if unset if
np.all(self.gen['RAMP_AGC'] == 0)
numpy.all
import atexit from abc import ABCMeta import numpy as np import tensorflow as tf from sklearn.base import ClassifierMixin, RegressorMixin from ..models import AbstractSupervisedDBN as BaseAbstractSupervisedDBN from ..models import BaseModel from ..models import BinaryRBM as BaseBinaryRBM from ..models import UnsupervisedDBN as BaseUnsupervisedDBN from ..utils import batch_generator, to_categorical def close_session(): sess.close() sess = tf.Session() atexit.register(close_session) def weight_variable(func, shape, stddev, dtype=tf.float32): initial = func(shape, stddev=stddev, dtype=dtype) return tf.Variable(initial) def bias_variable(value, shape, dtype=tf.float32): initial = tf.constant(value, shape=shape, dtype=dtype) return tf.Variable(initial) class BaseTensorFlowModel(BaseModel): def save(self, save_path): import pickle with open(save_path, 'wb') as fp: pickle.dump(self.to_dict(), fp) @classmethod def load(cls, load_path): import pickle with open(load_path, 'rb') as fp: dct_to_load = pickle.load(fp) return cls.from_dict(dct_to_load) def to_dict(self): dct_to_save = {name: self.__getattribute__( name) for name in self._get_param_names()} dct_to_save.update( {name: self.__getattribute__(name).eval(sess) for name in self._get_weight_variables_names()}) return dct_to_save @classmethod def from_dict(cls, dct_to_load): pass def _build_model(self, weights=None): pass def _initialize_weights(self, weights): pass @classmethod def _get_weight_variables_names(cls): pass @classmethod def _get_param_names(cls): pass class BinaryRBM(BaseBinaryRBM, BaseTensorFlowModel): """ This class implements a Binary Restricted Boltzmann machine based on TensorFlow. """ def fit(self, X): """ Fit a model given data. :param X: array-like, shape = (n_samples, n_features) :return: """ self.n_visible_units = X.shape[1] # Initialize RBM parameters self._build_model() sess.run(tf.variables_initializer([self.W, self.c, self.b])) if self.optimization_algorithm == 'sgd': self._stochastic_gradient_descent(X) else: raise ValueError("Invalid optimization algorithm.") return @classmethod def _get_weight_variables_names(cls): return ['W', 'c', 'b'] @classmethod def _get_param_names(cls): return ['n_hidden_units', 'n_visible_units', 'activation_function', 'optimization_algorithm', 'learning_rate', 'n_epochs', 'contrastive_divergence_iter', 'batch_size', 'verbose', '_activation_function_class'] def _initialize_weights(self, weights): if weights: for attr_name, value in weights.items(): self.__setattr__(attr_name, tf.Variable(value)) else: if self.activation_function == 'sigmoid': stddev = 1.0 / np.sqrt(self.n_visible_units) self.W = weight_variable( tf.random_normal, [self.n_hidden_units, self.n_visible_units], stddev) self.c = weight_variable( tf.random_normal, [self.n_hidden_units], stddev) self.b = weight_variable( tf.random_normal, [self.n_visible_units], stddev) self._activation_function_class = tf.nn.sigmoid elif self.activation_function == 'relu': stddev = 0.1 / np.sqrt(self.n_visible_units) self.W = weight_variable(tf.truncated_normal, [ self.n_hidden_units, self.n_visible_units], stddev) self.c = bias_variable(stddev, [self.n_hidden_units]) self.b = bias_variable(stddev, [self.n_visible_units]) self._activation_function_class = tf.nn.relu else: raise ValueError("Invalid activation function.") def _build_model(self, weights=None): """ Builds TensorFlow model. :return: """ # initialize weights and biases self._initialize_weights(weights) # TensorFlow operations self.visible_units_placeholder = tf.placeholder( tf.float32, shape=[None, self.n_visible_units]) self.compute_hidden_units_op = self._activation_function_class( tf.transpose(tf.matmul(self.W, tf.transpose(self.visible_units_placeholder))) + self.c) self.hidden_units_placeholder = tf.placeholder( tf.float32, shape=[None, self.n_hidden_units]) self.compute_visible_units_op = self._activation_function_class( tf.matmul(self.hidden_units_placeholder, self.W) + self.b) self.random_uniform_values = tf.Variable( tf.random_uniform([self.batch_size, self.n_hidden_units])) sample_hidden_units_op = tf.to_float( self.random_uniform_values < self.compute_hidden_units_op) self.random_variables = [self.random_uniform_values] # Positive gradient # Outer product. N is the batch size length. # From http://stackoverflow.com/questions/35213787/tensorflow-batch-outer-product positive_gradient_op = tf.matmul(tf.expand_dims(sample_hidden_units_op, 2), # [N, U, 1] tf.expand_dims(self.visible_units_placeholder, 1)) # [N, 1, V] # Negative gradient # Gibbs sampling sample_hidden_units_gibbs_step_op = sample_hidden_units_op for t in range(self.contrastive_divergence_iter): compute_visible_units_op = self._activation_function_class( tf.matmul(sample_hidden_units_gibbs_step_op, self.W) + self.b) compute_hidden_units_gibbs_step_op = self._activation_function_class( tf.transpose(tf.matmul(self.W, tf.transpose(compute_visible_units_op))) + self.c) random_uniform_values = tf.Variable( tf.random_uniform([self.batch_size, self.n_hidden_units])) sample_hidden_units_gibbs_step_op = tf.to_float( random_uniform_values < compute_hidden_units_gibbs_step_op) self.random_variables.append(random_uniform_values) negative_gradient_op = tf.matmul(tf.expand_dims(sample_hidden_units_gibbs_step_op, 2), # [N, U, 1] tf.expand_dims(compute_visible_units_op, 1)) # [N, 1, V] compute_delta_W = tf.reduce_mean( positive_gradient_op - negative_gradient_op, 0) compute_delta_b = tf.reduce_mean( self.visible_units_placeholder - compute_visible_units_op, 0) compute_delta_c = tf.reduce_mean( sample_hidden_units_op - sample_hidden_units_gibbs_step_op, 0) self.update_W = tf.assign_add( self.W, self.learning_rate * compute_delta_W) self.update_b = tf.assign_add( self.b, self.learning_rate * compute_delta_b) self.update_c = tf.assign_add( self.c, self.learning_rate * compute_delta_c) @classmethod def from_dict(cls, dct_to_load): weights = {var_name: dct_to_load.pop( var_name) for var_name in cls._get_weight_variables_names()} _activation_function_class = dct_to_load.pop( '_activation_function_class') n_visible_units = dct_to_load.pop('n_visible_units') instance = cls(**dct_to_load) setattr(instance, '_activation_function_class', _activation_function_class) setattr(instance, 'n_visible_units', n_visible_units) # Initialize RBM parameters instance._build_model(weights) sess.run(tf.variables_initializer( [getattr(instance, name) for name in cls._get_weight_variables_names()])) return instance def _stochastic_gradient_descent(self, _data): """ Performs stochastic gradient descend optimization algorithm. :param _data: array-like, shape = (n_samples, n_features) :return: """ for iteration in range(1, self.n_epochs + 1): idx = np.random.permutation(len(_data)) data = _data[idx] for batch in batch_generator(self.batch_size, data): if len(batch) < self.batch_size: # Pad with zeros pad = np.zeros( (self.batch_size - batch.shape[0], batch.shape[1]), dtype=batch.dtype) batch = np.vstack((batch, pad)) # Need to re-sample from uniform distribution sess.run(tf.variables_initializer(self.random_variables)) sess.run([self.update_W, self.update_b, self.update_c], feed_dict={self.visible_units_placeholder: batch}) if self.verbose: error = self._compute_reconstruction_error(data) print(">> Epoch %d finished \tRBM Reconstruction error %f" % (iteration, error)) def _compute_hidden_units_matrix(self, matrix_visible_units): """ Computes hidden unit outputs. :param matrix_visible_units: array-like, shape = (n_samples, n_features) :return: """ return sess.run(self.compute_hidden_units_op, feed_dict={self.visible_units_placeholder: matrix_visible_units}) def _compute_visible_units_matrix(self, matrix_hidden_units): """ Computes visible (or input) unit outputs. :param matrix_hidden_units: array-like, shape = (n_samples, n_features) :return: """ return sess.run(self.compute_visible_units_op, feed_dict={self.hidden_units_placeholder: matrix_hidden_units}) class UnsupervisedDBN(BaseUnsupervisedDBN, BaseTensorFlowModel): """ This class implements a unsupervised Deep Belief Network in TensorFlow """ def __init__(self, **kwargs): super(UnsupervisedDBN, self).__init__(**kwargs) self.rbm_class = BinaryRBM @classmethod def _get_param_names(cls): return ['hidden_layers_structure', 'activation_function', 'optimization_algorithm', 'learning_rate_rbm', 'n_epochs_rbm', 'contrastive_divergence_iter', 'batch_size', 'verbose'] @classmethod def _get_weight_variables_names(cls): return [] def to_dict(self): dct_to_save = super(UnsupervisedDBN, self).to_dict() dct_to_save['rbm_layers'] = [rbm.to_dict() for rbm in self.rbm_layers] return dct_to_save @classmethod def from_dict(cls, dct_to_load): rbm_layers = dct_to_load.pop('rbm_layers') instance = cls(**dct_to_load) setattr(instance, 'rbm_layers', [ instance.rbm_class.from_dict(rbm) for rbm in rbm_layers]) return instance class TensorFlowAbstractSupervisedDBN(BaseAbstractSupervisedDBN, BaseTensorFlowModel): __metaclass__ = ABCMeta def __init__(self, **kwargs): super(TensorFlowAbstractSupervisedDBN, self).__init__( UnsupervisedDBN, **kwargs) @classmethod def _get_param_names(cls): return ['n_iter_backprop', 'l2_regularization', 'learning_rate', 'batch_size', 'dropout_p', 'verbose'] @classmethod def _get_weight_variables_names(cls): return ['W', 'b'] def _initialize_weights(self, weights): if weights: for attr_name, value in weights.items(): self.__setattr__(attr_name, tf.Variable(value)) else: if self.unsupervised_dbn.activation_function == 'sigmoid': stddev = 1.0 /
np.sqrt(self.input_units)
numpy.sqrt
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den =
N.array([1,1,2])
numpy.array
from . import Image import matplotlib.pyplot as plt import numpy as np import re from astropy.time import Time from astropy import units as u from astropy.coordinates import SkyCoord from .fluxes import ApertureFluxes from . import viz from astropy.io import fits from .telescope import Telescope from . import utils from astroquery.mast import Catalogs from astropy.wcs import WCS, utils as wcsutils import pandas as pd from scipy.stats import binned_statistic from .blocks.psf import Gaussian2D, Moffat2D,cutouts from .console_utils import INFO_LABEL from astropy.stats import sigma_clipped_stats from astropy.io.fits.verify import VerifyWarning from datetime import datetime import warnings from .blocks.registration import distances import requests import shutil from pathlib import Path from . import twirl import io from .utils import fast_binning, z_scale from .console_utils import info warnings.simplefilter('ignore', category=VerifyWarning) class Observation(ApertureFluxes): """ Class to load and analyze photometry products Parameters ---------- photfile : str path of the `.phot` file to load """ def __init__(self, photfile, ignore_time=False): super().__init__(photfile) utils.remove_sip(self.xarray.attrs) self.phot = photfile self.telescope = Telescope.from_name(self.telescope) self.gaia_data = None self.tic_data = None self.wcs = WCS(utils.remove_arrays(self.xarray.attrs)) self._meridian_flip = None has_bjd = hasattr(self.xarray, "bjd_tdb") if has_bjd: has_bjd = ~np.all(self.xarray.bjd_tdb.isnull().values) if not has_bjd: try: self.compute_bjd() if not ignore_time: print(f"{INFO_LABEL} Time converted to BJD TDB") except: if not ignore_time: print(f"{INFO_LABEL} Could not convert time to BJD TDB") def _check_stack(self): assert 'stack' in self.xarray is not None, "No stack found" # Loaders and savers (files and data) # ------------------------------------ def __copy__(self): copied = Observation(self.xarray.copy(), ignore_time=True) copied.phot = self.phot copied.telescope = self.telescope copied.gaia_data = self.gaia_data copied.tic_data = self.tic_data copied.wcs = self.wcs return copied def copy(self): return self.__copy__() def to_csv(self, destination, sep=" "): """Export a typical csv of the observation's data Parameters ---------- destination : str Path of the csv file to save sep : str, optional separation string within csv, by default " " """ df = pd.DataFrame( { "BJD-TDB" if self.time_format == "bjd_tdb" else "JD-UTC": self.time, "DIFF_FLUX": self.diff_flux, "ERROR": self.diff_error, "dx_MOVE": self.dx, "dy_MOVE": self.dy, "FWHM": self.fwhm, "FWHMx": self.fwhm, "FWHMy": self.fwhm, "SKYLEVEL": self.sky, "AIRMASS": self.airmass, "EXPOSURE": self.exptime, } ) df.to_csv(destination, sep=sep, index=False) def save(self, destination=None): """Save current observation Parameters ---------- destination : str, optional path to phot file, by default None """ self.xarray.to_netcdf(self.phot if destination is None else destination) info(f"saved {self.phot}") def export_stack(self, destination, **kwargs): """Export stack to FITS file Parameters ---------- destination : str path of FITS to export """ header = {name: value for name, value in self.xarray.attrs.items() if name.isupper()} data = self.stack hdul = fits.HDUList([fits.PrimaryHDU(data=data, header=fits.Header(header))]) hdul.writeto(destination, **kwargs) def import_stack(self, fitsfile): """Import FITS as stack to current obs (including WCS) - do not forget to save to keep it Parameters ---------- fitsfile : str path of FITS stack to import """ data = fits.getdata(fitsfile) header = fits.getheader(fitsfile) self.wcs = WCS(header) self.xarray.attrs.update(utils.header_to_cdf4_dict(header)) self.xarray["stack"] = (('w', 'h'), data) # Convenience # ----------- @property def skycoord(self): """astropy SkyCoord object for the target """ return SkyCoord(self.RA, self.DEC, frame='icrs', unit=(self.telescope.ra_unit, self.telescope.dec_unit)) @property def simbad_url(self): """ [notebook feature] clickable simbad query url for specified target """ from IPython.core.display import display, HTML display(HTML('<a href="{}">{}</a>'.format(self.simbad, self.simbad))) @property def simbad(self): """ simbad query url for specified target """ return f"http://simbad.u-strasbg.fr/simbad/sim-coo?Coord={self.RA}+{self.DEC}&CooFrame=FK5&CooEpoch=2000&CooEqui=" \ "2000&CooDefinedFrames=none&Radius=2&Radius.unit=arcmin&submit=submit+query&CoordList=" @property def denominator(self): """A conveniant name for the observation: {telescope}_{date}_{name}_{filter} Returns ------- [type] [description] """ return f"{self.telescope.name}_{self.date}_{self.name}_{self.filter}" @property def meridian_flip(self): """Meridian flip time. Supposing EAST and WEST encode orientation """ if self._meridian_flip is not None: return self._meridian_flip else: has_flip = hasattr(self.xarray, "flip") if has_flip: try: np.all(np.isnan(self.flip)) return None except TypeError: pass if has_flip: if "WEST" in self.flip: flip = (self.flip.copy() == "WEST").astype(int) diffs = np.abs(np.diff(flip)) if np.any(diffs): self._meridian_flip = self.time[np.argmax(diffs).flatten()] else: self._meridian_flip = None return self._meridian_flip else: return None else: return None # TESS specific methods # -------------------- @property def tic_id(self): """TIC id from digits found in target name """ try: nb = re.findall('\d*\.?\d+', self.name) df = pd.read_csv("https://exofop.ipac.caltech.edu/tess/download_toi?toi=%s&output=csv" % nb[0]) tic = df["TIC ID"][0] return f"{tic}" except KeyError: print('TIC ID not found') return None @property def gaia_from_toi(self): """Gaia id from TOI id if TOI is in target name """ if self.tic_id is not None: tic_id = ("TIC " + self.tic_id) catalog_data = Catalogs.query_object(tic_id, radius=.001, catalog="TIC") return f"{catalog_data['GAIA'][0]}" else: return None @property def tfop_prefix(self): return f"TIC{self.tic_id}_{self.date}_{self.telescope.name}_{self.filter}" # Methods # ------- def compute_bjd(self, version="prose"): """Compute BJD_tdb based on current time Once this is done self.time is BJD tdb and time format can be checked in self.time_format. Note that half the exposure time is added to the JD times before conversion. The precision of the returned time is not guaranteed, especially with "prose" method (~30ms). "eastman" option accuracy is 20ms. See http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html for more details. Parameters ---------- version : str, optiona - "prose": uses an astropy method - "eastman": uses the web applet http://astroutils.astronomy.ohio-state.edu (Eastman et al. 2010) [requires an internet connection] by default "prose" """ assert self.telescope is not None assert self.skycoord is not None exposure_days = self.xarray.exposure.values/60/60/24 # For backward compatibility # -------------------------- if "time_format" not in self.xarray.attrs: self.xarray.attrs["time_format"] = "jd_utc" self.xarray["jd_utc"] = ("time", self.time) if "jd_utc" not in self: self.xarray["jd_utc"] = ("time", self.jd) self.xarray.drop("jd") # ------------------------- if version == "prose": time = Time(self.jd_utc + exposure_days/2, format="jd", scale="utc", location=self.telescope.earth_location).tdb light_travel_tbd = time.light_travel_time(self.skycoord, location=self.telescope.earth_location) bjd_time = (time + light_travel_tbd).value elif version == "eastman": bjd_time = utils.jd_to_bjd(self.jd_utc + exposure_days/2, self.skycoord.ra.deg, self.skycoord.dec.deg) self.xarray = self.xarray.assign_coords(time=bjd_time) self.xarray["bjd_tdb"] = ("time", bjd_time) self.xarray.attrs["time_format"] = "bjd_tdb" # Catalog queries # --------------- def query_gaia(self, limit=-1, cone_radius=None): """Query gaia catalog for stars in the field """ from astroquery.gaia import Gaia Gaia.ROW_LIMIT = limit header = self.xarray.attrs shape = self.stack.shape if cone_radius is None: cone_radius = np.sqrt(2) * np.max(shape) * self.telescope.pixel_scale / 120 coord = self.skycoord radius = u.Quantity(cone_radius, u.arcminute) gaia_query = Gaia.cone_search_async(coord, radius, verbose=False, ) self.gaia_data = gaia_query.get_results() self.gaia_data.sort("phot_g_mean_flux", reverse=True) delta_years = (utils.datetime_to_years(datetime.strptime(self.date, "%Y%m%d")) - \ self.gaia_data["ref_epoch"].data.data) * u.year dra = delta_years * self.gaia_data["pmra"].to(u.deg / u.year) ddec = delta_years * self.gaia_data["pmdec"].to(u.deg / u.year) skycoords = SkyCoord( ra=self.gaia_data['ra'].quantity + dra, dec=self.gaia_data['dec'].quantity + ddec, pm_ra_cosdec=self.gaia_data['pmra'], pm_dec=self.gaia_data['pmdec'], radial_velocity=self.gaia_data['radial_velocity'], obstime=Time(2015.0, format='decimalyear')) gaias = np.array(wcsutils.skycoord_to_pixel(skycoords, self.wcs)).T gaias[np.any(np.isnan(gaias), 1), :] = [0, 0] self.gaia_data["x"], self.gaia_data["y"] = gaias.T inside = np.all((np.array([0, 0]) < gaias) & (gaias < np.array(self.stack.shape)), 1) self.gaia_data = self.gaia_data[np.argwhere(inside).squeeze()] w, h = self.stack.shape if np.abs(np.mean(self.gaia_data["x"])) > w or np.abs(np.mean(self.gaia_data["y"])) > h: warnings.warn("Catalog stars seem out of the field. Check that your stack is solved and that telescope " "'ra_unit' and 'dec_unit' are well set") def query_tic(self,cone_radius=None): """Query TIC catalog (through MAST) for stars in the field """ from astroquery.mast import Catalogs header = self.xarray.attrs shape = self.stack.shape if cone_radius is None: cone_radius = np.sqrt(2) * np.max(shape) * self.telescope.pixel_scale / 120 coord = self.skycoord radius = u.Quantity(cone_radius, u.arcminute) self.tic_data = Catalogs.query_region(coord, radius, "TIC", verbose=False) self.tic_data.sort("Jmag") skycoords = SkyCoord( ra=self.tic_data['ra'], dec=self.tic_data['dec'], unit="deg") self.tic_data["x"], self.tic_data["y"] = np.array(wcsutils.skycoord_to_pixel(skycoords, self.wcs)) w, h = self.stack.shape if np.abs(np.mean(self.tic_data["x"])) > w or np.abs(np.mean(self.tic_data["y"])) > h: warnings.warn("Catalog stars seem out of the field. Check that your stack is solved and that telescope " "'ra_unit' and 'dec_unit' are well set") @property def gaia_target(self): return None @gaia_target.setter def gaia_target(self, gaia_id): """Set target with a gaia id Parameters ---------- gaia_id : int gaia id """ if self.gaia_data is None: self.query_gaia() _ = self.gaia_data.to_pandas()[["source_id", "x", "y"]].to_numpy() ids = _[:, 0] positions = _[:, 1:3] gaia_i = np.argmin(np.abs(gaia_id - ids)) self.target = np.argmin(np.power(positions[gaia_i, :] - self.stars[:, ::-1], 2).sum(1)) # Plot # ---- def show(self, size=10, flip=False, zoom=False, contrast=0.05, wcs=False, cmap="Greys_r", sigclip=None,vmin=None,vmax=None): """Show stack image Parameters ---------- size : int, optional size of the square figure, by default 10 flip : bool, optional , by default False zoom : bool, optional whether to include a zoom inlay in the image, by default False contrast : float, optional contrast for the Zscale of image, by default 0.05 wcs : bool, optional whether to show grid ans axes to world coordinate """ if self.target == -1: zoom = False self._check_stack() fig = plt.figure(figsize=(size, size)) fig.patch.set_facecolor('white') image = self.stack.copy() if flip: image = image[::-1, ::-1] if sigclip is not None: mean, median, std = sigma_clipped_stats(image) image[image - median < 2 * std] = median if wcs: ax = plt.subplot(projection=self.wcs, label='overlays') else: ax = fig.add_subplot(111) if all([vmin, vmax]) is False: _ = ax.imshow(utils.z_scale(image,c=contrast), cmap=cmap, origin="lower") else: _ = ax.imshow(image, cmap=cmap, origin="lower",vmin=vmin,vmax=vmax) if wcs: ax.coords.grid(True, color='white', ls='solid', alpha=0.3) ax.coords[0].set_axislabel('Galactic Longitude') ax.coords[1].set_axislabel('Galactic Latitude') overlay = ax.get_coords_overlay('fk5') overlay.grid(color='white', ls='--', alpha=0.3) overlay[0].set_axislabel('Right Ascension (J2000)') overlay[1].set_axislabel('Declination (J2000)') def _check_show(self, **kwargs): axes = plt.gcf().axes if len(axes) == 0: self.show(**kwargs) def show_stars(self, size=10, view=None, n=None, flip=False, comp_color="yellow", color=[0.51, 0.86, 1.], stars=None, legend=True, **kwargs): """Show detected stars over stack image Parameters ---------- size : int, optional size of the square figure, by default 10 flip : bool, optional whether to flip image, by default False view : str, optional "all" to see all stars OR "reference" to have target and comparison stars hilighted, by default None n : int, optional max number of stars to show, by default None, Raises ------ AssertionError [description] """ self._check_show(flip=flip, size=size, **kwargs) if stars is None: stars = self.stars if n is not None: if view == "reference": raise AssertionError("'n_stars' kwargs is incompatible with 'reference' view that will display all stars") else: n = len(stars) stars = stars[0:n] if view is None: view = "reference" if 'comps' in self else "all" image_size = np.array(np.shape(self.stack))[::-1] if flip: stars = np.array(image_size) - stars if view == "all": viz.plot_marks(*stars.T, np.arange(len(stars)), color=color) if "stars" in self.xarray: others = np.arange(n, len(self.stars)) others = np.setdiff1d(others, self.target) viz.plot_marks(*self.stars[others].T, alpha=0.4, color=color) elif view == "reference": x = self.xarray.isel(apertures=self.aperture) assert 'comps' in self, "No differential photometry" comps = x.comps.values others = np.setdiff1d(np.arange(len(stars)), x.comps.values) others = np.setdiff1d(others, self.target) _ = viz.plot_marks(*stars[self.target], self.target, color=color) _ = viz.plot_marks(*stars[comps].T, comps, color=comp_color) _ = viz.plot_marks(*stars[others].T, alpha=0.4, color=color) if legend: colors = [comp_color, color] texts = ["Comparison stars", "Target"] viz.circles_legend(colors, texts) def show_gaia(self, color="yellow", alpha=1, n=None, idxs=True, limit=-1, fontsize=8, align=False): """Overlay Gaia objects on stack image Parameters ---------- color : str, optional color of marks and font, by default "lightblue" alpha : int, optional opacity of marks and font, by default 1 n : int, optional max number of stars to show, by default None, by default None for all stars idxs : bool, optional wether to show gaia ids, by default True """ self._check_show() if self.gaia_data is None: self.query_gaia(limit=limit) gaias = np.vstack([self.gaia_data["x"].data, self.gaia_data["y"].data]).T defined = ~np.any(np.isnan(gaias), 1) gaias = gaias[defined] labels = self.gaia_data["source_id"].data.astype(str)[defined] if align: X = twirl.find_transform(gaias[0:30], self.stars, n=15) gaias = twirl.affine_transform(X)(gaias) labels = [f"{_id[0:len(_id) // 2]}\n{_id[len(_id) // 2::]}" for _id in labels] _ = viz.plot_marks(*gaias.T, labels if idxs else None, color=color, alpha=alpha, n=n, position="top", fontsize=fontsize) def show_tic(self, color="white", alpha=1, n=None, idxs=True, align=True): """Overlay TIC objects on stack image Parameters ---------- color : str, optional color of marks and font, by default "lightblue" alpha : int, optional opacity of marks and font, by default 1 n : int, optional max number of stars to show, by default None, by default None for all stars idxs : bool, optional wether to show TIC ids, by default True """ self._check_show() if self.tic_data is None: self.query_tic() x = self.tic_data["x"].data y = self.tic_data["y"].data tics = np.vstack([x, y]).T ID = self.tic_data["ID"].data if align: X = twirl.find_transform(tics[0:30], self.stars, n=15) tics = twirl.affine_transform(X)(tics) _ = viz.plot_marks(*tics.T, ID if idxs else None, color=color, alpha=alpha, n=n, position="top", fontsize=9, offset=10) def show_cutout(self, star=None, size=200, marks=True,**kwargs): """ Show a zoomed cutout around a detected star or coordinates Parameters ---------- star : [type], optional detected star id or (x, y) coordinate, by default None size : int, optional side size of square cutout in pixel, by default 200 """ if star is None: x, y = self.stars[self.target] elif isinstance(star, int): x, y = self.stars[star] elif isinstance(star, (tuple, list, np.ndarray)): x, y = star else: raise ValueError("star type not understood") self.show(**kwargs) plt.xlim(np.array([-size / 2, size / 2]) + x) plt.ylim(np.array([-size / 2, size / 2]) + y) if marks: idxs = np.argwhere(np.max(np.abs(self.stars - [x, y]), axis=1) < size).squeeze() viz.plot_marks(*self.stars[idxs].T, label=idxs) def plot_comps_lcs(self, n=15, ylim=(0.98, 1.02)): """Plot comparison stars light curves along target star light curve Parameters ---------- n : int, optional Number max of comparison to show, by default 5 ylim : tuple, optional ylim of the plot, by default (0.98, 1.02) """ idxs = [self.target, *self.xarray.comps.isel(apertures=self.aperture).values[0:n]] lcs = [self.xarray.diff_fluxes.isel(star=i, apertures=self.aperture).values for i in idxs] if ylim is None: ylim = (self.diff_flux.min() * 0.99, self.diff_flux.max() * 1.01) offset = ylim[1] - ylim[0] if len(plt.gcf().axes) == 0: plt.figure(figsize=(5, 10)) for i, lc in enumerate(lcs): color = "grey" if i != 0 else "black" viz.plot(self.time, lc - i * offset, bincolor=color) plt.annotate(idxs[i], (self.time.min() + 0.005, 1 - i * offset + offset / 3)) plt.ylim(1 - (i + 0.5) * offset, ylim[1]) plt.title("Comparison stars", loc="left") plt.grid(color="whitesmoke") plt.tight_layout() def plot_psf_fit(self, size=21, cmap="inferno", c="blueviolet", model=Gaussian2D): """Plot a 2D gaussian fit of the global psf (extracted from stack fits) Parameters ---------- size : int, optional square size of extracted PSF, by default 21 cmap : str, optional color map of psf image, by default "inferno" c : str, optional color of model plot line, by default "blueviolet" model : prose.blocks, optional a PsfFit block, by default Gaussian2D Returns ------- dict PSF fit info (theta, std_x, std_y, fwhm_x, fwhm_y) """ psf_fit = model() image = Image(data=self.stack, stars_coords=self.stars, header=self.xarray.attrs) psf_fit.run(image) if len(plt.gcf().get_axes()) == 0: plt.figure(figsize=(12, 4)) viz.plot_marginal_model(psf_fit.epsf, psf_fit.optimized_model, cmap=cmap, c=c) return {"theta": image.theta, "std_x": image.psf_sigma_x, "std_y": image.psf_sigma_y, "fwhm_x": image.fwhmx, "fwhm_y": image.fwhmy } def plot_star_psf(self,star=None,cutout_size=21,print_values=True,plot=True): if star is None: star = self.target cutout = cutouts(self.stack, [self.stars[star]], size=cutout_size) psf_fit = Moffat2D(cutout_size=cutout_size) params = ['fwhmx =', 'fwhmy =', 'theta ='] values = [] for i in range(len(params)): if print_values is True: print(params[i], psf_fit(cutout.data[0])[i]) values.append(psf_fit(cutout.data[0])[i]) if plot is True: viz.plot_marginal_model(psf_fit.epsf, psf_fit.optimized_model) return values def plot_rms(self, bins=0.005): """Plot binned rms of lightcurves vs the CCD equation Parameters ---------- bins : float, optional bin size used to compute error, by default 0.005 (in days) """ self._check_diff() viz.plot_rms( self.diff_fluxes, self.lcs, bins=bins, target=self.target["id"], highlights=self.comparison_stars) def plot_systematics(self, fields=None, ylim=(0.98, 1.02)): """Plot systematics measurements along target light curve Parameters ---------- fields : list of str, optional list of systematic to include (must be in self), by default None ylim : tuple, optional plot ylim, by default (0.98, 1.02) """ if fields is None: fields = ["dx", "dy", "fwhm", "airmass", "sky"] flux = self.diff_flux.copy() flux /= np.nanmean(flux) if ylim is None: ylim = (flux.nanmin() * 0.99, flux.nanmax() * 1.01) offset = ylim[1] - ylim[0] if len(plt.gcf().axes) == 0: plt.figure(figsize=(5 ,10)) viz.plot(self.time, flux, bincolor="black") for i, field in enumerate(fields): if field in self: scaled_data = self.xarray[field].values.copy() scaled_data = np.nan_to_num(scaled_data, -1) scaled_data[scaled_data - np.nanmean(scaled_data) > 5*np.nanstd(scaled_data)] = -1 scaled_data = scaled_data - np.median(scaled_data) scaled_data = scaled_data / np.std(scaled_data) scaled_data *= np.std(flux) scaled_data += 1 - (i + 1) * offset viz.plot(self.time, scaled_data, bincolor="grey") plt.annotate(field, (self.time.min() + 0.005, 1 - (i + 1) * offset + offset / 3)) else: i -= 1 plt.ylim(1 - (i + 1.5) * offset, ylim[1]) plt.title("Systematics", loc="left") plt.grid(color="whitesmoke") plt.tight_layout() def plot_raw_diff(self): """Plot raw target flux and differantial flux """ plt.subplot(211) plt.title("Differential lightcurve", loc="left") self.plot() plt.grid(color="whitesmoke") plt.subplot(212) plt.title("Normalized flux", loc="left") flux = self.xarray.raw_fluxes.isel(star=self.target, apertures=self.aperture).values plt.plot(self.time, flux, ".", ms=3, label="target", c="C0") if 'alc' in self: plt.plot(self.time, self.xarray.alc.isel(apertures=self.aperture).values*np.median(flux), ".", ms=3, c="k", label="artifical star") plt.legend() plt.grid(color="whitesmoke") plt.xlim([np.min(self.time), np.max(self.time)]) plt.tight_layout() def plot_precision(self, bins=0.005, aperture=None): """Plot observation precision estimate against theorethical error (background noise, photon noise and CCD equation) Parameters ---------- bins : float, optional bin size used to estimate error, by default 0.005 (in days) aperture : int, optional chosen aperture, by default None """ n_bin = int(bins / (np.mean(self.exptime) / (60 * 60 * 24))) assert len(self.time) > n_bin, "Your 'bins' size is less than the total exposure" x = self.xarray.isel(apertures=self.aperture if aperture is None else aperture).copy() fluxes = x.raw_fluxes.values errors = x.raw_errors.values mean_fluxes = np.mean(fluxes, axis=1) mean_errors = np.mean(errors, axis=1) error_estimate = [np.median(binned_statistic(self.time, f, statistic='std', bins=n_bin)[0]) for f in fluxes] area = x.apertures_area[0].values # ccd_equation = phot_prose.telescope.error( # prose_fluxes, tp_area, np.mean(self.sky), np.mean(self.exptime), np.mean(self.airmass)) ccd_equation = (mean_errors / mean_fluxes) inv_snr_estimate = error_estimate / mean_fluxes positive_est = inv_snr_estimate > 0 mean_fluxes = mean_fluxes[positive_est] inv_snr_estimate = inv_snr_estimate[positive_est] ccd_equation = ccd_equation[positive_est] sorted_fluxes_idxs = np.argsort(mean_fluxes) plt.plot(np.log(mean_fluxes), inv_snr_estimate, ".", alpha=0.5, ms=2, c="k", label=f"flux rms ({0.005 * (60 * 24):.1f} min bins)") plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], (np.sqrt(mean_fluxes) / mean_fluxes)[sorted_fluxes_idxs], "--", c="k", label="photon noise", alpha=0.5) plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], (np.sqrt(np.mean(self.sky) * area) / mean_fluxes)[sorted_fluxes_idxs], c="k", label="background noise", alpha=0.5) # plt.plot(np.log(prose_fluxes)[s], (prose_e/prose_fluxes)[s], label="CCD equation") plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], ccd_equation[sorted_fluxes_idxs], label="CCD equation") plt.legend() plt.ylim( 0.5 * np.percentile(inv_snr_estimate, 2), 1.5 * np.percentile(inv_snr_estimate, 98)) plt.xlim(np.min(np.log(mean_fluxes)), np.max(np.log(mean_fluxes))) plt.yscale("log") plt.xlabel("log(ADU)") plt.ylabel("$SNR^{-1}$") plt.title("Photometric precision (raw fluxes)", loc="left") def plot_meridian_flip(self): """Plot meridian flip line over existing axe """ if self.meridian_flip is not None: plt.axvline(self.meridian_flip, c="k", alpha=0.15) _, ylim = plt.ylim() plt.text(self.meridian_flip, ylim, "meridian flip ", ha="right", rotation="vertical", va="top", color="0.7") def plot(self, star=None, meridian_flip=True, bins=0.005, color="k", std=True): """Plot observation light curve Parameters ---------- star : [type], optional [description], by default None meridian_flip : bool, optional whether to show meridian flip, by default True bins : float, optional bin size in same unit as Observation.time, by default 0.005 color : str, optional binned points color, by default "k" std : bool, optional whether to see standard deviation of bins as error bar, by default True, otherwise theoretical error bat is shown """ super().plot(star=star, bins=bins, color=color, std=std) if meridian_flip: self.plot_meridian_flip() def plot_psf(self, star=None, n=40, zscale=False, aperture=None, rin=None, rout=None): """Plot star cutout overalid with aperture and radial flux. Parameters ---------- star : int or list like, optional if int: star to plot cutout on, if list like (tuple, np.ndarray) of size 2: coords of cutout, by default None n : int, optional cutout width and height, by default 40 zscale : bool, optional whether to apply a zscale to cutout image, by default False aperture : float, optional radius of aperture to display, by default None corresponds to best target aperture rin : [type], optional radius of inner annulus to display, by default None corresponds to inner radius saved rout : [type], optional radius of outer annulus to display, by default None corresponds to outer radius saved """ n /= np.sqrt(2) if isinstance(star, (tuple, list, np.ndarray)): x, y = star else: if star is None: star = 0 assert isinstance(star, int), "star must be star coordinates or integer index" x, y = self.stars[star] Y, X = np.indices(self.stack.shape) cutout_mask = (np.abs(X - x + 0.5) < n) & (np.abs(Y - y + 0.5) < n) inside = np.argwhere((cutout_mask).flatten()).flatten() radii = (np.sqrt((X - x) ** 2 + (Y - y) ** 2)).flatten()[inside] idxs = np.argsort(radii) radii = radii[idxs] pixels = self.stack.flatten()[inside] pixels = pixels[idxs] binned_radii, binned_pixels, _ = fast_binning(radii, pixels, bins=1) fig = plt.figure(figsize=(9.5, 4)) fig.patch.set_facecolor('xkcd:white') _ = plt.subplot(1, 5, (1, 3)) plt.plot(radii, pixels, "o", fillstyle='none', c="0.7", ms=4) plt.plot(binned_radii, binned_pixels, c="k") plt.xlabel("distance from center (pixels)") plt.ylabel("ADUs") _, ylim = plt.ylim() if "apertures_radii" in self and self.aperture != -1: apertures = self.apertures_radii[:, 0] aperture = apertures[self.aperture] if "annulus_rin" in self: if rin is None: rin = self.annulus_rin.mean() if rout is None: rout = self.annulus_rout.mean() if aperture is not None: plt.xlim(0) plt.text(aperture, ylim, "APERTURE", ha="right", rotation="vertical", va="top") plt.axvline(aperture, c="k", alpha=0.1) plt.axvspan(0, aperture, color="0.9", alpha=0.1) if rin is not None: plt.axvline(rin, color="k", alpha=0.2) if rout is not None: plt.axvline(rout, color="k", alpha=0.2) if rin is not None: plt.axvspan(rin, rout, color="0.9", alpha=0.2) _ = plt.text(rout, ylim, "ANNULUS", ha="right", rotation="vertical", va="top") n = np.max([np.max(radii), rout +2 if rout else 0]) plt.xlim(0, n) ax2 = plt.subplot(1, 5, (4, 5)) im = self.stack[int(y - n):int(y + n), int(x - n):int(x + n)] if zscale: im = z_scale(im) plt.imshow(im, cmap="Greys_r", aspect="auto", origin="lower") plt.axis("off") if aperture is not None: ax2.add_patch(plt.Circle((n, n), aperture, ec='grey', fill=False, lw=2)) if rin is not None: ax2.add_patch(plt.Circle((n, n), rin, ec='grey', fill=False, lw=2)) if rout is not None: ax2.add_patch(plt.Circle((n, n), rout, ec='grey', fill=False, lw=2)) ax2.text(0.05, 0.05, f"{star}", fontsize=12, color="white", transform=ax2.transAxes) plt.tight_layout() def plot_systematics_signal(self, systematics, signal=None, ylim=None, offset=None, figsize=(6, 7)): """Plot a systematics and signal model over diff_flux. systeamtics + signal is plotted on top, signal alone on detrended data on bottom Parameters ---------- systematics : np.ndarray signal : np.ndarray ylim : tuple, optional ylim of the plot, by default None, using the dispersion of y offset : tuple, optional offset between, by default None figsize : tuple, optional figure size as in in plt.figure, by default (6, 7) """ viz.plot_systematics_signal(self.time, self.diff_flux, systematics, signal, ylim=ylim, offset=offset, figsize=figsize) self.plot_meridian_flip() plt.legend() self.xlabel() plt.ylabel("diff. flux") plt.tight_layout() viz.paper_style() def xlabel(self): """Plot xlabel (time) according to its units """ plt.xlabel(self.time_format.upper().replace("_", "-")) def where(self, condition): """return filtered observation given a boolean mask of time Parameters ---------- condition : [type] [description] Returns ------- [type] [description] """ new_obs = self.copy() new_obs.xarray = new_obs.xarray.sel(time=self.time[condition]) return new_obs def keep_good_stars(self, lower_threshold=3., upper_threshold=35000., trim=10, keep=None, inplace=True): """Keep only stars with a median flux higher than `threshold`*sky. This action will reorganize stars indexes (target id will be recomputed) and reset the differential fluxes to raw. Parameters ---------- lower_threshold : float threshold for which stars with flux/sky > threshold are kept, default is 3 trim : float value in pixels above which stars are kept, default is 10 to avoid stars too close to the edge keep : int or list number of stars to exclude (starting from 0 if int). inplace: bool whether to replace current object or return a new one """ good_stars = np.argwhere((np.median(self.peaks, 1)/np.median(self.sky) > lower_threshold) & (np.median(self.peaks, 1) < upper_threshold)).squeeze() mask = np.any(np.abs(self.stars[good_stars] - max(self.stack.shape) / 2) > (max(self.stack.shape) - 2 * trim) / 2, axis=1) bad_stars = np.argwhere(mask == True).flatten() final_stars = np.delete(good_stars, bad_stars) if isinstance(keep,int): final_stars = np.concatenate([final_stars,np.arange(0,keep+1)],axis=0) final_stars = np.unique(final_stars) if isinstance(keep,list): final_stars = np.concatenate([final_stars,keep ], axis=0) final_stars = np.unique(final_stars) if inplace: new_self = self else: new_self = self.copy() new_self.xarray = new_self.xarray.isel(star=final_stars) if self.target != -1: new_self.target = np.argwhere(final_stars == new_self.target).flatten()[0] if not inplace: return new_self def plot_flip(self): plt.axvline(self.meridian_flip, ls="--", c="k", alpha=0.5) def flip_correction(self, inplace=True): """Align all differential fluxes using a step model of the meridian flip Parameters ---------- inplace : bool, optional wheter to replace the current Observation or return a new one, by default True """ if inplace: new_self = self else: new_self = self.copy() new_diff_fluxes =
np.zeros_like(self.diff_fluxes)
numpy.zeros_like
""" Plot comparisons between WACCM4 sea ice experiments. These are sea ice thickness and concentration perturbation experiments. This script is for DAILY data for all variables. Notes ----- Author : <NAME> Date : 6 September 2017 """ ### Import modules import numpy as np import matplotlib.pyplot as plt import nclcmaps as ncm import datetime import read_DailyOutput as DO import calc_Utilities as UT import cmocean ### Define directories directorydata = '/surtsey/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/Daily/' #directoryfigure = '/home/zlabe/Documents/Research/SITperturb/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting Daily Geopotential - %s----' % titletime) #### Alott time series year1 = 1900 year2 = 2000 years = np.arange(year1,year2+1,1) ### Add parameters varnames = ['GEOP','TEMP','U','V'] runnames = [r'HIT',r'FIT',r'CIT',r'FIC',r'FICT'] ### Call functions for variable profile data for polar cap for v in range(len(varnames)): lat,lon,time,lev,varhit = DO.readMeanExperi(directorydata, '%s' % varnames[v], 'HIT','profile') lat,lon,time,lev,varfit = DO.readMeanExperi(directorydata, '%s' % varnames[v], 'FIT','profile') lat,lon,time,lev,varcit = DO.readMeanExperi(directorydata, '%s' % varnames[v], 'CIT','profile') lat,lon,time,lev,varfic = DO.readMeanExperi(directorydata, '%s' % varnames[v], 'FIC','profile') lat,lon,time,lev,varfict = DO.readMeanExperi(directorydata, '%s' % varnames[v], 'FICT','profile') ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### Compare experiments experiments = [r'\textbf{$\Delta$SIT}',r'\textbf{$\Delta$SIC}', r'\textbf{$\Delta$NET}'] runs = [varhit,varfit,varcit,varfic,varfict] ### Compute comparisons for experiments - take ensemble average diff_FITHIT = np.nanmean(varfit - varhit,axis=0) diff_FICCIT = np.nanmean(varfic - varcit,axis=0) diff_FICTHIT = np.nanmean(varfict - varhit,axis=0) diffruns =
np.asarray([diff_FITHIT,diff_FICCIT,diff_FICTHIT])
numpy.asarray
import torch import torch.utils.data as data from PIL import Image import os import math import functools import json import copy import cv2 import numpy as np import pickle from utils import load_value_file import tarfile import threading import multiprocessing import zipfile from io import BytesIO import io import time class _FileInFile(object): """A thin wrapper around an existing file object that provides a part of its data as an individual file object. """ def __init__(self, fileobj, offset, size, blockinfo=None): self.fileobj = fileobj self.offset = offset self.size = size self.position = 0 self.name = getattr(fileobj, "name", None) self.closed = False if blockinfo is None: blockinfo = [(0, size)] # Construct a map with data and zero blocks. self.map_index = 0 self.map = [] lastpos = 0 realpos = self.offset for offset, size in blockinfo: if offset > lastpos: self.map.append((False, lastpos, offset, None)) self.map.append((True, offset, offset + size, realpos)) realpos += size lastpos = offset + size if lastpos < self.size: self.map.append((False, lastpos, self.size, None)) def flush(self): pass def readable(self): return True def writable(self): return False def seekable(self): return self.fileobj.seekable() def tell(self): """Return the current file position. """ return self.position def seek(self, position, whence=io.SEEK_SET): """Seek to a position in the file. """ if whence == io.SEEK_SET: self.position = min(max(position, 0), self.size) elif whence == io.SEEK_CUR: if position < 0: self.position = max(self.position + position, 0) else: self.position = min(self.position + position, self.size) elif whence == io.SEEK_END: self.position = max(min(self.size + position, self.size), 0) else: raise ValueError("Invalid argument") return self.position def read(self, size=None): """Read data from the file. """ if size is None: size = self.size - self.position else: size = min(size, self.size - self.position) buf = b"" while size > 0: while True: data, start, stop, offset = self.map[self.map_index] if start <= self.position < stop: break else: self.map_index += 1 if self.map_index == len(self.map): self.map_index = 0 length = min(size, stop - self.position) if data: self.fileobj.seek(offset + (self.position - start)) b = self.fileobj.read(length) if len(b) != length: raise ReadError("unexpected end of data") buf += b else: buf += NUL * length size -= length self.position += length return buf def readinto(self, b): buf = self.read(len(b)) b[:len(buf)] = buf return len(buf) def close(self): self.closed = True #class _FileInFile class ExFileObject(io.BufferedReader): def __init__(self, fileobj, tarinfo): fileobj = _FileInFile(fileobj, tarinfo.offset_data, tarinfo.size, tarinfo.sparse) super().__init__(fileobj) def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') def accimage_loader(path): try: import accimage return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def get_default_image_loader(): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader else: return pil_loader def video_loader(video_dir_path, frame_indices, image_loader): video = [] for i in frame_indices: image_path = os.path.join(video_dir_path, 'image_{:05d}.jpg'.format(i)) if os.path.exists(image_path): video.append(image_loader(image_path)) else: return video return video def get_default_video_loader(): image_loader = get_default_image_loader() return functools.partial(video_loader, image_loader=image_loader) def load_annotation_data(data_file_path): with open(data_file_path, 'r') as data_file: return json.load(data_file) def get_class_labels(data): class_labels_map = {} index = 0 for class_label in data['labels']: class_labels_map[class_label] = index index += 1 return class_labels_map def get_video_names_and_annotations(data, subset): video_names = [] annotations = [] for key, value in data['database'].items(): this_subset = value['subset'] if this_subset == subset: if subset == 'testing': video_names.append('test/{}'.format(key)) else: label = value['annotations']['label'] video_names.append('{}/{}'.format(label, key)) annotations.append(value['annotations']) return video_names, annotations def make_dataset_tar(root_path, subset, n_samples_for_each_video, sample_duration, video_paths, audio_paths): video_names = list(video_paths.keys()) dataset = [] for i in range(len(video_names)): if i % 10000 == 0: print('dataset loading [{}/{}]'.format(i, len(video_names))) video_path = video_names[i] audio_path = video_path.replace('.jpg', '.npy') if not audio_path in audio_paths: continue #n_frames = video_paths[video_path] n_frames = 31 begin_t = 1 end_t = n_frames sample = { 'video': video_path, 'audio': audio_path, 'segment': [begin_t, end_t], 'n_frames': n_frames, #'video_id': video_names[i][:-14].split('/')[1] } sample['label'] = video_names[i][2] if n_samples_for_each_video == 1: sample['frame_indices'] = list(range(1, n_frames + 1)) dataset.append(sample) else: if n_samples_for_each_video > 1: step = max(1, math.ceil((n_frames - 1 - sample_duration) / (n_samples_for_each_video - 1))) else: step = sample_duration for j in range(1, n_frames, step): sample_j = copy.deepcopy(sample) sample_j['frame_indices'] = list( range(j, min(n_frames + 1, j + sample_duration))) dataset.append(sample_j) return dataset class TarReader(object): def __init__(self): super(TarReader, self).__init__() self.id_context = dict() self.name2member = dict() def read(self, tar_file, image_name): if tar_file in self.id_context: im = self.id_context[tar_file].extractfile(self.name2member[image_name]) return im.read() else: file_handle = tarfile.open(tar_file) self.id_context[tar_file] = file_handle im = self.id_context[tar_file].extractfile(self.name2member[image_name]) return im.read() def getnames(self, tar_file): if tar_file in self.id_context: im = self.id_context[tar_file].getnames() else: file_handle = tarfile.open(tar_file) pkl_file = tar_file.replace('.tar', '.pkl') if not os.path.exists(pkl_file): members = file_handle.getmembers() pickle.dump(members, open(pkl_file, 'wb')) else: members = pickle.load(open(pkl_file, 'rb')) file_handle.members = members file_handle._loaded = True for m in members: self.name2member[m.name] = m self.id_context[tar_file] = file_handle #self.lock[tar_file] = threading.RLock() im = self.id_context[tar_file].getnames() return im class ZipReader(object): def __init__(self): super(ZipReader, self).__init__() self.id_context = dict() self.lock = multiprocessing.Lock() def read(self, zip_file, image_name): if zip_file in self.id_context: with self.lock: im = self.id_context[zip_file].open(image_name) res = im.read() return res else: file_handle = zipfile.ZipFile(zip_file) self.id_context[zip_file] = file_handle im = self.id_context[zip_file].open(image_name) return im.read() def getnames(self, zip_file): if zip_file in self.id_context: im = self.id_context[zip_file].namelist() else: file_handle = zipfile.ZipFile(zip_file) self.id_context[zip_file] = file_handle im = self.id_context[zip_file].namelist() return im class Lrw_va_tar(data.Dataset): def __init__(self, root_path, subset, n_samples_for_each_video=1, spatial_transform=None, temporal_transform=None, target_transform=None, sample_duration=16, get_loader=get_default_video_loader): ziplist = [] a = os.walk(root_path) for b, c, d in a: for item in d: if item.endswith('.zip'): ziplist.append(b + '/' + item) self.zipreader = ZipReader() self.video_name_map = {} self.video_zip_map = {} self.video_paths = {} for i, zipname in enumerate(ziplist): ss = time.time() namelist = self.zipreader.getnames(zipname) ee = time.time() readtime = ee - ss ss = time.time() for n in namelist: #if ('/' + subset + '/') in n: if n.endswith('.jpg'): tmp = n.split('/') newn = '/'.join(tmp[1:]) video_name = newn self.video_name_map[newn] = n self.video_zip_map[n] = zipname if not video_name in self.video_paths: self.video_paths[video_name] = 0 self.video_paths[video_name] += 1 ee = time.time() buildtime = ee - ss print('loading ', i, zipname, readtime, buildtime) self.audio_zipname = root_path.replace('/video', '') + '/audio/audio.zip' ss = time.time() namelist = self.zipreader.getnames(self.audio_zipname) ee = time.time() print('loading audio', ee - ss) self.audio_name_map = {} self.audio_paths = set() for n in namelist: if ('/' + subset + '/') in n: if n.endswith('.npy'): tmp = n.split('/') newn = '/'.join(tmp[1:]) audio_name = '/'.join(tmp[1:]) self.audio_name_map[newn] = n self.audio_paths.add(audio_name) self.data = make_dataset_tar( root_path, subset, n_samples_for_each_video, sample_duration, self.video_paths, self.audio_paths) self.spatial_transform = spatial_transform self.temporal_transform = temporal_transform self.target_transform = target_transform def loader(self, path, frame_indices): #for i in frame_indices: #image_path = path + '/image_{:05d}.jpg'.format(i) #if image_path in self.video_name_map: # video_name = self.video_name_map[image_path] # tar_name = self.video_tar_map[video_name] # im = self.tarreader.read(tar_name, video_name) # im = Image.open(BytesIO(im)) # video.append(im) image_path = path video_name = self.video_name_map[image_path] zip_name = self.video_zip_map[video_name] im = self.zipreader.read(zip_name, video_name) im = Image.open(BytesIO(im)) im = np.asarray(im) video = [Image.fromarray(im[:, i*240:(i+1)*240, :]) for i in frame_indices] return video def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ path = self.data[index]['video'] frame_indices = self.data[index]['frame_indices'] video_tot = len(frame_indices) if self.temporal_transform is not None: frame_indices = self.temporal_transform(frame_indices) clip = self.loader(path, frame_indices) audio_path = self.data[index]['audio'] audio = self.zipreader.read(self.audio_zipname, self.audio_name_map[audio_path]) audio = np.load(BytesIO(audio), allow_pickle=True) audio_tot = audio.shape[0] tmp_indices =
np.array(frame_indices)
numpy.array
import unittest import numpy as np from pysplines.bsplines import Bspline _TOLERANCE = 5.0e-7 class TestBspline(unittest.TestCase): def setUp(self): self.cv = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [2.0, 1.0], [2.0, 2.0]] self.bspline = Bspline(self.cv, n=120) def test_edge_points(self): rvals = np.array(self.bspline.rvals) control_points = self.bspline.cv self.assertTrue(
np.linalg.norm(rvals[0] - control_points[0])
numpy.linalg.norm
# ---------------------------------------------------------------------- # # <NAME>, U.S. Geological Survey # <NAME>, GNS Science # <NAME>, University at Buffalo # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2021 University of California, Davis # # See LICENSE.md for license information. # # ---------------------------------------------------------------------- # # @file tests/fullscale/poroelasticity/cryer/cryer_soln.py # # @brief Analytical solution to Cryer's problem. # Owing to the symmetry of the problem, we only need consider the quarter # domain case. # # -F # ---------- # | | # Ux=0 | | P=0 # | | # | | # ---------- # Uy=0 # # Dirichlet boundary conditions # Ux(0,y) = 0 # Uy(x,0) = 0 # Neumann boundary conditions # \tau_normal(x,ymax) = -1*Pa import numpy # Physical properties G = 3.0 rho_s = 2500 rho_f = 1000 K_fl = 8.0 K_sg = 10.0 K_d = 4.0 alpha = 0.6 phi = 0.1 k = 1.5 mu_f = 1.0 P_0 = 1.0 R_0 = 1.0 ndim = 3 M = 1.0 / ( phi / K_fl + (alpha - phi) /K_sg) kappa = k/mu_f K_u = K_d + alpha*alpha*M S = (3*K_u + 4*G) / (M*(3*K_d + 4*G)) #(1/M) + ( (3*alpha*alpha) / (3*K_d + 4*G) )# c = kappa / S nu = (3*K_d - 2*G) / (2*(3*K_d + G)) nu_u = (3*K_u - 2*G) / (2*(3*K_u + G)) U_R_inf = -1.*(P_0*R_0*(1.-2.*nu))/(2.*G*(1.+nu)) eta = (alpha*(1-2*nu))/(2*(1-nu)) xmin = 0.0 # m xmax = 1.0 # m ymin = 0.0 # m ymax = 1.0 # m zmin = 0.0 # m zmax = 1.0 # m # Time steps ts = 0.0028666667 # sec nts = 2 tsteps = numpy.arange(0.0, ts * nts, ts) + ts # sec # ---------------------------------------------------------------------- class AnalyticalSoln(object): """ Analytical solution to Cryer's problem """ SPACE_DIM = 3 TENSOR_SIZE = 4 ITERATIONS = 50 EPS = 1e-25 def __init__(self): self.fields = { "displacement": self.displacement, "pressure": self.pressure, #"trace_strain": self.trace_strain, "porosity": self.porosity, "solid_density": self.solid_density, "fluid_density": self.fluid_density, "fluid_viscosity": self.fluid_viscosity, "shear_modulus": self.shear_modulus, "undrained_bulk_modulus": self.undrained_bulk_modulus, "drained_bulk_modulus": self.drained_bulk_modulus, "biot_coefficient": self.biot_coefficient, "biot_modulus": self.biot_modulus, "isotropic_permeability": self.isotropic_permeability, "initial_amplitude": { "x_neg": self.zero_vector, "y_neg": self.zero_vector, "z_neg": self.zero_vector, "surface_traction": self.surface_traction, "surface_pressure": self.zero_scalar } } return def getField(self, name, mesh_entity, pts): if name in "initial_amplitude": field = self.fields[name][mesh_entity](pts) else: field = self.fields[name](pts) return field def zero_scalar(self, locs): (npts, dim) = locs.shape return numpy.zeros((1, npts, 1), dtype=numpy.float64) def zero_vector(self, locs): (npts, dim) = locs.shape return numpy.zeros((1, npts, self.SPACE_DIM), dtype=numpy.float64) def solid_density(self, locs): """ Compute solid_density field at locations. """ (npts, dim) = locs.shape solid_density = rho_s * numpy.ones((1, npts, 1), dtype=numpy.float64) return solid_density def fluid_density(self, locs): """ Compute fluid density field at locations. """ (npts, dim) = locs.shape fluid_density = rho_f * numpy.ones((1, npts, 1), dtype=numpy.float64) return fluid_density def porosity(self, locs): """ Compute solid_density field at locations. """ (npts, dim) = locs.shape porosity = phi * numpy.ones((1, npts, 1), dtype=numpy.float64) return porosity def shear_modulus(self, locs): """ Compute shear modulus field at locations. """ (npts, dim) = locs.shape shear_modulus = G * numpy.ones((1, npts, 1), dtype=numpy.float64) return shear_modulus def fluid_viscosity(self, locs): """ Compute fluid_viscosity field at locations. """ (npts, dim) = locs.shape fluid_viscosity = mu_f * numpy.ones((1, npts, 1), dtype=numpy.float64) return fluid_viscosity def undrained_bulk_modulus(self, locs): """ Compute undrained bulk modulus field at locations. """ (npts, dim) = locs.shape undrained_bulk_modulus = K_u * numpy.ones((1, npts, 1), dtype=numpy.float64) return undrained_bulk_modulus def drained_bulk_modulus(self, locs): """ Compute undrained bulk modulus field at locations. """ (npts, dim) = locs.shape drained_bulk_modulus = K_d * numpy.ones((1, npts, 1), dtype=numpy.float64) return drained_bulk_modulus def biot_coefficient(self, locs): """ Compute biot coefficient field at locations. """ (npts, dim) = locs.shape biot_coefficient = alpha * numpy.ones((1, npts, 1), dtype=numpy.float64) return biot_coefficient def biot_modulus(self, locs): """ Compute biot modulus field at locations. """ (npts, dim) = locs.shape biot_modulus = M * numpy.ones((1, npts, 1), dtype=numpy.float64) return biot_modulus def isotropic_permeability(self, locs): """ Compute isotropic permeability field at locations. """ (npts, dim) = locs.shape isotropic_permeability = k * numpy.ones((1, npts, 1), dtype=numpy.float64) return isotropic_permeability def displacement(self, locs): """ Compute displacement field at locations. """ (npts, dim) = locs.shape ntpts = tsteps.shape[0] displacement = numpy.zeros((ntpts, npts, dim), dtype=numpy.float64) x_n = self.cryerZeros() center = numpy.where(~locs.any(axis=1))[0] R = numpy.sqrt(locs[:,0]*locs[:,0] + locs[:,1]*locs[:,1] + locs[:,2]*locs[:,2]) theta = numpy.nan_to_num( numpy.arctan( numpy.nan_to_num( numpy.sqrt(locs[:,0]**2 + locs[:,1]**2) / locs[:,2] ) ) ) phi = numpy.nan_to_num( numpy.arctan( numpy.nan_to_num( locs[:,1] / locs[:,0] ) ) ) R_star = R.reshape([R.size,1]) / R_0 x_n.reshape([1,x_n.size]) E = numpy.square(1-nu)*numpy.square(1+nu_u)*x_n - 18*(1+nu)*(nu_u-nu)*(1-nu_u) t_track = 0 for t in tsteps: t_star = (c*t)/(R_0**2) r_exact_N = R_star.ravel() - numpy.nan_to_num(numpy.sum(((12*(1 + nu)*(nu_u - nu)) / \ ((1 - 2*nu)*E*R_star*R_star*x_n*numpy.sin(numpy.sqrt(x_n))) ) * \ (3*(nu_u - nu) * (numpy.sin(R_star*numpy.sqrt(x_n)) - R_star*numpy.sqrt(x_n)*numpy.cos(R_star*numpy.sqrt(x_n))) + \ (1 - nu)*(1 - 2*nu)*R_star*R_star*R_star*x_n*numpy.sin(numpy.sqrt(x_n))) * \ numpy.exp(-x_n*t_star),axis=1)) displacement[t_track, :, 0] = (r_exact_N*U_R_inf)*numpy.cos(phi)*numpy.sin(theta) displacement[t_track, :, 1] = (r_exact_N*U_R_inf)*numpy.sin(phi)*numpy.sin(theta) displacement[t_track, :, 2] = (r_exact_N*U_R_inf)*numpy.cos(theta) t_track += 1 return displacement def pressure(self, locs): """ Compute pressure field at locations. """ (npts, dim) = locs.shape ntpts = tsteps.shape[0] pressure = numpy.zeros((ntpts, npts, 1), dtype=numpy.float64) center = numpy.where(~locs.any(axis=1))[0] x_n = self.cryerZeros() R =
numpy.sqrt(locs[:,0]*locs[:,0] + locs[:,1]*locs[:,1] + locs[:,2]*locs[:,2])
numpy.sqrt
import numpy as np import pytest from numpy.testing import assert_almost_equal, assert_array_almost_equal import robotics as rbt class TestSlerp: def test_angle_interpolation(self): assert_almost_equal( rbt.angle_interpolation(0.75 * np.pi, -0.75 * np.pi, 0.5), -np.pi ) def test_quaternion_slerp(self): q0 = rbt.Quaternion(1, 0, 0, 0) q1 = rbt.Quaternion(0, 1, 0, 0) assert rbt.quaternion_slerp(q0, q1, 0.5) == rbt.Quaternion( np.sqrt(2) / 2, np.sqrt(2) / 2, 0, 0 ) q_list = rbt.quaternion_slerp_array(q0, q1, [0.5, 0.5, 0.5]) assert q_list[0] == rbt.Quaternion(np.sqrt(2) / 2, np.sqrt(2) / 2, 0, 0) assert q_list[1] == rbt.Quaternion(np.sqrt(2) / 2, np.sqrt(2) / 2, 0, 0) assert q_list[2] == rbt.Quaternion(np.sqrt(2) / 2, np.sqrt(2) / 2, 0, 0) def test_transform2D_slerp(self): T0 = rbt.transform2D(0, 0, 0.75 * np.pi) T1 = rbt.transform2D(0, 0, -0.75 * np.pi) assert_array_almost_equal( rbt.transform2D_slerp(T0, T1, 0.5), np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]), ) def test_transform2D_slerp_array(self): T0 = rbt.transform2D(0, 0, np.pi * 0.75) T1 = rbt.transform2D(0, 0, -np.pi * 0.75) T_list = rbt.transform2D_slerp_array(T0, T1, [0.3, 0.5]) assert_array_almost_equal( T_list[0], np.array([[-0.951057, -0.309017, 0], [0.309017, -0.951057, 0], [0, 0, 1]]), ) assert_array_almost_equal( T_list[1],
np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]])
numpy.array
#! /usr/bin/env python import sys sys.path.append("../../utils/") sys.path.append("gmm/") sys.path.append("lda/") import re import os import time import pickle import pylab as pl import numpy as np import pandas as pd import multiprocessing as mp from gmm.gmm_main import GMM from gmm.normal import Normal from lda_main import LDA import files_operations as fo def gmmlda_read_data(data_path, seg_path): Y, seg_list = np.zeros((0,0)), [] for file in os.listdir(data_path): data = pd.read_excel(data_path+file, header=None).values Y = data if not Y.shape[0] else
np.vstack((Y, data))
numpy.vstack
import unittest from ancb import NumpyCircularBuffer from ancb import ( # type: ignore star_can_broadcast, can_broadcast ) from numpy import array_equal, allclose, shares_memory from numpy import array, zeros, arange, ndarray, ones, empty from numpy.random import rand, randint from numpy import fill_diagonal, roll from itertools import zip_longest from operator import ( matmul, add, sub, mul, truediv, mod, floordiv, pow, rshift, lshift, and_, or_, xor, neg, pos, abs, inv, invert, iadd, iand, ifloordiv, ilshift, imod, imul, ior, ipow, irshift, isub, itruediv, ixor ) class TestBroadcastability(unittest.TestCase): def test_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) self.assertTrue(can_broadcast(x.shape, y.shape)) self.assertFalse(can_broadcast(x.shape, z.shape)) self.assertFalse(can_broadcast(y.shape, z.shape)) self.assertTrue(can_broadcast(x.shape, x.shape)) self.assertTrue(can_broadcast(y.shape, y.shape)) self.assertTrue(can_broadcast(z.shape, z.shape)) self.assertTrue(can_broadcast(w.shape, w.shape)) self.assertTrue(can_broadcast(x.shape, w.shape)) self.assertTrue(can_broadcast(y.shape, w.shape)) self.assertTrue(can_broadcast(z.shape, w.shape)) def test_star_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) starexpr = zip_longest(x.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, x.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, z.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(w.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) class OperatorTestFactory(type): def __new__(cls, name, bases, dct): obj = super().__new__(cls, name, bases, dct) bin_operators = [ matmul, add, sub, mul, truediv, mod, floordiv, pow ] un_operators = [neg, pos, abs, invert, inv] bitbin_operators = [rshift, lshift, and_, or_, xor] i_operators = [ iadd, ifloordiv, imul, ipow, isub, itruediv ] bit_ioperators = [ ilshift, irshift, ior, iand, ixor, imod ] def unop_testcase(op): def f(self): data = zeros(3, dtype=int) test = -arange(3, dtype=int) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(-1) buffer.append(-2) res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # unfrag buffer.append(-3) test -= 1 res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # frag return f def bitbinop_testcase(op): def f(self): data = zeros(3, dtype=int) test = arange(1, 4, dtype=int) x = randint(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) return f def binop_testcase(op): def f(self): data = zeros(3, dtype=float) test = arange(1, 4, dtype=float) x = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) return f def iop_testcase(op): def f(self): data = zeros(3, dtype=float) data2 = zeros(3, dtype=float) test1 = arange(1, 4, dtype=float) test2 = arange(2, 5, dtype=float) x = rand(3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(array_equal(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(array_equal(buffer2 + 0, test2)) return f def bitiop_testcase(op): def f(self): data = zeros(3, dtype=int) data2 = zeros(3, dtype=int) test1 = arange(1, 4, dtype=int) test2 = arange(2, 5, dtype=int) x = randint(low=1, high=100, size=3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(allclose(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(allclose(buffer2 + 0, test2)) return f for op in bin_operators: setattr(obj, 'test_{}'.format(op.__name__), binop_testcase(op)) for op in bitbin_operators: setattr(obj, 'test_{}'.format(op.__name__), bitbinop_testcase(op)) for op in un_operators: setattr(obj, 'test_{}'.format(op.__name__), unop_testcase(op)) for op in i_operators: setattr(obj, 'test_{}'.format(op.__name__), iop_testcase(op)) for op in bit_ioperators: setattr(obj, 'test_{}'.format(op.__name__), bitiop_testcase(op)) return(obj) class TestNumpyCircularBuffer( unittest.TestCase, metaclass=OperatorTestFactory ): """ NumpyCircularBuffer tests """ def test_init(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertTrue(array_equal(data, buffer)) def test_fragmentation(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertFalse(buffer.fragmented) buffer.append(0) self.assertFalse(buffer.fragmented) buffer.append(1) self.assertFalse(buffer.fragmented) buffer.append(2) self.assertFalse(buffer.fragmented) buffer.append(3) self.assertTrue(buffer.fragmented) buffer.append(4) self.assertTrue(buffer.fragmented) buffer.append(5) self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) def test_matmul_1d1d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) self.assertTrue(allclose(buffer @ C[:1], arange(1) @ C[:1])) buffer.append(1) self.assertTrue(allclose(buffer @ C[:2], arange(2) @ C[:2])) buffer.append(2) self.assertTrue(allclose(buffer @ C, arange(3) @ C)) buffer.append(3) self.assertTrue(allclose(buffer @ C, (arange(1, 4)) @ C)) buffer.append(4) self.assertTrue(allclose(buffer @ C, (arange(2, 5)) @ C)) buffer.append(5) self.assertTrue(allclose(buffer @ C, (arange(3, 6)) @ C)) buffer.append(6) self.assertTrue(allclose(buffer @ C, (arange(4, 7)) @ C)) buffer.pop() self.assertTrue(allclose(buffer @ C[1:], (arange(5, 7)) @ C[1:])) buffer.pop() self.assertTrue(allclose(buffer @ C[2:], (arange(6, 7)) @ C[2:])) def test_matmul_1d2d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 2""" data = zeros(3) A = zeros((3, 3)) B = rand(9).reshape(3, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, arange(3) @ A)) self.assertTrue(allclose(res_b, arange(3) @ B)) buffer.append(3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(allclose(res_a, arange(1, 4) @ A)) self.assertTrue(allclose(res_b, arange(1, 4) @ B)) def test_matmul_2d2d(self): """Tests buffer @ X where buffer.ndim == 2""" data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(arange(9, 12)) test += 3 res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) def test_matmul_ndnd(self): """Tests buffer @ X where X.ndim > 2 and buffer.ndim > 2""" data = zeros((3, 3, 3)) A = zeros((3, 3, 3)) B = rand(27).reshape(3, 3, 3) C = rand(12).reshape(3, 4) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(filler + 27) test += 9 res_a = buffer @ A res_b = buffer @ B res_c = buffer @ C self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) self.assertTrue(allclose(res_c, test @ C)) def test_rmatmul_1d1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) res_c = C[:1] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:1] @ arange(1))) buffer.append(1) res_c = C[:2] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:2] @ arange(2))) buffer.append(2) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3))) buffer.append(3) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(1, 4))) buffer.append(4) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3, 6))) buffer.append(6) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(4, 7))) buffer.pop() res_c = C[1:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[1:] @ arange(5, 7))) buffer.pop() res_c = C[2:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[2:] @ arange(6, 7))) def test_rmatmul_nd1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data = zeros(3) A = zeros(9).reshape(3, 3) B = arange(9).reshape(3, 3) C = arange(3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = A @ buffer self.assertIsInstance(res_a, ndarray) self.assertTrue(array_equal(A @ buffer, A @ array([0, 1, 2]))) buffer.append(3) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ array([1, 2, 3]))) self.assertTrue(allclose(res_b, B @ array([1, 2, 3]))) self.assertTrue(allclose(res_c, C @ array([1, 2, 3]))) buffer.append(4) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(2, 5))) self.assertTrue(allclose(res_b, B @ arange(2, 5))) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(3, 6))) self.assertTrue(allclose(res_b, B @ arange(3, 6))) self.assertTrue(allclose(res_c, C @ arange(3, 6))) def test_rmatmul_1dnd(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data1 = zeros((3, 3)) data2 = zeros((3, 3, 3)) A = rand(3) test1 = arange(9).reshape(3, 3) test2 = arange(27).reshape(3, 3, 3) buffer1 = NumpyCircularBuffer(data1) buffer2 = NumpyCircularBuffer(data2) buffer1.append(arange(3)) buffer1.append(arange(3, 6)) buffer1.append(arange(6, 9)) buffer2.append(arange(9).reshape(3, 3)) buffer2.append(arange(9, 18).reshape(3, 3)) buffer2.append(arange(18, 27).reshape(3, 3)) res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(9, 12)) buffer2.append(arange(27, 36).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(12, 15)) buffer2.append(arange(36, 45).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(15, 18)) buffer2.append(arange(45, 54).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) def test_rmatmul_2d2d(self): data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) C = rand(12).reshape(4, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append([9, 10, 11]) test += 3 res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_rmatmul_ndnd(self): data = zeros((3, 3, 3)) A = zeros(27).reshape(3, 3, 3) B = arange(27).reshape(3, 3, 3) C = arange(3*8*3).reshape(3, 8, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append(filler + 27) test += 9 res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_matmul2_1d1d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) self.assertTrue(allclose( buffer.matmul(C[:1], empty(1)), arange(1) @ C[:1] ) ) buffer.append(1) self.assertTrue(allclose( buffer.matmul(C[:2], empty(2)), arange(2) @ C[:2] ) ) buffer.append(2) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(3) @ C ) ) buffer.append(3) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(1, 4) @ C ) ) buffer.append(4) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(2, 5) @ C ) ) buffer.append(5) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(3, 6) @ C ) ) buffer.append(6) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(4, 7) @ C ) ) buffer.pop() self.assertTrue(allclose( buffer.matmul(C[1:], empty(2)), arange(5, 7) @ C[1:] ) ) buffer.pop() self.assertTrue(allclose( buffer.matmul(C[2:], empty(1)), arange(6, 7) @ C[2:] ) ) def test_matmul2_1d2d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 2""" data = zeros(3) A = zeros((3, 3)) B = rand(9).reshape(3, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = buffer.matmul(A, empty(3)) res_b = buffer.matmul(B, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, arange(3) @ A)) self.assertTrue(allclose(res_b, arange(3) @ B)) buffer.append(3) res_a = buffer.matmul(A, empty(3)) res_b = buffer.matmul(B, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(allclose(res_a, arange(1, 4) @ A)) self.assertTrue(allclose(res_b, arange(1, 4) @ B)) def test_matmul2_2d2d(self): """Tests buffer @ X where buffer.ndim == 2""" data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer.matmul(A, empty((3, 3))) res_b = buffer.matmul(B, empty((3, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(arange(9, 12)) test += 3 res_a = buffer.matmul(A, empty((3, 3))) res_b = buffer.matmul(B, empty((3, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) def test_matmul2_ndnd(self): """Tests buffer @ X where X.ndim > 2 and buffer.ndim > 2""" data = zeros((3, 3, 3)) A = zeros((3, 3, 3)) B = rand(27).reshape(3, 3, 3) C = rand(12).reshape(3, 4) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer.matmul(A, empty((3, 3, 3))) res_b = buffer.matmul(B, empty((3, 3, 3))) res_c = buffer.matmul(C, empty((3, 3, 4))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(filler + 27) test += 9 res_a = buffer.matmul(A, empty((3, 3, 3))) res_b = buffer.matmul(B, empty((3, 3, 3))) res_c = buffer.matmul(C, empty((3, 3, 4))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) self.assertTrue(allclose(res_c, test @ C)) def test_rmatmul2_1d1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) res_c = buffer.rmatmul(C[:1], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:1] @ arange(1))) buffer.append(1) res_c = buffer.rmatmul(C[:2], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:2] @ arange(2))) buffer.append(2) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3))) buffer.append(3) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(1, 4))) buffer.append(4) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3, 6))) buffer.append(6) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(4, 7))) buffer.pop() res_c = buffer.rmatmul(C[1:], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[1:] @ arange(5, 7))) buffer.pop() res_c = buffer.rmatmul(C[2:], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[2:] @ arange(6, 7))) def test_rmatmul2_nd1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data = zeros(3) A = zeros(9).reshape(3, 3) B = arange(9).reshape(3, 3) C = arange(3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = A @ buffer buffer.rmatmul(A, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertTrue(array_equal(A @ buffer, A @ array([0, 1, 2]))) buffer.append(3) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ array([1, 2, 3]))) self.assertTrue(allclose(res_b, B @ array([1, 2, 3]))) self.assertTrue(allclose(res_c, C @ array([1, 2, 3]))) buffer.append(4) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(2, 5))) self.assertTrue(allclose(res_b, B @ arange(2, 5))) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(3, 6))) self.assertTrue(allclose(res_b, B @ arange(3, 6))) self.assertTrue(allclose(res_c, C @ arange(3, 6))) def test_rmatmul2_1dnd(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data1 = zeros((3, 3)) data2 = zeros((3, 3, 3)) A = rand(3) test1 = arange(9).reshape(3, 3) test2 = arange(27).reshape(3, 3, 3) buffer1 = NumpyCircularBuffer(data1) buffer2 = NumpyCircularBuffer(data2) buffer1.append(arange(3)) buffer1.append(
arange(3, 6)
numpy.arange
""" Copyright 2013 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import cvxpy as cp import cvxpy.settings as s from cvxpy.transforms.partial_optimize import partial_optimize from cvxpy.expressions.variable import Variable from cvxpy.expressions.constants import Parameter, Constant from cvxpy.reductions.solvers.defines import INSTALLED_MI_SOLVERS import numpy as np from cvxpy import Problem, Minimize from cvxpy.tests.base_test import BaseTest import unittest import scipy.sparse as sp import scipy.stats class TestAtoms(BaseTest): """ Unit tests for the atoms module. """ def setUp(self) -> None: self.a = Variable(name='a') self.x = Variable(2, name='x') self.y = Variable(2, name='y') self.A = Variable((2, 2), name='A') self.B = Variable((2, 2), name='B') self.C = Variable((3, 2), name='C') def test_add_expr_copy(self) -> None: """Test the copy function for AddExpresion class. """ atom = self.x + self.y copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args copy = atom.copy(args=[self.A, self.B]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.A) self.assertTrue(copy.args[1] is self.B) self.assertEqual(copy.get_data(), atom.get_data()) def test_norm_inf(self) -> None: """Test the norm_inf class. """ exp = self.x+self.y atom = cp.norm_inf(exp) # self.assertEqual(atom.name(), "norm_inf(x + y)") self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) assert atom.is_convex() assert (-atom).is_concave() self.assertEqual(cp.norm_inf(atom).curvature, s.CONVEX) self.assertEqual(cp.norm_inf(-atom).curvature, s.CONVEX) def test_norm1(self) -> None: """Test the norm1 class. """ exp = self.x+self.y atom = cp.norm1(exp) # self.assertEqual(atom.name(), "norm1(x + y)") self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(cp.norm1(atom).curvature, s.CONVEX) self.assertEqual(cp.norm1(-atom).curvature, s.CONVEX) def test_list_input(self) -> None: """Test that list input is rejected. """ with self.assertRaises(Exception) as cm: cp.max([cp.Variable(), 1]) self.assertTrue(str(cm.exception) in ( "The input must be a single CVXPY Expression, not a list. " "Combine Expressions using atoms such as bmat, hstack, and vstack.")) with self.assertRaises(Exception) as cm: cp.norm([1, cp.Variable()]) self.assertTrue(str(cm.exception) in ( "The input must be a single CVXPY Expression, not a list. " "Combine Expressions using atoms such as bmat, hstack, and vstack.")) x = cp.Variable() y = cp.Variable() with self.assertRaises(Exception) as cm: cp.norm([x, y]) <= 1 self.assertTrue(str(cm.exception) in ( "The input must be a single CVXPY Expression, not a list. " "Combine Expressions using atoms such as bmat, hstack, and vstack.")) def test_quad_form(self) -> None: """Test quad_form atom. """ P = Parameter((2, 2), symmetric=True) expr = cp.quad_form(self.x, P) assert not expr.is_dcp() def test_power(self) -> None: """Test the power class. """ from fractions import Fraction for shape in [(1, 1), (3, 1), (2, 3)]: x = Variable(shape) y = Variable(shape) exp = x + y for p in 0, 1, 2, 3, 2.7, .67, -1, -2.3, Fraction(4, 5): atom = cp.power(exp, p) self.assertEqual(atom.shape, shape) if p > 1 or p < 0: self.assertEqual(atom.curvature, s.CONVEX) elif p == 1: self.assertEqual(atom.curvature, s.AFFINE) elif p == 0: self.assertEqual(atom.curvature, s.CONSTANT) else: self.assertEqual(atom.curvature, s.CONCAVE) if p != 1: self.assertEqual(atom.sign, s.NONNEG) # Test copy with args=None copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args copy = atom.copy(args=[self.y]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.y) self.assertEqual(copy.get_data(), atom.get_data()) assert cp.power(-1, 2).value == 1 # Test the geo_mean class. def test_geo_mean(self) -> None: atom = cp.geo_mean(self.x) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) # Test copy with args=None copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args copy = atom.copy(args=[self.y]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.y) self.assertEqual(copy.get_data(), atom.get_data()) # Test the harmonic_mean class. def test_harmonic_mean(self) -> None: atom = cp.harmonic_mean(self.x) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) # Test the pnorm class. def test_pnorm(self) -> None: atom = cp.pnorm(self.x, p=1.5) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=1) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=2) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) expr = cp.norm(self.A, 2, axis=0) self.assertEqual(expr.shape, (2,)) atom = cp.pnorm(self.x, p='inf') self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p='Inf') self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=np.inf) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=.5) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=.7) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=-.1) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=-1) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) atom = cp.pnorm(self.x, p=-1.3) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONCAVE) self.assertEqual(atom.sign, s.NONNEG) # Test copy with args=None copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args copy = atom.copy(args=[self.y]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.y) self.assertEqual(copy.get_data(), atom.get_data()) def test_matrix_norms(self) -> None: """ Matrix 1-norm, 2-norm (sigma_max), infinity-norm, Frobenius norm, and nuclear-norm. """ for p in [1, 2, np.inf, 'fro', 'nuc']: for var in [self.A, self.C]: atom = cp.norm(var, p) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) self.assertEqual(atom.sign, s.NONNEG) var.value = np.random.randn(*var.shape) self.assertAlmostEqual(atom.value, np.linalg.norm(var.value, ord=p)) pass def test_quad_over_lin(self) -> None: # Test quad_over_lin DCP. atom = cp.quad_over_lin(cp.square(self.x), self.a) self.assertEqual(atom.curvature, s.CONVEX) atom = cp.quad_over_lin(-cp.square(self.x), self.a) self.assertEqual(atom.curvature, s.CONVEX) atom = cp.quad_over_lin(cp.sqrt(self.x), self.a) self.assertEqual(atom.curvature, s.UNKNOWN) assert not atom.is_dcp() # Test quad_over_lin shape validation. with self.assertRaises(Exception) as cm: cp.quad_over_lin(self.x, self.x) self.assertEqual(str(cm.exception), "The second argument to quad_over_lin must be a scalar.") def test_elemwise_arg_count(self) -> None: """Test arg count for max and min variants. """ with self.assertRaises(Exception) as cm: cp.maximum(1) self.assertTrue(str(cm.exception) in ( "__init__() takes at least 3 arguments (2 given)", "__init__() missing 1 required positional argument: 'arg2'")) with self.assertRaises(Exception) as cm: cp.minimum(1) self.assertTrue(str(cm.exception) in ( "__init__() takes at least 3 arguments (2 given)", "__init__() missing 1 required positional argument: 'arg2'")) def test_matrix_frac(self) -> None: """Test for the matrix_frac atom. """ atom = cp.matrix_frac(self.x, self.A) self.assertEqual(atom.shape, tuple()) self.assertEqual(atom.curvature, s.CONVEX) # Test matrix_frac shape validation. with self.assertRaises(Exception) as cm: cp.matrix_frac(self.x, self.C) self.assertEqual(str(cm.exception), "The second argument to matrix_frac must be a square matrix.") with self.assertRaises(Exception) as cm: cp.matrix_frac(Variable(3), self.A) self.assertEqual(str(cm.exception), "The arguments to matrix_frac have incompatible dimensions.") def test_max(self) -> None: """Test max. """ # One arg, test sign. self.assertEqual(cp.max(1).sign, s.NONNEG) self.assertEqual(cp.max(-2).sign, s.NONPOS) self.assertEqual(cp.max(Variable()).sign, s.UNKNOWN) self.assertEqual(cp.max(0).sign, s.ZERO) # Test with axis argument. self.assertEqual(cp.max(Variable(2), axis=0, keepdims=True).shape, (1,)) self.assertEqual(cp.max(Variable(2), axis=1).shape, (2,)) self.assertEqual(cp.max(Variable((2, 3)), axis=0, keepdims=True).shape, (1, 3)) self.assertEqual(cp.max(Variable((2, 3)), axis=1).shape, (2,)) # Invalid axis. with self.assertRaises(Exception) as cm: cp.max(self.x, axis=4) self.assertEqual(str(cm.exception), "Invalid argument for axis.") def test_min(self) -> None: """Test min. """ # One arg, test sign. self.assertEqual(cp.min(1).sign, s.NONNEG) self.assertEqual(cp.min(-2).sign, s.NONPOS) self.assertEqual(cp.min(Variable()).sign, s.UNKNOWN) self.assertEqual(cp.min(0).sign, s.ZERO) # Test with axis argument. self.assertEqual(cp.min(Variable(2), axis=0).shape, tuple()) self.assertEqual(cp.min(Variable(2), axis=1).shape, (2,)) self.assertEqual(cp.min(Variable((2, 3)), axis=0).shape, (3,)) self.assertEqual(cp.min(Variable((2, 3)), axis=1).shape, (2,)) # Invalid axis. with self.assertRaises(Exception) as cm: cp.min(self.x, axis=4) self.assertEqual(str(cm.exception), "Invalid argument for axis.") # Test sign logic for maximum. def test_maximum_sign(self) -> None: # Two args. self.assertEqual(cp.maximum(1, 2).sign, s.NONNEG) self.assertEqual(cp.maximum(1, Variable()).sign, s.NONNEG) self.assertEqual(cp.maximum(1, -2).sign, s.NONNEG) self.assertEqual(cp.maximum(1, 0).sign, s.NONNEG) self.assertEqual(cp.maximum(Variable(), 0).sign, s.NONNEG) self.assertEqual(cp.maximum(Variable(), Variable()).sign, s.UNKNOWN) self.assertEqual(cp.maximum(Variable(), -2).sign, s.UNKNOWN) self.assertEqual(cp.maximum(0, 0).sign, s.ZERO) self.assertEqual(cp.maximum(0, -2).sign, s.ZERO) self.assertEqual(cp.maximum(-3, -2).sign, s.NONPOS) # Many args. self.assertEqual(cp.maximum(-2, Variable(), 0, -1, Variable(), 1).sign, s.NONNEG) # Promotion. self.assertEqual(cp.maximum(1, Variable(2)).sign, s.NONNEG) self.assertEqual(cp.maximum(1, Variable(2)).shape, (2,)) # Test sign logic for minimum. def test_minimum_sign(self) -> None: # Two args. self.assertEqual(cp.minimum(1, 2).sign, s.NONNEG) self.assertEqual(cp.minimum(1, Variable()).sign, s.UNKNOWN) self.assertEqual(cp.minimum(1, -2).sign, s.NONPOS) self.assertEqual(cp.minimum(1, 0).sign, s.ZERO) self.assertEqual(cp.minimum(Variable(), 0).sign, s.NONPOS) self.assertEqual(cp.minimum(Variable(), Variable()).sign, s.UNKNOWN) self.assertEqual(cp.minimum(Variable(), -2).sign, s.NONPOS) self.assertEqual(cp.minimum(0, 0).sign, s.ZERO) self.assertEqual(cp.minimum(0, -2).sign, s.NONPOS) self.assertEqual(cp.minimum(-3, -2).sign, s.NONPOS) # Many args. self.assertEqual(cp.minimum(-2, Variable(), 0, -1, Variable(), 1).sign, s.NONPOS) # Promotion. self.assertEqual(cp.minimum(-1, Variable(2)).sign, s.NONPOS) self.assertEqual(cp.minimum(-1, Variable(2)).shape, (2,)) def test_sum(self) -> None: """Test the sum atom. """ self.assertEqual(cp.sum(1).sign, s.NONNEG) self.assertEqual(cp.sum(Constant([1, -1])).sign, s.UNKNOWN) self.assertEqual(cp.sum(Constant([1, -1])).curvature, s.CONSTANT) self.assertEqual(cp.sum(Variable(2)).sign, s.UNKNOWN) self.assertEqual(cp.sum(Variable(2)).shape, tuple()) self.assertEqual(cp.sum(Variable(2)).curvature, s.AFFINE) self.assertEqual(cp.sum(Variable((2, 1)), keepdims=True).shape, (1, 1)) # Mixed curvature. mat = np.array([[1, -1]]) self.assertEqual(cp.sum(mat @ cp.square(Variable(2))).curvature, s.UNKNOWN) # Test with axis argument. self.assertEqual(cp.sum(Variable(2), axis=0).shape, tuple()) self.assertEqual(cp.sum(Variable(2), axis=1).shape, (2,)) self.assertEqual(cp.sum(Variable((2, 3)), axis=0, keepdims=True).shape, (1, 3)) self.assertEqual(cp.sum(Variable((2, 3)), axis=0, keepdims=False).shape, (3,)) self.assertEqual(cp.sum(Variable((2, 3)), axis=1).shape, (2,)) # Invalid axis. with self.assertRaises(Exception) as cm: cp.sum(self.x, axis=4) self.assertEqual(str(cm.exception), "Invalid argument for axis.") A = sp.eye(3) self.assertEqual(cp.sum(A).value, 3) A = sp.eye(3) self.assertItemsAlmostEqual(cp.sum(A, axis=0).value, [1, 1, 1]) def test_multiply(self) -> None: """Test the multiply atom. """ self.assertEqual(cp.multiply([1, -1], self.x).sign, s.UNKNOWN) self.assertEqual(cp.multiply([1, -1], self.x).curvature, s.AFFINE) self.assertEqual(cp.multiply([1, -1], self.x).shape, (2,)) pos_param = Parameter(2, nonneg=True) neg_param = Parameter(2, nonpos=True) self.assertEqual(cp.multiply(pos_param, pos_param).sign, s.NONNEG) self.assertEqual(cp.multiply(pos_param, neg_param).sign, s.NONPOS) self.assertEqual(cp.multiply(neg_param, neg_param).sign, s.NONNEG) self.assertEqual(cp.multiply(neg_param, cp.square(self.x)).curvature, s.CONCAVE) # Test promotion. self.assertEqual(cp.multiply([1, -1], 1).shape, (2,)) self.assertEqual(cp.multiply(1, self.C).shape, self.C.shape) self.assertEqual(cp.multiply(self.x, [1, -1]).sign, s.UNKNOWN) self.assertEqual(cp.multiply(self.x, [1, -1]).curvature, s.AFFINE) self.assertEqual(cp.multiply(self.x, [1, -1]).shape, (2,)) # Test the vstack class. def test_vstack(self) -> None: atom = cp.vstack([self.x, self.y, self.x]) self.assertEqual(atom.name(), "Vstack(x, y, x)") self.assertEqual(atom.shape, (3, 2)) atom = cp.vstack([self.A, self.C, self.B]) self.assertEqual(atom.name(), "Vstack(A, C, B)") self.assertEqual(atom.shape, (7, 2)) entries = [] for i in range(self.x.shape[0]): entries.append(self.x[i]) atom = cp.vstack(entries) self.assertEqual(atom.shape, (2, 1)) # self.assertEqual(atom[1,0].name(), "vstack(x[0,0], x[1,0])[1,0]") with self.assertRaises(Exception) as cm: cp.vstack([self.C, 1]) self.assertEqual(str(cm.exception), "All the input dimensions except for axis 0 must match exactly.") with self.assertRaises(Exception) as cm: cp.vstack([self.x, Variable(3)]) self.assertEqual(str(cm.exception), "All the input dimensions except for axis 0 must match exactly.") with self.assertRaises(TypeError) as cm: cp.vstack() def test_reshape(self) -> None: """Test the reshape class. """ expr = cp.reshape(self.A, (4, 1)) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, (4, 1)) expr = cp.reshape(expr, (2, 2)) self.assertEqual(expr.shape, (2, 2)) expr = cp.reshape(cp.square(self.x), (1, 2)) self.assertEqual(expr.sign, s.NONNEG) self.assertEqual(expr.curvature, s.CONVEX) self.assertEqual(expr.shape, (1, 2)) with self.assertRaises(Exception) as cm: cp.reshape(self.C, (5, 4)) self.assertEqual(str(cm.exception), "Invalid reshape dimensions (5, 4).") # Test C-style reshape. a = np.arange(10) A_np = np.reshape(a, (5, 2), order='C') A_cp = cp.reshape(a, (5, 2), order='C') self.assertItemsAlmostEqual(A_np, A_cp.value) X = cp.Variable((5, 2)) prob = cp.Problem(cp.Minimize(0), [X == A_cp]) prob.solve() self.assertItemsAlmostEqual(A_np, X.value) a_np = np.reshape(A_np, 10, order='C') a_cp = cp.reshape(A_cp, 10, order='C') self.assertItemsAlmostEqual(a_np, a_cp.value) x = cp.Variable(10) prob = cp.Problem(cp.Minimize(0), [x == a_cp]) prob.solve() self.assertItemsAlmostEqual(a_np, x.value) # Test more complex C-style reshape: matrix to another matrix b = np.array([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], ]) b_reshaped = b.reshape((2, 6), order='C') X = cp.Variable(b.shape) X_reshaped = cp.reshape(X, (2, 6), order='C') prob = cp.Problem(cp.Minimize(0), [X_reshaped == b_reshaped]) prob.solve() self.assertItemsAlmostEqual(b_reshaped, X_reshaped.value) self.assertItemsAlmostEqual(b, X.value) def test_vec(self) -> None: """Test the vec atom. """ expr = cp.vec(self.C) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, (6,)) expr = cp.vec(self.x) self.assertEqual(expr.shape, (2,)) expr = cp.vec(cp.square(self.a)) self.assertEqual(expr.sign, s.NONNEG) self.assertEqual(expr.curvature, s.CONVEX) self.assertEqual(expr.shape, (1,)) def test_diag(self) -> None: """Test the diag atom. """ expr = cp.diag(self.x) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, (2, 2)) expr = cp.diag(self.A) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, (2,)) expr = cp.diag(self.x.T) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, (2, 2)) psd_matrix = np.array([[1, -1], [-1, 1]]) expr = cp.diag(psd_matrix) self.assertEqual(expr.sign, s.NONNEG) self.assertEqual(expr.curvature, s.CONSTANT) self.assertEqual(expr.shape, (2,)) with self.assertRaises(Exception) as cm: cp.diag(self.C) self.assertEqual(str(cm.exception), "Argument to diag must be a vector or square matrix.") # Test that diag is PSD w = np.array([1.0, 2.0]) expr = cp.diag(w) self.assertTrue(expr.is_psd()) expr = cp.diag(-w) self.assertTrue(expr.is_nsd()) expr = cp.diag(np.array([1, -1])) self.assertFalse(expr.is_psd()) self.assertFalse(expr.is_nsd()) def test_trace(self) -> None: """Test the trace atom. """ expr = cp.trace(self.A) self.assertEqual(expr.sign, s.UNKNOWN) self.assertEqual(expr.curvature, s.AFFINE) self.assertEqual(expr.shape, tuple()) with self.assertRaises(Exception) as cm: cp.trace(self.C) self.assertEqual(str(cm.exception), "Argument to trace must be a square matrix.") def test_log1p(self) -> None: """Test the log1p atom. """ expr = cp.log1p(1) self.assertEqual(expr.sign, s.NONNEG) self.assertEqual(expr.curvature, s.CONSTANT) self.assertEqual(expr.shape, tuple()) expr = cp.log1p(-0.5) self.assertEqual(expr.sign, s.NONPOS) def test_upper_tri(self) -> None: with self.assertRaises(Exception) as cm: cp.upper_tri(self.C) self.assertEqual(str(cm.exception), "Argument to upper_tri must be a square matrix.") def test_vec_to_upper_tri(self) -> None: from cvxpy.atoms.affine.upper_tri import vec_to_upper_tri x = Variable(shape=(3,)) X = vec_to_upper_tri(x) x.value = np.array([1, 2, 3]) actual = X.value expect = np.array([[1, 2], [0, 3]]) assert np.allclose(actual, expect) y = Variable(shape=(1,)) y.value = np.array([4]) Y = vec_to_upper_tri(y, strict=True) actual = Y.value expect = np.array([[0, 4], [0, 0]]) assert np.allclose(actual, expect) A_expect = np.array([[0, 11, 12, 13], [0, 0, 16, 17], [0, 0, 0, 21], [0, 0, 0, 0]]) a = np.array([11, 12, 13, 16, 17, 21]) A_actual = vec_to_upper_tri(a, strict=True).value assert np.allclose(A_actual, A_expect) def test_huber(self) -> None: # Valid. cp.huber(self.x, 1) with self.assertRaises(Exception) as cm: cp.huber(self.x, -1) self.assertEqual(str(cm.exception), "M must be a non-negative scalar constant.") with self.assertRaises(Exception) as cm: cp.huber(self.x, [1, 1]) self.assertEqual(str(cm.exception), "M must be a non-negative scalar constant.") # M parameter. M = Parameter(nonneg=True) # Valid. cp.huber(self.x, M) M.value = 1 self.assertAlmostEqual(cp.huber(2, M).value, 3) # Invalid. M = Parameter(nonpos=True) with self.assertRaises(Exception) as cm: cp.huber(self.x, M) self.assertEqual(str(cm.exception), "M must be a non-negative scalar constant.") # Test copy with args=None atom = cp.huber(self.x, 2) copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) # As get_data() returns a Constant, we have to check the value self.assertEqual(copy.get_data()[0].value, atom.get_data()[0].value) # Test copy with new args copy = atom.copy(args=[self.y]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.y) self.assertEqual(copy.get_data()[0].value, atom.get_data()[0].value) def test_sum_largest(self) -> None: """Test the sum_largest atom and related atoms. """ with self.assertRaises(Exception) as cm: cp.sum_largest(self.x, -1) self.assertEqual(str(cm.exception), "Second argument must be a positive integer.") with self.assertRaises(Exception) as cm: cp.lambda_sum_largest(self.x, 2.4) self.assertEqual(str(cm.exception), "First argument must be a square matrix.") with self.assertRaises(Exception) as cm: cp.lambda_sum_largest(Variable((2, 2)), 2.4) self.assertEqual(str(cm.exception), "Second argument must be a positive integer.") with self.assertRaises(ValueError) as cm: cp.lambda_sum_largest([[1, 2], [3, 4]], 2).value self.assertEqual(str(cm.exception), "Input matrix was not Hermitian/symmetric.") # Test copy with args=None atom = cp.sum_largest(self.x, 2) copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args copy = atom.copy(args=[self.y]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is self.y) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with lambda_sum_largest, which is in fact an AddExpression atom = cp.lambda_sum_largest(Variable((2, 2)), 2) copy = atom.copy() self.assertTrue(type(copy) is type(atom)) def test_sum_smallest(self) -> None: """Test the sum_smallest atom and related atoms. """ with self.assertRaises(Exception) as cm: cp.sum_smallest(self.x, -1) self.assertEqual(str(cm.exception), "Second argument must be a positive integer.") with self.assertRaises(Exception) as cm: cp.lambda_sum_smallest(Variable((2, 2)), 2.4) self.assertEqual(str(cm.exception), "Second argument must be a positive integer.") def test_index(self) -> None: """Test the copy function for index. """ # Test copy with args=None shape = (5, 4) A = Variable(shape) atom = A[0:2, 0:1] copy = atom.copy() self.assertTrue(type(copy) is type(atom)) # A new object is constructed, so copy.args == atom.args but copy.args # is not atom.args. self.assertEqual(copy.args, atom.args) self.assertFalse(copy.args is atom.args) self.assertEqual(copy.get_data(), atom.get_data()) # Test copy with new args B = Variable((4, 5)) copy = atom.copy(args=[B]) self.assertTrue(type(copy) is type(atom)) self.assertTrue(copy.args[0] is B) self.assertEqual(copy.get_data(), atom.get_data()) def test_bmat(self) -> None: """Test the bmat atom. """ v_np = np.ones((3, 1)) expr = np.vstack([
np.hstack([v_np, v_np])
numpy.hstack
import argparse import os import sys import numpy as np import pdb from tqdm import tqdm import cv2 import glob import numpy as np from numpy import * import matplotlib #matplotlib.use("Agg") #matplotlib.use("wx") #matplotlib.use('tkagg') import matplotlib.pyplot as plt import scipy from scipy.special import softmax import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset import torch.nn as nn from modeling.sync_batchnorm.replicate import patch_replication_callback from modeling.deeplab import * from PIL import Image # class load_data(Dataset): # def __init__(self,args,img_path): # super().__init__() # self.args = args # self.img_path = img_path # def __getitem__(self,img_path): # image = Image.open(self.img_path).convert('RGB') # image = np.array(image).astype(np.float32).transpose((2, 0, 1)) # image = torch.from_numpy(image).float() # return image def get_model(nclass,args): model = DeepLab(num_classes=nclass, backbone=args.backbone, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn) # Using cuda if args.cuda: model = torch.nn.DataParallel(model, device_ids=args.gpu_ids) patch_replication_callback(model) model = model.cuda() checkpoint = torch.load(args.resume) if args.cuda: model.module.load_state_dict(checkpoint['state_dict']) else: model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) return model def get_pred(img_path,model,args): model.eval() image = Image.open(img_path).convert('RGB') #image = image.resize((512,512), Image.ANTIALIAS) image = np.array(image).astype(np.float32).transpose((2, 0, 1)) image = np.expand_dims(image, axis=0) image = torch.from_numpy(image).float() if args.cuda: image = image.cuda() with torch.no_grad(): output = model(image) #pdb.set_trace() # normalize = nn.Softmax(dim=1) # output = normalize(output) pred = output.data.cpu().numpy() return pred def F1_loss(pred,target): N = np.logical_or(pred,target) # logical Tp = np.logical_and(pred,target) Fn = np.subtract(target,Tp) # element-wise subtraction in pytorch #Fn = np.bitwise_xor(target,Tp) Fp = np.subtract(pred,Tp) Tn = np.subtract(N,np.logical_or(Tp,Fp,Fn)) #pdb.set_trace() precision = np.sum(Tp)/(np.sum(Tp)+np.sum(Fp)) recall = np.sum(Tp)/(np.sum(Tp)+np.sum(Fn)) F1 = (2*np.sum(Tp))/(2*np.sum(Tp)+np.sum(Fn)+np.sum(Fp)) #F1 = np.true_divide(np.add(2*Tp,Fn,Fp),2*Tp) #F1 = np.true_divide(np.sum(np.multiply(2,Tp),Fn,Fp),np.multiply(2,Tp)) #F1 = np.true_divide(np.multiply(2,Tp),np.multiply(np.sum(Tp,Fn),np.sum(Tp,Fn))) #accuracy = np.true_divide(np.add(Tp,Tn),np.add(Tp,Tn,Fp,Fn)) accuracy = np.sum(Tp+Tn)/np.sum(N) return F1 , accuracy, precision, recall def F1_rwi(pred,target): #pred = pred[:,:,0] # using only the red channel #target = target[:,:,0] N = np.logical_or(pred, target) # logical Tp = np.logical_and(pred, target) Fn = np.bitwise_xor(target, Tp) # element-wise subtraction in pytorch Fp = np.bitwise_xor(pred, Tp) xx= np.logical_or(np.logical_or(Tp,Fp), Fn) Tn = np.bitwise_xor(N, xx) precision = Tp.sum()/(Tp.sum()+ Fp.sum() ) recall = Tp.sum()/(Tp.sum()+ Fn.sum()) F1 = 2*Tp.sum() /(2*Tp.sum()+ Fn.sum()+ Fp.sum()) accuracy = (Tp.sum()+Tn.sum())/N.sum() return F1, accuracy, precision, recall if __name__=='__main__': #### Parameters and paths: nclass = 2 save_rrc_res_path = "/path/to/deepLabV3Plus/deeplabv3plus_pixelWise/results/validation_images/B_260/" model_path = "/path/to/deepLabV3Plus/deeplabv3plus_pixelWise/results/icdar_models/run/icdar/deeplab-resnet/model_best.pth.tar" alphabet="#abcdefghijklmnopqrstuvwxyz1234567890@" img_path = "/path/to/GAN_text/data/text_segmentation/test/A/" gt_path = "/path/to/GAN_text/data/text_segmentation/test/B_gt_1chanel/" ### args parser = argparse.ArgumentParser(description="PyTorch DeeplabV3Plus Heatmap Prediction") parser.add_argument('--backbone', type=str, default='resnet', choices=['resnet', 'xception', 'drn', 'mobilenet'], help='backbone name (default: resnet)') parser.add_argument('--freeze-bn', type=bool, default=False, help='whether to freeze bn parameters (default: False)') parser.add_argument('--out-stride', type=int, default=16, help='network output stride (default: 8)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--gpu-ids', type=str, default='0', help='use which gpu to train, must be a \ comma-separated list of integers only (default=0)') parser.add_argument('--sync-bn', type=bool, default=None, help='whether to use sync bn (default: auto)') ##checking point parser.add_argument('--resume', type=str, default= model_path, help='put the path to resuming file if needed') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: try: args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')] except ValueError: raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only') if args.sync_bn is None: if args.cuda and len(args.gpu_ids) > 1: args.sync_bn = True else: args.sync_bn = False image_files = sorted(glob.glob(img_path+'*.png')) #'*.jpg')) trained_model = get_model(nclass,args) f1_all = [] accuracy_all = [] f1_all_rwi = [] accuracy_all_rwi = [] #for img_path in sys.argv[1:]: #for i in range(0,10): for i in range(0,len(image_files)): img_path = image_files[i] print("image path is: {}".format(img_path)) img_name = img_path.split('/')[-1].split('.')[0] gt = asarray(Image.open(gt_path+img_name+'.png')) #trained_model = get_model(nclass,args) #pdb.set_trace() # load_test_data = load_data(args,img_path) # dataloader = DataLoader(load_test_data) # for ii, img_test in enumerate(dataloader): pred = get_pred(img_path,trained_model,args) pred = softmax(pred, axis=1) #image_source = cv2.imread(img_path) #image_source = cv2.resize(image_source, (512, 512)) #pdb.set_trace() #fig = plt.figure() # plt.imshow(pred.squeeze()[1,:,:]) # plt.show() # res = pred.squeeze()[1,:,:]>0.3 #res = np.argmax(pred.squeeze(), axis=0) #pdb.set_trace() # plt.imshow(res) # plt.show() #ret,pred_bin = cv2.threshold(pred.squeeze()[1,:,:],0.2,255,cv2.THRESH_BINARY) pred_bin = np.argmax(pred.squeeze(), axis=0) #pdb.set_trace() f1, acc, prc, rcl = F1_loss(pred_bin>5,gt>5) print("F1 is {}, accuracy is {}, precision is {}, recall is {}".format(f1,acc,prc,rcl)) #pdb.set_trace() pred_bin_8 = pred_bin.astype(np.uint8) f1_rwi, acc_rwi, prc_rwi, rcl_rwi = F1_rwi(pred_bin_8>5,gt>5) print("F1_rwi is {}, accuracy_rwi is {}, precision_rwi is {}, recall_rwi is {}".format(f1_rwi,acc_rwi,prc_rwi,rcl_rwi)) f1_all.append(f1) accuracy_all.append(acc) f1_all_rwi.append(f1_rwi) accuracy_all_rwi.append(acc_rwi) print("the average of F1 is {}".format(np.mean(f1_all))) print("the average accuracy is {}".format(np.mean(accuracy_all))) print("the average of F1_rwi is {}".format(
np.mean(f1_all_rwi)
numpy.mean
__doc__ = """ External forcing for rod test module for Elastica implementation""" import sys # System imports import numpy as np from numpy.testing import assert_allclose, assert_array_equal import pytest from elastica.external_forces import ( NoForces, GravityForces, EndpointForces, UniformTorques, UniformForces, MuscleTorques, inplace_addition, inplace_substraction, ) from elastica.utils import Tolerance from examples.JointCases.external_force_class_for_joint_test import ( EndpointForcesSinusoidal, ) def mock_rod_init(self): self.n_elems = 0.0 self.external_forces = 0.0 self.external_torques = 0.0 self.director_collection = 0.0 self.rest_lengths = 0.0 MockRod = type("MockRod", (object,), {"__init__": mock_rod_init}) class TestNoForces: def test_no_forces_applied(self): """No force on the rod. Test purely to improve coverage characteristics """ mock_rod = MockRod() ext_no_forces = NoForces() correct_external_forces = np.random.rand(3, 20) mock_rod.external_forces = correct_external_forces ext_no_forces.apply_forces(mock_rod) assert_allclose( mock_rod.external_forces, correct_external_forces, atol=Tolerance.atol() ) def test_no_torques_applied(self): """No torques on the rod. Test purely to improve coverage characteristics """ mock_rod = MockRod() ext_no_forces = NoForces() correct_external_torques = np.random.rand(3, 20) mock_rod.external_torques = correct_external_torques ext_no_forces.apply_torques(mock_rod) assert_allclose( mock_rod.external_torques, correct_external_torques, atol=Tolerance.atol() ) # The minimum number of nodes in a system is 2 @pytest.mark.parametrize("n_elem", [2, 4, 16]) def test_gravity_forces(n_elem): # tests uniform gravity dim = 3 mock_rod = MockRod() mass = np.random.randn(n_elem) acceleration_gravity = np.random.rand(dim) correct_external_forces = ( mass * np.broadcast_to(acceleration_gravity, (n_elem, dim)).T ) mock_rod.mass = mass mock_rod.external_forces = np.zeros((dim, n_elem)) ext_gravity_forces = GravityForces(acceleration_gravity) ext_gravity_forces.apply_forces(mock_rod) assert_allclose( mock_rod.external_forces, correct_external_forces, atol=Tolerance.atol() ) # The minimum number of nodes in a system is 2 @pytest.mark.parametrize("n_elem", [2, 4, 16]) @pytest.mark.parametrize("rampupTime", [5, 10, 15]) @pytest.mark.parametrize("time", [0, 8, 20]) def test_endpoint_forces(n_elem, rampupTime, time): dim = 3 mock_rod = MockRod() mock_rod.external_forces = np.zeros((dim, n_elem)) if rampupTime > time: factor = time / rampupTime elif rampupTime <= time: factor = 1.0 start_force = np.random.rand(dim) end_force = np.random.rand(dim) ext_endpt_forces = EndpointForces(start_force, end_force, rampupTime) ext_endpt_forces.apply_forces(mock_rod, time) assert_allclose( mock_rod.external_forces[..., 0], start_force * factor, atol=Tolerance.atol() ) assert_allclose( mock_rod.external_forces[..., -1], end_force * factor, atol=Tolerance.atol() ) # The minimum number of nodes in a system is 2 @pytest.mark.parametrize("n_elem", [2, 4, 16]) @pytest.mark.parametrize("torques", [5, 10, 15]) def test_uniform_torques(n_elem, torques, time=0.0): dim = 3 mock_rod = MockRod() mock_rod.external_torques = np.zeros((dim, n_elem)) mock_rod.n_elems = n_elem mock_rod.director_collection = np.repeat( np.identity(3)[:, :, np.newaxis], n_elem, axis=2 ) torque = np.random.rand() direction = np.array([1.0, 0.0, 0.0]) uniform_torques = UniformTorques(torque, direction) uniform_torques.apply_torques(mock_rod, time) assert_allclose(mock_rod.external_torques.sum(), torque, atol=Tolerance.atol()) # The minimum number of nodes in a system is 2 @pytest.mark.parametrize("n_elem", [2, 4, 16]) @pytest.mark.parametrize("forces", [5, 10, 15]) def test_uniform_forces(n_elem, forces, time=0.0): dim = 3 mock_rod = MockRod() mock_rod.external_forces =
np.zeros((dim, n_elem + 1))
numpy.zeros
import matplotlib.pyplot as plt import numpy as np from MLG import imagepath, paperpath, path from imageio import imread import matplotlib.cbook as cbook from MLG.utils import color_own from matplotlib import rc __all__ = ['dark','Image_Window','Image_precision','Image_Illustration','Image_Illustration_Multi','Image_compare_micro','Image_astroshift', 'create_all_Image'] def dark(onof = 0): if onof is 'on': plt.style.use('dark_background') elif onof is 'off': plt.style.use('default') elif onof == True: plt.style.use('dark_background') else: plt.style.use('default') def Image_Window(string = 'resolve_Window', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) else: black = color_own([0.,0.,0.,1]) c1 = color_own([0,1,1,1]) c2 = color_own([1,0,0,1]) c3 = color_own([1,1,0.2,1]) c4 = color_own([0.4,0.4,0.4,1]) c_star = [c1,c2,c3,c4] c_grid1 = color_own([0,int(dark),1,1]) c_grid2 = color_own([0.5,1,0,1]) star= np.array([[0, 0],[0.1,0.9],[-1,-1.1],[-0.5,0.1]]) fig = plt.figure(figsize = [12,12]) x_width = 0.059 y_width = 0.177 #------------------------------------------------------------ # axis plt.xticks( fontsize = 25) plt.yticks( fontsize = 25) plt.grid(True) plt.axis('equal') plt.axis([-1.5,1.5,-1.4,1.6]) plt.ylabel('Across-scan direction (AC) [arcsec]', fontsize = 30) plt.xlabel('Along-scan direction (AL) [arcsec]', fontsize = 30) #------------------------------------------------------------ #------------------------------------------------------------ #Grid Major Star for i in range(-6,7): plt.plot([-6*x_width,6*x_width], [i*y_width,i*y_width], c = c_grid1,linewidth = 3) plt.plot([i*x_width,i*x_width], [-6*y_width,6*y_width], c = c_grid1, linewidth = 3) plt.text(0,1.4,"Along-scan direction\n $12\,\mathrm{pix} \\times 0.059 \mathrm{''/pix} = 0.708\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 0) plt.text(0.7,0,"Across-scan direction\n $12\,\mathrm{pix} \\times 0.177 \mathrm{''/pix} = 2.124\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 90) plt.arrow(0,6*y_width+2*x_width, -6*x_width+0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(0,6*y_width+2*x_width, 6*x_width-0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, -6*y_width+0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, 6*y_width-0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.scatter(star[:1,0], star[:1,1], marker=(5, 1),c = c_star[:1], s = [3000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_1.png', format = 'png') #------------------------------------------------------------ #------------------------------------------------------------ #Grid Minor Star plt.scatter(star[1:3,0], star[1:3,1], marker=(5, 1),c = c_star[1:3], s = [2000,2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_2.png', format = 'png') for i in range(-5,8): plt.plot([-15*x_width,-6*x_width], [i*y_width,i*y_width], c = c_grid2,linewidth = 3, zorder = -1) for i in range(-15,-5): plt.plot([i*x_width,i*x_width], [-5*y_width,7*y_width], c = c_grid2, linewidth = 3, zorder = -1) plt.scatter(star[3:,0], star[3:,1], marker=(5, 1),c = c_star[3:], s = [2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_3.png', format = 'png') #------------------------------------------------------------ fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_precision(string = 'Sig_vs_Gmag', Gaia_precision = path+'InputTable/resolution_Gaia.png', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0.5,1,0,1]) color5 = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0,1,0,1]) color5 = color_own([1,1,0,1]) fig = plt.figure(figsize = [12,10]) Gmag = np.arange(4,22,0.01) datafile = cbook.get_sample_data(Gaia_precision) img = imread(datafile) z = 10 ** (0.4 * (np.maximum(Gmag, 14) - 15)) #(14-np.minimum(Gmag, 14)) z2 = 10 ** (0.4 * (np.maximum(Gmag, 12) - 15)) sig_pi = (-1.631 + 680.766 * z2 + 32.732 * z2**2)**0.5/1000 sig_fov2 =(-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75 +0.1 sig_fov3 = sig_fov2 / np.sqrt(9) plt.plot([0,1],[-5,-5], c = color1, linewidth = 3, label = 'formal precision from Gaia DR2 (per CCD)' ) plt.plot([0,1],[-5,-5], c = color2, linewidth = 3, label = 'actual precision from Gaia DR2 (per CCD)' ) plt.yticks([np.log10(i) for i in [20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02, 0.01]],[20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02,0.01], fontsize = 25) plt.xticks( fontsize = 25) plt.ylabel('Standard deviation of AL field angle [mas]', fontsize = 30) plt.xlabel('G magnitude', fontsize = 30) plt.imshow(img, zorder=0, extent=[5, 21.04, np.log10(0.0195),np.log10(10)]) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.plot(Gmag,np.log10(sig_pi), '--',c = color3, dashes =(5,5), linewidth = 3, label= 'predicted end-of-mission parallax error') if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov2), ':' , c = color4, linewidth = 5, label= 'used Standard deviation (per CCD)' ) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_3.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov3) ,c = color5,linewidth = 7, label= 'used Standard deviation for 9 CCD observations' ) plt.plot([5, 21.04, 21.04,5,5], [np.log10(0.0195),np.log10(0.0195),np.log10(10),np.log10(10),np.log10(0.0195)], linewidth = 2, color = [0.5,0.5,0.5,1], zorder = 0.1) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration(string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0,1,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0.5,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0,0,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 1.5 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') for i in range(len(t)): xm1 =np.array([-1,1]) * np.cos(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1]) * np.sin(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1]) * np.cos(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1]) * np.sin(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = color1,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = color2, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') if i% 2 == 0: plt.plot(xm2,ym2, color = black, linewidth = 3,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 3,zorder = 1) else: plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm1,ym1, color = 'grey', linewidth = 2, zorder = -1) #if i ==0 : plt.plot(x1,y1, color = color3, linewidth = 3) plt.plot(x2,y2, color = color1, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) plt.plot(X2,Y2, color = color2, linewidth = 3) plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = color3, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') plt.text(4,7.5,'Star 1',color = color2,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration2 (string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi #Position_lens x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) #unlensed Position_source x2 = np.linspace(5,9,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 2 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') #--------------------------------------------------------------- #axis plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = grey, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') #--------------------------------------------------------------- # Motion source plt.plot(x1,y1, color = grey, linewidth = 7) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.text(4,7.5,'Source',color = blue,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.plot(x2,y2, color = cyan, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(X2,Y2, color = blue, linewidth = 3) for i in range(len(t)): plt.plot([x2[t[i]],X2[t[i]]],[y2[t[i]],Y2[t[i]]],':',color = black) fig.savefig(imagepath + string + '_3.png', format = 'png') delta = 0.05 for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] plt.plot(xm2,ym2, color = black, linewidth = 1,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 1,zorder = 1) fig.savefig(imagepath + string + '_4.png', format = 'png') for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) *
np.cos(scandir[i])
numpy.cos
from spikeinterface.core import BinaryRecordingExtractor, BaseRecordingSegment, BaseSorting, BaseSortingSegment from spikeinterface.core.core_tools import write_binary_recording from probeinterface import read_prb, write_prb import json import numpy as np from pathlib import Path try: import pandas as pd HAVE_PANDAS = True except: HAVE_PANDAS = False class ALFSortingExtractor(BaseSorting): extractor_name = 'ALFSorting' installed = HAVE_PANDAS is_writable = True installation_mesg = "To use the SHYBRID extractors, install SHYBRID: \n\n pip install shybrid\n\n" def __init__(self, folder_path, sampling_frequency=30000): assert self.installed, self.installation_mesg # check correct parent folder: self._folder_path = Path(folder_path) if 'probe' not in self._folder_path.name: raise ValueError('folder name should contain "probe", containing channels, clusters.* .npy datasets') # load datasets as mmap into a dict: required_alf_datasets = ['spikes.times', 'spikes.clusters'] found_alf_datasets = dict() for alf_dataset_name in self.file_loc.iterdir(): if 'spikes' in alf_dataset_name.stem or 'clusters' in alf_dataset_name.stem: if 'npy' in alf_dataset_name.suffix: dset = np.load(alf_dataset_name, mmap_mode='r', allow_pickle=True) found_alf_datasets.update({alf_dataset_name.stem: dset}) elif 'metrics' in alf_dataset_name.stem: found_alf_datasets.update({alf_dataset_name.stem: pd.read_csv(alf_dataset_name)}) # check existence of datasets: if not any([i in found_alf_datasets for i in required_alf_datasets]): raise Exception(f'could not find {required_alf_datasets} in folder') spike_clusters = found_alf_datasets['spikes.clusters'] spike_times = found_alf_datasets['spikes.times'] # load units properties: total_units = 0 properties = dict() for alf_dataset_name, alf_dataset in found_alf_datasets.items(): if 'clusters' in alf_dataset_name: if 'clusters.metrics' in alf_dataset_name: for property_name, property_values in found_alf_datasets[alf_dataset_name].iteritems(): properties[property_name] = property_values.tolist() else: property_name = alf_dataset_name.split('.')[1] properties[property_name] = alf_dataset if total_units == 0: total_units = alf_dataset.shape[0] if 'clusters.metrics' in found_alf_datasets and \ found_alf_datasets['clusters.metrics'].get('cluster_id') is not None: unit_ids = found_alf_datasets['clusters.metrics'].get('cluster_id').tolist() else: unit_ids = list(range(total_units)) BaseSorting.__init__(self, unit_ids=unit_ids, sampling_frequency=sampling_frequency) sorting_segment = ALFSortingSegment(spike_clusters, spike_times, sampling_frequency) self.add_sorting_segment(sorting_segment) # add properties for property_name, values in properties.items(): self.set_property(property_name, values) self._kwargs = {'folder_path': str(Path(folder_path).absolute()), 'sampling_frequency': sampling_frequency} # @staticmethod # def write_sorting(sorting, save_path): # assert HAVE_PANDAS, ALFSortingExtractor.installation_mesg # # write cluster properties as clusters.<property_name>.npy # save_path = Path(save_path) # csv_property_names = ['cluster_id', 'cluster_id.1', 'num_spikes', 'firing_rate', # 'presence_ratio', 'presence_ratio_std', 'frac_isi_viol', # 'contamination_est', 'contamination_est2', 'missed_spikes_est', # 'cum_amp_drift', 'max_amp_drift', 'cum_depth_drift', 'max_depth_drift', # 'ks2_contamination_pct', 'ks2_label', 'amplitude_cutoff', 'amplitude_std', # 'epoch_name', 'isi_viol'] # clusters_metrics_df = pd.DataFrame() # for property_name in sorting.get_unit_property_names(0): # data = sorting.get_units_property(property_name=property_name) # if property_name not in csv_property_names: # np.save(save_path / f'clusters.{property_name}', data) # else: # clusters_metrics_df[property_name] = data # clusters_metrics_df.to_csv(save_path / 'clusters.metrics.csv') # # save spikes.times, spikes.clusters # clusters_number = [] # unit_spike_times = [] # for unit_no, unit_id in enumerate(sorting.get_unit_ids()): # unit_spike_train = sorting.get_unit_spike_train(unit_id=unit_id) # if unit_spike_train is not None: # unit_spike_times.extend(np.array(unit_spike_train) / sorting.get_sampling_frequency()) # clusters_number.extend([unit_no] * len(unit_spike_train)) # unit_spike_train = np.array(unit_spike_times) # clusters_number = np.array(clusters_number) # spike_times_ids = np.argsort(unit_spike_train) # spike_times = unit_spike_train[spike_times_ids] # spike_clusters = clusters_number[spike_times_ids] # np.save(save_path / 'spikes.times', spike_times) # np.save(save_path / 'spikes.clusters', spike_clusters) class ALFSortingSegment(BaseSortingSegment): def __init__(self, spike_clusters, spike_times, sampling_frequency): self._spike_clusters = spike_clusters self._spike_times = spike_times self._sampling_frequency = sampling_frequency BaseSortingSegment.__init__(self) def get_unit_spike_train(self, unit_id, start_frame, end_frame, ) -> np.ndarray: # must be implemented in subclass if start_frame is None: start_frame = 0 if end_frame is None: end_frame = np.inf spike_times = self._spike_time[
np.where(self._spike_clusters == unit_id)
numpy.where
import argparse import colorsys import math import os import random import time import cv2 import matplotlib.pyplot as plt import numpy as np import pyglet import trimesh from PIL import Image, ImageEnhance from tqdm import tqdm from OpenGL.GL import GL_LINEAR_MIPMAP_LINEAR import pyrender from archiver import Archiver, SceneData from pyrender import (DirectionalLight, Mesh, Node, OffscreenRenderer, PerspectiveCamera, PointLight, RenderFlags, Scene, Primitive) texture_directory = os.path.join(os.path.dirname(__file__), "..", "textures") object_directory = os.path.join(os.path.dirname(__file__), "objects") floor_textures = [ "{}/lg_floor_d.tga".format(texture_directory), "{}/lg_style_01_floor_blue_d.tga".format(texture_directory), "{}/lg_style_01_floor_orange_bright_d.tga".format(texture_directory), ] wall_textures = [ "{}/lg_style_01_wall_cerise_d.tga".format(texture_directory), "{}/lg_style_01_wall_green_bright_d.tga".format(texture_directory), "{}/lg_style_01_wall_red_bright_d.tga".format(texture_directory), "{}/lg_style_02_wall_yellow_d.tga".format(texture_directory), "{}/lg_style_03_wall_orange_bright_d.tga".format(texture_directory), ] objects = [ pyrender.objects.Capsule, pyrender.objects.Cylinder, pyrender.objects.Icosahedron, pyrender.objects.Box, pyrender.objects.Sphere, ] def set_random_texture(node, path): texture_image = Image.open(path).convert("RGB") primitive = node.mesh.primitives[0] assert isinstance(primitive, Primitive) primitive.material.baseColorTexture.source = texture_image primitive.material.baseColorTexture.sampler.minFilter = GL_LINEAR_MIPMAP_LINEAR def build_scene(floor_textures, wall_textures, fix_light_position=False): scene = Scene( bg_color=np.array([153 / 255, 226 / 255, 249 / 255]), ambient_light=np.array([0.5, 0.5, 0.5, 1.0])) floor_trimesh = trimesh.load("{}/floor.obj".format(object_directory)) mesh = Mesh.from_trimesh(floor_trimesh, smooth=False) node = Node( mesh=mesh, rotation=pyrender.quaternion.from_pitch(-math.pi / 2), translation=np.array([0, 0, 0])) texture_path = random.choice(floor_textures) set_random_texture(node, texture_path) scene.add_node(node) texture_path = random.choice(wall_textures) wall_trimesh = trimesh.load("{}/wall.obj".format(object_directory)) mesh = Mesh.from_trimesh(wall_trimesh, smooth=False) node = Node(mesh=mesh, translation=np.array([0, 1.15, -3.5])) set_random_texture(node, texture_path) scene.add_node(node) mesh = Mesh.from_trimesh(wall_trimesh, smooth=False) node = Node( mesh=mesh, rotation=pyrender.quaternion.from_yaw(math.pi), translation=np.array([0, 1.15, 3.5])) set_random_texture(node, texture_path) scene.add_node(node) mesh = Mesh.from_trimesh(wall_trimesh, smooth=False) node = Node( mesh=mesh, rotation=pyrender.quaternion.from_yaw(-math.pi / 2), translation=np.array([3.5, 1.15, 0])) set_random_texture(node, texture_path) scene.add_node(node) mesh = Mesh.from_trimesh(wall_trimesh, smooth=False) node = Node( mesh=mesh, rotation=pyrender.quaternion.from_yaw(math.pi / 2), translation=np.array([-3.5, 1.15, 0])) set_random_texture(node, texture_path) scene.add_node(node) light = DirectionalLight(color=np.ones(3), intensity=10) if fix_light_position == True: translation = np.array([1, 1, 1]) else: xz = np.random.uniform(-1, 1, size=2) translation = np.array([xz[0], 1, xz[1]]) yaw, pitch = compute_yaw_and_pitch(translation) node = Node( light=light, rotation=genearte_camera_quaternion(yaw, pitch), translation=translation) scene.add_node(node) return scene def place_objects(scene, colors, objects, max_num_objects=3, min_num_objects=1, discrete_position=False, rotate_object=False): # Place objects directions = [-1.5, 0.0, 1.5] available_positions = [] for z in directions: for x in directions: available_positions.append((x, z)) available_positions = np.array(available_positions) num_objects = random.choice(range(min_num_objects, max_num_objects + 1)) indices = np.random.choice( np.arange(len(available_positions)), replace=False, size=num_objects) for xz in available_positions[indices]: node = random.choice(objects)() node.mesh.primitives[0].color_0 = random.choice(colors) if discrete_position == False: xz += np.random.uniform(-0.3, 0.3, size=xz.shape) if rotate_object: yaw =
np.random.uniform(0, math.pi * 2, size=1)
numpy.random.uniform
import pytest import tensorflow as tf import numpy as np from scipy.ndimage.measurements import mean as label_mean from skimage.segmentation import relabel_sequential as sk_relabel_sequential from rdcnet.losses.embedding_loss import InstanceEmbeddingLossBase, SpatialInstanceEmbeddingLossBase, InstanceMeanIoUEmbeddingLoss, MarginInstanceEmbeddingLoss, relabel_sequential class DummySpatialInstanceEmbeddingLoss(SpatialInstanceEmbeddingLossBase): def _center_dist_to_probs(self, one_hot, center_dist): pass def test__unbatched_soft_jaccard(): '''Verifies that the soft Jaccard loss behaves as keras MeanIoU when probabilities are either 0 or 1 and that background masking works ''' _unbatched_soft_jaccard = DummySpatialInstanceEmbeddingLoss( )._unbatched_soft_jaccard # check with/without background on simple example yt = np.array([0, 0, 1, 1, 2, 2])[..., None] yp = np.array([0, 1, 0, 1, 2, 2])[..., None] one_hot = tf.cast(tf.one_hot(tf.squeeze(yt, -1), 3), tf.float32) probs = tf.cast(tf.one_hot(tf.squeeze(yp, -1), 3), tf.float32) loss = _unbatched_soft_jaccard(one_hot[..., 1:], probs[..., 1:]).numpy().mean() np.testing.assert_almost_equal(loss, (1 - 1 / 2) / 2, decimal=3) def test__unbatched_label_to_hot(): _unbatched_label_to_hot = DummySpatialInstanceEmbeddingLoss( )._unbatched_label_to_hot np.random.seed(25) labels = np.random.choice(range(5), size=(10, 10, 1)).astype(np.int32) hot_labels = _unbatched_label_to_hot(labels) # #channels == #unique labels - bg assert hot_labels.shape == (10, 10, 4) for idx, l in enumerate([1, 2, 3, 4]): hot_slice = hot_labels[..., idx].numpy().astype(bool) l_mask = labels.squeeze() == l np.testing.assert_array_equal(hot_slice, l_mask) def test_relabel_sequential():
np.random.seed(25)
numpy.random.seed
import pytest import numpy as np from numpy.testing import assert_allclose from sklearn.compose import ColumnTransformer from sklearn.datasets import load_boston from sklearn.datasets import load_iris from sklearn.datasets import make_classification from sklearn.datasets import make_regression from sklearn.dummy import DummyClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.impute import SimpleImputer from sklearn.inspection import permutation_importance from sklearn.pipeline import make_pipeline from sklearn.preprocessing import KBinsDiscretizer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import scale from sklearn.utils import parallel_backend from sklearn.utils._testing import _convert_container @pytest.mark.parametrize("n_jobs", [1, 2]) def test_permutation_importance_correlated_feature_regression(n_jobs): # Make sure that feature highly correlated to the target have a higher # importance rng = np.random.RandomState(42) n_repeats = 5 X, y = load_boston(return_X_y=True) y_with_little_noise = ( y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1) X = np.hstack([X, y_with_little_noise]) clf = RandomForestRegressor(n_estimators=10, random_state=42) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y was added as the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_permutation_importance_correlated_feature_regression_pandas(n_jobs): pd = pytest.importorskip("pandas") # Make sure that feature highly correlated to the target have a higher # importance rng = np.random.RandomState(42) n_repeats = 5 dataset = load_iris() X, y = dataset.data, dataset.target y_with_little_noise = ( y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1) # Adds feature correlated with y as the last column X = pd.DataFrame(X, columns=dataset.feature_names) X['correlated_feature'] = y_with_little_noise clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y was added as the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) def test_permutation_importance_mixed_types(): rng = np.random.RandomState(42) n_repeats = 4 # Last column is correlated with y X = np.array([[1.0, 2.0, 3.0, np.nan], [2, 1, 2, 1]]).T y = np.array([0, 1, 0, 1]) clf = make_pipeline(SimpleImputer(), LogisticRegression(solver='lbfgs')) clf.fit(X, y) result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng) assert result.importances.shape == (X.shape[1], n_repeats) # the correlated feature with y is the last column and should # have the highest importance assert np.all(result.importances_mean[-1] > result.importances_mean[:-1]) # use another random state rng =
np.random.RandomState(0)
numpy.random.RandomState
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') data=pd.read_csv(path) data=data.rename(columns={ "Total" : "Total_Medals"}) data['Better_Event'] = np.where(data['Total_Summer']>data["Total_Winter"],"Summer","Winter") data['Better_Event'] =
np.where( data['Total_Summer']==data["Total_Winter"] , "both" , data['Better_Event'])
numpy.where
#!/usr/bin/env python import renderapi import argparse import numpy as np import os from PIL import Image from glob import glob def gen_matches(flow_dir, match_name, n, stack, render_connect_params): render = renderapi.connect(**render_connect_params) tilespecs = renderapi.tilespec.get_tile_specs_from_stack( stack, render=render) spec_to_size_x = {tile.tileId: tile.maxX for tile in tilespecs} spec_to_size_y = {tile.tileId: tile.maxY for tile in tilespecs} for base in glob("{}/*_bottom_x.tiff".format(flow_dir)): base = base[:-14] # Remove the _bottom_x.tiff scale = np.float(base.split("_")[-1]) # Grab scale inv_scale = 1/scale base = "_".join(base.split("_")[:-1]) # Restore it without scale top_bottom = ["top", "bottom"] base_split = base.split("/")[-1].split("~") groups = base_split[0].split("_") print(groups[0], groups[1]) if len(renderapi.pointmatch.get_matches_from_group_to_group(match_name, groups[0], groups[1], render=render)): continue tiles = base_split[1:] w = [] p = [] q = [] for s in top_bottom: im_x = np.array(Image.open( base+"_{:.2f}_".format(scale) + s+"_x.tiff")) im_y = np.array(Image.open( base+"_{:.2f}_".format(scale) + s+"_y.tiff")) rand =
np.random.random([n, 2])
numpy.random.random
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-08-12 at 17:16 @author: cook """ import numpy as np from astropy import constants as cc from astropy import units as uu from scipy.optimize import curve_fit import warnings import os from apero import core from apero.core import constants from apero.core import math as mp from apero import lang from apero.core.core import drs_log from apero.core.core import drs_file from apero.core.core import drs_database from apero.io import drs_data from apero.io import drs_fits from apero.science.calib import flat_blaze # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'science.telluric.general.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get function string display_func = drs_log.display_func # Get Logging function WLOG = drs_log.wlog # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # Speed of light # noinspection PyUnresolvedReferences speed_of_light_ms = cc.c.to(uu.m / uu.s).value # noinspection PyUnresolvedReferences speed_of_light = cc.c.to(uu.km / uu.s).value # ============================================================================= # Define functions # ============================================================================= def get_whitelist(params, **kwargs): func_name = __NAME__ + '.get_whitelist()' # get pseudo constants pconst = constants.pload(instrument=params['INSTRUMENT']) # get parameters from params/kwargs relfolder = pcheck(params, 'TELLU_LIST_DIRECOTRY', 'directory', kwargs, func_name) filename = pcheck(params, 'TELLU_WHITELIST_NAME', 'filename', kwargs, func_name) # load the white list wout = drs_data.load_text_file(params, filename, relfolder, kwargs, func_name, dtype=str) whitelist, whitelistfile = wout # must clean names whitelist = list(map(pconst.DRS_OBJ_NAME, whitelist)) # return the whitelist return whitelist, whitelistfile def get_blacklist(params, **kwargs): func_name = __NAME__ + '.get_blacklist()' # get pseudo constants pconst = constants.pload(instrument=params['INSTRUMENT']) # get parameters from params/kwargs relfolder = pcheck(params, 'TELLU_LIST_DIRECOTRY', 'directory', kwargs, func_name) filename = pcheck(params, 'TELLU_BLACKLIST_NAME', 'filename', kwargs, func_name) # load the white list bout = drs_data.load_text_file(params, filename, relfolder, kwargs, func_name, dtype=str) blacklist, blacklistfile = bout # must clean names blacklist = list(map(pconst.DRS_OBJ_NAME, blacklist)) # return the whitelist return blacklist, blacklistfile def normalise_by_pblaze(params, image, header, fiber, **kwargs): func_name = __NAME__ + '.normalise_by_pblaze()' # get properties from params/kwargs blaze_p = pcheck(params, 'MKTELLU_BLAZE_PERCENTILE', 'blaze_p', kwargs, func_name) cut_blaze_norm = pcheck(params, 'MKTELLU_CUT_BLAZE_NORM', 'cut_blaze_norm', kwargs, func_name) # ---------------------------------------------------------------------- # copy the image image1 = np.array(image) # ---------------------------------------------------------------------- # load the blaze file for this fiber blaze_file, blaze = flat_blaze.get_blaze(params, header, fiber) # copy blaze blaze_norm = np.array(blaze) # loop through blaze orders, normalize blaze by its peak amplitude for order_num in range(image1.shape[0]): # normalize the spectrum spo, bzo = image1[order_num], blaze[order_num] # normalise image image1[order_num] = spo / np.nanpercentile(spo, blaze_p) # normalize the blaze blaze_norm[order_num] = bzo / np.nanpercentile(bzo, blaze_p) # ---------------------------------------------------------------------- # find where the blaze is bad with warnings.catch_warnings(record=True) as _: badblaze = blaze_norm < cut_blaze_norm # ---------------------------------------------------------------------- # set bad blaze to NaN blaze_norm[badblaze] = np.nan # set to NaN values where spectrum is zero zeromask = image1 == 0 image1[zeromask] = np.nan # divide spectrum by blaze with warnings.catch_warnings(record=True) as _: image1 = image1 / blaze_norm # ---------------------------------------------------------------------- # parameter dictionary nprops = ParamDict() nprops['BLAZE'] = blaze nprops['NBLAZE'] = blaze_norm nprops['BLAZE_PERCENTILE'] = blaze_p nprops['BLAZE_CUT_NORM'] = cut_blaze_norm nprops['BLAZE_FILE'] = blaze_file # set sources keys = ['BLAZE', 'NBLAZE', 'BLAZE_PERCENTILE', 'BLAZE_CUT_NORM', 'BLAZE_FILE'] nprops.set_sources(keys, func_name) # return the normalised image and the properties return image1, nprops def get_non_tellu_objs(params, recipe, fiber, filetype=None, dprtypes=None, robjnames=None): """ Get the objects of "filetype" and " :param params: :param fiber: :param filetype: :param dprtypes: :param robjnames: :return: """ # get the telluric star names (we don't want to process these) objnames, _ = get_whitelist(params) objnames = list(objnames) # deal with filetype being string if isinstance(filetype, str): filetype = filetype.split(',') # deal with dprtypes being string if isinstance(dprtypes, str): dprtypes = dprtypes.split(',') # construct kwargs fkwargs = dict() if filetype is not None: fkwargs['KW_OUTPUT'] = filetype if dprtypes is not None: fkwargs['KW_DPRTYPE'] = dprtypes # # find files out = drs_fits.find_files(params, recipe, kind='red', return_table=True, fiber=fiber, **fkwargs) obj_filenames, obj_table = out # filter out telluric stars obj_stars, obj_names = [], [] # loop around object table and only keep non-telluric stars for row in range(len(obj_table)): # get object name iobjname = obj_table['KW_OBJNAME'][row] # if required object name is set if robjnames is not None: if iobjname in robjnames: obj_stars.append(obj_filenames[row]) if iobjname not in obj_names: obj_names.append(iobjname) # if in telluric list skip elif iobjname not in objnames: obj_stars.append(obj_filenames[row]) if iobjname not in obj_names: obj_names.append(iobjname) # return absolute path names and object names return obj_stars, obj_names def get_tellu_objs(params, key, objnames=None, **kwargs): """ Get objects defined be "key" from telluric database (in list objname) :param params: :param key: :param objnames: :param kwargs: :return: """ # deal with column to select from entries column = kwargs.get('column', 'filename') objcol = kwargs.get('objcol', 'objname') # ---------------------------------------------------------------------- # deal with objnames if isinstance(objnames, str): objnames = [objnames] # ---------------------------------------------------------------------- # load telluric obj entries (based on key) obj_entries = load_tellu_file(params, key=key, inheader=None, mode='ALL', return_entries=True, n_entries='all', required=False) # add to type typestr = str(key) # ---------------------------------------------------------------------- # keep only objects with objnames mask = np.zeros(len(obj_entries)).astype(bool) # deal with no object found if len(obj_entries) == 0: return [] elif objnames is not None: # storage for found objects found_objs = [] # loop around objnames for objname in objnames: # update the mask mask |= obj_entries[objcol] == objname # only add to the mask if objname found if objname in obj_entries[objcol]: # update the found objs found_objs.append(objname) # update type string typestr += ' OBJNAME={0}'.format(', '.join(found_objs)) # ---------------------------------------------------------------------- # deal with all entries / one column return if column in [None, 'None', '', 'ALL']: outputs = obj_entries[mask] else: outputs = np.unique(obj_entries[column][mask]) # ---------------------------------------------------------------------- # deal with getting absolute paths if column == 'filename': abspaths = [] # loop around filenames for filename in outputs: # get absolute path abspath = drs_database.get_db_abspath(params, filename, where='telluric') # append to list abspaths.append(abspath) # push back into outputs outputs = list(abspaths) # ---------------------------------------------------------------------- # display how many files found margs = [len(outputs), typestr] WLOG(params, '', TextEntry('40-019-00039', args=margs)) return outputs def get_sp_linelists(params, **kwargs): func_name = __NAME__ + '.get_sp_linelists()' # get pseudo constants pconst = constants.pload(instrument=params['INSTRUMENT']) # get parameters from params/kwargs relfolder = pcheck(params, 'TELLU_LIST_DIRECOTRY', 'directory', kwargs, func_name) othersfile = pcheck(params, 'TELLUP_OTHERS_CCF_FILE', 'filename', kwargs, func_name) waterfile = pcheck(params, 'TELLUP_H2O_CCF_FILE', 'filename', kwargs, func_name) # load the others file list mask_others, _ = drs_data.load_ccf_mask(params, directory=relfolder, filename=othersfile) mask_water, _ = drs_data.load_ccf_mask(params, directory=relfolder, filename=waterfile) # return masks return mask_others, mask_water # ============================================================================= # pre-cleaning functions # ============================================================================= def tellu_preclean(params, recipe, infile, wprops, fiber, rawfiles, combine, **kwargs): """ Main telluric pre-cleaning functionality. Pass an e2ds image and return the telluric-corrected data. This is a rough model fit and we will need to perform PCA correction on top of it. Will fit both water and all dry components of the absorption separately. Underlying idea: We correct with a super naive tapas fit and iterate until the CCF of the telluric absorption falls to zero. We have 2 degrees of freedom, the dry and water components of the atmosphere. The instrument profile is defined by two additional parameters [ww -> FWHM, ex_gau -> kernel shape parameter]. Again, this is just a cleanup PRIOR to PCA correction, so if the code is not perfect in it's correction, this is fine as we will empirically determine the residuals and fit them in a subsequent step. we set bounds to the limits of the reasonable domain for both parameters. :param params: :param recipe: :param infile: :param wprops: :param fiber: :param rawfiles: :param combine: :return: """ # set the function name func_name = __NAME__ + '.tellu_preclean()' # ---------------------------------------------------------------------- # look for precleaned file loadprops = read_tellu_preclean(params, recipe, infile, fiber) # if precleaned load and return if loadprops is not None: return loadprops # ---------------------------------------------------------------------- # get parameters from parameter dictionary do_precleaning = pcheck(params, 'TELLUP_DO_PRECLEANING', 'do_precleaning', kwargs, func_name) default_water_abso = pcheck(params, 'TELLUP_D_WATER_ABSO', 'default_water_abso', kwargs, func_name) ccf_scan_range = pcheck(params, 'TELLUP_CCF_SCAN_RANGE', 'ccf_scan_range', kwargs, func_name) clean_ohlines = pcheck(params, 'TELLUP_CLEAN_OH_LINES', 'clean_ohlines', kwargs, func_name) remove_orders = pcheck(params, 'TELLUP_REMOVE_ORDS', 'remove_orders', kwargs, func_name, mapf='list', dtype=int) snr_min_thres = pcheck(params, 'TELLUP_SNR_MIN_THRES', 'snr_min_thres', kwargs, func_name) dexpo_thres = pcheck(params, 'TELLUP_DEXPO_CONV_THRES', 'dexpo_thres', kwargs, func_name) max_iterations = pcheck(params, 'TELLUP_DEXPO_MAX_ITR', 'max_iterations', kwargs, func_name) ker_width = pcheck(params, 'TELLUP_ABSO_EXPO_KWID', 'ker_width', kwargs, func_name) ker_shape = pcheck(params, 'TELLUP_ABSO_EXPO_KEXP', 'ker_shape', kwargs, func_name) trans_thres = pcheck(params, 'TELLUP_TRANS_THRES', 'trans_thres', kwargs, func_name) trans_siglim = pcheck(params, 'TELLUP_TRANS_SIGLIM', 'trans_siglim', kwargs, func_name) force_airmass = pcheck(params, 'TELLUP_FORCE_AIRMASS', 'force_airmass', kwargs, func_name) others_bounds = pcheck(params, 'TELLUP_OTHER_BOUNDS', 'others_bounds', kwargs, func_name, mapf='list', dtype=float) water_bounds = pcheck(params, 'TELLUP_WATER_BOUNDS', 'water_bounds', kwargs, func_name, mapf='list', dtype=float) ker_thres = pcheck(params, 'TELLUP_ABSO_EXPO_KTHRES', 'ker_thres', kwargs, func_name) wavestart = pcheck(params, 'EXT_S1D_WAVESTART', 'wavestart', kwargs, func_name) waveend = pcheck(params, 'EXT_S1D_WAVEEND', 'waveend', kwargs, func_name) dvgrid = pcheck(params, 'EXT_S1D_BIN_UVELO', 'dvgrid', kwargs, func_name) # ---------------------------------------------------------------------- # get image and header from infile header = infile.header # get airmass from header hdr_airmass = infile.get_key('KW_AIRMASS', dtype=float) # copy e2ds input image image_e2ds_ini = np.array(infile.data) # get shape of the e2ds nbo, nbpix = image_e2ds_ini.shape # get wave map for the input e2ds wave_e2ds = wprops['WAVEMAP'] # ---------------------------------------------------------------------- # define storage of quality control qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # need to add dummy values for these qc # 1. snr < snr_min_thres (pos = 0) qc_values.append(np.nan) qc_names.append('EXTSNR') qc_logic.append('EXTSNR < {0}'.format(snr_min_thres)) qc_pass.append(np.nan) # 2. ccf is NaN (pos = 1) qc_values.append(np.nan) qc_names.append('NUM_NAN_CCF') qc_logic.append('NUM_NAN_CCF > 0') qc_pass.append(np.nan) # 3. exponent for others out of bounds (pos = 2 and 3) qc_values += [np.nan, np.nan] qc_names += ['EXPO_OTHERS L', 'EXPO_OTHERS U'] qc_logic += ['EXPO_OTHERS L < {0}'.format(others_bounds[0]), 'EXPO_OTHERS U > {0}'.format(others_bounds[1])] qc_pass += [np.nan, np.nan] # 4. exponent for water out of bounds (pos 4 and 5) qc_values += [np.nan, np.nan] qc_names += ['EXPO_WATER L', 'EXPO_WATER U'] qc_logic += ['EXPO_WATER L < {0}'.format(water_bounds[0]), 'EXPO_WATER U > {0}'.format(water_bounds[1])] qc_pass += [np.nan, np.nan] # 5. max iterations exceeded (pos = 6) qc_values.append(np.nan) qc_names.append('ITERATIONS') qc_logic.append('ITERATIONS = {0}'.format(max_iterations - 1)) qc_pass.append(np.nan) # dev note: if adding a new one must add tfailmsgs for all uses in qc # (mk_tellu and fit_tellu) # ---------------------------------------------------------------------- # remove OH lines if required if clean_ohlines: image_e2ds, sky_model = clean_ohline_pca(params, image_e2ds_ini, wave_e2ds) # else just copy the image and set the sky model to zeros else: image_e2ds = np.array(image_e2ds_ini) sky_model = np.zeros_like(image_e2ds_ini) # ---------------------------------------------------------------------- if not do_precleaning: # log progress WLOG(params, '', TextEntry('10-019-00008')) # populate qc params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # populate parameter dictionary props = ParamDict() props['CORRECTED_E2DS'] = image_e2ds props['TRANS_MASK'] = np.ones_like(image_e2ds_ini).astype(bool) props['ABSO_E2DS'] = np.ones_like(image_e2ds_ini) props['SKY_MODEL'] = sky_model props['EXPO_WATER'] = np.nan props['EXPO_OTHERS'] = np.nan props['DV_WATER'] = np.nan props['DV_OTHERS'] = np.nan props['CCFPOWER_WATER'] = np.nan props['CCFPOWER_OTHERS'] = np.nan props['QC_PARAMS'] = qc_params # set sources keys = ['CORRECTED_E2DS', 'TRANS_MASK', 'ABSO_E2DS', 'EXPO_WATER', 'EXPO_OTHERS', 'DV_WATER', 'DV_OTHERS', 'CCFPOWER_WATER', 'CCFPOWER_OTHERS', 'QC_PARAMS', 'SKY_MODEL'] props.set_sources(keys, func_name) # ------------------------------------------------------------------ # add constants used (can come from kwargs) props['TELLUP_DO_PRECLEANING'] = do_precleaning props['TELLUP_D_WATER_ABSO'] = default_water_abso props['TELLUP_CCF_SCAN_RANGE'] = ccf_scan_range props['TELLUP_CLEAN_OH_LINES'] = clean_ohlines props['TELLUP_REMOVE_ORDS'] = remove_orders props['TELLUP_SNR_MIN_THRES'] = snr_min_thres props['TELLUP_DEXPO_CONV_THRES'] = dexpo_thres props['TELLUP_DEXPO_MAX_ITR'] = max_iterations props['TELLUP_ABSO_EXPO_KWID'] = ker_width props['TELLUP_ABSO_EXPO_KEXP'] = ker_shape props['TELLUP_TRANS_THRES'] = trans_thres props['TELLUP_TRANS_SIGLIM'] = trans_siglim props['TELLUP_FORCE_AIRMASS'] = force_airmass props['TELLUP_OTHER_BOUNDS'] = others_bounds props['TELLUP_WATER_BOUNDS'] = water_bounds props['TELLUP_ABSO_EXPO_KTHRES'] = ker_thres props['TELLUP_WAVE_START'] = wavestart props['TELLUP_WAVE_END'] = waveend props['TELLUP_DVGRID'] = dvgrid # set sources keys = ['TELLUP_D_WATER_ABSO', 'TELLUP_CCF_SCAN_RANGE', 'TELLUP_CLEAN_OH_LINES', 'TELLUP_REMOVE_ORDS', 'TELLUP_SNR_MIN_THRES', 'TELLUP_DEXPO_CONV_THRES', 'TELLUP_DEXPO_MAX_ITR', 'TELLUP_ABSO_EXPO_KWID', 'TELLUP_ABSO_EXPO_KEXP', 'TELLUP_TRANS_THRES', 'TELLUP_TRANS_SIGLIM', 'TELLUP_FORCE_AIRMASS', 'TELLUP_OTHER_BOUNDS', 'TELLUP_WATER_BOUNDS', 'TELLUP_ABSO_EXPO_KTHRES', 'TELLUP_WAVE_START', 'TELLUP_WAVE_END', 'TELLUP_DVGRID', 'TELLUP_DO_PRECLEANING'] props.set_sources(keys, func_name) # ------------------------------------------------------------------ # return props return props # ---------------------------------------------------------------------- # we ravel the wavelength grid to make it a 1d array of increasing # wavelength. We will trim the overlapping domain between orders keep = np.ones_like(wave_e2ds).astype(bool) # keep track of where orders are orders, _ = np.indices(wave_e2ds.shape) # loop around 2nd to last-1 order and compare -1th and +1th order for order_num in range(1, nbo - 1): # get wavelengths not in order beforetellu_preclean before = wave_e2ds[order_num] > wave_e2ds[order_num - 1][::-1] # get wavelengths not in order after after = wave_e2ds[order_num] < wave_e2ds[order_num + 1][::-1] # combine mask keep[order_num] = before & after # set whole first order to zeros (rejected) keep[0] = np.zeros(nbpix).astype(bool) # set whole last order to zeros (rejected) keep[-1] = np.zeros(nbpix).astype(bool) # ---------------------------------------------------------------------- # force into 1D and apply keep map flatkeep = keep.ravel() wavemap = wave_e2ds.ravel()[flatkeep] spectrum = image_e2ds.ravel()[flatkeep] spectrum_ini = image_e2ds_ini.ravel()[flatkeep] orders = orders.ravel()[flatkeep] # ---------------------------------------------------------------------- # load tapas in correct format spl_others, spl_water = load_tapas_spl(params, recipe, header) # ---------------------------------------------------------------------- # load the snr from e2ds file snr = infile.read_header_key_1d_list('KW_EXT_SNR', nbo, dtype=float) # remove infinite / NaN snr snr[~np.isfinite(snr)] = 0.0 # remove snr from these orders (due to thermal background) for order_num in remove_orders: snr[order_num] = 0.0 # make sure we have at least one order above the min snr requiredment if np.nanmax(snr) < snr_min_thres: # update qc params qc_values[0] = np.nanmax(snr) qc_pass[0] = 0 qc_params = [qc_names, qc_values, qc_logic, qc_pass] # return qc_exit_tellu_preclean return qc_exit_tellu_preclean(params, recipe, image_e2ds, infile, wave_e2ds, qc_params, sky_model) else: qc_values[0] = np.nanmax(snr) qc_pass[0] = 1 # mask all orders below min snr for order_num in range(nbo): # only mask if snr below threshold if snr[order_num] < snr_min_thres: # find order mask (we only want to remove values in this order order_mask = orders == order_num # apply low snr mask to spectrum spectrum[order_mask] = np.nan # for numerical stabiility, remove NaNs. Setting to zero biases a bit # the CCF, but this should be OK after we converge spectrum[~
np.isfinite(spectrum)
numpy.isfinite
#!/usr/bin/env python # -*- coding=utf-8 -*- ########################################################################### # Copyright (C) 2013-2016 by Caspar. All rights reserved. # File Name: txtclf.py # Author: <NAME> # E-mail: <EMAIL> # Created Time: 2016-07-05 14:39:18 ########################################################################### # import os, sys, difflib, itertools from time import time import numpy as np import scipy as sp import scipy.stats as stats import pandas as pd from sklearn.base import clone from sklearn.preprocessing import MinMaxScaler, LabelBinarizer, label_binarize, normalize from sklearn.multiclass import OneVsRestClassifier from sklearn.pipeline import Pipeline from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold, KFold, GridSearchCV, RandomizedSearchCV from sklearn import metrics from .util import io, func, plot from .util import math as imath common_cfg = {} def init(plot_cfg={}, plot_common={}): if (len(plot_cfg) > 0 and plot_cfg['MON'] is not None): plot.MON = plot_cfg['MON'] global common_cfg if (len(plot_common) > 0): common_cfg = plot_common def get_featw(pipeline, feat_num): feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(feat_num) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = feature_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = feature_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w if (hasattr(component, 'get_support')): filt_feat_idx = feature_idx[component.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx] = normalize(filt_feat_w, norm='l1') feat_w[filt_feat_idx] = filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) return feat_w_dict, sub_feat_w def get_score(pipeline, X_test, mltl=False): if ((not isinstance(pipeline, Pipeline) and hasattr(pipeline, 'predict_proba')) or(isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline.named_steps['clf'].estimators_[0], 'predict_proba')) or (not isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): return pipeline.predict_proba(X_test) else: # return pipeline.predict_proba(X_test)[:, 1] return pipeline.predict_proba(X_test) elif (hasattr(pipeline, 'decision_function')): return pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model!') return [0] * Y_test.shape[0] # Benchmark def benchmark(pipeline, X_train, Y_train, X_test, Y_test, mltl=False, signed=False, average='micro'): print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() orig_pred = pred = pipeline.predict(X_test) orig_prob = prob = pipeline.predict_proba(X_test) if hasattr(pipeline, 'predict_proba') else pipeline.decision_function(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) is_mltl = mltl if (signed): Y_test = np.column_stack([np.abs(Y_test).reshape((Y_test.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(Y_test).astype('int8').reshape((Y_test.shape[0],-1))).T]) if (len(Y_test.shape) < 2 or Y_test.shape[1] == 1 or np.where(Y_test<0)[0].shape[0]>0) else Y_test pred = np.column_stack([np.abs(pred).reshape((pred.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(pred).astype('int8').reshape((pred.shape[0],-1))).T]) if (len(pred.shape) < 2 or pred.shape[1] == 1 or np.where(pred<0)[0].shape[0]>0) else pred is_mltl = True try: accuracy = metrics.accuracy_score(Y_test, pred) except ValueError as e: print(e) Y_test, pred = Y_test.ravel(), pred.ravel() accuracy = metrics.accuracy_score(Y_test, pred) print('accuracy: %0.3f' % accuracy) if (is_mltl and average == 'all'): micro_precision = metrics.precision_score(Y_test, pred, average='micro') print('micro-precision: %0.3f' % micro_precision) micro_recall = metrics.recall_score(Y_test, pred, average='micro') print('micro-recall: %0.3f' % micro_recall) micro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='micro') print('micro-fscore: %0.3f' % micro_fscore) macro_precision = metrics.precision_score(Y_test, pred, average='macro') print('macro-precision: %0.3f' % macro_precision) macro_recall = metrics.recall_score(Y_test, pred, average='macro') print('macro-recall: %0.3f' % macro_recall) macro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='macro') print('macro-fscore: %0.3f' % macro_fscore) else: precision = metrics.precision_score(Y_test, pred, average=average if is_mltl else 'binary') print('precision: %0.3f' % precision) recall = metrics.recall_score(Y_test, pred, average=average if is_mltl else 'binary') print('recall: %0.3f' % recall) fscore = metrics.fbeta_score(Y_test, pred, beta=1, average=average if is_mltl else 'binary') print('fscore: %0.3f' % fscore) print('classification report:') # print metrics.classification_report(Y_test, pred) metric_df = pd.DataFrame(metrics.classification_report(Y_test, pred, output_dict=True)).T[['precision', 'recall', 'f1-score', 'support']] print(metric_df) print('confusion matrix:') if (is_mltl): pass else: print(metrics.confusion_matrix(Y_test, pred)) print('+' * 80) clf = pipeline.named_steps['clf'] if (type(pipeline) is Pipeline) else pipeline if ((isinstance(clf, OneVsRestClassifier) and hasattr(clf.estimators_[0], 'predict_proba')) or (not isinstance(clf, OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): scores = pipeline.predict_proba(X_test) if (type(scores) == list): scores = np.concatenate([score[:, -1].reshape((-1, 1)) for score in scores], axis=1) else: scores = pipeline.predict_proba(X_test)[:, -1] elif (hasattr(pipeline, 'decision_function')): scores = pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model! ROC and PRC figures will be invalid.') scores = [0] * Y_test.shape[0] if (signed and (len(scores.shape) < 2 or scores.shape[1] < pred.shape[1])): scores = np.concatenate([np.abs(scores).reshape((scores.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,:2] for lb in (np.sign(scores).astype('int8').reshape((scores.shape[0],-1))).T], axis=1) if (is_mltl): if ((len(Y_test.shape) == 1 or Y_test.shape[1] == 1) and len(np.unique(Y_test)) > 2): lbz = LabelBinarizer() Y_test = lbz.fit_transform(Y_test) def micro(): # Micro-average ROC curve y_true = np.array(Y_test) s_array = np.array(scores) if (len(s_array.shape) == 3): s_array = s_array[:,:,1].reshape((s_array.shape[0],s_array.shape[1],)) if (y_true.shape[0] == s_array.shape[1] and y_true.shape[1] == s_array.shape[0]): s_array = s_array.T return metrics.roc_curve(y_true.ravel(), s_array.ravel()) def macro(): # Macro-average ROC curve n_classes = Y_test.shape[1] fpr, tpr = [dict() for i in range(2)] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(Y_test[:, i], scores[:, i]) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes return all_fpr, mean_tpr, _ if (average == 'micro'): roc = micro() elif (average == 'macro'): roc = macro() elif (average == 'all'): micro_roc = micro() macro_roc = macro() if (type(scores) == list): scores = np.array(scores)[:,:,0] prc = metrics.precision_recall_curve(Y_test.ravel(), scores.ravel()) # Only micro-prc is supported else: roc = metrics.roc_curve(Y_test, scores) prc = metrics.precision_recall_curve(Y_test, scores) # print 'ROC:\n%s\n%s' % (roc[0], roc[1]) # print 'PRC:\n%s\n%s' % (prc[0], prc[1]) print('Training and Testing X shape: %s; %s' % (', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_train]) if type(X_train) is list else '(%s)' % ','.join([str(x) for x in X_train.shape]), ', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_test]) if type(X_test) is list else '(%s)' % ','.join([str(x) for x in X_test.shape]))) feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(X_train[0].shape[1] if type(X_train) is list else X_train.shape[1]) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = filt_feat_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = filt_feat_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx][:len(estm.feature_importances_)] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx][:len(filt_subfeat_w)] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = normalize(filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w, norm='l1') feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) if (hasattr(cmpn, 'get_support')): filt_feat_idx = filt_feat_idx[cmpn.get_support()] print('\n') if (is_mltl and average == 'all'): return {'accuracy':accuracy, 'micro-precision':micro_precision, 'micro-recall':micro_recall, 'micro-fscore':micro_fscore, 'macro-precision':macro_precision, 'macro-recall':macro_recall, 'macro-fscore':macro_fscore, 'train_time':train_time, 'test_time':test_time, 'micro-roc':micro_roc, 'macro-roc':macro_roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'metrics':metric_df} else: return {'accuracy':accuracy, 'precision':precision, 'recall':recall, 'fscore':fscore, 'train_time':train_time, 'test_time':test_time, 'roc':roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'pred_prob':orig_prob, 'metrics':metric_df} # Calculate the venn digram overlaps def pred_ovl(preds, pred_true=None, axis=1): if (axis == 0): preds = preds.T if (pred_true is not None): pred_true = pred_true.reshape((-1,)) # Row represents feature, column represents instance var_num, dim = preds.shape[0], preds.shape[1] orig_idx = np.arange(var_num) if (len(preds.shape) < 2 or preds.shape[1] == 1): if (pred_true is None): return np.ones(shape=(1,), dtype='int') else: overlap_mt = np.ones(shape=(1,2), dtype='int') overlap_mt[0,1] = orig_idx[preds.reshape((-1,)) == pred_true].shape[0] return overlap_mt # Calculate possible subsets of all the instance indices subset_idx = list(imath.subset(list(range(dim)), min_crdnl=1)) # Initialize result matrix if (pred_true is None): overlap_mt = np.zeros(shape=(len(subset_idx),), dtype='int') else: overlap_mt = np.zeros(shape=(len(subset_idx), 2), dtype='int') # Calculate overlap for each subset for i, idx in enumerate(subset_idx): rmn_idx = set(range(dim)) - set(idx) # Select the positions of the target instance that without any overlap with other instances pred_sum, chsn_sum, rmn_sum = preds.sum(axis=1), preds[:,idx].sum(axis=1), preds[:,list(rmn_idx)].sum(axis=1) condition = np.all([np.logical_or(chsn_sum == 0, chsn_sum == len(idx)), np.logical_or(rmn_sum == 0, rmn_sum == len(rmn_idx)), np.logical_or(pred_sum == len(idx), pred_sum == len(rmn_idx))], axis=0) if (pred_true is None): overlap_mt[i] = orig_idx[condition].shape[0] else: # And the selected positions should be true true_cond = np.logical_and(condition, preds[:,idx[0]] == pred_true) overlap_mt[i,0] = orig_idx[condition].shape[0] overlap_mt[i,1] = orig_idx[true_cond].shape[0] return overlap_mt def save_featw(features, crsval_featw, crsval_subfeatw, cfg_param={}, lbid=''): lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' for k, v in crsval_featw.items(): measure_str = k.replace(' ', '_').strip('_').lower() feat_w_mt = np.column_stack(v) mms = MinMaxScaler() feat_w_mt = mms.fit_transform(feat_w_mt) feat_w_avg = feat_w_mt.mean(axis=1) feat_w_std = feat_w_mt.std(axis=1) sorted_idx = np.argsort(feat_w_avg, axis=-1)[::-1] # sorted_idx = sorted(range(feat_w_avg.shape[0]), key=lambda k: feat_w_avg[k])[::-1] sorted_feat_w = np.column_stack((features[sorted_idx], feat_w_avg[sorted_idx], feat_w_std[sorted_idx])) feat_w_df = pd.DataFrame(sorted_feat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_featw', False)): feat_w_df.to_excel('featw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_featw_npz', False)): io.write_df(feat_w_df, 'featw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_featw', False)): plot.plot_bar(feat_w_avg[sorted_idx[:10]].reshape((1,-1)), feat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_featw%s_%s' % (lbidstr, measure_str), plot_cfg=common_cfg) for k, v in crsval_subfeatw.items(): measure_str = k.replace(' ', '_').strip('_').lower() subfeat_w_mt = np.column_stack(v) mms = MinMaxScaler() subfeat_w_mt = mms.fit_transform(subfeat_w_mt) subfeat_w_avg = subfeat_w_mt.mean(axis=1) subfeat_w_std = subfeat_w_mt.std(axis=1) sorted_idx = np.argsort(subfeat_w_avg, axis=-1)[::-1] sorted_subfeat_w = np.column_stack((features[sorted_idx], subfeat_w_avg[sorted_idx], subfeat_w_std[sorted_idx])) subfeat_w_df = pd.DataFrame(sorted_subfeat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_subfeatw', False)): subfeat_w_df.to_excel('subfeatw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_subfeatw_npz', False)): io.write_df(subfeat_w_df, 'subfeatw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_subfeatw', False)): plot.plot_bar(subfeat_w_avg[sorted_idx[:10]].reshape((1,-1)), subfeat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_subfeatw_%s' % measure_str, plot_cfg=common_cfg) # Classification def classification(X_train, Y_train, X_test, model_iter, model_param={}, cfg_param={}, global_param={}, lbid=''): print('Classifing...') global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' to_hdf, hdf5_fpath = cfg_param.setdefault('to_hdf', False), '%s' % 'crsval_dataset.h5' if cfg_param.setdefault('hdf5_fpath', 'crsval_dataset.h5') is None else cfg_param['hdf5_fpath'] # Format the data if (type(X_train) == list): assert all([len(x) == len(X_train[0]) for x in X_train[1:]]) X_train = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_train] X_train = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_train] else: if (type(X_train) != pd.io.parsers.TextFileReader and type(X_train) != pd.DataFrame): X_train = pd.DataFrame(X_train) X_train = pd.concat(X_train) if (type(X_train) == pd.io.parsers.TextFileReader and not to_hdf) else X_train if (type(X_test) == list): assert all([len(x) == len(X_test[0]) for x in X_test[1:]]) X_test = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_test] X_test = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_test] else: if (type(X_test) != pd.io.parsers.TextFileReader and type(X_test) != pd.DataFrame): X_test = pd.DataFrame(X_test) X_test = pd.concat(X_test) if (type(X_test) == pd.io.parsers.TextFileReader and not to_hdf) else X_test if (type(Y_train) != pd.io.parsers.TextFileReader and type(Y_train) != pd.DataFrame): Y_train = pd.DataFrame(Y_train) Y_train_mt = Y_train.values.reshape((Y_train.shape[0],)) if (len(Y_train.shape) == 1 or Y_train.shape[1] == 1) else Y_train.values mltl=True if len(Y_train_mt.shape) > 1 and Y_train_mt.shape[1] > 1 or 2 in Y_train_mt else False print('Classification is starting...') preds, probs, scores = [[] for i in range(3)] crsval_featw, crsval_subfeatw = [{} for i in range(2)] for vars in model_iter(**model_param): if (global_param['comb']): mdl_name, mdl = [vars[x] for x in range(2)] else: filt_name, filter, clf_name, clf= [vars[x] for x in range(4)] print('#' * 80) # Assemble a pipeline if ('filter' in locals() and filter != None): model_name = '%s [Ft Filt] & %s [CLF]' % (filt_name, clf_name) pipeline = Pipeline([('featfilt', clone(filter)), ('clf', clf)]) elif ('clf' in locals() and clf != None): model_name = '%s [CLF]' % clf_name pipeline = Pipeline([('clf', clf)]) else: model_name = mdl_name pipeline = mdl if (type(mdl) is Pipeline) else Pipeline([('clf', mdl)]) if (model_name in PL_SET): continue PL_NAMES.append(model_name) PL_SET.add(model_name) print(model_name) # Build the model print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train_mt) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() pred = pipeline.predict(X_test) prob = pipeline.predict_proba(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) preds.append(pred) probs.append(prob) scores.append(get_score(pipeline, X_test, mltl)) # Save predictions and model if (cfg_param.setdefault('save_pred', True)): io.write_npz(dict(pred_lb=pred, pred_prob=prob), 'clf_pred_%s%s' % (model_name.replace(' ', '_').lower(), lbidstr)) if (cfg_param.setdefault('save_model', True)): mdl_name = '%s' % model_name.replace(' ', '_').lower() if (all([hasattr(pipeline.steps[i][1], 'save') for i in range(len(pipeline.steps))])): for sub_mdl_name, mdl in pipeline.steps: mdl.save('%s_%s%s' % (mdl_name, sub_mdl_name.replace(' ', '_').lower(), lbidstr), **global_param.setdefault('mdl_save_kwargs', {})) else: io.write_obj(pipeline, '%s%s' % (mdl_name, lbidstr)) # Feature importances feat_w, sub_feat_w = get_featw(pipeline, X_train[0].shape[1] if (type(X_train) is list) else X_train.shape[1]) for k, v in feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_featw.setdefault(key, []).append(v) for k, v in sub_feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_subfeatw.setdefault(key, []).append(v) print('\n') if (len(preds) > 1): # Prediction overlap preds_mt = np.column_stack([x.ravel() for x in preds]) povl = np.array(pred_ovl(preds_mt)) # Spearman's rank correlation spmnr, spmnr_pval = stats.spearmanr(preds_mt) # Kendall rank correlation # kendalltau = stats.kendalltau(preds_mt)[0] # Pearson correlation # pearson = tats.pearsonr(preds_mt)[0] ## Save performance data povl_idx = [' & '.join(x) for x in imath.subset(PL_NAMES, min_crdnl=1)] povl_df = pd.DataFrame(povl, index=povl_idx, columns=['pred_ovl']) spmnr_df = pd.DataFrame(spmnr, index=PL_NAMES, columns=PL_NAMES) spmnr_pval_df = pd.DataFrame(spmnr_pval, index=PL_NAMES, columns=PL_NAMES) if (cfg_param.setdefault('save_povl', False)): povl_df.to_excel('cpovl_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_povl_npz', False)): io.write_df(povl_df, 'povl_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr', False)): spmnr_df.to_excel('spmnr_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_npz', False)): io.write_df(spmnr_df, 'spmnr_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr_pval', False)): spmnr_pval_df.to_excel('spmnr_pval_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_pval_npz', False)): io.write_df(spmnr_pval_df, 'spmnr_pval_clf%s.npz' % lbidstr, with_idx=True) save_featw(X_train[0].columns.values if (type(X_train) is list) else X_train.columns.values, crsval_featw, crsval_subfeatw, cfg_param=cfg_param, lbid=lbid) return preds, scores def kf2data(kf, X, Y, to_hdf=False, hdf5_fpath='crsval_dataset.h5'): if (to_hdf): import h5py from keras.utils.io_utils import HDF5Matrix hdf5_fpath = hdf5_fpath if hdf5_fpath else os.path.abspath('crsval_dataset.h5') for i, (train_idx, test_idx) in enumerate(kf): if (type(X)==list): if (type(X[0]) == pd.io.parsers.TextFileReader): pass assert all([len(x) == len(X[0]) for x in X[1:]]) X_train, X_test = [x[train_idx,:] for x in X] if to_hdf and type(X[0]) == HDF5Matrix or type(X[0]) != pd.DataFrame else [x.iloc[train_idx,:] for x in X], [x[test_idx,:] for x in X] if to_hdf and type(X[0]) == HDF5Matrix or type(X[0]) != pd.DataFrame else [x.iloc[test_idx,:] for x in X] train_idx_df, test_idx_df = pd.DataFrame(np.arange(X_train[0].shape[0]), index=X[0].index[train_idx]), pd.DataFrame(np.arange(X_test[0].shape[0]), index=X[0].index[test_idx]) else: if (type(X) == pd.io.parsers.TextFileReader): pass X_train, X_test = X[train_idx] if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.iloc[train_idx,:], X[test_idx] if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.iloc[test_idx,:] train_idx_df, test_idx_df = pd.DataFrame(np.arange(X_train.shape[0]), index=None if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.index[train_idx]), pd.DataFrame(np.arange(X_test.shape[0]), index=None if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.index[test_idx]) Y_train, Y_test = Y[train_idx], Y[test_idx] # Y_train = Y_train.reshape((Y_train.shape[0],)) if (len(Y_train.shape) > 1 and Y_train.shape[1] == 1) else Y_train # Y_test = Y_test.reshape((Y_test.shape[0],)) if (len(Y_test.shape) > 1 and Y_test.shape[1] == 1) else Y_test if (to_hdf): with h5py.File(hdf5_fpath, 'w') as hf: if (type(X_train) == list): for idx, x_train in enumerate(X_train): hf.create_dataset('X_train%i' % idx, data=x_train.values if type(X) != HDF5Matrix else x_train[:]) else: hf.create_dataset('X_train', data=X_train.values if type(X) != HDF5Matrix else X_train[:]) if (type(X_test) == list): for idx, x_test in enumerate(X_test): hf.create_dataset('X_test%i' % idx, data=x_test.values if type(X) != HDF5Matrix else x_test[:]) else: hf.create_dataset('X_test', data=X_test.values if type(X) != HDF5Matrix else X_test[:]) hf.create_dataset('Y_train', data=Y_train if type(Y) != HDF5Matrix else Y_train[:]) hf.create_dataset('Y_test', data=Y_test if type(Y) != HDF5Matrix else Y_test[:]) yield i, [HDF5Matrix(hdf5_fpath, 'X_train%i' % idx) for idx in range(len(X_train))] if (type(X_train) == list) else HDF5Matrix(hdf5_fpath, 'X_train'), [HDF5Matrix(hdf5_fpath, 'X_test%i' % idx) for idx in range(len(X_test))] if (type(X_test) == list) else HDF5Matrix(hdf5_fpath, 'X_test'), HDF5Matrix(hdf5_fpath, 'Y_train'), HDF5Matrix(hdf5_fpath, 'Y_test'), train_idx_df, test_idx_df # The implementation of HDF5Matrix is not good since it keep all the hdf5 file opened, so we need to manually close them. remove_hfps = [] for hfpath, hf in HDF5Matrix.refs.items(): if (hfpath.startswith(hdf5_fpath)): hf.close() remove_hfps.append(hfpath) for hfpath in remove_hfps: HDF5Matrix.refs.pop(hfpath, None) else: yield i, [x.values for x in X_train] if (type(X_train) == list) else X_train.values, [x.values for x in X_test] if (type(X_test) == list) else X_test.values, Y_train, Y_test, train_idx_df, test_idx_df # Evaluation def evaluate(X_train, Y_train, X_test, Y_test, model_iter, model_param={}, avg='micro', kfold=5, cfg_param={}, global_param={}, lbid=''): print('Evaluating...') from keras.utils.io_utils import HDF5Matrix global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' # Format the data if (type(X_train) == list): assert all([len(x) == len(X_train[0]) for x in X_train[1:]]) X_train = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_train] X_train = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_train] else: if (type(X_train) != pd.io.parsers.TextFileReader and type(X_train) != pd.DataFrame): X_train = pd.DataFrame(X_train) if type(X_train) != HDF5Matrix else X_train X_train = pd.concat(X_train) if (type(X_train) == pd.io.parsers.TextFileReader and not to_hdf) else X_train if (type(Y_train) != pd.io.parsers.TextFileReader and type(Y_train) != pd.DataFrame): Y_train = pd.DataFrame(Y_train) if (type(Y_train) == pd.io.parsers.TextFileReader and not to_hdf) else Y_train if (type(Y_train) != HDF5Matrix): Y_train = Y_train.values.reshape((Y_train.shape[0],)) if (len(Y_train.shape) == 1 or Y_train.shape[1] == 1) else Y_train.values else: Y_train = Y_train if (type(X_test) == list): assert all([len(x) == len(X_test[0]) for x in X_test[1:]]) X_test = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_test] X_test = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_test] else: if (type(X_test) != pd.io.parsers.TextFileReader and type(X_test) != pd.DataFrame): X_test = pd.DataFrame(X_test) if type(X_test) != HDF5Matrix else X_test X_test = pd.concat(X_test) if (type(X_test) == pd.io.parsers.TextFileReader and not to_hdf) else X_test if (type(Y_test) != pd.io.parsers.TextFileReader and type(Y_test) != pd.DataFrame): Y_test = pd.DataFrame(Y_test) if (type(Y_test) == pd.io.parsers.TextFileReader and not to_hdf) else Y_test if (type(Y_test) != HDF5Matrix): Y_test = Y_test.values.reshape((Y_test.shape[0],)) if (len(Y_test.shape) == 1 or Y_test.shape[1] == 1) else Y_test.values else: Y_test = Y_test is_mltl = True if len(Y_train.shape) > 1 and Y_train.shape[1] > 1 or 2 in Y_train else False print('Benchmark is starting...') mean_fpr = np.linspace(0, 1, 100) mean_recall = np.linspace(0, 1, 100) xdf = X_train[0] if type(X_train)==list else X_train roc_dict, prc_dict, featw_data, subfeatw_data = [{} for i in range(4)] ## Copy from cross_validate function Start ## del PL_NAMES[:] PL_SET.clear() if (cfg_param.setdefault('npg_ratio', None) is not None): npg_ratio = cfg_param['npg_ratio'] Y_train = np.array(Y_train) # HDF5Matrix is not working in matrix slicing and boolean operation y = Y_train[:,0] if (len(Y_train.shape) > 1) else Y_train if (1.0 * np.abs(y).sum() / Y_train.shape[0] < 1.0 / (npg_ratio + 1)): all_true = np.arange(Y_train.shape[0])[y > 0].tolist() all_false = np.arange(Y_train.shape[0])[y <= 0].tolist() true_id = np.random.choice(len(all_true), size=int(1.0 / npg_ratio * len(all_false)), replace=True) true_idx = [all_true[i] for i in true_id] all_train_idx = sorted(set(true_idx + all_false)) X_train = [x.iloc[all_train_idx] if type(x) != HDF5Matrix else x[all_train_idx] for x in X_train] if (type(X_train) is list) else X_train.iloc[all_train_idx] if type(x) != HDF5Matrix else X_train[all_train_idx] Y_train = Y_train[all_train_idx,:] if (len(Y_train.shape) > 1) else Y_train[all_train_idx] results, preds = [[] for x in range(2)] # Y_test = np.column_stack([np.abs(Y_test).reshape((Y_test.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(Y_test).astype('int8').reshape((Y_test.shape[0],-1))).T]) if (len(Y_test.shape) < 2 or Y_test.shape[1] == 1 or np.where(Y_test<0)[0].shape[0]>0) else Y_test for vars in model_iter(**model_param): if (global_param['comb']): mdl_name, mdl = [vars[x] for x in range(2)] else: filt_name, filter, clf_name, clf= [vars[x] for x in range(4)] print('#' * 80) # Assemble a pipeline if ('filter' in locals() and filter != None): model_name = '%s [Ft Filt] & %s [CLF]' % (filt_name, clf_name) pipeline = Pipeline([('featfilt', clone(filter)), ('clf', clf)]) elif ('clf' in locals() and clf != None): model_name = '%s [CLF]' % clf_name pipeline = Pipeline([('clf', clf)]) else: model_name = mdl_name pipeline = mdl if (model_name in PL_SET): continue PL_NAMES.append(model_name) PL_SET.add(model_name) print(model_name) # Benchmark results bm_results = benchmark(pipeline, X_train, Y_train, X_test, Y_test, mltl=is_mltl, signed=global_param.setdefault('signed', True if np.where(Y_train<0)[0].shape[0]>0 else False), average=avg) # Clear the model environment (e.g. GPU resources) del pipeline # if (type(pipeline) is Pipeline): # for cmpn in pipeline.named_steps.values(): # if (getattr(cmpn, "clear", None)): cmpn.clear() # else: # if (getattr(pipeline, "clear", None)): # pipeline.clear() # Obtain the results if (is_mltl and avg == 'all'): results.append([bm_results[x] for x in ['accuracy', 'micro-precision', 'micro-recall', 'micro-fscore', 'macro-precision', 'macro-recall', 'macro-fscore', 'train_time', 'test_time']]) else: results.append([bm_results[x] for x in ['accuracy', 'precision', 'recall', 'fscore', 'train_time', 'test_time']]) preds.append(bm_results['pred_lb']) if (cfg_param.setdefault('save_pred', False)): io.write_npz(dict(pred_lb=bm_results['pred_lb'], pred_prob=bm_results['pred_prob'], true_lb=Y_test), 'pred_%s%s' % (model_name.replace(' ', '_').lower(), lbidstr)) if (is_mltl and avg == 'all'): micro_id, macro_id = '-'.join([model_name,'micro']), '-'.join([model_name,'macro']) roc_dict[micro_id] = roc_dict.setdefault(micro_id, 0) + np.interp(mean_fpr, bm_results['micro-roc'][0], bm_results['micro-roc'][1]) roc_dict[macro_id] = roc_dict.setdefault(macro_id, 0) + np.interp(mean_fpr, bm_results['macro-roc'][0], bm_results['macro-roc'][1]) else: roc_dict[model_name] = roc_dict.setdefault(model_name, 0) + np.interp(mean_fpr, bm_results['roc'][0], bm_results['roc'][1]) prc_dict[model_name] = prc_dict.setdefault(model_name, 0) + np.interp(mean_recall, bm_results['prc'][0], bm_results['prc'][1]) for k, v in bm_results['feat_w'].items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) featw_data[key] = v for k, v in bm_results['sub_feat_w'].items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) subfeatw_data[key] = v print('\n') # Prediction overlap if (True if len(Y_train.shape) > 1 and Y_train.shape[1] > 1 else False): preds_mt = np.column_stack([x.ravel() for x in preds]) else: preds_mt = np.column_stack(preds) preds.append(Y_test) tpreds_mt = np.column_stack([x.ravel() for x in preds]) ## Copy from cross_validate function End ## povl = pred_ovl(preds_mt, Y_test) # Spearman's rank correlation spearman = stats.spearmanr(tpreds_mt) # Kendall rank correlation # kendalltau = stats.kendalltau(preds_mt) # Pearson correlation # pearson = stats.pearsonr(preds_mt) ## Save performance data if (is_mltl and avg == 'all'): metric_idx = ['Accuracy', 'Micro Precision', 'Micro Recall', 'Micro F score', 'Macro Precision', 'Macro Recall', 'Macro F score', 'Train time', 'Test time'] else: metric_idx = ['Accuracy', 'Precision', 'Recall', 'F score', 'Train time', 'Test time'] perf_df = pd.DataFrame(np.array(results).T, index=metric_idx, columns=PL_NAMES) povl_idx = [' & '.join(x) for x in imath.subset(PL_NAMES, min_crdnl=1)] povl_df = pd.DataFrame(np.array(povl), index=povl_idx, columns=['pred_ovl', 'tpred_ovl']) spmnr_val_df = pd.DataFrame(spearman[0], index=PL_NAMES+['Annotations'], columns=PL_NAMES+['Annotations']) spmnr_pval_df = pd.DataFrame(spearman[1], index=PL_NAMES+['Annotations'], columns=PL_NAMES+['Annotations']) if (cfg_param.setdefault('save_tpred', True)): io.write_npz(tpreds_mt, 'tpred_clf%s' % lbidstr) if (cfg_param.setdefault('save_perf', True)): perf_df.to_excel('perf_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_perf_npz', False)): io.write_df(perf_df, 'perf_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_povl', False)): povl_df.to_excel('povl_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_povl_npz', False)): io.write_df(povl_df, 'povl_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr', False)): spmnr_val_df.to_excel('spmnr_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_npz', False)): io.write_df(spmnr_val_df, 'spmnr_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr_pval', False)): spmnr_pval_df.to_excel('spmnr_pval_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_pval_npz', False)): io.write_df(spmnr_pval_df, 'spmnr_pval_clf%s.npz' % lbidstr, with_idx=True) # Feature importances try: save_featw(xdf.columns.values if type(xdf) != HDF5Matrix else np.arange(xdf.shape[1]), featw_data, subfeatw_data, cfg_param=cfg_param, lbid=lbid) except Exception as e: print(e) ## Plot figures if (is_mltl and avg == 'all'): micro_roc_data, micro_roc_labels, micro_roc_aucs, macro_roc_data, macro_roc_labels, macro_roc_aucs = [[] for i in range(6)] else: roc_data, roc_labels, roc_aucs = [[] for i in range(3)] prc_data, prc_labels, prc_aucs = [[] for i in range(3)] for pl in PL_NAMES: if (is_mltl and avg == 'all'): micro_id, macro_id = '-'.join([pl,'micro']), '-'.join([pl,'macro']) micro_mean_tpr, macro_mean_tpr = roc_dict[micro_id], roc_dict[macro_id] micro_roc_auc = metrics.auc(mean_fpr, micro_mean_tpr) macro_roc_auc = metrics.auc(mean_fpr, macro_mean_tpr) micro_roc_data.append([mean_fpr, micro_mean_tpr]) micro_roc_aucs.append(micro_roc_auc) micro_roc_labels.append('%s (AUC=%0.2f)' % (pl, micro_roc_auc)) macro_roc_data.append([mean_fpr, macro_mean_tpr]) macro_roc_aucs.append(macro_roc_auc) macro_roc_labels.append('%s (AUC=%0.2f)' % (pl, macro_roc_auc)) else: mean_tpr = roc_dict[pl] mean_roc_auc = metrics.auc(mean_fpr, mean_tpr) roc_data.append([mean_fpr, mean_tpr]) roc_aucs.append(mean_roc_auc) roc_labels.append('%s (AUC=%0.2f)' % (pl, mean_roc_auc)) mean_prcn = prc_dict[pl] mean_prc_auc = metrics.auc(mean_recall, mean_prcn) prc_data.append([mean_recall, mean_prcn]) prc_aucs.append(mean_prc_auc) prc_labels.append('%s (AUC=%0.2f)' % (pl, mean_prc_auc)) group_dict = {} for i, pl in enumerate(PL_NAMES): group_dict.setdefault(tuple(set(difflib.get_close_matches(pl, PL_NAMES))), []).append(i) if (not cfg_param.setdefault('group_by_name', False) or len(group_dict) == len(PL_NAMES)): groups = None else: group_array = np.array(group_dict.values()) group_array.sort() groups = group_array.tolist() if (is_mltl and avg == 'all'): aucs_df = pd.DataFrame([micro_roc_aucs, macro_roc_aucs, prc_aucs], index=['Micro ROC AUC', 'Macro ROC AUC', 'PRC AUC'], columns=PL_NAMES) if (cfg_param.setdefault('plot_roc', True)): plot.plot_roc(micro_roc_data, micro_roc_labels, groups=groups, fname='micro_roc%s'%lbidstr, plot_cfg=common_cfg) plot.plot_roc(macro_roc_data, macro_roc_labels, groups=groups, fname='macro_roc%s'%lbidstr, plot_cfg=common_cfg) else: aucs_df = pd.DataFrame([roc_aucs, prc_aucs], index=['ROC AUC', 'PRC AUC'], columns=PL_NAMES) if (cfg_param.setdefault('plot_roc', True)): plot.plot_roc(roc_data, roc_labels, groups=groups, fname='roc%s'%lbidstr, plot_cfg=common_cfg) if (cfg_param.setdefault('plot_prc', True)): plot.plot_prc(prc_data, prc_labels, groups=groups, fname='prc%s'%lbidstr, plot_cfg=common_cfg) if (cfg_param.setdefault('save_auc', False)): aucs_df.to_excel('auc%s.xlsx' % lbidstr) filt_num, clf_num = len(FILT_NAMES), len(CLF_NAMES) if (cfg_param.setdefault('plot_metric', False)): for mtrc in metric_idx: mtrc_avg_list, mtrc_std_list = [[] for i in range(2)] if (global_param['comb']): mtrc_avg = perf_avg_df.ix[mtrc,:].values.reshape((1,-1)) mtrc_std = perf_std_df.ix[mtrc,:].values.reshape((1,-1)) plot.plot_bar(mtrc_avg, mtrc_std, xlabels=PL_NAMES, labels=None, title='%s by Classifier and Feature Selection' % mtrc, fname='%s_clf_ft%s' % (mtrc.replace(' ', '_').lower(), lbidstr), plot_cfg=common_cfg) else: for i in range(filt_num): offset = i * clf_num mtrc_avg_list.append(perf_avg_df.ix[mtrc,offset:offset+clf_num].values.reshape((1,-1))) mtrc_std_list.append(perf_std_df.ix[mtrc,offset:offset+clf_num].values.reshape((1,-1))) mtrc_avg = np.concatenate(mtrc_avg_list) mtrc_std =
np.concatenate(mtrc_std_list)
numpy.concatenate
from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from __future__ import print_function import numpy as np import scipy def compute_metrics(x): sx = np.sort(-x, axis=1) d = np.diag(-x) d = d[:, np.newaxis] ind = sx - d ind = np.where(ind == 0) ind = ind[1] metrics = {} metrics['R1'] = float(np.sum(ind == 0)) / len(ind) metrics['R5'] = float(np.sum(ind < 5)) / len(ind) metrics['R10'] = float(
np.sum(ind < 10)
numpy.sum
""" Links back truth files to mocks. The objective of this script is to extract additional information from the mocks that were used to build a 'targets' and 'truth' catalogs. To be able to do this recovery one needs access to three files: * truth.fits: generated by select_mock_targets (desitarget) * map_id_filename.txt: generated by select_mock_targets (desitarget) * the original mock files used to generate truth.fits. This scripts operates by: * reading the 'MOCKID' colum in the truth file, to decode the fileid and rowid in the original mock file. * reading the file 'map_id_filename.txt' that stores the correspodence between filenumber and mock filenames. * for each fileid read the original mock and use the rowid to extract the information we need. In this example we work with 'MWS_MAIN' sources to extract the 'vX' variable stored in the mocks, but not in the truth file. """ import numpy as np import os import argparse import yaml from desitarget.mock.io import decode_rownum_filenum from astropy.table import Table parser = argparse.ArgumentParser() parser.add_argument('--config','-c',default='input.yaml') parser.add_argument("--input_dir", "-I", help="Path to the truth.fits and target.fits files", type=str, default="./") args = parser.parse_args() with open(args.config,'r') as pfile: params = yaml.load(pfile) #defines the target and variable to recover from the mock source_name = 'MWS_MAIN' variable_to_recover = 'vX' # load the map_id_filename map_id_filename = np.loadtxt(os.path.join(args.input_dir,'map_id_filename.txt'), dtype={'names': ('SOURCENAME', 'FILEID', 'FILENAME'), 'formats': ('S10', 'i4', 'S256')}) # load truth truth_table = Table.read(os.path.join(args.input_dir, 'truth.fits')) print('loaded {} truth items'.format(len(truth_table))) # decode rowid and fileid for the targets of interest ii = truth_table['SOURCETYPE']==source_name rowid, fileid = decode_rownum_filenum(truth_table['MOCKID'][ii]) # get the fileids to be read fileid_to_read = np.array(list(set(fileid))) print('fileid to be read {}'.format(fileid_to_read)) # prepare the arrays to save the variable to match n =
np.count_nonzero(ii)
numpy.count_nonzero
# Copyright 2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the expval method of the :mod:`pennylane_lightning.LightningQubit` device. """ import pytest import numpy as np import pennylane as qml from conftest import U, U2, A np.random.seed(42) THETA = np.linspace(0.11, 1, 3) PHI = np.linspace(0.32, 1, 3) VARPHI = np.linspace(0.02, 1, 3) @pytest.mark.parametrize("theta, phi", list(zip(THETA, PHI))) class TestExpval: """Test expectation values""" def test_identity_expectation(self, theta, phi, qubit_device_3_wires, tol): """Test that identity expectation value (i.e. the trace) is 1""" dev = qubit_device_3_wires O1 = qml.Identity(wires=[0]) O2 = qml.Identity(wires=[1]) dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1])], rotations=[*O1.diagonalizing_gates(), *O2.diagonalizing_gates()], ) res = np.array([dev.expval(O1), dev.expval(O2)]) assert np.allclose(res, np.array([1, 1]), tol) def test_pauliz_expectation(self, theta, phi, qubit_device_3_wires, tol): """Test that PauliZ expectation value is correct""" dev = qubit_device_3_wires O1 = qml.PauliZ(wires=[0]) O2 = qml.PauliZ(wires=[1]) dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1])], rotations=[*O1.diagonalizing_gates(), *O2.diagonalizing_gates()], ) res = np.array([dev.expval(O1), dev.expval(O2)]) assert np.allclose(res, np.array([np.cos(theta), np.cos(theta) * np.cos(phi)]), tol) @pytest.mark.parametrize("C", [np.complex64, np.complex128]) def test_paulix_expectation(self, theta, phi, qubit_device_3_wires, tol, C): """Test that PauliX expectation value is correct""" dev = qubit_device_3_wires O1 = qml.PauliX(wires=[0]) O2 = qml.PauliX(wires=[1]) dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1])], rotations=[*O1.diagonalizing_gates(), *O2.diagonalizing_gates()], ) res = np.array([dev.expval(O1), dev.expval(O2)], dtype=C) assert np.allclose(res, np.array([np.sin(theta) * np.sin(phi), np.sin(phi)], dtype=C)) def test_pauliy_expectation(self, theta, phi, qubit_device_3_wires, tol): """Test that PauliY expectation value is correct""" dev = qubit_device_3_wires O1 = qml.PauliY(wires=[0]) O2 = qml.PauliY(wires=[1]) dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1])], rotations=[*O1.diagonalizing_gates(), *O2.diagonalizing_gates()], ) res = np.array([dev.expval(O1), dev.expval(O2)]) assert np.allclose(res, np.array([0, -np.cos(theta) * np.sin(phi)]), tol) def test_hadamard_expectation(self, theta, phi, qubit_device_3_wires, tol): """Test that Hadamard expectation value is correct""" dev = qubit_device_3_wires O1 = qml.Hadamard(wires=[0]) O2 = qml.Hadamard(wires=[1]) dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1])], rotations=[*O1.diagonalizing_gates(), *O2.diagonalizing_gates()], ) res = np.array([dev.expval(O1), dev.expval(O2)]) expected = np.array( [np.sin(theta) * np.sin(phi) + np.cos(theta), np.cos(theta) * np.cos(phi) + np.sin(phi)] ) / np.sqrt(2) assert np.allclose(res, expected, tol) @pytest.mark.parametrize("theta,phi,varphi", list(zip(THETA, PHI, VARPHI))) class TestTensorExpval: """Test tensor expectation values""" def test_paulix_pauliy(self, theta, phi, varphi, qubit_device_3_wires, tol): """Test that a tensor product involving PauliX and PauliY works correctly""" dev = qubit_device_3_wires obs = qml.PauliX(0) @ qml.PauliY(2) dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = np.sin(theta) * np.sin(phi) * np.sin(varphi) assert np.allclose(res, expected) def test_pauliz_identity(self, theta, phi, varphi, qubit_device_3_wires, tol): """Test that a tensor product involving PauliZ and Identity works correctly""" dev = qubit_device_3_wires obs = qml.PauliZ(0) @ qml.Identity(1) @ qml.PauliZ(2) dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = np.cos(varphi) * np.cos(phi) assert np.allclose(res, expected, tol) def test_pauliz_hadamard_pauliy(self, theta, phi, varphi, qubit_device_3_wires, tol): """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly""" dev = qubit_device_3_wires obs = qml.PauliZ(0) @ qml.Hadamard(1) @ qml.PauliY(2) dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = -(np.cos(varphi) * np.sin(phi) + np.sin(varphi) * np.cos(theta)) / np.sqrt(2) assert
np.allclose(res, expected, tol)
numpy.allclose
import skimage.io as io import skimage.transform as skt import numpy as np from PIL import Image from src.models.class_patcher import patcher from src.utils.imgproc import * class patcher(patcher): def __init__(self, body='./body/body_noy.png', **options): super().__init__('ノイ', body=body, pantie_position=[147, 133], **options) self.mask = io.imread('./mask/mask_noy.png') def convert(self, image): pantie = np.array(image) # prepare for moving from hip to front patch =
np.copy(pantie[-140:-5, 546:, :])
numpy.copy
import os from flask import Flask, json, jsonify, request, render_template import tensorflow as tf import pandas as pd import numpy as np import six import random app = Flask(__name__) app.config['JSON_SORT_KEYS'] = False model_sequential = tf.keras.models.load_model("sequential") @app.route('/') def main(): return render_template('main.html') @app.route('/prediction') def prediction_form(): return render_template('prediction_form.html') @app.route('/prediction_result', methods=['POST']) def submit(): #Model Features Pclass = int(request.values.get('Pclass')) Cabin = int(request.values.get('Cabin')) Age = int(request.values.get('Age')) Gender = int(request.values.get('Sex')) P_Embarkation = int(request.values.get('Embarkation')) Name_Title = int(request.values.get('NameTitle')) Trav_Aln = int(request.values.get('TravelAlone')) if Trav_Aln == 1: Travel_Relative = 0 else: Travel_Relative = int(request.values.get('TravelNum')) ### Model Prediction features = np.array([Pclass, Cabin, Age, Gender, P_Embarkation, Name_Title, Trav_Aln, Travel_Relative]).reshape(1,8) prediction_sequential = round(model_sequential.predict(features)[0][0], 4) round_pred = round(100*prediction_sequential) response = {'Surv_pred': prediction_sequential} resp_main = ("You will Survive!") if prediction_sequential > 0.5 else ("You will not Survive!") resp_sec = ("Your chances to Survive are high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential > 0.5 else ("Your chances to Survive are not high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential < 0.5 else ("Your chances to Survive are even with " + u"\u2248 " + str(round_pred) + "%") d_Pclass = "First Class" if Pclass == 1 else "Second Class" if Pclass == 2 else "Third Class" d_Cabin = "Yes" if Cabin == 0 else "No" d_Age = str(Age) + " years old" d_Gender = "Female" if Gender == 0 else "Male" d_P_Embarkation = "Cherbourg" if P_Embarkation == 0 else "Queenstown" if P_Embarkation == 1 else "Southampton" d_Name_Title = "Mr." if Name_Title == 0 else "Miss." if Name_Title == 1 else "Mrs." if Name_Title == 2 else "Master." if Name_Title == 3 else "Other Title" d_Trav_Aln = "No" if Trav_Aln == 0 else "Yes" d_Travel_Relative = str(Travel_Relative) + " relative(s)" if Travel_Relative > 1 else str(Travel_Relative) + " relative" data = {"Pclass": d_Pclass, "Cabin": d_Cabin, "Age": d_Age, "Gender": d_Gender, "P_Embarkation": d_P_Embarkation, "Name_Title": d_Name_Title, "Trav_Aln": d_Trav_Aln, "Travel_Relative": d_Travel_Relative} return render_template('result_pred.html', pred_val = response, data=data, resp_main = resp_main, resp_sec = resp_sec) @app.route('/prediction_result') def random_submit(): #Model Features Pclass = random.randint(1, 3) Cabin = random.randint(0, 1) Age = random.randint(1, 75) Gender = random.randint(0, 1) P_Embarkation = random.randint(0, 2) Name_Title = random.randint(0, 4) Trav_Aln = random.randint(0, 1) if Pclass == 1 or Pclass == 2: if Gender == 0: if Age > 21: Name_Title = random.choice([1, 2, 4]) else: Name_Title = random.choice([1, 2]) elif Gender == 1: Name_Title = random.choice([0, 3, 4]) if Pclass == 3: if Gender == 0: if Age > 21: Name_Title = random.choice([1, 2]) else: Name_Title = random.choice([1]) elif Gender == 1: Name_Title = random.choice([0, 3]) if Age < 16: Trav_Aln = 0 else: Trav_Aln = random.randint(0, 1) if Trav_Aln == 1: Travel_Relative = 0 else: Travel_Relative = random.randint(1, 6) ### Model Prediction features = np.array([Pclass, Cabin, Age, Gender, P_Embarkation, Name_Title, Trav_Aln, Travel_Relative]).reshape(1,8) prediction_sequential = round(model_sequential.predict(features)[0][0], 4) round_pred = round(100*prediction_sequential) response = {'Surv_pred': prediction_sequential} resp_main = ("You will Survive!") if prediction_sequential > 0.5 else ("You will not Survive!") resp_sec = ("Your chances to Survive are high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential > 0.5 else ("Your chances to Survive are not high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential < 0.5 else ("Your chances to Survive are even with " + u"\u2248 " + str(round_pred) + "%") d_Pclass = "First Class" if Pclass == 1 else "Second Class" if Pclass == 2 else "Third Class" d_Cabin = "Yes" if Cabin == 0 else "No" d_Age = str(Age) + " years old" d_Gender = "Female" if Gender == 0 else "Male" d_P_Embarkation = "Cherbourg" if P_Embarkation == 0 else "Queenstown" if P_Embarkation == 1 else "Southampton" d_Name_Title = "Mr." if Name_Title == 0 else "Miss." if Name_Title == 1 else "Mrs." if Name_Title == 2 else "Master." if Name_Title == 3 else "Other Title" d_Trav_Aln = "No" if Trav_Aln == 0 else "Yes" d_Travel_Relative = str(Travel_Relative) + " relative(s)" if Travel_Relative > 1 else str(Travel_Relative) + " relative" data = {"Pclass": d_Pclass, "Cabin": d_Cabin, "Age": d_Age, "Gender": d_Gender, "P_Embarkation": d_P_Embarkation, "Name_Title": d_Name_Title, "Trav_Aln": d_Trav_Aln, "Travel_Relative": d_Travel_Relative} return render_template('result_pred.html', pred_val = response, data=data, resp_main = resp_main, resp_sec = resp_sec) @app.route('/prediction_result_firstclass') def random_firstclass(): #Model Features Pclass = 1 Cabin = random.randint(0, 1) Age = random.randint(1, 75) Gender = random.randint(0, 1) P_Embarkation = random.randint(0, 2) Trav_Aln = random.randint(0, 1) if Gender == 0: if Age > 21: Name_Title = random.choice([4]) else: Name_Title = random.choice([1, 2]) elif Gender == 1: Name_Title = random.choice([3, 4]) if Age < 16: Trav_Aln = 0 else: Trav_Aln = random.randint(0, 1) if Trav_Aln == 1: Travel_Relative = 0 else: Travel_Relative = random.randint(1, 6) ### Model Prediction features = np.array([Pclass, Cabin, Age, Gender, P_Embarkation, Name_Title, Trav_Aln, Travel_Relative]).reshape(1,8) prediction_sequential = round(model_sequential.predict(features)[0][0], 4) round_pred = round(100*prediction_sequential) response = {'Surv_pred': prediction_sequential} resp_main = ("You will Survive!") if prediction_sequential > 0.5 else ("You will not Survive!") resp_sec = ("Your chances to Survive are high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential > 0.5 else ("Your chances to Survive are not high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential < 0.5 else ("Your chances to Survive are even with " + u"\u2248 " + str(round_pred) + "%") d_Pclass = "First Class" d_Cabin = "Yes" if Cabin == 0 else "No" d_Age = str(Age) + " years old" d_Gender = "Female" if Gender == 0 else "Male" d_P_Embarkation = "Cherbourg" if P_Embarkation == 0 else "Queenstown" if P_Embarkation == 1 else "Southampton" d_Name_Title = "Mr." if Name_Title == 0 else "Miss." if Name_Title == 1 else "Mrs." if Name_Title == 2 else "Master." if Name_Title == 3 else "Other Title" d_Trav_Aln = "No" if Trav_Aln == 0 else "Yes" d_Travel_Relative = str(Travel_Relative) + " relative(s)" if Travel_Relative > 1 else str(Travel_Relative) + " relative" data = {"Pclass": d_Pclass, "Cabin": d_Cabin, "Age": d_Age, "Gender": d_Gender, "P_Embarkation": d_P_Embarkation, "Name_Title": d_Name_Title, "Trav_Aln": d_Trav_Aln, "Travel_Relative": d_Travel_Relative} return render_template('result_pred.html', pred_val = response, data=data, resp_main = resp_main, resp_sec = resp_sec) @app.route('/prediction_result_secondclass') def random_secondclass(): #Model Features Pclass = 2 Cabin = random.randint(0, 1) Age = random.randint(1, 75) Gender = random.randint(0, 1) P_Embarkation = random.randint(0, 2) Trav_Aln = random.randint(0, 1) if Gender == 0: if Age > 21: Name_Title = random.choice([1, 2, 4]) else: Name_Title = random.choice([1, 2]) elif Gender == 1: Name_Title = random.choice([0, 3, 4]) if Age < 16: Trav_Aln = 0 else: Trav_Aln = random.randint(0, 1) if Trav_Aln == 1: Travel_Relative = 0 else: Travel_Relative = random.randint(1, 6) ### Model Prediction features = np.array([Pclass, Cabin, Age, Gender, P_Embarkation, Name_Title, Trav_Aln, Travel_Relative]).reshape(1,8) prediction_sequential = round(model_sequential.predict(features)[0][0], 4) round_pred = round(100*prediction_sequential) response = {'Surv_pred': prediction_sequential} resp_main = ("You will Survive!") if prediction_sequential > 0.5 else ("You will not Survive!") resp_sec = ("Your chances to Survive are high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential > 0.5 else ("Your chances to Survive are not high enough with " + u"\u2248 " + str(round_pred) + "%") if prediction_sequential < 0.5 else ("Your chances to Survive are even with " + u"\u2248 " + str(round_pred) + "%") d_Pclass = "Second Class" d_Cabin = "Yes" if Cabin == 0 else "No" d_Age = str(Age) + " years old" d_Gender = "Female" if Gender == 0 else "Male" d_P_Embarkation = "Cherbourg" if P_Embarkation == 0 else "Queenstown" if P_Embarkation == 1 else "Southampton" d_Name_Title = "Mr." if Name_Title == 0 else "Miss." if Name_Title == 1 else "Mrs." if Name_Title == 2 else "Master." if Name_Title == 3 else "Other Title" d_Trav_Aln = "No" if Trav_Aln == 0 else "Yes" d_Travel_Relative = str(Travel_Relative) + " relative(s)" if Travel_Relative > 1 else str(Travel_Relative) + " relative" data = {"Pclass": d_Pclass, "Cabin": d_Cabin, "Age": d_Age, "Gender": d_Gender, "P_Embarkation": d_P_Embarkation, "Name_Title": d_Name_Title, "Trav_Aln": d_Trav_Aln, "Travel_Relative": d_Travel_Relative} return render_template('result_pred.html', pred_val = response, data=data, resp_main = resp_main, resp_sec = resp_sec) @app.route('/prediction_result_thirdclass') def random_thirdclass(): #Model Features Pclass = 3 Cabin = random.randint(0, 1) Age = random.randint(1, 75) Gender = random.randint(0, 1) P_Embarkation = random.randint(0, 2) Trav_Aln = random.randint(0, 1) if Gender == 0: if Age > 21: Name_Title = random.choice([1, 2]) else: Name_Title = random.choice([1]) elif Gender == 1: Name_Title = random.choice([0]) if Age < 16: Trav_Aln = 0 else: Trav_Aln = random.randint(0, 1) if Trav_Aln == 1: Travel_Relative = 0 else: Travel_Relative = random.randint(1, 6) ### Model Prediction features =
np.array([Pclass, Cabin, Age, Gender, P_Embarkation, Name_Title, Trav_Aln, Travel_Relative])
numpy.array
"""Training - mitosis detection""" import argparse from datetime import datetime import json import math import os import pickle import shutil import sys import numpy as np import tensorflow as tf import tensorboard as tb import resnet import resnet50 # data def get_image(filename, patch_size): """Get image from filename. Args: filename: String filename of an image. patch_size: Integer length to which the square image will be resized. Returns: TensorFlow tensor containing the decoded and resized image with type float32 and values in [0, 1). """ image_string = tf.read_file(filename) # shape (h,w,c), uint8 in [0, 255]: image = tf.image.decode_png(image_string, channels=3) image = tf.image.convert_image_dtype(image, dtype=tf.float32) # float32 [0, 1) # TODO: remove this #image = tf.image.resize_images(image, [patch_size, patch_size]) # float32 [0, 1) #with tf.control_dependencies( # [tf.assert_type(image, tf.float32, image.dtype), # tf.verify_tensor_all_finite(image, "image tensor contains NaN or INF values"]): return image def get_label(filename): """Get label from filename. Args: filename: String in format "**/train|val/mitosis|normal/name.{ext}", where the label is either "mitosis" or "normal". Returns: TensorFlow float binary label equal to 1 for mitosis or 0 for normal. """ # note file name format: # lab is a single digit, case and region are two digits with padding if needed splits = tf.string_split([filename], "/") label_str = splits.values[-2] # check that label string is valid is_valid = tf.logical_or(tf.equal(label_str, 'normal'), tf.equal(label_str, 'mitosis')) assert_op = tf.Assert(is_valid, [label_str]) with tf.control_dependencies([assert_op]): # test for correct label extraction #label = tf.to_int32(tf.equal(label_str, 'mitosis')) label = tf.to_float(tf.equal(label_str, 'mitosis')) # required because model produces float return label def preprocess(filename, patch_size): """Get image and label from filename. Args: filename: String filename of an image. patch_size: Integer length to which the square image will be resized, if necessary. Returns: Tuple of a float32 image Tensor with shape (h,w,c) and values in [0, 1), a binary label, and a filename. """ # return image_resized, label label = get_label(filename) #label = tf.expand_dims(label, -1) # make each scalar label a vector of length 1 to match model image = get_image(filename, patch_size) # float32 in [0, 1) return image, label, filename def normalize(image, model_name): """Normalize an image tensor. Note: due to broadcasting, this works with a single image, or a batch of images. Args: image: A Tensor of shape (...,h,w,c) with values in [0, 1]. model_name: String indicating the model to use. Returns: A normalized image Tensor of shape (...,h,w,c). """ # NOTE: don't use in-place updates to avoid side-effects if model_name in ("vgg", "vgg19", "resnet"): means = np.array([103.939, 116.779, 123.68]).astype(np.float32) image = image[..., ::-1] # rbg -> bgr image = image * 255 # float32 in [0, 255] image = image - means # mean centering using imagenet means else: # normalize to [-1, 1] #image = image / 255 image = image - 0.5 image = image * 2 return image def unnormalize(image, model_name): """Unnormalize an image tensor. Note: due to broadcasting, this works with a single image, or a batch of images. Args: image: A Tensor of shape (...,h,w,c) with normalized values. model_name: String indicating the model to use. Returns: An unnormalized image Tensor of shape (...,h,w,c) with values in [0, 1]. """ # NOTE: don't use in-place updates to avoid side-effects if model_name in ("vgg", "vgg19", "resnet"): means = np.array([103.939, 116.779, 123.68]).astype(np.float32) image = image + means # mean centering using imagenet means image = image / 255 # float32 in [0, 1] image = image[..., ::-1] # bgr -> rgb else: image = image / 2 image = image + 0.5 return image def augment(image, patch_size, seed=None): """Apply random data augmentation to the given image. Args: image: A Tensor of shape (h,w,c) with values in [0, 1]. patch_size: The patch size to which to randomly crop the image. seed: An integer used to create a random seed. Returns: A data-augmented image with values in [0, 1]. """ # NOTE: these values currently come from the Google pathology paper: # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, et al. # Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv.org. 2017. # TODO: convert these hardcoded values into hyperparameters!! # NOTE: if the seed is None, these ops will be seeded with a completely random seed, rather than # a deterministic one based on the graph seed. This appears to only happen within the map # functions of the Dataset API, based on the `test_num_parallel_calls` and # `test_image_random_op_seeds` tests. For now, we will pass in a seed from the user and use it # at the op level. # NOTE: Additionally, if the Dataset.map() function that calls this function is using # `num_parallel_calls` > 1, the results will be non-reproducible. # TODO: https://github.com/tensorflow/tensorflow/issues/13932 # NOTE: ouch! It turns out that a reinitializable iterator for a Dataset will cause any ops with # random seeds, such as these, to be reset, and thus each epoch will be evaluated exactly the # same. The desired behavior would be to seed these ops once at the very beginning, so that an # entire training run can be deterministic, but not with the exact same random augmentation during # each epoch. Oh TensorFlow... shape = tf.shape(image) # (h, w, c) # random zoom # TODO: possibly re-enable random zooms enabled via flag #lb = shape[0] # lower bound on the resize is the current size of the image #ub = lb + tf.to_int32(tf.to_float(lb)*0.25) # upper bound is 25% larger #new_size = tf.random_uniform([2], minval=lb, maxval=ub, dtype=tf.int32, seed=seed) #image = tf.image.resize_images(image, new_size) # random resize #image = tf.random_crop(image, shape, seed=seed) # random cropping back to original size # mirror padding if needed size = int(math.ceil((patch_size + 30) * (math.cos(math.pi/4) + math.sin(math.pi/4)))) #pad_h = tf.maximum(0, size - shape[0]) #pad_w = tf.maximum(0, size - shape[1]) #pad_h_before = tf.to_int32(tf.floor(pad_h / 2)) #pad_w_before = tf.to_int32(tf.floor(pad_w / 2)) #pad_h_after = pad_h - pad_h_before #pad_w_after = pad_w - pad_w_before #paddings = tf.reshape( # tf.stack([pad_h_before, pad_h_after, pad_w_before, pad_w_after, 0, 0], 0), # [3, 2]) # h, w, z before/after paddings pad = tf.to_int32(tf.ceil(tf.maximum(0, size - shape[0]) / 2)) paddings = tf.reshape(tf.stack([pad, pad, pad, pad, 0, 0], 0), [3, 2]) # h, w, z before/after image = tf.pad(image, paddings, mode="REFLECT") # random rotation angle = tf.random_uniform([], minval=0, maxval=2*np.pi, seed=seed) image = tf.contrib.image.rotate(image, angle, "BILINEAR") # crop to bounding box to allow for random translation crop, if the input image is large enough # note: translation distance: 7 µm = 30 pixels = max allowable euclidean pred distance from # actual mitosis # note: the allowable region is a circle with radius 30, but we are cropping to a square, so we # can't crop from a square with side length of patch_size+30 or we run the risk of moving the # mitosis to a spot in the corner of the resulting image, which would be outside of the circle # radius, and thus we would be incorrect to label that image as positive. We also want to impose # some amount of buffer into our learned model, so we place an upper bound of `c` pixels on the # distance. We sample a distance along the height axis, compute a valid distance along the width # axis that is upper bounded by a Euclidean translation distance of `c` in the worst case, crop # the center of the image to this height and width, and then perform a random crop, yielding a # patch for which the center is at most `c` pixels from the true center in terms of Euclidean # distance. # NOTE: In the dataset, all normal samples must be > 60 pixels from the center of a mitotic figure # to avoid random crops that end up incorrectly within a mitotic region. # c = 25 = sqrt(a**2 + b**2) = 6.25 µm c = 25 # TODO: set this as a hyperparameter a = tf.random_uniform([], minval=0, maxval=c, dtype=tf.int32, seed=seed) b = tf.to_int32(tf.floor(tf.sqrt(tf.to_float(c**2 - a**2)))) crop_h = tf.minimum(shape[0], patch_size + a) crop_w = tf.minimum(shape[1], patch_size + b) image = tf.image.resize_image_with_crop_or_pad(image, crop_h, crop_w) # random central crop == random translation augmentation image = tf.random_crop(image, [patch_size, patch_size, 3], seed=seed) image = tf.image.random_flip_up_down(image, seed=seed) image = tf.image.random_flip_left_right(image, seed=seed) image = tf.image.random_brightness(image, 64/255, seed=seed) image = tf.image.random_contrast(image, 0.25, 1, seed=seed) image = tf.image.random_saturation(image, 0.75, 1, seed=seed) image = tf.image.random_hue(image, 0.04, seed=seed) image = tf.clip_by_value(image, 0, 1) return image def create_augmented_batch(image, batch_size, patch_size): """Create a batch of augmented versions of the given image. This will sample `batch_size/4` augmented images deterministically, and yield four rotated variants for each augmented image (0, 90, 180, 270 degrees). Args: image: A Tensor of shape (h,w,c). batch_size: Number of augmented versions to generate. patch_size: The patch size to which to randomly crop the image. Returns: A Tensor of shape (batch_size,h,w,c) containing a batch of data-augmented versions of the given image. """ assert batch_size % 4 == 0 or batch_size == 1, "batch_size must be 1 or divisible by 4" # TODO rewrite this function to just draw `batch_size` examples from the `augment` function def rots_batch(image): rot0 = image rot90 = tf.image.rot90(image) rot180 = tf.image.rot90(image, k=2) rot270 = tf.image.rot90(image, k=3) rots = tf.stack([rot0, rot90, rot180, rot270]) return rots if batch_size >= 4: image_crop = tf.image.resize_image_with_crop_or_pad(image, patch_size, patch_size) images = rots_batch(image_crop) for i in range(round(batch_size/4)-1): aug_image = augment(image, patch_size, i) aug_image_rots = rots_batch(aug_image) images = tf.concat([images, aug_image_rots], axis=0) else: images = tf.expand_dims(image, 0) return images def marginalize(x): """Marginalize over injected noise at test time. This implements noise marginalization by averaging over a batch of values. Typically, this would be used with logits for a batch of augmented versions of a single image, or for the associated batch of labels. This is only performed at test time when `tf.keras.backend.learning_phase() == 0`. Args: x: A Tensor of shape (n,...). Returns: A Tensor of shape (1, ...) containing the average over the batch dimension. """ avg_x = tf.reduce_mean(x, axis=0, keepdims=True, name="avg_x") x = tf.cond(tf.logical_not(tf.keras.backend.learning_phase()), lambda: avg_x, lambda: x) return x def process_dataset(dataset, model_name, patch_size, augmentation, marginalization, marg_batch_size, threads, seed=None): """Process a Dataset. Args: dataset: Dataset of filenames. model_name: String indicating the model to use. patch_size: Integer length to which the square patches will be resized. augmentation: Boolean for whether or not to apply random augmentation to the images. marginalization: Boolean for whether or not to use noise marginalization when evaluating the validation set. If True, then each image in the validation set will be expanded to a batch of augmented versions of that image, and predicted probabilities for each batch will be averaged to yield a single noise-marginalized prediction for each image. Note: if this is True, then `marg_batch_size` must be divisible by 4, or equal to 1 for a special debugging case of no augmentation. marg_batch_size: Integer training batch size. threads: Integer number of threads for dataset buffering. seed: Integer random seed. Returns: A labeled Dataset of augmented, normalized images, possibly with marginalization. """ dataset = dataset.map(lambda filename: preprocess(filename, patch_size), num_parallel_calls=threads) # augment (typically at training time) if augmentation: dataset = dataset.map( lambda image, label, filename: (augment(image, patch_size, seed), label, filename), num_parallel_calls=threads) else: # we are now generating larger original images to allow for random rotations & translations # during augmentation, and thus if we don't apply augmentation, we need to ensure that the # images are center cropped to the correct size. dataset = dataset.map(lambda image, label, filename: (tf.image.resize_image_with_crop_or_pad(image, patch_size, patch_size), label, filename), num_parallel_calls=threads) # TODO: should this be in an `elif` block before the above `else` block? in particular, the # patch sizes will be messed up # marginalize (typically at eval time) if marginalization: dataset = dataset.map(lambda image, label, filename: (create_augmented_batch(image, marg_batch_size, patch_size), tf.tile(tf.expand_dims(label, -1), [marg_batch_size]), tf.tile(tf.expand_dims(filename, -1), [marg_batch_size])), num_parallel_calls=threads) # normalize dataset = dataset.map(lambda image, label, filename: (normalize(image, model_name), label, filename), num_parallel_calls=threads) return dataset def create_dataset(path, model_name, patch_size, batch_size, shuffle, augmentation, marginalization, oversampling, threads, prefetch_batches, seed=None): """Create a dataset. Args: path: String path to the generated image patches. This should contain folders for each class. model_name: String indicating the model to use. patch_size: Integer length to which the square patches will be resized. batch_size: Integer training batch size. shuffle: Boolean for whether or not to shuffle filenames. augmentation: Boolean for whether or not to apply random augmentation to the images. marginalization: Boolean for whether or not to use noise marginalization when evaluating the validation set. If True, then each image in the validation set will be expanded to a batch of augmented versions of that image, and predicted probabilities for each batch will be averaged to yield a single noise-marginalized prediction for each image. Note: if this is True, then `batch_size` must be divisible by 4, or equal to 1 for a special debugging case of no augmentation. oversampling: Boolean for whether or not to oversample the minority mitosis class via class-aware sampling. Not compatible with marginalization. threads: Integer number of threads for dataset buffering. prefetch_batches: Integer number of batches to prefetch. seed: Integer random seed. Returns: A Dataset object. """ # read & process images if oversampling: # oversample the minority mitosis class via class-aware sampling, in which we sample the mitosis # and normal samples separately in order to yield class-balanced mini-batches. mitosis_dataset = tf.data.Dataset.list_files(os.path.join(path, "mitosis", "*.png")) normal_dataset = tf.data.Dataset.list_files(os.path.join(path, "normal", "*.png")) # zipping will stop once the normal dataset is empty mitosis_dataset = mitosis_dataset.repeat(-1).shuffle(int(1e6)) normal_dataset = normal_dataset.shuffle(int(1e6)) mitosis_dataset = process_dataset(mitosis_dataset, model_name, patch_size, augmentation, False, batch_size, threads, seed) normal_dataset = process_dataset(normal_dataset, model_name, patch_size, augmentation, False, batch_size, threads, seed) # zip together the datasets, then flatten and batch so that each mini-batch contains an even # number of mitosis and normal samples # NOTE: the number of elements in the zipped dataset is limited to the lesser of the mitosis and # normal datasets, and since the mitosis dataset is set to repeat indefinitely, this zipped # dataset will be limited to the number of normal samples dataset = tf.data.Dataset.zip((mitosis_dataset, normal_dataset)) dataset = dataset.flat_map(lambda mitosis, normal: tf.data.Dataset.from_tensors(mitosis).concatenate(tf.data.Dataset.from_tensors(normal))) dataset = dataset.batch(batch_size) # note that batch norm could be affected by very small final batches, but right now this would # also affect evaluation tasks, so we will wait to enable this until we move to tf Estimators #dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(batch_size)) else: dataset = tf.data.Dataset.list_files(os.path.join(path, "*", "*.png")) if shuffle: dataset = dataset.shuffle(int(1e7)) dataset = process_dataset(dataset, model_name, patch_size, augmentation, marginalization, batch_size, threads, seed) # batch if necessary if not marginalization: dataset = dataset.batch(batch_size) # note that batch norm could be affected by very small final batches, but right now this would # also affect evaluation tasks, so we will wait to enable this until we move to tf Estimators #dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(batch_size)) # prefetch dataset = dataset.prefetch(prefetch_batches) return dataset # model def create_model(model_name, input_shape, images): """Create a model. Args: model_name: String indicating the model to use in ("vgg", "vgg19", "resnet", "logreg"). input_shape: 3-Tuple containing the shape of a single image. images: An image Tensor of shape (n,h,w,c). Returns: An unfrozen Keras Model in which `images` is the input tensor, and another Model object representing the base model when using pretrained models. """ if model_name == "logreg": # logistic regression classifier model_base = None inputs = tf.keras.layers.Input(shape=input_shape, tensor=images) x = tf.keras.layers.Flatten()(inputs) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "vgg": # create a model by replacing the classifier of a VGG16 model with a new classifier specific # to the breast cancer problem # recommend fine-tuning last 4 layers #with tf.device("/cpu"): model_base = tf.keras.applications.VGG16( include_top=False, input_shape=input_shape, input_tensor=images) inputs = model_base.inputs x = model_base.output x = tf.keras.layers.Flatten()(x) #x = tf.keras.layers.GlobalAveragePooling2D()(x) #x = tf.keras.layers.Dropout(0.5)(x) #x = tf.keras.layers.Dropout(0.1)(x) #x = tf.keras.layers.Dense(256, activation='relu', name='fc1')(x) #x = tf.keras.layers.Dense(256, kernel_initializer="he_normal", # kernel_regularizer=keras.regularizers.l2(l2))(x) #x = tf.keras.layers.Dropout(0.5)(x) #x = tf.keras.layers.Dropout(0.1)(x) #x = tf.keras.layers.Dense(256, activation='relu', name='fc2')(x) #x = tf.keras.layers.Dense(256, kernel_initializer="he_normal", # kernel_regularizer=keras.regularizers.l2(l2))(x) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "vgg_new": # train a new vgg16-like model from scratch on inputs in [-1, 1]. #with tf.device("/cpu"): model_base = tf.keras.applications.VGG16( include_top=False, input_shape=input_shape, input_tensor=images, weights=None) inputs = model_base.inputs x = model_base.output x = tf.keras.layers.Flatten()(x) #x = tf.keras.layers.GlobalAveragePooling2D()(x) #x = tf.keras.layers.Dropout(0.5)(x) #x = tf.keras.layers.Dropout(0.1)(x) #x = tf.keras.layers.Dense(256, activation='relu', name='fc1')(x) #x = tf.keras.layers.Dense(256, kernel_initializer="he_normal", # kernel_regularizer=tf.keras.regularizers.l2(l2))(x) #x = tf.keras.layers.Dropout(0.5)(x) #x = tf.keras.layers.Dropout(0.1)(x) #x = tf.keras.layers.Dense(256, activation='relu', name='fc2')(x) #x = tf.keras.layers.Dense(256, kernel_initializer="he_normal", # kernel_regularizer=tf.keras.regularizers.l2(l2))(x) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "vgg19": # create a model by replacing the classifier of a VGG19 model with a new classifier specific # to the breast cancer problem # recommend fine-tuning last 4 layers #with tf.device("/cpu"): #inputs = tf.keras.layers.Input(shape=input_shape) model_base = tf.keras.applications.VGG19( include_top=False, input_shape=input_shape, input_tensor=images) inputs = model_base.inputs x = model_base.output x = tf.keras.layers.Flatten()(x) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "resnet": # create a model by replacing the classifier of a ResNet50 model with a new classifier # specific to the breast cancer problem # recommend fine-tuning last 11 (stage 5 block c), 21 (stage 5 blocks b & c), or 33 (stage # 5 blocks a,b,c) layers #with tf.device("/cpu"): # NOTE: there is an issue in keras with using batch norm with model templating, i.e., # defining a model with generic inputs and then calling it on a tensor. the issue stems from # batch norm not being well defined for shared settings, but it makes it quite annoying in # this context. to "fix" it, we define it by directly passing in the `images` tensor # https://github.com/fchollet/keras/issues/2827 model_base = resnet50.ResNet50(include_top=False, input_shape=input_shape, input_tensor=images) inputs = model_base.inputs x = model_base.output x = tf.keras.layers.Flatten()(x) #x = tf.keras.layers.GlobalAveragePooling2D()(x) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "resnet_new": # train a new resnet50-like model from scratch on inputs in [-1, 1]. #with tf.device("/cpu"): # NOTE: there is an issue in keras with using batch norm with model templating, i.e., # defining a model with generic inputs and then calling it on a tensor. the issue stems from # batch norm not being well defined for shared settings, but it makes it quite annoying in # this context. to "fix" it, we define it by directly passing in the `images` tensor # https://github.com/fchollet/keras/issues/2827 model_base = resnet50.ResNet50( include_top=False, input_shape=input_shape, input_tensor=images, weights=None) inputs = model_base.inputs x = model_base.output x = tf.keras.layers.Flatten()(x) #x = tf.keras.layers.GlobalAveragePooling2D()(x) # init tf.keras.layers.Dense weights with Gaussian scaled by sqrt(2/(fan_in+fan_out)) logits = tf.keras.layers.Dense(1, kernel_initializer="glorot_normal")(x) model_tower = tf.keras.Model(inputs=inputs, outputs=logits, name="model") elif model_name == "resnet_custom": model_base = None model_tower = resnet.ResNet(images, input_shape) else: raise Exception("model name unknown: {}".format(model_name)) # TODO: add this when it's necessary, and move to a separate function ## Multi-GPU exploitation via a linear combination of GPU loss functions. #ins = [] #outs = [] #for i in range(num_gpus): # with tf.device("/gpu:{}".format(i)): # x = tf.keras.layers.Input(shape=input_shape) # split of batch # out = resnet50(x) # run split on shared model # ins.append(x) # outs.append(out) #model = tf.keras.Model(inputs=ins, outputs=outs) # multi-GPU, data-parallel model model = model_tower # unfreeze all model layers. for layer in model.layers[1:]: # don't include input layer layer.trainable = True return model, model_base # based on `keras.utils.multi_gpu_model` def multi_gpu_model(model, gpus): """Replicates a model on different GPUs. Specifically, this function implements single-machine multi-GPU data parallelism. It works in the following way: - Divide the model's input(s) into multiple sub-batches. - Apply a model copy on each sub-batch. Every model copy is executed on a dedicated GPU. - Concatenate the results (on CPU) into one big batch. E.g. if your `batch_size` is 64 and you use `gpus=2`, then we will divide the input into 2 sub-batches of 32 samples, process each sub-batch on one GPU, then return the full batch of 64 processed samples. This induces quasi-linear speedup on up to 8 GPUs. This function is only available with the TensorFlow backend for the time being. # Arguments model: A Keras model instance. To avoid OOM errors, this model could have been built on CPU, for instance (see usage example below). gpus: Integer >= 2 or list of integers, number of GPUs or list of GPU IDs on which to create model replicas. # Returns A Keras `Model` instance which can be used just like the initial `model` argument, but which distributes its workload on multiple GPUs. """ if isinstance(gpus, (list, tuple)): num_gpus = len(gpus) target_gpu_ids = gpus else: num_gpus = gpus target_gpu_ids = range(num_gpus) def get_slice(data, i, parts): shape = tf.shape(data) batch_size = shape[:1] input_shape = shape[1:] step = batch_size // parts if i == num_gpus - 1: size = batch_size - step * i else: size = step size = tf.concat([size, input_shape], axis=0) stride = tf.concat([step, input_shape * 0], axis=0) start = stride * i return tf.slice(data, start, size) all_outputs = [] for i in range(len(model.outputs)): all_outputs.append([]) # Place a copy of the model on each GPU, # each getting a slice of the inputs. for i, gpu_id in enumerate(target_gpu_ids): with tf.device('/cpu:0'): inputs = [] # Retrieve a slice of the input on the CPU for x in model.inputs: input_shape = tuple(x.get_shape().as_list())[1:] slice_i = tf.keras.layers.Lambda( get_slice, output_shape=input_shape, arguments={'i': i, 'parts': num_gpus})(x) inputs.append(slice_i) with tf.device('/gpu:%d' % gpu_id): with tf.name_scope('replica_%d' % gpu_id): # Apply model on slice (creating a model replica on the target device). outputs = model(inputs) if not isinstance(outputs, list): outputs = [outputs] # Save the outputs for merging back together later. for o in range(len(outputs)): all_outputs[o].append(outputs[o]) # Merge outputs on CPU. with tf.device('/cpu:0'): merged = [] for name, outputs in zip(model.output_names, all_outputs): merged.append(tf.keras.layers.concatenate(outputs, axis=0, name=name)) return tf.keras.Model(model.inputs, merged) def compute_data_loss(labels, logits): """Compute the mean logistic loss. Args: labels: A Tensor of shape (n, 1) containing a batch of labels. logits: A Tensor of shape (n, 1) containing a batch of pre-sigmoid prediction values. Returns: A scalar Tensor representing the mean logistic loss. """ # TODO: this is a binary classification problem so optimizing a loss derived from a Bernoulli # distribution is appropriate. however, would the dynamics of the training algorithm be more # stable if we treated this as a multi-class classification problem and derived a loss from a # Multinomial distribution with two classes (and a single trial)? it would be # over-parameterized, but then again, the deep net itself is already heavily parameterized. # Bernoulli-derived loss loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.reshape(labels, [-1, 1]), logits=logits)) # Multinomial-derived loss #labels = tf.one_hot(indices=labels, depth=2, on_value=1, off_value=0) #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=logits)) #loss = tf.reduce_mean( # tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, features=logits)) return loss def compute_l2_reg_loss(model, include_frozen=False, reg_final=True, reg_biases=False): """Compute L2 loss of trainable model weights. This places a Gaussian prior with mean 0 std 1 on each of the model parameters. Args: model: A Keras Model object. include_frozen: Boolean for whether or not to ignore frozen layers. reg_final: Boolean for whether or not to regularize the final logits-producing layer. reg_biases: Boolean for whether or not to regularize biases. Returns: The L2 regularization loss of all trainable (i.e., unfrozen) model weights, unless `include_frozen` is True, in which case all weights are used. """ weights = [] if reg_final: end = None else: # don't regularize the final function that produces logits end = -1 if not model.layers[-1].name.startswith("flatten") else -2 for layer in model.layers[:end]: if layer.trainable or include_frozen: if hasattr(layer, 'kernel'): # conv, dense weights.append(layer.kernel) elif hasattr(layer, 'gamma'): # batch norm scale weights.append(1.0 - layer.gamma) # Gaussian prior centered at 1 for batch norm gamma value if reg_biases: # TODO: generally, we don't regularize the biases, but could we determine a probabilistic # motivation to do this? if hasattr(layer, 'bias'): weights.append(layer.bias) elif hasattr(layer, 'beta'): weights.append(layer.beta) l2_loss = tf.add_n([tf.nn.l2_loss(w) for w in weights]) return l2_loss def compute_metrics(loss, labels, preds, probs, num_thresholds): """Compute metrics. This creates ops that compute metrics in a streaming fashion. Args: loss: A Tensor representing the current batch mean loss. labels: A Tensor of shape (n, 1) containing a batch of labels. preds: A Tensor of shape (n, 1) containing a batch of binary prediction values. probs: A Tensor of shape (n, 1) containing a batch of probabilistic prediction values. num_thresholds: An integer indicating the number of thresholds to use to compute PR curves. Returns: A tuple of mean loss, accuracy, positive predictive value (precision), sensitivity (recall), F1, PR curve data, F1 list based on the PR curve data, a grouped metrics update op, and a group metrics reset op. """ # TODO: think about converting this to a class mean_loss, mean_loss_update_op, mean_loss_reset_op = create_resettable_metric(tf.metrics.mean, 'mean_loss', values=loss) acc, acc_update_op, acc_reset_op = create_resettable_metric(tf.metrics.accuracy, 'acc', labels=labels, predictions=preds) ppv, ppv_update_op, ppv_reset_op = create_resettable_metric(tf.metrics.precision, 'ppv', labels=labels, predictions=preds) sens, sens_update_op, sens_reset_op = create_resettable_metric(tf.metrics.recall, 'sens', labels=labels, predictions=preds) f1 = 2 * (ppv * sens) / (ppv + sens) pr, pr_update_op, pr_reset_op = create_resettable_metric( tf.contrib.metrics.precision_recall_at_equal_thresholds, 'pr', labels=tf.cast(labels, dtype=tf.bool), predictions=probs, num_thresholds=num_thresholds) f1s = 2 * (pr.precision * pr.recall) / (pr.precision + pr.recall) # combine all reset & update ops metric_update_ops = tf.group( mean_loss_update_op, acc_update_op, ppv_update_op, sens_update_op, pr_update_op) metric_reset_ops = tf.group( mean_loss_reset_op, acc_reset_op, ppv_reset_op, sens_reset_op, pr_reset_op) return mean_loss, acc, ppv, sens, f1, pr, f1s, metric_update_ops, metric_reset_ops #return mean_loss, acc, ppv, sens, f1, metric_update_ops, metric_reset_ops # utils def create_resettable_metric(metric, scope, **metric_kwargs): # prob safer to only allow kwargs """Create a resettable metric. Args: metric: A tf.metrics metric function. scope: A String scope name to enclose the metric variables within. metric_kwargs: Kwargs for the metric. Returns: The metric op, the metric update op, and a metric reset op. """ # started with an implementation from https://github.com/tensorflow/tensorflow/issues/4814 with tf.variable_scope(scope) as scope: metric_op, update_op = metric(**metric_kwargs) scope_name = tf.contrib.framework.get_name_scope() # in case nested name/variable scopes local_vars = tf.contrib.framework.get_variables(scope_name, collection=tf.GraphKeys.LOCAL_VARIABLES) # get all local variables in this scope reset_op = tf.variables_initializer(local_vars) return metric_op, update_op, reset_op def initialize_variables(sess): """Initialize variables for training. This initializes all tensor variables in the graph. Args: sess: A TensorFlow Session. """ # NOTE: Keras keeps track of the variables that are initialized, and any call to # `tf.keras.backend.get_session()`, which is even used internally, will include logic to # initialize variables. There is a situation in which resuming from a previous checkpoint and # then saving the model after the first epoch will result in part of the model being # reinitialized. The problem is that calling `tf.keras.backend.get_session()` here is too soon # to initialize any variables, the resume branch skips any variable initialization, and then the # `model.save` code path ends up calling `tf.keras.backend.get_session()`, thus causing part of # the model to be reinitialized. Specifically, the model base is fine because it is initialized # when the pretrained weights are added in, but the new dense classifier will not be marked as # initialized by Keras. The non-resume branch will initialize any variables not initialized by # Keras yet, and thus will avoid this issue. It could be possible to use # `tf.keras.backend.manual_variable_initialization(True)` and then manually initialize # all variables, but this would cause any pretrained weights to be removed. Instead, we should # initialize all variables first with the equivalent of the logic in # `tf.keras.backend.get_session()`, and then call resume. # NOTE: the global variables initializer will erase the pretrained weights, so we instead only # initialize the other variables # NOTE: reproduced from the old tf.keras.backend._initialize_variables() function # EDIT: this was updated in the master branch in commit # https://github.com/fchollet/keras/commit/9166733c3c144739868fe0c30d57b861b4947b44 # TODO: given the change in master, reevaluate whether or not this is actually necessary anymore variables = tf.global_variables() uninitialized_variables = [] for v in variables: if not hasattr(v, '_keras_initialized') or not v._keras_initialized: uninitialized_variables.append(v) v._keras_initialized = True global_init_op = tf.variables_initializer(uninitialized_variables) local_init_op = tf.local_variables_initializer() sess.run([global_init_op, local_init_op]) # training def train(train_path, val_path, exp_path, model_name, model_weights, patch_size, train_batch_size, val_batch_size, clf_epochs, finetune_epochs, clf_lr, finetune_lr, finetune_momentum, finetune_layers, l2, reg_biases, reg_final, augmentation, marginalization, oversampling, num_gpus, threads, prefetch_batches, log_interval, checkpoint, resume, seed): """Train a model. Args: train_path: String path to the generated training image patches. This should contain folders for each class. val_path: String path to the generated validation image patches. This should contain folders for each class. exp_path: String path in which to store the model checkpoints, logs, etc. for this experiment model_name: String indicating the model to use. model_weights: Optional string path to an HDF5 file containing the initial weights of the model. If None, then pretrained imagenet weights will be used. patch_size: Integer length to which the square patches will be resized. train_batch_size: Integer training batch size. val_batch_size: Integer validation batch size. clf_epochs: Integer number of epochs for which to training the new classifier layers. finetune_epochs: Integer number of epochs for which to fine-tune the model. clf_lr: Float learning rate for training the new classifier layers. finetune_lr: Float learning rate for fine-tuning the model. finetune_momentum: Float momentum rate for fine-tuning the model. finetune_layers: Integer number of layers at the end of the pretrained portion of the model to fine-tune. The new classifier layers will still be trained during fine-tuning as well. l2: Float L2 global regularization value. reg_biases: Boolean for whether or not to regularize biases. reg_final: Boolean for whether or not to regularize the final logits-producing layer. augmentation: Boolean for whether or not to apply random augmentation to the images. marginalization: Boolean for whether or not to use noise marginalization when evaluating the validation set. If True, then each image in the validation set will be expanded to a batch of augmented versions of that image, and predicted probabilities for each batch will be averaged to yield a single noise-marginalized prediction for each image. Note: if this is True, then `val_batch_size` must be divisible by 4, or equal to 1 for a special debugging case of no augmentation. oversampling: Boolean for whether or not to oversample the minority mitosis class via class-aware sampling. num_gpus: Integer number of GPUs to use for data parallelism. threads: Integer number of threads for dataset buffering. prefetch_batches: Integer number of batches to prefetch. log_interval: Integer number of steps between logging during training. checkpoint: Boolean flag for whether or not to save a checkpoint after each epoch. resume: Boolean flag for whether or not to resume training from a checkpoint. seed: Integer random seed. """ # TODO: break this out into: # * data gen func # * inference func # * loss func # * metrics func # * logging func # * train func # set random seed # NOTE: At the moment, this is faily useless because if the augmentation ops are seeded, they will # be evaluated in the exact same deterministic manner on every epoch, which is not desired. # Additionally, the multithreading needed to process the data will cause non-deterministic # results. The one benefit is that the classification layers will be created deterministically. np.random.seed(seed) tf.set_random_seed(seed) # create session, force tf.Keras to use it config = tf.ConfigProto(allow_soft_placement=True)#, log_device_placement=True) sess = tf.Session(config=config) tf.keras.backend.set_session(sess) # debugger #from tensorflow.python import debug as tf_debug #sess = tf_debug.LocalCLIDebugWrapperSession(sess) # data with tf.name_scope("data"): # NOTE: seed issues to be fixed in tf train_dataset = create_dataset(train_path, model_name, patch_size, train_batch_size, True, augmentation, False, oversampling, threads, prefetch_batches) #, seed) val_dataset = create_dataset(val_path, model_name, patch_size, val_batch_size, False, False, marginalization, False, threads, prefetch_batches) #, seed) # note that batch norm could be affected by very small final batches, but right now the fix, # which requires this change as well, would also affect evaluation tasks, so we will wait to # enable that (and this change too) until we move to tf Estimators #output_shapes = (tf.TensorShape([None, patch_size, patch_size, 3]), # tf.TensorShape([None]), # tf.TensorShape([None])) iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) #output_shapes) train_init_op = iterator.make_initializer(train_dataset) val_init_op = iterator.make_initializer(val_dataset) images, labels, filenames = iterator.get_next() input_shape = (patch_size, patch_size, 3) # models with tf.name_scope("model"): # replicate model on each GPU to allow for data parallelism if num_gpus > 1: with tf.device("/cpu:0"): model_tower, model_base = create_model(model_name, input_shape, images) #model_tower, model_base = create_model(model_name, input_shape, images) model = multi_gpu_model(model_tower, num_gpus) else: model_tower, model_base = create_model(model_name, input_shape, images) model = model_tower if model_weights is not None: model_tower.load_weights(model_weights) # compute logits and predictions, possibly with marginalization # NOTE: tf prefers to feed logits into a combined sigmoid and logistic loss function for # numerical stability if marginalization: logits = marginalize(model.output) # will marginalize at test time labels = tf.cond(tf.keras.backend.learning_phase(), lambda: labels, lambda: labels[0:1]) else: logits = model.output # for Bernoulli-derived loss probs = tf.nn.sigmoid(logits, name="probs") preds = tf.round(probs, name="preds") # implicit threshold at 0.5 # for Multinomial-derived loss #probs = tf.nn.softmax(logits, name="probs") # possible improved numerical stability #preds = tf.argmax(probs, axis=1, name="preds") # loss with tf.name_scope("loss"): with tf.control_dependencies([tf.assert_equal(tf.shape(labels)[0], tf.shape(logits)[0])]): data_loss = compute_data_loss(labels, logits) reg_loss = compute_l2_reg_loss( model_tower, include_frozen=True, reg_final=reg_final, reg_biases=reg_biases) loss = data_loss + l2*reg_loss # TODO: enable this and test it # use l2 reg during training, but not during validation. Otherwise, more fine-tuning will # lead to an apparent lower validation loss, even though it may just be due to more layers # that can be adjusted in order to lower the regularization portion of the loss. #loss = tf.cond(tf.keras.backend.learning_phase(), lambda: data_loss + l2*reg_loss, lambda: data_loss) # optim # TODO: extract this into a function with tests with tf.name_scope("optim"): global_step_op = tf.train.get_or_create_global_step() global_epoch_op = tf.Variable(0, trainable=False, name="global_epoch", dtype=tf.int32) global_epoch_increment_op = tf.assign_add(global_epoch_op, 1, name="global_epoch_increment") # TODO: rework the `finetune_layers` param to include starting from the beg/end # classifier # - freeze all pre-trained model layers. if model_base: for layer in model_base.layers: layer.trainable = False var_list = model_tower.trainable_weights else: var_list = None # i.e., use all available variables if we are not using transfer learning # add any weight regularization to the base loss for unfrozen layers: clf_reg_loss = compute_l2_reg_loss(model_tower, reg_final=reg_final, reg_biases=reg_biases) clf_loss = data_loss + l2*clf_reg_loss clf_opt = tf.train.AdamOptimizer(clf_lr) clf_grads_and_vars = clf_opt.compute_gradients(clf_loss, var_list=var_list) # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) clf_model_update_ops = model_tower.updates with tf.control_dependencies(clf_model_update_ops): clf_train_op = clf_opt.apply_gradients(clf_grads_and_vars, global_step=global_step_op) # finetuning # - unfreeze a portion of the pre-trained model layers. # note, could make this arbitrary, but for now, fine-tune some number of layers at the *end* of # the pretrained portion of the model if model_base: if finetune_layers != 0: for layer in model_base.layers[-finetune_layers:]: layer.trainable = True var_list = model_tower.trainable_weights else: var_list = None # i.e., use all available variables if we are not using transfer learning # add any weight regularization to the base loss for unfrozen layers: finetune_reg_loss = compute_l2_reg_loss(model_tower, reg_final=reg_final, reg_biases=reg_biases) finetune_loss = data_loss + l2*finetune_reg_loss # TODO: enable this, or use `tf.train.piecewise_constant` with `global_epoch` #lr = tf.train.exponential_decay( # finetune_lr, global_step_op, # decay_steps=decay_steps, decay_rate=decay_rate, # staircase=True) finetune_opt = tf.train.MomentumOptimizer(finetune_lr, finetune_momentum, use_nesterov=True) finetune_grads_and_vars = finetune_opt.compute_gradients(finetune_loss, var_list=var_list) # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) finetune_model_update_ops = model_tower.updates with tf.control_dependencies(finetune_model_update_ops): finetune_train_op = finetune_opt.apply_gradients( finetune_grads_and_vars, global_step=global_step_op) # metrics with tf.name_scope("metrics"): num_thresholds = 11 mean_loss, acc, ppv, sens, f1, pr, f1s, metric_update_ops, metric_reset_ops = compute_metrics( loss, labels, preds, probs, num_thresholds) f1_max = tf.reduce_max(f1s) thresh_max = pr.thresholds[tf.argmax(f1s)] # tensorboard summaries # TODO: extract this into a function # NOTE: tensorflow is annoying when it comes to name scopes, so sometimes the name needs to be # hardcoded as a prefix instead of a proper name scope if that name was used as a name scope # earlier. otherwise, a numeric suffix will be appended to the name. # general minibatch summaries with tf.name_scope("summary"): # data actual_batch_size = tf.shape(images)[0] percent_pos = tf.reduce_mean(labels) # positive labels are 1 pos_mask = tf.cast(labels, tf.bool) neg_mask = tf.logical_not(pos_mask) mitosis_images = tf.boolean_mask(images, pos_mask) normal_images = tf.boolean_mask(images, neg_mask) mitosis_filenames = tf.boolean_mask(filenames, pos_mask) normal_filenames = tf.boolean_mask(filenames, neg_mask) num_preds = tf.shape(preds)[0] # false-positive & false-negative cases pos_preds_mask = tf.cast(tf.squeeze(preds, axis=1), tf.bool) #pos_preds_mask = tf.cast(preds, tf.bool) neg_preds_mask = tf.logical_not(pos_preds_mask) fp_mask = tf.logical_and(pos_preds_mask, neg_mask) fn_mask = tf.logical_and(neg_preds_mask, pos_mask) fp_images = tf.boolean_mask(images, fp_mask) fn_images = tf.boolean_mask(images, fn_mask) fp_filenames = tf.boolean_mask(filenames, fp_mask) fn_filenames = tf.boolean_mask(filenames, fn_mask) with tf.name_scope("images"): tf.summary.image("mitosis", unnormalize(mitosis_images, model_name), 1, collections=["minibatch", "minibatch_val"]) tf.summary.image("normal", unnormalize(normal_images, model_name), 1, collections=["minibatch", "minibatch_val"]) tf.summary.image("false-positive", unnormalize(fp_images, model_name), 1, collections=["minibatch", "minibatch_val"]) tf.summary.image("false-negative", unnormalize(fn_images, model_name), 1, collections=["minibatch", "minibatch_val"]) with tf.name_scope("data/filenames"): tf.summary.text("mitosis", mitosis_filenames, collections=["minibatch", "minibatch_val"]) tf.summary.text("normal", normal_filenames, collections=["minibatch", "minibatch_val"]) tf.summary.text("false-positive", fp_filenames, collections=["minibatch", "minibatch_val"]) tf.summary.text("false-negative", fn_filenames, collections=["minibatch", "minibatch_val"]) tf.summary.histogram("data/images", images, collections=["minibatch", "minibatch_val"]) tf.summary.histogram("data/labels", labels, collections=["minibatch", "minibatch_val"]) for layer in model_tower.layers: for weight in layer.weights: tf.summary.histogram(weight.name, weight, collections=["minibatch", "minibatch_val"]) if hasattr(layer, 'output'): layer_name = "model/{}/out".format(layer.name) tf.summary.histogram(layer_name, layer.output, collections=["minibatch", "minibatch_val"]) tf.summary.histogram("model/probs", probs, collections=["minibatch", "minibatch_val"]) tf.summary.histogram("model/preds", preds, collections=["minibatch", "minibatch_val"]) with tf.name_scope("minibatch"): tf.summary.scalar("loss", loss, collections=["minibatch"]) tf.summary.scalar("batch_size", actual_batch_size, collections=["minibatch", "minibatch_val"]) tf.summary.scalar("num_preds", num_preds, collections=["minibatch", "minibatch_val"]) tf.summary.scalar("percent_positive", percent_pos, collections=["minibatch"]) tf.summary.scalar("learning_phase", tf.to_int32(tf.keras.backend.learning_phase()), collections=["minibatch", "minibatch_val"]) # TODO: gradient histograms # TODO: first layer convolution kernels as images minibatch_summaries = tf.summary.merge_all("minibatch") minibatch_val_summaries = tf.summary.merge_all("minibatch_val") # epoch summaries with tf.name_scope("epoch"): tf.summary.scalar("loss", mean_loss, collections=["epoch"]) tf.summary.scalar("acc", acc, collections=["epoch"]) tf.summary.scalar("ppv", ppv, collections=["epoch"]) tf.summary.scalar("sens", sens, collections=["epoch"]) tf.summary.scalar("f1", f1, collections=["epoch"]) tf.summary.scalar("f1_max", f1_max, collections=["epoch"]) tf.summary.scalar("thresh_max", thresh_max, collections=["epoch"]) tb.summary.pr_curve_raw_data_op( name='pr_curve', true_positive_counts=pr.tp, false_positive_counts=pr.fp, true_negative_counts=pr.tn, false_negative_counts=pr.fn, precision=pr.precision, recall=pr.recall, num_thresholds=num_thresholds, display_name='pr curve', description="PR curve for {num_thresholds} thresholds.".format(num_thresholds=num_thresholds), collections=["epoch"]) epoch_summaries = tf.summary.merge_all("epoch") # use train and val writers so that plots can be on same graph train_writer = tf.summary.FileWriter(os.path.join(exp_path, "train"), tf.get_default_graph()) val_writer = tf.summary.FileWriter(os.path.join(exp_path, "val")) # save ops checkpoint_filename = os.path.join(exp_path, "model.ckpt") saver = tf.train.Saver() # initialize stuff initialize_variables(sess) if resume: saver.restore(sess, checkpoint_filename) # TODO: extract this into a function with tests # training loop for new classifier layers and fine-tuning for train_op, epochs in [(clf_train_op, clf_epochs), (finetune_train_op, finetune_epochs)]: global_epoch_start = sess.run(global_epoch_op) for _ in range(global_epoch_start, global_epoch_start+epochs): # allow for resuming of training global_epoch = sess.run(global_epoch_op) # training sess.run(train_init_op) while True: global_step = sess.run(global_step_op) try: if log_interval > 0 and global_step % log_interval == 0: # train, update metrics, & log stuff _, _, loss_val, summary_str = sess.run([train_op, metric_update_ops, loss, minibatch_summaries], feed_dict={tf.keras.backend.learning_phase(): 1}) mean_loss_val, f1_val = sess.run([mean_loss, f1]) train_writer.add_summary(summary_str, global_step) print("train", global_epoch, global_step, loss_val, mean_loss_val, f1_val) else: # train & update metrics _, _ = sess.run( [train_op, metric_update_ops], feed_dict={tf.keras.backend.learning_phase(): 1}) except tf.errors.OutOfRangeError: break # log average training metrics for epoch & reset op_values = sess.run([f1, f1_max, thresh_max, ppv, sens, acc, mean_loss, epoch_summaries]) (f1_val, f1_max_val, thresh_max_val, ppv_val, sens_val, acc_val, mean_loss_val, summary_str) = op_values print("---epoch {global_epoch}, train f1 (@ 0.5): {f1_val}, train max f1 "\ "(@ {thresh_max_val}): {f1_max_val}, train ppv: {ppv_val}, train sens: {sens_val}, "\ "train acc: {acc_val}, train avg loss: {mean_loss_val}"\ .format(global_epoch=global_epoch, f1_val=f1_val, acc_val=acc_val, mean_loss_val=mean_loss_val, thresh_max_val=thresh_max_val, f1_max_val=f1_max_val, ppv_val=ppv_val, sens_val=sens_val)) train_writer.add_summary(summary_str, global_epoch) sess.run(metric_reset_ops) # validation sess.run(val_init_op) vi = 0 # validation step while True: try: # evaluate & update metrics if log_interval > 0 and vi % log_interval == 0: _, loss_val, summary_str = sess.run( [metric_update_ops, loss, minibatch_val_summaries], feed_dict={tf.keras.backend.learning_phase(): 0}) mean_loss_val, f1_val = sess.run([mean_loss, f1]) print("val", global_epoch, vi, loss_val, mean_loss_val, f1_val) val_writer.add_summary(summary_str, vi) else: _ = sess.run(metric_update_ops, feed_dict={tf.keras.backend.learning_phase(): 0}) vi += 1 except tf.errors.OutOfRangeError: break # log average validation metrics for epoch & reset op_values = sess.run([f1, f1_max, thresh_max, ppv, sens, acc, mean_loss, epoch_summaries]) (f1_val, f1_max_val, thresh_max_val, ppv_val, sens_val, acc_val, mean_loss_val, summary_str) = op_values print("---epoch {global_epoch}, val f1 (@ 0.5): {f1_val}, val max f1 (@ {thresh_max_val}): "\ "{f1_max_val}, val ppv: {ppv_val}, val sens: {sens_val}, val acc: {acc_val}, "\ "val avg loss: {mean_loss_val}"\ .format(global_epoch=global_epoch, f1_val=f1_val, thresh_max_val=thresh_max_val, f1_max_val=f1_max_val, ppv_val=ppv_val, sens_val=sens_val, acc_val=acc_val, mean_loss_val=mean_loss_val)) val_writer.add_summary(summary_str, global_epoch) sess.run(metric_reset_ops) sess.run(global_epoch_increment_op) # global_epoch += 1 # save model if checkpoint: keras_filename = os.path.join(exp_path, "checkpoints", "{f1_max_val:.5}_f1max_{f1_val:.5}_f1_{mean_loss_val:.5}_loss_{global_epoch}_"\ "epoch_model.hdf5"\ .format(f1_max_val=f1_max_val, f1_val=f1_val, mean_loss_val=mean_loss_val, global_epoch=global_epoch)) model_tower.save(keras_filename, include_optimizer=False) # keras model saver.save(sess, checkpoint_filename) # full TF graph print("Saved model file to {}".format(keras_filename)) val_writer.flush() #train_writer.flush() def main(argv=None): """Command line interface for this script. Can optionally pass in a list of strings to simulate command line usage. """ # parse args parser = argparse.ArgumentParser() parser.add_argument("--patches_path", default=os.path.join("data", "mitoses", "patches"), help="path to the generated image patches containing `train` & `val` folders "\ "(default: %(default)s)") parser.add_argument("--exp_parent_path", default=os.path.join("experiments", "mitoses"), help="parent path in which to store experiment folders (default: %(default)s)") parser.add_argument("--exp_name", default=None, help="path within the experiment parent path in which to store the model checkpoints, "\ "logs, etc. for this experiment; an existing path can be used to resume training "\ "(default: %%y-%%m-%%d_%%H:%%M:%%S_{model})") parser.add_argument("--exp_name_suffix", default=None, help="suffix to add to experiment name (default: all parameters concatenated together)") parser.add_argument("--exp_full_path", default=None, help="full path in which to store the experiment. either this or the --exp_parent_path, "\ "--exp_name, --exp_name_suffix flags as a group can be used. typically, this would "\ "be used to resume an existing experiment (default: %(default)s)") parser.add_argument("--model", default="vgg", choices=["logreg", "vgg", "vgg_new", "vgg19", "resnet", "resnet_new", "resnet_custom"], help="name of the model to use in ['logreg', 'vgg', 'vgg_new', 'vgg19', 'resnet', "\ "'resnet_new', 'resnet_custom'] (default: %(default)s)") parser.add_argument("--model_weights", default=None, help="optional hdf5 file containing the initial weights of the model. if not supplied, the "\ "model will start with pretrained weights from imagenet. (default: %(default)s)") parser.add_argument("--patch_size", type=int, default=64, help="integer length to which the square patches will be resized (default: %(default)s)") parser.add_argument("--train_batch_size", type=int, default=32, help="training batch size (default: %(default)s)") parser.add_argument("--val_batch_size", type=int, default=32, help="validation batch size (default: %(default)s)") parser.add_argument("--clf_epochs", type=int, default=1, help="number of epochs for which to train the new classifier layers "\ "(default: %(default)s)") parser.add_argument("--finetune_epochs", type=int, default=0, help="number of epochs for which to fine-tune the unfrozen layers (default: %(default)s)") parser.add_argument("--clf_lr", type=float, default=1e-3, help="learning rate for training the new classifier layers (default: %(default)s)") parser.add_argument("--finetune_lr", type=float, default=1e-4, help="learning rate for fine-tuning the unfrozen layers (default: %(default)s)") parser.add_argument("--finetune_momentum", type=float, default=0.9, help="momentum rate for fine-tuning the unfrozen layers (default: %(default)s)") parser.add_argument("--finetune_layers", type=int, default=0, help="number of layers at the end of the pretrained portion of the model to fine-tune "\ "(note: the new classifier layers will still be trained during fine-tuning as well) "\ "(default: %(default)s)") parser.add_argument("--l2", type=float, default=1e-3, help="amount of l2 weight regularization (default: %(default)s)") parser.add_argument("--reg_biases", default=False, action="store_true", help="whether or not to regularize biases. (default: %(default)s)") parser.add_argument("--skip_reg_final", dest="reg_final", action="store_false", help="whether or not to skip regularization of the logits-producing layer "\ "(default: %(default)s)") parser.set_defaults(reg_final=True) augment_parser = parser.add_mutually_exclusive_group(required=False) augment_parser.add_argument("--augment", dest="augment", action="store_true", help="apply random augmentation to the training images (default: True)") augment_parser.add_argument("--no_augment", dest="augment", action="store_false", help="do not apply random augmentation to the training images (default: False)") parser.set_defaults(augment=True) parser.add_argument("--marginalize", default=False, action="store_true", help="use noise marginalization when evaluating the validation set. if this is set, then "\ "the validation batch_size must be divisible by 4, or equal to 1 for no augmentation "\ "(default: %(default)s)") parser.add_argument("--oversample", default=False, action="store_true", help="oversample the minority mitosis class during training via class-aware sampling "\ "(default: %(default)s)") parser.add_argument("--num_gpus", type=int, default=1, help="num_gpus: Integer number of GPUs to use for data parallelism. (default: %(default)s)") parser.add_argument("--threads", type=int, default=5, help="number of threads for dataset parallel processing; note: this will cause "\ "non-reproducibility (default: %(default)s)") # TODO: update this to default to `None` to take advantage of auto prefetch buffer size tuning # https://github.com/tensorflow/tensorflow/commit/d355f4e2644b68ea643f573c564936ec23b93787 parser.add_argument("--prefetch_batches", type=int, default=100, help="number of batches to prefetch (default: %(default)s)") parser.add_argument("--log_interval", type=int, default=100, help="number of steps between logging during training (default: %(default)s)") checkpoint_parser = parser.add_mutually_exclusive_group(required=False) checkpoint_parser.add_argument("--checkpoint", dest="checkpoint", action="store_true", help="save a checkpoint after each epoch (default: True)") checkpoint_parser.add_argument("--no_checkpoint", dest="checkpoint", action="store_false", help="do not save a checkpoint after each epoch (default: False)") parser.set_defaults(checkpoint=True) parser.add_argument("--resume", default=False, action="store_true", help="resume training from a checkpoint (default: %(default)s)") parser.add_argument("--seed", type=int, help="random seed (default: %(default)s)") args = parser.parse_args(argv) # set train/val paths train_path = os.path.join(args.patches_path, "train") val_path = os.path.join(args.patches_path, "val") if args.exp_full_path is None: if args.exp_name is None: date = datetime.strftime(datetime.today(), "%y%m%d_%H%M%S") args.exp_name = date + "_" + args.model if args.exp_name_suffix is None: args.exp_name_suffix = "patch_size_{args.patch_size}_batch_size_{args.train_batch_size}_"\ "clf_epochs_{args.clf_epochs}_ft_epochs_{args.finetune_epochs}_"\ "clf_lr_{args.clf_lr}_ft_lr_{args.finetune_lr}_"\ "ft_mom_{args.finetune_momentum}_ft_layers_{args.finetune_layers}_"\ "l2_{args.l2}_rb_{args.reg_biases}_aug_{args.augment}_"\ "marg_{args.marginalize}_over_{args.oversample}".format(args=args) full_exp_name = args.exp_name + "_" + args.exp_name_suffix args.exp_full_path = os.path.join(args.exp_parent_path, full_exp_name) # make an experiment folder if not os.path.exists(args.exp_full_path): os.makedirs(os.path.join(args.exp_full_path, "checkpoints")) print("experiment directory: {}".format(args.exp_full_path)) # create a random seed if needed if args.seed is None: args.seed = np.random.randint(1e9) # save args to a file in the experiment folder, appending if it exists with open(os.path.join(args.exp_full_path, 'args.txt'), 'a') as f: json.dump(args.__dict__, f) print("", file=f) # can be read in later with #with open('args.txt', 'r') as f: # args = json.load(f) # save command line invocation to txt file for ease of rerunning the exact experiment with open(os.path.join(args.exp_full_path, 'invoke.txt'), 'a') as f: # NOTE: since we sometimes call this `main` function via the hyperparam search script, we can't # always use `sys.argv` because it would always refer to the outer invocation, i.e., the # invocation of the hyperparam search script. if argv is not None: # called from hpo script fname = os.path.basename(__file__) f.write("python3 {fname} ".format(fname=fname) + " ".join(argv) + "\n") else: # called directly f.write("python3 " + " ".join(sys.argv) + "\n") # copy this script to the experiment folder shutil.copy2(os.path.realpath(__file__), args.exp_full_path) # train! train(train_path=train_path, val_path=val_path, exp_path=args.exp_full_path, model_name=args.model, model_weights=args.model_weights, patch_size=args.patch_size, train_batch_size=args.train_batch_size, val_batch_size=args.val_batch_size, clf_epochs=args.clf_epochs, finetune_epochs=args.finetune_epochs, clf_lr=args.clf_lr, finetune_lr=args.finetune_lr, finetune_momentum=args.finetune_momentum, finetune_layers=args.finetune_layers, l2=args.l2, reg_biases=args.reg_biases, reg_final=args.reg_final, augmentation=args.augment, marginalization=args.marginalize, oversampling=args.oversample, num_gpus=args.num_gpus, threads=args.threads, prefetch_batches=args.prefetch_batches, log_interval=args.log_interval, checkpoint=args.checkpoint, resume=args.resume, seed=args.seed) if __name__ == "__main__": main() # --- # tests # TODO: eventually move these to a separate file. # `py.test train_mitoses.py` # TODO: use this fixture when we move these tests to a test module #import pytest # #@pytest.fixture(autouse=True) #def reset(): # """Ensure that the TensorFlow graph/session are clean.""" # tf.reset_default_graph() # tf.keras.backend.clear_session() # yield # run test def reset(): """Ensure that the TensorFlow graph/session are clean.""" tf.reset_default_graph() tf.keras.backend.clear_session() # data def test_get_image(tmpdir): # NOTE: pytest will provide a temp directory automatically: # https://docs.pytest.org/en/latest/tmpdir.html from PIL import Image reset() # create png image filename = os.path.join(str(tmpdir), "x.png") x = np.random.randint(0, 255, dtype=np.uint8, size=(64,64,3)) Image.fromarray(x).save(filename) image_op = get_image(filename, 64) sess = tf.keras.backend.get_session() image = sess.run(image_op) assert image.shape == (64, 64, 3) assert image.dtype == np.float32 assert np.min(image) >= 0 assert np.max(image) < 1 assert np.allclose(x.astype(np.float32) / 255, image) assert np.allclose((x / 255).astype(np.float32), image) def test_get_label(): import pytest # mitosis reset() filename = "train/mitosis/1_03_05_713_348.jpg" label_op = get_label(filename) sess = tf.keras.backend.get_session() label = sess.run(label_op) assert label == 1 # normal reset() filename = "train/normal/1_03_05_713_348.jpg" label_op = get_label(filename) sess = tf.keras.backend.get_session() label = sess.run(label_op) assert label == 0 # wrong label name with pytest.raises(tf.errors.InvalidArgumentError): reset() filename = "train/unknown/1_03_05_713_348.jpg" label_op = get_label(filename) sess = tf.keras.backend.get_session() label = sess.run(label_op) def test_preprocess(tmpdir): # NOTE: pytest will provide a temp directory automatically: # https://docs.pytest.org/en/latest/tmpdir.html from PIL import Image reset() # create png image folder = os.path.join(str(tmpdir), "this/train/mitosis") os.makedirs(folder) filename_orig = os.path.join(folder, "x.png") x = np.random.randint(0, 255, dtype=np.uint8, size=(64,64,3)) Image.fromarray(x).save(filename_orig) image_op, label_op, filename_op = preprocess(tf.constant(filename_orig), 64) sess = tf.keras.backend.get_session() image, label, filename = sess.run([image_op, label_op, filename_op]) assert image.shape == (64, 64, 3) assert image.dtype == np.float32 assert np.min(image) >= 0 assert np.max(image) < 1 assert label == 1.0 assert filename.decode("utf-8") == filename_orig def test_normalize_unnormalize(): reset() sess = tf.keras.backend.get_session() input_shape = (64, 64, 3) x_np = np.random.rand(*input_shape).astype(np.float32) # uniform sampling in [0, 1) x_batch_np = np.random.rand(2, *input_shape).astype(np.float32) # uniform sampling in [0, 1) # imagenet preprocessing model_name = "vgg" means = np.array([103.939, 116.779, 123.68]).astype(np.float32) x_norm_correct_np = x_np[..., ::-1] * 255 - means x_batch_norm_correct_np = x_batch_np[..., ::-1] * 255 - means assert x_np.dtype == np.float32 assert x_np.dtype == x_batch_np.dtype == x_norm_correct_np.dtype == x_batch_norm_correct_np.dtype # single example def test(x_norm, x_unnorm): """Test normalized and unnormalized versions of x.""" # NOTE: closes over x_np & x_norm_correct_np assert x_norm.dtype == x_norm_correct_np.dtype assert x_unnorm.dtype == x_np.dtype assert
np.allclose(x_norm, x_norm_correct_np)
numpy.allclose
import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../LassoVariants/AlternateLasso') # sys.path.append('../../LassoVariants/AlternateLasso') import pickle import numpy as np from AlternateLinearModel import AlternateLogisticLasso from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC import pandas as pd from copy import deepcopy from sklearn.metrics import roc_auc_score from multiprocessing import Pool SEED = 42 def apply_alternate_LL(X, y, feature_names=[], rho=0.1, tol=1e-4, save='test.npy'): mdl = AlternateLogisticLasso(rho=rho, tol=tol, verbose=True, save=save) mdl = mdl.fit(X, y, feature_names) #print(mdl.a_, mdl.lasso_.coef_) return mdl def parse_mdl_predictor(mdl): if len(mdl.alternates_) == 0: for i, coef in enumerate(mdl.a_): yield i, i, 0, 0, coef else: for i, best_features in enumerate(mdl.alternates_): fname, coef = best_features[0], best_features[1] yield fname, i, 0, 0, coef for j, semi in enumerate(best_features[2]): sname, sscore, scoef = semi[0], semi[1], semi[2] yield sname, i, j+1, sscore-mdl.obj_, scoef yield 'intercept', -1, 0, 0, mdl.b_ METHODS = ['la', 'logistic', 'rf', 'svm'] # METHODS = ['la', 'logistic', 'rf'] def get_classifier(classifier, kwargs={}): mdl = None if classifier == 'la' or classifier == 'laobest': mdl = AlternateLogisticLasso(**kwargs) if classifier == 'logistic': mdl = LogisticRegression(penalty='l1', solver='liblinear') elif classifier == 'rf': mdl = RandomForestClassifier(n_estimators=100) elif classifier == 'svm': mdl = SVC(kernel='rbf', degree=3, probability=True, random_state=SEED, gamma='auto') else: pass return mdl def make_other_clfs_each(X, c, clusters, classifier, output): y = np.array([1 if cl == c else 0 for cl in clusters]) mdl = get_classifier(classifier) mdl = mdl.fit(X, y) print('Best auc', output, c, classifier, roc_auc_score(y, mdl.predict_proba(X)[:,1])) return (c, deepcopy(mdl)) def make_other_clfs_parallel(X, clusters, output, classifier='logistic', cores=1): # logistic, svm, random forest global SEED pool = Pool(processes=cores) print(cores, classifier) # X = X[0:100,:] # clusters = clusters[0:100] cluster_list = sorted(list(set(clusters))) for i in range(0, len(cluster_list), cores): print(str(i)+'-'+str(min(len(cluster_list), i+cores))+' clusters') sys.stdout.flush() result = pool.starmap_async(make_other_clfs_each, [(deepcopy(X), c, clusters, classifier, output) for c in cluster_list[i:min(len(cluster_list), i+cores)]]) clfs = {} for (c, mdl) in result.get(): clfs[c] = mdl with open(output+'_'+classifier+'.npy', 'wb') as f: pickle.dump(clfs, f) pool.close() pool.join() del pool def make_other_clfs(X, clusters, output, classifier='logistic', cores=1, saved=False): # logistic, svm, random forest global SEED if cores > 1: make_other_clfs_parallel(X, clusters, output, classifier, cores) return clfs = {} ofname = output+'_'+classifier+'.npy' if (not saved) or (not os.path.exists(ofname)): for c in set(clusters): y = np.array([1 if cl == c else 0 for cl in clusters]) mdl = get_classifier(classifier) mdl = mdl.fit(X, y) print('Best auc', output, c, classifier, roc_auc_score(y, mdl.predict_proba(X)[:,1])) clfs[c] = deepcopy(mdl) with open(ofname, 'wb') as f: pickle.dump(clfs, f) def read_other_clfs(output, classifier='logistic'): if os.path.exists(output+'_'+classifier+'.npy'): with open(output+'_'+classifier+'.npy', 'rb') as f: return pickle.load(f) return None def read_lasso_clf(header): if os.path.exists(header+'.npy'): with open(header+'.npy', 'rb') as f: return pickle.load(f) return None def make_lasso_matrix_each(X, c, clusters, feature_names): print('make_lasso_each', c, X.shape) kwargs = {'rho':1e-5, 'tol':1e-4, 'check':0.90, 'max_alternates':-1, 'maxitr':1000} mdl = get_classifier('la', kwargs) y = np.array([True if cl == c else False for cl in clusters]) mdl = mdl.fit(X, y, featurename=feature_names) # mdl.predict(X) temp = pd.DataFrame([list(x) for x in parse_mdl_predictor(mdl)], columns=['index', 'dimension', 'order', 'score', 'coef']) temp = temp.assign(gene=[feature_names[int(x)] if x != 'intercept' else x for x in temp.loc[:,'index']]) temp = temp.assign(celltype=c) print(c, mdl, temp) return (c, deepcopy(mdl), temp) def make_lasso_matrix_parallel(X, clusters, header, feature_names=[], cores=1): print(cores, 'la') print(X.shape, clusters[0:10], len(set(clusters))) pmatrix = None clfs = {} pool = Pool(processes=cores) cluster_list = sorted(list(set(clusters))) for i in range(0, len(cluster_list), cores): print(str(i)+'-'+str(min(len(cluster_list), i+cores))+' clusters') sys.stdout.flush() result = pool.starmap_async(make_lasso_matrix_each, [(deepcopy(X), c, clusters, feature_names) for c in cluster_list[i:min(len(cluster_list), i+cores)]]) for (c, mdl, temp) in result.get(): if pmatrix is None: pmatrix = temp else: pmatrix = pd.concat([pmatrix, temp], axis=0, ignore_index=True) clfs[c] = mdl with open(header+'.npy', 'wb') as f: pickle.dump(clfs, f) if pmatrix is not None: pmatrix.to_csv(header+'.csv') pool.close() pool.join() del pool def make_lasso_matrix(X, clusters, header, feature_names=[], cores=1, saved=False): if cores > 1: make_lasso_matrix_parallel(X, clusters, header, feature_names, cores) return pmatrix = None clfs = {} kwargs = {'rho':1e-5, 'tol':1e-4, 'check':0.90, 'max_alternates':-1, 'maxitr':1000} ofname = header+'.npy' if (not saved) or (not os.path.exists(ofname)): for c in sorted(list(set(clusters))): mdl = get_classifier('la', kwargs) y = np.array([True if cl == c else False for cl in clusters]) mdl = mdl.fit(X, y, featurename=feature_names) mdl.predict(X) # mdl = apply_alternate_LL(X, y, feature_names, save='') temp = pd.DataFrame([list(x) for x in parse_mdl_predictor(mdl)], columns=['index', 'dimension', 'order', 'score', 'coef']) temp = temp.assign(gene=[feature_names[int(x)] if x != 'intercept' else x for x in temp.loc[:,'index']]) temp = temp.assign(celltype=c) if pmatrix is None: pmatrix = temp else: pmatrix = pd.concat([pmatrix, temp], axis=0, ignore_index=True) clfs[c] = deepcopy(mdl) with open(ofname, 'wb') as f: pickle.dump(clfs, f) if pmatrix is not None: pmatrix.to_csv(header+'.csv') if __name__ == "__main__": seed = 0 num = 1000 dim = 2 dim_extra = 2 np.random.seed(seed) X = np.random.randn(num, dim + dim_extra) for i in range(dim_extra): X[:, dim + i] = X[:, 0] + 0.5 *
np.random.randn(num)
numpy.random.randn
import numpy as np import scipy.optimize import scipy.linalg from scipy.stats import unitary_group as UG ############### ### Matrix Operations ############### def dag(A): return 1.*np.conjugate(np.transpose(A)) def dot(A,B): return np.trace(dag(A)@B) def norm(A): return np.sqrt(np.abs(dot(A,A))) def kprod(A,B): return np.kron(A,B) def ksum(A,B): return np.kron(A,one) + np.kron(one,B) def eig(A): vals, vecs = np.linalg.eigh(A) vecs = np.transpose(vecs) ## so vecs[0] is an eigenvector return 1.*vals, 1.*vecs def couter(psi): return 1.*np.outer(psi, np.conjugate(psi)) ############### ### Multipartite Matrix Operations ############### ## basis dictionaries d22 = {'00':0, '01':1, '10':2, '11':3} d23 = {'00':0, '01':1, '02':2, '10':3, '11':4, '12':5} d33 = {'00':0, '01':1, '02':2, '10':3, '11':4, '12':5, '20':6, '21':7, '22':8} d222 = {'000':0, '001':1, '010':2, '011':3, '100':4, '101':5, '110':6, '111':7} d223 = {'000':0, '001':1, '002':2, '010':3, '011':4, '012':5, '100':6, '101':7, '102':8, '110':9, '111':10, '112':11} d2222 = {format(i,'04b'):i for i in range(16)} dxx = {'22':d22, '23':d23, '222':d222, '223':d223, '33':d33, '2222':d2222} ## dictionary lookup from n=(nA,nB,...) def ndict(n): return dxx[''.join([str(nn) for nn in n])] ## generate list of basis index labels for system of type n=(nA,nB,...), possibly holding some index values fixed ## sums over all index values which are 'x' in the hold argument ## "mind" = "multipartite indices" def mind(n=[2,2], hold='xxxxx'): ss = [''.join([str(i) for i in range(nn)]) for nn in n] for i in range(len(n)): if not hold[i] == 'x': ss[i] = hold[i] ijk= [x for x in ss[0]] for s in ss[1:]: ijk = [x+y for x in ijk for y in s] return tuple(ijk) ## "rind" = "rho indices" def rind(n=[2,2], hold='xxxxx'): dd = ndict(n) return np.array([dd[idx] for idx in mind(n,hold)], dtype=int) ## compute reduced density matrices given n=(nA,nB,...) and rho def REDUCE(rho, n): ## check dims match if len(rho)==np.prod(n): if len(n)==1: red = [1.*rho] if len(n)>1: red = [np.zeros((nn,nn), dtype=complex) for nn in n] ## iterate over subspaces for m in range(len(n)): ## iterate over reduced density matrix elements for i in range(n[m]): for j in range(n[m]): ## indices to sum over hold = len(n)*'x' hold = hold[:m]+str(i)+hold[m+1:] mi, ri = mind(n,hold), rind(n,hold) mj, rj = mind(n,hold.replace(str(i),str(j))), rind(n,hold.replace(str(i),str(j))) ## fill rho red[m][i,j] = np.sum([rho[ri[k],rj[k]] for k in range(len(ri))], axis=0, dtype=complex) ## return return tuple([1.*rr for rr in red]) ############### ### Generate Arbitrary 2 or 3 dimensional rank-1 coarse-graining ############### ## function used in parameterizing SU3 def FF(v,w,x,y,z): v,w,x,y,z = 1.*v,1.*w,1.*x,1.*y,1.*z return -np.cos(v)*np.cos(w)*np.cos(x)*np.exp(1j*y) - np.sin(w)*np.sin(x)*np.exp(-1j*z) ## arbitrary SU matrix parameterized by real vector x in (0,1) def SU(x): if len(x)==3: return SU2(x) if len(x)==8: return SU3(x) ## SU2 parameterized by real vector x def SU2(x=np.zeros(3)): ## identity is at x = np.array([0.,0.,0.]) ## periodic as each x=x+1, so use x in (0,1) th = 2.*np.pi*x su = np.array( [ [ np.cos(th[0])*np.exp( 1j*th[1]), np.sin(th[0])*np.exp( 1j*th[2])], [-np.sin(th[0])*np.exp(-1j*th[2]), np.cos(th[0])*np.exp(-1j*th[1])], ], dtype=complex) return 1.*su ## SU3 parameterized by real vector x def SU3(x=np.array([.5,.5,.5,0.,0.,0.,0.,0.])): ## https://arxiv.org/abs/1303.5904 ## identity is at x = np.array([.5,.5,.5,0.,0.,0.,0.,0.]) ## periodic as each x=x+1, so use x in (0,1) x = 2.*np.pi*x pi = np.pi ph31, th31, th32, ph32, ch32, th21, ch21, ph21 = 1.*x su = np.zeros((3,3), dtype=complex) ## top row su[0,0] = FF(th31,0,0,ph31+pi,0) su[0,1] = FF(th31-pi/2.,th32,pi,ph32,0) su[0,2] = FF(th31-pi/2.,th32-pi/2.,pi,ch32,0) ## middle row su[1,0] = FF(th31-pi/2.,pi,th21,ph21,0) su[1,1] = FF(th31,th32,th21,-ph31+ph32+ph21,ch32+ch21) su[1,2] = FF(th31,th32-pi/2.,th21,-ph31+ch32+ph21,ph32+ch21) ## bottom row su[2,0] = FF(th31-pi/2.,pi,th21-pi/2.,ch21,0) su[2,1] = FF(th31,th32,th21-pi/2,-ph31+ph32+ch21,ch32+ph21) su[2,2] = FF(th31,th32-pi/2,th21-pi/2,-ph31+ch32+ch21,ph32+ph21) ## return return 1.*su ## make a set of projectors from the columns of a unitary matrix def PROJ(U): proj = np.array([couter(U[i]) for i in range(len(U))], dtype=complex) return 1.*proj ## combine two sets of projectors by tensor product def PROJPROD(PA,PB): return 1.*np.array([kprod(pa,pb) for pa in PA for pb in PB], dtype=complex) ## combine a list of sets of projectors by tensor product def PROJMP(PX): proj = PX[0] for j in range(1,len(PX)): proj = PROJPROD(proj,PX[j]) return 1.*proj ## product projectors parameterized by real vector x ## n=(nA,nB,...) dictates how dimensions split into product def PROJN(x=np.zeros(6), n=[2,2], factors_out=False): n = np.array(n, dtype=int) if len(x)==
np.sum(n**2-1)
numpy.sum
# Copyright (c) 2015, <NAME> # See LICENSE file for details: <https://github.com/moble/scri/blob/master/LICENSE> from . import Inertial, WaveformModes, SpinWeights, DataNames from . import h, hdot, sigma, news, psi0, psi1, psi2, psi3, psi4 from .waveform_base import WaveformBase, waveform_alterations import sys import warnings import pprint import numbers import math import numpy as np from scipy import interpolate import quaternion import spherical_functions as sf import spinsfast def process_transformation_kwargs(ell_max, **kwargs): # Build the supertranslation and spacetime_translation arrays supertranslation = np.zeros((4,), dtype=complex) # For now; may be resized below ell_max_supertranslation = 1 # For now; may be increased below if "supertranslation" in kwargs: supertranslation = np.array(kwargs.pop("supertranslation"), dtype=complex) if supertranslation.dtype != "complex" and supertranslation.size > 0: # I don't actually think this can ever happen... raise TypeError( "\nInput argument `supertranslation` should be a complex array with size>0.\n" "Got a {} array of shape {}.".format(supertranslation.dtype, supertranslation.shape) ) # Make sure the array has size at least 4, by padding with zeros if supertranslation.size <= 4: supertranslation = np.lib.pad( supertranslation, (0, 4 - supertranslation.size), "constant", constant_values=(0.0,) ) # Check that the shape is a possible array of scalar modes with complete (ell,m) data ell_max_supertranslation = int(np.sqrt(len(supertranslation))) - 1 if (ell_max_supertranslation + 1) ** 2 != len(supertranslation): raise ValueError( "\nInput supertranslation parameter must contain modes from ell=0 up to some ell_max, " "including\nall relevant m modes in standard order (see `spherical_functions` " "documentation for details).\nThus, it must be an array with length given by a " "perfect square; its length is {}".format(len(supertranslation)) ) # Check that the resulting supertranslation will be real for ell in range(ell_max_supertranslation + 1): for m in range(ell + 1): i_pos = sf.LM_index(ell, m, 0) i_neg = sf.LM_index(ell, -m, 0) a = supertranslation[i_pos] b = supertranslation[i_neg] if abs(a - (-1.0) ** m * b.conjugate()) > 3e-16 + 1e-15 * abs(b): raise ValueError( f"\nsupertranslation[{i_pos}]={a} # (ell,m)=({ell},{m})\n" + "supertranslation[{}]={} # (ell,m)=({},{})\n".format(i_neg, b, ell, -m) + "Will result in an imaginary supertranslation." ) spacetime_translation = np.zeros((4,), dtype=float) spacetime_translation[0] = sf.constant_from_ell_0_mode(supertranslation[0]).real spacetime_translation[1:4] = -sf.vector_from_ell_1_modes(supertranslation[1:4]).real if "spacetime_translation" in kwargs: st_trans = np.array(kwargs.pop("spacetime_translation"), dtype=float) if st_trans.shape != (4,) or st_trans.dtype != "float": raise TypeError( "\nInput argument `spacetime_translation` should be a float array of shape (4,).\n" "Got a {} array of shape {}.".format(st_trans.dtype, st_trans.shape) ) spacetime_translation = st_trans[:] supertranslation[0] = sf.constant_as_ell_0_mode(spacetime_translation[0]) supertranslation[1:4] = sf.vector_as_ell_1_modes(-spacetime_translation[1:4]) if "space_translation" in kwargs: s_trans = np.array(kwargs.pop("space_translation"), dtype=float) if s_trans.shape != (3,) or s_trans.dtype != "float": raise TypeError( "\nInput argument `space_translation` should be an array of floats of shape (3,).\n" "Got a {} array of shape {}.".format(s_trans.dtype, s_trans.shape) ) spacetime_translation[1:4] = s_trans[:] supertranslation[1:4] = sf.vector_as_ell_1_modes(-spacetime_translation[1:4]) if "time_translation" in kwargs: t_trans = kwargs.pop("time_translation") if not isinstance(t_trans, float): raise TypeError("\nInput argument `time_translation` should be a single float.\n" "Got {}.".format(t_trans)) spacetime_translation[0] = t_trans supertranslation[0] = sf.constant_as_ell_0_mode(spacetime_translation[0]) # Decide on the number of points to use in each direction. A nontrivial supertranslation will introduce # power in higher modes, so for best accuracy, we need to account for that. But we'll make it a firm # requirement to have enough points to capture the original waveform, at least w_ell_max = ell_max ell_max = w_ell_max + ell_max_supertranslation n_theta = kwargs.pop("n_theta", 2 * ell_max + 1) n_phi = kwargs.pop("n_phi", 2 * ell_max + 1) if n_theta < 2 * ell_max + 1 and abs(supertranslation[1:]).max() > 0.0: warning = ( f"n_theta={n_theta} is small; because of the supertranslation, " + f"it will lose accuracy for anything less than 2*ell+1={ell_max}" ) warnings.warn(warning) if n_theta < 2 * w_ell_max + 1: raise ValueError(f"n_theta={n_theta} is too small; " + "must be at least 2*ell+1={}".format(2 * w_ell_max + 1)) if n_phi < 2 * ell_max + 1 and abs(supertranslation[1:]).max() > 0.0: warning = ( f"n_phi={n_phi} is small; because of the supertranslation, " + f"it will lose accuracy for anything less than 2*ell+1={ell_max}" ) warnings.warn(warning) if n_phi < 2 * w_ell_max + 1: raise ValueError(f"n_phi={n_phi} is too small; " + "must be at least 2*ell+1={}".format(2 * w_ell_max + 1)) # Get the rotor for the frame rotation frame_rotation = np.quaternion(*np.array(kwargs.pop("frame_rotation", [1, 0, 0, 0]), dtype=float)) if frame_rotation.abs() < 3e-16: raise ValueError(f"frame_rotation={frame_rotation} should be a unit quaternion") frame_rotation = frame_rotation.normalized() # Get the boost velocity vector boost_velocity = np.array(kwargs.pop("boost_velocity", [0.0] * 3), dtype=float) beta =
np.linalg.norm(boost_velocity)
numpy.linalg.norm
import unittest import sys import bottlechest as bn import numpy as np import scipy.sparse as sp class TestContingency(unittest.TestCase): def test_1d_int(self): data = np.array([0, 1, 1, 2, 1]) bb = [0, 1, 1, 0, 0] for b in [bb, np.array(bb, dtype=np.int8), np.array(bb, dtype=float)]: counts, nans = bn.contingency(data, b, 2, 1)
np.testing.assert_almost_equal(counts, [[1, 1, 1], [0, 2, 0]])
numpy.testing.assert_almost_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 8 14:55:00 2020 @author: rdamseh """ import numpy as np from tqdm import tqdm class CreateCylinderMappings: ''' This class create 3D maps based on oriented cylinders built at each graph edge ''' def __init__(self, g, to_return=['binary', 'velocity', 'so2', 'hct', 'gradient', 'propagation']): self.g=g self.GetImSize() # set the needed outputs self.tags={'binary':1, 'velocity':0, 'so2':0, 'hct':0, 'gradient':0, 'propagation':0} for i in to_return: self.tags[i]=1 def GetImSize(self): # shift graph geometry to start from zero coordinates # and # set min radius to 2.0 min_rad=2.0 pos=np.array(self.g.GetNodesPos()) pos=pos-np.min(pos, axis=0)[None, :] rad=np.array(self.g.GetRadii()) rad[rad<min_rad]=min_rad maxr=np.max(rad) for i, p, r in zip(self.g.GetNodes(), pos, rad): self.g.node[i]['pos']=p+maxr self.g.node[i]['r']=r # get image size to be constructed real_s = np.max(pos, axis=0) # real image size new_s=real_s new_s=tuple((np.ceil(new_s+(2*maxr))).astype(int)) # image size after padding print('Image size: '+str(new_s)) self.real_s = real_s self.new_s = new_s self.niter = self.g.number_of_edges() def cylinder(self, direction, radius, length): ''' Create a image cylinder ''' r=length+2*radius r=int(r) #print('r value', r) xrange, yrange, zrange = np.meshgrid(np.arange(-r, r+1), np.arange(-r, r+1), np.arange(-r, r+1), indexing='ij') size=np.shape(xrange) direction=direction.astype(float) va=np.sqrt((direction**2).sum()) vnorm=direction/va p=np.array([xrange.ravel(), yrange.ravel(), zrange.ravel()]).T p=p.astype(float) amp=np.sqrt(np.sum(p**2, axis=1)) amp[amp<1]=1 cos=np.abs(np.sum(p*vnorm, axis=1)/amp) cos[cos>1]=1 sin=np.sqrt(1-cos**2) shape0=(amp*sin)<radius # radius constrain shape1=(amp*cos<length) # length constrain a1=amp*cos-length a2=amp*sin shape2=(((a1**2+a2**2)**0.5)<(radius)) # rounded end constrain shape=shape0*(shape2+shape1) shape=np.reshape(shape, xrange.shape) c0 = np.where(shape) dot=np.sum(p*vnorm, axis=1) dot=((dot-dot.min())/(dot.max()-dot.min())) shape=shape*dot.reshape(shape.shape) return c0, size def get_cylinder_infos(self, g, radius_scaling=None): info=dict() if self.tags['binary']: e=g.GetEdges() pos1=np.array([g.node[i[0]]['pos'] for i in e]) pos2=np.array([g.node[i[1]]['pos'] for i in e]) radius1=np.array([g.node[i[0]]['r'] for i in e]) radius2=np.array([g.node[i[1]]['r'] for i in e]) radius=(radius1+radius2)/2.0# radius if radius_scaling is not None: radius*=radius_scaling info['pos1']=pos1 info['pos2']=pos2 info['radius']=radius vec=pos2-pos1 vec_amp=np.sqrt(np.sum(vec**2, axis=1))# norm vec_amp[vec_amp==0]=1.0 # avoid divide by zero vec_norm=vec/vec_amp[:, None] # for edges of length < 2 set to length to 3 to avoid diconnedted maps vec_amp[vec_amp<2.0]=2.0 info['vec_amp']=vec_amp info['vec_norm']=vec_norm if self.tags['so2']: so21=np.array([g.node[i[0]]['so2'] for i in e]) so22=np.array([g.node[i[1]]['so2'] for i in e]) info['so21']=so21 info['so22']=so22 if self.tags['hct']: types=np.array([g.node[i[0]]['type'] for i in e]) if types.max()==3: types-=1 # types should be 0-->Art., 1-->Vein, 2-->Capp info['types']=types if self.tags['velocity']: velocity=np.array([g.node[i[0]]['velocity'] for i in e]) dx=
np.array([g.node[i[0]]['dx'] for i in e])
numpy.array
import os import sys import zipfile import requests import shutil from shapely.geometry.polygon import Polygon from shapely.ops import transform import pyproj from osgeo import gdal from pandas import DataFrame import pandas as pd import numpy as np from osgeo import gdal import pickle from tqdm import tqdm import click from threading import Thread from multiprocessing.dummy import Pool as ThreadPool import json import subprocess # pixel area only depends on latitude (not longitude) # we re-project WGS84 to cylindrical equal area def pixel_area(pix_deg): project = lambda x, y: pyproj.transform(pyproj.Proj(init='epsg:4326'), pyproj.Proj(proj='cea'), x, y) offset = pix_deg / 2 lts = np.arange(90-offset, -90, -pix_deg) area = np.empty_like(lts) lon = 0 for y, lat in enumerate(lts): pixel1 = Polygon([(lon - offset, lat + offset), (lon + offset, lat + offset), (lon + offset, lat - offset), (lon - offset, lat - offset)]) pixel2 = transform(project, pixel1) area[y] = pixel2.area return area def get_flow_dir(row): if not os.path.exists(f'tiles/dir/3s/{row.tile}'): tqdm.write(f'Downloading {row.tile}...') r = requests.get(row.url + row.tile) with open(f'tiles/dir/3s/{row.tile}', 'wb') as f: f.write(r.content) try: with zipfile.ZipFile(f'tiles/dir/3s/{row.tile}', 'r') as z: z.extractall(path = 'tmp/') flow_dir = gdal.Open(f'tmp/{row.tile[:-9]}/{row.tile[:-9]}/w001001.adf') geo = flow_dir.GetGeoTransform() ySize, xSize = flow_dir.RasterYSize, flow_dir.RasterXSize flow_dir = flow_dir.ReadAsArray() shutil.rmtree(f'tmp/{row.tile[:-9]}') # data is padded into a 6000x6000 array (some tiles may be smaller): array_5x5 =
np.ones((6000, 6000), dtype='uint8')
numpy.ones
# -*- coding: utf-8 -*- """ Created on Tue Nov 14 14:40:04 2017 @author: r.dewinter """ from testFunctions.TBTD import TBTD from testFunctions.SRD import SRD from testFunctions.WB import WB from testFunctions.DBD import DBD from testFunctions.SPD import SPD from testFunctions.CSI import CSI from testFunctions.WP import WP from testFunctions.OSY import OSY from testFunctions.CTP1 import CTP1 from testFunctions.CEXP import CEXP from testFunctions.C3DTLZ4 import C3DTLZ4 from testFunctions.TNK import TNK from testFunctions.SRN import SRN from testFunctions.BNH import BNH from CONSTRAINED_SMSEGO import CONSTRAINED_SMSEGO import time import numpy as np ## Real world like problems problemCall = CSI rngMin = np.array([0.5, 0.45, 0.5, 0.5, 0.875, 0.4, 0.4]) rngMax = np.array([1.5, 1.35, 1.5, 1.5, 2.625, 1.2, 1.2]) initEval = 30 maxEval = 200 smooth = 2 nVar = 7 runNo = 11 ref = np.array([42,4.5,13]) nconstraints = 10 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = WB rngMin = np.array([0.125, 0.1, 0.1, 0.125]) rngMax = np.array([5, 10, 10, 5]) initEval = 30 maxEval = 200 smooth = 2 nVar = 4 runNo = 3 ref = np.array([350,0.1]) nconstraints = 5 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = TBTD rngMin = np.array([1,0.0005,0.0005]) rngMax = np.array([3,0.05,0.05]) initEval = 30 maxEval = 200 smooth = 2 runNo = 5 ref = np.array([0.1,100000]) nconstraints = 3 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = DBD rngMin = np.array([55, 75, 1000, 2]) rngMax = np.array([80, 110, 3000, 20]) initEval = 30 maxEval = 200 smooth = 2 nVar = 4 runNo = 3 ref = np.array([5,50]) nconstraints = 5 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = SPD rngMin = np.array([150, 25, 12, 8, 14, 0.63]) rngMax = np.array([274.32, 32.31, 22, 11.71, 18, 0.75]) initEval = 30 maxEval = 200 smooth = 2 nVar = 6 runNo = 5 ref = np.array([16,19000,-260000]) nconstraints=9 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = WP rngMin = np.array([0.01, 0.01, 0.01]) rngMax = np.array([0.45, 0.1, 0.1]) initEval = 30 maxEval = 200 smooth = 2 nVar = 3 runNo = 3 ref = np.array([83000, 1350, 2.85, 15989825, 25000]) nconstraints = 7 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) ##########################theoreticala problems problemCall = BNH rngMin = np.array([0,0]) rngMax = np.array([5,3]) initEval = 30 maxEval = 200 smooth = 2 runNo = 2 ref = np.array([140,50]) nconstraints = 2 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = SRN rngMin = np.array([-20,-20]) rngMax = np.array([20, 20]) initEval = 30 maxEval = 200 smooth = 2 runNo = 8 ref = np.array([301,72]) nconstraints = 2 epsilonInit=0.01 epsilonMax=0.02 s = time.time() CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax) print(time.time()-s) problemCall = TNK rngMin = np.array([1e-5,1e-5]) rngMax =
np.array([np.pi, np.pi])
numpy.array
__author__ = '<NAME>' from sklearn.datasets import make_classification from sklearn.cross_validation import train_test_split import subprocess import numpy as np import scipy from quantify import CCforDouble from quantification import Quantification from time import sleep class SVMperf(): def __init__(self,x_train,y_train,x_test,y_test): self.train = 'train.txt' self.test = 'test.txt' self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test # For automatic self.getRepresentation(x_train,y_train,self.train) self.getRepresentation(x_test,y_test,self.test) sleep(1) self.model = self.fitSVMperf(self.train)#'model.txt'# self.predictions = self.predictSVMperf(self.test,self.model) def getRepresentation(self, x, y, name = None): if name!=None: file = open(str(name), 'w') else: file = open('name.txt', 'w') print(len(y)) # type ndarray if type(x) == type(np.ndarray(None)): for i in range(len(y)): if y[i] == 1: file.write('1 ') for m in range(len(x[i])): if x[i][m]!=0: file.write(str(m+1)+':'+str(x[i][m])+' ') file.write('\n') else: file.write('-1 ') for m in range(len(x[i])): if x[i][m]!=0: file.write(str(m+1)+':'+str(x[i][m])+' ') file.write('\n') file.close() # type csr_matrix elif type(x) == type(scipy.sparse.csr_matrix(None)): for i in range(len(y)): if y[i] == 1: file.write('1 ') _x = x.getrow(i).toarray()[0] for j in range(len(_x)): if _x[j]!=0: file.write(str(j+1)+':'+str(_x[j])+' ') file.write('\n') else: file.write('-1 ') _x = x.getrow(i).toarray()[0] for j in range(len(_x)): if _x[j]!=0: file.write(str(j+1)+':'+str(_x[j])+' ') file.write('\n') file.close() def fitSVMperf(self, trainData, model = 'model.txt'): subprocess.Popen(["svm_kld/svm-perf-original/svm_perf_learn","-c","20",trainData,model], stdout=subprocess.PIPE) sleep(1) return model def predictSVMperf(self, testData, model, predictions = 'predictions.txt'): self.description = subprocess.Popen(["svm_kld/svm-perf-original/svm_perf_classify",testData,model,predictions], stdout=subprocess.PIPE) sleep(1) return predictions def getDescriptionSVM(self): return self.description.communicate()[0] def getPredictions(self): q = [] f = open(self.predictions,'r') for line in f: if float(line) >= 0.62 : q.append(1) else: q.append(0) f.close() return np.array(q) def getKLD(self,p, q): p = np.asarray(p, dtype=np.float) q =
np.asarray(q, dtype=np.float)
numpy.asarray
import numpy as np from sklearn import preprocessing from datetime import datetime def _corr(C): R=
np.empty_like(C)
numpy.empty_like
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) import numpy as np import scipy.stats as scistats import scipy.linalg as sl from enterprise import constants as const from enterprise.signals import signal_base try: import cPickle as pickle except: import pickle from enterprise.pulsar import Pulsar from enterprise import constants as const from PTMCMCSampler.PTMCMCSampler import PTSampler as ptmcmc from .sampler import JumpProposal, get_parameter_groups class HyperModel(object): """ Class to define hyper-model that is the concatenation of all models. """ def __init__(self, models, log_weights=None): self.models = models self.num_models = len(self.models) self.log_weights = log_weights ######### self.param_names, ind = np.unique(np.concatenate([p.param_names for p in self.models.values()]), return_index=True) self.param_names = self.param_names[np.argsort(ind)] self.param_names = np.append(self.param_names, 'nmodel').tolist() ######### ######### self.params = [p for p in self.models[0].params] # start of param list uniq_params = [str(p) for p in self.models[0].params] # which params are unique for model in self.models.values(): # find differences between next model and concatenation of previous param_diffs = np.setdiff1d([str(p) for p in model.params], uniq_params) mask = np.array([str(p) in param_diffs for p in model.params]) # concatenate for next loop iteration uniq_params = np.union1d([str(p) for p in model.params], uniq_params) # extend list of unique parameters self.params.extend([pp for pp in np.array(model.params)[mask]]) ######### ######### # get signal collections self.snames = dict.fromkeys(np.unique(sum(sum([[[qq.signal_name for qq in pp._signals] for pp in self.models[mm]._signalcollections] for mm in self.models], []), []))) for key in self.snames: self.snames[key] = [] for mm in self.models: for sc in self.models[mm]._signalcollections: for signal in sc._signals: self.snames[signal.signal_name].extend(signal.params) for key in self.snames: self.snames[key] = list(set(self.snames[key])) for key in self.snames: uniq_params, ind = np.unique([p.name for p in self.snames[key]], return_index=True) uniq_params = uniq_params[np.argsort(ind)].tolist() all_params = [p.name for p in self.snames[key]] self.snames[key] = np.array(self.snames[key])[[all_params.index(q) for q in uniq_params]].tolist() ######### def get_lnlikelihood(self, x): # find model index variable idx = list(self.param_names).index('nmodel') nmodel = int(np.rint(x[idx])) # find parameters of active model q = [] for par in self.models[nmodel].param_names: idx = self.param_names.index(par) q.append(x[idx]) # only active parameters enter likelihood active_lnlike = self.models[nmodel].get_lnlikelihood(q) if self.log_weights is not None: active_lnlike += self.log_weights[nmodel] return active_lnlike def get_lnprior(self, x): # find model index variable idx = list(self.param_names).index('nmodel') nmodel = int(np.rint(x[idx])) if nmodel not in self.models.keys(): return -np.inf else: lnP = 0 for p in self.models.values(): q = [] for par in p.param_names: idx = self.param_names.index(par) q.append(x[idx]) lnP += p.get_lnprior(np.array(q)) return lnP def get_parameter_groups(self): groups = [] for p in self.models.values(): groups.extend(get_parameter_groups(p)) list(
np.unique(groups)
numpy.unique
import pickle import numpy as np import pytest import tensorflow as tf from garage.envs import GymEnv from garage.tf.q_functions import ContinuousMLPQFunction from tests.fixtures import TfGraphTestCase from tests.fixtures.envs.dummy import DummyBoxEnv class TestContinuousMLPQFunction(TfGraphTestCase): @pytest.mark.parametrize('hidden_sizes', [(1, ), (2, ), (3, ), (1, 1), (2, 2)]) def test_q_vals(self, hidden_sizes): env = GymEnv(DummyBoxEnv()) obs_dim = env.spec.observation_space.flat_dim act_dim = env.spec.action_space.flat_dim qf = ContinuousMLPQFunction(env_spec=env.spec, action_merge_layer=0, hidden_sizes=hidden_sizes, hidden_nonlinearity=None, hidden_w_init=tf.ones_initializer(), output_w_init=tf.ones_initializer()) obs = np.full(obs_dim, 1).flatten() act = np.full(act_dim, 1).flatten() expected_output = np.full((1, ), (obs_dim + act_dim) * np.prod(hidden_sizes)) outputs = qf.get_qval([obs], [act]) assert np.array_equal(outputs[0], expected_output) outputs = qf.get_qval([obs, obs, obs], [act, act, act]) for output in outputs: assert np.array_equal(output, expected_output) @pytest.mark.parametrize('obs_dim, action_dim', [ ((1, ), (1, )), ((2, ), (2, )), ((1, 1), (1, )), ((2, 2), (2, )), ]) def test_output_shape(self, obs_dim, action_dim): env = GymEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) qf = ContinuousMLPQFunction(env_spec=env.spec) env.reset() obs = env.step(1).observation obs = obs.flatten() act = np.full(action_dim, 0.5).flatten() outputs = qf.get_qval([obs], [act]) assert outputs.shape == (1, 1) @pytest.mark.parametrize('obs_dim, action_dim', [ ((1, ), (1, )), ((2, ), (2, )), ((1, 1), (1, )), ((2, 2), (2, )), ]) def test_build(self, obs_dim, action_dim): env = GymEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) qf = ContinuousMLPQFunction(env_spec=env.spec, action_merge_layer=0, hidden_sizes=(1, ), hidden_nonlinearity=None, hidden_w_init=tf.ones_initializer(), output_w_init=tf.ones_initializer()) obs = np.full(obs_dim, 1).flatten() act = np.full(action_dim, 1).flatten() output1 = qf.get_qval([obs], [act]) input_var1 = tf.compat.v1.placeholder(tf.float32, shape=(None, obs.shape[0])) input_var2 = tf.compat.v1.placeholder(tf.float32, shape=(None, act.shape[0])) q_vals = qf.build(input_var1, input_var2, 'another') output2 = self.sess.run(q_vals, feed_dict={ input_var1: [obs], input_var2: [act] }) expected_output = np.full((1, ), np.prod(obs_dim) + np.prod(action_dim)) assert np.array_equal(output1, output2) assert np.array_equal(output2[0], expected_output) @pytest.mark.parametrize('obs_dim, action_dim', [ ((1, ), (1, )), ((2, ), (2, )), ((1, 1), (1, )), ((2, 2), (2, )), ]) def test_is_pickleable(self, obs_dim, action_dim): env = GymEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) qf = ContinuousMLPQFunction(env_spec=env.spec) env.reset() obs = env.step(1).observation obs = obs.flatten() act = np.full(action_dim, 0.5).flatten() with tf.compat.v1.variable_scope('ContinuousMLPQFunction', reuse=True): bias = tf.compat.v1.get_variable('mlp_concat/hidden_0/bias') # assign it to all one bias.load(tf.ones_like(bias).eval()) output1 = qf.get_qval([obs], [act]) h_data = pickle.dumps(qf) with tf.compat.v1.Session(graph=tf.Graph()): qf_pickled = pickle.loads(h_data) output2 = qf_pickled.get_qval([obs], [act]) assert
np.array_equal(output1, output2)
numpy.array_equal
import numpy as np import gmpy2 from gmpy2 import mpfr, mpc import flamp def to_fp(A): return np.array(A, float) def to_cpx(A): return np.array(A, complex) ### linalg def test_qr_real(): n = 5 A = np.random.rand(n, n) AA = mpfr(1) * A Q, R = flamp.qr(AA) assert Q.shape == (n, n) and R.shape == (n, n) assert np.allclose(to_fp(Q.T @ Q), np.eye(n)) assert np.allclose(to_fp(Q @ R), A) assert np.all(np.tril(R, -1) == 0) ## special case: size 0 matrix AA = flamp.zeros((4, 0)) Q, R = flamp.qr(AA) assert np.allclose(to_fp(Q), np.eye(4)) assert R.shape == (4, 0) def test_qr_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Q, R = flamp.qr(AA) assert Q.shape == (n, n) and R.shape == (n, n) assert np.allclose(to_cpx(Q.T.conj() @ Q), np.eye(n)) assert np.allclose(to_cpx(Q @ R), A) assert np.all(np.tril(R, -1) == 0) def test_inverse_real(): n = 5 A = np.random.rand(n, n) AA = mpfr(1) * A Ainv = flamp.inverse(AA) assert A.shape == (n, n) assert np.allclose(to_fp(Ainv @ A), np.eye(n)) def test_inverse_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Ainv = flamp.inverse(AA) assert A.shape == (n, n) assert np.allclose(to_cpx(Ainv @ A), np.eye(n)) def test_lu_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_lu_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_lu_solve_complex(): n = 5 A, b = np.random.rand(n, n) + 1j * np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_cpx(A @ x), b) def test_lu(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A P, L, U = flamp.lu(AA) assert np.allclose(to_cpx(P @ AA), to_cpx(L @ U)) def test_cholesky_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) A = A.T @ A AA = mpfr(1) * A x = flamp.cholesky_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_cholesky_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) A = A.T @ A AA = mpfr(1) * A x = flamp.cholesky_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_qr_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_qr_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_solve_real_overdet(): n = 5 A, b = np.random.rand(n + 2, n), np.random.rand(n + 2, 3) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) x2 = flamp.lu_solve(AA, b) assert x.shape == (n, 3) assert x2.shape == (n, 3) assert np.allclose(to_fp(x), to_fp(x2)) def test_det(): n = 5 E = np.random.rand(n) # random eigenvalues U = mpfr(1) * np.random.rand(n, n) Uinv = flamp.inverse(U) A = U @ np.diag(E) @ Uinv det = flamp.det(A) assert np.allclose(to_fp(det), np.prod(E)) ### eigen def test_eig_real(): A = mpfr(1) *
np.arange(9)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 27 08:44:52 2021 @author: gianni """ from scipy import constants,optimize import numpy as np import matplotlib.pyplot as plt import os from astropy.io import fits import h5py this_folder = os.path.dirname(os.path.abspath(__file__)) R_Sun = 6.955e8 L_Sun = 3.828e26 Rydberg_J = constants.physical_constants['Rydberg constant times hc in J'][0] #J ionisation_potential = {'C':11.26030*constants.eV, 'O':13.61806*constants.eV} #J class RadiationSpectrum(): def flux(self,wavelength,**kwargs): #W/m2/m raise NotImplementedError class DraineISF(RadiationSpectrum): #interstellar radiation field, original from Draine (1978), #here in the form of Lee (1984) #(https://ui.adsabs.harvard.edu/abs/1984ApJ...282..172L/abstract) lambda_min = 91.2*constants.nano lambda_max = 200*constants.nano lambda_grid = np.linspace(lambda_min,lambda_max,1000) def __init__(self,scaling=(lambda wavelength: 1)): self.scaling = scaling def flux(self,wavelength): #for the power law, the wavelenght has to be in nm #photons/m2/s/m: photon_flux= 3.2e13*((wavelength/constants.nano)**-3\ - 1.61e2*(wavelength/constants.nano)**-4\ + 6.41e3*(wavelength/constants.nano)**-5)\ * constants.centi**-2*constants.nano**-1 photon_energy = constants.h*constants.c/wavelength flux = photon_flux*photon_energy valid_region = (wavelength>=self.lambda_min) & (wavelength<=self.lambda_max) flux = np.where(valid_region,flux,0) return flux*self.scaling(wavelength=wavelength) class HabingField(RadiationSpectrum): def __init__(self,scaling=(lambda wavelength: 1)): self.scaling = scaling data_filepath = os.path.join(this_folder,'habing_field.txt') data = np.loadtxt(data_filepath) self.lambda_grid = data[:,0]*constants.nano photon_energy = constants.h*constants.c/self.lambda_grid self.flux_grid = data[:,1]/constants.centi**2/constants.nano * photon_energy #W/m2/m def flux(self,wavelength): return np.interp(x=wavelength,xp=self.lambda_grid,fp=self.flux_grid, left=0,right=0) * self.scaling(wavelength=wavelength) class StellarAtmosphere(RadiationSpectrum): def plot_model(self,label=None): fig,ax = plt.subplots() ax.plot(self.lambda_grid/constants.nano,self.modelflux,'.-',label=label) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('lambda [nm]') ax.set_ylabel('flux at {:g} au [W/m2/m]'.format(self.ref_distance/constants.au)) if label is not None: ax.legend(loc='best') return ax def flux(self,wavelength,distance): return np.interp(wavelength,self.lambda_grid,self.modelflux,left=0,right=0)\ * (self.ref_distance/distance)**2 def luminosity(self): flux_at_ref_distance = self.flux(wavelength=self.lambda_grid, distance=self.ref_distance) return np.trapz(flux_at_ref_distance,self.lambda_grid)\ * 4*np.pi*self.ref_distance**2 def _scale_spectrum(self,scaling): self.modelflux *= scaling(wavelength=self.lambda_grid) def write_modelflux_to_file(self,filepath,distance): flux = self.flux(wavelength=self.lambda_grid,distance=distance) np.savez(filepath,wavelength=self.lambda_grid,flux=flux) class ATLASModelAtmosphere(StellarAtmosphere): Teff_low_grid = np.arange(3000,12999,250) Teff_high_grid = np.arange(13000,50001,1000) Teff_grid = np.concatenate((Teff_low_grid,Teff_high_grid)) metallicity_grid = np.array((-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.2,0.5)) logg_grid = np.arange(0,5.1,0.5) model_folder = os.path.join(this_folder,'ck04models') max_RJ_wavelength = 3*constants.milli @staticmethod def assert_within_grid(value,grid): assert np.min(grid) <= value <= np.max(grid) @staticmethod def get_closest_grid_value(value,grid): index = np.argmin(np.abs(grid-value)) return grid[index] def __init__(self,Teff,metallicity,logg,Rstar=None,obs_luminosity=None, calibration_spec=None,verbose=False,scaling=None): '''There are three ways to set the luminosity of the star: 1) define Rstar 2) define obs_luminosity, so that the model flux will be scaled 3) define calibration_spec (i.e. a spectrum, to which the model spectrum will be scaled to)''' self.assert_within_grid(value=Teff,grid=self.Teff_grid) self.assert_within_grid(value=metallicity,grid=self.metallicity_grid) self.assert_within_grid(value=logg,grid=self.logg_grid) self.verbose = verbose self.read_model(metallicity=metallicity,Teff=Teff,logg=logg) self.extrapolate_RJ() if Rstar is not None: assert obs_luminosity is None and calibration_spec is None self.ref_distance = Rstar elif obs_luminosity is not None: assert Rstar is None and calibration_spec is None self.obs_luminosity = obs_luminosity if self.verbose: print('Rstar not specified, going to scale with luminosity') self.calibrate_with_luminosity() elif calibration_spec is not None: assert Rstar is None and obs_luminosity is None self.calibration_spec = calibration_spec if self.verbose: print('going to calibrate with provided spectrum') self.calibrate_with_spectrum() else: raise ValueError('unable to define absolute flux and/or reference distance') #now that modelflux is calibrated, I can apply the scaling: if scaling is not None: self._scale_spectrum(scaling=scaling) def read_model(self,metallicity,Teff,logg): self.metallicity = self.get_closest_grid_value( value=metallicity,grid=self.metallicity_grid) self.Teff = self.get_closest_grid_value(value=Teff,grid=self.Teff_grid) self.logg = self.get_closest_grid_value(value=logg,grid=self.logg_grid) if self.verbose: print('input metallicity = {:g}, grid metallicity = {:g}'\ .format(metallicity,self.metallicity)) print('input Teff = {:g} K, grid Teff = {:g} K'.format(Teff,self.Teff)) print('input logg = {:g}, grid logg = {:g}'.format(logg,self.logg)) self.metallicity_str = 'ck' if self.metallicity < 0: sign_str = 'm' else: sign_str = 'p' self.metallicity_str += '{:s}{:02d}'.format( sign_str,np.abs(int(10*self.metallicity))) if self.verbose: print('metallicity ID: {:s}'.format(self.metallicity_str)) #this string is the key to access the flux for the specified log(g); #for example for log(g)=4, it would be "g40"; for log(g)=4.5 it would be "g45": logg_string = ('g%.1f'%self.logg).replace('.','') filename = self.metallicity_str+'_{:d}.fits'.format(int(self.Teff)) if self.verbose: print('filename: {:s}'.format(filename)) filepath = os.path.join(self.model_folder,self.metallicity_str,filename) hdulist = fits.open(filepath) modeldata = hdulist[1].data hdulist.close() self.lambda_grid = modeldata['WAVELENGTH'].astype(np.float64)*constants.angstrom #flux in [W/m2/m] at the stellar surface: self.modelflux = modeldata[logg_string].astype(np.float64)\ *constants.erg/constants.centi**2/constants.angstrom def extrapolate_RJ(self): max_wavelength = self.lambda_grid[-1] prop_constant = max_wavelength**4*self.modelflux[-1] RJ_wavelength = np.logspace(np.log10(max_wavelength*1.05), np.log10(self.max_RJ_wavelength),100) RJ_flux = prop_constant/RJ_wavelength**4 self.original_lambda_grid = self.lambda_grid.copy() self.lambda_grid = np.concatenate((self.lambda_grid,RJ_wavelength)) self.modelflux = np.concatenate((self.modelflux,RJ_flux)) def calibrate_with_luminosity(self): self.ref_distance = 1*constants.au uncalibrated_luminosity = self.luminosity() self.modelflux *= self.obs_luminosity/uncalibrated_luminosity assert np.isclose(self.obs_luminosity,self.luminosity(),rtol=1e-6,atol=0) def calibrate_with_spectrum(self): cal_wave = self.calibration_spec['wave'] cal_flux = self.calibration_spec['flux'] self.ref_distance = self.calibration_spec['ref_distance'] try: cal_errors = self.calibration_spec['error'] except KeyError: cal_errors =
np.ones_like(cal_flux)
numpy.ones_like
import numpy as np from gym import spaces class EpsilonWrapper(object): def __init__(self, env, attrs=('distance_threshold', 'rotation_threshold'), compute_reward_with_internal=None): """Attrs is list of attributes (strings like "distance_threshold"). Only valid ones are used. """ self.env = env if hasattr(self.env, 'mode'): assert self.env.mode == 0 if compute_reward_with_internal is not None: self.compute_reward_with_internal = compute_reward_with_internal obs = self.env.reset() self.internal_len = obs['achieved_goal'].shape[0] self.attrs = [] self.defaults = [] for attr in attrs: if hasattr(self.env, attr): self.attrs.append(attr) self.defaults.append(getattr(self.env, attr)) self.defaults = np.array(self.defaults) self.observation_space = spaces.Dict(dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=(self.internal_len + len(self.attrs),), dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=(self.internal_len + len(self.attrs),), dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=(obs['observation'].shape[0],), dtype='float32'), )) def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) return getattr(self.env, attr) def compute_reward(self, achieved_goal, goal, info): internal_achieved = achieved_goal[:self.internal_len] internal_goal = goal[:self.internal_len] if self.compute_reward_with_internal: for attr, eps in zip(self.attrs, self.defaults): setattr(self.env, attr, eps) internal_reward = self.env.compute_reward(internal_achieved, internal_goal, info) return internal_reward # Otherwise, use epsilon in the goal to determine external reward for attr, eps in zip(self.attrs, goal[self.internal_len:]): setattr(self.env, attr, eps) reward = self.env.compute_reward(internal_achieved, internal_goal, info) return reward def step(self, action): obs, reward, done, info = self.env.step(action) obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.defaults]) obs['desired_goal'] = np.concatenate([obs['desired_goal'], self.defaults]) reward = self.compute_reward(obs['achieved_goal'], obs['desired_goal'], info) return obs, reward, done, info def _get_obs(self): """just adds a large epsilon (content doesn't super matter)""" obs = self.env._get_obs() obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.defaults]) obs['desired_goal'] = np.concatenate([obs['desired_goal'], self.defaults]) return obs def _sample_goal(self): """just adds a large epsilon (content doesn't super matter)""" goal = self.env._sample_goal() goal = np.concatenate([goal, self.defaults]) return goal def reset(self): obs = self.env.reset() obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.defaults]) obs['desired_goal'] = np.concatenate([obs['desired_goal'], self.defaults]) return obs class OldEpsilonWrapper(object): def __init__(self, env, epsilon, compute_reward_with_internal=None): """Epsilon is float or np.array, specifying default epsilon""" self.env = env if hasattr(self.env, 'mode'): assert self.env.mode == 0 if compute_reward_with_internal is not None: self.compute_reward_with_internal = compute_reward_with_internal obs = self.env.reset() self.default_epsilon = np.ones_like(obs['desired_goal']) * epsilon self.observation_space = spaces.Dict(dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=(obs['achieved_goal'].shape[0]*2,), dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=(obs['achieved_goal'].shape[0]*2,), dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=(obs['observation'].shape[0],), dtype='float32'), )) def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) return getattr(self.env, attr) def compute_reward(self, achieved_goal, goal, info): internal_len = len(achieved_goal) // 2 internal_achieved = achieved_goal[:internal_len] internal_goal = goal[:internal_len] if self.compute_reward_with_internal: internal_reward = self.env.compute_reward(internal_achieved, internal_goal, info) return internal_reward # Otherwise, use epsilon to determine external reward epsilon = goal[internal_len:] success = np.all(np.abs(internal_achieved - internal_goal) < epsilon) return success - 1. def step(self, action): obs, reward, done, info = self.env.step(action) obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.default_epsilon]) obs['desired_goal'] = np.concatenate([obs['desired_goal'], self.default_epsilon]) reward = self.compute_reward(obs['achieved_goal'], obs['desired_goal'], info) return obs, reward, done, info def _get_obs(self): """just adds a large epsilon (content doesn't super matter)""" obs = self.env._get_obs() obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.default_epsilon]) obs['desired_goal'] = np.concatenate([obs['desired_goal'], self.default_epsilon]) return obs def _sample_goal(self): """just adds a large epsilon (content doesn't super matter)""" goal = self.env._sample_goal() goal = np.concatenate([goal, self.default_epsilon]) return goal def reset(self): obs = self.env.reset() obs['achieved_goal'] = np.concatenate([obs['achieved_goal'], self.default_epsilon]) obs['desired_goal'] =
np.concatenate([obs['desired_goal'], self.default_epsilon])
numpy.concatenate
# coding=utf-8 import numpy as np import cv2 def SemanticLabelResize(dst_size, class_amount): ''' this function return a lambda function which can be use to resize the semantic label dst_size: [height, width] class_amount: the class amount include the background resize: the function which receive a source label and return the resized label the source label should be in format: [batch_size, height, width, 1] or [batch_size, height, width] the resized label is in format: [batch_size] + dst_size (dims:3) ''' assert (type(dst_size) == list or type(dst_size) == tuple) is True def resize(label): if label.shape[-1] == 1: one_hot =
np.eye(class_amount, dtype=np.float32)
numpy.eye
# -*- coding: utf-8 -*- """ This script contains the transformations between world and different sensors. """ # Credit to https://github.com/MukhlasAdib/CARLA-2DBBox/blob/master/carla_vehicle_annotator.py # Author: <NAME> <<EMAIL>> # License: MIT import numpy as np from matplotlib import cm from opencda.opencda_carla import Transform VIRIDIS = np.array(cm.get_cmap('viridis').colors) VID_RANGE = np.linspace(0.0, 1.0, VIRIDIS.shape[0]) def get_camera_intrinsic(sensor): """ Retrieve the camera intrinsic matrix Args: -sensor (carla.sensor.camera.rgb): The CARLA sensor object. Returns: -matrix_k (np.ndarray): The 2D intrinsic matrix. """ VIEW_WIDTH = int(sensor.attributes['image_size_x']) VIEW_HEIGHT = int(sensor.attributes['image_size_y']) VIEW_FOV = int(float(sensor.attributes['fov'])) matrix_k = np.identity(3) matrix_k[0, 2] = VIEW_WIDTH / 2.0 matrix_k[1, 2] = VIEW_HEIGHT / 2.0 matrix_k[0, 0] = matrix_k[1, 1] = VIEW_WIDTH / (2.0 * np.tan(VIEW_FOV * np.pi / 360.0)) return matrix_k def create_bb_points(vehicle): """ Extract the eight vertices of the bounding box from the vehicle. Args: -vehicle (carla.Vehicle or ObstacleVehicle): The object vehicle. Returns: - bbx(np.ndarray): 3d bounding box. """ bbx = np.zeros((8, 4)) extent = vehicle.bounding_box.extent bbx[0, :] = np.array([extent.x, extent.y, -extent.z, 1]) bbx[1, :] = np.array([-extent.x, extent.y, -extent.z, 1]) bbx[2, :] = np.array([-extent.x, -extent.y, -extent.z, 1]) bbx[3, :] = np.array([extent.x, -extent.y, -extent.z, 1]) bbx[4, :] = np.array([extent.x, extent.y, extent.z, 1]) bbx[5, :] = np.array([-extent.x, extent.y, extent.z, 1]) bbx[6, :] = np.array([-extent.x, -extent.y, extent.z, 1]) bbx[7, :] = np.array([extent.x, -extent.y, extent.z, 1]) return bbx def x_to_world_transformation(transform): """ Get the transformation matrix from x(it can be vehicle or sensor) coordinates to world coordinate. Args: -transform (carla.Transform): The transform that contains location and rotation. Returns: -matrix (np.ndarray): The transformation matrix """ rotation = transform.rotation location = transform.location # used for rotation matrix c_y = np.cos(np.radians(rotation.yaw)) s_y = np.sin(np.radians(rotation.yaw)) c_r = np.cos(np.radians(rotation.roll)) s_r = np.sin(np.radians(rotation.roll)) c_p = np.cos(np.radians(rotation.pitch)) s_p = np.sin(np.radians(rotation.pitch)) matrix = np.identity(4) # translation matrix matrix[0, 3] = location.x matrix[1, 3] = location.y matrix[2, 3] = location.z # rotation matrix matrix[0, 0] = c_p * c_y matrix[0, 1] = c_y * s_p * s_r - s_y * c_r matrix[0, 2] = -c_y * s_p * c_r - s_y * s_r matrix[1, 0] = s_y * c_p matrix[1, 1] = s_y * s_p * s_r + c_y * c_r matrix[1, 2] = -s_y * s_p * c_r + c_y * s_r matrix[2, 0] = s_p matrix[2, 1] = -c_p * s_r matrix[2, 2] = c_p * c_r return matrix def bbx_to_world(cords, vehicle): """ Convert bounding box coordinate at vehicle reference to world reference. Args: -cords (np.ndarray): Bounding box coordinates with 8 vertices, shape (n, 4). -vehicle (carla.vehicle or ObstacleVehicle): vehicle object. Returns: -bb_world_cords (np.ndarray): Bounding box coordinates under word reference. """ bb_transform = Transform(vehicle.bounding_box.location) # bounding box to vehicle transformation matrix bb_vehicle_matrix = x_to_world_transformation(bb_transform) # vehicle to world transformation matrix vehicle_world_matrix = x_to_world_transformation(vehicle.get_transform()) # bounding box to world transformation matrix bb_world_matrix = np.dot(vehicle_world_matrix, bb_vehicle_matrix) # 8 vertices are relative to bbx center, thus multiply with bbx_2_world to get the world coords. bb_world_cords = np.dot(bb_world_matrix, np.transpose(cords)) return bb_world_cords def world_to_sensor(cords, sensor_transform): """ Transform coordinate from world reference to sensor reference. Args: -cords (np.ndarray): Coordinates under world reference, shape:(4, n). -sensor_transform (carla.Transform): sensor position in the world, shape:(3, 1). Returns: -sensor_cords(np.ndarray): Coordinates in sensor reference. """ sensor_world_matrix = x_to_world_transformation(sensor_transform) world_sensor_matrix = np.linalg.inv(sensor_world_matrix) sensor_cords = np.dot(world_sensor_matrix, cords) return sensor_cords def sensor_to_world(cords, sensor_transform): """ Project Args: -cords (np.ndarray): Coordinates under sensor reference. -sensor_transform (carla.Transform): sensor position in the world Returns: -world_cords (np.ndarray): Coordinates projected to world space. """ sensor_world_matrix = x_to_world_transformation(sensor_transform) world_cords = np.dot(sensor_world_matrix, cords) return world_cords def vehicle_to_sensor(cords, vehicle, sensor_transform): """ Transform coordinates from vehicle reference to sensor reference Args: -cords (np.ndarray): Coordinates under vehicle reference, shape (n, 4). -vehicle (carla.vehicle or ObstacleVehicle): vehicle object. -sensor_transform (carla.Transform): sensor position in the world, shape(3, 1). Returns: -(np.ndarray): Coordinates in sensor reference, shape(4, n). """ world_cord = bbx_to_world(cords, vehicle) sensor_cord = world_to_sensor(world_cord, sensor_transform) return sensor_cord def get_bounding_box(vehicle, camera, sensor_transform): """ Get vehicle bounding box and project to sensor image. Args: -vehicle (carla.vehicle or ObstacleVehicle): vehicle object. -camera (carla.sensor.camera.rgb): The CARLA sensor object. -sensor_transform (carla.Transform): sensor position in the world Returns: -camera_bbox (np.ndarray): Bounding box coordinates in sensor image. """ camera_k_matrix = get_camera_intrinsic(camera) # bb_cords is relative to bbx center(approximate the vehicle center) bb_cords = create_bb_points(vehicle) # bbx coordinates in sensor coordinate system. shape: (3, 8) cords_x_y_z = vehicle_to_sensor(bb_cords, vehicle, sensor_transform)[:3, :] # refer to https://github.com/carla-simulator/carla/issues/553 cords_y_minus_z_x = np.concatenate([cords_x_y_z[1, :].reshape(1, 8), -cords_x_y_z[2, :].reshape(1, 8), cords_x_y_z[0, :].reshape(1, 8)]) # bounding box in sensor image. Shape:(8, 3) bbox = np.transpose(np.dot(camera_k_matrix, cords_y_minus_z_x)) new_x = (bbox[:, 0] / bbox[:, 2]).reshape(8, 1) new_y = (bbox[:, 1] / bbox[:, 2]).reshape(8, 1) new_z = bbox[:, 2].reshape(8, 1) camera_bbox = np.concatenate([new_x, new_y, new_z], axis=1) return camera_bbox def p3d_to_p2d_bb(p3d_bb): """ Draw 2D bounding box (4 vertices) from 3D bounding box (8 vertices) in image. 2D bounding box is represented by two corner points Args: -p3d_bb (np.array): The objective 3D bounding box. Returns: """ min_x = np.amin(p3d_bb[:, 0]) min_y = np.amin(p3d_bb[:, 1]) max_x = np.amax(p3d_bb[:, 0]) max_y = np.amax(p3d_bb[:, 1]) p2d_bb = np.array([[min_x, min_y], [max_x, max_y]]) return p2d_bb def get_2d_bb(vehicle, sensor, senosr_transform): """ Summarize 2D bounding box creation Args: -vehicle (carla.vehicle or ObstacleVehicle): vehicle object. -sensor (carla.sensor.camera.rgb): The CARLA sensor object. -senosr_transform (carla.Transform): sensor position in the world Returns: -p2d_bb (np.ndarray): 2d bounding box in camera image. """ p3d_bb = get_bounding_box(vehicle, sensor, senosr_transform) p2d_bb = p3d_to_p2d_bb(p3d_bb) return p2d_bb def project_lidar_to_camera(lidar, camera, point_cloud, rgb_image): """ Project lidar to camera space. Args: -lidar (carla.Sensor): Lidar sensor. -camera (carla.Sensor): Camera seonsor. -point_cloud (np.ndarray): cloud points, (x, y, z, intensity). -rgb_image (np.ndarray): rgb image from camera. Returns: -rgb_image (np.ndarray): new rgb image with lidar points projected. -points_2d (np.ndarray): point clouds projected to camera space. """ # Lidar intensity array of shape (p_cloud_size,) but, for now, let's # focus on the 3D points. intensity = np.array(point_cloud[:, 3]) # Point cloud in lidar sensor space array of shape (3, p_cloud_size). local_lidar_points = np.array(point_cloud[:, :3]).T # Add an extra 1.0 at the end of each 3d point so it becomes of # shape (4, p_cloud_size) and it can be multiplied by a (4, 4) matrix. local_lidar_points = np.r_[ local_lidar_points, [np.ones(local_lidar_points.shape[1])]] # This (4, 4) matrix transforms the points from lidar space to world space. lidar_2_world = x_to_world_transformation(lidar.get_transform()) # transform lidar points from lidar space to world space world_points = np.dot(lidar_2_world, local_lidar_points) # project world points to camera space sensor_points = world_to_sensor(world_points, camera.get_transform()) # (x, y ,z) -> (y, -z, x) point_in_camera_coords = np.array([ sensor_points[1], sensor_points[2] * -1, sensor_points[0]]) # retrieve camera intrinsic K = get_camera_intrinsic(camera) # project the 3d points in camera space to image space points_2d = np.dot(K, point_in_camera_coords) # normalize x,y,z points_2d = np.array([ points_2d[0, :] / points_2d[2, :], points_2d[1, :] / points_2d[2, :], points_2d[2, :]]) image_w = int(camera.attributes['image_size_x']) image_h = int(camera.attributes['image_size_y']) # remove points out the camera scope points_2d = points_2d.T intensity = intensity.T points_in_canvas_mask = \ (points_2d[:, 0] > 0.0) & (points_2d[:, 0] < image_w) & \ (points_2d[:, 1] > 0.0) & (points_2d[:, 1] < image_h) & \ (points_2d[:, 2] > 0.0) new_points_2d = points_2d[points_in_canvas_mask] new_intensity = intensity[points_in_canvas_mask] # Extract the screen coords (uv) as integers. u_coord = new_points_2d[:, 0].astype(np.int) v_coord = new_points_2d[:, 1].astype(np.int) # Since at the time of the creation of this script, the intensity function # is returning high values, these are adjusted to be nicely visualized. new_intensity = 4 * new_intensity - 3 color_map = np.array([ np.interp(new_intensity, VID_RANGE, VIRIDIS[:, 0]) * 255.0,
np.interp(new_intensity, VID_RANGE, VIRIDIS[:, 1])
numpy.interp
# -*- coding: utf-8 -*- ''' This modules contains functions necessary for applying OWL or group OWL to the parameters 1. reg_params_init 2. apply_growl 3. apply_owl_prox 4. update_mask 5. measure_compression 6. adjust_learning_rate 7. preprocess_hparams 8. set_param_share ''' from __future__ import division, print_function, absolute_import import sys sys.path.append('./owl_projection') import tensorflow as tf import numpy as np from projectedOWL import proxOWL from numpy.linalg import norm from math import sqrt from utils_nn import get_weight_placeholders, get_mask_placeholders from flags import FLAGS, HParams import re import os def reg_params_init(sess, hps): ''' This function initializes the regularization paramters. Args: sess: the predefined computation graph. hps: hyperparameters collection Returns: layer_owl_params: a list, each element is an array containing the weights of the corresponding layer. ''' weight_placeholder = get_weight_placeholders() reg_applied_layers = hps.reg_applied_layers layer_owl_params = [] for idx, triple in enumerate(weight_placeholder): print('layer {}'.format(idx)) # if the layer is not regularized, then append [] if not reg_applied_layers[idx]: layer_owl_params.append([]) continue #Regularization parameters reg_params = hps.reg_params lambda_1 = np.float32(reg_params[idx][0]) lambda_2 = np.float32(reg_params[idx][1]) if (lambda_1 < 0) | (lambda_2 < 0): raise Exception('regularization parameters must be non-negative') #GrOWL weights should be applied to the rows of the (reshaped) weight matrix param_i, placeholder_i, assign_op_i = triple param_shape = sess.run(tf.shape(param_i)) if np.size(param_i.get_shape().as_list()) == 2: row_num = param_shape[0] elif np.size(param_i.get_shape().as_list()) == 4: row_num = param_shape[2] transition_ind = np.floor(row_num*FLAGS.PLD_transition) param_index = np.linspace(start=transition_ind-1, stop=0, num=transition_ind) print(' row num: {}, transition_ind: {}, largest reg: {}'.format(row_num, transition_ind, lambda_1 + lambda_2 * transition_ind)) if row_num > transition_ind: param_index = np.append(param_index, np.zeros([1, int(row_num-transition_ind)])) layer_owl_params.append(lambda_1 + lambda_2 * param_index) print("length of weight_placeholder:{0}".format(len(weight_placeholder))) assert len(layer_owl_params) == len(weight_placeholder) assert len(layer_owl_params) == len(hps.reg_applied_layers) return layer_owl_params, hps def apply_group_lasso(W, weights): #Prox op W_norm = norm(W, axis=1) new_W_norm = np.maximum(W_norm - weights[0], 0) new_W = np.zeros_like(W) for i in range(W.shape[0]): if W_norm[i] < np.finfo(np.float32).eps: new_W[i,:] = 0 * W[i,:] else: new_W[i,:] = new_W_norm[i] * W[i,:] / W_norm[i] return new_W def apply_growl(W, weights): # Prox op W_norm = norm(W, axis=1) new_W_norm=proxOWL(W_norm, weights) new_W = np.zeros_like(W) for i in range(W.shape[0]): if W_norm[i] < np.finfo(np.float32).eps: new_W[i,:] = 0 * W[i,:] else: new_W[i,:] = new_W_norm[i] * W[i,:] / W_norm[i] return new_W def apply_reg_prox(sess, learning_rate_val, layer_reg_params, hps): ''' Updates the weights parameter of each layer Args: sess: the comptutaion graph learning_rate: the predefined learning rate layer_reg_params: owl parameters, initially created by reg_params_init hps: Returns: None ''' # get weights of the network weight_placeholders = get_weight_placeholders() # prox_lr_val = min(learning_rate_val, 0.001) prox_lr_val = learning_rate_val for idx, triple in enumerate(weight_placeholders): #Don't apply owl/growl if told not to if not hps.reg_applied_layers[idx]: continue param_i, placeholder_i, assign_op_i = triple param_val = sess.run(param_i) dim_i = np.size(param_val.shape) if dim_i == 2: if FLAGS.use_growl: prox_param_val = apply_growl(param_val, prox_lr_val * layer_reg_params[idx]) else: prox_param_val = apply_group_lasso(param_val, prox_lr_val * layer_reg_params[idx]) elif dim_i == 4: # For convolutional layer, we need to first reshape 4D tensor to 2D matrix reduced_param_val = reshape_2D_4D(param_val, target_shape=None, reshape_type=2, reshape_order='F') if FLAGS.use_growl: reduced_prox_param_val = apply_growl(reduced_param_val, prox_lr_val * layer_reg_params[idx]) else: reduced_prox_param_val = apply_group_lasso(reduced_param_val, prox_lr_val * layer_reg_params[idx]) #Now reshape the 2D matrix back to 4D tensor prox_param_val = reshape_2D_4D(reduced_prox_param_val, target_shape=param_val.shape, reshape_type=1, reshape_order='F') # assign the new weights to param_i using the assign_op_i sess.run(assign_op_i, feed_dict={placeholder_i:prox_param_val}) def update_mask(sess, threshold, hps, res_dict, step): ''' update the mask during the training process to prevent drifting from zero Args: sess: the computation graph learning_rate: the predefined learning rate threshold: the pruning threshold, this may help avoid the floating number error occured during the masking process model: the resnet class hps: hyperparameters res_dict: results dictionary step: current step Returns: num_zero_layers: number of zero valued layers ''' mask_palceholders = get_mask_placeholders() weight_placeholders = get_weight_placeholders() #count the zero valued layers in order to avoiding the nonsense results num_zero_layers = 0 layer_ID = [] assert len(mask_palceholders) == len(weight_placeholders) for idx, mask_triple in enumerate(mask_palceholders): #Don't apply owl/growl if told not to if not hps.reg_applied_layers[idx]: continue mask_i, mask_palceholders_i, mask_assign_op_i = mask_triple param_i, param_placeholder_i, param_assign_op_i = weight_placeholders[idx] dim_i = param_i.get_shape().as_list() #Recover the masked weights to zeros if they drifted param_val = sess.run(param_i) mask = sess.run(mask_i) param_val_masked = param_val * mask #If apply to convolutional layer, compute the reshaped matrix if np.size(dim_i) == 4: param_val_masked_reshaped = reshape_2D_4D(param_val_masked, target_shape=None, reshape_type=2, reshape_order='F') mask_reshaped = reshape_2D_4D(mask, target_shape=None, reshape_type=2, reshape_order='F') #prune params and update the mask row_norm = norm(param_val_masked_reshaped, axis=1) row_size = param_val_masked_reshaped.shape[1] print('layer:{}, largest row norm: {:6f}, median row norm: {:.6f}, min row norm: {:.6f}'.format(idx, np.max(row_norm), np.median(row_norm), np.min(row_norm))) zero_row_idx = np.where(row_norm <=threshold) print(' masked neurons: {}; total neurons: {}'.format(np.size(zero_row_idx), np.size(row_norm))) param_val_masked_reshaped[zero_row_idx[0], :] = 0 mask_reshaped[zero_row_idx[0], :] = 0 #back to 4D param_val_masked = reshape_2D_4D(param_val_masked_reshaped, target_shape=tuple(dim_i), reshape_type=1, reshape_order='F') mask = reshape_2D_4D(mask_reshaped, target_shape=tuple(dim_i), reshape_type=1, reshape_order='F') elif np.size(dim_i) == 2: row_norm = norm(param_val_masked, axis=1) row_size = param_val_masked.shape[1] print('layer:{}, largest row norm: {:6f}, median row norm: {:.6f}, min row norm: {:.6f}'.format(idx, np.max(row_norm), np.median(row_norm), np.min(row_norm))) zero_row_idx = np.where(row_norm <=threshold) print(' masked rows: {}; total rows: {}'.format(np.size(zero_row_idx), np.size(row_norm))) param_val_masked[zero_row_idx[0], :] = 0 mask[zero_row_idx[0], :] = 0 #Update the mask and weight matrix sess.run(mask_assign_op_i, feed_dict={mask_palceholders_i:mask}) sess.run(param_assign_op_i, feed_dict={param_placeholder_i:param_val_masked}) nonzero_rows = np.size(row_norm) - np.size(zero_row_idx[0]) layer_nonzero_params = nonzero_rows * row_size print(" total:{0}, nonzeros:{1}".format(np.size(param_val_masked), layer_nonzero_params)) ################################ #Record the zero valued layers if np.size(row_norm) - np.size(zero_row_idx[0]) <= 3: num_zero_layers += 1 layer_ID += [idx] return num_zero_layers, layer_ID def measure_compression(sess, res_dict, step, training, hps, num_cluster_arr=[]): ''' Monitor the compression ratio ''' mask_palceholders = get_mask_placeholders() weight_placeholders = get_weight_placeholders() num_nonzero_row_arr = [] num_total_row_arr = [] num_row_size_arr = [] num_nonzero_params = 0 num_unique_params = 0 num_total_params = 0 for idx, mask_triple in enumerate(mask_palceholders): mask_i, mask_palceholders_i, mask_assign_op_i = mask_triple param_i, param_placeholder_i, param_assign_op_i = weight_placeholders[idx] dim_i = param_i.get_shape().as_list() param_val = sess.run(param_i) mask = sess.run(mask_i) param_val_masked = param_val * mask if np.size(dim_i) == 4: param_val_masked_reshaped = reshape_2D_4D(param_val_masked, target_shape=None, reshape_type=2, reshape_order='F') row_norm = norm(param_val_masked_reshaped, axis=1) num_nonzero_params += np.count_nonzero(row_norm) * np.shape(param_val_masked_reshaped)[1] num_unique_params += np.size(np.unique(param_val_masked_reshaped)) num_total_params += np.prod(dim_i) num_nonzero_row_arr.append(np.count_nonzero(row_norm)) num_total_row_arr.append(np.size(row_norm)) num_row_size_arr.append(np.shape(param_val_masked_reshaped)[1]) elif np.size(dim_i) == 2: row_norm = norm(param_val_masked, axis=1) num_nonzero_params += np.count_nonzero(row_norm) * dim_i[1] num_unique_params += np.size(np.unique(param_val_masked)) num_total_params += np.prod(dim_i) num_nonzero_row_arr.append(
np.count_nonzero(row_norm)
numpy.count_nonzero
import numpy as np from ..base_channel import Channel from tramp.utils.integration import gaussian_measure_2d_full, gaussian_measure_2d from tramp.utils.misc import norm_cdf, phi_0, phi_1, phi_2, sigmoid, leaky_relu from scipy.integrate import quad class LeakyReluChannel(Channel): def __init__(self, slope): self.slope = slope self.repr_init() def sample(self, Z): X = leaky_relu(Z, self.slope) return X def math(self): return r"$\textrm{l-relu}$" def second_moment(self, tau_z): return 0.5 * (1 + self.slope**2) * tau_z def compute_forward_posterior(self, az, bz, ax, bx): # estimate x from x = leaky_relu(z) a_pos = az + ax a_neg = az + (self.slope**2) * ax b_pos = bz + bx b_neg = - bz - self.slope * bx x_pos = b_pos / np.sqrt(a_pos) x_neg = b_neg / np.sqrt(a_neg) delta = phi_0(x_pos) - phi_0(x_neg) + 0.5 * np.log(a_neg / a_pos) sigma_pos = sigmoid(+delta) sigma_neg = sigmoid(-delta) r_pos = phi_1(x_pos) / np.sqrt(a_pos) r_neg = - self.slope * phi_1(x_neg) / np.sqrt(a_neg) v_pos = phi_2(x_pos) / a_pos v_neg = (self.slope**2) * phi_2(x_neg) / a_neg rx = sigma_pos * r_pos + sigma_neg * r_neg Dx = (r_pos - r_neg)**2 v = sigma_pos * sigma_neg * Dx + sigma_pos * v_pos + sigma_neg * v_neg vx = np.mean(v) return rx, vx def compute_backward_posterior(self, az, bz, ax, bx): # estimate z from x = leaky_relu(z) a_pos = az + ax a_neg = az + (self.slope**2) * ax b_pos = bz + bx b_neg = - bz - self.slope * bx x_pos = b_pos / np.sqrt(a_pos) x_neg = b_neg / np.sqrt(a_neg) delta = phi_0(x_pos) - phi_0(x_neg) + 0.5 * np.log(a_neg / a_pos) sigma_pos = sigmoid(+delta) sigma_neg = sigmoid(-delta) r_pos = phi_1(x_pos) / np.sqrt(a_pos) r_neg = - phi_1(x_neg) / np.sqrt(a_neg) v_pos = phi_2(x_pos) / a_pos v_neg = phi_2(x_neg) / a_neg rz = sigma_pos * r_pos + sigma_neg * r_neg Dz = (r_pos - r_neg)**2 v = sigma_pos * sigma_neg * Dz + sigma_pos * v_pos + sigma_neg * v_neg vz = np.mean(v) return rz, vz def beliefs_measure(self, az, ax, tau_z, f): u_eff = np.maximum(0, az * tau_z - 1) a_pos = az + ax a_neg = az + (self.slope**2) * ax def f_pos(bz, bx): b_pos = bz + bx x_pos = b_pos / np.sqrt(a_pos) return norm_cdf(x_pos) * f(bz, bx) def f_neg(bz, bx): b_neg = - bz - self.slope * bx x_neg = b_neg / np.sqrt(a_neg) return norm_cdf(x_neg) * f(bz, bx) if ax==0 or u_eff==0: sx_eff_pos = np.sqrt(ax * (ax * tau_z + 1)) sx_eff_neg =
np.sqrt(ax * (self.slope**2 * ax * tau_z + 1))
numpy.sqrt
''' File name: nodes.py Author: <NAME> Date created: 10/31/2017 Date last modified: 10/31/2017 Python Version: 2.7 Description: Script to compute connectome Project: Psychosis ''' from __future__ import division from nilearn.input_data import NiftiMasker, NiftiMapsMasker, NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure from sklearn.covariance import GraphLassoCV from sklearn.decomposition import FastICA from matplotlib import pyplot as plt from scipy.signal import lfilter from operator import itemgetter from collections import Counter from datetime import datetime from itertools import groupby from nilearn import datasets import nilearn.signal import nibabel as nib import nilearn.image import pandas as pd import numpy as np import argparse import nilearn import sys import os CODEDIR = os.environ['CODEDIR'] subject = os.environ.get('SUBJECT') cleandir = os.path.join(os.environ.get('CONDIR'),"sub-%s"%subject) keys = os.listdir(cleandir) #keys = np.array([x.split("_bold") for x in keys if 'task' in x]).flatten() keys = np.unique([x for x in keys if 'task' in x]).tolist() prepdir = os.environ.get('PREPDIR') subprep = os.path.join(prepdir,"sub-"+subject,"MNINonLinear/Results") print(datetime.now().strftime("%a %b %d %H:%M:%S")) print("creating connectomes") for gsr in ["_gsr",""]: for key in keys: print("extracting session "+key) prepfile = os.path.join(subprep,key,key+".nii.gz") #original file totaltp = nib.load(prepfile).shape[3] if totaltp <= 10: continue imgfile = os.path.join(cleandir,key,key+'_removed_first10_despiked_masked_mvmreg%s_cmpc_bp.nii.gz'%gsr) ################## # 1 Gordon atlas # ################## atlasfile = os.path.join(os.environ.get("CODEDIR"), 'postbids/rest/Parcels_MNI_111.nii') subcort_atlasfile = os.path.join(os.environ.get("CODEDIR"), 'postbids/rest/HarvardOxford-sub-prob-1mm.nii.gz') cerebellum_atlasfile = os.path.join(os.environ.get("CODEDIR"), 'postbids/rest/Cerebellum-MNIfnirt-prob-1mm.nii.gz') # extract signals masker = NiftiLabelsMasker(labels_img=atlasfile,standardize=True,detrend=False,low_pass=None,high_pass=None,verbose=5) subcortmasker = NiftiMapsMasker(maps_img=subcort_atlasfile,standardize=True,detrend=False,low_pass=None,high_pass=None,verbose=5) cerebellummasker = NiftiMapsMasker(maps_img=cerebellum_atlasfile,standardize=True,detrend=False,low_pass=None,high_pass=None,verbose=5) FDfile = os.path.join(cleandir,key,key+"_removed_first10_despiked_mvmreg.txt") FD = pd.read_csv(FDfile,"\t",header=None) FD = FD[[24,25]] FD.columns = ['dvars','FD'] rmid = np.where(FD['FD'] > 0.5)[0] rmid = np.unique(np.concatenate((rmid,rmid+1,rmid-1))) short = np.append(False,np.logical_and(np.diff(rmid)>1,np.diff(rmid)<5)) #gives Bool for indices when closer than 5 frames (but evidently more than 1) allrmid = [range(rmid[i-1],rmid[i])[1:] for i,val in enumerate(short) if val==True] allrmid = np.sort([item for sublist in allrmid for item in sublist]+rmid.tolist()) ntp = nib.load(imgfile).shape[3]-len(allrmid) percrem = len(allrmid)/nib.load(imgfile).shape[3] rmidfile = os.path.join(cleandir,key,key+"_rmid.txt") np.savetxt(rmidfile,allrmid) percremfile = os.path.join(cleandir,key,key+"_percrem.txt") np.savetxt(percremfile,np.array([len(allrmid),ntp,percrem])) if percrem > 0.2: continue # if len(allrmid)>400: # continue time_series = masker.fit_transform(imgfile) time_series_subcort = subcortmasker.fit_transform(imgfile) time_series_cerebellum = cerebellummasker.fit_transform(imgfile) time_series = np.concatenate((time_series,time_series_subcort,time_series_cerebellum),axis=1) time_series_scrubbed = np.delete(time_series,allrmid,axis=0) # Gordon_figure(correlation_matrix,limits=[-1,1]) # plt.show() # save parcellated time series outfile = os.path.join(cleandir,key,key+"_Gordon_ts_scrubbed%s.csv"%gsr) np.savetxt(outfile,time_series_scrubbed) outfile = os.path.join(cleandir,key,key+"_Gordon_ts%s.csv"%gsr) np.savetxt(outfile,time_series) # static correlation outfile = os.path.join(cleandir,key,key+"_Gordon_correlation%s.csv"%gsr) correlation_measure = ConnectivityMeasure(kind='correlation') correlation_matrix = correlation_measure.fit_transform([time_series_scrubbed])[0] correlation_std = 1/np.sqrt(ntp-3) correlation_z = 1/2*np.log((1+correlation_matrix)/(1-correlation_matrix))#/correlation_std np.fill_diagonal(correlation_z,0) np.savetxt(outfile,correlation_z) # static correlation outfile = os.path.join(cleandir,key,key+"_Gordon_partial_correlation%s.csv"%gsr) correlation_measure = ConnectivityMeasure(kind='partial correlation') correlation_matrix = correlation_measure.fit_transform([time_series_scrubbed])[0] correlation_z = 1/2*np.log((1+correlation_matrix)/(1-correlation_matrix))#/correlation_std np.fill_diagonal(correlation_z,0)
np.savetxt(outfile,correlation_z)
numpy.savetxt
""" USED -> IMAGE CLASS """ import copy import os import time import warnings from typing import Union import logging import numpy as np import pandas as pd from pydicom import FileDataset, Sequence, Dataset from luna.radiology.mirp.utilities import get_version # Monolithic classes..... class ImageClass: # Class for image volumes def __init__(self, voxel_grid, origin, spacing, orientation, modality=None, spat_transform="base", no_image=False, metadata=None, slice_table=None): # Set details regarding voxel orientation and such self.origin = np.array(origin) self.orientation = np.array(orientation) self.spat_transform = spat_transform # Signifies whether the current image is a base image or not self.slice_table = slice_table # The spacing, the affine matrix and its inverse are set using the set_spacing method. self.spacing = None self.m_affine = None self.m_affine_inv = None # Set voxel spacing. This also set the affine matrix and its inverse. self.set_spacing(new_spacing=np.array(spacing)) # Image name self.name = None # Initialise voxel grid dependent parameters self.isEncoded_voxel_grid = None self.voxel_grid = None self.size = None self.dtype_name = None # Interpolation settings self.interpolated = False self.interpolation_algorithm = None # Bin settings self.binned = False self.bin_width = None # Discretisation settings self.discretised = False self.discretisation_algorithm = None self.discretisation_settings = None # Noise addition parameters self.noise = -1.0 self.noise_iter = 0 # Translation parameters self.transl_fraction_x = 0.0 self.transl_fraction_y = 0.0 self.transl_fraction_z = 0.0 # Rotation parameters self.rotation_angle = 0.0 # Set voxel grid and image if not no_image: self.is_missing = False self.set_voxel_grid(voxel_grid=voxel_grid) else: self.is_missing = True # Set metadata and a list of update tags self.metadata: Union[FileDataset, None] = metadata self.as_parametric_map = False # Image modality if modality is None and metadata is not None: # Set imaging modality using metadata self.modality = self.get_metadata(tag=(0x0008, 0x0060), tag_type="str") # Imaging modality elif modality is None: self.modality = "GENERIC" else: self.modality = modality # Normalisation flags. self.is_normalised = False def copy(self, drop_image=False): # Creates a new copy of the image object img_copy = copy.deepcopy(self) if drop_image: img_copy.drop_image() return img_copy def show(self, img_slice): import pylab if self.is_missing: return pylab.imshow(self.get_voxel_grid()[img_slice, :, :], cmap=pylab.cm.bone) pylab.show() def set_origin(self, new_origin): self.origin = new_origin def set_spacing(self, new_spacing): # Update spacing self.spacing: np.ndarray = new_spacing # Recompute the affine matrices m_affine = np.zeros((3, 3), dtype=np.float) # z-coordinates m_affine[:, 0] = self.spacing[0] * np.array([self.orientation[0], self.orientation[1], self.orientation[2]]) # y-coordinates m_affine[:, 1] = self.spacing[1] * np.array([self.orientation[3], self.orientation[4], self.orientation[5]]) # x-coordinates m_affine[:, 2] = self.spacing[2] * np.array([self.orientation[6], self.orientation[7], self.orientation[8]]) self.m_affine = m_affine self.m_affine_inv = np.linalg.inv(self.m_affine) def set_voxel_grid(self, voxel_grid): """ Sets voxel grid """ # Determine size self.size = np.array(voxel_grid.shape) self.dtype_name = voxel_grid.dtype.name # Encode voxel grid self.encode_voxel_grid(voxel_grid=voxel_grid) # Return None for missing images def get_voxel_grid(self) -> np.ndarray: """ Return the voxel grid as a ndarray """ if self.is_missing: return None if self.isEncoded_voxel_grid: # Decode voxel grid (typically roi) decoded_voxel = np.zeros(np.prod(self.size), dtype=np.bool) # Check if the voxel grid contains values if self.voxel_grid is not None: decode_zip = copy.deepcopy(self.voxel_grid) for ii, jj in decode_zip: decoded_voxel[ii:jj + 1] = True # Shape into correct form decoded_voxel = decoded_voxel.reshape(self.size) return decoded_voxel else: return self.voxel_grid def encode_voxel_grid(self, voxel_grid): """Performs run length encoding of the voxel grid""" # Determine whether the voxel grid should be encoded (only True for boolean data types; typically roi) if self.dtype_name == "bool": # Run length encoding for "True" rle_end = np.array(np.append(np.where(voxel_grid.ravel()[1:] != voxel_grid.ravel()[:-1]), np.prod(self.size) - 1)) rle_start = np.cumsum(np.append(0, np.diff(np.append(-1, rle_end))))[:-1] rle_val = voxel_grid.ravel()[rle_start] # Check whether the voxel grid is empty (consists of 0s) if np.all(~rle_val): self.voxel_grid = None self.isEncoded_voxel_grid = True else: # Select only True values entries for further compression rle_start = rle_start[rle_val] rle_end = rle_end[rle_val] # Create zip self.voxel_grid = zip(rle_start, rle_end) self.isEncoded_voxel_grid = True else: self.voxel_grid = voxel_grid self.isEncoded_voxel_grid = False def decode_voxel_grid(self): """Performs run length decoding of the voxel grid and converts it to a numpy array""" if self.dtype_name == "bool" and self.isEncoded_voxel_grid: decoded_voxel = np.zeros(np.prod(self.size), dtype=np.bool) # Check if the voxel grid contains values if self.voxel_grid is not None: decode_zip = copy.deepcopy(self.voxel_grid) for ii, jj in decode_zip: decoded_voxel[ii:jj + 1] = True # Set shape to original grid decoded_voxel = decoded_voxel.reshape(self.size) # Update self.voxel_grid and isEncoded_voxel_grid tags self.voxel_grid = decoded_voxel self.isEncoded_voxel_grid = False def decimate(self, by_slice): """ Decimates image voxel grid by removing every second element :param by_slice: :return: """ # Skip for missing images if self.is_missing: return # Get the voxel grid img_voxel_grid = self.get_voxel_grid() # Update the voxel grid if by_slice: # Drop every second pixel img_voxel_grid = img_voxel_grid[:, slice(None, None, 2), slice(None, None, 2)] # Update voxel spacing self.spacing[[1, 2]] *= 2.0 else: # Drop every second voxel img_voxel_grid = img_voxel_grid[slice(None, None, 2), slice(None, None, 2), slice(None, None, 2)] # Update voxel spacing self.spacing *= 2.0 # Update voxel grid. This also updates the size attribute. self.set_voxel_grid(voxel_grid=img_voxel_grid) def interpolate(self, by_slice, settings): """Performs interpolation of the image volume""" from luna.radiology.mirp.imageProcess import interpolate_to_new_grid, gaussian_preprocess_filter # aauker: Circular import # Skip for missing images if self.is_missing: return # Local interpolation constants if None not in settings.img_interpolate.new_spacing: iso_spacing = settings.img_interpolate.new_spacing[0] new_spacing = np.array([iso_spacing, iso_spacing, iso_spacing]) # Desired spacing in mm elif type(settings.img_interpolate.new_non_iso_spacing) in [list, tuple]: if None not in settings.img_interpolate.new_non_iso_spacing: non_iso_spacing = settings.img_interpolate.new_non_iso_spacing new_spacing = np.array(non_iso_spacing) else: new_spacing = self.spacing else: new_spacing = self.spacing print (f"Interpolating main image to {new_spacing}") # Read additional details order = settings.img_interpolate.spline_order # Order of multidimensional spline filter (0=nearest neighbours, 1=linear, 3=cubic) interpolate_flag = settings.img_interpolate.interpolate # Whether to interpolate or not # Set spacing for interpolation across slices to the original spacing in case interpolation is only conducted within the slice if by_slice: new_spacing[0] = self.spacing[0] # Image translation translate_z = 0#settings.vol_adapt.translate_z[0] translate_y = 0#settings.vol_adapt.translate_y[0] translate_x = 0#settings.vol_adapt.translate_x[0] # Convert to [0.0, 1.0] range translate_x = translate_x - np.floor(translate_x) translate_y = translate_y - np.floor(translate_y) translate_z = translate_z - np.floor(translate_z) trans_vec = np.array([translate_z, translate_y, translate_x]) # Add translation fractions self.transl_fraction_x = translate_x self.transl_fraction_y = translate_y self.transl_fraction_z = translate_z # Skip if translation in both directions is 0.0 if translate_x == 0.0 and translate_y == 0.0 and translate_z == 0.0 and not interpolate_flag: return None # Check if pre-processing is required if settings.img_interpolate.anti_aliasing: self.set_voxel_grid(voxel_grid=gaussian_preprocess_filter(orig_vox=self.get_voxel_grid(), orig_spacing=self.spacing, sample_spacing=new_spacing, param_beta=settings.img_interpolate.smoothing_beta, mode="nearest", by_slice=by_slice)) # Interpolate image and positioning self.size, sample_spacing, upd_voxel_grid, grid_origin = \ interpolate_to_new_grid(orig_dim=self.size, orig_spacing=self.spacing, orig_vox=self.get_voxel_grid(), sample_spacing=new_spacing, translation=trans_vec, order=order, mode="nearest", align_to_center=True) # Update origin before spacing, because computing the origin requires the original affine matrix. self.origin = self.origin + np.dot(self.m_affine, np.transpose(grid_origin)) # Update spacing and affine matrix. self.set_spacing(sample_spacing) # Round intensities in case of modalities with inherently discretised intensities if (self.modality == "CT") and (self.spat_transform == "base"): upd_voxel_grid = np.round(upd_voxel_grid) elif (self.modality == "PT") and (self.spat_transform == "base"): upd_voxel_grid[upd_voxel_grid < 0.0] = 0.0 # Set interpolation self.interpolated = True # Set interpolation algorithm if order == 0: self.interpolation_algorithm = "nnb" elif order == 1: self.interpolation_algorithm = "lin" elif order > 1: self.interpolation_algorithm = "si" + str(order) if settings.img_interpolate.bin: self.binned = True self.bin_width = settings.img_interpolate.bin_width self.bins = np.arange(-1000,1000, settings.img_interpolate.bin_width ) upd_voxel_grid = np.digitize(upd_voxel_grid, self.bins).astype(np.float) # Set voxel grid self.set_voxel_grid(voxel_grid=upd_voxel_grid) def add_noise(self, noise_level, noise_iter): """ Adds Gaussian noise to the image volume noise_level: standard deviation of image noise present """ # Add noise iteration number self.noise_iter = noise_iter # Skip for missing images if self.is_missing: return # Skip for invalid noise levels if noise_level is None: return if np.isnan(noise_level) or noise_level < 0.0: return # Add Gaussian noise to image voxel_grid = self.get_voxel_grid() voxel_grid += np.random.normal(loc=0.0, scale=noise_level, size=self.size) # Check for corrections due to image modality if self.spat_transform == "base": # Round CT values to the nearest integer if self.modality == "CT": voxel_grid = np.round(a=voxel_grid, decimals=0) # Set minimum PT to 0.0 if self.modality == "PT": voxel_grid[voxel_grid < 0.0] = 0.0 # Set noise level in image self.noise = noise_level self.set_voxel_grid(voxel_grid=voxel_grid) def saturate(self, intensity_range, fill_value=None): """ Saturate image intensities using an intensity range :param intensity_range: range of intensity values :param fill_value: fill value for out-of-range intensities. If None, the upper and lower ranges are used :return: """ # Skip for missing images if self.is_missing: return intensity_range = np.array(copy.deepcopy(intensity_range)) if np.any(~np.isnan(intensity_range)): # Get voxel grid voxel_grid = self.get_voxel_grid() # Lower boundary if not np.isnan(intensity_range[0]): if fill_value is None: voxel_grid[voxel_grid < intensity_range[0]] = intensity_range[0] else: voxel_grid[voxel_grid < intensity_range[0]] = fill_value[0] # Upper boundary if not np.isnan(intensity_range[1]): if fill_value is None: voxel_grid[voxel_grid > intensity_range[1]] = intensity_range[1] else: voxel_grid[voxel_grid > intensity_range[1]] = fill_value[1] # Set the updated voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) def normalise_intensities(self, norm_method="none", intensity_range=None, saturation_range=None, mask=None): """ Normalises image intensities :param norm_method: string defining the normalisation method. Should be one of "none", "range", "standardisation" :param intensity_range: range of intensities for normalisation :return: """ # Skip for missing images if self.is_missing: return if intensity_range is None: intensity_range = [np.nan, np.nan] if mask is None: mask = np.ones(self.size, dtype=np.bool) else: mask = mask.astype(np.bool) if np.sum(mask) == 0: mask = np.ones(self.size, dtype=np.bool) if saturation_range is None: saturation_range = [np.nan, np.nan] if norm_method == "none": return elif norm_method == "range": # Normalisation to [0, 1] range using fixed intensities. # Get voxel grid voxel_grid = self.get_voxel_grid() # Find maximum and minimum intensities if np.isnan(intensity_range[0]): min_int = np.min(voxel_grid[mask]) else: min_int = intensity_range[0] if np.isnan(intensity_range[1]): max_int = np.max(voxel_grid[mask]) else: max_int = intensity_range[1] # Normalise by range if not max_int == min_int: voxel_grid = (voxel_grid - min_int) / (max_int - min_int) else: voxel_grid = voxel_grid - min_int # Update the voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) self.is_normalised = True elif norm_method == "relative_range": # Normalisation to [0, 1]-ish range using relative intensities. # Get voxel grid voxel_grid = self.get_voxel_grid() min_int_rel = 0.0 if not np.isnan(intensity_range[0]): min_int_rel = intensity_range[0] max_int_rel = 1.0 if not np.isnan(intensity_range[1]): max_int_rel = intensity_range[1] # Compute minimum and maximum intensities. value_range = [np.min(voxel_grid[mask]), np.max(voxel_grid[mask])] min_int = value_range[0] + min_int_rel * (value_range[1] - value_range[0]) max_int = value_range[0] + max_int_rel * (value_range[1] - value_range[0]) # Normalise by range if not max_int == min_int: voxel_grid = (voxel_grid - min_int) / (max_int - min_int) else: voxel_grid = voxel_grid - min_int # Update the voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) self.is_normalised = True elif norm_method == "quantile_range": # Normalisation to [0, 1]-ish range based on quantiles. # Get voxel grid voxel_grid = self.get_voxel_grid() min_quantile = 0.0 if not np.isnan(intensity_range[0]): min_quantile = intensity_range[0] max_quantile = 1.0 if not np.isnan(intensity_range[1]): max_quantile = intensity_range[1] # Compute quantiles from voxel grid. min_int = np.quantile(voxel_grid[mask], q=min_quantile) max_int = np.quantile(voxel_grid[mask], q=max_quantile) # Normalise by range if not max_int == min_int: voxel_grid = (voxel_grid - min_int) / (max_int - min_int) else: voxel_grid = voxel_grid - min_int # Update the voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) self.is_normalised = True elif norm_method == "standardisation": # Normalisation to mean 0 and standard deviation 1. # Get voxel grid voxel_grid = self.get_voxel_grid() # Determine mean and standard deviation of the voxel intensities mean_int = np.mean(voxel_grid[mask]) sd_int = np.std(voxel_grid[mask]) # Protect against invariance. if sd_int == 0.0: sd_int = 1.0 # Normalise voxel_grid = (voxel_grid - mean_int) / sd_int # Update the voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) self.is_normalised = True else: raise ValueError(f"{norm_method} is not a valid method for normalising intensity values.") self.saturate(intensity_range=saturation_range) def rotate(self, angle): """Rotate volume along z-axis.""" # Skip for missing images if self.is_missing: return import scipy.ndimage as ndi from luna.radiology.mirp.featureSets.volumeMorphology import get_rotation_matrix # Find actual output size of x-y plane new_z_dim = np.asmatrix([self.size[0], 0.0, 0.0]) * get_rotation_matrix(np.radians(angle), dim=3, rot_axis=0) new_y_dim = np.asmatrix([0.0, self.size[1], 0.0]) * get_rotation_matrix(np.radians(angle), dim=3, rot_axis=0) new_x_dim = np.asmatrix([0.0, 0.0, self.size[2]]) * get_rotation_matrix(np.radians(angle), dim=3, rot_axis=0) new_dim_flt = np.squeeze(np.array(np.abs(new_z_dim)) + np.array(np.abs(new_y_dim) + np.abs(new_x_dim))) # Get voxel grid voxel_grid = self.get_voxel_grid() # Rotate voxels along angle in the y-x plane and find truncated output size voxel_grid = ndi.rotate(voxel_grid.astype(np.float32), angle=angle, axes=(1, 2), reshape=True, order=1, mode="nearest") new_dim_int = np.array(np.shape(voxel_grid)) * 1.0 if (self.modality == "CT") and (self.spat_transform == "base"): voxel_grid = np.round(voxel_grid) # Update spacing self.spacing *= new_dim_int / new_dim_flt # Set rotation angle self.rotation_angle = angle # Update voxel grid with rotated voxels self.set_voxel_grid(voxel_grid=voxel_grid) def crop(self, ind_ext_z=None, ind_ext_y=None, ind_ext_x=None, xy_only=False, z_only=False): """"Crop image to the provided map extent.""" from luna.radiology.mirp.utilities import world_to_index # Skip for missing images if self.is_missing: return # Determine corresponding voxel indices max_ind = np.ceil(np.array((np.max(ind_ext_z), np.max(ind_ext_y), np.max(ind_ext_x)))).astype(np.int) min_ind = np.floor(np.array((np.min(ind_ext_z), np.min(ind_ext_y), np.min(ind_ext_x)))).astype(np.int) # Set bounding indices max_bound_ind = np.minimum(max_ind, self.size).astype(np.int) min_bound_ind = np.maximum(min_ind, np.array([0, 0, 0])).astype(np.int) # Get voxel grid voxel_grid = self.get_voxel_grid() # Create corresponding image volumes by slicing original volume if z_only: voxel_grid = voxel_grid[min_bound_ind[0]:max_bound_ind[0] + 1, :, :] min_bound_ind[1] = 0 min_bound_ind[2] = 0 elif xy_only: voxel_grid = voxel_grid[:, min_bound_ind[1]:max_bound_ind[1] + 1, min_bound_ind[2]:max_bound_ind[2] + 1] min_bound_ind[0] = 0 max_bound_ind[0] = self.size[0].astype(np.int) else: voxel_grid = voxel_grid[min_bound_ind[0]:max_bound_ind[0] + 1, min_bound_ind[1]:max_bound_ind[1] + 1, min_bound_ind[2]:max_bound_ind[2] + 1] # Update origin and z-slice position self.origin = self.origin + np.dot(self.m_affine, np.transpose(min_bound_ind)) # Update voxel grid self.set_voxel_grid(voxel_grid=voxel_grid) def crop_to_size(self, center, crop_size, xy_only=False): """Crop images to the exact size""" # Skip for missing images if self.is_missing: return # Make local copy crop_size = np.array(copy.deepcopy(crop_size)) # Determine the new grid origin in the original index space. Only the dimensions with a number are updated grid_origin = np.round(center - crop_size / 2.0).astype(np.int) # Update grid origin and crop_size for the remainder of the calculation grid_origin[np.isnan(crop_size)] = 0 crop_size[np.isnan(crop_size)] = self.size[np.isnan(crop_size)] # Determine coordinates of the box that can be copied in the original space max_ind_orig = grid_origin + crop_size min_ind_orig = grid_origin # Update coordinates based on boundaries in the original images max_ind_orig = np.minimum(max_ind_orig, self.size).astype(np.int) min_ind_orig =
np.maximum(min_ind_orig, [0, 0, 0])
numpy.maximum
# sample_submission.py import numpy as np from scipy.special import expit import sys class xor_net(object): """ This code will train and test the Neural Network for XOR data. Args: data: Is a tuple, ``(x,y)`` ``x`` is a two or one dimensional ndarray ordered such that axis 0 is independent data and data is spread along axis 1. If the array had only one dimension, it implies that data is 1D. ``y`` is a 1D ndarray it will be of the same length as axis 0 or x. """ def __init__(self, data, labels): self.x = data self.y = labels maxiteration = 300000 if self.x.shape[0] <= 100: learningrate = .001 maxiteration = 1000000 elif self.x.shape[0] <= 500: learningrate = .0001 maxiteration = 500000 else: learningrate = .00001 R = .01 xdimension = self.x.shape[1] neuorons = 3 self.w = np.random.rand(xdimension + 1, neuorons) tempX = np.insert(self.x, 0, 1, axis=1) tempX = np.array(tempX, dtype=np.float64) validsize = int(.2 * len(self.x)) validsetX = tempX[0:validsize, :] trainX = tempX[validsize:, :] validsetY = self.y[0:validsize] trainY = self.y[validsize:] previouserror = sys.maxint count = 0 self.wprime = np.random.rand(neuorons + 1, 1) finalW = self.w finalWprime = self.wprime iteration = 0 momentum = .9 prevloss = np.random.rand(self.w.shape[0], self.w.shape[1]) prevlossprime = np.random.rand(self.wprime.shape[0], self.wprime.shape[1]) while True: u = np.dot(self.w.T, trainX.T) h = expit(u) temph = h h = np.insert(h, 0, 1, axis=0) h = np.array(h, dtype=np.float64) uprime = np.dot(self.wprime.T, h) yprime = expit(uprime) uvalid = np.dot(self.w.T, validsetX.T) hvalid = expit(uvalid) hvalid = np.insert(hvalid, 0, 1, axis=0) uvalidprime = np.dot(self.wprime.T, hvalid) yvalidprime = expit(uvalidprime) currenterror = (np.mean((validsetY - yvalidprime) ** 2)) / 2 if iteration >= maxiteration: finalW = self.w finalWprime = self.wprime break if currenterror > previouserror: if count == 0: finalW = self.w finalWprime = self.wprime count = count + 1 if count >= 10 and iteration > 100000: break else: count = 0 previouserror = currenterror regwprime = np.multiply(learningrate, np.multiply(2, np.multiply(R, self.wprime))) l2delta = np.multiply(np.subtract(yprime, trainY.T), np.multiply(yprime, np.subtract(1, yprime))) lossprime = np.multiply(learningrate, np.dot(l2delta, h.T)) self.wprime = np.subtract(self.wprime, lossprime.T) self.wprime = np.subtract(self.wprime, regwprime) self.wprime = np.subtract(self.wprime, np.multiply(momentum, prevlossprime)) prevlossprime = lossprime.T tempWprime = self.wprime[1:] regw = np.multiply(learningrate, np.multiply(2, np.multiply(R, self.w))) l1delta = (l2delta.T.dot(tempWprime.T)).T * (temph * (1 - temph)) loss = learningrate * (trainX.T.dot(l1delta.T)) self.w = np.subtract(self.w, loss) self.w = np.subtract(self.w, regw) self.w = np.subtract(self.w, np.multiply(momentum, prevloss)) prevloss = loss iteration = iteration + 1 self.w = finalW self.wprime = finalWprime self.params = [(self.w[0, :], self.w[1:, :]), (self.wprime[0], self.wprime[1:])] # [(w,b),(w,b)] def get_params(self): """ This code will return Weights and Bias of the trained network. Returns: tuple of numpy.ndarray: (w, b). """ return self.params def get_predictions(self, x): """ This method will return prediction for unseen data. Args: x: array similar to ``x`` in ``data``. Might be of different size. Returns: numpy.ndarray: ``y`` which is a 1D array of predictions of the same length as axis 0 of ``x`` """ testX = np.insert(x, 0, 1, axis=1) utest = np.dot(self.w.T, testX.T) htest = expit(utest) htest = np.insert(htest, 0, 1, axis=0) utestprime = np.dot(self.wprime.T, htest) ytestprime = expit(utestprime) predY = ytestprime > .5 predY = predY.astype(int) predY = predY.flatten() return predY class mlnn(object): """ This code will train and test the Neural Network for image data. Args: data: Is a tuple, ``(x,y)`` ``x`` is a two or one dimensional ndarray ordered such that axis 0 is independent data and data is spread along axis 1. If the array had only one dimension, it implies that data is 1D. ``y`` is a 1D ndarray it will be of the same length as axis 0 or x. """ def __init__(self, data, labels): self.x = data / 255.0 self.y = labels maxiteration=40000 if self.x.shape[0]<=100: learningrate = .0001 elif self.x.shape[0]<=500: learningrate=.0001 else: learningrate = .00001 if self.x.shape[0]>500: maxiteration=15000 R = 0.01 neuorons = 100 self.w = 0.01 * np.random.rand(self.x.shape[1] + 1, neuorons) tempX = np.insert(self.x, 0, 1, axis=1) tempX = np.array(tempX, dtype=np.float64) validsize = int(.2 * len(self.x)) validsetX = tempX[0:validsize, :] validsetX -= np.mean(validsetX, axis=0) trainX = tempX[validsize:, :] trainX -= np.mean(trainX, axis=0) validsetY = self.y[0:validsize] trainY = self.y[validsize:] previouserror = sys.maxint count = 0 self.wprime = 0.01 *
np.random.rand(neuorons + 1, 1)
numpy.random.rand
import cv2 import torch import torch.utils.data import torch.optim.lr_scheduler as lr_scheduler import numpy as np import scipy.io as scio import os from ptflops import get_model_complexity_info import model as model import anchor as anchor from tqdm import tqdm import random_erasing import logging import time import random os.environ["CUDA_VISIBLE_DEVICES"] = "0" fx = 588.03 fy = -587.07 u0 = 320 v0 = 240 # 使用1/4采样的数据 TrainImgFrames = int(72757) TestImgFrames = int(8252) keypointsNumber = 14 cropWidth = 176 cropHeight = 176 batch_size = 32 learning_rate = 0.00035 Weight_Decay = 1e-4 nepoch = 35 RandCropShift = 5 RandshiftDepth = 1 RandRotate = 180 RandScale = (1.0, 0.5) xy_thres = 110 depth_thres = 150 depth_pixel_ratio = cropHeight / 2 / depth_thres downsample = 16 randomseed = 12345 random.seed(randomseed) np.random.seed(randomseed) torch.manual_seed(randomseed) save_dir = './result/nyu' try: os.makedirs(save_dir) except OSError: pass trainingImageDir = '/home/dejian/Dataset/nyu/preprocessed/train/' train_center_file = './data/nyu/nyu_center_train.mat' train_keypoint_file = './data/nyu/nyu_keypointsUVD_train.mat' testingImageDir = '/home/dejian/Dataset/nyu/preprocessed/test/' test_center_file = './data/nyu/nyu_center_test.mat' test_keypoint_file = './data/nyu/nyu_keypointsUVD_test.mat' MEAN = np.load('./data/nyu/nyu_mean.npy') STD = np.load('./data/nyu/nyu_std.npy') model_dir = './model/nyu_resnet50_8.29.pth' result_file = 'result_NYU.txt' def pixel2world(x, fx, fy, ux, uy): x[:, :, 0] = (x[:, :, 0] - ux) * x[:, :, 2] / fx x[:, :, 1] = (x[:, :, 1] - uy) * x[:, :, 2] / fy return x def world2pixel(x, fx, fy, ux, uy): x[:, :, 0] = x[:, :, 0] * fx / x[:, :, 2] + ux x[:, :, 1] = x[:, :, 1] * fy / x[:, :, 2] + uy return x joint_id_to_name = { 0: 'pinky tip', 1: 'pinky mid', 2: 'ring tip', 3: 'ring mid', 4: 'middle tip', 5: 'middle mid', 6: 'index tip', 7: 'index mid', 8: 'thumb tip', 9: 'thumb mid', 10: 'thumb root', 11: 'wrist back', 12: 'wrist', 13: 'palm', } ## loading GT keypoints and center points keypointsUVD_test = scio.loadmat(test_keypoint_file)['keypoints3D'].astype(np.float32) center_test = scio.loadmat(test_center_file)['centre_pixel'].astype(np.float32) # center_test = keypointsUVD_test[:,13] # center_test = np.expand_dims(center_test, axis=1) centre_test_world = pixel2world(center_test.copy(), fx, fy, u0, v0) centerlefttop_test = centre_test_world.copy() centerlefttop_test[:,0,0] = centerlefttop_test[:,0,0]-xy_thres centerlefttop_test[:,0,1] = centerlefttop_test[:,0,1]+xy_thres centerrightbottom_test = centre_test_world.copy() centerrightbottom_test[:,0,0] = centerrightbottom_test[:,0,0]+xy_thres centerrightbottom_test[:,0,1] = centerrightbottom_test[:,0,1]-xy_thres test_lefttop_pixel = world2pixel(centerlefttop_test, fx, fy, u0, v0) test_rightbottom_pixel = world2pixel(centerrightbottom_test, fx, fy, u0, v0) keypointsUVD_train = scio.loadmat(train_keypoint_file)['keypoints3D'].astype(np.float32) center_train = scio.loadmat(train_center_file)['centre_pixel'].astype(np.float32) # center_train = keypointsUVD_train[:,13] # center_train = np.expand_dims(center_train, axis=1) centre_train_world = pixel2world(center_train.copy(), fx, fy, u0, v0) centerlefttop_train = centre_train_world.copy() centerlefttop_train[:,0,0] = centerlefttop_train[:,0,0]-xy_thres centerlefttop_train[:,0,1] = centerlefttop_train[:,0,1]+xy_thres centerrightbottom_train = centre_train_world.copy() centerrightbottom_train[:,0,0] = centerrightbottom_train[:,0,0]+xy_thres centerrightbottom_train[:,0,1] = centerrightbottom_train[:,0,1]-xy_thres train_lefttop_pixel = world2pixel(centerlefttop_train, fx, fy, u0, v0) train_rightbottom_pixel = world2pixel(centerrightbottom_train, fx, fy, u0, v0) def transform(img, label, matrix): ''' img: [H, W] label, [N,2] ''' img_out = cv2.warpAffine(img,matrix,(cropWidth,cropHeight)) label_out = np.ones((keypointsNumber, 3)) label_out[:,:2] = label[:,:2].copy() label_out = np.matmul(matrix, label_out.transpose()) label_out = label_out.transpose() return img_out, label_out def dataPreprocess(index, img, keypointsUVD, center, mean, std, lefttop_pixel, rightbottom_pixel, xy_thres=90, depth_thres=75, augment=True): imageOutputs = np.ones((cropHeight, cropWidth, 1), dtype='float32') labelOutputs = np.ones((keypointsNumber, 3), dtype = 'float32') if augment: RandomOffset_1 = np.random.randint(-1*RandCropShift,RandCropShift) RandomOffset_2 = np.random.randint(-1*RandCropShift,RandCropShift) RandomOffset_3 = np.random.randint(-1*RandCropShift,RandCropShift) RandomOffset_4 = np.random.randint(-1*RandCropShift,RandCropShift) RandomOffsetDepth =
np.random.normal(0, RandshiftDepth, cropHeight*cropWidth)
numpy.random.normal
from collections import Sequence import numpy as np from PIL import Image class CoOccur: """ Class used to compute all Co-occurrence matrices of an image for a set of distances and angles and some related parameters: the inertia, the average, the spread. An instance of the CoOccur class holds a tensor of shape (len(distances), len(angles), levels, levels) that holds all Co-occurrence matrices of the image passed as constructor's parameter, for each distance and angle in the sequences passed as constructor's parameters. During the instantiation are computed also the inertia matrix of shape (len(distances), len(angles)), the average tensor of shape (len(distances), levels, levels), and the spread tensor of shape (len(distances), levels, levels). Co-occurrence matrices can dramatically grow in size, so the levels of pixels are usually quantized before the computation of the Co-occurrence matrices. From the 256 possible values that pixels can assume, these are reduced to a smaller number specified as constructor's parameter. Args: image (PIL.Image): The image that has to be analyzed, it is internally converted in B/W with Image.convert('L') distances (Sequence[float]): The sequence of analyzed distances. Default: range(1, 16, 2) angles (Sequence[float]): The sequence of analyzed angles expressed in degrees. Default: range(90, -90, -45) levels (int): Pixel values are quantized in this number of levels. Should be lower than 256. Default: 8 Attributes: matrices (numpy.ndarray): Co-Occurrence matrices, of shape (len(distances), len(angles), levels, levels) inertia (numpy.ndarray): Inertia matrix, of shape (len(distances), len(angles)) average (numpy.ndarray): Average tensor, of shape (len(distances), levels, levels) spread (numpy.ndarray): Spread tensor, of shape (len(distances), levels, levels) distances (numpy.ndarray): Array of all analyzed distances angles (numpy.ndarray): Array of all analyzed angles """ def __init__(self, image: Image, distances: Sequence[float] = range(1, 16, 2), angles: Sequence[float] = range(90, -90, -45), levels: int = 8): # ===Image quantization=== pixels = np.array(image.convert('L')) # pixels.dtype == np.uint8 pixels = np.floor(pixels / 256 * levels).astype(np.uint8) # quantized in the [0, levels) integer range # ===Angles and distances=== self.distances = np.array(distances) self.angles = np.array(angles) self._idx_of_dist = {distance: idx for idx, distance in enumerate(distances)} self._idx_of_angle = {angle: idx for idx, angle in enumerate(angles)} # ===CoOccur Tensor=== (distances, angles, levels_start, levels_end) self.matrices = self._co_occurrence_matrices(pixels, distances, angles, levels) # ===Inertia, Average, Spread=== self.inertia = self._inertia_matrix(levels) self.average = self._average_matrices() self.spread = self._spread_matrices() def _co_occurrence_matrices(self, pixels: np.ndarray, dists: Sequence, angles: Sequence, levels: int) -> np.ndarray: """Computes the Co-Occurrence matrix of pixels for every distance and every angle passed as parameters""" dists_list = [] for distance in dists: angles_list = [] for angle in angles: slice_start, slice_end = self._offset_slices(distance, angle) start = pixels[slice_start[0][0]:slice_start[0][1], slice_start[1][0]:slice_start[1][1]].reshape(-1) end = pixels[slice_end[0][0]:slice_end[0][1], slice_end[1][0]:slice_end[1][1]].reshape(-1) histogram2d = np.histogram2d(start, end, density=True, bins=levels, range=[[0, levels], [0, levels]])[0] angles_list.append(histogram2d) dists_list.append(angles_list) co_occur_matrices = np.array(dists_list) return co_occur_matrices @staticmethod def _offset_slices(distance: float, angle: float): """Returns the starting and ending ranges to slice the pixel matrix given an angle in degrees and a distance""" angle = np.radians(angle) offset = np.rint(np.array([-np.sin(angle),
np.cos(angle)
numpy.cos
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test cases for the bfloat16 Python type.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np # pylint: disable=unused-import,g-bad-import-order from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import dtypes from tensorflow.python.platform import test bfloat16 = pywrap_tensorflow.TF_bfloat16_type() class Bfloat16Test(test.TestCase): def float_values(self): """Returns values that should round trip exactly to float and back.""" epsilon = float.fromhex("1.0p-7") return [ 0.0, 1.0, -1, 0.5, -0.5, epsilon, 1.0 + epsilon, 1.0 - epsilon, -1.0 - epsilon, -1.0 + epsilon, 3.5, 42.0, 255.0, 256.0, float("inf"), float("-inf"), float("nan")] def _assertFloatIdentical(self, v, w): if math.isnan(v): self.assertTrue(math.isnan(w)) else: self.assertEqual(v, w) def testRoundTripToFloat(self): for v in self.float_values(): self._assertFloatIdentical(v, float(bfloat16(v))) def testRoundTripToInt(self): for v in [-256, -255, -34, -2, -1, 0, 1, 2, 10, 47, 128, 255, 256, 512]: self.assertEqual(v, int(bfloat16(v))) def testStr(self): self.assertEqual("0", str(bfloat16(0.0))) self.assertEqual("1", str(bfloat16(1.0))) self.assertEqual("-3.5", str(bfloat16(-3.5))) self.assertEqual("0.0078125", str(bfloat16(float.fromhex("1.0p-7")))) self.assertEqual("inf", str(bfloat16(float("inf")))) self.assertEqual("-inf", str(bfloat16(float("-inf")))) self.assertEqual("nan", str(bfloat16(float("nan")))) def testRepr(self): self.assertEqual("bfloat16(0)", repr(bfloat16(0))) self.assertEqual("bfloat16(1)", repr(bfloat16(1))) self.assertEqual("bfloat16(-3.5)", repr(bfloat16(-3.5))) self.assertEqual("bfloat16(0.0078125)", repr(bfloat16(float.fromhex("1.0p-7")))) self.assertEqual("bfloat16(inf)", repr(bfloat16(float("inf")))) self.assertEqual("bfloat16(-inf)", repr(bfloat16(float("-inf")))) self.assertEqual("bfloat16(nan)", repr(bfloat16(float("nan")))) def testHash(self): self.assertEqual(0, hash(bfloat16(0.0))) self.assertEqual(0x3f80, hash(bfloat16(1.0))) self.assertEqual(0x7fc0, hash(bfloat16(float("nan")))) # Tests for Python operations def testNegate(self): for v in self.float_values(): self._assertFloatIdentical(-v, float(-bfloat16(v))) def testAdd(self): self._assertFloatIdentical(0, float(bfloat16(0) + bfloat16(0))) self._assertFloatIdentical(1, float(bfloat16(1) + bfloat16(0))) self._assertFloatIdentical(0, float(bfloat16(1) + bfloat16(-1))) self._assertFloatIdentical(5.5, float(bfloat16(2) + bfloat16(3.5))) self._assertFloatIdentical(1.25, float(bfloat16(3.5) + bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("inf")) + bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("-inf")) + bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) + bfloat16(float("nan"))))) def testSub(self): self._assertFloatIdentical(0, float(bfloat16(0) - bfloat16(0))) self._assertFloatIdentical(1, float(bfloat16(1) - bfloat16(0))) self._assertFloatIdentical(2, float(bfloat16(1) - bfloat16(-1))) self._assertFloatIdentical(-1.5, float(bfloat16(2) - bfloat16(3.5))) self._assertFloatIdentical(5.75, float(bfloat16(3.5) - bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(-2.25) - bfloat16(float("inf")))) self._assertFloatIdentical(float("inf"), float(bfloat16(-2.25) - bfloat16(float("-inf")))) self.assertTrue(math.isnan(float(bfloat16(3.5) - bfloat16(float("nan"))))) def testMul(self): self._assertFloatIdentical(0, float(bfloat16(0) * bfloat16(0))) self._assertFloatIdentical(0, float(bfloat16(1) * bfloat16(0))) self._assertFloatIdentical(-1, float(bfloat16(1) * bfloat16(-1))) self._assertFloatIdentical(-7.875, float(bfloat16(3.5) * bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("inf")) * bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("-inf")) * bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) * bfloat16(float("nan"))))) def testDiv(self): self.assertTrue(math.isnan(float(bfloat16(0) / bfloat16(0)))) self._assertFloatIdentical(float("inf"), float(bfloat16(1) / bfloat16(0))) self._assertFloatIdentical(-1, float(bfloat16(1) / bfloat16(-1))) self._assertFloatIdentical(-1.75, float(bfloat16(3.5) / bfloat16(-2))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("inf")) / bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("-inf")) / bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) / bfloat16(float("nan"))))) def testLess(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v < w, bfloat16(v) < bfloat16(w)) def testLessEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v <= w, bfloat16(v) <= bfloat16(w)) def testGreater(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v > w, bfloat16(v) > bfloat16(w)) def testGreaterEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v >= w, bfloat16(v) >= bfloat16(w)) def testEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v == w, bfloat16(v) == bfloat16(w)) def testNotEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v != w, bfloat16(v) != bfloat16(w)) def testNan(self): a = np.isnan(bfloat16(float("nan"))) self.assertTrue(a) np.testing.assert_allclose(np.array([1.0, a]), np.array([1.0, a])) a = np.array( [bfloat16(1.34375), bfloat16(1.4375), bfloat16(float("nan"))], dtype=dtypes.bfloat16.as_numpy_dtype) b = np.array( [bfloat16(1.3359375), bfloat16(1.4375), bfloat16(float("nan"))], dtype=dtypes.bfloat16.as_numpy_dtype) np.testing.assert_allclose( a, b, rtol=0.1, atol=0.1, equal_nan=True, err_msg="", verbose=True) class Bfloat16NumPyTest(test.TestCase): def testDtype(self): self.assertEqual(bfloat16, np.dtype(bfloat16)) def testArray(self): x = np.array([[1, 2, 3]], dtype=bfloat16) self.assertEqual(bfloat16, x.dtype) self.assertEqual("[[bfloat16(1) bfloat16(2) bfloat16(3)]]", str(x)) self.assertAllEqual(x, x) self.assertAllClose(x, x) self.assertTrue((x == x).all()) def testComparisons(self): x = np.array([401408, 7, -32], dtype=np.float32) bx = x.astype(bfloat16) y = np.array([82432, 7, 0], dtype=np.float32) by = y.astype(bfloat16) self.assertAllEqual(x == y, bx == by) self.assertAllEqual(x != y, bx != by) self.assertAllEqual(x < y, bx < by) self.assertAllEqual(x > y, bx > by) self.assertAllEqual(x <= y, bx <= by) self.assertAllEqual(x >= y, bx >= by) def testEqual2(self): a = np.array([401408], bfloat16) b = np.array([82432], bfloat16) self.assertFalse(a.__eq__(b)) def testCasts(self): for dtype in [ np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: x =
np.array([[1, 2, 3]], dtype=dtype)
numpy.array
## @ingroup Components-Energy-Converters # Rotor.py # # Created: Jun 2014, <NAME> # Modified: Jan 2016, <NAME> # Feb 2019, <NAME> # Mar 2020, <NAME> # Sep 2020, <NAME> # Mar 2021, <NAME> # Apr 2021, <NAME> # Jul 2021, <NAME> # Jul 2021, <NAME> # Sep 2021, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- from SUAVE.Core import Data, Units from SUAVE.Components.Energy.Energy_Component import Energy_Component from SUAVE.Methods.Geometry.Three_Dimensional \ import orientation_product, orientation_transpose from SUAVE.Methods.Aerodynamics.Common.Fidelity_Zero.Lift.compute_HFW_inflow_velocities \ import compute_HFW_inflow_velocities # package imports import numpy as np import scipy as sp # ---------------------------------------------------------------------- # Generalized Rotor Class # ---------------------------------------------------------------------- ## @ingroup Components-Energy-Converters class Rotor(Energy_Component): """This is a general rotor component. Assumptions: None Source: None """ def __defaults__(self): """This sets the default values for the component to function. Assumptions: None Source: N/A Inputs: None Outputs: None Properties Used: None """ self.tag = 'rotor' self.number_of_blades = 0.0 self.tip_radius = 0.0 self.hub_radius = 0.0 self.twist_distribution = 0.0 self.sweep_distribution = 0.0 # quarter chord offset from quarter chord of root airfoil self.chord_distribution = 0.0 self.mid_chord_alignment = 0.0 self.thickness_to_chord = 0.0 self.blade_solidity = 0.0 self.design_power = None self.design_thrust = None self.airfoil_geometry = None self.airfoil_polars = None self.airfoil_polar_stations = None self.radius_distribution = None self.rotation = 1 self.azimuthal_offset_angle = 0.0 self.orientation_euler_angles = [0.,0.,0.] # This is X-direction thrust in vehicle frame self.ducted = False self.number_azimuthal_stations = 24 self.number_points_around_airfoil = 40 self.induced_power_factor = 1.48 # accounts for interference effects self.profile_drag_coefficient = .03 self.use_2d_analysis = False # True if rotor is at an angle relative to freestream or nonuniform freestream self.nonuniform_freestream = False self.axial_velocities_2d = None # user input for additional velocity influences at the rotor self.tangential_velocities_2d = None # user input for additional velocity influences at the rotor self.radial_velocities_2d = None # user input for additional velocity influences at the rotor self.Wake_VD = Data() self.wake_method = "momentum" self.number_rotor_rotations = 6 self.number_steps_per_rotation = 100 self.wake_settings = Data() self.wake_settings.initial_timestep_offset = 0 # initial timestep self.wake_settings.wake_development_time = 0.05 # total simulation time required for wake development self.wake_settings.number_of_wake_timesteps = 30 # total number of time steps in wake development self.start_angle = 0.0 # angle of first blade from vertical self.inputs.y_axis_rotation = 0. self.inputs.pitch_command = 0. self.variable_pitch = False def spin(self,conditions): """Analyzes a general rotor given geometry and operating conditions. Assumptions: per source Source: <NAME>. "Qprop Formulation", MIT AeroAstro, June 2006 http://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf Leishman, <NAME>. Principles of helicopter aerodynamics Cambridge university press, 2006. Inputs: self.inputs.omega [radian/s] conditions.freestream. density [kg/m^3] dynamic_viscosity [kg/(m-s)] speed_of_sound [m/s] temperature [K] conditions.frames. body.transform_to_inertial (rotation matrix) inertial.velocity_vector [m/s] conditions.propulsion. throttle [-] Outputs: conditions.propulsion.outputs. number_radial_stations [-] number_azimuthal_stations [-] disc_radial_distribution [m] speed_of_sound [m/s] density [kg/m-3] velocity [m/s] disc_tangential_induced_velocity [m/s] disc_axial_induced_velocity [m/s] disc_tangential_velocity [m/s] disc_axial_velocity [m/s] drag_coefficient [-] lift_coefficient [-] omega [rad/s] disc_circulation [-] blade_dQ_dR [N/m] blade_dT_dr [N] blade_thrust_distribution [N] disc_thrust_distribution [N] thrust_per_blade [N] thrust_coefficient [-] azimuthal_distribution [rad] disc_azimuthal_distribution [rad] blade_dQ_dR [N] blade_dQ_dr [Nm] blade_torque_distribution [Nm] disc_torque_distribution [Nm] torque_per_blade [Nm] torque_coefficient [-] power [W] power_coefficient [-] Properties Used: self. number_of_blades [-] tip_radius [m] twist_distribution [radians] chord_distribution [m] orientation_euler_angles [rad, rad, rad] """ # Unpack rotor blade parameters B = self.number_of_blades R = self.tip_radius beta_0 = self.twist_distribution c = self.chord_distribution sweep = self.sweep_distribution # quarter chord distance from quarter chord of root airfoil r_1d = self.radius_distribution tc = self.thickness_to_chord # Unpack rotor airfoil data a_geo = self.airfoil_geometry a_loc = self.airfoil_polar_stations cl_sur = self.airfoil_cl_surrogates cd_sur = self.airfoil_cd_surrogates # Unpack rotor inputs and conditions omega = self.inputs.omega Na = self.number_azimuthal_stations nonuniform_freestream = self.nonuniform_freestream use_2d_analysis = self.use_2d_analysis wake_method = self.wake_method rotation = self.rotation pitch_c = self.inputs.pitch_command # Check for variable pitch if np.any(pitch_c !=0) and not self.variable_pitch: print("Warning: pitch commanded for a fixed-pitch rotor. Changing to variable pitch rotor for weights analysis.") self.variable_pitch = True # Unpack freestream conditions rho = conditions.freestream.density[:,0,None] mu = conditions.freestream.dynamic_viscosity[:,0,None] a = conditions.freestream.speed_of_sound[:,0,None] T = conditions.freestream.temperature[:,0,None] Vv = conditions.frames.inertial.velocity_vector nu = mu/rho rho_0 = rho # Helpful shorthands pi = np.pi # Calculate total blade pitch total_blade_pitch = beta_0 + pitch_c # Velocity in the rotor frame T_body2inertial = conditions.frames.body.transform_to_inertial T_inertial2body = orientation_transpose(T_body2inertial) V_body = orientation_product(T_inertial2body,Vv) body2thrust = self.body_to_prop_vel() T_body2thrust = orientation_transpose(np.ones_like(T_body2inertial[:])*body2thrust) V_thrust = orientation_product(T_body2thrust,V_body) # Check and correct for hover V = V_thrust[:,0,None] V[V==0.0] = 1E-6 # Number of radial stations and segment control points Nr = len(c) ctrl_pts = len(Vv) # Non-dimensional radial distribution and differential radius chi = r_1d/R diff_r = np.diff(r_1d) deltar = np.zeros(len(r_1d)) deltar[1:-1] = diff_r[0:-1]/2 + diff_r[1:]/2 deltar[0] = diff_r[0]/2 deltar[-1] = diff_r[-1]/2 # Calculating rotational parameters omegar = np.outer(omega,r_1d) n = omega/(2.*pi) # Rotations per second # 2 dimensional radial distribution non dimensionalized chi_2d = np.tile(chi[:, None],(1,Na)) chi_2d = np.repeat(chi_2d[None,:,:], ctrl_pts, axis=0) r_dim_2d = np.tile(r_1d[:, None] ,(1,Na)) r_dim_2d = np.repeat(r_dim_2d[None,:,:], ctrl_pts, axis=0) c_2d = np.tile(c[:, None] ,(1,Na)) c_2d = np.repeat(c_2d[None,:,:], ctrl_pts, axis=0) # Azimuthal distribution of stations psi = np.linspace(0,2*pi,Na+1)[:-1] psi_2d = np.tile(np.atleast_2d(psi),(Nr,1)) psi_2d = np.repeat(psi_2d[None, :, :], ctrl_pts, axis=0) # apply blade sweep to azimuthal position if np.any(np.array([sweep])!=0): use_2d_analysis = True sweep_2d = np.repeat(sweep[:, None], (1,Na)) sweep_offset_angles = np.tan(sweep_2d/r_dim_2d) psi_2d += sweep_offset_angles # Starting with uniform freestream ua = 0 ut = 0 ur = 0 # Include velocities introduced by rotor incidence angles if (np.any(abs(V_thrust[:,1]) >1e-3) or np.any(abs(V_thrust[:,2]) >1e-3)) and use_2d_analysis: # y-component of freestream in the propeller cartesian plane Vy = V_thrust[:,1,None,None] Vy = np.repeat(Vy, Nr,axis=1) Vy = np.repeat(Vy, Na,axis=2) # z-component of freestream in the propeller cartesian plane Vz = V_thrust[:,2,None,None] Vz = np.repeat(Vz, Nr,axis=1) Vz = np.repeat(Vz, Na,axis=2) # check for invalid rotation angle if (rotation == 1) or (rotation == -1): pass else: print("Invalid rotation direction. Setting to 1.") rotation = 1 # compute resulting radial and tangential velocities in polar frame utz = Vz*np.cos(psi_2d* rotation) urz = Vz*np.sin(psi_2d* rotation) uty = Vy*np.sin(psi_2d* rotation) ury = Vy*np.cos(psi_2d* rotation) ut += (utz + uty) ur += (urz + ury) ua += np.zeros_like(ut) # Include external velocities introduced by user if nonuniform_freestream: use_2d_analysis = True # include additional influences specified at rotor sections, shape=(ctrl_pts,Nr,Na) ua += self.axial_velocities_2d ut += self.tangential_velocities_2d ur += self.radial_velocities_2d if use_2d_analysis: # make everything 2D with shape (ctrl_pts,Nr,Na) size = (ctrl_pts,Nr,Na ) PSI = np.ones(size) PSIold = np.zeros(size) # 2-D freestream velocity and omega*r V_2d = V_thrust[:,0,None,None] V_2d = np.repeat(V_2d, Na,axis=2) V_2d = np.repeat(V_2d, Nr,axis=1) omegar = (np.repeat(np.outer(omega,r_1d)[:,:,None], Na, axis=2)) # total velocities Ua = V_2d + ua # 2-D blade pitch and radial distributions if np.size(pitch_c)>1: # control variable is the blade pitch, repeat around azimuth beta = np.repeat(total_blade_pitch[:,:,None], Na, axis=2) else: beta = np.tile(total_blade_pitch[None,:,None],(ctrl_pts,1,Na )) r = np.tile(r_1d[None,:,None], (ctrl_pts, 1, Na)) c = np.tile(c[None,:,None], (ctrl_pts, 1, Na)) deltar = np.tile(deltar[None,:,None], (ctrl_pts, 1, Na)) # 2-D atmospheric properties a = np.tile(np.atleast_2d(a),(1,Nr)) a = np.repeat(a[:, :, None], Na, axis=2) nu = np.tile(np.atleast_2d(nu),(1,Nr)) nu = np.repeat(nu[:, :, None], Na, axis=2) rho = np.tile(np.atleast_2d(rho),(1,Nr)) rho = np.repeat(rho[:, :, None], Na, axis=2) T = np.tile(np.atleast_2d(T),(1,Nr)) T = np.repeat(T[:, :, None], Na, axis=2) else: # total velocities r = r_1d Ua = np.outer((V + ua),np.ones_like(r)) beta = total_blade_pitch # Things that will change with iteration size = (ctrl_pts,Nr) PSI = np.ones(size) PSIold = np.zeros(size) # Total velocities Ut = omegar - ut U = np.sqrt(Ua*Ua + Ut*Ut + ur*ur) if wake_method == 'momentum': # Setup a Newton iteration diff = 1. tol = 1e-6 # Convergence tolerance ii = 0 # BEMT Iteration while (diff>tol): # compute velocities sin_psi = np.sin(PSI) cos_psi = np.cos(PSI) Wa = 0.5*Ua + 0.5*U*sin_psi Wt = 0.5*Ut + 0.5*U*cos_psi va = Wa - Ua vt = Ut - Wt # compute blade airfoil forces and properties Cl, Cdval, alpha, Ma, W = compute_airfoil_aerodynamics(beta,c,r,R,B,Wa,Wt,a,nu,a_loc,a_geo,cl_sur,cd_sur,ctrl_pts,Nr,Na,tc,use_2d_analysis) # compute inflow velocity and tip loss factor lamdaw, F, piece = compute_inflow_and_tip_loss(r,R,Wa,Wt,B) # compute Newton residual on circulation Gamma = vt*(4.*pi*r/B)*F*(1.+(4.*lamdaw*R/(pi*B*r))*(4.*lamdaw*R/(pi*B*r)))**0.5 Rsquiggly = Gamma - 0.5*W*c*Cl # use analytical derivative to get dR_dpsi dR_dpsi = compute_dR_dpsi(B,beta,r,R,Wt,Wa,U,Ut,Ua,cos_psi,sin_psi,piece) # update inflow angle dpsi = -Rsquiggly/dR_dpsi PSI = PSI + dpsi diff = np.max(abs(PSIold-PSI)) PSIold = PSI # If omega = 0, do not run BEMT convergence loop if all(omega[:,0]) == 0. : break # If its really not going to converge if np.any(PSI>pi/2) and np.any(dpsi>0.0): print("Rotor BEMT did not converge to a solution (Stall)") break ii+=1 if ii>10000: print("Rotor BEMT did not converge to a solution (Iteration Limit)") break elif wake_method == "helical_fixed_wake": # converge on va for a semi-prescribed wake method ii,ii_max = 0, 50 va_diff, tol = 1, 1e-3 while va_diff > tol: # compute axial wake-induced velocity (a byproduct of the circulation distribution which is an input to the wake geometry) va, vt = compute_HFW_inflow_velocities(self) # compute new blade velocities Wa = va + Ua Wt = Ut - vt # Compute aerodynamic forces based on specified input airfoil or surrogate Cl, Cdval, alpha, Ma,W = compute_airfoil_aerodynamics(beta,c,r,R,B,Wa,Wt,a,nu,a_loc,a_geo,cl_sur,cd_sur,ctrl_pts,Nr,Na,tc,use_2d_analysis) lamdaw, F, _ = compute_inflow_and_tip_loss(r,R,Wa,Wt,B) va_diff = np.max(abs(va - self.outputs.disc_axial_induced_velocity)) # compute HFW circulation at the blade Gamma = 0.5*W*c*Cl # update the axial disc velocity based on new va from HFW self.outputs.disc_axial_induced_velocity = self.outputs.disc_axial_induced_velocity + 0.5*(va - self.outputs.disc_axial_induced_velocity) ii+=1 if ii>ii_max and va_diff>tol: print("Semi-prescribed helical wake did not converge on axial inflow used for wake shape.") # tip loss correction for velocities, since tip loss correction is only applied to loads in prior BEMT iteration va = F*va vt = F*vt lamdaw = r*(va+Ua)/(R*(Ut-vt)) # More Cd scaling from Mach from AA241ab notes for turbulent skin friction Tw_Tinf = 1. + 1.78*(Ma*Ma) Tp_Tinf = 1. + 0.035*(Ma*Ma) + 0.45*(Tw_Tinf-1.) Tp = (Tp_Tinf)*T Rp_Rinf = (Tp_Tinf**2.5)*(Tp+110.4)/(T+110.4) Cd = ((1/Tp_Tinf)*(1/Rp_Rinf)**0.2)*Cdval epsilon = Cd/Cl epsilon[epsilon==np.inf] = 10. # thrust and torque and their derivatives on the blade. blade_T_distribution = rho*(Gamma*(Wt-epsilon*Wa))*deltar blade_Q_distribution = rho*(Gamma*(Wa+epsilon*Wt)*r)*deltar blade_dT_dr = rho*(Gamma*(Wt-epsilon*Wa)) blade_dQ_dr = rho*(Gamma*(Wa+epsilon*Wt)*r) if use_2d_analysis: blade_T_distribution_2d = blade_T_distribution blade_Q_distribution_2d = blade_Q_distribution blade_dT_dr_2d = blade_dT_dr blade_dQ_dr_2d = blade_dQ_dr blade_Gamma_2d = Gamma alpha_2d = alpha Va_2d = Wa Vt_2d = Wt Va_avg = np.average(Wa, axis=2) # averaged around the azimuth Vt_avg = np.average(Wt, axis=2) # averaged around the azimuth Va_ind_2d = va Vt_ind_2d = vt Vt_ind_avg = np.average(vt, axis=2) Va_ind_avg = np.average(va, axis=2) # set 1d blade loadings to be the average: blade_T_distribution = np.mean((blade_T_distribution_2d), axis = 2) blade_Q_distribution = np.mean((blade_Q_distribution_2d), axis = 2) blade_dT_dr = np.mean((blade_dT_dr_2d), axis = 2) blade_dQ_dr = np.mean((blade_dQ_dr_2d), axis = 2) # compute the hub force / rotor drag distribution along the blade dL_2d = 0.5*rho*c_2d*Cd*omegar**2*deltar dD_2d = 0.5*rho*c_2d*Cl*omegar**2*deltar rotor_drag_distribution = np.mean(dL_2d*np.sin(psi_2d) + dD_2d*np.cos(psi_2d),axis=2) else: Va_2d = np.repeat(Wa[ :, :, None], Na, axis=2) Vt_2d = np.repeat(Wt[ :, :, None], Na, axis=2) blade_T_distribution_2d = np.repeat(blade_T_distribution[:, :, None], Na, axis=2) blade_Q_distribution_2d = np.repeat(blade_Q_distribution[:, :, None], Na, axis=2) blade_dT_dr_2d = np.repeat(blade_dT_dr[:, :, None], Na, axis=2) blade_dQ_dr_2d = np.repeat(blade_dQ_dr[:, :, None], Na, axis=2) blade_Gamma_2d = np.repeat(Gamma[ :, :, None], Na, axis=2) alpha_2d = np.repeat(alpha[ :, :, None], Na, axis=2) Vt_avg = Wt Va_avg = Wa Vt_ind_avg = vt Va_ind_avg = va Va_ind_2d = np.repeat(va[ :, :, None], Na, axis=2) Vt_ind_2d = np.repeat(vt[ :, :, None], Na, axis=2) # compute the hub force / rotor drag distribution along the blade dL = 0.5*rho*c*Cd*omegar**2*deltar dL_2d = np.repeat(dL[:, :, None], Na, axis=2) dD = 0.5*rho*c*Cl*omegar**2*deltar dD_2d = np.repeat(dD[:, :, None], Na, axis=2) rotor_drag_distribution = np.mean(dL_2d*np.sin(psi_2d) + dD_2d*np.cos(psi_2d),axis=2) # forces thrust = np.atleast_2d((B * np.sum(blade_T_distribution, axis = 1))).T torque = np.atleast_2d((B * np.sum(blade_Q_distribution, axis = 1))).T rotor_drag = np.atleast_2d((B * np.sum(rotor_drag_distribution, axis=1))).T power = omega*torque # calculate coefficients D = 2*R Cq = torque/(rho_0*(n*n)*(D*D*D*D*D)) Ct = thrust/(rho_0*(n*n)*(D*D*D*D)) Cp = power/(rho_0*(n*n*n)*(D*D*D*D*D)) Crd = rotor_drag/(rho_0*(n*n)*(D*D*D*D)) etap = V*thrust/power # prevent things from breaking Cq[Cq<0] = 0. Ct[Ct<0] = 0. Cp[Cp<0] = 0. thrust[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 power[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 torque[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 rotor_drag[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 thrust[omega<0.0] = -thrust[omega<0.0] thrust[omega==0.0] = 0.0 power[omega==0.0] = 0.0 torque[omega==0.0] = 0.0 rotor_drag[omega==0.0] = 0.0 Ct[omega==0.0] = 0.0 Cp[omega==0.0] = 0.0 etap[omega==0.0] = 0.0 # Make the thrust a 3D vector thrust_prop_frame = np.zeros((ctrl_pts,3)) thrust_prop_frame[:,0] = thrust[:,0] thrust_vector = orientation_product(orientation_transpose(T_body2thrust),thrust_prop_frame) # Assign efficiency to network conditions.propulsion.etap = etap # Store data self.azimuthal_distribution = psi results_conditions = Data outputs = results_conditions( number_radial_stations = Nr, number_azimuthal_stations = Na, disc_radial_distribution = r_dim_2d, speed_of_sound = conditions.freestream.speed_of_sound, density = conditions.freestream.density, velocity = Vv, blade_tangential_induced_velocity = Vt_ind_avg, blade_axial_induced_velocity = Va_ind_avg, blade_tangential_velocity = Vt_avg, blade_axial_velocity = Va_avg, disc_tangential_induced_velocity = Vt_ind_2d, disc_axial_induced_velocity = Va_ind_2d, disc_tangential_velocity = Vt_2d, disc_axial_velocity = Va_2d, drag_coefficient = Cd, lift_coefficient = Cl, omega = omega, disc_circulation = blade_Gamma_2d, blade_dT_dr = blade_dT_dr, disc_dT_dr = blade_dT_dr_2d, blade_thrust_distribution = blade_T_distribution, disc_thrust_distribution = blade_T_distribution_2d, disc_effective_angle_of_attack = alpha_2d, thrust_per_blade = thrust/B, thrust_coefficient = Ct, disc_azimuthal_distribution = psi_2d, blade_dQ_dr = blade_dQ_dr, disc_dQ_dr = blade_dQ_dr_2d, blade_torque_distribution = blade_Q_distribution, disc_torque_distribution = blade_Q_distribution_2d, torque_per_blade = torque/B, torque_coefficient = Cq, power = power, power_coefficient = Cp, converged_inflow_ratio = lamdaw, propeller_efficiency = etap, blade_H_distribution = rotor_drag_distribution, rotor_drag = rotor_drag, rotor_drag_coefficient = Crd, ) return thrust_vector, torque, power, Cp, outputs , etap def spin_HFW(self,conditions): """Analyzes a general rotor given geometry and operating conditions. Runs the blade element theory with a helical fixed-wake model for the iterative wake analysis. Assumptions: Helical fixed-wake with wake skew angle Source: N/A Inputs: self.inputs.omega [radian/s] conditions.freestream. density [kg/m^3] dynamic_viscosity [kg/(m-s)] speed_of_sound [m/s] temperature [K] conditions.frames. body.transform_to_inertial (rotation matrix) inertial.velocity_vector [m/s] conditions.propulsion. throttle [-] Outputs: conditions.propulsion.outputs. number_radial_stations [-] number_azimuthal_stations [-] disc_radial_distribution [m] speed_of_sound [m/s] density [kg/m-3] velocity [m/s] disc_tangential_induced_velocity [m/s] disc_axial_induced_velocity [m/s] disc_tangential_velocity [m/s] disc_axial_velocity [m/s] drag_coefficient [-] lift_coefficient [-] omega [rad/s] disc_circulation [-] blade_dQ_dR [N/m] blade_dT_dr [N] blade_thrust_distribution [N] disc_thrust_distribution [N] thrust_per_blade [N] thrust_coefficient [-] azimuthal_distribution [rad] disc_azimuthal_distribution [rad] blade_dQ_dR [N] blade_dQ_dr [Nm] blade_torque_distribution [Nm] disc_torque_distribution [Nm] torque_per_blade [Nm] torque_coefficient [-] power [W] power_coefficient [-] Properties Used: self. number_of_blades [-] tip_radius [m] twist_distribution [radians] chord_distribution [m] orientation_euler_angles [rad, rad, rad] """ #-------------------------------------------------------------------------------- # Initialize by running BEMT to get initial blade circulation #-------------------------------------------------------------------------------- _, _, _, _, bemt_outputs , _ = self.spin(conditions) conditions.noise.sources.propellers[self.tag] = bemt_outputs self.outputs = bemt_outputs omega = self.inputs.omega #-------------------------------------------------------------------------------- # generate rotor wake vortex distribution #-------------------------------------------------------------------------------- props = Data() props.propeller = self # generate wake distribution for n rotor rotation nrots = self.number_rotor_rotations steps_per_rot = self.number_steps_per_rotation rpm = omega/Units.rpm # simulation parameters for n rotor rotations init_timestep_offset = 0. time = 60*nrots/rpm[0][0] number_of_wake_timesteps = steps_per_rot*nrots self.wake_settings.init_timestep_offset = init_timestep_offset self.wake_settings.wake_development_time = time self.wake_settings.number_of_wake_timesteps = number_of_wake_timesteps self.use_2d_analysis = True # spin propeller with helical fixed-wake self.wake_method = "helical_fixed_wake" thrust_vector, torque, power, Cp, outputs , etap = self.spin(conditions) return thrust_vector, torque, power, Cp, outputs , etap def vec_to_vel(self): """This rotates from the propellers vehicle frame to the propellers velocity frame Assumptions: There are two propeller frames, the vehicle frame describing the location and the propeller velocity frame velocity frame is X out the nose, Z towards the ground, and Y out the right wing vehicle frame is X towards the tail, Z towards the ceiling, and Y out the right wing Source: N/A Inputs: None Outputs: None Properties Used: None """ rot_mat = sp.spatial.transform.Rotation.from_rotvec([0,np.pi,0]).as_matrix() return rot_mat def body_to_prop_vel(self): """This rotates from the systems body frame to the propellers velocity frame Assumptions: There are two propeller frames, the vehicle frame describing the location and the propeller velocity frame velocity frame is X out the nose, Z towards the ground, and Y out the right wing vehicle frame is X towards the tail, Z towards the ceiling, and Y out the right wing Source: N/A Inputs: None Outputs: None Properties Used: None """ # Go from body to vehicle frame body_2_vehicle = sp.spatial.transform.Rotation.from_rotvec([0,np.pi,0]).as_matrix() # Go from vehicle frame to propeller vehicle frame: rot 1 including the extra body rotation rots = np.array(self.orientation_euler_angles) * 1. rots[1] = rots[1] + self.inputs.y_axis_rotation vehicle_2_prop_vec = sp.spatial.transform.Rotation.from_rotvec(rots).as_matrix() # GO from the propeller vehicle frame to the propeller velocity frame: rot 2 prop_vec_2_prop_vel = self.vec_to_vel() # Do all the matrix multiplies rot1 = np.matmul(body_2_vehicle,vehicle_2_prop_vec) rot_mat = np.matmul(rot1,prop_vec_2_prop_vel) return rot_mat def prop_vel_to_body(self): """This rotates from the systems body frame to the propellers velocity frame Assumptions: There are two propeller frames, the vehicle frame describing the location and the propeller velocity frame velocity frame is X out the nose, Z towards the ground, and Y out the right wing vehicle frame is X towards the tail, Z towards the ceiling, and Y out the right wing Source: N/A Inputs: None Outputs: None Properties Used: None """ body2propvel = self.body_to_prop_vel() r = sp.spatial.transform.Rotation.from_matrix(body2propvel) r = r.inv() rot_mat = r.as_matrix() return rot_mat def compute_airfoil_aerodynamics(beta,c,r,R,B,Wa,Wt,a,nu,a_loc,a_geo,cl_sur,cd_sur,ctrl_pts,Nr,Na,tc,use_2d_analysis): """ Cl, Cdval = compute_airfoil_aerodynamics( beta,c,r,R,B, Wa,Wt,a,nu, a_loc,a_geo,cl_sur,cd_sur, ctrl_pts,Nr,Na,tc,use_2d_analysis ) Computes the aerodynamic forces at sectional blade locations. If airfoil geometry and locations are specified, the forces are computed using the airfoil polar lift and drag surrogates, accounting for the local Reynolds number and local angle of attack. If the airfoils are not specified, an approximation is used. Assumptions: N/A Source: N/A Inputs: beta blade twist distribution [-] c chord distribution [-] r radius distribution [-] R tip radius [-] B number of rotor blades [-] Wa axial velocity [-] Wt tangential velocity [-] a speed of sound [-] nu viscosity [-] a_loc Locations of specified airfoils [-] a_geo Geometry of specified airfoil [-] cl_sur Lift Coefficient Surrogates [-] cd_sur Drag Coefficient Surrogates [-] ctrl_pts Number of control points [-] Nr Number of radial blade sections [-] Na Number of azimuthal blade stations [-] tc Thickness to chord [-] use_2d_analysis Specifies 2d disc vs. 1d single angle analysis [Boolean] Outputs: Cl Lift Coefficients [-] Cdval Drag Coefficients (before scaling) [-] alpha section local angle of attack [rad] """ alpha = beta - np.arctan2(Wa,Wt) W = (Wa*Wa + Wt*Wt)**0.5 Ma = W/a Re = (W*c)/nu # If propeller airfoils are defined, use airfoil surrogate if a_loc != None: # Compute blade Cl and Cd distribution from the airfoil data dim_sur = len(cl_sur) if use_2d_analysis: # return the 2D Cl and CDval of shape (ctrl_pts, Nr, Na) Cl = np.zeros((ctrl_pts,Nr,Na)) Cdval = np.zeros((ctrl_pts,Nr,Na)) for jj in range(dim_sur): Cl_af = cl_sur[a_geo[jj]](Re,alpha,grid=False) Cdval_af = cd_sur[a_geo[jj]](Re,alpha,grid=False) locs = np.where(
np.array(a_loc)
numpy.array
import numpy as np from numba import cuda from numba.core import types from numba.cuda.testing import skip_on_cudasim, CUDATestCase import unittest from numba.np import numpy_support def set_a(ary, i, v): ary[i].a = v def set_b(ary, i, v): ary[i].b = v def set_c(ary, i, v): ary[i].c = v def set_record(ary, i, j): ary[i] = ary[j] def record_set_a(r, v): r.a = v def record_set_b(r, v): r.b = v def record_set_c(r, v): r.c = v def record_read_a(r, arr): arr[0] = r.a def record_read_b(r, arr): arr[0] = r.b def record_read_c(r, arr): arr[0] = r.c def record_write_array(r): r.g = 2 r.h[0] = 3.0 r.h[1] = 4.0 def record_write_2d_array(r): r.i = 3 r.j[0, 0] = 5.0 r.j[0, 1] = 6.0 r.j[1, 0] = 7.0 r.j[1, 1] = 8.0 r.j[2, 0] = 9.0 r.j[2, 1] = 10.0 def record_read_array(r, a): a[0] = r.h[0] a[1] = r.h[1] def record_read_2d_array(r, a): a[0, 0] = r.j[0, 0] a[0, 1] = r.j[0, 1] a[1, 0] = r.j[1, 0] a[1, 1] = r.j[1, 1] a[2, 0] = r.j[2, 0] a[2, 1] = r.j[2, 1] recordtype = np.dtype( [ ('a', np.float64), ('b', np.int32), ('c', np.complex64), ('d', (np.uint8, 5)) ], align=True ) recordwitharray = np.dtype( [ ('g', np.int32), ('h', np.float32, 2) ], align=True ) recordwith2darray = np.dtype([('i', np.int32), ('j', np.float32, (3, 2))]) nested_array1_dtype = np.dtype([("array1", np.int16, (3,))], align=True) nested_array2_dtype = np.dtype([("array2", np.int16, (3, 2))], align=True) # Functions used for "full array" tests def record_write_full_array(rec): rec.j[:, :] = np.ones((3, 2)) def record_write_full_array_alt(rec): rec['j'][:, :] = np.ones((3, 2)) def recarray_set_record(ary, rec): ary[0] = rec def recarray_write_array_of_nestedarray_broadcast(ary): ary.j[:, :, :] = 1 return ary def record_setitem_array(rec_source, rec_dest): rec_dest['j'] = rec_source['j'] def recarray_write_array_of_nestedarray(ary): ary.j[:, :, :] = np.ones((2, 3, 2)) return ary def recarray_getitem_return(ary): return ary[0] def recarray_getitem_field_return(ary): return ary['h'] def recarray_getitem_field_return2(ary): return ary.h def recarray_getitem_field_return2_2d(ary): return ary.j def record_read_array0(ary): return ary.h[0] def record_read_array1(ary): return ary.h[1] def record_read_whole_array(ary): return ary.h def record_read_2d_array00(ary): return ary.j[0, 0] def record_read_2d_array10(ary): return ary.j[1, 0] def record_read_2d_array01(ary): return ary.j[0, 1] def assign_array_to_nested(dest, src): dest['array1'] = src def assign_array_to_nested_2d(dest, src): dest['array2'] = src class TestRecordDtype(CUDATestCase): def _createSampleArrays(self): self.sample1d = np.recarray(3, dtype=recordtype) self.samplerec1darr = np.recarray(1, dtype=recordwitharray)[0] self.samplerec2darr = np.recarray(1, dtype=recordwith2darray)[0] def setUp(self): super().setUp() self._createSampleArrays() ary = self.sample1d for i in range(ary.size): x = i + 1 ary[i]['a'] = x / 2 ary[i]['b'] = x ary[i]['c'] = x * 1j ary[i]['d'] = "%d" % x def get_cfunc(self, pyfunc, argspec): return cuda.jit()(pyfunc) def _test_set_equal(self, pyfunc, value, valuetype): rec = numpy_support.from_dtype(recordtype) cfunc = self.get_cfunc(pyfunc, (rec[:], types.intp, valuetype)) for i in range(self.sample1d.size): got = self.sample1d.copy() # Force the argument to the pure Python function to be # a recarray, as attribute access isn't supported on # structured arrays. expect = got.copy().view(np.recarray) cfunc[1, 1](got, i, value) pyfunc(expect, i, value) # Match the entire array to ensure no memory corruption self.assertTrue(np.all(expect == got)) def test_set_a(self): self._test_set_equal(set_a, 3.1415, types.float64) # Test again to check if coercion works self._test_set_equal(set_a, 3., types.float32) def test_set_b(self): self._test_set_equal(set_b, 123, types.int32) # Test again to check if coercion works self._test_set_equal(set_b, 123, types.float64) def test_set_c(self): self._test_set_equal(set_c, 43j, types.complex64) # Test again to check if coercion works self._test_set_equal(set_c, 43j, types.complex128) def test_set_record(self): pyfunc = set_record rec = numpy_support.from_dtype(recordtype) cfunc = self.get_cfunc(pyfunc, (rec[:], types.intp, types.intp)) test_indices = [(0, 1), (1, 2), (0, 2)] for i, j in test_indices: expect = self.sample1d.copy() pyfunc(expect, i, j) got = self.sample1d.copy() cfunc[1, 1](got, i, j) # Match the entire array to ensure no memory corruption self.assertEqual(expect[i], expect[j]) self.assertEqual(got[i], got[j]) self.assertTrue(np.all(expect == got)) def _test_rec_set(self, v, pyfunc, f): rec = self.sample1d.copy()[0] nbrecord = numpy_support.from_dtype(recordtype) cfunc = self.get_cfunc(pyfunc, (nbrecord,)) cfunc[1, 1](rec, v) np.testing.assert_equal(rec[f], v) def test_rec_set_a(self): self._test_rec_set(np.float64(1.5), record_set_a, 'a') def test_rec_set_b(self): self._test_rec_set(np.int32(2), record_set_b, 'b') def test_rec_set_c(self): self._test_rec_set(np.complex64(4.0 + 5.0j), record_set_c, 'c') def _test_rec_read(self, v, pyfunc, f): rec = self.sample1d.copy()[0] rec[f] = v arr = np.zeros(1, v.dtype) nbrecord = numpy_support.from_dtype(recordtype) cfunc = self.get_cfunc(pyfunc, (nbrecord,)) cfunc[1, 1](rec, arr) np.testing.assert_equal(arr[0], v) def test_rec_read_a(self): self._test_rec_read(np.float64(1.5), record_read_a, 'a') def test_rec_read_b(self): self._test_rec_read(np.int32(2), record_read_b, 'b') def test_rec_read_c(self): self._test_rec_read(np.complex64(4.0 + 5.0j), record_read_c, 'c') def test_record_write_1d_array(self): ''' Test writing to a 1D array within a structured type ''' rec = self.samplerec1darr.copy() nbrecord = numpy_support.from_dtype(recordwitharray) cfunc = self.get_cfunc(record_write_array, (nbrecord,)) cfunc[1, 1](rec) expected = self.samplerec1darr.copy() expected['g'] = 2 expected['h'][0] = 3.0 expected['h'][1] = 4.0 np.testing.assert_equal(expected, rec) def test_record_write_2d_array(self): ''' Test writing to a 2D array within a structured type ''' rec = self.samplerec2darr.copy() nbrecord = numpy_support.from_dtype(recordwith2darray) cfunc = self.get_cfunc(record_write_2d_array, (nbrecord,)) cfunc[1, 1](rec) expected = self.samplerec2darr.copy() expected['i'] = 3 expected['j'][:] = np.asarray([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], np.float32).reshape(3, 2) np.testing.assert_equal(expected, rec) def test_record_read_1d_array(self): ''' Test reading from a 1D array within a structured type ''' rec = self.samplerec1darr.copy() rec['h'][0] = 4.0 rec['h'][1] = 5.0 nbrecord = numpy_support.from_dtype(recordwitharray) cfunc = self.get_cfunc(record_read_array, (nbrecord,)) arr = np.zeros(2, dtype=rec['h'].dtype) cfunc[1, 1](rec, arr) np.testing.assert_equal(rec['h'], arr) def test_record_read_2d_array(self): ''' Test reading from a 2D array within a structured type ''' rec = self.samplerec2darr.copy() rec['j'][:] = np.asarray([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], np.float32).reshape(3, 2) nbrecord = numpy_support.from_dtype(recordwith2darray) cfunc = self.get_cfunc(record_read_2d_array, (nbrecord,)) arr =
np.zeros((3,2), dtype=rec['j'].dtype)
numpy.zeros
""" eels_tools Model based quantification of electron energy-loss data Copyright by <NAME> The University of Tennessee, Knoxville Department of Materials Science & Engineering Sources: M. Tian et al. Units: everything is in SI units, except length is given in nm and angles in mrad. Usage: See the notebooks for examples of these routines All the input and output is done through a dictionary which is to be found in the meta_data attribute of the sidpy.Dataset """ import numpy as np import scipy from scipy.interpolate import interp1d, splrep # splev, splint from scipy import interpolate from scipy.signal import peak_prominences from scipy.ndimage.filters import gaussian_filter from scipy import constants import matplotlib.pyplot as plt # import matplotlib.patches as patches # from matplotlib.widgets import SpanSelector # import ipywidgets as widgets # from IPython.display import display import requests from scipy.optimize import leastsq # least square fitting routine fo scipy import pickle # pkg_resources, # ## And we use the image tool library of pyTEMlib import pyTEMlib.file_tools as ft from pyTEMlib.config_dir import data_path major_edges = ['K1', 'L3', 'M5', 'N5'] all_edges = ['K1', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5', 'N1', 'N2', 'N3', 'N4', 'N5', 'N6', 'N7', 'O1', 'O2', 'O3', 'O4', 'O5', 'O6', 'O7', 'P1', 'P2', 'P3'] first_close_edges = ['K1', 'L3', 'M5', 'M3', 'N5', 'N3'] elements = [' ', 'H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi'] # kroeger_core(e_data,a_data,eps_data,ee,thick, relativistic =True) # kroeger_core2(e_data,a_data,eps_data,acceleration_voltage_kev,thickness, relativistic =True) # get_wave_length(e0) # plot_dispersion(plotdata, units, a_data, e_data, title, max_p, ee, ef = 4., ep= 16.8, Es = 0, IBT = []) # drude(tags, e, ep, ew, tnm, eb) # drude(ep, eb, gamma, e) # drude_lorentz(epsInf,leng, ep, eb, gamma, e, Amplitude) # zl_func( p, x) ################################################################ # Read Functions ################################################################# def read_dm3_eels_info(original_metadata): """Reed dm3 file from a nested dictionary like original_metadata of sidpy.Dataset""" if 'DM' not in original_metadata: return {} main_image = original_metadata['DM']['chosen_image'] exp_dictionary = original_metadata['ImageList'][str(main_image)]['ImageTags'] experiment = {} if 'EELS' in exp_dictionary: if 'Acquisition' in exp_dictionary['EELS']: for key, item in exp_dictionary['EELS']['Acquisition'].items(): if 'Exposure' in key: _, units = key.split('(') if units[:-1] == 's': experiment['single_exposure_time'] = item if 'Integration' in key: _, units = key.split('(') if units[:-1] == 's': experiment['exposure_time'] = item if 'frames' in key: experiment['number_of_frames'] = item if 'Experimental Conditions' in exp_dictionary['EELS']: for key, item in exp_dictionary['EELS']['Experimental Conditions'].items(): if 'Convergence' in key: experiment['convergence_angle'] = item if 'Collection' in key: # print(item) # for val in item.values(): experiment['collection_angle'] = item if 'Microscope Info' in exp_dictionary: if 'Voltage' in exp_dictionary['Microscope Info']: experiment['acceleration_voltage'] = exp_dictionary['Microscope Info']['Voltage'] if 'Name' in exp_dictionary['Microscope Info']: experiment['microscope'] = exp_dictionary['Microscope Info']['Name'] return experiment def set_previous_quantification(current_dataset): """Set previous quantification from a sidpy.Dataset""" current_channel = current_dataset.h5_dataset.parent found_metadata = False for key in current_channel: if 'Log' in key: if current_channel[key]['analysis'][()] == 'EELS_quantification': current_dataset.metadata.update(ft.nest_dict(current_channel[key].attrs)) found_metadata = True print('found previous quantification') if not found_metadata: # setting important experimental parameter current_dataset.metadata['experiment'] = read_dm3_eels_info(current_dataset.original_metadata) if 'experiment' not in current_dataset.metadata: current_dataset.metadata['experiment'] = {} if 'convergence_angle' not in current_dataset.metadata['experiment']: current_dataset.metadata['experiment']['convergence_angle'] = 30 if 'collection_angle' not in current_dataset.metadata['experiment']: current_dataset.metadata['experiment']['collection_angle'] = 50 if 'acceleration_voltage' not in current_dataset.metadata['experiment']: current_dataset.metadata['experiment']['acceleration_voltage'] = 200000 ################################################################ # Peak Fit Functions ################################################################# def residuals_smooth(p, x, y, only_positive_intensity): """part of fit""" err = (y - model_smooth(x, p, only_positive_intensity)) return err def model_smooth(x, p, only_positive_intensity=False): """part of fit""" y = np.zeros(len(x)) number_of_peaks = int(len(p) / 3) for i in range(number_of_peaks): if only_positive_intensity: p[i * 3 + 1] = abs(p[i * 3 + 1]) p[i * 3 + 2] = abs(p[i * 3 + 2]) if p[i * 3 + 2] > abs(p[i * 3]) * 4.29193 / 2.0: p[i * 3 + 2] = abs(p[i * 3]) * 4.29193 / 2. # ## width cannot extend beyond zero, maximum is FWTM/2 y = y + gauss(x, p[i * 3:]) return y def residuals_ll(p, x, y, only_positive_intensity): """part of fit""" err = (y - model_ll(x, p, only_positive_intensity)) / np.sqrt(np.abs(y)) return err def residuals_ll2(p, x, y, only_positive_intensity): """part of fit""" err = (y - model_ll(x, p, only_positive_intensity)) return err def model_ll(x, p, only_positive_intensity): """part of fit""" y = np.zeros(len(x)) number_of_peaks = int(len(p) / 3) for i in range(number_of_peaks): if only_positive_intensity: p[i * 3 + 1] = abs(p[i * 3 + 1]) p[i * 3 + 2] = abs(p[i * 3 + 2]) if p[i * 3 + 2] > abs(p[i * 3]) * 4.29193 / 2.0: p[i * 3 + 2] = abs(p[i * 3]) * 4.29193 / 2. # ## width cannot extend beyond zero, maximum is FWTM/2 y = y + gauss(x, p[i * 3:]) return y def fit_peaks(spectrum, energy_scale, pin, start_fit, end_fit, only_positive_intensity=False): """fit peaks to spectrum Parameters ---------- spectrum: numpy array spectrum to be fitted energy_scale: numpy array energy scale of spectrum pin: list of float intial guess of peaks position amplitude width start_fit: int channel where fit starts end_fit: int channel where fit starts only_positive_intensity: boolean allows only for positive amplitueds if True; default = False) Returns ------- p: list of float fitting parameters """ # TODO: remove zero_loss_fit_width add absolute fit_energy = energy_scale[start_fit:end_fit] fit_spectrum = spectrum[start_fit:end_fit] pin_flat = [item for sublist in pin for item in sublist] [p_out, _] = leastsq(residuals_ll, np.array(pin_flat), ftol=1e-3, args=(fit_energy, fit_spectrum, only_positive_intensity)) p = [] for i in range(len(pin)): if only_positive_intensity: p_out[i * 3 + 1] = abs(p_out[i * 3 + 1]) p.append([p_out[i * 3], p_out[i * 3 + 1], abs(p_out[i * 3 + 2])]) return p ################################################################# # CORE - LOSS functions ################################################################# def get_x_sections(z=0): """Reads X-ray fluorescent cross sections from a pickle file. Parameters ---------- z: int atomic number if zero all cross sections will be returned Returns ------- dictionary cross section of a element or of all elements if z = 0 """ pkl_file = open(data_path + '/edges_db.pkl', 'rb') x_sections = pickle.load(pkl_file) pkl_file.close() z = int(z) if z < 1: return x_sections else: z = str(z) if z in x_sections: return x_sections[z] else: return 0 def get_z(z): """Returns the atomic number independent of input as a string or number Parameter --------- z: int, str atomic number of chemical symbol (0 if not valid) """ x_sections = get_x_sections() z_out = 0 if str(z).isdigit(): z_out = int(z) elif isinstance(z, str): for key in x_sections: if x_sections[key]['name'].lower() == z.lower(): # Well one really should know how to write elemental z_out = int(key) return z_out def list_all_edges(z): """List all ionization edges of an element with atomic number z Parameters ---------- z: int atomic number Returns ------- out_string: str string with all major edges in energy range """ element = str(z) x_sections = get_x_sections() out_string = '' print('Major edges') for key in all_edges: if key in x_sections[element]: if 'onset' in x_sections[element][key]: print(f" {x_sections[element]['name']}-{key}: {x_sections[element][key]['onset']:8.1f} eV ") out_string = out_string + f" {x_sections[element]['name']}-{key}: " \ f"{x_sections[element][key]['onset']:8.1f} eV /n" return out_string def find_major_edges(edge_onset, maximal_chemical_shift=5.): """Find all major edges within an energy range Parameters ---------- edge_onset: float approximate energy of ionization edge maximal_chemical_shift: float optional, range of energy window around edge_onset to look for major edges Returns ------- text: str string with all major edges in energy range """ text = '' x_sections = get_x_sections() for element in x_sections: for key in x_sections[element]: # if isinstance(x_sections[element][key], dict): if key in major_edges: if abs(x_sections[element][key]['onset'] - edge_onset) < maximal_chemical_shift: # print(element, x_sections[element]['name'], key, x_sections[element][key]['onset']) text = text + f"\n {x_sections[element]['name']:2s}-{key}: " \ f"{x_sections[element][key]['onset']:8.1f} eV " return text def find_all_edges(edge_onset, maximal_chemical_shift=5): """Find all (major and minor) edges within an energy range Parameters ---------- edge_onset: float approximate energy of ionization edge maximal_chemical_shift: float optional, range of energy window around edge_onset to look for major edges Returns ------- text: str string with all edges in energy range """ text = '' x_sections = get_x_sections() for element in x_sections: for key in x_sections[element]: if isinstance(x_sections[element][key], dict): if 'onset' in x_sections[element][key]: if abs(x_sections[element][key]['onset'] - edge_onset) < maximal_chemical_shift: # print(element, x_sections[element]['name'], key, x_sections[element][key]['onset']) text = text + f"\n {x_sections[element]['name']:2s}-{key}: " \ f"{x_sections[element][key]['onset']:8.1f} eV " return text def second_derivative(dataset, sensitivity): """Calculates second derivative of a sidpy.dataset""" dim = ft.get_dimensions_by_type('spectral', dataset) energy_scale = np.array(dim[0][1]) if dataset.data_type.name == 'SPECTRAL_IMAGE': spectrum = dataset.view.get_spectrum() else: spectrum = np.array(dataset) spec = scipy.ndimage.gaussian_filter(spectrum, 3) dispersion = ft.get_slope(energy_scale) second_dif = np.roll(spec, -3) - 2 * spec + np.roll(spec, +3) second_dif[:3] = 0 second_dif[-3:] = 0 # find if there is a strong edge at high energy_scale noise_level = 2. * np.std(second_dif[3:50]) [indices, _] = scipy.signal.find_peaks(second_dif, noise_level) width = 50 / dispersion if width < 50: width = 50 start_end_noise = int(len(energy_scale) - width) for index in indices[::-1]: if index > start_end_noise: start_end_noise = index - 70 noise_level_start = sensitivity * np.std(second_dif[3:50]) noise_level_end = sensitivity * np.std(second_dif[start_end_noise: start_end_noise + 50]) slope = (noise_level_end - noise_level_start) / (len(energy_scale) - 400) noise_level = noise_level_start + np.arange(len(energy_scale)) * slope return second_dif, noise_level def find_edges(dataset, sensitivity=2.5): """find edges within a sidpy.Dataset""" dim = ft.get_dimensions_by_type('spectral', dataset) energy_scale = np.array(dim[0][1]) second_dif, noise_level = second_derivative(dataset, sensitivity=sensitivity) [indices, peaks] = scipy.signal.find_peaks(second_dif, noise_level) peaks['peak_positions'] = energy_scale[indices] peaks['peak_indices'] = indices edge_energies = [energy_scale[50]] edge_indices = [] [indices, _] = scipy.signal.find_peaks(-second_dif, noise_level) minima = energy_scale[indices] for peak_number in range(len(peaks['peak_positions'])): position = peaks['peak_positions'][peak_number] if position - edge_energies[-1] > 20: impossible = minima[minima < position] impossible = impossible[impossible > position - 5] if len(impossible) == 0: possible = minima[minima > position] possible = possible[possible < position + 5] if len(possible) > 0: edge_energies.append((position + possible[0])/2) edge_indices.append(np.searchsorted(energy_scale, (position + possible[0])/2)) selected_edges = [] for peak in edge_indices: if 525 < energy_scale[peak] < 533: selected_edges.append('O-K1') else: selected_edge = '' edges = find_major_edges(energy_scale[peak], 20) edges = edges.split('\n') minimum_dist = 100. for edge in edges[1:]: edge = edge[:-3].split(':') name = edge[0].strip() energy = float(edge[1].strip()) if np.abs(energy - energy_scale[peak]) < minimum_dist: minimum_dist = np.abs(energy - energy_scale[peak]) selected_edge = name if selected_edge != '': selected_edges.append(selected_edge) return selected_edges def make_edges(edges_present, energy_scale, e_0, coll_angle): """Makes the edges dictionary for quantification Parameters ---------- edges_present: list list of edges energy_scale: numpy array energy scale on which to make cross section e_0: float acceleration voltage (in V) coll_angle: float collection angle in mrad Returns ------- edges: dict dictionary with all information on cross section """ x_sections = get_x_sections() edges = {} for i, edge in enumerate(edges_present): element, symmetry = edge.split('-') z = 0 for key in x_sections: if element == x_sections[key]['name']: z = int(key) edges[i] = {} edges[i]['z'] = z edges[i]['symmetry'] = symmetry edges[i]['element'] = element for key in edges: xsec = x_sections[str(edges[key]['z'])] if 'chemical_shift' not in edges[key]: edges[key]['chemical_shift'] = 0 if 'symmetry' not in edges[key]: edges[key]['symmetry'] = 'K1' if 'K' in edges[key]['symmetry']: edges[key]['symmetry'] = 'K1' elif 'L' in edges[key]['symmetry']: edges[key]['symmetry'] = 'L3' elif 'M' in edges[key]['symmetry']: edges[key]['symmetry'] = 'M5' else: edges[key]['symmetry'] = edges[key]['symmetry'][0:2] edges[key]['original_onset'] = xsec[edges[key]['symmetry']]['onset'] edges[key]['onset'] = edges[key]['original_onset'] + edges[key]['chemical_shift'] edges[key]['start_exclude'] = edges[key]['onset'] - xsec[edges[key]['symmetry']]['excl before'] edges[key]['end_exclude'] = edges[key]['onset'] + xsec[edges[key]['symmetry']]['excl after'] edges = make_cross_sections(edges, energy_scale, e_0, coll_angle) return edges def make_cross_sections(edges, energy_scale, e_0, coll_angle): """Updates the edges dictionary with collection angle-integrated X-ray photo-absorption cross-sections """ for key in edges: if key.isdigit(): edges[key]['data'] = xsec_xrpa(energy_scale, e_0 / 1000., edges[key]['Z'], coll_angle, edges[key]['chemical_shift']) / 1e10 # from barnes to 1/nm^2 edges[key]['onset'] = edges[key]['original_onset'] + edges[key]['chemical_shift'] edges[key]['X_section_type'] = 'XRPA' edges[key]['X_section_source'] = 'pyTEMlib' return edges def power_law(energy, a, r): """power law for power_law_background""" return a * np.power(energy, -r) def power_law_background(spectrum, energy_scale, fit_area, verbose=False): """fit of power law to spectrum """ # Determine energy window for background fit in pixels startx = np.searchsorted(energy_scale, fit_area[0]) endx = np.searchsorted(energy_scale, fit_area[1]) x = np.array(energy_scale)[startx:endx] y = np.array(spectrum)[startx:endx].flatten() # Initial values of parameters p0 = np.array([1.0E+20, 3]) # background fitting def bgdfit(pp, yy, xx): err = yy - power_law(xx, pp[0], pp[1]) return err [p, _] = leastsq(bgdfit, p0, args=(y, x), maxfev=2000) background_difference = y - power_law(x, p[0], p[1]) background_noise_level = std_dev = np.std(background_difference) if verbose: print(f'Power-law background with amplitude A: {p[0]:.1f} and exponent -r: {p[1]:.2f}') print(background_difference.max() / background_noise_level) print(f'Noise level in spectrum {std_dev:.3f} counts') # Calculate background over the whole energy scale background = power_law(energy_scale, p[0], p[1]) return background, p def cl_model(x, p, number_of_edges, xsec): """ core loss model for fitting""" y = (p[9] * np.power(x, (-p[10]))) + p[7] * x + p[8] * x * x for i in range(number_of_edges): y = y + p[i] * xsec[i, :] return y def fit_edges2(spectrum, energy_scale, edges): """fit edges for quantification""" dispersion = energy_scale[1] - energy_scale[0] # Determine fitting ranges and masks to exclude ranges mask = np.ones(len(spectrum)) background_fit_start = edges['fit_area']['fit_start'] if edges['fit_area']['fit_end'] > energy_scale[-1]: edges['fit_area']['fit_end'] = energy_scale[-1] background_fit_end = edges['fit_area']['fit_end'] startx = np.searchsorted(energy_scale, background_fit_start) endx = np.searchsorted(energy_scale, background_fit_end) mask[0:startx] = 0.0 mask[endx:-1] = 0.0 for key in edges: if key.isdigit(): if edges[key]['start_exclude'] > background_fit_start + dispersion: if edges[key]['start_exclude'] < background_fit_end - dispersion * 2: if edges[key]['end_exclude'] > background_fit_end - dispersion: # we need at least one channel to fit. edges[key]['end_exclude'] = background_fit_end - dispersion startx = np.searchsorted(energy_scale, edges[key]['start_exclude']) if startx < 2: startx = 1 endx = np.searchsorted(energy_scale, edges[key]['end_exclude']) mask[startx: endx] = 0.0 ######################## # Background Fit ######################## bgd_fit_area = [background_fit_start, background_fit_end] background, [A, r] = power_law_background(spectrum, energy_scale, bgd_fit_area, verbose=False) ####################### # Edge Fit ####################### x = energy_scale blurred = gaussian_filter(spectrum, sigma=5) y = blurred # now in probability y[np.where(y < 1e-8)] = 1e-8 xsec = [] number_of_edges = 0 for key in edges: if key.isdigit(): xsec.append(edges[key]['data']) number_of_edges += 1 xsec = np.array(xsec) def model(xx, pp): yy = background + pp[6] + pp[7] * xx + pp[8] * xx * xx for i in range(number_of_edges): pp[i] = np.abs(pp[i]) yy = yy + pp[i] * xsec[i, :] return yy def residuals(pp, xx, yy): err = np.abs((yy - model(xx, pp)) * mask) # / np.sqrt(np.abs(y)) return err scale = y[100] pin = np.array([scale / 5, scale / 5, scale / 5, scale / 5, scale / 5, scale / 5, -scale / 10, 1.0, 0.001]) [p, _] = leastsq(residuals, pin, args=(x, y)) for key in edges: if key.isdigit(): edges[key]['areal_density'] = p[int(key)] edges['model'] = {} edges['model']['background'] = (background + p[6] + p[7] * x + p[8] * x * x) edges['model']['background-poly_0'] = p[6] edges['model']['background-poly_1'] = p[7] edges['model']['background-poly_2'] = p[8] edges['model']['background-A'] = A edges['model']['background-r'] = r edges['model']['spectrum'] = model(x, p) edges['model']['blurred'] = blurred edges['model']['mask'] = mask edges['model']['fit_parameter'] = p edges['model']['fit_area_start'] = edges['fit_area']['fit_start'] edges['model']['fit_area_end'] = edges['fit_area']['fit_end'] return edges def fit_edges(spectrum, energy_scale, region_tags, edges): """fit edges for quantification""" # Determine fitting ranges and masks to exclude ranges mask = np.ones(len(spectrum)) background_fit_end = energy_scale[-1] for key in region_tags: end = region_tags[key]['start_x'] + region_tags[key]['width_x'] startx = np.searchsorted(energy_scale, region_tags[key]['start_x']) endx = np.searchsorted(energy_scale, end) if key == 'fit_area': mask[0:startx] = 0.0 mask[endx:-1] = 0.0 else: mask[startx:endx] = 0.0 if region_tags[key]['start_x'] < background_fit_end: # Which is the onset of the first edge? background_fit_end = region_tags[key]['start_x'] ######################## # Background Fit ######################## bgd_fit_area = [region_tags['fit_area']['start_x'], background_fit_end] background, [A, r] = power_law_background(spectrum, energy_scale, bgd_fit_area, verbose=False) ####################### # Edge Fit ####################### x = energy_scale blurred = gaussian_filter(spectrum, sigma=5) y = blurred # now in probability y[np.where(y < 1e-8)] = 1e-8 xsec = [] number_of_edges = 0 for key in edges: if key.isdigit(): xsec.append(edges[key]['data']) number_of_edges += 1 xsec = np.array(xsec) def model(xx, pp): yy = background + pp[6] + pp[7] * xx + pp[8] * xx * xx for i in range(number_of_edges): pp[i] =
np.abs(pp[i])
numpy.abs
import wandb import argparse import exmol import torch as th import numpy as np import yaml import os import matplotlib.pyplot as plt import glob import json import selfies as sf import tqdm import pandas as pd from sklearn.cluster import DBSCAN from sklearn.decomposition import PCA from dataclasses import dataclass, asdict import seaborn as sns sns.set() from train import load_data, get_loss_criteria, run_an_eval_epoch, to_device from models import get_model from data_loader import get_explain_dataset from plot_utils import fig_to_data from grover_feats import convert_smiles_to_fp from data_loader import make_timestamp @dataclass class GeneticMolecule(exmol.Example): """Example of a molecule""" distance: float = 1 #: Output of model function generation: int = 0 #: Raw data prediction y: float = None #: True if base is_origin: bool = False #: Genetic score genetic_score: float = np.inf #: Label for this example label: str = None #: Label for this example crossed: bool = False # to make it look nicer def __str__(self): return str(asdict(self)) def str2bool(v): return v.lower() in ('yes', 'true', 't', 'y', '1') def load_dicts(new_run_dp,template_d,args): with open(os.path.join(new_run_dp,"config.yaml"),"r") as config_file: config_d = yaml.load(config_file, Loader=yaml.FullLoader) data_d_keys = template_d["data"].keys() model_d_keys = template_d["model"].keys() run_d_keys = template_d["run"].keys() data_d, model_d, run_d = {}, {}, {} for k,v in config_d.items(): if k in data_d_keys: data_d[k] = v["value"] elif k in model_d_keys: model_d[k] = v["value"] elif k in run_d_keys: run_d[k] = v["value"] # data_d["primary_dset"] = args.primary_dset # data_d["secondary_dset"] = args.secondary_dset run_d["do_test"] = False run_d["do_matching"] = False run_d["batch_size"] = 512 return data_d, model_d, run_d def get_samples(target_smiles,preset,num_samples): # set up stoned stoned_kw = { "num_samples": num_samples } if preset == "medium": stoned_kw["max_mutations"] = 2 stoned_kw["alphabet"] = exmol.get_basic_alphabet() elif preset == "narrow": stoned_kw["max_mutations"] = 1 stoned_kw["alphabet"] = exmol.get_basic_alphabet() elif preset == "wide": stoned_kw["max_mutations"] = 5 stoned_kw["alphabet"] = sf.get_semantic_robust_alphabet() pbar = tqdm.tqdm(total=num_samples) samples, _ = exmol.run_stoned(target_smiles,_pbar=pbar,**stoned_kw) return samples def calculate_genetic_score(distance, y_delta, delta_cut_off=0.5): if np.abs(y_delta) < delta_cut_off: return 0 if np.abs(y_delta) < delta_cut_off: delta_score = np.abs(y_delta) else: delta_score = delta_cut_off + (np.abs(y_delta) - delta_cut_off) * .2 return (1 - distance) * delta_score def get_genetic_molecules( fxn_values, smiles, selfies, distances, target_molecule, flags, generation=0): # pack them into data structure with filtering out identical # and nan exps = [] for i, (sm, se, d, y) in enumerate(zip(smiles, selfies, distances, fxn_values)): exps.append(GeneticMolecule( smiles=sm, selfies=se, distance=d, similarity=1-d, yhat=np.squeeze(y), is_origin=False, index=0, generation=generation, genetic_score=calculate_genetic_score( d, target_molecule.yhat - np.squeeze(y), flags.delta ), # label # y, )) for i, e in enumerate(exps): e.index = i return exps def plot_scatter( molecule_bank, target_molecule, flags, carc_df, fig_kwargs): # Identify counterfactuals pass_threshold = [mol for mol in molecule_bank if np.abs(mol.yhat - target_molecule.yhat) > flags.delta] positive_candidates = [mol for mol in pass_threshold if mol.yhat > target_molecule.yhat] negative_candidates = [mol for mol in pass_threshold if mol.yhat < target_molecule.yhat] cfs = [target_molecule] positive_candidates = sorted(positive_candidates, key=lambda mol: mol.distance) negative_candidates = sorted(negative_candidates, key=lambda mol: mol.distance) if negative_candidates: cfs.append(negative_candidates[0]) if positive_candidates: cfs.append(positive_candidates[0]) x_cfs = [mol.distance for mol in cfs] y_cfs = [return_percentile(e.yhat, carc_df['carc_continuous'].values) for e in cfs] cmap = "viridis" dists = np.array([mol.distance for mol in molecule_bank]) yhats = np.array([mol.yhat for mol in molecule_bank]) pred_yhat = molecule_bank[0].yhat lower_yhat = pred_yhat - flags.delta upper_yhat = pred_yhat + flags.delta true_percentile = return_percentile(target_molecule.y, carc_df['carc_continuous'].values) pred_percentile = return_percentile(pred_yhat, carc_df['carc_continuous'].values) upper_percentile = return_percentile(upper_yhat, carc_df['carc_continuous'].values) lower_percentile = return_percentile(lower_yhat, carc_df['carc_continuous'].values) # make index selection somewhat stochastic so that we # don't select from the same cluster idx = np.argsort(dists)[1:5 * flags.num_viz + 1] np.random.seed(1337) idx = np.random.choice(idx, flags.num_viz) sns.set() sns.set_context('talk') fig = plt.figure(figsize=(12, 12)) gs = fig.add_gridspec(3, 3) ax = fig.add_subplot(gs[:2, :]) scatter_dists = np.concatenate([dists[idx], x_cfs]) scatter_yhats =
np.concatenate([yhats[idx], y_cfs])
numpy.concatenate
import numpy as np from scipy.stats import lognorm from scipy.optimize import curve_fit from abc import ABC, abstractmethod from icecube_tools.detector.effective_area import ( R2015AeffReader, R2015_AEFF_FILENAME, ) from icecube_tools.utils.data import IceCubeData, find_files, data_directory """ Module for handling the energy resolution of IceCube using publicly available information. """ GIVEN_ETRUE = 0 GIVEN_ERECO = 1 _supported_dataset_ids = ["20150820"] class EnergyResolutionBase(ABC): """ Abstract base class for energy resolution. Stores information on how the reconstructed energy in the detector relates to the true neutrino energy. """ @property def values(self): """ A 2D histogram of probabilities normalised over reconstructed energy. x-axis <=> true_energy y-axis <=> reco_energy """ return self._values @values.setter def values(self, values): if len(np.shape(values)) > 2: raise ValueError(str(values) + " is not a 2D array.") else: self._values = values @property def true_energy_bins(self): return self._true_energy_bins @true_energy_bins.setter def true_energy_bins(self, value): self._true_energy_bins = value @property def reco_energy_bins(self): return self._reco_energy_bins @reco_energy_bins.setter def reco_energy_bins(self, value): self._reco_energy_bins = value @abstractmethod def sample(self): pass class EnergyResolution(EnergyResolutionBase): """ Muon neutrino energy resolution using public data. Makes use of the 2015 effective area release and its corresponding reader class. Based on implementation by <NAME> (@chrhck). """ supported_datasets = _supported_dataset_ids def __init__(self, filename, conditional=GIVEN_ETRUE, **kwargs): """ Muon neutrino energy resolution using public data. Makes use of the 2015 effective area release and its corresponding reader class. Based on implementation by <NAME> (@chrhck). :param filename: Name of file to be read in. :param kwargs: year and/or nu_type can be specified. See release for more info. Link: https://icecube.wisc.edu/science/data/HE_NuMu_diffuse. """ super().__init__() self._conditional = conditional self._reader = R2015AeffReader(filename, **kwargs) self.true_energy_bins = self._reader.true_energy_bins self.reco_energy_bins = self._reader.reco_energy_bins self.values = self._integrate_out_cos_zenith() self.values = self._get_conditional() self.values = self._normalise() self._fit_lognormal() self._fit_polynomial() @classmethod def from_dataset(cls, dataset_id, fetch=True, **kwargs): """ Load energy resolution from publicly available data. :param dataset_id: Date identifying the dataset e.g. "20181018" :param fetch: If true, download dataset if missing """ if dataset_id not in _supported_dataset_ids: raise NotImplementedError("This dataset is not currently supported") if fetch: data_interface = IceCubeData() dataset = data_interface.find(dataset_id) data_interface.fetch(dataset) dataset_dir = data_interface.get_path_to(dataset[0]) else: dataset_dir = data_directory if dataset_id == "20150820": files = find_files(dataset_dir, R2015_AEFF_FILENAME) eres_file_name = files[0] return cls(eres_file_name, **kwargs) def _integrate_out_cos_zenith(self): """ We are only interested in the energy dependence. """ dim_to_int = self._reader._label_order["cos_zenith"] return np.sum(self._reader.effective_area_values, axis=dim_to_int) def _get_conditional(self): """ From the joint distribution of Etrue and Ereco we want the conditional of Ereco | Etrue OR Etrue | Ereco. """ if self._conditional == GIVEN_ETRUE: true_energy_dist = self.values.T.sum(axis=0) # To avoid zero division true_energy_dist[true_energy_dist == 0] = 1e-10 conditional = np.nan_to_num(self.values.T / true_energy_dist).T elif self._conditional == GIVEN_ERECO: reco_energy_dist = self.values.sum(axis=0) conditional = np.nan_to_num(self.values / reco_energy_dist) else: raise ValueError("conditional must be GIVEN_ETRUE or GIVEN_ERECO") return conditional def _normalise(self): """ Normalise over the reconstruted energy so at each Etrue bin the is a probability distribution over Ereco. """ if self._conditional == GIVEN_ETRUE: normalised = np.zeros( (len(self.true_energy_bins[:-1]), len(self.reco_energy_bins[:-1])) ) for i, Etrue in enumerate(self.true_energy_bins[:-1]): norm = 0 for j, Ereco in enumerate(self.reco_energy_bins[:-1]): delta_Ereco = self.reco_energy_bins[j + 1] - Ereco norm += self.values[i][j] * delta_Ereco # Avoid zero division if norm == 0: norm = 1e-10 normalised[i] = self.values[i] / norm elif self._conditional == GIVEN_ERECO: normalised = np.zeros( (len(self.true_energy_bins[:-1]), len(self.reco_energy_bins[:-1])) ).T for i, Ereco in enumerate(self.reco_energy_bins[:-1]): norm = 0 for j, Etrue in enumerate(self.true_energy_bins[:-1]): delta_Etrue = self.true_energy_bins[j + 1] - Etrue norm += self.values.T[i][j] * delta_Etrue normalised[i] = self.values.T[i] / norm normalised = normalised.T return normalised def _fit_lognormal(self): """ Fit a lognormal distribution for each Etrue and store its parameters. """ def _lognorm_wrapper(E, mu, sigma): return lognorm.pdf(E, sigma, loc=0, scale=mu) self._mu = [] self._sigma = [] if self._conditional == GIVEN_ETRUE: self.reco_energy_bin_cen = ( self.reco_energy_bins[:-1] + self.reco_energy_bins[1:] ) / 2 for i, Etrue in enumerate(self.true_energy_bins[:-1]): try: fit_vals, _ = curve_fit( _lognorm_wrapper, self.reco_energy_bin_cen, np.nan_to_num(self.values[i]), p0=(Etrue, 0.5), ) self._mu.append(fit_vals[0]) self._sigma.append(fit_vals[1]) except: self._mu.append(np.nan) self._sigma.append(np.nan) elif self._conditional == GIVEN_ERECO: self.true_energy_bin_cen = ( self.true_energy_bins[:-1] + self.true_energy_bins[1:] ) / 2 for i, Ereco in enumerate(self.reco_energy_bins[:-1]): try: fit_vals, _ = curve_fit( _lognorm_wrapper, self.true_energy_bin_cen, np.nan_to_num(self.values.T[i]), p0=(Ereco, 0.5), ) self._mu.append(fit_vals[0]) self._sigma.append(fit_vals[1]) except: self._mu.append(np.nan) self._sigma.append(np.nan) def _fit_polynomial(self): """ Fit a polynomial to approximate the lognormal params at extreme energies where there are little statistics. """ # polynomial degree degree = 5 mu_sel = np.where(np.isfinite(self._mu)) mu = np.array(self._mu)[mu_sel] sigma_sel = np.where(np.isfinite(self._sigma)) sigma =
np.array(self._sigma)
numpy.array